WO2022152323A1 - 数据传输方法、芯片、终端及存储介质 - Google Patents

数据传输方法、芯片、终端及存储介质 Download PDF

Info

Publication number
WO2022152323A1
WO2022152323A1 PCT/CN2022/076412 CN2022076412W WO2022152323A1 WO 2022152323 A1 WO2022152323 A1 WO 2022152323A1 CN 2022076412 W CN2022076412 W CN 2022076412W WO 2022152323 A1 WO2022152323 A1 WO 2022152323A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink carrier
timing offset
information
transport block
data transmission
Prior art date
Application number
PCT/CN2022/076412
Other languages
English (en)
French (fr)
Inventor
雷珍珠
Original Assignee
展讯半导体(南京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯半导体(南京)有限公司 filed Critical 展讯半导体(南京)有限公司
Publication of WO2022152323A1 publication Critical patent/WO2022152323A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the embodiments of the present application relate to the field of communication technologies, and in particular, to a data transmission method, a chip, a terminal, and a storage medium.
  • Non-terrestrial Networks when sending uplink data, a terminal will send it in advance based on a timing advance (Timing Advance, TA) value to ensure synchronization of uplink and downlink.
  • Timing Advance, TA Timing Advance
  • PUSCH Physical Uplink Shared Channel
  • PDCCH Physical Downlink Control Channel
  • DCI Downlink Control Information
  • the terminal since the transmission between the terminal and the satellite has a large propagation delay, in order to align the uplink and downlink timings, the terminal usually needs to send in advance based on the determined timing advance.
  • the scheduling delay value indicated in the above-mentioned DCI is usually set to a small value, which cannot meet the requirement of a large timing advance in a satellite scenario. That is, based on the existing scheduling delay, the terminal cannot perform timing advance sending. As a result, time synchronization between the terminal and the satellite will be problematic, and the transmission efficiency between the terminal and the satellite will be reduced.
  • Embodiments of the present application provide a data transmission method, a chip, a terminal, and a storage medium, so as to provide a manner of timing data transmission.
  • an embodiment of the present application provides a data transmission method, including:
  • Data is transmitted to the network side based on the data transmission moment.
  • the first information is sent by the network side through SIB or RRC dedicated signaling.
  • the second information is sent by the network side through DCI or RAR Grant.
  • the determining the data transmission moment based on the first information and the second information includes:
  • the data transmission moment is determined based on the carrier switching delay, the first information and the second information.
  • the first information includes timing offsets of multiple uplink carriers
  • the second information is sent by the network side using a first beam, the first beam and the first uplink carrier correspond.
  • the second information includes index information of the second uplink carrier, and the determining the data transmission moment based on the first information and the second information includes:
  • the data transmission moment is determined based on the timing offset of the second uplink carrier.
  • the second information includes index information of the second uplink carrier, and the determining the data transmission moment based on the first information and the second information includes:
  • timing offset determines the data transmission moment.
  • the first information includes a timing offset set of multiple uplink carriers
  • the second information is sent by the network side using a first beam, the first beam and the first uplink carrier correspondence, wherein the timing offset set of each uplink carrier includes multiple timing offsets.
  • the second information includes index information and a timing offset index identifier of the second uplink carrier, and the determining the data transmission moment based on the first information and the second information includes:
  • the data transmission moment is determined based on the timing offset of the second uplink carrier.
  • the transmitting data to the network side based on the data transmission moment includes:
  • the second uplink carrier is used to transmit data to the network side.
  • the data includes a transport block
  • the second information includes index information of the second uplink carrier and data division information
  • the data division information is used to represent division of the transport block , to obtain the first data segment, the second data segment, and the mapping relationship between the data segment and the uplink carrier, and the determining the data transmission moment based on the first information and the second information includes:
  • timing offset of the first uplink carrier is greater than or equal to the timing offset of the second uplink carrier, determining the data transmission moment of the first data segment based on the timing offset of the first uplink carrier, and determining the data transmission moment of the second data segment based on the timing offset of the first uplink carrier and the transmission duration of the first data segment;
  • timing offset of the first uplink carrier is less than or equal to the timing offset of the second uplink carrier, determining the data transmission moment of the first data segment based on the timing offset of the second uplink carrier, and determine the data transmission moment of the second data segment based on the timing offset of the second uplink carrier and the transmission duration of the first data segment; or determine the data transmission time based on the timing offset of the first uplink carrier. the data transmission time of the first data segment, and determine the data transmission time of the second data segment based on the timing offset of the second uplink carrier and the transmission duration of the first data segment;
  • the transmission duration of the first data segment is determined by the preset number of retransmissions of the first data segment.
  • the first data segment corresponds to the first uplink carrier
  • the second data segment corresponds to the second uplink carrier
  • the The network-side transmission data includes:
  • the second data segment is transmitted to the network side by using the second uplink carrier.
  • the data includes a first transport block set and a second transport block set, the first transport block set and the second transport block set respectively include one or more transport blocks, and the
  • the second information includes index information of the second uplink carrier and transport block identification information, and the transport block identification information is used to represent the mapping relationship between the transport block and the uplink carrier.
  • the second information determines the data transmission time including:
  • timing offset of the first uplink carrier is greater than or equal to the timing offset of the second uplink carrier, determining the data transmission moment of the first transport block set based on the timing offset of the first uplink carrier, and determining the data transmission moment of the second transport block set based on the timing offset of the first uplink carrier and the transmission duration of the first transport block set;
  • timing offset of the first uplink carrier is less than or equal to the timing offset of the second uplink carrier, determining the data transmission moment of the first transport block set based on the timing offset of the second uplink carrier, and determine the data transmission moment of the second transport block set based on the timing offset of the second uplink carrier and the transmission duration of the first transport block set; or determine the data transmission time based on the timing offset of the first uplink carrier. the data transmission moment of the first transport block set, and determine the data transmission moment of the second transport block set based on the timing offset of the second uplink carrier and the transmission duration of the first transport block set;
  • the transmission duration of the first transport block set is determined by the cumulative transmission duration of all transport blocks in the first transport block set, and the transmission duration of each transport block is reset by a preset value of each transport block. The number of transmissions is determined.
  • the first transport block set corresponds to the first uplink carrier
  • the second transport block set corresponds to the second uplink carrier
  • the The network-side transmission data includes:
  • the second transport block set is transmitted to the network side by using the second uplink carrier.
  • an embodiment of the present application provides a chip, including:
  • a first receiving module configured to receive and store the first information sent by the network side
  • a second receiving module configured to receive the second information sent by the network side, and determine the data transmission time based on the first information and the second information
  • a transmission module configured to transmit data to the network side based on the data transmission moment.
  • the first information is sent by the network side through SIB or RRC dedicated signaling.
  • the second information is sent by the network side through DCI or RAR Grant.
  • the second receiving module is further configured to acquire the wave switching delay; and determine the data transmission time based on the carrier switching delay, the first information and the second information.
  • the first information includes timing offsets of multiple uplink carriers
  • the second information is sent by the network side using a first beam, the first beam and the first uplink carrier correspond.
  • the second information includes index information of the second uplink carrier
  • the second receiving module includes:
  • a query unit configured to query the first information based on the index information of the second uplink carrier to obtain the timing offset of the second uplink carrier
  • a determining unit configured to determine the data transmission moment based on the timing offset of the second uplink carrier.
  • the second information includes index information of the second uplink carrier
  • the second receiving module includes:
  • an obtaining unit configured to obtain the timing offset of the first uplink carrier
  • a query unit configured to query the first information based on the index information of the second uplink carrier to obtain the timing offset of the second uplink carrier
  • a determining unit configured to compare the timing offset of the first uplink carrier with the timing offset of the second uplink carrier, if the timing offset of the first uplink carrier is greater than or equal to the second uplink carrier If the timing offset of the first uplink carrier is less than or equal to the timing offset of the second uplink carrier, the data transmission moment is determined based on the timing offset of the first uplink carrier.
  • the timing offset of the second uplink carrier determines the data transmission moment.
  • the first information includes a timing offset set of multiple uplink carriers
  • the second information is sent by the network side using a first beam, the first beam and the first uplink carrier correspondence, wherein the timing offset set of each uplink carrier includes multiple timing offsets.
  • the second information includes index information and timing offset index identification of the second uplink carrier
  • the second receiving module includes:
  • a first query unit configured to query the first information based on the index information of the second uplink carrier to obtain a timing offset set of the second uplink carrier
  • a second query unit configured to query in the timing offset set of the uplink carrier based on the timing offset index identifier, to obtain the timing offset of the second uplink carrier corresponding to the timing offset index identifier;
  • a determining unit configured to determine the data transmission moment based on the timing offset of the second uplink carrier.
  • the transmission module is further configured to use the second uplink carrier to transmit data to the network side based on the data transmission moment.
  • the data includes a transport block
  • the second information includes index information of the second uplink carrier and data division information, where the data division information is used to represent division of the transport block , to obtain the first data segment, the second data segment and the mapping relationship between the data segment and the uplink carrier
  • the second receiving module includes:
  • an obtaining unit configured to obtain the timing offset of the first uplink carrier
  • a query unit configured to query the first information based on the index information of the second uplink carrier to obtain the timing offset of the second uplink carrier
  • a determining unit configured to compare the timing offset of the first uplink carrier with the timing offset of the second uplink carrier
  • timing offset of the first uplink carrier is greater than or equal to the timing offset of the second uplink carrier, determining the data transmission moment of the first data segment based on the timing offset of the first uplink carrier, and determining the data transmission moment of the second data segment based on the timing offset of the first uplink carrier and the transmission duration of the first data segment;
  • timing offset of the first uplink carrier is less than or equal to the timing offset of the second uplink carrier, determining the data transmission moment of the first data segment based on the timing offset of the second uplink carrier, and determine the data transmission moment of the second data segment based on the timing offset of the second uplink carrier and the transmission duration of the first data segment; or determine the data transmission time based on the timing offset of the first uplink carrier. the data transmission time of the first data segment, and determine the data transmission time of the second data segment based on the timing offset of the second uplink carrier and the transmission duration of the first data segment;
  • the transmission duration of the first data segment is determined by the preset number of retransmissions of the first data segment.
  • the first data segment corresponds to the first uplink carrier
  • the second data segment corresponds to the second uplink carrier
  • the transmission module is further configured to base on the at the data transmission time of the first data segment, use the first uplink carrier to transmit the first data segment to the network side; based on the data transmission time of the second data segment, use the second data segment
  • the uplink carrier transmits the second data segment to the network side.
  • the data includes a first transport block set and a second transport block set
  • the first transport block set and the second transport block set respectively include one or more transport blocks
  • the The second information includes index information of the second uplink carrier and transport block identification information
  • the transport block identification information is used to represent the mapping relationship between the transport block and the uplink carrier
  • the second receiving module includes:
  • an obtaining unit configured to obtain the timing offset of the first uplink carrier
  • a query unit configured to query in the first information based on the index information of the second uplink carrier to obtain the timing offset of the second uplink carrier
  • a determining unit configured to compare the timing offset of the first uplink carrier with the timing offset of the second uplink carrier
  • timing offset of the first uplink carrier is greater than or equal to the timing offset of the second uplink carrier, determining the data transmission moment of the first transport block set based on the timing offset of the first uplink carrier, and determining the data transmission moment of the second transport block set based on the timing offset of the first uplink carrier and the transmission duration of the first transport block set;
  • timing offset of the first uplink carrier is less than or equal to the timing offset of the second uplink carrier, determining the data transmission moment of the first transport block set based on the timing offset of the second uplink carrier, and determine the data transmission moment of the second transport block set based on the timing offset of the second uplink carrier and the transmission duration of the first transport block set; or determine the data transmission time based on the timing offset of the first uplink carrier. the data transmission moment of the first transport block set, and determine the data transmission moment of the second transport block set based on the timing offset of the second uplink carrier and the transmission duration of the first transport block set;
  • the transmission duration of the first transport block set is determined by the cumulative transmission duration of all transport blocks in the first transport block set, and the transmission duration of each transport block is reset by a preset value of each transport block. The number of transmissions is determined.
  • the first transport block set corresponds to the first uplink carrier
  • the second transport block set corresponds to the second uplink carrier
  • the transmission module is further configured to base on the at the data transmission moment of the first transport block set, use the first uplink carrier to transmit the first transport block set to the network side; based on the data transmission moment of the second transport block set, use the second transport block set
  • the uplink carrier transmits the second transport block set to the network side.
  • an embodiment of the present application provides a terminal, including:
  • Memory the memory is used to store computer program code, and the computer program code includes instructions, when the terminal reads the instructions from the memory, so that the terminal performs the following steps:
  • Data is transmitted to the network side based on the data transmission moment.
  • the first information is sent by the network side through SIB or RRC dedicated signaling.
  • the second information is sent by the network side through DCI or RAR Grant.
  • causing the above-mentioned terminal to execute the step of determining the data transmission time based on the first information and the second information includes:
  • the data transmission moment is determined based on the carrier switching delay, the first information and the second information.
  • the first information includes timing offsets of multiple uplink carriers
  • the second information is sent by the network side using a first beam, the first beam and the first uplink carrier correspond.
  • the second information includes index information of the second uplink carrier, and when the above-mentioned instruction is executed by the above-mentioned terminal, the above-mentioned terminal causes the above-mentioned terminal to execute the determination of data transmission based on the first information and the second information
  • the steps of the moment include:
  • the data transmission moment is determined based on the timing offset of the second uplink carrier.
  • the second information includes index information of the second uplink carrier, and when the above-mentioned instruction is executed by the above-mentioned terminal, the above-mentioned terminal causes the above-mentioned terminal to execute the determination of data transmission based on the first information and the second information
  • the steps of the moment include:
  • timing offset determines the data transmission moment.
  • the first information includes a timing offset set of multiple uplink carriers
  • the second information is sent by the network side using a first beam, the first beam and the first uplink carrier correspondence, wherein the timing offset set of each uplink carrier includes multiple timing offsets.
  • the second information includes index information of the second uplink carrier and a timing offset index identifier, and when the above-mentioned instruction is executed by the above-mentioned terminal, the above-mentioned terminal can execute the operation based on the first information and the above-mentioned
  • the step of determining the moment of data transmission by the second information includes:
  • the data transmission moment is determined based on the timing offset of the second uplink carrier.
  • causing the above-mentioned terminal to perform the step of transmitting data to the network side based on the data transmission moment includes:
  • the second uplink carrier is used to transmit data to the network side.
  • the data includes a transport block
  • the second information includes index information of the second uplink carrier and data division information, where the data division information is used to represent division of the transport block to obtain the first data segment, the second data segment, and the mapping relationship between the data segment and the uplink carrier.
  • timing offset of the first uplink carrier is greater than or equal to the timing offset of the second uplink carrier, determining the data transmission moment of the first data segment based on the timing offset of the first uplink carrier, and determining the data transmission moment of the second data segment based on the timing offset of the first uplink carrier and the transmission duration of the first data segment;
  • timing offset of the first uplink carrier is less than or equal to the timing offset of the second uplink carrier, determining the data transmission moment of the first data segment based on the timing offset of the second uplink carrier, and determine the data transmission moment of the second data segment based on the timing offset of the second uplink carrier and the transmission duration of the first data segment; or determine the data transmission time based on the timing offset of the first uplink carrier. the data transmission time of the first data segment, and determine the data transmission time of the second data segment based on the timing offset of the second uplink carrier and the transmission duration of the first data segment;
  • the transmission duration of the first data segment is determined by the preset number of retransmissions of the first data segment.
  • the first data segment corresponds to the first uplink carrier
  • the second data segment corresponds to the second uplink carrier
  • the above instruction is executed by the terminal
  • the The step that the above-mentioned terminal performs data transmission to the network side based on the data transmission moment includes:
  • the second data segment is transmitted to the network side by using the second uplink carrier.
  • the data includes a first transport block set and a second transport block set, the first transport block set and the second transport block set respectively include one or more transport blocks, and the
  • the second information includes index information of the second uplink carrier and transport block identification information, and the transport block identification information is used to represent the mapping relationship between the transport block and the uplink carrier.
  • the second information determines the data transmission time including:
  • timing offset of the first uplink carrier is greater than or equal to the timing offset of the second uplink carrier, determining the data transmission moment of the first transport block set based on the timing offset of the first uplink carrier, and determining the data transmission moment of the second transport block set based on the timing offset of the first uplink carrier and the transmission duration of the first transport block set;
  • timing offset of the first uplink carrier is less than or equal to the timing offset of the second uplink carrier, determining the data transmission moment of the first transport block set based on the timing offset of the second uplink carrier, and determine the data transmission moment of the second transport block set based on the timing offset of the second uplink carrier and the transmission duration of the first transport block set; or determine the data transmission time based on the timing offset of the first uplink carrier. the data transmission moment of the first transport block set, and determine the data transmission moment of the second transport block set based on the timing offset of the second uplink carrier and the transmission duration of the first transport block set;
  • the transmission duration of the first transport block set is determined by the cumulative transmission duration of all transport blocks in the first transport block set, and the transmission duration of each transport block is reset by a preset value of each transport block. The number of transmissions is determined.
  • the first transport block set corresponds to the first uplink carrier
  • the second transport block set corresponds to the second uplink carrier
  • the The network-side transmission data includes:
  • the second transport block set is transmitted to the network side by using the second uplink carrier.
  • an embodiment of the present application provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when it runs on a computer, causes the computer to execute the method described in the first aspect.
  • an embodiment of the present application provides a computer program, which is used to execute the method described in the first aspect when the computer program is executed by a computer.
  • the program in the fifth aspect may be stored in whole or in part on a storage medium packaged with the processor, and may also be stored in part or in part in a memory not packaged with the processor.
  • FIG. 1 is a schematic diagram of an application scenario provided by an embodiment of the present application.
  • FIG. 2 is a flowchart of an embodiment of a data transmission method provided by the present application.
  • FIG. 3 is a schematic diagram of an embodiment of a data transmission sequence provided by the present application.
  • FIG. 5 is a flowchart of another embodiment of a data transmission method provided by the present application.
  • FIG. 6 is a schematic diagram of another embodiment of a data transmission sequence provided by the present application.
  • FIG. 7 is a schematic diagram of another embodiment of a data transmission sequence provided by the present application.
  • FIG. 8 is a flowchart of another embodiment of the data transmission method provided by the present application.
  • FIG. 9 is a schematic diagram of another embodiment of a data transmission sequence provided by the present application.
  • FIG. 10 is a schematic diagram of yet another embodiment of a data transmission sequence provided by this application.
  • FIG. 11 is a schematic structural diagram of a chip provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a terminal provided by an embodiment of the present application.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implicitly indicating the number of indicated technical features.
  • a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature.
  • plural means two or more.
  • a cell can usually contain multiple beams (Beams). Due to the fast movement of satellites, the terminal needs to perform beam switching frequently.
  • a terminal eg, an IoT device
  • a set of beam management mechanisms is required to allocate communication resources.
  • carrier management is supported in the Internet of Things, that is, the allocation of communication resources in the Internet of Things is usually in units of carriers.
  • a single-frequency cell usually has only a bandwidth of 180kHZ, which is in addition to the narrowband primary synchronization signal (Narrowband Primary Synchronization Signal, NPSS) and the narrowband secondary synchronization signal (Narrowband Secondary Synchronization Signal, NSSS). ) and System Information Block (SIB), the remaining traffic channel capacity is very small. Therefore, in order to support a large number of terminals, multiple frequency points need to be used to improve network capacity.
  • NPSS Narrowband Primary Synchronization Signal
  • NSSS narrowband Secondary Synchronization Signal
  • SIB System Information Block
  • NPDSCH Narrowband Physical Broadcast Channel
  • NPDCCH Narrowband Physical Downlink Control Channel
  • NPDSCH Narrowband Physical Downlink Shared Channel
  • the anchor carrier of NPDSCH it may also include multiple non-anchor carriers that only carry NPDCCH and NPDSCH, but do not carry NPSS, NSSS and NPBCH. Among them, the spectrum bandwidth of each carrier is 180kHz, and the maximum spectrum span of all carriers in the cell does not exceed 20MHz.
  • the terminal may perform data transmission on the non-anchor carrier.
  • each carrier corresponds to one beam
  • the carrier 1 corresponds to the beam 1
  • the carrier 2 corresponds to the beam 2.
  • the network side switches between different beams, the transmission delay between the terminal and the satellite is different.
  • the network side only considers the scheduling delay, and does not consider the above-mentioned transmission delay between the terminal and the satellite, which will bring problems to the time synchronization between the terminal and the satellite, and then affect the transmission between the terminal and the satellite. efficiency.
  • an embodiment of the present application proposes a data transmission method.
  • FIG. 1 is an application scenario provided by an embodiment of the present application.
  • the above application scenario includes a terminal 100 and a satellite 200 .
  • the satellite 200 is a device on the network side, which does not constitute a limitation on the embodiments of the present application.
  • the device on the network side can also be embodied in other forms.
  • a terminal may also be referred to as terminal equipment, user equipment (UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, wireless communication device, user agent or user device.
  • the terminal can be a station (STAION, ST) in a WLAN, a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a Wireless Local Loop (WLL) station, a personal digital processor ( Personal Digital Assistant (PDA) device, handheld device with wireless communication capabilities, computing device or other processing device connected to a wireless modem, in-vehicle device, connected vehicle terminal, computer, laptop computer, handheld communication device, handheld computing device equipment, satellite wireless equipment, wireless modem cards, television set top boxes (STBs), customer premise equipment (CPEs) and/or other equipment for communicating over wireless systems and next generation communication systems, For example, a mobile terminal in a 5G network or a mobile terminal in a future evolved
  • the terminal may also be a wearable device.
  • Wearable devices can also be called wearable smart devices, which are the general term for the intelligent design of daily wear and the development of wearable devices using wearable technology, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories.
  • Wearable device is not only a hardware device, but also realizes powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-scale, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, which needs to be used in conjunction with other devices such as smart phones. , such as various types of smart bracelets and smart jewelry that monitor physical signs.
  • the terminal may also be an IoT device.
  • This embodiment of the present application does not specifically limit the specific form of the above-mentioned terminal.
  • FIG. 2 is a schematic flowchart of an embodiment of a data transmission method provided by this application, including:
  • Step 101 the satellite 200 sends timing offset configuration information.
  • the satellite 200 may transmit the timing offset configuration information in a broadcast manner.
  • the satellite 200 may broadcast a system broadcast message (eg, SIB) through the NPBCH, and the SIB may carry the above-mentioned timing offset configuration information.
  • the timing offset configuration information may include multiple timing offsets, and each timing offset may correspond to an uplink carrier. It can be understood that since each uplink carrier corresponds to one beam, the timing offset of each uplink carrier may also correspond to one beam, so that different uplink carriers or beams can correspond to different timing offsets.
  • Table 1 is a timing offset configuration information table. As shown in Table 1, the timing offset configuration information table may include a mapping relationship between uplink carriers, beams and timing offsets.
  • the timing offset configuration information may also include a mapping relationship between uplink carriers and timing offsets or a mapping relationship between beams and timing offsets, wherein the mapping relationship between uplink carriers and beams may be predetermined Configuration is performed in the terminal 100 .
  • each uplink carrier may be determined by the transmission delay between the terminal 100 and the satellite 200 .
  • the above Table 1 merely exemplifies the identification of the uplink carrier by means of ID, and does not constitute a limitation on the embodiments of the present application.
  • the uplink carrier may also be identified by means of an index.
  • the satellite 200 may also send the above timing offset configuration information through RRC dedicated signaling.
  • RRC dedicated signaling After an RRC connection is established between the terminal 100 and the satellite 200, the satellite 200 may send RRC dedicated signaling to the terminal 100, and the RRC dedicated signaling may carry the above timing offset configuration information.
  • RRC dedicated signaling reference may be made to 3GPP related protocols, which will not be repeated here.
