WO2023030152A1 - 一种切换网络的方法及相关装置 - Google Patents

一种切换网络的方法及相关装置 Download PDF

Info

Publication number
WO2023030152A1
WO2023030152A1 PCT/CN2022/114731 CN2022114731W WO2023030152A1 WO 2023030152 A1 WO2023030152 A1 WO 2023030152A1 CN 2022114731 W CN2022114731 W CN 2022114731W WO 2023030152 A1 WO2023030152 A1 WO 2023030152A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
base station
network
information
cellular network
Prior art date
Application number
PCT/CN2022/114731
Other languages
English (en)
French (fr)
Inventor
甘雯昱
钟继磊
朱旭东
戴大鹏
李振洲
朱颖
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023030152A1 publication Critical patent/WO2023030152A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/14Reselecting a network or an air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the technical field of satellite communication, and in particular to a method and a related device for switching networks.
  • the Beidou satellite navigation system is a major infrastructure independently developed by my country that integrates positioning, timing, and communication.
  • the Beidou short message communication service is one of the characteristics of the Beidou satellite navigation system that distinguishes it from other global navigation systems such as GPS, GLONASS, and GALILEO.
  • the Beidou short message communication service is especially suitable for communication in areas where mobile communication is not covered, or cannot be covered, or the communication system is damaged, such as oceans, deserts, grasslands, and uninhabited areas.
  • the user can turn on the Beidou network in the electronic device.
  • the electronic device turns on the Beidou network
  • the cellular network in the electronic device does not remain resident (even if the electronic device is in an environment with a cellular network).
  • the electronic device will not actively search the cellular network. The user needs to turn off the Beidou network of the electronic device before the electronic device can search the cellular network.
  • the time when the electronic device returns to the cellular network from the Beidou network is determined by the user's behavior (that is, the user actively turns off the Beidou network). In this way, if the user does not actively turn off the Beidou network, the user's electronic device cannot switch back to the cellular network in time.
  • This application provides a method for switching networks and related devices.
  • the terminal can return to the cellular network as soon as possible from the Beidou network (not residing in the cellular network) without user operation. (camp to cellular network).
  • the present application provides a method for switching networks, which may include: the terminal does not camp on the cellular network, and detects that the terminal has not sent data to Beidou network equipment or received data sent by Beidou network equipment within a preset period of time. the data; the terminal starts to search for the cellular network, and if the search for the cellular network is successful, the terminal resides in the cellular network.
  • the terminal can search the cellular network when the terminal is not sending or receiving data under the Beidou network. In this way, the terminal can return to the cellular network from the Beidou network as soon as possible.
  • the terminal starts to search the cellular network, and if the search for the cellular network is successful, the terminal camps on the cellular network, which may include: the terminal sends a first query request to the Beidou network device, The first query request is used to query the information of the base station, and the first request carries the location information of the terminal; the terminal receives the first query result sent by the Beidou network equipment, and the first query result includes one or more base stations within the preset distance of the terminal information; the terminal searches for the cellular network according to the first query result, and if the search for the cellular network succeeds, the terminal camps on the cellular network.
  • the terminal can search the network accurately according to the information of the base station provided by the Beidou network equipment, so that the cellular network that can reside can be searched faster.
  • the terminal can judge whether to search the network according to the information of the base station provided by the Beidou network equipment.
  • the terminal obtains the information of the base stations near the terminal from the Beidou network equipment, the terminal does not need to search the network. In this way, invalid network search can be avoided, and the power consumption of the terminal can be saved.
  • the first query request is a first message
  • the first message includes a first cellular information type field and a terminal longitude and latitude field;
  • the first cellular information type field is used to indicate The type of the first query result returned by the Beidou network device to the terminal;
  • the terminal longitude and latitude field is used to indicate the longitude and latitude of the terminal.
  • the first cellular information type field is a first value, and the first value is used to indicate that the first query result is information of one or more base stations within a preset distance of the terminal;
  • the first cellular information type field is a second value, and the second value is used to indicate that the first query result is information of one or more base stations within a preset distance of the terminal that meet a preset condition.
  • the terminal can use the cellular information type field to indicate the type of the query result that the Beidou network equipment replies.
  • the information of the base station includes one or more of the latitude and longitude of the base station, the network standard of the base station, the frequency point of the base station, the cell number of the base station, and the transmit power of the base station.
  • a preset condition is that a signal strength of a signal sent by a base station received by the terminal is greater than a first threshold.
  • the signal strength is calculated from the transmission power of the base station.
  • the signal strength of the terminal receiving the signal transmitted by the base station may be used to indicate the reception power of the terminal receiving the signal transmitted by the base station.
  • the first query result is a second message
  • the second message includes a second cell information type field, a first base station number field, a first latitude and longitude field, a first network Standard field, first frequency point field, and first cell number field
  • the second cellular information type field is a first value, which is used to indicate that the first query result is information of one or more base stations within a preset distance of the terminal
  • the number of base stations field is used to indicate the number of base stations within the preset distance of the terminal
  • the first latitude and longitude field is used to indicate the latitude and longitude of the base stations within the preset distance of the terminal
  • the first network standard field is used to indicate the network of the base station within the preset distance of the terminal Standard
  • the first frequency point field is used to indicate the frequency point of the base station within the preset distance of the terminal
  • the first cell number field is used to indicate the cell number of the base station within the preset distance of the terminal.
  • the terminal can search the network according to the information of the base station in the query result, which can improve the efficiency of the terminal to search the network and save the power consumption of the terminal.
  • the second message further includes a first base station transmission power field, and the first base station transmission power field is used to indicate the transmission power of a base station within a preset distance of the terminal.
  • the terminal can calculate the signal strength according to the transmission power of the base station, and then judge whether to search the network according to the network standard of the base station according to whether the signal strength is greater than the first threshold.
  • the terminal searches the network according to the network standard of the base station; if the signal strength is less than the first threshold, the terminal does not need to search the network according to the network standard of the base station. In this way, invalid network search can be avoided, the efficiency of terminal network search can be improved, and the power consumption of the terminal can be saved.
  • the first query result is a third message
  • the third message includes a third cell information type field, a second base station number field, a second network standard field, a second The second frequency point field, the second cell number field
  • the third cell information type field is the second value
  • the first query result is the information of one or more base stations that meet the preset conditions within the preset distance of the terminal
  • the second base station number field It is used to indicate the number of base stations that meet the preset conditions within the preset distance of the terminal
  • the second network standard field is used to indicate the network standard of the base stations that meet the preset conditions within the preset distance of the terminal
  • the second frequency point field is used to indicate that the terminal preset
  • the frequency point of the base station meeting the preset condition within the distance is set
  • the second cell number field is used for the cell number of the base station meeting the preset condition within the preset distance of the terminal.
  • the terminal can search the network directly according to the base station information provided by the Beidou network equipment.
  • the terminal does not need to evaluate the network search success rate of the base station. In this way, the network searching efficiency of the terminal can be improved, and the power consumption of the terminal can be saved.
  • the first query result is a second message
  • the second message includes information about the first base station within a preset distance of the terminal
  • the terminal searches the cellular network according to the first query result , if the search for the cellular network is successful, the terminal camping on the cellular network may include: the terminal determines that the first base station satisfies a preset condition according to the information of the first base station in the second message; The information searches the cellular network, and if the cellular network is successfully searched, the terminal camps on the cellular network.
  • the terminal can calculate the received power according to the transmitted power of the base station, and then judge whether to perform network search according to the network standard of the base station according to whether the received power is greater than the first threshold.
  • the terminal searches the network according to the network standard of the base station; if the received power is less than the first threshold, the terminal does not need to search the network according to the network standard of the base station. In this way, invalid network search can be avoided, the efficiency of terminal network search can be improved, and the power consumption of the terminal can be saved.
  • the first query result is a second message
  • the second message includes information about the first base station and information about the second base station within a preset distance from the terminal
  • the terminal Searching for the cellular network according to the first query result, and if the search for the cellular network is successful, the terminal camping on the cellular network may include: the terminal determines that the first base station satisfies a preset condition according to the information of the first base station in the second message.
  • the terminal determines that the second base station meets the preset condition according to the information of the second base station in the second message; the terminal determines that the signal strength received by the terminal from the first base station is greater than the signal strength received by the terminal from the second base station; The information of a base station searches the cellular network. If the search for the cellular network is successful, the terminal camps on the cellular network; if the search for the cellular network fails, the terminal searches for the cellular network according to the information of the second base station.
  • the terminal can first search the network according to the information of the base station with greater signal strength.
  • the greater the strength of the signal that the terminal can receive from the base station the greater the success rate of network search by the terminal. In this way, the network searching efficiency of the terminal can be improved, and the power consumption of the terminal can be saved.
  • the first query result is a third message
  • the third message includes information about a third base station within a preset distance of the terminal that satisfies a preset condition
  • the terminal according to the first A query result searches the cellular network. If the search for the cellular network is successful, the terminal camps on the cellular network. It may include: the terminal starts to search the cellular network according to the information of the third base station. to the cellular network.
  • the terminal directly searches the network according to the information of the base stations near the terminal that meet the preset conditions screened by the Beidou network equipment, which can improve the efficiency of the terminal's network search and save the power consumption of the terminal.
  • the first query result is a third message
  • the third message includes information about a third base station and information about a fourth base station that meet preset conditions within a preset distance from the terminal.
  • the terminal searches the cellular network according to the first query result, and if the search for the cellular network is successful, the terminal camps on the cellular network, which may include: the terminal determines that the signal strength received by the terminal from the third base station is greater than that received by the terminal from the fourth base station signal strength; the terminal starts to search the cellular network according to the information of the third base station, and if the search for the cellular network is successful, the terminal stays on the cellular network; Search for cellular networks.
  • the terminal can first search the network according to the information of the base station with greater signal strength.
  • the greater the strength of the signal that the terminal can receive from the base station the greater the success rate of network search by the terminal. In this way, the network searching efficiency of the terminal can be improved, and the power consumption of the terminal can be saved.
  • the terminal starts to search the cellular network, and if the search for the cellular network is successful, the terminal camps on the cellular network, including: the terminal starts searching according to the network search sequence preset in the terminal In the cellular network, if the search for the cellular network is successful, the terminal camps on the cellular network; wherein, the network search sequence is used to instruct the terminal to search for one or more network standards of the cellular network and the order of searching for one or more network standards.
  • the terminal when the terminal is not sending or receiving data under the Beidou network, it can search the cellular network. In this way, the terminal can return to the cellular network from the Beidou network as soon as possible.
  • the terminal starts to search the cellular network, and if the search for the cellular network is successful, the terminal camps on the cellular network, which may include: the terminal determines that there is prior information stored, the prior information It includes the cellular network information within the preset distance of the terminal; the terminal searches the cellular network according to the prior information, and if the search for the cellular network is successful, the terminal resides in the cellular network.
  • the cellular network information includes the latitude and longitude of one or more geographic locations, the distance between one or more geographic locations and the base station, the cell number of the cellular network covered at one or more geographic locations, the cell number of the covered cellular network at one or more geographic locations One or more of the network standard and frequency of the cell number of the network, the signal strength of the covered cellular network at one or more geographical locations, and the transmission power of the base station.
  • the terminal can search the network by means of the prior information, which can improve the efficiency of the terminal to search the network and save the power consumption of the terminal.
  • a method for switching networks may include: Beidou network equipment receives a first query request sent by a terminal, the first query request is used to query information about a base station, and the first query request carries the location of the terminal Information: Beidou network equipment sends a first query result to the terminal, the first query result includes information of one or more base stations within a preset distance of the terminal, and the first query result is used for the terminal to search for a cellular network.
  • the Beidou network device can provide the information of the base station near the terminal when the terminal searches the network, so that it can assist the terminal to search the network and improve the success rate of the terminal to search the network.
  • the first query request is a first message
  • the first message includes a first cellular information type field and a terminal longitude and latitude field;
  • the first cellular information type field is used to indicate The type of the first query result returned by the Beidou network device to the terminal;
  • the terminal longitude and latitude field is used to indicate the longitude and latitude of the terminal.
  • the first cell information type field is a first value, and the first value is used to indicate that the first query result is information of one or more base stations within a preset distance of the terminal;
  • the first cellular information type field is a second value, and the second value is used to indicate that the first query result is information of one or more base stations within a preset distance of the terminal that meet a preset condition.
  • the terminal can use the cellular information type field to indicate the type of the query result that the Beidou network equipment replies.
  • the information of the base station includes one or more of the latitude and longitude of the base station, the network standard of the base station, the frequency point of the base station, the cell number of the base station, and the transmit power of the base station.
  • the preset condition is that a signal strength of a signal sent by the base station received by the terminal is greater than a first threshold.
  • the signal strength is calculated from the transmission power of the base station.
  • the signal strength of the terminal receiving the signal transmitted by the base station may be used to indicate the reception power of the terminal receiving the signal transmitted by the base station.
  • the first query result is a second message
  • the second message includes a second cell information type field, a first base station number field, a first latitude and longitude field, a first network Standard field, first frequency point field, and first cell number field
  • the second cellular information type field is a first value, which is used to indicate that the first query result is information of one or more base stations within a preset distance of the terminal
  • the number of base stations field is used to indicate the number of base stations within the preset distance of the terminal
  • the first latitude and longitude field is used to indicate the latitude and longitude of the base stations within the preset distance of the terminal
  • the first network standard field is used to indicate the network of the base station within the preset distance of the terminal Standard
  • the first frequency point field is used to indicate the frequency point of the base station within the preset distance of the terminal
  • the first cell number field is used to indicate the cell number of the base station within the preset distance of the terminal.
  • the terminal can search the network according to the information of the base station in the query result, which can improve the efficiency of the terminal to search the network and save the power consumption of the terminal.
  • the second message further includes a first base station transmission power field, where the first base station transmission power field is used to indicate the transmission power of a base station within a preset distance from the terminal.
  • the terminal can calculate the signal strength according to the transmission power of the base station, and then judge whether to search the network according to the network standard of the base station according to whether the signal strength is greater than the first threshold.
  • the terminal searches the network according to the network standard of the base station; if the signal strength is less than the first threshold, the terminal does not need to search the network according to the network standard of the base station. In this way, invalid network search can be avoided, the efficiency of terminal network search can be improved, and the power consumption of the terminal can be saved.
  • the first query result is a third message
  • the third message includes a third cell information type field, a second base station number field, a second network standard field, a second The second frequency point field, the second cell number field
  • the third cell information type field is the second value
  • the first query result is the information of one or more base stations that meet the preset conditions within the preset distance of the terminal
  • the second base station number field It is used to indicate the number of base stations that meet the preset conditions within the preset distance of the terminal
  • the second network standard field is used to indicate the network standard of the base stations that meet the preset conditions within the preset distance of the terminal
  • the second frequency field is used to indicate that the terminal presets
  • the frequency point of the base station meeting the preset condition within the distance is set, and the second cell number field is used for the cell number of the base station meeting the preset condition within the preset distance of the terminal.
  • the terminal can search the network directly according to the base station information provided by the Beidou network equipment.
  • the terminal does not need to evaluate the network search success rate of the base station. In this way, the network searching efficiency of the terminal can be improved, and the power consumption of the terminal can be saved.
  • the Beidou network device sends a first query result to the terminal, the first query result includes information about one or more base stations within a preset distance from the terminal, and may include: Beidou network device Query the information of one or more base stations within the preset distance of the terminal according to the location information of the terminal; the Beidou network equipment sends the first query result to the terminal, and the first query result includes the information of one or more base stations within the preset distance of the terminal.