  • Step 102 the terminal 100 receives the timing offset configuration information sent by the satellite 200, and stores it.
  • Step 103 the satellite 200 prepares to switch from the first beam to the second beam, and sends the ID of the second carrier to the terminal 100 through the first beam.
  • the satellite 200 may notify the switched target beam through a downlink message.
  • the downlink message may be a DCI or a random access response grant (Random Access Response Grant, RAR Grant)
  • the first beam may be any beam in the beam resources of the satellite 200, and the first beam may be The beam before handover, for example, the first beam may be beam 1 in Table 1.
  • the first beam corresponds to a first carrier, and the first carrier may be one of the carriers in the carrier resources of the terminal 100 , for example, the first carrier may be carrier 1 in Table 1.
  • the second beam may be another beam in the beam resources of the satellite 200, and the second beam may be the switched target beam.
  • the second beam may be beam 2 in Table 1.
  • the second beam corresponds to a second carrier, and the second carrier may be another carrier in the carrier resource of the terminal 100 , for example, the second carrier may be the carrier 2 in Table 1.
  • the satellite 200 can send the DCI through the PDCCH where the first beam is located, or send the RAR Grant through a random access (Random Access, RA) process, and the specific RA process can refer to 3GPP related protocols, which will not be repeated here.
  • RA Random Access
  • the DCI or RAR Grant may include the ID of the second carrier.
  • the DCI or RAR Grant may further include scheduling delay.
  • the above examples only illustrate the manner in which the downlink message (for example, DCI or RAR Grant) includes the ID of the second carrier, and does not constitute a limitation on the embodiments of the present application.
  • the ID of the second carrier can also be replaced by the ID of the second beam.
  • Step 104 the terminal 100 receives the ID of the second carrier sent by the satellite 200, and determines the data transmission time based on the ID of the second carrier.
  • the terminal 100 can receive the above-mentioned DCI or RAR Grant through the first carrier. After receiving the DCI or RAR Grant sent by the satellite 200, the terminal 100 can obtain the scheduling delay in the above-mentioned DCI or RAR Grant and the ID of the second carrier.
  • the stored timing offset configuration information may be queried based on the ID of the second carrier to obtain the timing offset (eg, T_offset2) corresponding to the second carrier.
  • the data transmission moment may be determined based on the above scheduling delay and the timing offset of the second carrier.
  • the data transmission time T T_start+T0+T_offset2, where T_start is the start time, and T0 is the above-mentioned scheduling delay.
  • the carrier switching delay may also be considered when calculating the above data transmission time T.
  • the data transmission time T T_start+T0+T_offset2+T1, where T1 is the carrier switching delay.
  • the satellite 200 sends DCI to the terminal 100 through the PDCCH where the first beam is located.
  • the terminal 100 receives the transmission from the satellite 200 through the first carrier. DCI.
  • the time when the terminal 100 completely receives the above-mentioned DCI is T_start.
  • the terminal 100 can obtain the scheduling delay T0 in the DCI and the timing offset T_offset2 of the second carrier, and can send data at the time T_start+T0+T_offset2. For example, data may be sent through the PUSCH where the second carrier is located at time T_start+T0+T_offset2.
  • the timing offset T_offset1 of the first carrier may be further acquired.
  • the above-mentioned T_offset1 and T_offset2 may be compared.
  • T_offset1> T_offset2
  • T_offset1 ⁇ T_offset2
  • FIG. 3 only exemplarily shows a DCI scenario, and does not constitute a limitation to the embodiments of the present application.
  • the data transmission moment can also be determined by means of RAR Grant.
  • Step 105 the terminal 100 sends data to the satellite 200 based on the above data transmission time.
  • the terminal 100 can send data to the satellite 200 by using the PUSCH where the second carrier is located at the data transmission time.
  • the network side configures the transmission delay based on each beam, and when the network side switches to the target carrier, the terminal side determines the corresponding transmission delay based on the target carrier, and determines the data transmission time based on the transmission delay, In this way, time synchronization between the terminal side and the network side can be achieved, thereby improving the transmission efficiency between the terminal side and the network side.
  • FIG. 4 is a schematic flowchart of another embodiment of a data transmission method provided by the present application, including:
  • Step 201 the satellite 200 sends timing offset set configuration information.
  • the satellite 200 may transmit the timing offset set configuration information in a broadcast manner.
  • the satellite 200 may broadcast a system broadcast message (eg, SIB) through the NPBCH, and the SIB may carry the above-mentioned timing offset set configuration information.
  • the timing offset set configuration information may include multiple timing offset sets, each timing offset set may correspond to an uplink carrier, and each timing offset set may include multiple timing offsets. It can be understood that since each uplink carrier corresponds to one beam, the timing offset set of each uplink carrier can also correspond to one beam, so that different uplink carriers or beams can correspond to different timing offsets.
  • Table 2 is a timing offset set configuration information table. As shown in Table 2, the timing offset set configuration information table may include a mapping relationship between uplink carriers, beams, and timing offset sets.
  • Upstream carrier ID Beam ID Timing offset collection Upstream carrier 1 beam 1 T_offset11, T_offset12 Upstream carrier 2 beam 2 T_offset21, T_offset22 ... ... ... ...
  • each timing offset set may also include 3 or more timing offsets.
  • the satellite 200 may also send the above timing offset set configuration information through RRC dedicated signaling.
  • the satellite 200 may send RRC dedicated signaling to the terminal 100, and the RRC dedicated signaling may carry the above timing offset set configuration information.
  • Step 202 the terminal 100 receives the timing offset set configuration information sent by the satellite 200, and stores it.
  • Step 203 the satellite 200 prepares to switch from the first beam to the second beam, and sends the ID and index identifier of the second carrier to the terminal 100 through the first beam.
  • the satellite 200 may send the ID and index identifier of the second carrier to the terminal 100, where the ID and the index identifier of the second carrier may be carried through DCI or RAR Grant.
  • the index identifies an index used to characterize timing offsets in the set of timing offsets.
  • the above-mentioned index identifier may be indicated by a special field in DCI or RAR Grant.
  • the special field may include 1 bit (for example, the index identifier may be 0 or 1).
  • Take uplink carrier 1 as an example, if the index is "0", it can indicate the first timing offset (for example, T_offset11); if the index is "1", it can indicate the second timing offset (for example, T_offset12 ).
  • the above-mentioned DCI or RAR Grant may also carry the scheduling delay.
  • Step 204 the terminal 100 receives the ID and the index identifier of the second carrier sent by the satellite 200, and determines the data transmission time based on the ID and the index identifier of the second carrier.
  • the terminal 100 can receive the above-mentioned DCI or RAR Grant through the first carrier. After receiving the DCI or RAR Grant sent by the satellite 200, the terminal 100 can obtain the scheduling delay, the ID and the index identifier of the second carrier in the above-mentioned DCI or RAR Grant.
  • the timing offset set corresponding to the second carrier can be obtained by querying the timing offset set configuration information based on the ID of the second carrier.
  • the timing offset in the timing offset set may be determined based on the index identifier (for example, the timing offset may be T_offset21 or T_offset22 in the timing offset set of the second carrier) ), and the data transmission moment can be determined based on the scheduling delay and the determined timing offset of the second carrier.
  • the data transmission time T T_start+T0+T_offset21.
  • the carrier switching delay may also be considered when calculating the above data transmission time T.
  • the data transmission time T T_start+T0+T_offset21+T1, where T1 is the carrier switching delay.
  • Step 205 the terminal 100 sends data to the satellite 200 based on the above data transmission time.
  • the terminal 100 can send data to the satellite 200 by using the PUSCH where the second carrier is located at the data transmission time.
  • the network side configures the transmission delay set based on each beam, and when the network side switches to the target carrier, any transmission delay can be selected from the transmission delay set, and the terminal side is based on the transmission indicated by the network side.
  • the time delay determines the sending time, thereby improving the flexibility of transmission delay selection, and realizing time synchronization between the terminal side and the network side, thereby improving the transmission efficiency between the terminal side and the network side.
  • Figures 2 to 4 are used for description above by taking the network side switching from the first beam to the second beam as an example, and Figures 5 to 10 are used for description below by using cross-beam data transmission as an example.
  • FIG. 5 is a schematic flowchart of another embodiment of a data transmission method provided by the present application, including:
  • Step 301 the satellite 200 sends timing offset configuration information.
  • the satellite 200 may transmit the timing offset configuration information in a broadcast manner.
  • the satellite 200 may broadcast a system broadcast message (eg, SIB) through the NPBCH, and the SIB may carry the above-mentioned timing offset configuration information.
  • the timing offset configuration information may include multiple timing offsets, and each timing offset may correspond to an uplink carrier. It can be understood that since each uplink carrier corresponds to one beam, the timing offset of each uplink carrier may also correspond to one beam, so that different uplink carriers or beams can correspond to different timing offsets.
  • the satellite 200 may also send the above timing offset configuration information through RRC dedicated signaling.
  • the satellite 200 may send RRC dedicated signaling to the terminal 100, and the RRC dedicated signaling may carry the above timing offset configuration information.
  • Step 302 the terminal 100 receives the timing offset configuration information sent by the satellite 200, and stores it.
  • Step 303 the satellite 200 sends indication information to the terminal 100 through the first beam, instructing the terminal 100 to perform segmented transmission of a transmission block scheduled this time.
  • the satellite 200 may segment the currently scheduled transmission blocks and transmit them on two beams respectively (eg, may transmit on the first beam and the second beam).
  • the satellite 200 may send indication information to the terminal 100, and the indication information may be borne by DCI or RAR Grant.
  • the indication information may include the scheduling delay, the ID of the second carrier, and data division information, where the data division information is used to indicate the division of the currently scheduled transport block and the correspondence between the divided transport block and the uplink carrier.
  • Table 3 is an example table of data split information.
  • the data division information may include a data identification field and a carrier ID field, wherein the data identification field is used to identify the division method of the transport block.
  • a transport block Transport Block, TB
  • a first data segment with a length of 400 bytes for example, the first byte is 0 and the tail byte is 399
  • a second data segment with a length of 624 bytes For example, the first byte is 400 and the last byte is 1023).
  • the first data segment corresponds to the uplink carrier 1, that is, the terminal 100 may use the first carrier (for example, the first carrier may be the uplink carrier 1 in Table 3, and the uplink carrier 1 corresponds to the first beam) ) to transmit the first data segment; and the second data segment corresponds to the uplink carrier 2, that is, the terminal 100 can use the second carrier (for example, the second carrier can be the uplink carrier 2 in Table 3, the uplink Carrier 2 corresponds to the second beam) to transmit the second data segment.
  • the first carrier for example, the first carrier may be the uplink carrier 1 in Table 3, and the uplink carrier 1 corresponds to the first beam)
  • the second data segment corresponds to the uplink carrier 2
  • the second carrier for example, the second carrier can be the uplink carrier 2 in Table 3, the uplink Carrier 2 corresponds to the second beam
  • the above Table 3 only exemplarily shows the manner of dividing data by the above-mentioned related fields, and does not constitute a limitation to the embodiments of the present application.
  • the data division information may also include more or fewer domains.
  • Step 304 the terminal 100 receives the indication information sent by the satellite 200, and determines the data transmission time based on the indication information.
  • the terminal 100 can receive the above-mentioned DCI or RAR Grant through the first carrier. After receiving the DCI or RAR Grant sent by the satellite 200, the terminal 100 can obtain the indication information (such as scheduling delay, ID of the second carrier, and data division information) in the above-mentioned DCI or RAR Grant.
  • the indication information such as scheduling delay, ID of the second carrier, and data division information
  • the timing offset configuration information may be queried based on the ID of the second carrier to obtain the timing offset corresponding to the second carrier (for example, T_offset2 in Table 1).
  • the timing offset corresponding to the first carrier for example, T_offset1 in Table 1
  • the timing offset of the first carrier can be obtained based on the above scheduling delay, the timing offset of the first carrier, and the The timing offset of the second carrier determines the moment of data transmission for each data segment.
  • the data transmission time of the second data segment T_2 T_start+T0+T_offset1+T1+T2 (for the convenience of description, the “data transmission time of the second data segment” is abbreviated as “the second time” hereinafter); wherein, T_start is the start time, T0 is the above scheduling delay, T1 is the carrier switching delay, and T2 is the transmission duration of the first data segment.
  • the transmission duration T2 of the first data segment may include the cumulative duration of first transmission and retransmission of the first data segment, wherein the number of retransmissions may be pre-configured (for example, the maximum number of uplink retransmissions may be configured as 128 times) ).
  • T_offset1 ⁇ T_offset2
  • first time T_1 T_start+T0+T_offset2
  • second time T_2 T_start+T0+T_offset2+T1+T2.
  • the satellite 200 sends DCI to the terminal 100 through the PDCCH where the first beam is located, indicating that the transport block scheduled this time is divided into two data segments (for example, the first data segment and the The second data segment) is transmitted on the first carrier corresponding to the first beam and the second carrier corresponding to the second beam, respectively.
  • the terminal 100 determines the start time T_start, calculates the timing offset T_offset2 of the second carrier, and compares the timing offset T_offset2 of the second carrier with the timing offset T_offset1 of the first carrier. Compare.
  • T_offset1 ⁇ T_offset2
  • the first time T_1 T_start+T0+T_offset1
  • the second time T_2 T_start+T0+T_offset2+T1+T2.
  • the satellite 200 sends DCI to the terminal 100 through the PDCCH where the first beam is located, indicating that the transport block scheduled this time is divided into two data segments (for example, the first data segment and the The second data segment) is transmitted on the first carrier corresponding to the first beam and the second carrier corresponding to the second beam, respectively.
  • the terminal 100 determines the start time T_start, calculates the timing offset T_offset2 of the second carrier, and compares the timing offset T_offset2 of the second carrier with the timing offset T_offset1 of the first carrier. Compare.
  • Step 305 the terminal 100 sends data to the satellite 200 based on the above data transmission time.
  • the terminal 100 may use the first carrier to send the first data segment to the satellite 200 based on the foregoing first moment, and may retransmit the foregoing first data segment based on the preset number of retransmissions.
  • the second data segment may be sent to the satellite 200 by using the second carrier based on the second moment, and the second data segment may be assigned based on the preset number of retransmissions. segment is retransmitted.
  • the transport block is divided into two parts, and does not constitute a limitation on the embodiments of the present application.
  • the transport block may also be divided into more blocks .
  • the network side instructs the terminal side to divide the transport block into two parts and transmit them on two carriers respectively.
  • the network side When transmitting each part of the above-mentioned transport block, it corresponds to a different transmission delay, which is determined by This can realize the time synchronization between the network side and the terminal side, and can make full use of the cross-carrier application, thereby improving the data transmission efficiency.
  • FIG. 8 is a schematic flowchart of another embodiment of a data transmission method provided by the present application, including:
  • Step 401 the satellite 200 sends timing offset configuration information.
  • the satellite 200 may transmit the timing offset configuration information in a broadcast manner.
  • the satellite 200 may broadcast a system broadcast message (eg, SIB) through the NPBCH, and the SIB may carry the above-mentioned timing offset configuration information.
  • the timing offset configuration information may include multiple timing offsets, and each timing offset may correspond to an uplink carrier. It can be understood that since each uplink carrier corresponds to one beam, the timing offset of each uplink carrier may also correspond to one beam, so that different uplink carriers or beams can correspond to different timing offsets.
  • the satellite 200 may also send the above timing offset configuration information through RRC dedicated signaling.
  • the satellite 200 may send RRC dedicated signaling to the terminal 100, and the RRC dedicated signaling may carry the above timing offset configuration information.
  • Step 402 the terminal 100 receives the timing offset configuration information sent by the satellite 200, and stores it.
  • Step 403 the satellite 200 sends scheduling information to the terminal 100 through the first beam, instructing the terminal 100 to transmit multiple transmission blocks on the two beams.
  • the satellite 200 may transmit the multiple transmission blocks scheduled this time on two beams respectively (for example, may transmit on the first beam and the second beam).
  • the satellite 200 may send scheduling information to the terminal 100, and the scheduling information may be borne by DCI or RAR Grant.
  • the scheduling information may include the scheduling delay, the ID of the second carrier, and the transport block identification information, where the transport block identification information is used to indicate the correspondence between the transport block and the uplink carrier.
  • Table 4 is an example table of transport block identification information. Table 4
  • transport block 1, transport block 3 and transport block 5 may form a transport block set, and the transport block set may correspond to uplink carrier 1, that is, terminal 100 may transmit the transmission on uplink carrier 1 Block 1, Transport Block 3, and Transport Block 5; and Transport Block 2 and Transport Block 4 may form another transport block set, which may correspond to uplink carrier 2, that is, terminal 100 may be on uplink carrier 2 The transport block 2 and transport block 4 are transmitted.
  • the terminal 100 may schedule based on the satellite 200 during transmission, Transmit more or fewer transport blocks.
  • each transport block set may include one or more transport blocks.
  • Step 404 the terminal 100 receives the scheduling information sent by the satellite 200, and determines the data transmission time based on the scheduling information.
  • the terminal 100 can receive the above-mentioned DCI or RAR Grant through the first carrier. After receiving the DCI or RAR Grant sent by the satellite 200, the terminal 100 can obtain the scheduling information (eg, scheduling delay, ID of the second carrier, and transport block identification information) in the above-mentioned DCI or RAR Grant.
  • the scheduling information eg, scheduling delay, ID of the second carrier, and transport block identification information
  • the timing offset configuration information can be queried based on the ID of the second carrier (eg, uplink carrier 2 in Table 4) to obtain the timing offset corresponding to the second carrier (eg, T_offset2 in Table 1).
  • the timing offset eg, T_offset1 in Table 1
  • the first carrier eg, uplink carrier 1 in Table 4
  • the delay, the timing offset of the first carrier, and the timing offset of the second carrier determine the first set of transport blocks (eg, the set of transport blocks in Table 4 that includes transport block 1, transport block 3, and transport block 5) and the first set of transport blocks.
  • the data transmission time of two transport block sets for example, the transport block set including transport block 2 and transport block 4 in Table 4).
  • T_offset1> T_offset2
  • T_start+T0+T_offset1 for illustration
  • the second transport block set for example, the transport block set including transport block 2 and transport block 4 in Table 4
  • the data transmission time T_4 T_start+T0+T_offset1+T1+T2 (for the convenience of description, the "data transmission time of the second transport block set” is referred to as "the fourth time” for short); wherein, T_start is the start time, T0 is the above scheduling delay, T1 is the carrier switching delay, T2 is the transmission duration of the first transport block set, and the transmission duration of the first transport block set can be determined by the cumulative transmission duration of all the transport blocks in the first transport block set.
  • the transmission duration of each transmission block is determined by the preset number of retransmissions of each transmission block.
  • T_offset1 ⁇ T_offset2
  • the third time T_3 T_start+T0+T_offset2
  • the fourth time T_4 T_start+T0+T_offset2+T1+T2.
  • the satellite 200 sends DCI to the terminal 100 through the PDCCH where the first beam is located, indicating the two transport block sets scheduled this time (for example, the first transport block set and the second transport block set above).
  • a set of transport blocks which are respectively transmitted on the first carrier corresponding to the first beam and the second carrier corresponding to the second beam.
  • T_offset1 ⁇ T_offset2
  • the third time T_3 T_start+T0+T_offset1
  • the fourth time T_4 T_start+T0+T_offset2+T1+T2.
  • the satellite 200 sends DCI to the terminal 100 through the PDCCH where the first beam is located, indicating the two transport block sets scheduled this time (for example, the first transport block and the second transport block set above). block) are transmitted on a first carrier corresponding to the first beam and a second carrier corresponding to the second beam, respectively.
  • the terminal 100 determines the start time T_start, calculates the timing offset T_offset2 of the second carrier, and compares the timing offset T_offset2 of the second carrier with the timing offset T_offset1 of the first carrier. Compare. Assuming that T_offset1 ⁇ T_offset2, the terminal 100 determines the above-mentioned third time point
  • T_3 T_start+T0+T_offset1, where T0 is the scheduling delay indicated in the DCI.
  • Step 405 the terminal 100 sends data to the satellite 200 based on the above data transmission time.
  • the terminal 100 may use the first carrier to send the first transport block set to the satellite 200 based on the third time instant.
  • the second transport block set may be sent to the satellite 200 by using the second carrier based on the fourth time instant.
  • the network side instructs the terminal side to transmit the two transport block sets on two carriers respectively, and each transport block set corresponds to different transmission delays when transmitting, so that the network side can realize It is synchronized with the time on the terminal side, and can make full use of cross-carrier applications, thereby improving data transmission efficiency.
  • FIG. 11 is a schematic structural diagram of a chip provided by an embodiment of the present application.
  • the above-mentioned chip 1100 may include: a first receiving module 1110, a second receiving module 1120, and a transmission module 1130; wherein,
  • a first receiving module 1110 configured to receive and store the first information sent by the network side
  • the second receiving module 1120 is configured to receive the second information sent by the network side, and determine the data transmission time based on the first information and the second information;
  • the transmission module 1130 is configured to transmit data to the network side based on the data transmission moment.
  • the first information is sent by the network side through SIB or RRC dedicated signaling.
  • the second information is sent by the network side through DCI or RAR Grant.
  • the second receiving module 1120 is further configured to acquire the wave switching delay; and determine the data transmission time based on the carrier switching delay, the first information and the second information.
  • the first information includes timing offsets of multiple uplink carriers
  • the second information is sent by the network side using a first beam, the first beam and the first uplink carrier correspond.
  • the second information includes index information of the second uplink carrier
  • the second receiving module 1120 includes: a query unit 1121 and a determination unit 1122; wherein,
  • a query unit 1121 configured to query the first information based on the index information of the second uplink carrier to obtain the timing offset of the second uplink carrier;
  • the determining unit 1122 is configured to determine the data transmission moment based on the timing offset of the second uplink carrier.
  • the second information includes index information of the second uplink carrier
  • the second receiving module 1120 includes: an acquiring unit 1123, a querying unit 1124, and a determining unit 1125; wherein,
  • an obtaining unit 1123 configured to obtain the timing offset of the first uplink carrier
  • a query unit 1124 configured to query the first information based on the index information of the second uplink carrier to obtain the timing offset of the second uplink carrier;
  • a determining unit 1125 configured to compare the timing offset of the first uplink carrier with the timing offset of the second uplink carrier, if the timing offset of the first uplink carrier is greater than or equal to the second uplink carrier If the timing offset of the first uplink carrier is less than or equal to the timing offset of the second uplink carrier, the data transmission time is determined based on the timing offset of the first uplink carrier. The timing offset of the second uplink carrier determines the data transmission moment.
  • the first information includes a timing offset set of multiple uplink carriers
  • the second information is sent by the network side using a first beam, the first beam and the first uplink Carrier correspondence, wherein the timing offset set of each uplink carrier includes multiple timing offsets.
  • the second information includes index information and a timing offset index identifier of the second uplink carrier
  • the second receiving module 1120 includes: a first query unit 1126 , a second query unit 1127 and determining unit 1128; wherein,
  • a first query unit 1126 configured to query the first information based on the index information of the second uplink carrier to obtain a timing offset set of the second uplink carrier;
  • the second query unit 1127 is configured to query the timing offset set of the second uplink carrier based on the timing offset index identifier to obtain the timing offset of the second uplink carrier corresponding to the timing offset index identifier ;
  • the determining unit 1128 is configured to determine the data transmission moment based on the timing offset of the second uplink carrier.
  • the transmission module 1130 is further configured to use the second uplink carrier to transmit data to the network side based on the data transmission time.
  • the data includes a transport block
  • the second information includes index information of the second uplink carrier and data division information, where the data division information is used to represent division of the transport block , to obtain the first data segment, the second data segment, and the mapping relationship between the data segment and the uplink carrier
  • the second receiving module 1120 includes: an acquiring unit 1129, a querying unit 112A, and a determining unit 112B; wherein,
  • an obtaining unit 1129 configured to obtain the timing offset of the first uplink carrier
  • a query unit 112A configured to query the first information based on the index information of the second uplink carrier, to obtain the timing offset of the second uplink carrier;
  • a determining unit 112B configured to compare the timing offset of the first uplink carrier with the timing offset of the second uplink carrier
  • timing offset of the first uplink carrier is greater than or equal to the timing offset of the second uplink carrier, determining the data transmission moment of the first data segment based on the timing offset of the first uplink carrier, and determining the data transmission moment of the second data segment based on the timing offset of the first uplink carrier and the transmission duration of the first data segment;
  • timing offset of the first uplink carrier is less than or equal to the timing offset of the second uplink carrier, determining the data transmission moment of the first data segment based on the timing offset of the second uplink carrier, and determine the data transmission moment of the second data segment based on the timing offset of the second uplink carrier and the transmission duration of the first data segment; or determine the data transmission time based on the timing offset of the first uplink carrier. the data transmission time of the first data segment, and determine the data transmission time of the second data segment based on the timing offset of the second uplink carrier and the transmission duration of the first data segment;
  • the transmission duration of the first data segment is determined by the preset number of retransmissions of the first data segment.
  • the first data segment corresponds to the first uplink carrier
  • the second data segment corresponds to the second uplink carrier
  • the transmission module is further configured to base on the at the data transmission time of the first data segment, use the first uplink carrier to transmit the first data segment to the network side; based on the data transmission time of the second data segment, use the second data segment
  • the uplink carrier transmits the second data segment to the network side.
  • the data includes a first transport block set and a second transport block set
  • the first transport block set and the second transport block set respectively include one or more transport blocks
  • the The second information includes index information of the second uplink carrier and transport block identification information
  • the transport block identification information is used to represent the mapping relationship between the transport block and the uplink carrier
  • the second receiving module 1120 includes: an obtaining unit 112C , the query unit 112D and the determination unit 112E; wherein,
  • an obtaining unit 112C configured to obtain the timing offset of the first uplink carrier
  • a query unit 112D configured to query the first information based on the index information of the second uplink carrier, to obtain the timing offset of the second uplink carrier;
  • a determining unit 112E configured to compare the timing offset of the first uplink carrier with the timing offset of the second uplink carrier
  • timing offset of the first uplink carrier is greater than or equal to the timing offset of the second uplink carrier, determining the data transmission moment of the first transport block set based on the timing offset of the first uplink carrier, and determining the data transmission moment of the second transport block set based on the timing offset of the first uplink carrier and the transmission duration of the first transport block set;
  • timing offset of the first uplink carrier is less than or equal to the timing offset of the second uplink carrier, determining the data transmission moment of the first transport block set based on the timing offset of the second uplink carrier, and determine the data transmission moment of the second transport block set based on the timing offset of the second uplink carrier and the transmission duration of the first transport block set; or determine the data transmission time based on the timing offset of the first uplink carrier. the data transmission moment of the first transport block set, and determine the data transmission moment of the second transport block set based on the timing offset of the second uplink carrier and the transmission duration of the first transport block set;