  • the Beidou network device queries the information of one or more base stations within a preset distance of the terminal according to the terminal's location information, including: the Beidou network device sends the cellular core network information according to the terminal's location.
  • the device queries the information of one or more base stations within the preset distance of the terminal, and the cellular core network device stores the information of all base stations deployed by the operator.
  • a Beidou communication system may include a terminal and a Beidou network device, wherein:
  • the terminal does not reside on the cellular network, which is used to detect that the terminal has not sent data to Beidou network equipment or has not received data sent by Beidou network equipment within a preset period of time;
  • the terminal is used to send a first query request to the Beidou network equipment, the first query request is used to query base station information, and the first request carries the location information of the terminal;
  • the terminal is used to receive the first query result sent by the Beidou network equipment, and the first query result includes information of one or more base stations within a preset distance of the terminal;
  • the terminal is used to search the cellular network according to the first query result, and if the search for the cellular network is successful, the terminal camps on the cellular network;
  • the Beidou network device is used to receive the first query request sent by the terminal,
  • the Beidou network device is used to send the first query result to the terminal.
  • the Beidou network device may also execute the method in any possible implementation manner of the foregoing second aspect.
  • the terminal may further execute the method in any possible implementation manner of the foregoing first aspect.
  • the present application provides a communication device, including one or more processors, one or more memories, and a transceiver.
  • the transceiver, the one or more memories are coupled to the one or more processors, the one or more memories are used to store computer program codes, the computer program codes include computer instructions, and when the one or more processors execute the computer instructions, the The communication device executes the method in any possible implementation manner of the foregoing first aspect.
  • the communication device may be a terminal or other product form equipment.
  • the present application provides a communication device, including one or more processors, one or more memories, and a transceiver.
  • the transceiver, the one or more memories are coupled to the one or more processors, the one or more memories are used to store computer program codes, the computer program codes include computer instructions, and when the one or more processors execute the computer instructions, the The communication device executes the method in any possible implementation manner of the second aspect above.
  • the communication device may be Beidou network equipment, or any network element or a combination of multiple network elements in the Beidou network equipment.
  • the present application provides a computer storage medium, including computer instructions.
  • the computer instructions When the computer instructions are run on the computer, the computer is made to execute the method in any possible implementation manner of the first aspect above.
  • the present application provides a computer storage medium, including computer instructions.
  • the computer instructions When the computer instructions are run on the computer, the computer is made to execute the method in any possible implementation manner of the second aspect above.
  • the present application provides a computer program product, which, when the computer program product is run on a computer, causes the computer to execute the method in any possible implementation manner of the first aspect above.
  • the present application provides a computer program product, which, when the computer program product is run on a computer, causes the computer to execute the method in any possible implementation manner of the second aspect above.
  • the present application provides a chip or a chip system, which is applied to a terminal, and includes a processing circuit and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processing circuit, and the processing circuit is used to run the code instructions To execute the method in any possible implementation manner of the first aspect above.
  • FIG. 1 is a schematic structural diagram of a Beidou communication system 10 provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a method for switching networks provided in an embodiment of the present application
  • FIG. 3 is a schematic diagram of a search network provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a method for switching networks provided in an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a network search scenario provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another network search scenario provided by the embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a method for switching networks provided in an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a protocol encapsulation framework for inbound data of a Beidou communication system 10 provided by an embodiment of the present application;
  • FIG. 9 is a schematic diagram of a protocol analysis framework for inbound data of a Beidou communication system 10 provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a protocol encapsulation framework for outbound data of a Beidou communication system 10 provided by an embodiment of the present application;
  • FIG. 11 is a schematic diagram of a protocol analysis framework for outbound data of a Beidou communication system 10 provided by an embodiment of the present application;
  • Fig. 12 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • first and second are used for descriptive purposes only, and cannot be understood as implying or implying relative importance or implicitly specifying the quantity of indicated technical features. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present application, unless otherwise specified, the “multiple” The meaning is two or more.
  • a Beidou communication system 10 provided in the embodiment of the present application is introduced below.
  • Fig. 1 shows a schematic diagram of a Beidou communication system 10 provided in an embodiment of the present application.
  • the Beidou communication system 10 may include a terminal 100, a Beidou short message satellite 21, a Beidou network device 200, and a short message service center (short message service center, SMSC) 41.
  • SMSC short message service center
  • the terminal 100 is under the Beidou network, and there is no cellular network or wireless local area network (for example, wireless fidelity (Wi-Fi)), the terminal 100 can be under the Beidou network, through the Beidou short message satellite 21 Send a message to the Beidou network device 200, or receive a message sent by the Beidou network device 300.
  • Wi-Fi wireless fidelity
  • the terminal 100 can send the short message information to the Beidou short message satellite 21, and the Beidou short message satellite 21 only relays and directly forwards the short message information sent by the terminal 100 to the Beidou network equipment 200 on the ground.
  • the Beidou network device 200 can analyze the short message information forwarded by the satellite according to the Beidou communication protocol, and forward the message content of the general message type parsed from the short message information to the short message center 41 .
  • the short message center 41 can forward the content of the message to the target terminal through a traditional cellular communication network.
  • the Beidou network equipment 200 may include a Beidou ground receiving station 31, a Beidou ground transmitting station 35, a signal receiving and processing device 32, a signal processing center 33, a signal sending and processing device 36, an operation control center 37, and a Beidou short message fusion communication platform 34 .
  • the Beidou ground receiving station 31 may include one or more devices with a receiving function.
  • the Beidou ground transmitting station 35 may include one or more devices with a transmitting function.
  • the Beidou ground receiving station 31 and the Beidou ground transmitting station 35 can be used for the Beidou network equipment 200 to process data at the physical layer protocol (PHY).
  • PHY physical layer protocol
  • Signal receiving and processing equipment 32, signal processing center 33, signal sending and processing equipment 36, and operation control center 37 can be used for Beidou network equipment 200 in satellite link control layer (satellite link control protocol, SLC) layer and message data convergence layer (message data) Convergence protocol, MDCP) data processing function.
  • the Beidou short message fusion communication platform 34 can be used for the Beidou network device 200 to process data at the application layer protocol (APP).
  • APP application layer protocol
  • the terminal 100 is under the Beidou network, but already covered by the cellular network, and the terminal 100 needs to return to the cellular network from the Beidou network before receiving the message sent by the short message center 41 through the cellular network.
  • the cellular network in the terminal 100 does not maintain a resident state (even if there is a cellular network environment).
  • the terminal will not actively search the cellular network. If the user wants to return to the cellular network, he needs to turn off the Beidou communication function in the terminal (that is, actively turn off the Beidou network), and then search the cellular network. Therefore, the time for the terminal to return to the cell from the Beidou network is determined by the user's behavior. In this way, different users may cause different usage experiences.
  • the embodiment of the present application provides a method for switching networks.
  • the terminal is in the Beidou network, that is, the Beidou communication function in the terminal is turned on.
  • the terminal can search the cellular network. If it finds a cellular network that can be connected, the terminal can switch from the Beidou network to the cellular network. In this way, the terminal can return to the cellular network in time without the need for the user to turn off the Beidou network in the terminal.
  • the terminal being in the Beidou network may mean that the terminal does not reside in the cellular network, the mobile communication module in the terminal is turned off, the Beidou communication module is turned on, and the Bluetooth module and the wireless local area network module may also be turned off.
  • the switching of the terminal from the Beidou network to the cellular network may mean that the Beidou communication module in the terminal is turned off, the mobile communication module is turned on, and the terminal resides on the cellular network.
  • the Beidou communication module and mobile communication module of the terminal share a set of radio frequency modules; in addition, when the Beidou network is under, if the mobile communication module is turned on, it will interfere with the sending and receiving signals of the Beidou communication module. Therefore, under normal circumstances, the Beidou communication module and mobile communication module in the terminal are not turned on at the same time.
  • a method for switching networks provided by an embodiment of the present application will be described in detail below with reference to the accompanying drawings.
  • Fig. 2 shows a schematic flowchart of a method for switching networks provided by an embodiment of the present application.
  • a method for switching networks provided in the embodiment of the present application may include the following steps:
  • the terminal 100 starts the Beidou network, and when detecting that the Beidou communication module is in an idle state, the terminal 100 starts to search for the cellular network.
  • the terminal 100 can activate the Beidou network based on user operations. There may be various user operations, for example, the user clicks on the control on the terminal 100 to start the Beidou network, or the user opens the application on the terminal 100 that can be used to start the Beidou network, or the user instructs the terminal 100 to start the Beidou network through a voice command , which is not limited in this embodiment of the present application.
  • the terminal 100 can receive the message sent by the Beidou network device 200 through the Beidou communication module, and send a message to the Beidou network device 200 .
  • the terminal 100 detects that the Beidou communication module has not sent or received a message within the preset time period T1, the terminal 100 may determine that the Beidou communication module is in an idle state.
  • the terminal 100 When the Beidou communication module of the terminal 100 is in an idle state, the terminal 100 starts to search for a cellular network.
  • the terminal 100 searches the network according to a preset network search sequence, and when the terminal 100 can search for a cellular network that meets the preset conditions, the terminal 100 switches from the Beidou network to the cellular network.
  • the terminal 100 searches the cellular network according to a preset network search sequence (standard, frequency band traversal).
  • the terminal 100 may be preset with a network search sequence, a first network standard, a second network standard, . . . , an Rth network standard. Wherein, R is an integer.
  • the terminal 100 can start searching the network from the first network standard, the terminal 100 searches the first frequency band under the first network standard, and if the network meets the preset conditions, the terminal 100 can connect to the first frequency band under the first network standard. If the network does not meet the conditions, the terminal 100 may start to search the second frequency band under the first network standard, and the terminal 100 searches the network sequentially according to a preset network search sequence.
  • FIG. 3 exemplarily provides a schematic diagram of a terminal 100 searching for a cellular network under the Beidou network.
  • the terminal 100 is under the Beidou network, and the terminal 100 may have receiving services and sending services. That is, the terminal 100 can send a message to the Beidou network device 200 , and can also receive a message sent by the Beidou network device 200 .
  • the terminal 100 is in an idle state under the Beidou network, that is, when the Beidou communication module of the terminal 100 is in an idle module, the terminal 100 starts to search for a cellular network.
  • the terminal 100 may sequentially search for each frequency band of each network standard.
  • the sequence for the terminal 100 to search the network may be to first search for each frequency band under the new radio (newradio, NR) network standard, then search for each frequency band under the long term evolution (long term evolution, LTE) network standard, and then search for wideband code division multiple access.
  • New radio new radio
  • LTE long term evolution
  • WCDMA Wideband Code Division Multiple Access
  • the terminal 100 searches for each frequency band under the NR network standard, and if no connectable frequency band is found, the terminal 100 may search for each frequency band under the LTE network standard.
  • Each frequency band under the LTE network standard may include a B1 frequency band, a B3 frequency band, a B7 frequency band, and the like.
  • the terminal 100 may search for the B1 frequency band, the B3 frequency band, and the B7 frequency band in sequence.
  • the terminal 100 When the terminal 100 searches for a cellular network that meets the preset conditions, the terminal 100 can switch from the Beidou network to the cellular network.
  • the preset condition may be that the signal strength of the first frequency band under the network standard is greater than the threshold A.
  • the terminal 100 may search the network again according to the network search sequence until a cellular network that meets the preset conditions is found, or until the terminal The Beidou communication module in 100 starts to send and receive messages.
  • the terminal 100 can switch from the Beidou network to the cellular network without the user's awareness.
  • the terminal 100 since the terminal 100 has no prior information when searching the cellular network, the terminal 100 takes a long time to search the network and consumes a lot of power.
  • the embodiment of the present application provides a method for switching networks.
  • the terminal 100 stores prior information when there is a cellular network.
  • the terminal 100 When the terminal 100 is idle under the Beidou network, it can search the cellular network based on the prior information.
  • FIG. 4 exemplarily shows a method for switching networks provided by an embodiment of the present application.
  • a method for switching networks provided by an embodiment of the present application may include the following steps:
  • the terminal 100 turns on the Beidou network, and when detecting that the Beidou communication module is in an idle state, determines whether the terminal 100 stores prior information of the cellular network within a preset distance where the terminal 100 is located.
  • the terminal 100 searches the cellular network based on the prior information, and the terminal 100 stores the prior information of the cellular network within a preset distance where the terminal 100 is located.
  • the user can turn on the Beidou network in the terminal 100 .
  • the terminal 100 can send and receive information through the Beidou network.
  • the terminal 100 can determine whether there is stored in the terminal 100 the prior information of the cellular network within the preset distance where the terminal 100 is located. Before the terminal 100 starts the Beidou network, the terminal 100 has downloaded prior information through the cellular network.
  • the terminal 100 when the terminal 100 detects that the Beidou communication module is in an idle state, it first determines whether there is prior information stored in the terminal 100, and if there is prior information stored, the terminal 100 then confirms whether the prior information contains It includes the prior information of the cellular network within the preset distance where the terminal 100 is located.
  • the terminal 100 may search the Internet according to the method of the above step S101-step S102.
  • the terminal 100 may not perform network search, that is, the terminal 100 may not perform step S202-step S203.
  • the prior information may be the network standard and frequency band existing at the location of the terminal 100 .
  • the prior information may be stored in the terminal 100 in the form of a signal map.
  • the signal map may include non-standalone (NSA) cell information within an Nm*Nm grid range.
  • NSA non-standalone
  • the signal map may be provided by the cloud server (or server, the cloud server is used as an example below) according to the location (for example, latitude and longitude) of the terminal uploaded by each user's terminal, and the Cell information corresponding to the location (for example, information such as network standard, frequency band, etc.) is generated.
  • the terminal 100 may upload the location of the terminal 100 and the cell information corresponding to the location to the cloud server.
  • the cloud server can generate a signal map according to the positions uploaded by terminals of a large number of users and cell information corresponding to the positions.
  • the terminal 100 may obtain the prior information of the location of the terminal 100 from the cloud server.
  • the terminal 100 may also periodically obtain prior information from the cloud server, so as to update the prior information stored in the terminal 100 .
  • the prior information stored in the cloud server may be reported information sent by different users at different locations.
  • the reported information may be the cell number corresponding to the location of any terminal (may be referred to as the cell number), the longitude and latitude of the terminal location, the network system of the cell, frequency point, network strength, path loss, base station transmission power, etc.
  • the prior information of the terminal 100 includes that different terminals receive the base station at different locations.
  • Information such as the network standard, frequency point, and information sent by the base station for the signal transmitted by the base station.
  • FIG. 5 shows a network search scenario where the terminal 100 is located at a preset distance from only one base station.
  • the terminal 100 there is a base station A within a preset distance of the terminal 100 , and the distance between the terminal 100 and the base station A is d-A.
  • the cloud server stores the reported information of the terminal at locations 1, 2, and 3 covered by the base station A.
  • the terminal reports information 1 when it receives a signal transmitted by base station A at position 1, reports information 2 when it receives a signal transmitted by base station A at position 2, and reports when it receives a signal transmitted by base station A at position 3 information3.
  • the distance between location 1 and base station A is d1
  • the reported information 1 may include the cell number 1 corresponding to location 1, the latitude and longitude 1 of the location 1, the standard 1 of the cell 1, the frequency point 1, the network strength 1, and the path loss 1.
  • the base station sends information such as power 1.