  • the transmission duration of the first transport block set is determined by the cumulative transmission duration of all transport blocks in the first transport block set, and the transmission duration of each transport block is reset by a preset value of each transport block. The number of transmissions is determined.
  • the first transport block set corresponds to the first uplink carrier
  • the second transport block set corresponds to the second uplink carrier
  • the transmission module 1130 is further configured to be based on At the data transmission moment of the first transport block set, use the first uplink carrier to transmit the first transport block set to the network side; based on the data transmission moment of the second transport block set, use the first transport block set The two uplink carriers transmit the second transport block set to the network side.
  • each module of the chip shown in FIG. 11 above is only a division of logical functions, and in actual implementation, it may be fully or partially integrated into a physical entity, or may be physically separated.
  • these modules can all be implemented in the form of software calling through processing elements; they can also all be implemented in hardware; some modules can also be implemented in the form of software calling through processing elements, and some modules can be implemented in hardware.
  • all or part of these modules can be integrated together, and can also be implemented independently.
  • each step of the above-mentioned method or each of the above-mentioned modules can be completed by an integrated logic circuit of hardware in the processor element or an instruction in the form of software.
  • the above modules may be one or more integrated circuits configured to implement the above methods, such as: one or more specific integrated circuits (Application Specific Integrated Circuit; hereinafter referred to as: ASIC), or, one or more microprocessors Digital Singnal Processor (hereinafter referred to as: DSP), or, one or more Field Programmable Gate Array (Field Programmable Gate Array; hereinafter referred to as: FPGA), etc.
  • ASIC Application Specific Integrated Circuit
  • DSP Digital Singnal Processor
  • FPGA Field Programmable Gate Array
  • these modules can be integrated together and implemented in the form of a system-on-a-chip (System-On-a-Chip; hereinafter referred to as: SOC).
  • FIG. 12 exemplarily shows a schematic structural diagram of the terminal 100 .
  • the terminal 100 may include a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (USB) interface 130, a charging management module 140, a power management module 141, a battery 142, an antenna 1, an antenna 2, Mobile communication module 150, wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, headphone jack 170D, sensor module 180, buttons 190, motor 191, indicator 192, camera 193, display screen 194, and user Identity module (subscriber identification module, SIM) card interface 195 and so on.
  • SIM subscriber identification module
  • the sensor module 180 may include a pressure sensor 180A, a gyroscope sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, a fingerprint sensor 180H, a temperature sensor 180J, a touch sensor 180K, and ambient light. Sensor 180L, bone conduction sensor 180M, etc.
  • the terminal 100 may include more or less components than shown, or some components may be combined, or some components may be separated, or different component arrangements.
  • the illustrated components may be implemented in hardware, software, or a combination of software and hardware.
  • the processor 110 may include one or more processing units, for example, the processor 110 may include an application processor (application processor, AP), a modem processor, a graphics processor (graphics processing unit, GPU), an image signal processor (image signal processor, ISP), controller, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural-network processing unit (neural-network processing unit, NPU), etc. Wherein, different processing units may be independent devices, or may be integrated in one or more processors.
  • application processor application processor, AP
  • modem processor graphics processor
  • ISP image signal processor
  • controller video codec
  • digital signal processor digital signal processor
  • baseband processor baseband processor
  • neural-network processing unit neural-network processing unit
  • the controller can generate an operation control signal according to the instruction operation code and timing signal, and complete the control of fetching and executing instructions.
  • a memory may also be provided in the processor 110 for storing instructions and data.
  • the memory in processor 110 is cache memory. This memory may hold instructions or data that have just been used or recycled by the processor 110 . If the processor 110 needs to use the instruction or data again, it can be called directly from the memory. Repeated accesses are avoided and the latency of the processor 110 is reduced, thereby increasing the efficiency of the system.
  • the processor 110 may include one or more interfaces.
  • the interface may include an integrated circuit (inter-integrated circuit, I2C) interface, an integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, a pulse code modulation (pulse code modulation, PCM) interface, a universal asynchronous transceiver (universal asynchronous transmitter) receiver/transmitter, UART) interface, mobile industry processor interface (MIPI), general-purpose input/output (GPIO) interface, subscriber identity module (SIM) interface, and / or universal serial bus (universal serial bus, USB) interface, etc.
  • I2C integrated circuit
  • I2S integrated circuit built-in audio
  • PCM pulse code modulation
  • PCM pulse code modulation
  • UART universal asynchronous transceiver
  • MIPI mobile industry processor interface
  • GPIO general-purpose input/output
  • SIM subscriber identity module
  • USB universal serial bus
  • the I2C interface is a bidirectional synchronous serial bus that includes a serial data line (SDA) and a serial clock line (SCL).
  • the processor 110 may contain multiple sets of I2C buses.
  • the processor 110 can be respectively coupled to the touch sensor 180K, the charger, the flash, the camera 193 and the like through different I2C bus interfaces.
  • the processor 110 may couple the touch sensor 180K through the I2C interface, so that the processor 110 and the touch sensor 180K communicate with each other through the I2C bus interface, so as to realize the touch function of the terminal 100 .
  • the I2S interface can be used for audio communication.
  • the processor 110 may contain multiple sets of I2S buses.
  • the processor 110 may be coupled with the audio module 170 through an I2S bus to implement communication between the processor 110 and the audio module 170 .
  • the audio module 170 can transmit audio signals to the wireless communication module 160 through the I2S interface, so as to realize the function of answering calls through a Bluetooth headset.
  • the PCM interface can also be used for audio communications, sampling, quantizing and encoding analog signals.
  • the audio module 170 and the wireless communication module 160 may be coupled through a PCM bus interface.
  • the audio module 170 can also transmit audio signals to the wireless communication module 160 through the PCM interface, so as to realize the function of answering calls through the Bluetooth headset. Both the I2S interface and the PCM interface can be used for audio communication.
  • the UART interface is a universal serial data bus used for asynchronous communication.
  • the bus may be a bidirectional communication bus. It converts the data to be transmitted between serial communication and parallel communication.
  • a UART interface is typically used to connect the processor 110 with the wireless communication module 160 .
  • the processor 110 communicates with the Bluetooth module in the wireless communication module 160 through the UART interface to implement the Bluetooth function.
  • the audio module 170 can transmit audio signals to the wireless communication module 160 through the UART interface, so as to realize the function of playing music through the Bluetooth headset.
  • the MIPI interface can be used to connect the processor 110 with peripheral devices such as the display screen 194 and the camera 193 .
  • MIPI interfaces include camera serial interface (CSI), display serial interface (DSI), etc.
  • the processor 110 communicates with the camera 193 through the CSI interface, so as to realize the shooting function of the terminal 100 .
  • the processor 110 communicates with the display screen 194 through the DSI interface to implement the display function of the terminal 100 .
  • the GPIO interface can be configured by software.
  • the GPIO interface can be configured as a control signal or as a data signal.
  • the GPIO interface may be used to connect the processor 110 with the camera 193, the display screen 194, the wireless communication module 160, the audio module 170, the sensor module 180, and the like.
  • the GPIO interface can also be configured as I2C interface, I2S interface, UART interface, MIPI interface, etc.
  • the USB interface 130 is an interface that conforms to the USB standard specification, and may specifically be a Mini USB interface, a Micro USB interface, a USB Type C interface, and the like.
  • the USB interface 130 can be used to connect a charger to charge the terminal 100, and can also be used to transmit data between the terminal 100 and peripheral devices. It can also be used to connect headphones to play audio through the headphones.
  • the interface can also be used to connect other electronic devices, such as AR devices.
  • the interface connection relationship between the modules illustrated in the embodiment of the present invention is only a schematic illustration, and does not constitute a structural limitation of the terminal 100 .
  • the terminal 100 may also adopt different interface connection manners in the foregoing embodiments, or a combination of multiple interface connection manners.
  • the charging management module 140 is used to receive charging input from the charger.
  • the charger may be a wireless charger or a wired charger.
  • the charging management module 140 may receive charging input from the wired charger through the USB interface 130 .
  • the charging management module 140 may receive wireless charging input through the wireless charging coil of the terminal 100 . While the charging management module 140 charges the battery 142 , it can also supply power to the electronic device through the power management module 141 .
  • the power management module 141 is used for connecting the battery 142 , the charging management module 140 and the processor 110 .
  • the power management module 141 receives input from the battery 142 and/or the charging management module 140, and supplies power to the processor 110, the internal memory 121, the display screen 194, the camera 193, and the wireless communication module 160.
  • the power management module 141 can also be used to monitor parameters such as battery capacity, battery cycle times, battery health status (leakage, impedance).
  • the power management module 141 may also be provided in the processor 110 .
  • the power management module 141 and the charging management module 140 may also be provided in the same device.
  • the wireless communication function of the terminal 100 may be implemented by the antenna 1, the antenna 2, the mobile communication module 150, the wireless communication module 160, the modulation and demodulation processor, the baseband processor, and the like.
  • Antenna 1 and Antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in terminal 100 may be used to cover a single or multiple communication frequency bands. Different antennas can also be reused to improve antenna utilization.
  • the antenna 1 can be multiplexed as a diversity antenna of the wireless local area network. In other embodiments, the antenna may be used in conjunction with a tuning switch.
  • the mobile communication module 150 may provide a wireless communication solution including 2G/3G/4G/5G, etc. applied on the terminal 100 .
  • the mobile communication module 150 may include at least one filter, switch, power amplifier, low noise amplifier (LNA) and the like.
  • the mobile communication module 150 can receive electromagnetic waves from the antenna 1, filter and amplify the received electromagnetic waves, and transmit them to the modulation and demodulation processor for demodulation.
  • the mobile communication module 150 can also amplify the signal modulated by the modulation and demodulation processor, and then turn it into an electromagnetic wave for radiation through the antenna 1 .
  • at least part of the functional modules of the mobile communication module 150 may be provided in the processor 110 .
  • at least part of the functional modules of the mobile communication module 150 may be provided in the same device as at least part of the modules of the processor 110 .
  • the modem processor may include a modulator and a demodulator.
  • the modulator is used to modulate the low frequency baseband signal to be sent into a medium and high frequency signal.
  • the demodulator is used to demodulate the received electromagnetic wave signal into a low frequency baseband signal. Then the demodulator transmits the demodulated low-frequency baseband signal to the baseband processor for processing.
  • the low frequency baseband signal is processed by the baseband processor and passed to the application processor.
  • the application processor outputs sound signals through audio devices (not limited to the speaker 170A, the receiver 170B, etc.), or displays images or videos through the display screen 194 .
  • the modem processor may be a stand-alone device.
  • the modem processor may be independent of the processor 110, and may be provided in the same device as the mobile communication module 150 or other functional modules.
  • the wireless communication module 160 can provide applications on the terminal 100 including wireless local area networks (WLAN) (such as wireless fidelity (Wi-Fi) networks), Bluetooth (bl terminal tooth, BT), global navigation Satellite system (global navigation satellite system, GNSS), frequency modulation (freq terminal ncy modulation, FM), near field communication technology (near field communication, NFC), infrared technology (infrared, IR) and other wireless communication solutions.
  • WLAN wireless local area networks
  • Bluetooth bl terminal tooth, BT
  • global navigation Satellite system global navigation satellite system
  • GNSS global navigation satellite system
  • frequency modulation frequency modulation
  • FM near field communication technology
  • NFC near field communication technology
  • infrared technology infrared, IR
  • the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives electromagnetic waves via the antenna 2 , frequency modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110 .
  • the wireless communication module 160 can also receive the
  • the antenna 1 of the terminal 100 is coupled with the mobile communication module 150, and the antenna 2 is coupled with the wireless communication module 160, so that the terminal 100 can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technology may include global system for mobile communications (GSM), general packet radio service (GPRS), code division multiple access (CDMA), broadband Code Division Multiple Access (WCDMA), Time Division Code Division Multiple Access (TD-SCDMA), Long Term Evolution (LTE), BT, GNSS, WLAN, NFC , FM, and/or IR technology, etc.
  • the GNSS may include a global positioning system (global positioning system, GPS), a global navigation satellite system (GLONASS), a Beidou navigation satellite system (BDS), a quasi-zenith satellite system (quasi -zenith satellite system, QZSS) and/or satellite based augmentation systems (SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • BDS Beidou navigation satellite system
  • QZSS quasi-zenith satellite system
  • SBAS satellite based augmentation systems
  • the terminal 100 implements a display function through a GPU, a display screen 194, an application processor, and the like.
  • the GPU is a microprocessor for image processing, and is connected to the display screen 194 and the application processor.
  • the GPU is used to perform mathematical and geometric calculations for graphics rendering.
  • Processor 110 may include one or more GPUs that execute program instructions to generate or alter display information.
  • Display screen 194 is used to display images, videos, and the like.
  • Display screen 194 includes a display panel.
  • the display panel can be a liquid crystal display (LCD), an organic light-emitting diode (OLED), an active-matrix organic light-emitting diode or an active-matrix organic light-emitting diode (active-matrix organic light).
  • LED diode AMOLED
  • flexible light-emitting diode flexible light-emitting diode (flex light-emitting diode, FLED), Miniled, MicroLed, Micro-oLed, quantum dot light-emitting diode (quantum dot light emitting diodes, QLED) and so on.
  • the terminal 100 may include one or N display screens 194 , where N is a positive integer greater than one.
  • the terminal 100 can realize the shooting function through the ISP, the camera 193, the video codec, the GPU, the display screen 194 and the application processor.
  • the ISP is used to process the data fed back by the camera 193 .
  • the shutter is opened, the light is transmitted to the camera photosensitive element through the lens, the light signal is converted into an electrical signal, and the camera photosensitive element transmits the electrical signal to the ISP for processing, and converts it into an image visible to the naked eye.
  • ISP can also perform algorithm optimization on image noise, brightness, and skin tone.
  • ISP can also optimize the exposure, color temperature and other parameters of the shooting scene.
  • the ISP may be provided in the camera 193 .
  • Camera 193 is used to capture still images or video.
  • the object is projected through the lens to generate an optical image onto the photosensitive element.
  • the photosensitive element may be a charge coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS) phototransistor.
  • CMOS complementary metal-oxide-semiconductor
  • the photosensitive element converts the optical signal into an electrical signal, and then transmits the electrical signal to the ISP to convert it into a digital image signal.
  • the ISP outputs the digital image signal to the DSP for processing.
  • DSP converts digital image signals into standard RGB, YUV and other formats of image signals.
  • the terminal 100 may include 1 or N cameras 193 , where N is a positive integer greater than 1.
  • a digital signal processor is used to process digital signals, in addition to processing digital image signals, it can also process other digital signals. For example, when the terminal 100 selects a frequency point, the digital signal processor is used to perform Fourier transform on the energy of the frequency point, and so on.
  • Video codecs are used to compress or decompress digital video.
  • Terminal 100 may support one or more video codecs.
  • the terminal 100 can play or record videos in various encoding formats, for example, moving picture experts group (moving picture experts group, MPEG) 1, MPEG2, MPEG3, MPEG4, and so on.
  • MPEG moving picture experts group
  • the NPU is a neural-network (NN) computing processor.
  • NN neural-network
  • Applications such as intelligent cognition of the terminal 100 can be implemented through the NPU, such as image recognition, face recognition, speech recognition, text understanding, and the like.
  • the external memory interface 120 can be used to connect an external memory card, such as a Micro SD card, to expand the storage capacity of the terminal 100.
  • the external memory card communicates with the processor 110 through the external memory interface 120 to realize the data storage function. For example to save files like music, video etc in external memory card.
  • Internal memory 121 may be used to store computer executable program code, which includes instructions.
  • the internal memory 121 may include a storage program area and a storage data area.
  • the storage program area can store an operating system, an application program required for at least one function (such as a sound playback function, an image playback function, etc.), and the like.
  • the storage data area may store data (such as audio data, phone book, etc.) created during the use of the terminal 100 and the like.
  • the internal memory 121 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, universal flash storage (UFS), and the like.
  • the processor 110 executes various functional applications and data processing of the terminal 100 by executing instructions stored in the internal memory 121 and/or instructions stored in a memory provided in the processor.
  • the terminal 100 may implement audio functions through an audio module 170, a speaker 170A, a receiver 170B, a microphone 170C, an earphone interface 170D, an application processor, and the like. Such as music playback, recording, etc.
  • the audio module 170 is used for converting digital audio information into analog audio signal output, and also for converting analog audio input into digital audio signal. Audio module 170 may also be used to encode and decode audio signals. In some embodiments, the audio module 170 may be provided in the processor 110 , or some functional modules of the audio module 170 may be provided in the processor 110 .
  • Speaker 170A also referred to as a "speaker" is used to convert audio electrical signals into sound signals.
  • the terminal 100 can listen to music through the speaker 170A, or listen to a hands-free call.
  • the receiver 170B also referred to as "earpiece" is used to convert audio electrical signals into sound signals.
  • the voice can be answered by placing the receiver 170B close to the human ear.
  • the microphone 170C also called “microphone” or “microphone” is used to convert sound signals into electrical signals.
  • the user can make a sound by approaching the microphone 170C through a human mouth, and input the sound signal into the microphone 170C.
  • the terminal 100 may be provided with at least one microphone 170C.
  • the terminal 100 may be provided with two microphones 170C, which can implement a noise reduction function in addition to collecting sound signals.
  • the terminal 100 may further be provided with three, four or more microphones 170C to collect sound signals, reduce noise, identify sound sources, and implement directional recording functions.
  • the earphone jack 170D is used to connect wired earphones.
  • the earphone interface 170D can be the USB interface 130, or can be a 3.5mm open mobile terminal platform (OMTP) standard interface, a cellular telecommunications industry association of the USA (CTIA) standard interface.
  • OMTP open mobile terminal platform
  • CTIA cellular telecommunications industry association of the USA
  • the pressure sensor 180A is used to sense pressure signals, and can convert the pressure signals into electrical signals.
  • the pressure sensor 180A may be provided on the display screen 194 .
  • the capacitive pressure sensor may be comprised of at least two parallel plates of conductive material. When a force is applied to the pressure sensor 180A, the capacitance between the electrodes changes.
  • the terminal 100 determines the intensity of the pressure according to the change in capacitance. When a touch operation acts on the display screen 194, the terminal 100 detects the intensity of the touch operation according to the pressure sensor 180A.
  • the terminal 100 may also calculate the touched position according to the detection signal of the pressure sensor 180A.
  • touch operations acting on the same touch position but with different touch operation intensities may correspond to different operation instructions. For example, when a touch operation whose intensity is less than the first pressure threshold acts on the short message application icon, the instruction for viewing the short message is executed. When a touch operation with a touch operation intensity greater than or equal to the first pressure threshold acts on the short message application icon, the instruction to create a new short message is executed.
  • the gyro sensor 180B may be used to determine the motion attitude of the terminal 100 .
  • the angular velocity of terminal 100 about three axes i.e., x, y, and z axes
  • the gyro sensor 180B can be used for image stabilization.
  • the gyroscope sensor 180B detects the angle at which the terminal 100 shakes, calculates the distance to be compensated by the lens module according to the angle, and allows the lens to counteract the shake of the terminal 100 through reverse motion to achieve anti-shake.
  • the gyro sensor 180B can also be used for navigation and somatosensory game scenarios.
  • the air pressure sensor 180C is used to measure air pressure.
  • the terminal 100 calculates the altitude through the air pressure value measured by the air pressure sensor 180C to assist in positioning and navigation.
  • the magnetic sensor 180D includes a Hall sensor.
  • the terminal 100 can detect the opening and closing of the flip holster using the magnetic sensor 180D.
  • the terminal 100 can detect the opening and closing of the flip according to the magnetic sensor 180D. Further, according to the detected opening and closing state of the leather case or the opening and closing state of the flip cover, characteristics such as automatic unlocking of the flip cover are set.
  • the acceleration sensor 180E can detect the magnitude of the acceleration of the terminal 100 in various directions (generally three axes). When the terminal 100 is stationary, the magnitude and direction of gravity can be detected. It can also be used to identify the posture of electronic devices, and can be used in applications such as horizontal and vertical screen switching, pedometers, etc.
  • the terminal 100 can measure the distance through infrared or laser. In some embodiments, when shooting a scene, the terminal 100 can use the distance sensor 180F to measure the distance to achieve fast focusing.
  • Proximity light sensor 180G may include, for example, light emitting diodes (LEDs) and light detectors, such as photodiodes.
  • the light emitting diodes may be infrared light emitting diodes.
  • the terminal 100 emits infrared light to the outside through light emitting diodes.
  • the terminal 100 detects infrared reflected light from nearby objects using a photodiode. When sufficient reflected light is detected, it can be determined that there is an object near the terminal 100 . When insufficient reflected light is detected, the terminal 100 may determine that there is no object near the terminal 100 .
  • the terminal 100 can use the proximity light sensor 180G to detect that the user holds the terminal 100 close to the ear to talk, so as to automatically turn off the screen to save power.
  • Proximity light sensor 180G can also be used in holster mode, pocket mode automatically unlocks and locks the screen.
  • the ambient light sensor 180L is used to sense ambient light brightness.
  • the terminal 100 can adaptively adjust the brightness of the display screen 194 according to the perceived ambient light brightness.
  • the ambient light sensor 180L can also be used to automatically adjust the white balance when taking pictures.
  • the ambient light sensor 180L can also cooperate with the proximity light sensor 180G to detect whether the terminal 100 is in a pocket, so as to prevent accidental touch.
  • the fingerprint sensor 180H is used to collect fingerprints.
  • the terminal 100 can use the collected fingerprint characteristics to unlock the fingerprint, access the application lock, take a picture with the fingerprint, answer the incoming call with the fingerprint, and the like.
  • the temperature sensor 180J is used to detect the temperature.
  • the terminal 100 uses the temperature detected by the temperature sensor 180J to execute a temperature processing strategy. For example, when the temperature reported by the temperature sensor 180J exceeds a threshold value, the terminal 100 reduces the performance of the processor located near the temperature sensor 180J, so as to reduce power consumption and implement thermal protection.
  • the terminal 100 when the temperature is lower than another threshold, the terminal 100 heats the battery 142 to avoid abnormal shutdown of the terminal 100 due to low temperature.
  • the terminal 100 boosts the output voltage of the battery 142 to avoid abnormal shutdown caused by low temperature.
  • Touch sensor 180K also called “touch device”.
  • the touch sensor 180K may be disposed on the display screen 194 , and the touch sensor 180K and the display screen 194 form a touch screen, also called a “touch screen”.
  • the touch sensor 180K is used to detect a touch operation on or near it.
  • the touch sensor can pass the detected touch operation to the application processor to determine the type of touch event.
  • Visual output related to touch operations may be provided through display screen 194 .
  • the touch sensor 180K may also be disposed on the surface of the terminal 100, which is different from the position where the display screen 194 is located.
  • the bone conduction sensor 180M can acquire vibration signals.
  • the bone conduction sensor 180M can acquire the vibration signal of the vibrating bone mass of the human voice.
  • the bone conduction sensor 180M can also contact the pulse of the human body and receive the blood pressure beating signal.
  • the bone conduction sensor 180M can also be disposed in the earphone, combined with the bone conduction earphone.
  • the audio module 170 can analyze the voice signal based on the vibration signal of the vocal vibration bone block obtained by the bone conduction sensor 180M, so as to realize the voice function.
  • the application processor can analyze the heart rate information based on the blood pressure beat signal obtained by the bone conduction sensor 180M, and realize the function of heart rate detection.
  • the keys 190 include a power-on key, a volume key, and the like. Keys 190 may be mechanical keys. It can also be a touch key.
  • the terminal 100 may receive key input and generate key signal input related to user settings and function control of the terminal 100 .
  • Motor 191 can generate vibrating cues.
  • the motor 191 can be used for vibrating alerts for incoming calls, and can also be used for touch vibration feedback.
  • touch operations acting on different applications can correspond to different vibration feedback effects.
  • the motor 191 can also correspond to different vibration feedback effects for touch operations on different areas of the display screen 194 .
  • Different application scenarios for example: time reminder, receiving information, alarm clock, games, etc.
  • the touch vibration feedback effect can also support customization.
  • the indicator 192 can be an indicator light, which can be used to indicate the charging state, the change of the power, and can also be used to indicate a message, a missed call, a notification, and the like.
  • the SIM card interface 195 is used to connect a SIM card.
  • the SIM card can be contacted and separated from the terminal 100 by inserting into the SIM card interface 195 or pulling out from the SIM card interface 195 .
  • the terminal 100 may support 1 or N SIM card interfaces, where N is a positive integer greater than 1.
  • the SIM card interface 195 can support Nano SIM card, Micro SIM card, SIM card and so on. Multiple cards can be inserted into the same SIM card interface 195 at the same time. The types of the plurality of cards may be the same or different.
  • the SIM card interface 195 can also be compatible with different types of SIM cards.
  • the SIM card interface 195 is also compatible with external memory cards.
  • the terminal 100 interacts with the network through the SIM card to realize functions such as calls and data communication.
  • the terminal 100 employs an eSIM, ie an embedded SIM card.
  • the eSIM card can be embedded in the terminal 100 and cannot be separated from the terminal 100 .
  • the interface connection relationship between the modules illustrated in the embodiments of the present application is only a schematic illustration, and does not constitute a structural limitation of the terminal 100 .
  • the terminal 100 may also adopt different interface connection manners in the foregoing embodiments, or a combination of multiple interface connection manners.
  • the above-mentioned terminal 100 includes corresponding hardware structures and/or software modules for executing each function.
  • the embodiments of the present application can be implemented in hardware or a combination of hardware and computer software. Whether a function is performed by hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Experts may use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of the embodiments of the present application.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware, and can also be implemented in the form of software function modules. It should be noted that, the division of modules in the embodiments of the present application is schematic, and is only a logical function division, and there may be other division manners in actual implementation.
  • Each functional unit in each of the embodiments of the embodiments of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • a computer-readable storage medium includes several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: flash memory, removable hard disk, read-only memory, random access memory, magnetic disk or optical disk and other media that can store program codes.