  • the distance between location 2 and base station A is d2, and the reported information 2 may include the cell number 2 corresponding to location 2, the latitude and longitude 2 of the location 2, the system 2 of the cell 2, the frequency point 2, the network strength 2, the path loss 2, Base station transmit power 2 and so on.
  • the distance between location 3 and base station A is d3, and the reported information 3 may include the cell number 3 corresponding to location 3, the latitude and longitude 3 of the location 3, the system 3 of the cell 3, the frequency point 3, the network strength 3, the path loss 3, The base station sends power 3 and other information.
  • the terminal 100 may download the above-mentioned reported information 1, reported information 2, and reported information 3 as prior information when connecting to the cellular network.
  • the Beidou network device 200 can also update and download the above-mentioned reported information 1, reported information 2, and reported information 3 from the cloud server.
  • the location 1, the location 2, and the location 3 may be in the same cell of the cellular network, or may be in different cells.
  • the prior information of the terminal 100 includes that different terminals receive transmissions from multiple base stations at different locations.
  • FIG. 6 shows a network search scenario where there are two base stations at a preset distance from the terminal 100 .
  • base station A and base station B exist within the preset distance of terminal 100
  • the distance between terminal 100 and base station A is d-A
  • the distance between terminal 100 and base station B is d-A.
  • the cloud server stores the reported information of the terminal at the locations 1, 2, and 3 covered by the base station A, and the reported information of the terminal at the locations 4, 5, and 6 covered by the base station B.
  • Report information 1 when the terminal receives a signal transmitted by base station A at position 1, report information 2 when it receives a signal transmitted by base station A at position 2, and report information 3 when it receives a signal transmitted by base station A at position 3;
  • the terminal receives the report information 4 when it receives the signal transmitted by base station B at position 4, the report information 5 when it receives the signal transmitted by base station B at position 5, and the report information 6 when it receives the signal transmitted by base station B at position 6.
  • the distance between location 1 and base station A is d1
  • the reported information 1 may include the cell number 1 corresponding to location 1, the latitude and longitude 1 of the location 1, the standard 1 of the cell 1, the frequency point 1, the network strength 1, and the path loss 1.
  • the base station sends information such as power 1.
  • the distance between location 2 and base station A is d2, and the reported information 2 may include the cell number 2 corresponding to location 2, the latitude and longitude 2 of the location 2, the system 2 of the cell 2, the frequency point 2, the network strength 2, the path loss 2, Base station transmit power 2 and so on.
  • the distance between location 3 and base station A is d3, and the reported information 3 may include the cell number 3 corresponding to location 3, the latitude and longitude 3 of the location 3, the system 3 of the cell 3, the frequency point 3, the network strength 3, the path loss 3, The base station sends power 3 and other information.
  • the distance between location 4 and base station B is d4, and the reported information 4 may include the cell number 4 corresponding to location 4, the latitude and longitude 4 of the location 4, the system 4 of the cell 4, the frequency point 4, the network strength 4, the path loss 4,
  • the base station sends information such as power 4.
  • the distance between location 5 and base station B is d5, and the reported information 5 may include the cell number 5 corresponding to location 5, the latitude and longitude 5 of the location 5, the system 5 of the cell 5, the frequency point 5, the network strength 5, the path loss 5,
  • the base station transmits power 5 and so on.
  • the distance between location 6 and base station B is d6, and the reported information 6 may include the cell number 6 corresponding to location 6, the latitude and longitude 6 at the location 6, the system 6 of the cell 6, the frequency point 6, the network strength 6, and the path loss 6 , base station transmission power 6 and other information.
  • the terminal 100 may download the above-mentioned reported information 1, reported information 2, reported information 3, and reported information 4, reported information 5, and reported information 6 as prior information.
  • the Beidou network device 200 can also update and download the above-mentioned reported information 1, reported information 2, reported information 3, and reported information 4, reported information 5, and reported information 6 from the cloud server.
  • the location 1, the location 2, and the location 3 may be in the same cell of the cellular network, or may be in different cells.
  • the location 4, the location 5, and the location 6 may be in the same cell of the cellular network, or may be in different cells.
  • the terminal 100 If the terminal 100 has the prior information of the cellular network within the preset distance of the location of the terminal 100, the terminal 100 starts to search for the cellular network.
  • the terminal 100 may search the cellular network according to the network standard or frequency in the reported information.
  • the terminal 100 may not search the network.
  • the terminal 100 may fail to search the network. Therefore, the terminal 100 may not perform the network search first, which may save power consumption of the terminal 100 .
  • the terminal 100 may not enable network search.
  • the terminal 100 can The position of the base station is calculated based on the pieces of reported information.
  • the cellular network signals received by the multiple locations may be sent by the same base station.
  • the cellular network signals received by multiple locations may also be sent by the same base station.
  • the terminal 100 may calculate the distance between the terminal 100 and the base station and the success rate of receiving signals from the base station by the terminal 100 according to the prior information.
  • the terminal 100 may determine the success rate of network search according to the reception success rate.
  • the terminal 100 may calculate the reception success rate when the terminal 100 receives the signal sent by the base station A according to the following steps.
  • the terminal 100 can calculate the location coordinates of base station A according to the distance between location 1 and base station A as d1, the distance between location 2 and base station A as d2, and the distance between location 3 and base station A as d3. Specifically, the terminal 100 can calculate the location coordinates of the base station A according to the three-point positioning method. Regarding the three-point positioning method, reference may be made to the description in the prior art, and details are not repeated here. Wherein, the cell numbers corresponding to the location 1, the location 2 and the location 3 may be the same.
  • the terminal 100 calculates the distance d-A between the terminal 100 and the base station A according to the location coordinates of the terminal and the location coordinates of the base station A.
  • the terminal 100 may calculate the path loss between the terminal 100 and the base station A according to the distance d-A between the terminal 100 and the base station A.
  • the path loss calculation formula may be as follows:
  • dA is the distance between the terminal 100 and the base station A
  • f c is the carrier frequency
  • PL is the path loss between the terminal 100 and the base station A.
  • the terminal 100 may calculate the path loss between the terminal 100 and the base station A according to the above formula 1. It can be understood that the above formula 1 is only an example of the path loss calculation formula, and the terminal 100 can also calculate the path loss between the terminal 100 and the base station A through other formulas for calculating the path loss, which is not limited in this embodiment of the present application.
  • the terminal 100 may judge the success rate of network search according to the received power.
  • the terminal 100 may search the network according to the network standard and frequency point corresponding to the base station A in the prior information.
  • the terminal 100 When the terminal 100 is in the Beidou network, there may be one or more base stations within the preset distance of the terminal 100, and the terminal 100 may follow the above steps to calculate the receiving power of the terminal receiving the signal transmitted by each base station.
  • the terminal 100 may stop searching for a network.
  • the terminal 100 may search the network according to the network standard and frequency point corresponding to the base station with the highest received power.
  • the terminal 100 calculates the received power of the terminal 100 based on the distance from the base station in the prior information and the transmit power of the base station. If the received power is greater than the preset receive power threshold, the terminal 100 can follow the network standard corresponding to the base station in the prior information. , frequency point to search the network.
  • the terminal 100 searches for a cellular network that satisfies the preset condition, the terminal 100 switches from the Beidou network to the cellular network.
  • the terminal 100 searches the network according to the prior information, and if the network search is successful (that is, a cellular network satisfying a preset condition is found), the terminal 100 switches to the cellular network.
  • the preset condition may be that the received power of the terminal 100 is greater than a preset received power threshold. Further, when the terminal 100 switches to the cellular network or after switching to the cellular network, the Beidou network is turned off.
  • the terminal 100 can search the network with the help of prior information, so that it can avoid ergodic network search, and search the network according to the network standard and frequency point in the prior information, which can Search cellular networks faster and efficiently.
  • power consumption of the terminal 100 can be saved.
  • the prior information acquired from the cloud server when the terminal 100 is in the cellular network is obtained by actively reporting from other terminals at various locations. If no terminal at a certain location has reported the location of the terminal and the corresponding cellular network information to the cloud server, then there will be no cellular network information at that location in the cloud server. The terminal 100 also cannot obtain the prior information of the location. For example, no terminal reports the location of the terminal at location1 and the cellular network information corresponding to the location to the cloud server. Then the cloud server does not store the cellular network information at the location1, even if there is a cellular base station within the preset distance of the location1.
  • the embodiment of the present application provides another method for switching networks.
  • the terminal 100 can start searching for the cellular network.
  • the terminal 100 can send a cellular network information query request message to the Beidou network device 200, and the Beidou network device 200 can send the cellular network information near the terminal 100 to the terminal 100, and the terminal 100 can search the network based on the cellular network information sent by the Beidou network device 200 .
  • the terminal 100 can obtain the cellular network information near the terminal 100 from the Beidou network device 200 in real time through the Beidou network, and then search the network in a targeted manner. power consumption.
  • Fig. 7 exemplarily shows a schematic flow chart of a method for switching networks provided by an embodiment of the present application.
  • a method for switching networks provided in the embodiment of the present application may include the following steps:
  • the terminal 100 has turned on the Beidou network, and the terminal 100 detects that the Beidou communication module is in an idle state.
  • the terminal 100 When the terminal 100 is in the Beidou network, the terminal 100 detects that the Beidou communication module has not sent or received a message within the preset time period T1, and the terminal 100 can determine that the Beidou communication module is in an idle state.
  • the fact that the terminal 100 does not send or receive a message within the preset time period T1 may be that the terminal 100 detects that there is no user-triggered sending or receiving of a message within the preset time period T1. That is, the user does not trigger the terminal 100 to send or receive messages within the preset time period T1.
  • the terminal 100 may execute step S302.
  • the terminal 100 sends a cellular network information query request to the Beidou network device 200.
  • the terminal 100 may send a cellular network information query request to the Beidou network device 200 when the Beidou communication module is in an idle state.
  • the cellular network information query request is used to query the cellular network information (network standard, frequency point, cell number, etc.) of the terminal attachment.
  • the cellular network information query request may be referred to as a first query request.
  • the terminal 100 may periodically send a cellular network information query request to the Beidou network device 200 . That is, the terminal 100 may not need to perform step S301.
  • the terminal 100 may periodically send a cellular network information query request to the Beidou network device 200 when the Beidou communication module is in an idle state.
  • the cellular network information query request sent by the terminal 100 may be a message, and the message may be called a cellular network information query request message.
  • the format of the cellular network information query request message may be as shown in Table 1 below:
  • the cellular network information query request message may include a return receipt indication field, a service type field, an encryption indication field, a compression indication field, a cellular information type field, and a terminal longitude and latitude field.
  • the receipt indication field is used to indicate whether the receiving device (that is, the Beidou network device) needs to reply the application layer receipt.
  • the length of the return receipt indication field may be 1 bit.
  • the receipt indication field is a value C1 (for example, 1)
  • the receipt indication may be used to instruct the receiving device to reply the application layer receipt.
  • the receipt indication field is a value C2 (for example, 0)
  • the receipt indication may be used to instruct the receiving device not to reply the application layer receipt.
  • the application layer receipt is used to indicate whether the device receiving the cellular network information query request message correctly parses the cellular network information query request message. It can be understood that, the embodiment of the present application does not limit the length of the receipt indication field.
  • the service type field is used to indicate the service type of the cellular network information query request.
  • the service type field of the cellular network information query request is a value C3 (for example, 111), which is used to indicate that the service type of the cellular network information query request message is to apply for a cellular network information service.
  • the length of the service type field may be 3 bits, but this embodiment of the present application does not limit the length of the service type field.
  • Table 2 exemplarily shows the corresponding different service types when the service type field has different values.
  • a letter may also be called a short message, a text message, or a message, etc., which is not limited here.
  • the encryption indication field may be used to indicate whether the cellular network information query request message is encrypted.
  • the length of the encryption indication field may be 2 bits, and it can be understood that the embodiment of the present application does not limit the length of the encryption indication field.
  • the compression indication field may be used to indicate whether the cellular network information query request message is compressed.
  • the length of the compression indication field may be 2 bits, and it can be understood that the embodiment of the present application does not limit the length of the compression indication field.
  • the cellular information type field is used to indicate the type of the cellular network information query result replied by the receiving device.
  • the cell information type field is the value C4
  • the cell information type field is the value C5
  • the length of the cellular information type field may be 1 bit, and it can be understood that the embodiment of the present application does not limit the length of the cellular information type field.
  • the receiving device of the cellular network information query request is the Beidou network device 200 . Therefore, in this embodiment of the application, the receiving device is the Beidou network device 200 .
  • the terminal longitude and latitude field is used to indicate the longitude and latitude of the terminal 100 .
  • the length of the terminal longitude and latitude field may be 47 bits. It can be understood that the embodiment of the present application does not limit the length of the terminal longitude and latitude field.
  • the cellular network information query request message may contain more or less fields, which is not limited in this embodiment of the present application.
  • the cellular network information query request message may only include a service type field, a cellular information type field, and a terminal longitude and latitude field.
  • the cellular network information query request may further include a user ID field, that is, the cellular network information query request includes not only the fields shown in Table 1 above, but also a user ID field.
  • the user ID field is used to indicate the ID of the terminal 100 .
  • the embodiment of the present application does not limit the sequence and arrangement of the fields included in the cellular network information query request message.
  • the cellular network information query request message may be referred to as a first message.
  • the Beidou network device 200 sends the cellular network information query result to the terminal 100.
  • the Beidou network device 200 After the Beidou network device 200 receives the cellular network information query request, it can query the cellular network within the preset distance of the terminal 100 (for example, within the grid of the signal map where the terminal 100 is located) according to the location of the terminal 100 carried in the cellular network information query request.
  • Internet Information for example, within the grid of the signal map where the terminal 100 is located.
  • the cellular network information query result may be referred to as the first query result.
  • the cellular network information query result returned by the Beidou network device 200 to the terminal 100 may be the terminal 100 Network information of all cells within a preset distance.
  • the cellular network information query result sent by the Beidou network device 200 may be a message, and the message may be called a cellular network information query result message.
  • the format of the cellular network information query result message may be as shown in Table 3 below.
  • the cellular network information query result message may contain a message type indication field, an encryption indication field, a compression indication field, a cell type indication field, a base station number field, a latitude and longitude field, a network standard field, a frequency point field, a cell Number field, base station transmit power field.
  • the message type indication field is used to indicate the type of the cellular network information query result message.
  • the value of the message type indication field may be C6 (for example, 10), which is used to indicate that the cellular network information query result message is base station information.
  • the length of the message type indication field may be 2 bits. It can be understood that the embodiment of the present application does not limit the length of the message type indication field.
  • the message type indication field in the message when the message type indication field in the message is 00, it means that the message is used to reply to the mailbox profile query request sent by the terminal 100, and the message contains the mailbox profile queried by the terminal 100.
  • the message type indication field in the message 01, it means that the message is used to reply the terminal 100 to send a letter download request, and the message includes the content of the letter downloaded by the terminal 100 .
  • the message type indication field in the message is 10
  • it means that the message is used to reply to the cellular network information query request sent by the terminal 100, and the message includes the base station information near the terminal 100.
  • the value 11 in the message type indication field is temporarily reserved for use.
  • a base station near the terminal 100 refers to a base station within a preset distance from the terminal 100 (for example, within the grid of the signal map where the terminal 100 is located).
  • the encryption indication field may be used to indicate whether the cellular network information query result message is encrypted.
  • the length of the encryption indication field may be 2 bits. It can be understood that the embodiment of the present application does not limit the length of the encryption indication field.
  • the compression indication field may be used to indicate whether the cellular network information query result message is compressed.
  • the length of the compression indication field may be 2 bits. It can be understood that the embodiment of the present application does not limit the length of the compression indication field.
  • the cellular information type field is used to indicate the type of the cellular network information query result replied by the receiving device (ie Beidou network device 200).
  • the value of the cellular information type field in the cellular network information query result message replied by the Beidou network device 200 is the same as the value of the cellular information type field in the cellular network information query request message received by the Beidou network device 200 .
  • the cellular information type field in the cellular network information query result message in Table 3 may be a value C4, indicating that the receiving device (that is, the Beidou network device 200 ) replies to the cell information near the terminal 100 . That is, the cell network information query result message includes cell cell information near the terminal 100 .
  • the cellular information type field reference may be made to the description of Table 2 above, and details will not be repeated here.
  • the value C4 may be referred to as a first value.
  • the base station number field is used to indicate the number of base stations near the terminal 100 .
  • the length of the base station number field may be 2 bits, and it can be understood that the embodiment of the present application does not limit the length of the base station number field.
  • the length of the base station number field is 2 bits, it indicates that the number of base stations near the terminal 100 is 0 to 3.
  • the field of the number of base stations is 00, it means that the number of base stations near the terminal 100 is 0.
  • the field of the number of base stations is 01, it means that the number of base stations near the terminal 100 is one.
  • the field of the number of base stations is 10, it means that the number of base stations near the terminal 100 is 2.
  • the field of the number of base stations is 11, it means that the number of base stations near the terminal 100 is 3. It can be understood that, since the embodiment of the present application does not limit the length of the base station quantity field, when the number of base station indication bits increases, the number of base station indications in the base station quantity field may also increase.
  • the latitude and longitude fields are used to indicate the latitude and longitude of base stations near the terminal 100 .
  • K is an integer.
  • the longitude and latitude fields may not be included in the cellular network information query result message.
  • the latitude and longitude field may contain the latitude and longitude of K base stations near the terminal 100 .
  • the length of the latitude and longitude field may be 47 bits, but it can be understood that the embodiment of the present application does not limit the length of the latitude and longitude field.
  • the latitude and longitude fields may include a longitude field and a latitude field, and the length of the longitude field may be 24 bits.
  • the length of the latitude field can be 23 bits.
  • the longitude field may include a sign bit field and a longitude value field.
  • the length of the sign bit field may be 1 bit, and the length of the longitude value field may be 23 bits.
  • the sign bit field is the value S1
  • it indicates the east longitude
  • the sign bit field is the value S2
  • it indicates the west longitude.
  • the value S1 is different from the value S2.
  • the value S1 may be 0, and the value S2 may be 1.
  • the value S1 may be 1, and the value S2 may be 0.
  • the range of the longitude value represented by the longitude value field is 0-648000, and its unit is angle, second.
  • the latitude field may include a sign bit field and a latitude value field.
  • the length of the sign bit field may be 1 bit, and the length of the latitude value field may be 22 bits.
  • the sign bit field is the value T1
  • it indicates the north latitude
  • the sign bit field is the value T2
  • it indicates the south latitude.
  • the value T1 is different from the value T2.
  • the value T1 may be 0, and the value T2 may be 1.
  • the value T1 may be 1, and the value T2 may be 0.
  • the longitude value represented by the latitude value field ranges from 0 to 324000, and its unit is angle, second.
  • the network standard field is used to indicate the network standard of the base stations near the terminal 100 .
  • the network standard of the base station near the terminal 100 may include NR, LTE, WCDMA, global system for mobile communication (global system for mobile communication, GSM), code division multiple access (code division multiple access, CDMA) and so on.
  • K is an integer.
  • the network standard field may not be included in the cellular network information query result message.
  • the network standard field may include network standards of K base stations near the terminal 100 .
  • the embodiment of the present application does not limit the length of the network standard field.
  • the frequency point field is used to indicate the frequency points of base stations near the terminal 100 .
  • the base station frequency in the frequency field may be a standard frequency in the cellular protocol.
  • K is an integer.
  • the frequency point field may not be included in the cellular network information query result message.
  • the network standard field may include frequency points of K base stations near the terminal 100 .
  • the embodiment of the present application does not limit the length of the frequency point field.
  • the cell number field is used to indicate the cell numbers corresponding to the base stations near the terminal 100 .
  • the cell number corresponding to the base station in the cell number field may be a standard cell number in the cellular protocol.
  • K is an integer.
  • the cell number field may not be included in the cellular network information query result message.
  • the network standard field may include cell numbers corresponding to K base stations near the terminal 100 .
  • the embodiment of the present application does not limit the length of the cell number field.
  • the base station transmission power field is used to indicate the transmission power of base stations near the terminal 100 .
  • K is an integer.
  • the base station transmit power field may not be included in the cellular network information query result message.
  • the network standard field may include transmit powers corresponding to K base stations near the terminal 100 .
  • the embodiment of the present application does not limit the length of the base station transmit power field.
  • the base station transmission power is an optional field, that is, the base station transmission power field may not be included in the cellular network information query result message.
  • the terminal 100 can calculate, according to the empirical value stored in the terminal 100, the base station transmission power of the base station contained in the cellular network information query result message.
  • the latitude and longitude field of the cellular network information query result message shown in Table 3 above contains the latitude and longitude of the first base station, The latitude and longitude of the second base station and the latitude and longitude of the third base station.
  • the network standard field includes the network standard of the first base station, the network standard of the second base station, and the network standard of the third base station.
  • the frequency point field includes the frequency point of the first base station, the frequency point of the second base station, and the frequency point of the third base station.
  • the cell ID field includes the cell ID of the first base station, the cell ID of the second base station, and the cell ID of the third base station.
  • the base station transmission power field includes the transmission power of the first base station, the transmission power of the second base station, and the transmission power of the third base station.
  • the cellular network information query result message may include more or less fields than those in Table 3 above.
  • the cellular network information query result message may further include a user ID field, where the user ID field is used to indicate the ID of the terminal 100 .
  • the cellular network information query result message may not include one or more of the encryption indication field, the compression indication field, and the base station transmission power field.
  • the base station number field in the cellular network information query result message indicates that the number of base stations near the terminal 100 is 0, the cellular network information query result message may not include the latitude and longitude field, network indication field, and frequency point field , a cell ID field, and a base station transmission power field. That is, it indicates that there are no cells near the terminal 100 .
  • the Beidou network device 200 replies to the terminal 100 with the cellular network information
  • the query result may be the network information of the cell with a higher success rate of network search among the network information of all cells within the preset distance of the terminal 100 determined by the Beidou network device 200 .
  • the cellular network information query result message shown in Table 3 may be referred to as a second message.
  • the cellular information type field in the cellular network information query result message shown in Table 3 may be referred to as the second cellular information type field
  • the base station quantity field may be referred to as the first base station quantity field
  • the latitude and longitude field may be referred to as the first latitude and longitude field
  • the network standard field may be called a first network standard field
  • the frequency point field may be called a first frequency point field
  • the cell number field may be called a first cell number field.
  • the cellular network information query result sent by the Beidou network device 200 may be a message, and the message may be called a cellular network information query result message.
  • the format of the cellular network information query result message may be as shown in Table 6 below.
  • the cellular network information query result message may include a message type indication field, an encryption indication field, a compression indication field, a cell type indication field, a base station number field, a network standard field, a frequency point field, and a cell number field. in:
  • the message type indication field is used to indicate the type of the cellular network information query result message.
  • the value of the message type indication field may be C6 (for example, 10), which is used to indicate that the cellular network information query result message is base station information.
  • the length of the message type indication field may be 2 bits. It can be understood that the embodiment of the present application does not limit the length of the message type indication field.
  • For the message type indication field reference may be made to the description of Table 3 above, which will not be repeated here.
  • the encryption indication field may be used to indicate whether the cellular network information query result message is encrypted.
  • the length of the encryption indication field can be 2 bits, and it can be understood that the embodiment of the present application does not limit the length of the encryption indication field.
  • the compression indication field may be used to indicate whether the cellular network information query result message is compressed.
  • the length of the compression indication field may be 2 bits. It can be understood that the embodiment of the present application does not limit the length of the compression indication field.
  • the cellular information type field is used to indicate the type of the cellular network information query result replied by the receiving device (ie Beidou network device 200).
  • the value of the cellular information type field in the cellular network information query result message replied by the Beidou network device 200 is the same as the value of the cellular information type field in the cellular network information query request message received by the Beidou network device 200 .
  • the cellular information type field in the cellular network information query result message in Table 6 may be a value C5, indicating that the receiving device responds to the Beidou network device 200 to reply the cell information of the cells near the terminal 100 that can be searched. That is, the cell network information query result message includes the cell cell information that can be searched in the cells near the terminal 100 determined by the Beidou network device 200 .
  • For the cellular information type field reference may be made to the description of Table 2 above, and details will not be repeated here.
  • the value C5 may be referred to as a second value.
  • the field of the number of base stations is used to indicate the number of base stations determined by the Beidou network device 200 with a relatively high network search success rate. That is, the Beidou network device 200 selects the number of base stations that have a higher network search success rate, that is, satisfy the preset condition, among the base stations near the terminal 100 .
  • the Beidou network device 200 can determine the received power or signal strength at which the terminal 100 can receive the signal sent by the base station according to the transmit power of the base station, the latitude and longitude of the base station, and the latitude and longitude of the terminal 100 .
  • the Beidou network device 200 determines that the terminal 100 can receive the signal sent by the base station with a receiving power greater than the preset receiving power threshold, or when the signal strength is greater than the preset signal strength threshold, the Beidou network device 200 can determine that the terminal 100 can receive the signal according to the base station's Search the network according to the network standard and frequency point, and the success rate of the search is relatively high.
  • the preset condition may be that the terminal 100 can receive a signal sent by the base station with a received power greater than a preset received power threshold, or a signal strength greater than a preset signal strength threshold.
  • the signal strength is calculated from the transmission power of the base station.
  • the signal strength of the terminal receiving the signal transmitted by the base station may be used to indicate the reception power of the terminal receiving the signal transmitted by the base station.
  • the signal strength threshold may be referred to as a first threshold.
  • the length of the base station number field may be 2 bits, and it can be understood that the embodiment of the present application does not limit the length of the base station number field.
  • the length of the base station number field is 2 bits, it indicates that the number of base stations near the terminal 100 is 0 to 3.
  • the field of the number of base stations is 00, it indicates that the number of base stations determined by the Beidou network device 200 with a relatively high network search success rate is 0.
  • the field of the number of base stations is 01, it indicates that the number of base stations determined by the Beidou network device 200 with a relatively high network search success rate is one.
  • the field of the number of base stations is 10 indicates that the Beidou network device 200 has determined that the number of base stations with a relatively high network search success rate is 2.
  • the field of the number of base stations is 11, it indicates that the Beidou network device 200 determines that the number of base stations with a relatively high success rate of network search is 3.
  • the network standard field is used to indicate the network standard of the base station with a higher network search success rate determined by the Beidou network device 200 .
  • For the network standard field reference may be made to the description of Table 3 above, and details will not be repeated here.
  • the frequency point field is used to indicate the frequency point of the base station determined by the Beidou network device 200 with a higher network search success rate.
  • For the frequency point field reference may be made to the description of Table 3 above, which will not be repeated here.
  • the cell number field is used to indicate the cell number of the base station determined by the Beidou network device 200 with a higher network search success rate.
  • For the cell number field reference may be made to the description of Table 3 above, and details will not be repeated here.
  • the network standard field shown in Table 6 above includes the network standard of the first base station and the network standard of the second base station. standard, the network standard of the third base station.
  • the frequency point field includes the frequency point of the first base station, the frequency point of the second base station, and the frequency point of the third base station.
  • the cell ID field includes the cell ID of the first base station, the cell ID of the second base station, and the cell ID of the third base station.
  • the cellular network information query result message may include more or less fields than those in Table 6 above.
  • the cellular network information query result message may also include a user ID field, where the user ID field is used to indicate the ID of the terminal 100 .
  • the cellular network information query result message may not include the encryption indication field and the compression indication field.
  • the base station number field in the cellular network information query result message indicates that the number of base stations near the terminal 100 is 0, the cellular network information query result message may not include the latitude and longitude field, network indication field, and frequency point field , and the cell ID field.
  • the cellular network information query result message shown in Table 6 may be called a third message.
  • the cellular information type field in the cellular network information query result message shown in Table 6 may be referred to as the third cellular information type field
  • the base station quantity field may be referred to as the second base station quantity field
  • the latitude and longitude field may be referred to as the second latitude and longitude field
  • the network standard field may be called a second network standard field
  • the frequency point field may be called a second frequency point field
  • the cell number field may be called a second cell number field.
  • the Beidou network device 200 may not reply the cellular network information query result.
  • the terminal 100 may stop searching the network, that is, the terminal 100 may not perform step S304 and step S305.
  • the terminal 100 performs a network search on the result of the cellular network information query.
  • Step S301-Step S304 is executed again in the next cycle.
  • the base station that can perform network search means that the terminal 100 calculates that the received signal strength of the base station is greater than the signal strength threshold, or the received power is greater than the preset received power threshold.
  • the signal strength is calculated from the transmission power of the base station.
  • the signal strength of the terminal receiving the signal transmitted by the base station may be used to indicate the reception power of the terminal receiving the signal transmitted by the base station.
  • the cellular network information query result received by the terminal 100 may be the cellular network information query result message shown in Table 3, and the cellular network information query result message may contain one or more The base station information of the base station.
  • the cellular network information query result message includes base station information of multiple base stations (for example, latitude and longitude of base stations, network system, frequency point, base station transmit power, etc.).
  • the terminal 100 may calculate the received power or signal strength of the signal sent by each base station that the terminal 100 receives.
  • an empirical value may be configured in the terminal 100, and the empirical value may be a transmission power range corresponding to base stations with different coverage capabilities (ie, coverage radii).
  • the terminal 100 can calculate the received power or signal strength of the signal sent by each base station according to the cellular network information query result sent by the Beidou network device 200 and the experience value in the terminal 100 . Then the terminal 100 may search the network according to the network standard and frequency point corresponding to the base station with the highest received power or the highest signal strength, and access the cell corresponding to the base station.
  • the cellular network information query result message only includes the base station information of one base station, and the terminal 100 can search the network according to the network standard and frequency point corresponding to the base station, and access the district.
  • the cellular network information query result message only includes base station information of one base station, and the base station is within a preset distance of the terminal 100 (for example, in the signal map where the terminal 100 is located grid), the terminal 100 can search the network according to the network standard and frequency point corresponding to the base station, and access the cell corresponding to the base station. If the base station is not within the preset distance of the terminal 100, the terminal 100 may not start the network search.
  • the cellular network information query result message only includes base station information of one base station, and the terminal 100 can calculate the received power or signal strength of the signal sent by the base station by the terminal 100. If the received power is greater than the preset received power threshold or the signal strength is greater than the signal strength threshold, the terminal 100 can search the network according to the network standard and frequency point corresponding to the base station, and access the cell corresponding to the base station. If the received power is less than the preset received power threshold or the signal strength is less than the signal strength threshold, the terminal 100 may stop searching the network.
  • the cellular network information query result received by the terminal 100 may be the cellular network information query result message shown in Table 6, and the cellular network information query result message may contain one or more The base station information of the base station.