Abstract

本申请实施例提供一种数据传输方法、芯片、终端及存储介质,涉及通信技术领域,该方法包括:接收并存储网络侧发送的第一信息;接收所述网络侧发送的第二信息,基于所述第一信息及所述第二信息确定数据传输时刻;基于所述数据传输时刻向所述网络侧传输数据。本申请实施例提供的方法,能够有效解决网络侧在波束切换过程中以及跨波束传输的时间同步问题。

Description

数据传输方法、芯片、终端及存储介质
本申请要求于2021年01月18日提交中国专利局、申请号为202110062224.5、申请名称为“数据传输方法、芯片、终端及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种数据传输方法、芯片、终端及存储介质。
背景技术
在非陆地网络(Non Terrestrial Networks,NTN)中,终端在发送上行数据时会基于定时提前(Timing Advance,TA)值进行提前发送,以保证上下行链路的同步。例如,在现有的物理下行控制信道(Physical Downlink Control Channel,PDCCH)调度物理上行共享信道(Physical Uplink Shared Channel,PUSCH)的过程中,PDCCH中的下行控制信息(Downlink Control Information,DCI)中会指示终端一个调度的时延值,由此确定PUSCH的发送资源位置。
然而,在卫星通信网络中,由于终端与卫星之间的传输存在较大的传播时延,为了使上下行定时对齐,通常终端需要基于确定的定时提前量进行提前发送。而上述DCI中指示的调度时延值通常设置的较小,无法满足卫星场景中较大的定时提前量的需求,也就是说,基于现有的调度时延,终端无法执行定时提前发送。由此会给终端与卫星之间的时间同步带来问题,进而会降低终端与卫星之间的传输效率。
发明内容
本申请实施例提供了一种数据传输方法、芯片、终端及存储介质,以提供一种定时传输数据的方式。
第一方面,本申请实施例提供了一种数据传输方法,包括:
接收并存储网络侧发送的第一信息;
接收所述网络侧发送的第二信息,基于所述第一信息及所述第二信息确定数据传输时刻;
基于所述数据传输时刻向所述网络侧传输数据。
其中一种可能的实现方式中,所述第一信息由所述网络侧通过SIB或RRC专用信令发送。
其中一种可能的实现方式中,所述第二信息由所述网络侧通过DCI或RAR Grant发送。
其中一种可能的实现方式中,所述基于所述第一信息及所述第二信息确定数据传输时刻包括:
获取载波切换时延;
基于所述载波切换时延、所述第一信息及所述第二信息确定数据传输时刻。
其中一种可能的实现方式中,所述第一信息包括多个上行载波的定时偏移,所述第二信息由所述网络侧使用第一波束发送,所述第一波束与第一上行载波对应。
其中一种可能的实现方式中,所述第二信息包括第二上行载波的索引信息,所述基于所述第一信息及所述第二信息确定数据传输时刻包括:
基于所述第二上行载波的索引信息在所述第一信息中查询,获得所述第二上行载波的定时偏移;
基于所述第二上行载波的定时偏移确定数据传输时刻。
其中一种可能的实现方式中,所述第二信息包括第二上行载波的索引信息,所述基于所述第一信息及所述第二信息确定数据传输时刻包括:
获取所述第一上行载波的定时偏移;
基于所述第二上行载波的索引信息在所述第一信息中查询,获得所述第二上行载波的定时偏移;
将所述第一上行载波的定时偏移与所述第二上行载波的定时偏移进行比较,若所述第一上行载波的定时偏移大于或等于所述第二上行载波的定时偏移,则基于所述第一上行载波的定时偏移确定数据传输时刻,若所述第一上行载波的定时偏移小于或等于所述第二上行载波的定时偏移,则基于所述第二上行载波的定时偏移确定数据传输时刻。
其中一种可能的实现方式中,所述第一信息包括多个上行载波的定时偏移集合,所述第二信息由所述网络侧使用第一波束发送,所述第一波束与第一上行载波对应,其中,每个所述上行载波的定时偏移集合包括多个定时偏移。
其中一种可能的实现方式中,所述第二信息包括第二上行载波的索引信息及定时偏移索引标识,所述基于所述第一信息及所述第二信息确定数据传输时刻包括:
基于所述第二上行载波的索引信息在所述第一信息中查询,获得所述第二上行载波的定时偏移集合;
基于所述定时偏移索引标识在所述第二上行载波的定时偏移集合中查询,获得与所述定时偏移索引标识对应的第二上行载波的定时偏移;
基于所述第二上行载波的定时偏移确定数据传输时刻。
其中一种可能的实现方式中,所述基于所述数据传输时刻向所述网络侧传输数据包括:
基于所述数据传输时刻,使用所述第二上行载波向所述网络侧传输数据。
其中一种可能的实现方式中,所述数据包括一个传输块,所述第二信息包括第二上行载波的索引信息以及数据分割信息,所述数据分割信息用于表征对所述传输块进行分割,以获得第一数据分段、第二数据分段以及数据分段与上行载波之间的映射关系,所述基于所述第一信息及所述第二信息确定数据传输时刻包括:
获取所述第一上行载波的定时偏移;
基于所述第二上行载波的索引信息在所述第一信息中查询,获得所述第二上行载波的定时偏移;
将所述第一上行载波的定时偏移与所述第二上行载波的定时偏移进行比较;
若所述第一上行载波的定时偏移大于或等于所述第二上行载波的定时偏移,则基于所述第一上行载波的定时偏移确定所述第一数据分段的数据传输时刻,并基于所述第一上行载波的定时偏移及所述第一数据分段的传输时长确定所述第二数据分段的数据传输时刻;
若所述第一上行载波的定时偏移小于或等于所述第二上行载波的定时偏移,则基于所述第二上行载波的定时偏移确定所述第一数据分段的数据传输时刻,并基于所述第二上行载波的定时偏移及所述第一数据分段的传输时长确定所述第二数据分段的数据传输时刻;或基于所述第一上行载波的定时偏移确定所述第一数据分段的数据传输时刻,并基于所述第二上行载波的定时偏移及所述第一数据分段的传输时长确定所述第二数据分段的数据传输时刻;
其中,所述第一数据分段的传输时长由所述第一数据分段的预置重传次数确定。
其中一种可能的实现方式中,所述第一数据分段与所述第一上行载波对应,所述第二数据分段与所述第二上行载波对应,所述基于所述数据传输时刻向所述网络侧传输数据包括:
基于所述第一数据分段的数据传输时刻,使用所述第一上行载波向所述网络侧传输所述第一数据分段;
基于所述第二数据分段的数据传输时刻,使用所述第二上行载波向所述网络侧传输所述第二数据分段。
其中一种可能的实现方式中,所述数据包括第一传输块集合及第二传输块集合,所述第一传输块集合及所述第二传输块集合分别包括一个或多个传输块,所述第二信息包括第二上行载波的索引信息以及传输块标识信息,所述传输块标识信息用于表征传输块与上行载波之间的映射关系,所述基于所述第一信息及所述第二信息确定数据传输时刻包括:
获取所述第一上行载波的定时偏移;
基于所述第二上行载波的索引信息在所述第一信息中查询,获得所述第二上行载波的定时偏移;
将所述第一上行载波的定时偏移与所述第二上行载波的定时偏移进行比较;
若所述第一上行载波的定时偏移大于或等于所述第二上行载波的定时偏移,则基于所述第一上行载波的定时偏移确定所述第一传输块集合的数据传输时刻,并基于所述第一上行载波的定时偏移及所述第一传输块集合的传输时长确定所述第二传输块集合的数据传输时刻;
若所述第一上行载波的定时偏移小于或等于所述第二上行载波的定时偏移,则基于所述第二上行载波的定时偏移确定所述第一传输块集合的数据传输时刻,并基于所述第二上行载波的定时偏移及所述第一传输块集合的传输时长确定所述第二传输块集合的数据传输时刻;或基于所述第一上行载波的定时偏移确定所述第一传输块集合的数据传输时刻,并基于所述第二上行载波的定时偏移及所述第一传输块集合的传输时长确定所述第二传输块集合的数据传输时刻;
其中,所述第一传输块集合的传输时长由所述第一传输块集合中所有传输块的累计传输时长确定,每个所述传输块的传输时长由每个所述传输块的预置重传次数确定。
其中一种可能的实现方式中,所述第一传输块集合与所述第一上行载波对应,所述第二传输块集合与所述第二上行载波对应,所述基于所述数据传输时刻向所述网络侧传输数据包括:
基于所述第一传输块集合的数据传输时刻,使用所述第一上行载波向所述网络侧传输所述第一传输块集合;
基于所述第二传输块集合的数据传输时刻,使用所述第二上行载波向所述网络侧传输所述第二传输块集合。
第二方面,本申请实施例提供一种芯片,包括:
第一接收模块,用于接收并存储网络侧发送的第一信息;
第二接收模块,用于接收所述网络侧发送的第二信息,基于所述第一信息及所述第二信息确定数据传输时刻;
传输模块,用于基于所述数据传输时刻向所述网络侧传输数据。
其中一种可能的实现方式中,所述第一信息由所述网络侧通过SIB或RRC专用信令发送。
其中一种可能的实现方式中,所述第二信息由所述网络侧通过DCI或RAR Grant发送。
其中一种可能的实现方式中,所述第二接收模块还用于获取波切换时延;基于所述载波切换时延、所述第一信息及所述第二信息确定数据传输时刻。
其中一种可能的实现方式中,所述第一信息包括多个上行载波的定时偏移,所述第二信息由所述网络侧使用第一波束发送,所述第一波束与第一上行载波对应。
其中一种可能的实现方式中,所述第二信息包括第二上行载波的索引信息,所述第二接收模块包括:
查询单元,用于基于所述第二上行载波的索引信息在所述第一信息中查询,获得所述第二上行载波的定时偏移;
确定单元,用于基于所述第二上行载波的定时偏移确定数据传输时刻。
其中一种可能的实现方式中,所述第二信息包括第二上行载波的索引信息,所述第二接收模块包括:
获取单元,用于获取所述第一上行载波的定时偏移;
查询单元,用于基于所述第二上行载波的索引信息在所述第一信息中查询,获得所述第二上行载波的定时偏移;
确定单元,用于将所述第一上行载波的定时偏移与所述第二上行载波的定时偏移进行比较,若所述第一上行载波的定时偏移大于或等于所述第二上行载波的定时偏移,则基于所述第一上行载波的定时偏移确定数据传输时刻,若所述第一上行载波的定时偏移小于或等于所述第二上行载波的定时偏移,则基于所述第二上行载波的定时偏移确定数据传输时刻。
其中一种可能的实现方式中,所述第一信息包括多个上行载波的定时偏移集合,所述第二信息由所述网络侧使用第一波束发送,所述第一波束与第一上行载波对应,其中,每个所述上行载波的定时偏移集合包括多个定时偏移。
其中一种可能的实现方式中,所述第二信息包括第二上行载波的索引信息及定时 偏移索引标识,所述第二接收模块包括:
第一查询单元,用于基于所述第二上行载波的索引信息在所述第一信息中查询,获得所述第二上行载波的定时偏移集合;
第二查询单元,用于基于所述定时偏移索引标识在所述所述上行载波的定时偏移集合中查询,获得与所述定时偏移索引标识对应的第二上行载波的定时偏移;
确定单元,用于基于所述第二上行载波的定时偏移确定数据传输时刻。
其中一种可能的实现方式中,所述传输模块还用于基于所述数据传输时刻,使用所述第二上行载波向所述网络侧传输数据。
其中一种可能的实现方式中,所述数据包括一个传输块,所述第二信息包括第二上行载波的索引信息以及数据分割信息,所述数据分割信息用于表征对所述传输块进行分割,以获得第一数据分段、第二数据分段以及数据分段与上行载波之间的映射关系,所述第二接收模块包括:
获取单元,用于获取所述第一上行载波的定时偏移;
查询单元,用于基于所述第二上行载波的索引信息在所述第一信息中查询,获得所述第二上行载波的定时偏移;
确定单元,用于将所述第一上行载波的定时偏移与所述第二上行载波的定时偏移进行比较;
若所述第一上行载波的定时偏移大于或等于所述第二上行载波的定时偏移,则基于所述第一上行载波的定时偏移确定所述第一数据分段的数据传输时刻,并基于所述第一上行载波的定时偏移及所述第一数据分段的传输时长确定所述第二数据分段的数据传输时刻;
若所述第一上行载波的定时偏移小于或等于所述第二上行载波的定时偏移,则基于所述第二上行载波的定时偏移确定所述第一数据分段的数据传输时刻,并基于所述第二上行载波的定时偏移及所述第一数据分段的传输时长确定所述第二数据分段的数据传输时刻;或基于所述第一上行载波的定时偏移确定所述第一数据分段的数据传输时刻,并基于所述第二上行载波的定时偏移及所述第一数据分段的传输时长确定所述第二数据分段的数据传输时刻;
其中,所述第一数据分段的传输时长由所述第一数据分段的预置重传次数确定。
其中一种可能的实现方式中,所述第一数据分段与所述第一上行载波对应,所述第二数据分段与所述第二上行载波对应,所述传输模块还用于基于所述第一数据分段的数据传输时刻,使用所述第一上行载波向所述网络侧传输所述第一数据分段;基于所述第二数据分段的数据传输时刻,使用所述第二上行载波向所述网络侧传输所述第二数据分段。
其中一种可能的实现方式中,所述数据包括第一传输块集合及第二传输块集合,所述第一传输块集合及所述第二传输块集合分别包括一个或多个传输块,所述第二信息包括第二上行载波的索引信息以及传输块标识信息,所述传输块标识信息用于表征传输块与上行载波之间的映射关系,所述第二接收模块包括:
获取单元,用于获取所述第一上行载波的定时偏移;
查询单元,用于基于所述第二上行载波的索引信息在所述第一信息中查询,获得 所述第二上行载波的定时偏移;
确定单元,用于将所述第一上行载波的定时偏移与所述第二上行载波的定时偏移进行比较;
若所述第一上行载波的定时偏移大于或等于所述第二上行载波的定时偏移,则基于所述第一上行载波的定时偏移确定所述第一传输块集合的数据传输时刻,并基于所述第一上行载波的定时偏移及所述第一传输块集合的传输时长确定所述第二传输块集合的数据传输时刻;
若所述第一上行载波的定时偏移小于或等于所述第二上行载波的定时偏移,则基于所述第二上行载波的定时偏移确定所述第一传输块集合的数据传输时刻,并基于所述第二上行载波的定时偏移及所述第一传输块集合的传输时长确定所述第二传输块集合的数据传输时刻;或基于所述第一上行载波的定时偏移确定所述第一传输块集合的数据传输时刻,并基于所述第二上行载波的定时偏移及所述第一传输块集合的传输时长确定所述第二传输块集合的数据传输时刻;
其中,所述第一传输块集合的传输时长由所述第一传输块集合中所有传输块的累计传输时长确定,每个所述传输块的传输时长由每个所述传输块的预置重传次数确定。
其中一种可能的实现方式中,所述第一传输块集合与所述第一上行载波对应,所述第二传输块集合与所述第二上行载波对应,所述传输模块还用于基于所述第一传输块集合的数据传输时刻,使用所述第一上行载波向所述网络侧传输所述第一传输块集合;基于所述第二传输块集合的数据传输时刻,使用所述第二上行载波向所述网络侧传输所述第二传输块集合。
第三方面,本申请实施例提供一种终端,包括:
存储器,上述存储器用于存储计算机程序代码,上述计算机程序代码包括指令,当上述终端从上述存储器中读取上述指令,以使得上述终端执行以下步骤:
接收并存储网络侧发送的第一信息;
接收所述网络侧发送的第二信息,基于所述第一信息及所述第二信息确定数据传输时刻;
基于所述数据传输时刻向所述网络侧传输数据。
其中一种可能的实现方式中,所述第一信息由所述网络侧通过SIB或RRC专用信令发送。
其中一种可能的实现方式中,所述第二信息由所述网络侧通过DCI或RAR Grant发送。
其中一种可能的实现方式中,上述指令被上述终端执行时,使得上述终端执行基于所述第一信息及所述第二信息确定数据传输时刻的步骤包括:
获取载波切换时延;
基于所述载波切换时延、所述第一信息及所述第二信息确定数据传输时刻。
其中一种可能的实现方式中,所述第一信息包括多个上行载波的定时偏移,所述第二信息由所述网络侧使用第一波束发送,所述第一波束与第一上行载波对应。
其中一种可能的实现方式中,所述第二信息包括第二上行载波的索引信息,上述指令被上述终端执行时,使得上述终端执行基于所述第一信息及所述第二信息确定数 据传输时刻的步骤包括:
基于所述第二上行载波的索引信息在所述第一信息中查询,获得所述第二上行载波的定时偏移;
基于所述第二上行载波的定时偏移确定数据传输时刻。
其中一种可能的实现方式中,所述第二信息包括第二上行载波的索引信息,上述指令被上述终端执行时,使得上述终端执行基于所述第一信息及所述第二信息确定数据传输时刻的步骤包括:
获取所述第一上行载波的定时偏移;
基于所述第二上行载波的索引信息在所述第一信息中查询,获得所述第二上行载波的定时偏移;
将所述第一上行载波的定时偏移与所述第二上行载波的定时偏移进行比较,若所述第一上行载波的定时偏移大于或等于所述第二上行载波的定时偏移,则基于所述第一上行载波的定时偏移确定数据传输时刻,若所述第一上行载波的定时偏移小于或等于所述第二上行载波的定时偏移,则基于所述第二上行载波的定时偏移确定数据传输时刻。
其中一种可能的实现方式中,所述第一信息包括多个上行载波的定时偏移集合,所述第二信息由所述网络侧使用第一波束发送,所述第一波束与第一上行载波对应,其中,每个所述上行载波的定时偏移集合包括多个定时偏移。
其中一种可能的实现方式中,所述第二信息包括第二上行载波的索引信息及定时偏移索引标识,上述指令被上述终端执行时,使得上述终端执行基于所述第一信息及所述第二信息确定数据传输时刻的步骤包括:
基于所述第二上行载波的索引信息在所述第一信息中查询,获得所述第二上行载波的定时偏移集合;
基于所述定时偏移索引标识在所述第二上行载波的定时偏移集合中查询,获得与所述定时偏移索引标识对应的第二上行载波的定时偏移;
基于所述第二上行载波的定时偏移确定数据传输时刻。
其中一种可能的实现方式中,上述指令被上述终端执行时,使得上述终端执行基于所述数据传输时刻向所述网络侧传输数据的步骤包括:
基于所述数据传输时刻,使用所述第二上行载波向所述网络侧传输数据。
其中一种可能的实现方式中,所述数据包括一个传输块,所述第二信息包括第二上行载波的索引信息以及数据分割信息,所述数据分割信息用于表征对所述传输块进行分割,以获得第一数据分段、第二数据分段以及数据分段与上行载波之间的映射关系,上述指令被上述终端执行时,使得上述终端执行基于所述第一信息及所述第二信息确定数据传输时刻的步骤包括:
获取所述第一上行载波的定时偏移;
基于所述第二上行载波的索引信息在所述第一信息中查询,获得所述第二上行载波的定时偏移;
将所述第一上行载波的定时偏移与所述第二上行载波的定时偏移进行比较;
若所述第一上行载波的定时偏移大于或等于所述第二上行载波的定时偏移,则基 于所述第一上行载波的定时偏移确定所述第一数据分段的数据传输时刻,并基于所述第一上行载波的定时偏移及所述第一数据分段的传输时长确定所述第二数据分段的数据传输时刻;
若所述第一上行载波的定时偏移小于或等于所述第二上行载波的定时偏移,则基于所述第二上行载波的定时偏移确定所述第一数据分段的数据传输时刻,并基于所述第二上行载波的定时偏移及所述第一数据分段的传输时长确定所述第二数据分段的数据传输时刻;或基于所述第一上行载波的定时偏移确定所述第一数据分段的数据传输时刻,并基于所述第二上行载波的定时偏移及所述第一数据分段的传输时长确定所述第二数据分段的数据传输时刻;
其中,所述第一数据分段的传输时长由所述第一数据分段的预置重传次数确定。
其中一种可能的实现方式中,所述第一数据分段与所述第一上行载波对应,所述第二数据分段与所述第二上行载波对应,上述指令被上述终端执行时,使得上述终端执行基于所述数据传输时刻向所述网络侧传输数据的步骤包括:
基于所述第一数据分段的数据传输时刻,使用所述第一上行载波向所述网络侧传输所述第一数据分段;
基于所述第二数据分段的数据传输时刻,使用所述第二上行载波向所述网络侧传输所述第二数据分段。
其中一种可能的实现方式中,所述数据包括第一传输块集合及第二传输块集合,所述第一传输块集合及所述第二传输块集合分别包括一个或多个传输块,所述第二信息包括第二上行载波的索引信息以及传输块标识信息,所述传输块标识信息用于表征传输块与上行载波之间的映射关系,所述基于所述第一信息及所述第二信息确定数据传输时刻包括:
获取所述第一上行载波的定时偏移;
基于所述第二上行载波的索引信息在所述第一信息中查询,获得所述第二上行载波的定时偏移;
将所述第一上行载波的定时偏移与所述第二上行载波的定时偏移进行比较;
若所述第一上行载波的定时偏移大于或等于所述第二上行载波的定时偏移,则基于所述第一上行载波的定时偏移确定所述第一传输块集合的数据传输时刻,并基于所述第一上行载波的定时偏移及所述第一传输块集合的传输时长确定所述第二传输块集合的数据传输时刻;
若所述第一上行载波的定时偏移小于或等于所述第二上行载波的定时偏移,则基于所述第二上行载波的定时偏移确定所述第一传输块集合的数据传输时刻,并基于所述第二上行载波的定时偏移及所述第一传输块集合的传输时长确定所述第二传输块集合的数据传输时刻;或基于所述第一上行载波的定时偏移确定所述第一传输块集合的数据传输时刻,并基于所述第二上行载波的定时偏移及所述第一传输块集合的传输时长确定所述第二传输块集合的数据传输时刻;
其中,所述第一传输块集合的传输时长由所述第一传输块集合中所有传输块的累计传输时长确定,每个所述传输块的传输时长由每个所述传输块的预置重传次数确定。
其中一种可能的实现方式中,所述第一传输块集合与所述第一上行载波对应,所 述第二传输块集合与所述第二上行载波对应,所述基于所述数据传输时刻向所述网络侧传输数据包括:
基于所述第一传输块集合的数据传输时刻,使用所述第一上行载波向所述网络侧传输所述第一传输块集合;
基于所述第二传输块集合的数据传输时刻,使用所述第二上行载波向所述网络侧传输所述第二传输块集合。
第四方面,本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,当其在计算机上运行时,使得计算机执行如第一方面所述的方法。
第五方面,本申请实施例提供一种计算机程序,当上述计算机程序被计算机执行时,用于执行第一方面所述的方法。
在一种可能的设计中,第五方面中的程序可以全部或者部分存储在与处理器封装在一起的存储介质上,也可以部分或者全部存储在不与处理器封装在一起的存储器上。
附图说明
图1为本申请实施例提供的应用场景示意图;
图2为本申请提供的数据传输方法一个实施例的流程图;
图3为本申请提供的数据发送时序一个实施例的示意图;
图4为本申请提供的数据传输方法另一个实施例的流程图;
图5为本申请提供的数据传输方法再一个实施例的流程图;
图6为本申请提供的数据发送时序另一个实施例的示意图;
图7为本申请提供的数据发送时序再一个实施例的示意图;
图8为本申请提供的数据传输方法再一个实施例的流程图;。
图9为本申请提供的数据发送时序再一个实施例的示意图;
图10为本申请提供的数据发送时序再一个实施例的示意图;
图11为本申请实施例提供的芯片的结构示意图;
图12为本申请实施例提供的终端的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请实施例的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在NTN中,例如,对于卫星通信网络,一个小区通常可以包含多个波束(Beam)。由于卫星的快速移动,终端需要频繁的进行波束切换。而当一个终端(例如,一个物联网设备)通过上述卫星通信网络接入时,需要有一套波束管理机制来分配通信资源。 然而,当前的物理网协议中没有对应的波束管理机制。
通过对上述问题的研究,发明人发现,物联网中支持载波管理,也就是说,物联网中的通信资源的分配通常以载波为单位。示例性的,在一个物联网网络中,一个单频点小区通常只有180kHZ的带宽,该带宽上除了窄带主同步信号(Narrowband Primary Synchronization Signal,NPSS)、窄带辅同步信号(Narrowband Secondary Synchronization Signal,NSSS)和系统信息块(System Information Block,SIB)外,剩余的业务信道容量很小。因此,为了支持海量终端,需要采用多个频点来提高网络容量。小区内除了包含支持同时承载NPSS、NSSS、窄带物理广播信道(Narrowband Physical Broadcast Channel,NPBCH)、窄带物理下行控制信道(Narrowband Physical Downlink Control Channel,NPDCCH)及窄带物理下行共享信道(Narrowband Physical Downlink Shared Channel,NPDSCH)的锚点载波之外,还可以包含多个只承载NPDCCH及NPDSCH,但不承载NPSS、NSSS及NPBCH的非锚点载波。其中,每个载波的频谱带宽为180kHz,小区内所有载波的最大频谱跨度不超过20MHz。终端可以在非锚点载波上进行数据传输。
因此,可以在载波和波束之间建立映射关系,例如,每个载波对应一个波束,示例性的,载波1对应波束1,载波2对应波束2。由此可以通过载波切换实现波束切换,进而实现波束管理。
然而,网络侧在不同的波束之间切换时,终端与卫星之间的传输时延是不同的。目前,网络侧仅考虑了调度时延,没有考虑上述终端与卫星之间的传输时延,由此会给终端与卫星之间的时间同步带来问题,进而影响到终端与卫星之间的传输效率。
基于上述问题,本申请实施例提出了一种数据传输方法。
现结合图1-图10对本申请实施例提供的数据传输方法进行说明。图1为本申请实施例提供的应用场景,参考图1,上述应用场景包括终端100及卫星200。可以理解的是,卫星200为网络侧的设备,并不构成对本申请实施例的限定,在一些实施例中,该网络侧的设备也可以以其他形式体现。
终端也可以称为终端设备、用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。终端可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、车联网终端、电脑、膝上型计算机、手持式通信设备、手持式计算设备、卫星无线设备、无线调制解调器卡、电视机顶盒(set top box,STB)、用户驻地设备(customer premise equipment,CPE)和/或用于在无线系统上进行通信的其它设备以及下一代通信系统,例如,5G网络中的移动终端或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的移动终端等。该终端还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。 可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,如智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。该终端还可以是物联网设备。