  • the terminal 100 may search the network sequentially according to the network standards and frequency points of one or more base stations contained in the cellular network information query result message. For example, if the cellular network information query result message includes the network standard 1 and frequency point 1 of base station 1, and the network standard 2 and frequency point 2 of base station 2, the terminal 100 can firstly follow the network standard 1 and frequency point of base station 1. 1 to search the network, if the network search is successful, then access the cell 1 corresponding to the base station 1. If the network search fails, the terminal 100 performs network search according to the network standard 2 and the frequency point 2 of the base station 2 .
  • the terminal 100 can calculate the signal strength of each base station received by the terminal 100, if the terminal 100 receives the signal strength of each base station If the strength is greater than the signal strength threshold, the terminal 100 starts searching the network.
  • the terminal 100 searches the network according to the order of signal strength from strong to weak. That is, the terminal 100 first searches the network according to the network standard and frequency point of the base station with the highest signal strength, and if the network search is successful, then accesses the cellular network. If the network search fails, the network search will be performed in order of signal strength from strong to weak.
  • the cellular network information query result returned by the Beidou network device 200 may only include base station information whose network standards are the same as those supported by the terminal 100 . If the network standard of the base station in the cellular network information query result is a network standard not supported by the terminal, the terminal 100 may stop searching the network.
  • the terminal 100 is a 4G smart phone, which can access 2G/3G/4G networks, and the 4G smart phone can support network standards such as LTE, WCDMA, GSM, and CDMA.
  • the cellular network information query results returned by Beidou network equipment 200 include base stations with network standards such as LTE, WCDMA, GSM, and CDMA.
  • the cellular network information query result returned by the Beidou network device 200 may not include base stations whose network standard is the NR network standard.
  • the Beidou network device 200 may store base station information at different locations, and the Beidou network device 200 may search for base station information near the terminal 100 according to the longitude and latitude of the terminal 100 .
  • the Beidou network device 200 may acquire the base station information near the terminal 100 from a server or a cloud server that stores base station information at different locations.
  • the research and development personnel pre-set the acquired base station information deployed by the operator in the Beidou network device 200 .
  • the Beidou network device 200 may acquire base station information deployed by the operator from the base station (or cellular core network). This embodiment of the present application does not limit it.
  • the terminal 100 searches for a cellular network that meets the preset condition, the terminal 100 switches from the Beidou network to the cellular network.
  • the terminal 100 When the terminal 100 searches the network successfully, the terminal 100 can switch from the Beidou network to the cellular network.
  • the terminal 100 may prompt the user to search for the cellular network through a prompt message, and the user may choose to switch to the cellular network through the prompt message,
  • the prompt message may be a text message displayed on the display screen of the terminal 100 .
  • the prompt message can also be a voice broadcast message or a ringtone.
  • the prompt message may also be a vibration message, and when the terminal 100 successfully searches the Internet, the motor in the terminal 100 may vibrate. It can be understood that, the embodiment of the present application does not limit the form and content of the prompt message.
  • the Beidou communication module in the terminal 100 is in an idle state, and when the query period for the terminal 100 to query base station information is reached, the terminal 100 has prior information, and the terminal 100 can query whether there is If there is base station information that satisfies the conditions, search the network according to the network standard and frequency point in the base station information.
  • search the network according to the network standard and frequency point in the base station information.
  • the terminal 100 searches the network according to the network indication and the frequency point in the base station information returned by the Beidou network device 200 . If the network search is successful, the terminal 100 can switch from the Beidou network to the cellular network.
  • the terminal 100 can return to the cellular network from the Beidou network as soon as possible.
  • the terminal 100 can search the network according to the base station information of the base stations near the terminal 100 provided by the Beidou network equipment 200 .
  • the cellular network can be searched faster and more effectively, and invalid network search of the terminal 100 can be avoided, thereby improving the success rate of network search of the terminal 100 and saving the power consumption of the terminal 100 .
  • the message sent by the terminal 100 to the Beidou network device 200 may be called inbound, and the message sent by the Beidou network device 200 to the terminal 100 may be called outbound.
  • the following describes the encapsulation process of the cellular network information query request message in the terminal 100 when the terminal 100 sends the cellular network information query request message to the Beidou network device 200 . And when the Beidou network device 200 receives the cellular network information query request message, the Beidou network device 200 parses the cellular network information query request message.
  • a protocol encapsulation framework for inbound data of the Beidou communication system 10 provided in the embodiment of the present application is introduced below.
  • FIG. 8 shows a schematic diagram of a protocol encapsulation architecture of inbound data of the Beidou communication system 10 provided in the embodiment of the present application.
  • the Beidou message transmission protocol layer on the terminal 100 can be divided into application layer (application layer protocol), message data convergence layer (message data convergence protocol, MDCP), satellite link control layer (satellite link control protocol) , SLC) and physical layer (physical layer protocol, PHY).
  • application layer protocol application layer protocol
  • message data convergence layer messages data convergence protocol
  • MDCP message data convergence protocol
  • satellite link control layer satellite link control protocol
  • PHY physical layer protocol
  • the workflow of the Beidou message transmission protocol on the terminal 100 can be as follows:
  • the terminal 100 can encapsulate the original data into an application layer message, and then, the terminal can send the application layer message to the MDCP layer through an interlayer interface.
  • the application layer message may be the cellular network information query request message shown in Table 1 above.
  • the longitude and latitude of the terminal 100 in the terminal longitude and latitude field may be original data.
  • the terminal 100 can compress the longitude, latitude and cellular information type of the terminal into compressed data through a compression algorithm, and add a compression instruction before the compressed data.
  • the terminal 100 may encrypt the compressed data to obtain encrypted data, and add an encryption indication field to a header of the encrypted data.
  • the terminal 100 may also add a business type field and a return receipt indication field before the encryption indication of the encrypted data, and then encapsulate it into an application layer message.
  • the terminal 100 can obtain the application layer message sent by the APP layer through the interlayer interface, and use the application layer message as an MDCP SDU.
  • the terminal 100 can add padding to a specified length at the end of the MDCP SDU, and add a redundant length indication field at the head of the MDCP SDU.
  • the redundant length indication field may be used to indicate the length of the padding data.
  • the terminal 100 can split the padding data and the MDCP SDU after adding the redundant length indication field into one or more fixed-length MDCP segment data (M_segement), and add a follow-up indication to the header of each MDCP segment data Field, get MDCP PDU, that is, MDCP PDU includes M_segment and successor indication field.
  • MDCP PDU that is, MDCP PDU includes M_segment and successor indication field.
  • the follow-up indication field can be used to indicate that the current MDCP PDU is the initial MDCP PDU or the middle MDCP PDU or the last MDCP PDU of multiple MDCP PDUs sent continuously; or it is an MDCP PDU sent separately.
  • the terminal 100 can obtain the MDCP PDU sent by the MDCP layer through the interlayer interface as the SLC SDU.
  • the terminal 100 can segment the SLC SDU into one or more (up to 4) fixed-length SLC segment data (S_segement), and add frame header information to each S_segment header to obtain the SLC PDU.
  • the frame header information includes a service data unit alternated indicator (service data unit alternated indicator, SAI) field, a frame total number field, and a frame sequence number field.
  • SAI service data unit alternated indicator
  • the SAI field can be used to indicate whether the SLC PDU belongs to a SLC SDU that has not been sent.
  • the total number of frames field can be used to indicate the total number of SLC PDUs included in the SLC SDU to which the SLC PDU belongs.
  • the frame sequence number field can be used to indicate the sequence number of the SLC PDU in the SLC SDU to which it belongs.
  • the terminal 100 can obtain the SLC PDU issued by the SLC layer through the interlayer interface, as a code block (code block) of the PHY layer, and add a synchronization header at the head of the code block, and add a calibration at the end of the code block. Parity field.
  • a cyclic redundancy check (cyclic redundancy check, CRC) may be used to check the code block, therefore, the check digit field may include a CRC code.
  • the terminal 100 can code the code block and the parity bit field (for example, polar coding) to obtain coded data (coded data), and then insert a pilot into the coded data to obtain pilot coded data (pilot+data).
  • the terminal 100 sequentially modulates the synchronization header and pilot coded data through the underlying hardware to obtain modulated data (modulated data).
  • modulated data modulated data
  • the terminal 100 may perform spectrum spreading on the modulated data to obtain spread spectrum modulated data (spread+modulated data).
  • the terminal 100 can send the spread-spectrum modulated data to the Beidou short message satellite 21, and then forward it to the Beidou network device 200 via the Beidou short message satellite 21.
  • a protocol analysis framework for inbound data of the Beidou communication system 10 provided in the embodiment of the present application is introduced below.
  • FIG. 9 shows a schematic diagram of a protocol analysis framework for inbound data of the Beidou communication system 10 provided in the embodiment of the present application.
  • the Beidou short message transmission protocol layer of the Beidou network device 200 can be divided into an application layer (application layer protocol), a message data convergence layer (message data convergence protocol, MDCP), a satellite link control layer (satellite link control protocol, SLC) and physical layer (physical layer protocol, PHY).
  • the Beidou network equipment 200 may include a Beidou ground receiving station 31, a Beidou ground transmitting station 35, a signal receiving and processing device 32, a signal processing center 33, a signal sending and processing device 36, an operation control center 37, and a Beidou short message fusion communication platform 34 .
  • the Beidou ground receiving station 31 and the Beidou ground transmitting station 35 can be used to be responsible for the protocol processing of the PHY layer.
  • the signal receiving and processing device 32 , the signal processing center 33 , the signal sending and processing device 36 and the operation control center 37 can be used to be responsible for the protocol processing of the SLC layer and the MDCP layer.
  • the Beidou short message fusion communication platform 34 can be used to be responsible for the protocol processing of the APP layer.
  • the workflow of the Beidou short message transmission protocol layer of the Beidou network device 200 can be as follows:
  • the Beidou network device 200 can obtain the modulated and spread-spectrum coded pilot data sent by the terminal 100 .
  • the Beidou network device 200 may despread the received spread spectrum modulated data (spread+modulated data) to obtain modulated data (modulated data). Then, the Beidou network device 200 can demodulate the modulated data to obtain pilot coded data (pilot+data). Next, the Beidou network device 200 removes the pilot information in the pilot coded data to obtain coded data (code data). Then, the Beidou network device 200 can decode the coded data, and verify the integrity of the code block (code block) through the check data in the check bit field. If it is complete, the Beidou network device 200 can extract the code block (code block), and present it to the SLC layer through the interlayer interface as the SLC PDU of the SLC layer.
  • the Beidou network device 200 can splice the SLC PDUs belonging to the same SLC SDU into one SLC SDU based on the frame header information of the SLC PDU.
  • the Beidou network device 200 can present the SLC SDU to the MDCP layer through the interlayer interface as the MDCP PDU of the MDCP layer.
  • Beidou network device 200 can splice all MDCP PDUs belonging to the same MDCP SDU into one MDCP SDU.
  • the Beidou network device 200 can present the MDCP SDU to the APP layer through the interlayer interface as an application layer message received by the APP layer.
  • the Beidou network device 200 can decrypt and decompress the application layer message based on the message header of the application layer message to obtain the original data.
  • the original data may be the longitude and latitude of the terminal 100, for example, the longitude and latitude values contained in the terminal longitude and latitude fields in the cellular network information query request message shown in Table 1.
  • the following describes the encapsulation process of the cellular network information query result message in the Beidou network device 200 when the Beidou network device 200 sends the cellular network information query result message to the terminal 100 . And when the terminal 100 receives the cellular network information query result message, the terminal 100 parses the cellular network information query result message.
  • a protocol encapsulation framework for outbound data of the Beidou communication system 10 provided in the embodiment of the present application is introduced below.
  • FIG. 10 shows a schematic diagram of a protocol encapsulation architecture of outbound data of a Beidou communication system 10 provided in an embodiment of the present application.
  • the Beidou short message transmission protocol layer in the Beidou network device 200 can be an application layer protocol, a message data convergence protocol (MDCP), a satellite link control layer (satellite link control) protocol, SLC) and physical layer (physical layer protocol, PHY).
  • the Beidou network equipment 200 may include a Beidou ground receiving station 31, a Beidou ground transmitting station 35, a signal receiving and processing device 32, a signal processing center 33, a signal sending and processing device 36, an operation control center 37, and a Beidou short message fusion communication platform 34 .
  • the Beidou ground receiving station 31 and the Beidou ground transmitting station 35 can be used to be responsible for the protocol processing of the PHY layer.
  • the signal receiving and processing device 32 , the signal processing center 33 , the signal sending and processing device 36 and the operation control center 37 can be used to be responsible for the protocol processing of the SLC layer and the MDCP layer.
  • the Beidou short message fusion communication platform 34 can be used to be responsible for the protocol processing of the APP layer.
  • the workflow of the Beidou short message transmission protocol in the Beidou network device 200 can be as follows:
  • the Beidou network device 200 can encapsulate the original data into an application layer message, and then send the application layer message to the MDCP layer through the interlayer interface.
  • the application layer message generated by the Beidou network device 200 may be the cellular network information query result message shown in Table 3, or may also be the cellular network information query result message shown in Table 6.
  • the number of base stations, latitude and longitude of base stations, network standard, frequency point, cell number, and base station transmission power in the cellular network information query result message shown in Table 3 may be original data.
  • the number of base stations, network standard, frequency point, cell number, etc. in the cellular network information query result message shown in Table 6 may be original data.
  • the Beidou network device 200 may add a cell type indication field before the original data, compress the original data and the cell type indication field to obtain compressed data, and add a compression indication field before the compressed data.
  • the Beidou network device 200 can encrypt the compressed data and the compression indication field to obtain the encrypted data, add an encryption indication field and a message type indication field before the encrypted data, and then encapsulate it into an application layer message.
  • the Beidou network device 200 divides the MDCP SDU into multiple MDCP PDUs at the MDCP layer, and the Beidou network device 200 can transmit the multiple MDCP PDUs to the SLC of the Beidou network device 200 layer.
  • the Beidou network device 200 can obtain the application layer message sent by the APP layer through the interlayer interface, and use the application layer message as an MDCP SDU.
  • Beidou network device 200 can split an MDCP SDU into one or more fixed-length MDCP segment data (M_segement), and add a follow-up indication field to the header of each MDCP segment data to obtain an MDCP PDU , that is, the MDCP PDU includes M_segment and successor indication fields.
  • M_segement fixed-length MDCP segment data
  • the follow-up indication field can be used to indicate that the current MDCP PDU is the initial MDCP PDU or the middle MDCP PDU or the last MDCP PDU of multiple MDCP PDUs sent continuously; or it is an MDCP PDU sent separately.
  • the Beidou network device 200 can obtain the MDCP PDU sent by the MDCP layer through the interlayer interface as the SLC SDU.
  • the Beidou network device 200 can segment the SLC SDU into one or more (up to 4) fixed-length SLC segment data (S_segement), and add frame header information to each S_segment header to obtain the SLC PDU .
  • the Beidou network device 200 can obtain the SLC PDU delivered by the SLC layer through the interlayer interface.
  • the Beidou network device 200 can obtain the SLC PDUs of one user or multiple users from the SLC layer.
  • the Beidou network device 200 can splice the SLC PDUs of multiple users together, add the frame header of the physical frame (such as the version number) as the code block (code block) of the PHY layer, and add a check digit at the end of the code block (for example, cyclic redundancy check (cyclic redundancy check, CRC) code), and encode the code block and CRC code (for example, polar encoding), the encoded physical frame plus the reserved segment can form a fixed-length physical time
  • the coded data of the message branch (S2C_d branch) of the slot can form a fixed-length physical time
  • the coded data of the message branch (S2C_d branch) of the slot can form a fixed-length physical time
  • the Beidou network device 200 can put multiple SLC PDUs of a user into different physical frames respectively. Then, the Beidou network device 200 composes the coded data of the S2C_d branch and the pilot information of the pilot branch (S2C_p branch) into pilot coded data, that is, outbound data. The Beidou network device 200 can send the outbound data to the Beidou short message satellite 21 , and forward it to the terminal 100 via the Beidou short message satellite 21 .
  • the pilot information of the S2C_p branch is related to the satellite beam.
  • the pilot information of the S2C_p branch is also known and does not need to be decoded.
  • the coded data of the S2C_d branch needs to be decoded.
  • a protocol analysis framework for outbound data of the Beidou communication system 10 provided in the embodiment of the present application is introduced below.
  • FIG. 11 shows a schematic diagram of a protocol analysis architecture of outbound data of the Beidou communication system 10 provided in the embodiment of the present application.
  • the Beidou short message transmission protocol layer of terminal 100 can be divided into application layer (application layer protocol), message data convergence layer (message data convergence protocol, MDCP), satellite link control layer (satellite link control protocol) , SLC) and physical layer (physical layer protocol, PHY).
  • application layer application layer protocol
  • message data convergence layer messages data convergence protocol
  • MDCP message data convergence protocol
  • satellite link control layer satellite link control protocol
  • PHY physical layer protocol
  • the workflow of the Beidou short message transmission protocol layer of the terminal 100 can be as follows:
  • the terminal 100 can obtain the modulated and spread-spectrum coded pilot data sent by the Beidou network device 200 .
  • the terminal 100 may despread the received spread spectrum modulated data (spread+modulated data) to obtain modulated data (modulated data). Then, the terminal 100 may demodulate the modulated data to obtain pilot coded data (pilot+data). Next, the terminal 100 may remove the pilot information in the pilot coded data to obtain coded data (code data). Then, the terminal 100 can decode the coded data, and verify the integrity of the code block (code block) through the check data in the check bit field. If it is complete, the terminal 100 can extract the code block (code block), and present it to the SLC layer through the interlayer interface as the SLC PDU of the SLC layer.
  • the pilot coded data is the outbound data sent by the Beidou network device 200, and the outbound data is composed of the coded data of the S2C_d branch and the pilot information of the pilot branch (S2C_p branch).
  • the terminal 100 can splice the SLC PDUs belonging to the same SLC SDU into one SLC SDU based on the frame header information of the SLC PDU.
  • the terminal 100 can present the SLC SDU to the MDCP layer through the interlayer interface as the MDCP PDU of the MDCP layer.
  • the terminal 100 can splice all MDCP PDUs belonging to the same MDCP SDU into one MDCP SDU.
  • the terminal 100 can present the MDCP SDU to the APP layer through the interlayer interface as an application layer message received by the APP layer.
  • the terminal 100 may decrypt and decompress the application layer message based on the message header of the application layer message to obtain original data.
  • the original data may be data such as the number of base stations near the terminal 100, the latitude and longitude of the base stations, network standard, frequency point, cell number, and base station transmission power.
  • the exemplary terminal 100 provided by the embodiment of the present application is firstly introduced below.
  • FIG. 12 is a schematic structural diagram of a terminal 100 provided by an embodiment of the present application.
  • terminal 100 may have more or fewer components than shown in the figures, may combine two or more components, or may have a different configuration of components.
  • the various components shown in the figures may be implemented in hardware, software, or a combination of hardware and software including one or more signal processing and/or application specific integrated circuits.
  • the terminal 100 may include: a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (universal serial bus, USB) interface 130, a charging management module 140, a power management module 141, a battery 142, an antenna 1, and an antenna 2 , mobile communication module 150, wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, earphone jack 170D, sensor module 180, button 190, motor 191, indicator 192, camera 193, display screen 194 and user An identification module (subscriber identification module, SIM) card interface 195 and the like.
  • SIM subscriber identification module
  • the sensor module 180 may include a pressure sensor 180A, a gyroscope sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, a fingerprint sensor 180H, a temperature sensor 180J, a touch sensor 180K, an ambient light sensor 180L, bone conduction sensor 180M, etc.
  • the structure illustrated in the embodiment of the present invention does not constitute a specific limitation on the terminal 100 .
  • the terminal 100 may include more or fewer components than shown in the figure, or combine certain components, or separate certain components, or arrange different components.
  • the illustrated components can be realized in hardware, software or a combination of software and hardware.
  • the processor 110 may include one or more processing units, for example: the processor 110 may include an application processor (application processor, AP), a modem processor, a graphics processing unit (graphics processing unit, GPU), an image signal processor (image signal processor, ISP), controller, memory, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural network processor (neural-network processing unit, NPU) wait. Wherein, different processing units may be independent devices, or may be integrated in one or more processors.
  • application processor application processor, AP
  • modem processor graphics processing unit
  • GPU graphics processing unit
  • image signal processor image signal processor
  • ISP image signal processor
  • controller memory
  • video codec digital signal processor
  • DSP digital signal processor
  • baseband processor baseband processor
  • neural network processor neural-network processing unit, NPU
  • the controller may be the nerve center and command center of the terminal 100 .
  • the controller can generate an operation control signal according to the instruction opcode and timing signal, and complete the control of fetching and executing the instruction.
  • a memory may also be provided in the processor 110 for storing instructions and data.
  • the memory in processor 110 is a cache memory.
  • the memory may hold instructions or data that the processor 110 has just used or recycled. If the processor 110 needs to use the instruction or data again, it can be called directly from the memory. Repeated access is avoided, and the waiting time of the processor 110 is reduced, thus improving the efficiency of the system.
  • processor 110 may include one or more interfaces.
  • the interface may include an integrated circuit (inter-integrated circuit, I2C) interface, an integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, a pulse code modulation (pulse code modulation, PCM) interface, a universal asynchronous transmitter (universal asynchronous receiver/transmitter, UART) interface, mobile industry processor interface (mobile industry processor interface, MIPI), general-purpose input and output (general-purpose input/output, GPIO) interface, subscriber identity module (subscriber identity module, SIM) interface, and /or universal serial bus (universal serial bus, USB) interface, etc.
  • I2C integrated circuit
  • I2S integrated circuit built-in audio
  • PCM pulse code modulation
  • PCM pulse code modulation
  • UART universal asynchronous transmitter
  • MIPI mobile industry processor interface
  • GPIO general-purpose input and output
  • subscriber identity module subscriber identity module
  • SIM subscriber identity module
  • USB universal serial bus
  • the I2C interface is a bidirectional synchronous serial bus, including a serial data line (serial data line, SDA) and a serial clock line (derail clock line, SCL).
  • processor 110 may include multiple sets of I2C buses.
  • the processor 110 can be respectively coupled to the touch sensor 180K, the charger, the flashlight, the camera 193 and the like through different I2C bus interfaces.
  • the processor 110 may be coupled to the touch sensor 180K through the I2C interface, so that the processor 110 and the touch sensor 180K communicate through the I2C bus interface to realize the touch function of the terminal 100 .
  • the I2S interface can be used for audio communication.
  • processor 110 may include multiple sets of I2S buses.
  • the processor 110 may be coupled to the audio module 170 through an I2S bus to implement communication between the processor 110 and the audio module 170 .
  • the audio module 170 can transmit audio signals to the wireless communication module 160 through the I2S interface, so as to realize the function of answering calls through the Bluetooth headset.
  • the PCM interface can also be used for audio communication, sampling, quantizing and encoding the analog signal.
  • the audio module 170 and the wireless communication module 160 may be coupled through a PCM bus interface.
  • the audio module 170 can also transmit audio signals to the wireless communication module 160 through the PCM interface, so as to realize the function of answering calls through the Bluetooth headset. Both the I2S interface and the PCM interface can be used for audio communication.
  • the UART interface is a universal serial data bus used for asynchronous communication.
  • the bus can be a bidirectional communication bus. It converts the data to be transmitted between serial communication and parallel communication.
  • a UART interface is generally used to connect the processor 110 and the wireless communication module 160 .
  • the processor 110 communicates with the Bluetooth module in the wireless communication module 160 through the UART interface to realize the Bluetooth function.
  • the audio module 170 can transmit audio signals to the wireless communication module 160 through the UART interface, so as to realize the function of playing music through the Bluetooth headset.
  • the MIPI interface can be used to connect the processor 110 with peripheral devices such as the display screen 194 and the camera 193 .
  • MIPI interface includes camera serial interface (camera serial interface, CSI), display serial interface (display serial interface, DSI), etc.
  • the processor 110 communicates with the camera 193 through a CSI interface to realize the shooting function of the terminal 100 .
  • the processor 110 communicates with the display screen 194 through the DSI interface to realize the display function of the terminal 100 .
  • the GPIO interface can be configured by software.
  • the GPIO interface can be configured as a control signal or as a data signal.
  • the GPIO interface can be used to connect the processor 110 with the camera 193 , the display screen 194 , the wireless communication module 160 , the audio module 170 , the sensor module 180 and so on.
  • the GPIO interface can also be configured as an I2C interface, I2S interface, UART interface, MIPI interface, etc.
  • the SIM interface can be used to communicate with the SIM card interface 195 to realize the function of transmitting data to the SIM card or reading data in the SIM card.
  • the USB interface 130 is an interface conforming to the USB standard specification, specifically, it can be a Mini USB interface, a Micro USB interface, a USB Type C interface, and the like.
  • the USB interface 130 can be used to connect a charger to charge the terminal 100, and can also be used to transmit data between the terminal 100 and peripheral devices. It can also be used to connect headphones and play audio through them. This interface can also be used to connect other electronic devices, such as AR devices.
  • the interface connection relationship between the modules shown in the embodiment of the present invention is only a schematic illustration, and does not constitute a structural limitation of the terminal 100 .
  • the terminal 100 may also adopt different interface connection modes in the foregoing embodiments, or a combination of multiple interface connection modes.
  • the charging management module 140 is configured to receive a charging input from a charger.
  • the charger may be a wireless charger or a wired charger.
  • the power management module 141 is used for connecting the battery 142 , the charging management module 140 and the processor 110 .
  • the power management module 141 receives the input from the battery 142 and/or the charging management module 140 to provide power for the processor 110 , the internal memory 121 , the external memory, the display screen 194 , the camera 193 , and the wireless communication module 160 .
  • the wireless communication function of the terminal 100 can be realized by the antenna 1, the antenna 2, the mobile communication module 150, the wireless communication module 160, the modem processor and the baseband processor.
  • Antenna 1 and Antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in terminal 100 may be used to cover single or multiple communication frequency bands. Different antennas can also be multiplexed to improve the utilization of the antennas.
  • Antenna 1 can be multiplexed as a diversity antenna of a wireless local area network.
  • the antenna may be used in conjunction with a tuning switch.
  • the mobile communication module 150 can provide wireless communication solutions including 2G/3G/4G/5G applied on the terminal 100 .
  • the mobile communication module 150 may include at least one filter, switch, power amplifier, low noise amplifier (low noise amplifier, LNA) and the like.
  • the mobile communication module 150 can receive electromagnetic waves through the antenna 1, filter and amplify the received electromagnetic waves, and send them to the modem processor for demodulation.
  • the mobile communication module 150 can also amplify the signals modulated by the modem processor, and convert them into electromagnetic waves through the antenna 1 for radiation.
  • at least part of the functional modules of the mobile communication module 150 may be set in the processor 110 .
  • at least part of the functional modules of the mobile communication module 150 and at least part of the modules of the processor 110 may be set in the same device.
  • a modem processor may include a modulator and a demodulator.
  • the modulator is used for modulating the low-frequency baseband signal to be transmitted into a medium-high frequency signal.
  • the demodulator is used to demodulate the received electromagnetic wave signal into a low frequency baseband signal. Then the demodulator sends the demodulated low-frequency baseband signal to the baseband processor for processing.
  • the low-frequency baseband signal is passed to the application processor after being processed by the baseband processor.
  • the application processor outputs sound signals through audio equipment (not limited to speaker 170A, receiver 170B, etc.), or displays images or videos through display screen 194 .
  • the modem processor may be a stand-alone device.
  • the modem processor may be independent from the processor 110, and be set in the same device as the mobile communication module 150 or other functional modules.
  • the wireless communication module 160 can provide wireless local area networks (wireless local area networks, WLAN) (such as wireless fidelity (Wi-Fi) network), bluetooth (bluetooth, BT), global navigation satellite system, etc. (global navigation satellite system, GNSS), Beidou communication module, frequency modulation (frequency modulation, FM), near field communication technology (near field communication, NFC), infrared technology (infrared, IR) and other wireless communication solutions.
  • the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives electromagnetic waves via the antenna 2 , frequency-modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110 .
  • the wireless communication module 160 can also receive the signal to be sent from the processor 110 , frequency-modulate it, amplify it, and convert it into electromagnetic waves through the antenna 2 for radiation.
  • the Beidou communication module can be used to communicate with the Beidou network device 200 .
  • the Beidou communication module can support short message transmission with the Beidou network device 200 .
  • the antenna 1 of the terminal 100 is coupled to the mobile communication module 150, and the antenna 2 is coupled to the wireless communication module 160, so that the terminal 100 can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technology may include global system for mobile communications (GSM), general packet radio service (general packet radio service, GPRS), code division multiple access (code division multiple access, CDMA), broadband Code division multiple access (wideband code division multiple access, WCDMA), time division code division multiple access (time-division code division multiple access, TD-SCDMA), long term evolution (long term evolution, LTE), BT, GNSS, WLAN, NFC , FM, and/or IR techniques, etc.
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • code division multiple access code division multiple access
  • CDMA broadband Code division multiple access
  • WCDMA wideband code division multiple access
  • time division code division multiple access time-division code division multiple access
  • TD-SCDMA time-division code division multiple access
  • LTE long
  • the GNSS may include a global positioning system (global positioning system, GPS), a global navigation satellite system (global navigation satellite system, GLONASS), a Beidou navigation satellite system (beidou navigation satellite system, BDS), a quasi-zenith satellite system (quasi -zenith satellite system (QZSS) and/or satellite based augmentation systems (SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • Beidou navigation satellite system beidou navigation satellite system
  • BDS Beidou navigation satellite system
  • QZSS quasi-zenith satellite system
  • SBAS satellite based augmentation systems
  • the terminal 100 realizes the display function through the GPU, the display screen 194, and the application processor.
  • the GPU is a microprocessor for image processing, and is connected to the display screen 194 and the application processor. GPUs are used to perform mathematical and geometric calculations for graphics rendering.
  • Processor 110 may include one or more GPUs that execute program instructions to generate or change display information.
  • the display screen 194 is used to display images, videos and the like.
  • the display screen 194 includes a display panel.
  • the display panel can be a liquid crystal display (LCD), an organic light-emitting diode (OLED), an active matrix organic light emitting diode or an active matrix organic light emitting diode (active-matrix organic light emitting diode, AMOLED), flexible light-emitting diode (flex light-emitting diode, FLED), Miniled, MicroLed, Micro-oLed, quantum dot light emitting diodes (quantum dot light emitting diodes, QLED), etc.
  • the terminal 100 may include 1 or N display screens 194, where N is a positive integer greater than 1.
  • the terminal 100 can realize the shooting function through the ISP, the camera 193 , the video codec, the GPU, the display screen 194 and the application processor.
  • the ISP is used for processing the data fed back by the camera 193 .
  • the light is transmitted to the photosensitive element of the camera through the lens, and the light signal is converted into an electrical signal, and the photosensitive element of the camera transmits the electrical signal to the ISP for processing, and converts it into an image visible to the naked eye.