本申请实施例对上述终端的具体形式不作特殊限定。
图2为本申请提供的数据传输方法一个实施例的流程示意图,包括:
步骤101,卫星200发送定时偏移配置信息。
具体地,卫星200可以通过广播方式发送定时偏移配置信息。示例性的,卫星200可以通过NPBCH对系统广播消息(例如,SIB)进行广播,该SIB中可以携带上述定时偏移配置信息。其中,该定时偏移配置信息可以包含多个定时偏移,每个定时偏移可以和一个上行载波对应。可以理解的是,由于每个上行载波与一个波束对应,因此,每个上行载波的定时偏移也可以与一个波束对应,由此可以实现不同的上行载波或波束可以对应不同的定时偏移。表1为定时偏移配置信息表,如表1所示,该定时偏移配置信息表可以包括上行载波、波束与定时偏移之间的映射关系。
表1
上行载波ID 波束ID 定时偏移
上行载波1 波束1 T_offset1
上行载波2 波束2 T_offset2
可以理解的是,上述表1仅示例性的示出了上行载波、波束与定时偏移之间的映射关系,并不构成对本申请实施例的限定。在一些实施例中,定时偏移配置信息也可以包含上行载波与定时偏移之间的映射关系或波束与定时偏移之间的映射关系,其中,上行载波与波束之间的映射关系可以预先在终端100中进行配置。
需要说明的是,每个上行载波的定时偏移可以由终端100与卫星200之间的传输时延确定。
此外,上述表1仅示例性的通过ID方式表征上行载波的身份标识,并不构成对本申请实施例的限定,在一些实施例中,也可以通过索引(index)方式对上行载波进行身份标识。
可选地,卫星200还可以通过RRC专用信令发送上述定时偏移配置信息。示例性的,当终端100与卫星200之间建立RRC连接后,卫星200可以向终端100发送RRC专用信令,该RRC专用信令中可以携带上述定时偏移配置信息。具体的RRC专用信令可以参考3GPP相关协议,在此不再赘述。
步骤102,终端100接收卫星200发送的定时偏移配置信息,并进行存储。
步骤103,卫星200准备由第一波束切换至第二波束,通过第一波束向终端100发送第二载波的ID。
具体地,由于卫星200的快速移动,会导致卫星200与终端100之间使用的波束发生频繁的切换,因此,卫星200可以通过下行消息通知切换后的目标波束。在具体实现时,该下行消息可以是DCI或随机接入响应授予(Random Access Response Grant, RAR Grant),该第一波束可以是卫星200的波束资源中的任意一个波束,该第一波束可以是切换前的波束,例如,该第一波束可以是表1中的波束1。该第一波束与第一载波对应,该第一载波可以是终端100的载波资源中的其中一个载波,例如,该第一载波可以是表1中的载波1。该第二波束可以是卫星200的波束资源中的另一个波束,该第二波束可以是切换后的目标波束。例如,该第二波束可以是表1中的波束2。该第二波束与第二载波对应,该第二载波可以是终端100的载波资源中的另一个载波,例如,该第二载波可以是表1中的载波2。
示例性的,卫星200可以通过该第一波束所在的PDCCH发送DCI,或者通过随机接入(Random Access,RA)过程发送RAR Grant,具体的RA过程可以参考3GPP相关协议,在此不再赘述。其中,该DCI或RAR Grant可以包括第二载波的ID。
可选地,该DCI或RAR Grant中还可以包括调度时延。
可以理解的是,上述示例仅示例性示出了上述下行消息(例如,DCI或RAR Grant)中包含第二载波的ID的方式,并不构成对本申请实施例的限定,在一些实施例中,由于上行载波与波束之间具有映射关系,因此,上述第二载波的ID也可以用第二波束的ID替代。
步骤104,终端100接收卫星200发送的第二载波的ID,基于第二载波的ID确定数据传输时刻。
具体地,由于卫星200通过第一波束发送上述DCI或RAR Grant,基于上行载波与波束之间的映射关系,终端100可以通过第一载波接收上述DCI或RAR Grant。当终端100接收到卫星200发送的DCI或RAR Grant后,可以获取上述DCI或RAR Grant中的调度时延以及第二载波的ID。
接着,可以基于第二载波的ID在已存储的定时偏移配置信息中查询,得到与该第二载波对应的定时偏移(例如,T_offset2)。当获取到第二载波的定时偏移后,可以基于上述调度时延及第二载波的定时偏移确定数据传输时刻。示例性的,数据传输时刻T=T_start+T0+T_offset2,其中,T_start为起始时刻,T0为上述调度时延。
可选地,由于在载波切换过程中,还会存在载波切换时延,因此,在计算上述数据传输时刻T时,还可以考虑载波切换时延。示例性的,数据传输时刻T=T_start+T0+T_offset2+T1,其中,T1为载波切换时延。
现以DCI为例进行说明,如图3所示,卫星200通过第一波束所在的PDCCH向终端100发送DCI,基于上行载波与波束之间的映射关系,终端100通过第一载波接收卫星200发送的DCI。终端100完整接收上述DCI的时刻为T_start。当终端100完整接收上述DCI后,可以获取上述DCI中的调度时延T0及第二载波的定时偏移T_offset2,并可以在T_start+T0+T_offset2时刻发送数据。例如,可以在T_start+T0+T_offset2时刻通过第二载波所在的PUSCH发送数据。
可选地,当获取到第二载波的定时偏移T_offset2后,还可以进一步获取第一载波的定时偏移T_offset1。此时,可以将上述T_offset1与T_offset2进行比较。
若T_offset1>=T_offset2,则数据传输时刻T=T_start+T0+T_offset1;
若T_offset1<=T_offset2,则数据传输时刻T=T_start+T0+T_offset2。
可以理解的是,图3仅示例性的示出了DCI的场景,并不构成对本申请实施例的 限定。在一些实施例中,也可以通过RAR Grant的方式确定数据传输时刻。
步骤105,终端100基于上述数据传输时刻向卫星200发送数据。
具体地,当终端100确定数据传输时刻后,可以在上述数据传输时刻使用第二载波所在的PUSCH向卫星200发送数据。
本申请实施例中,通过网络侧基于每个波束配置传输时延,在网络侧切换至目标载波时,终端侧基于目标载波确定对应的传输时延,并基于该传输时延确定数据传输时刻,由此可以实现终端侧与网络侧的时间同步,进而可以提高终端侧与网络侧的传输效率。
图4为本申请提供的数据传输方法另一个实施例的流程示意图,包括:
步骤201,卫星200发送定时偏移集合配置信息。
具体地,卫星200可以通过广播方式发送定时偏移集合配置信息。示例性的,卫星200可以通过NPBCH对系统广播消息(例如,SIB)进行广播,该SIB中可以携带上述定时偏移集合配置信息。其中,该定时偏移集合配置信息可以包含多个定时偏移集合,每个定时偏移集合可以和一个上行载波对应,每个定时偏移集合可以包括多个定时偏移。可以理解的是,由于每个上行载波与一个波束对应,因此,每个上行载波的定时偏移集合也可以与一个波束对应,由此可以实现不同的上行载波或波束可以对应不同的定时偏移。表2为定时偏移集合配置信息表,如表2所示,该定时偏移集合配置信息表可以包括上行载波、波束与定时偏移集合之间的映射关系。
表2
上行载波ID 波束ID 定时偏移集合
上行载波1 波束1 T_offset11,T_offset12
上行载波2 波束2 T_offset21,T_offset22
可以理解的是,上述表2仅示例性的示出了定时偏移集合中定时偏移的数量,并不构成对本申请实施例的限定。在一些实施例中,每个定时偏移集合还可以包括3个或更多的定时偏移。
可选地,卫星200还可以通过RRC专用信令发送上述定时偏移集合配置信息。示例性的,当终端100与卫星200之间建立RRC连接后,卫星200可以向终端100发送RRC专用信令,该RRC专用信令中可以携带上述定时偏移集合配置信息。
步骤202,终端100接收卫星200发送的定时偏移集合配置信息,并进行存储。
步骤203,卫星200准备由第一波束切换至第二波束,通过第一波束向终端100发送第二载波的ID及索引标识。
具体地,卫星200可以向终端100发送第二载波的ID及索引标识,其中,该第二载波的ID及索引标识可以通过DCI或RAR Grant携带。该索引标识用于表征定时偏移集合中的定时偏移的索引。在具体实现时,上述索引标识可以通过DCI或RAR Grant中的特殊域指示。示例性的,若定时偏移集合包括2个定时偏移,则该特殊域可以包括1个bit(例如,该索引标识可以为0或1)。以上行载波1为例,若索引标识为“0”则可以指示第一个定时偏移(例如,T_offset11);若索引标识为“1”,则可以指示第二个定时偏移(例如,T_offset12)。
可选地,上述DCI或RAR Grant中还可以携带调度时延。
步骤204,终端100接收卫星200发送的第二载波的ID及索引标识,基于第二载波的ID及索引标识确定数据传输时刻。
具体地,由于卫星200通过第一波束发送上述DCI或RAR Grant,基于上行载波与波束之间的映射关系,终端100可以通过第一载波接收上述DCI或RAR Grant。当终端100接收到卫星200发送的DCI或RAR Grant后,可以获取上述DCI或RAR Grant中的调度时延、第二载波的ID以及索引标识。
接着,可以基于由第二载波的ID在定时偏移集合配置信息查询,得到与该第二载波对应的定时偏移集合。当获取到第二载波的定时偏移集合后,可以基于上述索引标识确定定时偏移集合中的定时偏移(例如,该定时偏移可以是第二载波的定时偏移集合中的T_offset21或T_offset22),并可以基于调度时延及确定的第二载波的定时偏移确定数据传输时刻。示例性的,若确定第二载波的定时偏移集合中的定时偏移为T_offset21,则数据传输时刻T=T_start+T0+T_offset21。
可选地,由于在载波切换过程中,还会存在载波切换时延,因此,在计算上述数据传输时刻T时,还可以考虑载波切换时延。示例性的,数据传输时刻T=T_start+T0+T_offset21+T1,其中T1为载波切换时延。
步骤205,终端100基于上述数据传输时刻向卫星200发送数据。
具体地,当终端100确定数据传输时刻后,可以在上述数据传输时刻使用第二载波所在的PUSCH向卫星200发送数据。
本申请实施例中,通过网络侧基于每个波束配置传输时延集合,在网络侧切换至目标载波时,可以在传输时延集合中选取任意一个传输时延,终端侧基于网络侧指示的传输时延确定发送时刻,由此可以提高传输时延选取的灵活性,并可以实现终端侧与网络侧的时间同步,进而可以提高终端侧与网络侧的传输效率。
上文通过图2-图4以网络侧从第一波束切换至第二波束为例进行了说明,下文通过图5-图10以跨波束数据传输为例进行说明。
图5为本申请提供的数据传输方法再一个实施例的流程示意图,包括:
步骤301,卫星200发送定时偏移配置信息。
具体地,卫星200可以通过广播方式发送定时偏移配置信息。示例性的,卫星200可以通过NPBCH对系统广播消息(例如,SIB)进行广播,该SIB中可以携带上述定时偏移配置信息。其中,该定时偏移配置信息可以包含多个定时偏移,每个定时偏移可以和一个上行载波对应。可以理解的是,由于每个上行载波与一个波束对应,因此,每个上行载波的定时偏移也可以与一个波束对应,由此可以实现不同的上行载波或波束可以对应不同的定时偏移。
可选地,卫星200还可以通过RRC专用信令发送上述定时偏移配置信息。示例性的,当终端100与卫星200之间建立RRC连接后,卫星200可以向终端100发送RRC专用信令,该RRC专用信令中可以携带上述定时偏移配置信息。
步骤302,终端100接收卫星200发送的定时偏移配置信息,并进行存储。
步骤303,卫星200通过第一波束向终端100发送指示信息,指示终端100对本次调度的一个传输块进行分段传输。
具体地,为了提高波束之间的利用效率,卫星200可以将本次调度的传输块进行分段后,分别在两个波束上传输(例如,可以在第一波束和第二波束上传输)。在具体实现时,卫星200可以向终端100发送指示信息,该指示信息可以通过DCI或RAR Grant承载。其中,该指示信息可以包括调度时延、第二载波的ID以及数据分割信息,该数据分割信息用于指示本次调度的传输块的分割情况以及分割后的传输块与上行载波的对应情况。表3为数据分割信息的示例表。
表3
Figure PCTCN2022076412-appb-000001
如表3所示,数据分割信息可以包括数据标识域及载波ID域,其中,数据标识域用于标识对传输块的分割方式,例如,假设一个传输块(Transport Block,TB)为1024字节,若对该传输块进行分割,分别得到长度为400字节的第一数据分段(例如,首字节为0以及尾字节为399)以及长度为624字节的第二数据分段(例如,首字节为400,尾字节为1023)。其中,第一数据分段与上行载波1对应,也就是说,终端100可以使用第一载波(例如,该第一载波可以是表3中的上行载波1,该上行载波1与第一波束对应)传输该第一数据分段;而第二数据分段与上行载波2对应,也就是说,终端100可以使用第二载波(例如,该第二载波可以是表3中的上行载波2,上行载波2与第二波束对应)传输该第二数据分段。
可以理解的是,上述表3仅示例性的示出了通过上述相关的域对数据进行分割的方式,并不构成对本申请实施例的限定,在一些实施例中,该数据分割信息也可以包括更多或更少的域。
步骤304,终端100接收卫星200发送的指示信息,基于指示信息确定数据传输时刻。
具体地,由于卫星200通过第一波束发送上述DCI或RAR Grant,基于上行载波与波束之间的映射关系,终端100可以通过第一载波接收上述DCI或RAR Grant。当终端100接收到卫星200发送的DCI或RAR Grant后,可以获取上述DCI或RAR Grant中的指示信息(例如调度时延、第二载波的ID以及数据分割信息)。
接着,可以基于第二载波的ID在定时偏移配置信息中查询,得到与该第二载波对应的定时偏移(例如,表1中的T_offset2)。当获取到第二载波的定时偏移后,还可以获取与第一载波对应的定时偏移(例如,表1中的T_offset1),并可以基于上述调度时延、第一载波的定时偏移及第二载波的定时偏移确定每个数据分段的数据传输时刻。示例性的,
若T_offset1>=T_offset2,则第一数据分段的数据传输时刻T_1=T_start+T0+T_offset1(为说明方便,下文将“第一数据分段的数据传输时刻”简称为“第一时刻”),第二数据分段的数据传输时刻T_2=T_start+T0+T_offset1+T1+T2(为说明方便,下文将“第二数据分段的数据传输时刻”简称为“第二时刻”);其中,T_start为起始时 刻,T0为上述调度时延,T1为载波切换时延,T2为第一数据分段的传输时长。该第一数据分段的传输时长T2可以包括首次传输以及重传该第一数据分段的累计时长,其中,该重传的次数可以预先配置(例如,上行重传最大次数可以配置为128次)。
若T_offset1<=T_offset2,则第一时刻T_1=T_start+T0+T_offset2,第二时刻T_2=T_start+T0+T_offset2+T1+T2。
现结合图6进行说明,如图6所示,卫星200通过第一波束所在的PDCCH向终端100发送DCI,指示本次调度的传输块分成两个数据分段(例如,第一数据分段以及第二数据分段),分别在与第一波束对应的第一载波和与第二波束对应的第二载波上传输。终端100在完整接收到卫星200发送的DCI后,确定起始时刻T_start,计算出第二载波的定时偏移T_offset2,并将该第二载波的定时偏移T_offset2与第一载波的定时偏移T_offset1进行比较。假设T_offset1>=T_offset2,则终端100确定上述第一时刻T_1=T_start+T0+T_offset1,其中,T0为DCI中指示的调度时延。接着,假设传输(例如,包括首次传输及重传)该第一数据分段的累计时长为T2,则终端100可以确定上述第二时刻T_2=T_start+T0+T_offset1+T1+T2,其中,T1为载波切换时延。
可选地,若T_offset1<=T_offset2,则第一时刻T_1=T_start+T0+T_offset1,第二时刻T_2=T_start+T0+T_offset2+T1+T2。
现结合图7进行说明,如图7所示,卫星200通过第一波束所在的PDCCH向终端100发送DCI,指示本次调度的传输块分成两个数据分段(例如,第一数据分段以及第二数据分段),分别在与第一波束对应的第一载波和与第二波束对应的第二载波上传输。终端100在完整接收到卫星200发送的DCI后,确定起始时刻T_start,计算出第二载波的定时偏移T_offset2,并将该第二载波的定时偏移T_offset2与第一载波的定时偏移T_offset1进行比较。假设T_offset1<T_offset2,则终端100确定上述第一时刻T_1=T_start+T0+T_offset1,其中,T0为DCI中指示的调度时延。接着,假设传输(例如,包括首次传输及重传)该第一数据分段的累计时长为T2,则终端100可以确定上述第二时刻T_2=T_start+T0+T_offset2+T1+T2,其中,T1为载波切换时延。
步骤305,终端100基于上述数据传输时刻向卫星200发送数据。
具体地,终端100可以基于上述第一时刻使用第一载波向卫星200发送第一数据分段,并可以基于预置的重传次数对上述第一数据分段进行重传。接着,在对上述第一数据分段重传完成以后,可以基于上述第二时刻使用第二载波向卫星200发送第二数据分段,并可以基于预置的重传次数对上述第二数据分段进行重传。
需要说明的是,上述实施例仅示例性示出了传输块分割为两部分的场景,并不构成对本申请实施例的限定,在一些实施例中,还可以将传输块分割成更多的块。
本申请实施例中,网络侧指示终端侧将传输块分割成两部分,分别在两个载波上进行传输,在对上述传输块的每个部分进行传输时,都对应不同的传输时延,由此可以实现网络侧和终端侧的时间同步,并可以充分利用跨载波的应用,进而可以提高数据传输效率。
图8为本申请提供的数据传输方法再一个实施例的流程示意图,包括:
步骤401,卫星200发送定时偏移配置信息。
具体地,卫星200可以通过广播方式发送定时偏移配置信息。示例性的,卫星200 可以通过NPBCH对系统广播消息(例如,SIB)进行广播,该SIB中可以携带上述定时偏移配置信息。其中,该定时偏移配置信息可以包含多个定时偏移,每个定时偏移可以和一个上行载波对应。可以理解的是,由于每个上行载波与一个波束对应,因此,每个上行载波的定时偏移也可以与一个波束对应,由此可以实现不同的上行载波或波束可以对应不同的定时偏移。
可选地,卫星200还可以通过RRC专用信令发送上述定时偏移配置信息。示例性的,当终端100与卫星200之间建立RRC连接后,卫星200可以向终端100发送RRC专用信令,该RRC专用信令中可以携带上述定时偏移配置信息。
步骤402,终端100接收卫星200发送的定时偏移配置信息,并进行存储。
步骤403,卫星200通过第一波束向终端100发送调度信息,指示终端100在两个波束上传输多个传输块。
具体地,为了提高波束之间的利用效率,卫星200可以将本次调度的多个传输块分别在两个波束上传输(例如,可以在第一波束和第二波束上传输)。在具体实现时,卫星200可以向终端100发送调度信息,该调度信息可以通过DCI或RAR Grant承载。其中,该调度信息可以包括调度时延、第二载波的ID以及传输块标识信息,该传输块标识信息用于指示传输块与上行载波的对应情况。表4为传输块标识信息的示例表。表4
载波ID 传输块集合
上行载波1 传输块1,传输块3,传输块5
上行载波2 传输块2,传输块4
如表4所示,传输块1、传输块3及传输块5可以组成一个传输块集合,该传输块集合可以与上行载波1对应,也就是说,终端100可以在上行载波1上传输该传输块1、传输块3及传输块5;而传输块2及传输块4可以组成另一个传输块集合,该传输块集合可以与上行载波2对应,也就是说,终端100可以在上行载波2上传输该传输块2及传输块4。
可以理解的是,上述表4仅示例性示出了5个传输块的场景,并不构成对本申请实施例的限定,在一些实施例中,终端100在传输时,可以基于卫星200的调度,传输更多或更少的传输块。示例性的,每个传输块集合可以包括一个或多个传输块。
步骤404,终端100接收卫星200发送的调度信息,基于调度信息确定数据传输时刻。
具体地,由于卫星200通过第一波束发送上述DCI或RAR Grant,基于上行载波与波束之间的映射关系,终端100可以通过第一载波接收上述DCI或RAR Grant。当终端100接收到卫星200发送的DCI或RAR Grant后,可以获取上述DCI或RAR Grant中的调度信息(例如,调度时延、第二载波的ID以及传输块标识信息)。
接着,可以基于第二载波的ID(例如,表4中的上行载波2)在定时偏移配置信息中查询,得到与该第二载波对应的定时偏移(例如,表1中的T_offset2)。当获取到第二载波的定时偏移后,还可以获取与第一载波(例如,表4中的上行载波1)对应的定时偏移(例如,表1中的T_offset1),并可以基于上述调度时延、第一载波的 定时偏移及第二载波的定时偏移确定第一传输块集合(例如,表4中的包含传输块1、传输块3及传输块5的传输块集合)及第二传输块集合(例如,表4中的包含传输块2及传输块4的传输块集合)的数据传输时刻。示例性的,
若T_offset1>=T_offset2,则第一传输块集合(例如,表4中的包含传输块1、传输块3及传输块5的传输块集合)的数据传输时刻T_3=T_start+T0+T_offset1(为说明方便,下文将“第一传输块集合的数据传输时刻”简称为“第三时刻”),第二传输块集合(例如,表4中的包含传输块2及传输块4的传输块集合)的数据传输时刻T_4=T_start+T0+T_offset1+T1+T2(为说明方便,下文将“第二传输块集合的数据传输时刻”简称为“第四时刻”);其中,T_start为起始时刻,T0为上述调度时延,T1为载波切换时延,T2为第一传输块集合的传输时长,该第一传输块集合的传输时长可以由上述第一传输块集合中的所有传输块的累计传输时长确定,每个传输块的传输时长由每个传输块的预置重传次数确定。示例性的,假设第一传输块集合包括传输块1、传输块3及传输块5,若传输块1的传输时长为T21,传输块3的传输时长为T22,传输块5的传输时长为T23,则第一传输块集合的传输时长T2=T21+T22+T23。
若T_offset1<=T_offset2,则第三时刻T_3=T_start+T0+T_offset2,第四时刻T_4=T_start+T0+T_offset2+T1+T2。
现结合图9进行说明,如图9所示,卫星200通过第一波束所在的PDCCH向终端100发送DCI,指示本次调度的两个传输块集合(例如,上述第一传输块集合及第二传输块集合),分别在与第一波束对应的第一载波和与第二波束对应的第二载波上传输。终端100在完整接收到卫星200发送的DCI后,确定起始时刻T_start,计算出第二载波的定时偏移T_offset2,并将该第二载波的定时偏移T_offset2与第一载波的定时偏移T_offset1进行比较。假设T_offset1>=T_offset2,则终端100确定上述第三时刻T_3=T_start+T0+T_offset1,其中,T0为DCI中指示的调度时延。接着,假设传输该第一传输块集合的累计时长为T2,则终端100可以确定上述第四时刻T_4=T_start+T0+T_offset1+T1+T2,其中,T1为载波切换时延。
可选地,若T_offset1<=T_offset2,则第三时刻T_3=T_start+T0+T_offset1,第四时刻T_4=T_start+T0+T_offset2+T1+T2。
现结合图10进行说明,如图10所示,卫星200通过第一波束所在的PDCCH向终端100发送DCI,指示本次调度的两个传输块集合(例如,上述第一传输块及第二传输块)分别在与第一波束对应的第一载波和与第二波束对应的第二载波上传输。终端100在完整接收到卫星200发送的DCI后,确定起始时刻T_start,计算出第二载波的定时偏移T_offset2,并将该第二载波的定时偏移T_offset2与第一载波的定时偏移T_offset1进行比较。假设T_offset1<T_offset2,则终端100确定上述第三时刻
T_3=T_start+T0+T_offset1,其中,T0为DCI中指示的调度时延。接着,假设传输该第一传输块集合的累计时长为T2,则终端100可以确定上述第四时刻T_4=T_start+T0+T_offset2+T1+T2,其中,T1为载波切换时延。
步骤405,终端100基于上述数据传输时刻向卫星200发送数据。
具体地,终端100可以基于上述第三时刻使用第一载波向卫星200发送第一传输块集合。接着,在对上述第一传输块集合中的所有传输块都传输完成以后,可以基于 上述第四时刻使用第二载波向卫星200发送第二传输块集合。
本申请实施例中,网络侧指示终端侧将两个传输块集合分别在两个载波上进行传输,在对每个传输块集合进行传输时都对应不同的传输时延,由此可以实现网络侧和终端侧的时间同步,并可以充分利用跨载波的应用,进而可以提高数据传输效率。
图11为本申请实施例提供的芯片的结构示意图,如图11所示,上述芯片1100可以包括:第一接收模块1110、第二接收模块1120及传输模块1130;其中,
第一接收模块1110,用于接收并存储网络侧发送的第一信息;
第二接收模块1120,用于接收所述网络侧发送的第二信息,基于所述第一信息及所述第二信息确定数据传输时刻;
传输模块1130,用于基于所述数据传输时刻向所述网络侧传输数据。
其中一种可能的实现方式中,所述第一信息由所述网络侧通过SIB或RRC专用信令发送。
其中一种可能的实现方式中,所述第二信息由所述网络侧通过DCI或RAR Grant发送。
其中一种可能的实现方式中,所述第二接收模块1120还用于获取波切换时延;基于所述载波切换时延、所述第一信息及所述第二信息确定数据传输时刻。
其中一种可能的实现方式中,所述第一信息包括多个上行载波的定时偏移,所述第二信息由所述网络侧使用第一波束发送,所述第一波束与第一上行载波对应。
其中一种可能的实现方式中,所述第二信息包括第二上行载波的索引信息,所述第二接收模块1120包括:查询单元1121及确定单元1122;其中,