  • ISP can also perform algorithm optimization on image noise, brightness, and color.
  • ISP can also optimize the exposure, color temperature and other parameters of the shooting scene.
  • the ISP may be located in the camera 193 .
  • Camera 193 is used to capture still images or video.
  • the object generates an optical image through the lens and projects it to the photosensitive element.
  • the photosensitive element may be a charge coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS) phototransistor.
  • CMOS complementary metal-oxide-semiconductor
  • the photosensitive element converts the light signal into an electrical signal, and then transmits the electrical signal to the ISP to convert it into a digital image signal.
  • the ISP outputs the digital image signal to the DSP for processing.
  • DSP converts digital image signals into standard RGB, YUV and other image signals.
  • the terminal 100 may include 1 or N cameras 193, where N is a positive integer greater than 1.
  • Digital signal processors are used to process digital signals. In addition to digital image signals, they can also process other digital signals. For example, when the terminal 100 selects a frequency point, the digital signal processor is used to perform Fourier transform on the energy of the frequency point.
  • Video codecs are used to compress or decompress digital video.
  • Terminal 100 may support one or more video codecs.
  • the terminal 100 can play or record videos in various encoding formats, for example: moving picture experts group (moving picture experts group, MPEG) 1, MPEG2, MPEG3, MPEG4, etc.
  • the NPU is a neural-network (NN) computing processor.
  • NN neural-network
  • Applications such as intelligent cognition of the terminal 100 can be implemented through the NPU, such as image recognition, face recognition, speech recognition, text understanding, and the like.
  • the internal memory 121 may include one or more random access memories (random access memory, RAM) and one or more non-volatile memories (non-volatile memory, NVM).
  • RAM random access memory
  • NVM non-volatile memory
  • Random access memory can include static random-access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (synchronous dynamic random access memory, SDRAM), double data rate synchronous Dynamic random access memory (double data rate synchronous dynamic random access memory, DDR SDRAM, such as the fifth generation DDR SDRAM is generally called DDR5SDRAM), etc.;
  • SRAM static random-access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate synchronous Dynamic random access memory double data rate synchronous dynamic random access memory
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • DDR5SDRAM double data rate synchronous dynamic random access memory
  • Non-volatile memory may include magnetic disk storage devices, flash memory (flash memory).
  • flash memory can include NOR FLASH, NAND FLASH, 3D NAND FLASH, etc.
  • it can include single-level storage cells (single-level cell, SLC), multi-level storage cells (multi-level cell, MLC), three-level storage unit (triple-level cell, TLC), fourth-level storage unit (quad-level cell, QLC), etc.
  • can include universal flash storage English: universal flash storage, UFS) according to storage specifications , embedded multimedia memory card (embedded multi media Card, eMMC), etc.
  • the random access memory can be directly read and written by the processor 110, and can be used to store executable programs (such as machine instructions) of an operating system or other running programs, and can also be used to store data of users and application programs.
  • the non-volatile memory can also store executable programs and data of users and application programs, etc., and can be loaded into the random access memory in advance for the processor 110 to directly read and write.
  • the terminal 100 may implement an audio function through an audio module 170 , a speaker 170A, a receiver 170B, a microphone 170C, an earphone interface 170D, and an application processor. Such as music playback, recording, etc.
  • the audio module 170 is used to convert digital audio information into analog audio signal output, and is also used to convert analog audio input into digital audio signal.
  • the audio module 170 may also be used to encode and decode audio signals.
  • the audio module 170 may be set in the processor 110 , or some functional modules of the audio module 170 may be set in the processor 110 .
  • Speaker 170A also referred to as a "horn" is used to convert audio electrical signals into sound signals. Terminal 100 can listen to music through speaker 170A, or listen to hands-free calls.
  • Receiver 170B also called “earpiece” is used to convert audio electrical signals into sound signals.
  • the receiver 170B can be placed close to the human ear to listen to the voice.
  • the microphone 170C also called “microphone” or “microphone” is used to convert sound signals into electrical signals.
  • the user can put his mouth close to the microphone 170C to make a sound, and input the sound signal to the microphone 170C.
  • the terminal 100 may be provided with at least one microphone 170C.
  • the terminal 100 may be provided with two microphones 170C, which may also implement a noise reduction function in addition to collecting sound signals.
  • the terminal 100 can also be provided with three, four or more microphones 170C, to collect sound signals, reduce noise, identify sound sources, and realize directional recording functions, etc.
  • the earphone interface 170D is used for connecting wired earphones.
  • the earphone interface 170D can be a USB interface 130, or a 3.5mm open mobile terminal platform (OMTP) standard interface, or a cellular telecommunications industry association of the USA (CTIA) standard interface.
  • OMTP open mobile terminal platform
  • CTIA cellular telecommunications industry association of the USA
  • the pressure sensor 180A is used to sense the pressure signal and convert the pressure signal into an electrical signal.
  • pressure sensor 180A may be disposed on display screen 194 .
  • pressure sensors 180A such as resistive pressure sensors, inductive pressure sensors, and capacitive pressure sensors.
  • a capacitive pressure sensor may be comprised of at least two parallel plates with conductive material.
  • the terminal 100 determines the strength of the pressure from the change in capacitance.
  • the terminal 100 detects the intensity of the touch operation according to the pressure sensor 180A.
  • the terminal 100 may also calculate the touched position according to the detection signal of the pressure sensor 180A.
  • touch operations acting on the same touch position but with different touch operation intensities may correspond to different operation instructions. For example: when a touch operation with a touch operation intensity less than the first pressure threshold acts on the short message application icon, an instruction to view short messages is executed. When a touch operation whose intensity is greater than or equal to the first pressure threshold acts on the icon of the short message application, the instruction of creating a new short message is executed.
  • the gyro sensor 180B can be used to determine the motion posture of the terminal 100 .
  • the angular velocity of the terminal 100 around three axes ie, x, y and z axes
  • the gyro sensor 180B can be used for image stabilization.
  • the gyro sensor 180B detects the shaking angle of the terminal 100, and calculates the distance that the lens module needs to compensate according to the angle, and allows the lens to counteract the shaking of the terminal 100 through reverse movement to achieve anti-shake.
  • the gyro sensor 180B can also be used for navigation and somatosensory game scenes.
  • the air pressure sensor 180C is used to measure air pressure.
  • the terminal 100 calculates the altitude through the air pressure value measured by the air pressure sensor 180C to assist positioning and navigation.
  • the magnetic sensor 180D includes a Hall sensor.
  • the terminal 100 may use the magnetic sensor 180D to detect the opening and closing of the flip holster.
  • the terminal 100 when the terminal 100 is a clamshell machine, the terminal 100 can detect the opening and closing of the clamshell according to the magnetic sensor 180D.
  • features such as automatic unlocking of the flip cover are set.
  • the acceleration sensor 180E can detect the acceleration of the terminal 100 in various directions (generally three axes).
  • the magnitude and direction of gravity can be detected when the terminal 100 is stationary. It can also be used to identify the posture of electronic devices, and can be used in applications such as horizontal and vertical screen switching, pedometers, etc.
  • the distance sensor 180F is used to measure the distance.
  • the terminal 100 can measure the distance by infrared or laser. In some embodiments, when shooting a scene, the terminal 100 may use the distance sensor 180F for distance measurement to achieve fast focusing.
  • Proximity light sensor 180G may include, for example, light emitting diodes (LEDs) and light detectors, such as photodiodes.
  • the light emitting diodes may be infrared light emitting diodes.
  • the terminal 100 emits infrared light through the light emitting diode.
  • the terminal 100 detects infrared reflected light from nearby objects using a photodiode. When sufficient reflected light is detected, it may be determined that there is an object near the terminal 100 . When insufficient reflected light is detected, the terminal 100 may determine that there is no object near the terminal 100 .
  • the terminal 100 can use the proximity light sensor 180G to detect that the user holds the terminal 100 close to the ear to make a call, so as to automatically turn off the screen to save power.
  • the proximity light sensor 180G can also be used in leather case mode, automatic unlock and lock screen in pocket mode.
  • the ambient light sensor 180L is used for sensing ambient light brightness.
  • the terminal 100 may adaptively adjust the brightness of the display screen 194 according to the perceived ambient light brightness.
  • the ambient light sensor 180L can also be used to automatically adjust the white balance when taking pictures.
  • the ambient light sensor 180L can also cooperate with the proximity light sensor 180G to detect whether the terminal 100 is in the pocket, so as to prevent accidental touch.
  • the fingerprint sensor 180H is used to collect fingerprints.
  • the terminal 100 can use the collected fingerprint characteristics to realize fingerprint unlocking, access to the application lock, take pictures with fingerprints, answer incoming calls with fingerprints, and so on.
  • the temperature sensor 180J is used to detect temperature.
  • the terminal 100 uses the temperature detected by the temperature sensor 180J to implement a temperature processing strategy. For example, when the temperature reported by the temperature sensor 180J exceeds the threshold, the terminal 100 executes reducing the performance of a processor located near the temperature sensor 180J, so as to reduce power consumption and implement thermal protection.
  • the terminal 100 when the temperature is lower than another threshold, the terminal 100 heats the battery 142 to avoid abnormal shutdown of the terminal 100 due to low temperature.
  • the terminal 100 boosts the output voltage of the battery 142 to avoid abnormal shutdown caused by low temperature.
  • Touch sensor 180K also known as "touch panel”.
  • the touch sensor 180K can be disposed on the display screen 194, and the touch sensor 180K and the display screen 194 form a touch screen, also called a “touch screen”.
  • the touch sensor 180K is used to detect a touch operation on or near it.
  • the touch sensor can pass the detected touch operation to the application processor to determine the type of touch event.
  • Visual output related to the touch operation can be provided through the display screen 194 .
  • the touch sensor 180K may also be disposed on the surface of the terminal 100 , which is different from the position of the display screen 194 .
  • the keys 190 include a power key, a volume key and the like.
  • the key 190 may be a mechanical key. It can also be a touch button.
  • the terminal 100 may receive key input and generate key signal input related to user settings and function control of the terminal 100 .
  • the motor 191 can generate a vibrating reminder.
  • the motor 191 can be used for incoming call vibration prompts, and can also be used for touch vibration feedback.
  • touch operations applied to different applications may correspond to different vibration feedback effects.
  • the motor 191 may also correspond to different vibration feedback effects for touch operations acting on different areas of the display screen 194 .
  • Different application scenarios for example: time reminder, receiving information, alarm clock, games, etc.
  • the touch vibration feedback effect can also support customization.
  • the indicator 192 can be an indicator light, and can be used to indicate charging status, power change, and can also be used to indicate messages, missed calls, notifications, and the like.
  • the SIM card interface 195 is used for connecting a SIM card.
  • the SIM card can be connected and separated from the terminal 100 by inserting it into the SIM card interface 195 or pulling it out from the SIM card interface 195 .
  • the terminal 100 may support 1 or N SIM card interfaces, where N is a positive integer greater than 1.
  • SIM card interface 195 can support Nano SIM card, Micro SIM card, SIM card etc. Multiple cards can be inserted into the same SIM card interface 195 at the same time. The types of the multiple cards may be the same or different.
  • the SIM card interface 195 is also compatible with different types of SIM cards.
  • the SIM card interface 195 is also compatible with external memory cards.
  • the terminal 100 interacts with the network through the SIM card to implement functions such as calling and data communication.
  • the above content elaborates the method provided by the present application in detail.
  • the embodiments of the present application also provide corresponding devices or equipment.
  • the embodiment of the present application can divide the functional modules of the terminal 100 and the Beidou network device 200 according to the above-mentioned method example, for example, each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module middle.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 13 is a schematic structural diagram of a communication device 1300 provided in an embodiment of the present application.
  • the communication device 1300 may be the terminal 100 in the foregoing embodiments.
  • the communication device 1300 may be a chip/chip system, for example, a Beidou communication chip.
  • the communication device 1300 may include a transceiver unit 1310 and a processing unit 1320 .
  • the transceiver unit 1310 may be configured to receive the cellular network information query result sent by the Beidou network device 200 .
  • the processing unit 1320 can be used to calculate the path loss between the base station and the terminal 100 in the prior information stored by the terminal 100, and the success rate of receiving the signal sent by the base station by the terminal 100 or the signal strength of the base station, based on the base station's signal strength in the prior information Search the network according to the network standard and frequency.
  • the processing unit 1320 can also be used to calculate the signal strength of the base station near the terminal 100 in the cellular network information query result sent by the Beidou network device 200, and the receiving power of the terminal 100 to receive the signal sent by the base station, and calculate the base station's signal strength according to the cellular network information query result. Search the network according to the network standard and frequency.
  • the transceiver unit 1310 may also be configured to perform the functional steps related to sending and receiving performed by the terminal 100 in the method embodiment shown in FIG. 7 above.
  • the processing unit 1320 may also be configured to perform functional steps related to protocol parsing and encapsulation and calculation determination performed by the terminal 100 in the method embodiments shown in Fig. 4 and Fig. 7 above.
  • the communication device 1300 in this design can correspondingly perform the method steps performed by the terminal 100 in the foregoing embodiments, and for the sake of brevity, details are not repeated here.
  • FIG. 14 is a schematic structural diagram of a communication device 1400 provided by an embodiment of the present application.
  • the communication device 1400 may be the Beidou network device 200 in the foregoing embodiments.
  • the communication device 1400 may be a specific network element in the Beidou network equipment 200, for example, the Beidou ground receiving station 31, the Beidou ground transmitting station 35, the signal receiving and processing equipment 32, the signal processing center 33, the signal sending and processing equipment 36, A network element or a combination of multiple network elements in the operation control center 37 and the Beidou short message fusion communication platform 34.
  • the communication device 1400 may include a transceiver unit 1410 and a processing unit 1420 .
  • the transceiver unit 1410 may be configured to send a cellular network information query result.
  • the processing unit 1420 may be configured to query base stations near the terminal 100 and base station information based on the latitude and longitude of the terminal 100 , and determine a base station near the terminal 100 that has a higher success rate of network search.
  • the transceiver unit 1410 may also be configured to perform the functional steps related to sending and receiving performed by the Beidou network device 200 in the method embodiment shown in FIG. 7 above.
  • the processing unit 1420 may also be configured to perform functional steps related to protocol parsing and encapsulation and calculation determination performed by the Beidou network device 200 in the method embodiment shown in FIG. 7 above.
  • the communication device 1400 in this design can correspondingly perform the method steps performed by the Beidou network device 200 in the foregoing embodiments, and for the sake of brevity, details are not repeated here.
  • the terminal 100 and the Beidou network device 200 of the embodiment of the present application have been introduced above. It should be understood that any product of any form having the functions of the terminal 100 described above in FIG. Products of any form with functions fall within the scope of protection of the embodiments of the present application.
  • the terminal 100 described in the embodiment of the present application may be implemented by a general bus architecture.
  • FIG. 15 is a schematic structural diagram of a communication device 1500 provided by an embodiment of the present application.
  • the communication device 1500 may be the terminal 100, or a device therein.
  • the communication device 1500 includes a processor 1501 and a transceiver 1502 internally connected and communicating with the processor.
  • the processor 1501 is a general purpose processor or a special purpose processor or the like.
  • it may be a baseband processor or a central processing unit for satellite communications.
  • the baseband processor of satellite communication can be used to process satellite communication protocols and satellite communication data
  • the central processing unit can be used to control communication devices (such as baseband chips, terminals, terminal chips, etc.), execute computer programs, and process computer Program data.
  • the transceiver 1502 may be called a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement a transceiver function.