查询单元1121,用于基于所述第二上行载波的索引信息在所述第一信息中查询,获得所述第二上行载波的定时偏移;
确定单元1122,用于基于所述第二上行载波的定时偏移确定数据传输时刻。
其中一种可能的实现方式中,所述第二信息包括第二上行载波的索引信息,所述第二接收模块1120包括:获取单元1123、查询单元1124及确定单元1125;其中,
获取单元1123,用于获取所述第一上行载波的定时偏移;
查询单元1124,用于基于所述第二上行载波的索引信息在所述第一信息中查询,获得所述第二上行载波的定时偏移;
确定单元1125,用于将所述第一上行载波的定时偏移与所述第二上行载波的定时偏移进行比较,若所述第一上行载波的定时偏移大于或等于所述第二上行载波的定时偏移,则基于所述第一上行载波的定时偏移确定数据传输时刻,若所述第一上行载波的定时偏移小于或等于所述第二上行载波的定时偏移,则基于所述第二上行载波的定时偏移确定数据传输时刻。
其中一种可能的实现方式中,所述第一信息包括多个上行载波的定时偏移集合,所述第二信息由所述网络侧使用第一波束发送,所述第一波束与第一上行载波对应,其中,每个所述上行载波的定时偏移集合包括多个定时偏移。
其中一种可能的实现方式中,所述第二信息包括第二上行载波的索引信息及定时偏移索引标识,所述第二接收模块1120包括:第一查询单元1126、第二查询单元1127及确定单元1128;其中,
第一查询单元1126,用于基于所述第二上行载波的索引信息在所述第一信息中查询,获得所述第二上行载波的定时偏移集合;
第二查询单元1127,用于基于所述定时偏移索引标识在所述第二上行载波的定时偏移集合中查询,获得与所述定时偏移索引标识对应的第二上行载波的定时偏移;
确定单元1128,用于基于所述第二上行载波的定时偏移确定数据传输时刻。
其中一种可能的实现方式中,所述传输模块1130还用于基于所述数据传输时刻,使用所述第二上行载波向所述网络侧传输数据。
其中一种可能的实现方式中,所述数据包括一个传输块,所述第二信息包括第二上行载波的索引信息以及数据分割信息,所述数据分割信息用于表征对所述传输块进行分割,以获得第一数据分段、第二数据分段以及数据分段与上行载波之间的映射关系,所述第二接收模块1120包括:获取单元1129、查询单元112A及确定单元112B;其中,
获取单元1129,用于获取所述第一上行载波的定时偏移;
查询单元112A,用于基于所述第二上行载波的索引信息在所述第一信息中查询,获得所述第二上行载波的定时偏移;
确定单元112B,用于将所述第一上行载波的定时偏移与所述第二上行载波的定时偏移进行比较;
若所述第一上行载波的定时偏移大于或等于所述第二上行载波的定时偏移,则基于所述第一上行载波的定时偏移确定所述第一数据分段的数据传输时刻,并基于所述第一上行载波的定时偏移及所述第一数据分段的传输时长确定所述第二数据分段的数据传输时刻;
若所述第一上行载波的定时偏移小于或等于所述第二上行载波的定时偏移,则基于所述第二上行载波的定时偏移确定所述第一数据分段的数据传输时刻,并基于所述第二上行载波的定时偏移及所述第一数据分段的传输时长确定所述第二数据分段的数据传输时刻;或基于所述第一上行载波的定时偏移确定所述第一数据分段的数据传输时刻,并基于所述第二上行载波的定时偏移及所述第一数据分段的传输时长确定所述第二数据分段的数据传输时刻;
其中,所述第一数据分段的传输时长由所述第一数据分段的预置重传次数确定。
其中一种可能的实现方式中,所述第一数据分段与所述第一上行载波对应,所述第二数据分段与所述第二上行载波对应,所述传输模块还用于基于所述第一数据分段的数据传输时刻,使用所述第一上行载波向所述网络侧传输所述第一数据分段;基于所述第二数据分段的数据传输时刻,使用所述第二上行载波向所述网络侧传输所述第二数据分段。
其中一种可能的实现方式中,所述数据包括第一传输块集合及第二传输块集合,所述第一传输块集合及所述第二传输块集合分别包括一个或多个传输块,所述第二信息包括第二上行载波的索引信息以及传输块标识信息,所述传输块标识信息用于表征传输块与上行载波之间的映射关系,所述第二接收模块1120包括:获取单元112C、查询单元112D及确定单元112E;其中,
获取单元112C,用于获取所述第一上行载波的定时偏移;
查询单元112D,用于基于所述第二上行载波的索引信息在所述第一信息中查询,获得所述第二上行载波的定时偏移;
确定单元112E,用于将所述第一上行载波的定时偏移与所述第二上行载波的定时偏移进行比较;
若所述第一上行载波的定时偏移大于或等于所述第二上行载波的定时偏移,则基于所述第一上行载波的定时偏移确定所述第一传输块集合的数据传输时刻,并基于所述第一上行载波的定时偏移及所述第一传输块集合的传输时长确定所述第二传输块集合的数据传输时刻;
若所述第一上行载波的定时偏移小于或等于所述第二上行载波的定时偏移,则基于所述第二上行载波的定时偏移确定所述第一传输块集合的数据传输时刻,并基于所述第二上行载波的定时偏移及所述第一传输块集合的传输时长确定所述第二传输块集合的数据传输时刻;或基于所述第一上行载波的定时偏移确定所述第一传输块集合的数据传输时刻,并基于所述第二上行载波的定时偏移及所述第一传输块集合的传输时长确定所述第二传输块集合的数据传输时刻;
其中,所述第一传输块集合的传输时长由所述第一传输块集合中所有传输块的累计传输时长确定,每个所述传输块的传输时长由每个所述传输块的预置重传次数确定。
其中一种可能的实现方式中,所述第一传输块集合与所述第一上行载波对应,所述第二传输块集合与所述第二上行载波对应,所述传输模块1130还用于基于所述第一传输块集合的数据传输时刻,使用所述第一上行载波向所述网络侧传输所述第一传输块集合;基于所述第二传输块集合的数据传输时刻,使用所述第二上行载波向所述网络侧传输所述第二传输块集合。
应理解,以上图11所示的芯片的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块以软件通过处理元件调用的形式实现,部分模块通过硬件的形式实现。此外这些模块全部或部分可以集成在一起,也可以独立实现。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit;以下简称:ASIC),或,一个或多个微处理器(Digital Singnal Processor;以下简称:DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array;以下简称:FPGA)等。再如,这些模块可以集成在一起,以片上系统(System-On-a-Chip;以下简称:SOC)的形式实现。
图12示例性的示出了终端100的结构示意图。
终端100可以包括处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190, 马达191,指示器192,摄像头193,显示屏194,以及用户标识模块(subscriber identification module,SIM)卡接口195等。其中传感器模块180可以包括压力传感器180A,陀螺仪传感器180B,气压传感器180C,磁传感器180D,加速度传感器180E,距离传感器180F,接近光传感器180G,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,骨传导传感器180M等。
可以理解的是,本申请实施例示意的结构并不构成对终端100的具体限定。在本申请另一些实施例中,终端100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了系统的效率。
在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
I2C接口是一种双向同步串行总线,包括一根串行数据线(serial data line,SDA)和一根串行时钟线(derail clock line,SCL)。在一些实施例中,处理器110可以包含多组I2C总线。处理器110可以通过不同的I2C总线接口分别耦合触摸传感器180K,充电器,闪光灯,摄像头193等。例如:处理器110可以通过I2C接口耦合触摸传感器180K,使处理器110与触摸传感器180K通过I2C总线接口通信,实现终端100的触摸功能。
I2S接口可以用于音频通信。在一些实施例中,处理器110可以包含多组I2S总线。处理器110可以通过I2S总线与音频模块170耦合,实现处理器110与音频模块170之间的通信。在一些实施例中,音频模块170可以通过I2S接口向无线通信模块160传递音频信号,实现通过蓝牙耳机接听电话的功能。
PCM接口也可以用于音频通信,将模拟信号抽样,量化和编码。在一些实施例中, 音频模块170与无线通信模块160可以通过PCM总线接口耦合。在一些实施例中,音频模块170也可以通过PCM接口向无线通信模块160传递音频信号,实现通过蓝牙耳机接听电话的功能。所述I2S接口和所述PCM接口都可以用于音频通信。
UART接口是一种通用串行数据总线,用于异步通信。该总线可以为双向通信总线。它将要传输的数据在串行通信与并行通信之间转换。在一些实施例中,UART接口通常被用于连接处理器110与无线通信模块160。例如:处理器110通过UART接口与无线通信模块160中的蓝牙模块通信,实现蓝牙功能。在一些实施例中,音频模块170可以通过UART接口向无线通信模块160传递音频信号,实现通过蓝牙耳机播放音乐的功能。
MIPI接口可以被用于连接处理器110与显示屏194,摄像头193等外围器件。MIPI接口包括摄像头串行接口(camera serial interface,CSI),显示屏串行接口(display serial interface,DSI)等。在一些实施例中,处理器110和摄像头193通过CSI接口通信,实现终端100的拍摄功能。处理器110和显示屏194通过DSI接口通信,实现终端100的显示功能。
GPIO接口可以通过软件配置。GPIO接口可以被配置为控制信号,也可被配置为数据信号。在一些实施例中,GPIO接口可以用于连接处理器110与摄像头193,显示屏194,无线通信模块160,音频模块170,传感器模块180等。GPIO接口还可以被配置为I2C接口,I2S接口,UART接口,MIPI接口等。
USB接口130是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等。USB接口130可以用于连接充电器为终端100充电,也可以用于终端100与外围设备之间传输数据。也可以用于连接耳机,通过耳机播放音频。该接口还可以用于连接其他电子设备,例如AR设备等。
可以理解的是,本发明实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对终端100的结构限定。在本申请另一些实施例中,终端100也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
充电管理模块140用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。在一些有线充电的实施例中,充电管理模块140可以通过USB接口130接收有线充电器的充电输入。在一些无线充电的实施例中,充电管理模块140可以通过终端100的无线充电线圈接收无线充电输入。充电管理模块140为电池142充电的同时,还可以通过电源管理模块141为电子设备供电。
电源管理模块141用于连接电池142,充电管理模块140与处理器110。电源管理模块141接收电池142和/或充电管理模块140的输入,为处理器110,内部存储器121,显示屏194,摄像头193,和无线通信模块160等供电。电源管理模块141还可以用于监测电池容量,电池循环次数,电池健康状态(漏电,阻抗)等参数。在其他一些实施例中,电源管理模块141也可以设置于处理器110中。在另一些实施例中,电源管理模块141和充电管理模块140也可以设置于同一个器件中。
终端100的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。终端100中的每个天线可用于覆盖 单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在终端100上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器通过音频设备(不限于扬声器170A,受话器170B等)输出声音信号,或通过显示屏194显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器110,与移动通信模块150或其他功能模块设置在同一个器件中。
无线通信模块160可以提供应用在终端100上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bl终端tooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(freq终端ncy modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
在一些实施例中,终端100的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得终端100可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。所述GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite system,BDS),准天顶卫星系统(quasi-zenith satellite system,QZSS)和/或星基增强系统(satellite based augmentation systems,SBAS)。
终端100通过GPU,显示屏194,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏194用于显示图像,视频等。显示屏194包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode的,AMOLED),柔性发光二极管(flex light-emitting diode,FLED),Miniled,MicroLed,Micro-oLed,量子点发光二极管(quantum dot light emitting diodes,QLED)等。在一些实施例中,终端100可以包括1个或N个显示屏194,N为大于1的正整数。
终端100可以通过ISP,摄像头193,视频编解码器,GPU,显示屏194以及应用处理器等实现拍摄功能。
ISP用于处理摄像头193反馈的数据。例如,拍照时,打开快门,光线通过镜头被传递到摄像头感光元件上,光信号转换为电信号,摄像头感光元件将所述电信号传递给ISP处理,转化为肉眼可见的图像。ISP还可以对图像的噪点,亮度,肤色进行算法优化。ISP还可以对拍摄场景的曝光,色温等参数优化。在一些实施例中,ISP可以设置在摄像头193中。
摄像头193用于捕获静态图像或视频。物体通过镜头生成光学图像投射到感光元件。感光元件可以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管。感光元件把光信号转换成电信号,之后将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理。DSP将数字图像信号转换成标准的RGB,YUV等格式的图像信号。在一些实施例中,终端100可以包括1个或N个摄像头193,N为大于1的正整数。
数字信号处理器用于处理数字信号,除了可以处理数字图像信号,还可以处理其他数字信号。例如,当终端100在频点选择时,数字信号处理器用于对频点能量进行傅里叶变换等。
视频编解码器用于对数字视频压缩或解压缩。终端100可以支持一种或多种视频编解码器。这样,终端100可以播放或录制多种编码格式的视频,例如:动态图像专家组(moving picture experts group,MPEG)1,MPEG2,MPEG3,MPEG4等。
NPU为神经网络(neural-network,NN)计算处理器,通过借鉴生物神经网络结构,例如借鉴人脑神经元之间传递模式,对输入信息快速处理,还可以不断的自学习。通过NPU可以实现终端100的智能认知等应用,例如:图像识别,人脸识别,语音识别,文本理解等。
外部存储器接口120可以用于连接外部存储卡,例如Micro SD卡,实现扩展终端100的存储能力。外部存储卡通过外部存储器接口120与处理器110通信,实现数据存储功能。例如将音乐,视频等文件保存在外部存储卡中。
内部存储器121可以用于存储计算机可执行程序代码,所述可执行程序代码包括 指令。内部存储器121可以包括存储程序区和存储数据区。其中,存储程序区可存储操作系统,至少一个功能所需的应用程序(比如声音播放功能,图像播放功能等)等。存储数据区可存储终端100使用过程中所创建的数据(比如音频数据,电话本等)等。此外,内部存储器121可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件,闪存器件,通用闪存存储器(universal flash storage,UFS)等。处理器110通过运行存储在内部存储器121的指令,和/或存储在设置于处理器中的存储器的指令,执行终端100的各种功能应用以及数据处理。
终端100可以通过音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,以及应用处理器等实现音频功能。例如音乐播放,录音等。
音频模块170用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。音频模块170还可以用于对音频信号编码和解码。在一些实施例中,音频模块170可以设置于处理器110中,或将音频模块170的部分功能模块设置于处理器110中。
扬声器170A,也称“喇叭”,用于将音频电信号转换为声音信号。终端100可以通过扬声器170A收听音乐,或收听免提通话。
受话器170B,也称“听筒”,用于将音频电信号转换成声音信号。当终端100接听电话或语音信息时,可以通过将受话器170B靠近人耳接听语音。
麦克风170C,也称“话筒”,“传声器”,用于将声音信号转换为电信号。当拨打电话或发送语音信息时,用户可以通过人嘴靠近麦克风170C发声,将声音信号输入到麦克风170C。终端100可以设置至少一个麦克风170C。在另一些实施例中,终端100可以设置两个麦克风170C,除了采集声音信号,还可以实现降噪功能。在另一些实施例中,终端100还可以设置三个,四个或更多麦克风170C,实现采集声音信号,降噪,还可以识别声音来源,实现定向录音功能等。
耳机接口170D用于连接有线耳机。耳机接口170D可以是USB接口130,也可以是3.5mm的开放移动电子设备平台(open mobile terminal platform,OMTP)标准接口,美国蜂窝电信工业协会(cellular telecommunications industry association of the USA,CTIA)标准接口。
压力传感器180A用于感受压力信号,可以将压力信号转换成电信号。在一些实施例中,压力传感器180A可以设置于显示屏194。压力传感器180A的种类很多,如电阻式压力传感器,电感式压力传感器,电容式压力传感器等。电容式压力传感器可以是包括至少两个具有导电材料的平行板。当有力作用于压力传感器180A,电极之间的电容改变。终端100根据电容的变化确定压力的强度。当有触摸操作作用于显示屏194,终端100根据压力传感器180A检测所述触摸操作强度。终端100也可以根据压力传感器180A的检测信号计算触摸的位置。在一些实施例中,作用于相同触摸位置,但不同触摸操作强度的触摸操作,可以对应不同的操作指令。例如:当有触摸操作强度小于第一压力阈值的触摸操作作用于短消息应用图标时,执行查看短消息的指令。当有触摸操作强度大于或等于第一压力阈值的触摸操作作用于短消息应用图标时,执行新建短消息的指令。
陀螺仪传感器180B可以用于确定终端100的运动姿态。在一些实施例中,可以通 过陀螺仪传感器180B确定终端100围绕三个轴(即,x,y和z轴)的角速度。陀螺仪传感器180B可以用于拍摄防抖。示例性的,当按下快门,陀螺仪传感器180B检测终端100抖动的角度,根据角度计算出镜头模组需要补偿的距离,让镜头通过反向运动抵消终端100的抖动,实现防抖。陀螺仪传感器180B还可以用于导航,体感游戏场景。
气压传感器180C用于测量气压。在一些实施例中,终端100通过气压传感器180C测得的气压值计算海拔高度,辅助定位和导航。
磁传感器180D包括霍尔传感器。终端100可以利用磁传感器180D检测翻盖皮套的开合。在一些实施例中,当终端100是翻盖机时,终端100可以根据磁传感器180D检测翻盖的开合。进而根据检测到的皮套的开合状态或翻盖的开合状态,设置翻盖自动解锁等特性。
加速度传感器180E可检测终端100在各个方向上(一般为三轴)加速度的大小。当终端100静止时可检测出重力的大小及方向。还可以用于识别电子设备姿态,应用于横竖屏切换,计步器等应用。
距离传感器180F,用于测量距离。终端100可以通过红外或激光测量距离。在一些实施例中,拍摄场景,终端100可以利用距离传感器180F测距以实现快速对焦。
接近光传感器180G可以包括例如发光二极管(LED)和光检测器,例如光电二极管。发光二极管可以是红外发光二极管。终端100通过发光二极管向外发射红外光。终端100使用光电二极管检测来自附近物体的红外反射光。当检测到充分的反射光时,可以确定终端100附近有物体。当检测到不充分的反射光时,终端100可以确定终端100附近没有物体。终端100可以利用接近光传感器180G检测用户手持终端100贴近耳朵通话,以便自动熄灭屏幕达到省电的目的。接近光传感器180G也可用于皮套模式,口袋模式自动解锁与锁屏。
环境光传感器180L用于感知环境光亮度。终端100可以根据感知的环境光亮度自适应调节显示屏194亮度。环境光传感器180L也可用于拍照时自动调节白平衡。环境光传感器180L还可以与接近光传感器180G配合,检测终端100是否在口袋里,以防误触。
指纹传感器180H用于采集指纹。终端100可以利用采集的指纹特性实现指纹解锁,访问应用锁,指纹拍照,指纹接听来电等。
温度传感器180J用于检测温度。在一些实施例中,终端100利用温度传感器180J检测的温度,执行温度处理策略。例如,当温度传感器180J上报的温度超过阈值,终端100执行降低位于温度传感器180J附近的处理器的性能,以便降低功耗实施热保护。在另一些实施例中,当温度低于另一阈值时,终端100对电池142加热,以避免低温导致终端100异常关机。在其他一些实施例中,当温度低于又一阈值时,终端100对电池142的输出电压执行升压,以避免低温导致的异常关机。
触摸传感器180K,也称“触控器件”。触摸传感器180K可以设置于显示屏194,由触摸传感器180K与显示屏194组成触摸屏,也称“触控屏”。触摸传感器180K用于检测作用于其上或附近的触摸操作。触摸传感器可以将检测到的触摸操作传递给应用处理器,以确定触摸事件类型。可以通过显示屏194提供与触摸操作相关的视觉输出。在另一些实施例中,触摸传感器180K也可以设置于终端100的表面,与显示屏 194所处的位置不同。
骨传导传感器180M可以获取振动信号。在一些实施例中,骨传导传感器180M可以获取人体声部振动骨块的振动信号。骨传导传感器180M也可以接触人体脉搏,接收血压跳动信号。在一些实施例中,骨传导传感器180M也可以设置于耳机中,结合成骨传导耳机。音频模块170可以基于所述骨传导传感器180M获取的声部振动骨块的振动信号,解析出语音信号,实现语音功能。应用处理器可以基于所述骨传导传感器180M获取的血压跳动信号解析心率信息,实现心率检测功能。
按键190包括开机键,音量键等。按键190可以是机械按键。也可以是触摸式按键。终端100可以接收按键输入,产生与终端100的用户设置以及功能控制有关的键信号输入。
马达191可以产生振动提示。马达191可以用于来电振动提示,也可以用于触摸振动反馈。例如,作用于不同应用(例如拍照,音频播放等)的触摸操作,可以对应不同的振动反馈效果。作用于显示屏194不同区域的触摸操作,马达191也可对应不同的振动反馈效果。不同的应用场景(例如:时间提醒,接收信息,闹钟,游戏等)也可以对应不同的振动反馈效果。触摸振动反馈效果还可以支持自定义。
指示器192可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。
SIM卡接口195用于连接SIM卡。SIM卡可以通过插入SIM卡接口195,或从SIM卡接口195拔出,实现和终端100的接触和分离。终端100可以支持1个或N个SIM卡接口,N为大于1的正整数。SIM卡接口195可以支持Nano SIM卡,Micro SIM卡,SIM卡等。同一个SIM卡接口195可以同时插入多张卡。所述多张卡的类型可以相同,也可以不同。SIM卡接口195也可以兼容不同类型的SIM卡。SIM卡接口195也可以兼容外部存储卡。终端100通过SIM卡和网络交互,实现通话以及数据通信等功能。在一些实施例中,终端100采用eSIM,即:嵌入式SIM卡。eSIM卡可以嵌在终端100中,不能和终端100分离。
可以理解的是,本申请实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对终端100的结构限定。在本申请另一些实施例中,终端100也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
可以理解的是,上述终端100为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请实施例的范围。
本申请实施例可以根据上述方法示例对上述移动终端等进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请实施例各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:快闪存储器、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (31)

  1. 一种数据传输方法,其特征在于,所述方法包括:
    接收并存储网络侧发送的第一信息;
    接收所述网络侧发送的第二信息,基于所述第一信息及所述第二信息确定数据传输时刻;
    基于所述数据传输时刻向所述网络侧传输数据。
  2. 根据权利要求1所述的方法,其特征在于,所述第一信息由所述网络侧通过SIB或RRC专用信令发送。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第二信息由所述网络侧通过DCI或RAR Grant发送。
  4. 根据权利要求1所述的方法,其特征在于,所述基于所述第一信息及所述第二信息确定数据传输时刻包括:
    获取载波切换时延;
    基于所述载波切换时延、所述第一信息及所述第二信息确定数据传输时刻。
  5. 根据权利要求1所述的方法,其特征在于,所述第一信息包括多个上行载波的定时偏移,所述第二信息由所述网络侧使用第一波束发送,所述第一波束与第一上行载波对应。
  6. 根据权利要求5所述的方法,其特征在于,所述第二信息包括第二上行载波的索引信息,所述基于所述第一信息及所述第二信息确定数据传输时刻包括:
    基于所述第二上行载波的索引信息在所述第一信息中查询,获得所述第二上行载波的定时偏移;
    基于所述第二上行载波的定时偏移确定数据传输时刻。
  7. 根据权利要求5所述的方法,其特征在于,所述第二信息包括第二上行载波的索引信息,所述基于所述第一信息及所述第二信息确定数据传输时刻包括:
    获取所述第一上行载波的定时偏移;
    基于所述第二上行载波的索引信息在所述第一信息中查询,获得所述第二上行载波的定时偏移;
    将所述第一上行载波的定时偏移与所述第二上行载波的定时偏移进行比较,若所述第一上行载波的定时偏移大于或等于所述第二上行载波的定时偏移,则基于所述第一上行载波的定时偏移确定数据传输时刻,若所述第一上行载波的定时偏移小于或等于所述第二上行载波的定时偏移,则基于所述第二上行载波的定时偏移确定数据传输时刻。
  8. 根据权利要求1所述的方法,其特征在于,所述第一信息包括多个上行载波的定时偏移集合,所述第二信息由所述网络侧使用第一波束发送,所述第一波束与第一上行载波对应,其中,每个所述上行载波的定时偏移集合包括多个定时偏移。
  9. 根据权利要求8所述的方法,其特征在于,所述第二信息包括第二上行载波的索引信息及定时偏移索引标识,所述基于所述第一信息及所述第二信息确定数据传输时刻包括:
    基于所述第二上行载波的索引信息在所述第一信息中查询,获得所述第二上行载 波的定时偏移集合;
    基于所述定时偏移索引标识在所述第二上行载波的定时偏移集合中查询,获得与所述定时偏移索引标识对应的第二上行载波的定时偏移;
    基于所述第二上行载波的定时偏移确定数据传输时刻。
  10. 根据权利要求6-9任一项所述的方法,其特征在于,所述基于所述数据传输时刻向所述网络侧传输数据包括:
    基于所述数据传输时刻,使用所述第二上行载波向所述网络侧传输数据。
  11. 根据权利要求5所述的方法,其特征在于,所述数据包括一个传输块,所述第二信息包括第二上行载波的索引信息以及数据分割信息,所述数据分割信息用于表征对所述传输块进行分割,以获得第一数据分段、第二数据分段以及数据分段与上行载波之间的映射关系,所述基于所述第一信息及所述第二信息确定数据传输时刻包括:
    获取所述第一上行载波的定时偏移;
    基于所述第二上行载波的索引信息在所述第一信息中查询,获得所述第二上行载波的定时偏移;
    将所述第一上行载波的定时偏移与所述第二上行载波的定时偏移进行比较;
    若所述第一上行载波的定时偏移大于或等于所述第二上行载波的定时偏移,则基于所述第一上行载波的定时偏移确定所述第一数据分段的数据传输时刻,并基于所述第一上行载波的定时偏移及所述第一数据分段的传输时长确定所述第二数据分段的数据传输时刻;
    若所述第一上行载波的定时偏移小于或等于所述第二上行载波的定时偏移,则基于所述第二上行载波的定时偏移确定所述第一数据分段的数据传输时刻,并基于所述第二上行载波的定时偏移及所述第一数据分段的传输时长确定所述第二数据分段的数据传输时刻;或基于所述第一上行载波的定时偏移确定所述第一数据分段的数据传输时刻,并基于所述第二上行载波的定时偏移及所述第一数据分段的传输时长确定所述第二数据分段的数据传输时刻;
    其中,所述第一数据分段的传输时长由所述第一数据分段的预置重传次数确定。
  12. 根据权利要求11所述的方法,其特征在于,所述第一数据分段与所述第一上行载波对应,所述第二数据分段与所述第二上行载波对应,所述基于所述数据传输时刻向所述网络侧传输数据包括:
    基于所述第一数据分段的数据传输时刻,使用所述第一上行载波向所述网络侧传输所述第一数据分段;
    基于所述第二数据分段的数据传输时刻,使用所述第二上行载波向所述网络侧传输所述第二数据分段。
  13. 根据权利要求5所述的方法,其特征在于,所述数据包括第一传输块集合及第二传输块集合,所述第一传输块集合及所述第二传输块集合分别包括一个或多个传输块,所述第二信息包括第二上行载波的索引信息以及传输块标识信息,所述传输块标识信息用于表征传输块与上行载波之间的映射关系,所述基于所述第一信息及所述第二信息确定数据传输时刻包括:
    获取所述第一上行载波的定时偏移;
    基于所述第二上行载波的索引信息在所述第一信息中查询,获得所述第二上行载波的定时偏移;
    将所述第一上行载波的定时偏移与所述第二上行载波的定时偏移进行比较;
    若所述第一上行载波的定时偏移大于或等于所述第二上行载波的定时偏移,则基于所述第一上行载波的定时偏移确定所述第一传输块集合的数据传输时刻,并基于所述第一上行载波的定时偏移及所述第一传输块集合的传输时长确定所述第二传输块集合的数据传输时刻;
    若所述第一上行载波的定时偏移小于或等于所述第二上行载波的定时偏移,则基于所述第二上行载波的定时偏移确定所述第一传输块集合的数据传输时刻,并基于所述第二上行载波的定时偏移及所述第一传输块集合的传输时长确定所述第二传输块集合的数据传输时刻;或基于所述第一上行载波的定时偏移确定所述第一传输块集合的数据传输时刻,并基于所述第二上行载波的定时偏移及所述第一传输块集合的传输时长确定所述第二传输块集合的数据传输时刻;
    其中,所述第一传输块集合的传输时长由所述第一传输块集合中所有传输块的累计传输时长确定,每个所述传输块的传输时长由每个所述传输块的预置重传次数确定。
  14. 根据权利要求13所述的方法,其特征在于,所述第一传输块集合与所述第一上行载波对应,所述第二传输块集合与所述第二上行载波对应,所述基于所述数据传输时刻向所述网络侧传输数据包括:
    基于所述第一传输块集合的数据传输时刻,使用所述第一上行载波向所述网络侧传输所述第一传输块集合;
    基于所述第二传输块集合的数据传输时刻,使用所述第二上行载波向所述网络侧传输所述第二传输块集合。
  15. 一种芯片,其特征在于,包括:
    第一接收模块,用于接收并存储网络侧发送的第一信息;
    第二接收模块,用于接收所述网络侧发送的第二信息,基于所述第一信息及所述第二信息确定数据传输时刻;
    传输模块,用于基于所述数据传输时刻向所述网络侧传输数据。
  16. 根据权利要求15所述的芯片,其特征在于,所述第一信息由所述网络侧通过SIB或RRC专用信令发送。
  17. 根据权利要求15或16所述的芯片,其特征在于,所述第二信息由所述网络侧通过DCI或RAR Grant发送。
  18. 根据权利要求15所述的芯片,其特征在于,所述第二接收模块还用于获取波切换时延;基于所述载波切换时延、所述第一信息及所述第二信息确定数据传输时刻。
  19. 根据权利要求15所述的芯片,其特征在于,所述第一信息包括多个上行载波的定时偏移,所述第二信息由所述网络侧使用第一波束发送,所述第一波束与第一上行载波对应。
  20. 根据权利要求19所述的芯片,其特征在于,所述第二信息包括第二上行载波的索引信息,所述第二接收模块包括:
    查询单元,用于基于所述第二上行载波的索引信息在所述第一信息中查询,获得 所述第二上行载波的定时偏移;
    确定单元,用于基于所述第二上行载波的定时偏移确定数据传输时刻。
  21. 根据权利要求19所述的芯片,其特征在于,所述第二信息包括第二上行载波的索引信息,所述第二接收模块包括:
    获取单元,用于获取所述第一上行载波的定时偏移;
    查询单元,用于基于所述第二上行载波的索引信息在所述第一信息中查询,获得所述第二上行载波的定时偏移;
    确定单元,用于将所述第一上行载波的定时偏移与所述第二上行载波的定时偏移进行比较,若所述第一上行载波的定时偏移大于或等于所述第二上行载波的定时偏移,则基于所述第一上行载波的定时偏移确定数据传输时刻,若所述第一上行载波的定时偏移小于或等于所述第二上行载波的定时偏移,则基于所述第二上行载波的定时偏移确定数据传输时刻。
  22. 根据权利要求15所述的芯片,其特征在于,所述第一信息包括多个上行载波的定时偏移集合,所述第二信息由所述网络侧使用第一波束发送,所述第一波束与第一上行载波对应,其中,每个所述上行载波的定时偏移集合包括多个定时偏移。
  23. 根据权利要求22所述的芯片,其特征在于,所述第二信息包括第二上行载波的索引信息及定时偏移索引标识,所述第二接收模块包括:
    第一查询单元,用于基于所述第二上行载波的索引信息在所述第一信息中查询,获得所述第二上行载波的定时偏移集合;
    第二查询单元,用于基于所述定时偏移索引标识在所述第二上行载波的定时偏移集合中查询,获得与所述定时偏移索引标识对应的第二上行载波的定时偏移;
    确定单元,用于基于所述第二上行载波的定时偏移确定数据传输时刻。
  24. 根据权利要求20-23任一项所述的芯片,其特征在于,所述传输模块还用于基于所述数据传输时刻,使用所述第二上行载波向所述网络侧传输数据。
  25. 根据权利要求19所述的芯片,其特征在于,所述数据包括一个传输块,所述第二信息包括第二上行载波的索引信息以及数据分割信息,所述数据分割信息用于表征对所述传输块进行分割,以获得第一数据分段、第二数据分段以及数据分段与上行载波之间的映射关系,所述第二接收模块包括:
    获取单元,用于获取所述第一上行载波的定时偏移;
    查询单元,用于基于所述第二上行载波的索引信息在所述第一信息中查询,获得所述第二上行载波的定时偏移;
    确定单元,用于将所述第一上行载波的定时偏移与所述第二上行载波的定时偏移进行比较;
    若所述第一上行载波的定时偏移大于或等于所述第二上行载波的定时偏移,则基于所述第一上行载波的定时偏移确定所述第一数据分段的数据传输时刻,并基于所述第一上行载波的定时偏移及所述第一数据分段的传输时长确定所述第二数据分段的数据传输时刻;
    若所述第一上行载波的定时偏移小于或等于所述第二上行载波的定时偏移,则基于所述第二上行载波的定时偏移确定所述第一数据分段的数据传输时刻,并基于所述 第二上行载波的定时偏移及所述第一数据分段的传输时长确定所述第二数据分段的数据传输时刻;或基于所述第一上行载波的定时偏移确定所述第一数据分段的数据传输时刻,并基于所述第二上行载波的定时偏移及所述第一数据分段的传输时长确定所述第二数据分段的数据传输时刻;
    其中,所述第一数据分段的传输时长由所述第一数据分段的预置重传次数确定。
  26. 根据权利要求25所述的芯片,其特征在于,所述第一数据分段与所述第一上行载波对应,所述第二数据分段与所述第二上行载波对应,所述传输模块还用于基于所述第一数据分段的数据传输时刻,使用所述第一上行载波向所述网络侧传输所述第一数据分段;基于所述第二数据分段的数据传输时刻,使用所述第二上行载波向所述网络侧传输所述第二数据分段。
  27. 根据权利要求19所述的芯片,其特征在于,所述数据包括第一传输块集合及第二传输块集合,所述第一传输块集合及所述第二传输块集合分别包括一个或多个传输块,所述第二信息包括第二上行载波的索引信息以及传输块标识信息,所述传输块标识信息用于表征传输块与上行载波之间的映射关系,所述第二接收模块包括:
    获取单元,用于获取所述第一上行载波的定时偏移;
    查询单元,用于基于所述第二上行载波的索引信息在所述第一信息中查询,获得所述第二上行载波的定时偏移;
    确定单元,用于将所述第一上行载波的定时偏移与所述第二上行载波的定时偏移进行比较;
    若所述第一上行载波的定时偏移大于或等于所述第二上行载波的定时偏移,则基于所述第一上行载波的定时偏移确定所述第一传输块集合的数据传输时刻,并基于所述第一上行载波的定时偏移及所述第一传输块集合的传输时长确定所述第二传输块集合的数据传输时刻;
    若所述第一上行载波的定时偏移小于或等于所述第二上行载波的定时偏移,则基于所述第二上行载波的定时偏移确定所述第一传输块集合的数据传输时刻,并基于所述第二上行载波的定时偏移及所述第一传输块集合的传输时长确定所述第二传输块集合的数据传输时刻;或基于所述第一上行载波的定时偏移确定所述第一传输块集合的数据传输时刻,并基于所述第二上行载波的定时偏移及所述第一传输块集合的传输时长确定所述第二传输块集合的数据传输时刻;
    其中,所述第一传输块集合的传输时长由所述第一传输块集合中所有传输块的累计传输时长确定,每个所述传输块的传输时长由每个所述传输块的预置重传次数确定。
  28. 根据权利要求27所述的芯片,其特征在于,所述第一传输块集合与所述第一上行载波对应,所述第二传输块集合与所述第二上行载波对应,所述传输模块还用于基于所述第一传输块集合的数据传输时刻,使用所述第一上行载波向所述网络侧传输所述第一传输块集合;基于所述第二传输块集合的数据传输时刻,使用所述第二上行载波向所述网络侧传输所述第二传输块集合。
  29. 一种终端,其特征在于,包括:存储器,所述存储器用于存储计算机程序代码,所述计算机程序代码包括指令,当所述终端从所述存储器中读取所述指令,以使得所述终端执行如权利要求1-14中任一项所述的方法。
  30. 一种计算机可读存储介质,其特征在于,包括计算机指令,当所述计算机指令在所述终端上运行时,使得所述终端执行如权利要求1-14中任一项所述的方法。
  31. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如权利要求1-14中任一项所述的方法。
PCT/CN2022/076412 2021-01-18 2022-02-16 数据传输方法、芯片、终端及存储介质 WO2022152323A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110062224.5A CN114828196A (zh) 2021-01-18 2021-01-18 数据传输方法、芯片、终端及存储介质
CN202110062224.5 2021-01-18

Publications (1)

Publication Number Publication Date
WO2022152323A1 true WO2022152323A1 (zh) 2022-07-21

Family

ID=82447995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/076412 WO2022152323A1 (zh) 2021-01-18 2022-02-16 数据传输方法、芯片、终端及存储介质

Country Status (2)

Country Link
CN (1) CN114828196A (zh)
WO (1) WO2022152323A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200053712A1 (en) * 2018-08-09 2020-02-13 Qualcomm Incorporated Uplink timing adjustment in beamformed wireless communications
CN111492701A (zh) * 2017-12-19 2020-08-04 高通股份有限公司 特定于波束的定时提前命令参数
CN111615186A (zh) * 2019-02-23 2020-09-01 华为技术有限公司 一种更新定时提前的方法、终端及网络设备
CN111757453A (zh) * 2019-03-26 2020-10-09 华为技术有限公司 一种定时同步方法、装置、设备及介质
WO2020264373A1 (en) * 2019-06-27 2020-12-30 Apple Inc. Adaptive uplink (ul) timing adjustment for beam switching in fifth-generation new radio (5g nr)

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111492701A (zh) * 2017-12-19 2020-08-04 高通股份有限公司 特定于波束的定时提前命令参数
US20200053712A1 (en) * 2018-08-09 2020-02-13 Qualcomm Incorporated Uplink timing adjustment in beamformed wireless communications
CN111615186A (zh) * 2019-02-23 2020-09-01 华为技术有限公司 一种更新定时提前的方法、终端及网络设备
CN111757453A (zh) * 2019-03-26 2020-10-09 华为技术有限公司 一种定时同步方法、装置、设备及介质
WO2020264373A1 (en) * 2019-06-27 2020-12-30 Apple Inc. Adaptive uplink (ul) timing adjustment for beam switching in fifth-generation new radio (5g nr)

Also Published As

Publication number Publication date
CN114828196A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
WO2020192781A1 (zh) 一种上报能力的方法及用户设备
WO2020133183A1 (zh) 音频数据的同步方法及设备
WO2020124610A1 (zh) 一种传输速率的控制方法及设备
WO2021147427A1 (zh) 确定回退功率的方法和调整发射功率的方法
US20220330227A1 (en) Communication Method, Communication Apparatus, and System
WO2022083386A1 (zh) 投屏方法、系统及电子设备
EP4250075A1 (en) Content sharing method, electronic device, and storage medium
WO2021197071A1 (zh) 无线通信系统及方法
WO2020118532A1 (zh) 一种蓝牙通信方法及电子设备
EP4247030A1 (en) Device network distribution method, and mobile terminal and storage medium
WO2022028339A1 (zh) 一种天线选择的方法及装置
WO2021043250A1 (zh) 一种蓝牙通信方法及相关装置
CN115694598A (zh) 一种北斗通信系统中多帧融合传输方法及相关装置
WO2021027623A1 (zh) 一种设备能力发现方法及p2p设备
WO2023124186A1 (zh) 通信方法和通信装置
CN114125789A (zh) 通信方法、终端设备及存储介质
WO2022199613A1 (zh) 同步播放方法及装置
WO2021197163A1 (zh) 一种发送功率控制方法、终端、芯片系统与系统
WO2022105674A1 (zh) 来电接听方法、电子设备及存储介质
WO2022095752A1 (zh) 帧解复用方法、电子设备及存储介质
WO2022152323A1 (zh) 数据传输方法、芯片、终端及存储介质
CN114079492A (zh) 一种数据发送方法与终端设备
WO2022213644A1 (zh) 同步信号块ssb确定方法及相关设备
WO2024055881A1 (zh) 时钟同步方法、电子设备、系统及存储介质
WO2023098874A1 (zh) 随机接入方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22739198

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22739198

Country of ref document: EP

Kind code of ref document: A1