  • the transceiver 1502 may include a receiver and a transmitter, and the receiver may be called a receiver or a receiving circuit for realizing a receiving function; the transmitter may be called a transmitter or a sending circuit for realizing a sending function.
  • the communication device 1500 may further include an antenna 1503 and/or a radio frequency unit (not shown in the figure).
  • the antenna 1503 and/or the radio frequency unit may be located inside the communication device 1500, or may be separated from the communication device 1400, that is, the antenna 1503 and/or the radio frequency unit may be remote or distributed.
  • the communication device 1500 may include one or more memories 1504, on which instructions may be stored, the instructions may be computer programs, and the computer programs may be run on the communication device 1500, so that the communication device 1500 executes the above-mentioned Methods described in the Methods Examples.
  • data may also be stored in the memory 1504 .
  • the communication device 1500 and the memory 1504 can be set separately or integrated together.
  • the processor 1501, the transceiver 1502, and the memory 1504 may be connected through a communication bus.
  • the communication device 1500 can be used to perform the functions of the terminal 100 in the foregoing embodiments: the processor 1501 can be used to perform the functions related to protocol analysis and encapsulation and operation determination performed by the terminal 100 in the embodiment shown in FIG. 11 Steps and/or other processes for the technology described herein; the transceiver 1502 can be used to perform the functions related to protocol parsing and encapsulation and operation determination performed by the terminal 100 in the embodiments shown in FIG. 2 , FIG. 4 and FIG. 7 steps and/or other processes for the techniques described herein.
  • the processor 1501 may include a transceiver for implementing receiving and sending functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit may be used for signal transmission or transmission.
  • the processor 1501 may store instructions, and the instructions may be computer programs, and the computer programs run on the processor 1501 to enable the communication device 1500 to perform the method steps performed by the terminal 100 in the above method embodiments.
  • the computer program may be fixed in the processor 1501, and in this case, the processor 1501 may be implemented by hardware.
  • the communication device 1500 may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this application can be implemented in integrated circuits (integrated circuits, ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed-signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (bipolar junction transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • Communications apparatus 1500 may be a stand-alone device or may be part of a larger device.
  • the communication device 1500 may be:
  • a set of one or more ICs may also include storage components for storing data and computer programs;
  • ASIC such as modem (Modem);
  • any network element in the Beidou network equipment 200 described in the embodiment of the application can be realized by a general bus architecture.
  • FIG. 16 is a schematic structural diagram of a communication device 1600 provided by an embodiment of the present application.
  • the communication device 1600 may be the Beidou network device 200, or a device therein.
  • the communication device 1600 includes a processor 1601 and a transceiver 1602 internally connected and communicating with the processor.
  • the processor 1601 is a general purpose processor or a special purpose processor or the like.
  • it may be a baseband processor or a central processing unit for satellite communications.
  • the baseband processor of the satellite communication can be used to process the satellite communication protocol and satellite communication data
  • the central processing unit can be used to control the communication device (eg, baseband chip, etc.), execute the computer program, and process the data of the computer program.
  • the transceiver 1602 may be called a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement a transceiver function.
  • the transceiver 1602 may include a receiver and a transmitter, and the receiver may be called a receiver or a receiving circuit for realizing a receiving function; the transmitter may be called a transmitter or a sending circuit for realizing a sending function.
  • the communication device 1600 may further include an antenna 1603 and/or a radio frequency unit (not shown in the figure).
  • the antenna 1603 and/or the radio frequency unit may be located inside the communication device 1600, or may be separated from the communication device 1600, that is, the antenna 1603 and/or the radio frequency unit may be remote or distributed.
  • the communication device 1600 may include one or more memories 1604, on which instructions may be stored.
  • the instructions may be computer programs, and the computer programs may be run on the communication device 1600, so that the communication device 1600 executes the above-mentioned Methods described in the Methods Examples.
  • data may also be stored in the memory 1604 .
  • the communication device 1600 and the memory 1604 can be set separately or integrated together.
  • processor 1601, the transceiver 1602, and the memory 1604 may be connected through a communication bus.
  • the communication device 1600 can be used to perform the functions of the Beidou network device 200 in the foregoing embodiments: the processor 1601 can be used to perform the related protocol parsing and encapsulation performed by the Beidou network device 200 in the embodiment shown in FIG. 7 and The functional steps determined by calculation and/or other processes used in the technology described herein; the transceiver 1602 can be used to perform the functions related to protocol parsing and encapsulation and calculation determination performed by the Beidou network device 200 in the above embodiment shown in FIG. 7 steps and/or other processes for the techniques described herein.
  • the processor 1601 may include a transceiver for implementing receiving and sending functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit may be used for signal transmission or transfer.
  • the processor 1601 may store instructions, which may be computer programs, and the computer programs run on the processor 1601 to enable the communication device 1600 to perform the method steps performed by the terminal 100 in the above method embodiments.
  • the computer program may be solidified in the processor 1601, and in this case, the processor 1601 may be implemented by hardware.
  • the embodiment of the present application also provides a computer-readable storage medium, where computer program code is stored in the computer-readable storage medium, and when the above-mentioned processor executes the computer program code, the communication device executes the method in any of the above-mentioned embodiments .
  • An embodiment of the present application further provides a computer program product, which, when the computer program product is run on a computer, causes the computer to execute the method in any one of the foregoing embodiments.
  • the embodiment of the present application also provides a communication device, which can exist in the product form of a chip.
  • the structure of the device includes a processor and an interface circuit.
  • the processor is used to communicate with other devices through a receiving circuit, so that the device performs the aforementioned The method in any of the examples.
  • the embodiment of the present application also provides a Beidou communication system, including a terminal 100 and a Beidou network device 200.
  • the terminal 100 and the Beidou network device 200 can execute the method in any of the foregoing embodiments.
  • This application fully introduces the communication function of short messages in the Beidou communication system. It is understandable that there may be communication functions supporting short messages in other satellite systems. Therefore, it is not limited to the Beidou communication system. If other satellite systems also support the short message communication function, the method introduced in this application is also applicable to the communication of other satellite systems.
  • the term “when” may be interpreted to mean “if” or “after” or “in response to determining" or “in response to detecting".
  • the phrases “in determining” or “if detected (a stated condition or event)” may be interpreted to mean “if determining" or “in response to determining" or “on detecting (a stated condition or event)” or “in response to detecting (a stated condition or event)”.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server, or data center by wired (eg, coaxial cable, optical fiber, DSL) or wireless (eg, infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media (eg, solid state hard disk), etc.
  • the processes can be completed by computer programs to instruct related hardware.
  • the programs can be stored in computer-readable storage media.
  • When the programs are executed may include the processes of the foregoing method embodiments.
  • the aforementioned storage medium includes: ROM or random access memory RAM, magnetic disk or optical disk, and other various media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种切换网络的方法及相关装置。在该方法中,终端在北斗网络下,当终端中的北斗通信模块处于空闲状态时,终端可以开始搜索蜂窝网络,终端可以借助于先验信息或者北斗网络设备发送的基站信息进行搜网,搜网成功后,可以从北斗网络切换到蜂窝网络。实施本申请提供的技术方案,终端可以尽快地从北斗网络回到蜂窝网络,且不需要用户操作,这样,可以提高用户体验。

Description

一种切换网络的方法及相关装置
本申请要求于2021年08月30日提交中国专利局、申请号为202111003952.5、申请名称为“一种切换网络的方法及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及卫星通信技术领域,尤其涉及一种切换网络的方法及相关装置。
背景技术
北斗卫星导航系统是我国自主研制的集定位、授时、通信于一体的重大基础设施。北斗短报文通信业务是北斗卫星导航系统区别于GPS、GLONASS、GALILEO等其他全球导航系统的特色之一。北斗短报文通信业务特别适用于在海洋、沙漠、草原、无人区等移动通信未覆盖、或覆盖不了、或通信系统被破坏的区域进行通信。
当用户处于移动通信未覆盖、或覆盖不了、或通信系统被破坏的区域时,用户可以将电子设备中北斗网络开启。当电子设备开启了北斗网络后,电子设备中的蜂窝网络不保持驻留态(即使电子设备处在有蜂窝网络的环境)。当用户将电子设备中的北斗网络开启后,用户到达有蜂窝网络的地区时,电子设备不会主动进行蜂窝网络的搜网。用户需要关闭电子设备的北斗网络,电子设备才会进行蜂窝网络的搜网。因此,电子设备从北斗网络回到蜂窝网络的时间由用户的行为(即用户主动关闭北斗网络)决定了。这样,若用户没有主动关闭北斗网络,用户的电子设备就不能及时切回到蜂窝网络。
由此,在不需要用户主动干预的情况下,电子设备如何能够尽快从北斗网络回到蜂窝网络是亟待解决的问题。
发明内容
本申请提供了一种切换网络的方法及相关装置,通过本申请实施例提供的切换网络的方法,终端无需用户操作,可以尽快地从北斗网络下(未驻留到蜂窝网络)回到蜂窝网络(驻留到蜂窝网络)。
第一方面,本申请提供了一种切换网络的方法,该方法可以包括:终端未驻留到蜂窝网络,检测到终端在预设时长内未向北斗网络设备发送数据或未接收北斗网络设备发送的数据;终端开始搜索蜂窝网络,在搜索蜂窝网络成功的情况下,终端驻留到蜂窝网络。
这样,通过第一方面提供的切换网络的方法,在不需要用户去主动去打开终端中的移动通信模块的情况下,终端在北斗网络下没有收发数据时,可以搜索蜂窝网络。这样,终端可以尽快地从北斗网络下回到蜂窝网络。
结合第一方面,在一种可能的实现方式中,终端开始搜索蜂窝网络,在搜索蜂窝网络成功的情况下,终端驻留到蜂窝网络,可以包括:终端向北斗网络设备发送第一查询请求,第一查询请求用于查询基站的信息,第一请求携带有终端的位置信息;终端接收到北斗网络设备发送的第一查询结果,第一查询结果包括终端预设距离内的一个或多个基站的信息;终端 根据第一查询结果搜索蜂窝网络,在搜索蜂窝网络成功的情况下,终端驻留到蜂窝网络。
这样,终端可以根据北斗网络设备提供的基站的信息进行跟那个精准地进行搜网,这样,可以更快搜索到可以驻留的蜂窝网络。并且,终端可以根据北斗网络设备提供的基站的信息判断是否进行搜网。当终端从北斗网络设备处获取到终端附近的基站的信息时,终端可以不进行搜网,这样,避免无效搜网,可以节约终端的功耗。
结合第一方面,在一种可能的实现方式中,第一查询请求为第一报文,第一报文中包括第一蜂窝信息类型字段、终端经纬度字段;第一蜂窝信息类型字段用于指示北斗网络设备向终端回复的第一查询结果的类型;终端经纬度字段用于指示终端的经纬度。
结合第一方面,在一种可能的实现方式中,第一蜂窝信息类型字段为第一值,第一值用于指示第一查询结果为终端预设距离内的一个或多个基站的信息;第一蜂窝信息类型字段为第二值,第二值用于指示第一查询结果为终端预设距离内满足预设条件的一个或多个基站的信息。
这样,终端可以利用该蜂窝信息类型字段指示北斗网络设备回复查询结果的类型。
结合第一方面,在一种可能的实现方式中,基站的信息包括基站的经纬度、基站的网络制式、基站的频点、基站的小区号,以及基站的发送功率中的一项或多项。
结合第一方面,在一种可能的实现方式中,预设条件为终端接收基站发送信号的信号强度大于第一阈值。信号强度由基站的发送功率计算得到,在一些例子中,终端接收基站发送信号的信号强度可以用来指示终端接收基站发送信号的接收功率。
结合第一方面,在一种可能的实现方式中,第一查询结果为第二报文,第二报文包括第二蜂窝信息类型字段、第一基站数量字段、第一经纬度字段、第一网络制式字段、第一频点字段、第一小区号字段;其中,第二蜂窝信息类型字段为第一值,用于指示第一查询结果为终端预设距离内的一个或多个基站的信息,基站数量字段用于指示终端预设距离内的基站的数量;第一经纬度字段用于指示终端预设距离内的基站的经纬度;第一网络制式字段用于指示终端预设距离内的基站的网络制式;第一频点字段用于指示终端预设距离内的基站的频点;第一小区号字段用于指示终端预设距离内的基站的小区号。
这样,终端可以根据查询结果中的基站的信息进行搜网,可以提高终端搜网的效率,节约终端的功耗。
结合第一方面,在一种可能的实现方式中,第二报文还包括第一基站发送功率字段,第一基站发送功率字段用于指示终端预设距离内的基站的发送功率。
这样,终端可以根据基站的发送功率计算出信号强度,然后根据信号强度是否大于第一阈值来评判是否按照该基站的网络制式进行搜网。当信号强度大于或等于第一阈值时,终端才根据该基站的网络制式进行搜网,若信号强度小于第一阈值,终端可以不按照该基站的网络制式进行搜网。这样,可以避免无效搜网,可以提高终端搜网的效率,节约终端的功耗。
结合第一方面,在一种可能的实现方式中,第一查询结果为第三报文,第三报文中包括第三蜂窝信息类型字段、第二基站数量字段、第二网络制式字段、第二频点字段、第二小区号字段;第三蜂窝信息类型字段为第二值,第一查询结果为终端预设距离内满足预设条件的一个或多个基站的信息;第二基站数量字段用于指示终端预设距离内满足预设条件的基站的数量;第二网络制式字段用于指示终端预设距离内满足预设条件的基站的网络制式,第二频点字段用于指示终端预设距离内满足预设条件的基站的频点,第二小区号字段用于终端预设距离内满足预设条件的基站的小区号。
这样,终端可以直接按照北斗网络设备提供的基站的信息进行搜网。终端无需评估该基站的搜网成功率。这样,可以提高终端搜网的效率,节约终端的功耗。
结合第一方面,在一种可能的实现方式中,第一查询结果为第二报文,第二报文中包含终端预设距离内第一基站的信息,终端根据第一查询结果搜索蜂窝网络,在搜索蜂窝网络成功的情况下,终端驻留到蜂窝网络,可以包括:终端根据所述第二报文中第一基站的信息确定第一基站满足预设条件;终端开始根据第一基站的信息搜索蜂窝网络,在搜索蜂窝网络成功的情况下,终端驻留到蜂窝网络。
这样,终端可以根据基站的发送功率计算出接收功率,然后根据接收功率是否大于第一阈值来评判是否按照该基站的网络制式进行搜网。当接收功率大于或等于第一阈值时,终端才根据该基站的网络制式进行搜网,若接收功率小于第一阈值,终端可以不按照该基站的网络制式进行搜网。这样,可以避免无效搜网,可以提高终端搜网的效率,节约终端的功耗。
结合第一方面,在一种可能的实现方式中,第一查询结果为第二报文,第二报文中包含所述终端预设距离内第一基站的信息、第二基站的信息,终端根据所述第一查询结果搜索蜂窝网络,在搜索蜂窝网络成功的情况下,终端驻留到蜂窝网络,可以包括:终端根据第二报文中第一基站的信息确定第一基站满足预设条件,终端根据第二报文中第二基站的信息确定第二基站满足预设条件;终端确定所述终端接收到第一基站的信号强度大于终端接收到第二基站的信号强度;终端开始根据第一基站的信息搜索蜂窝网络,在搜索蜂窝网络成功的情况下,终端驻留到蜂窝网络;在搜索蜂窝网络失败的情况下,终端根据第二基站的信息搜索蜂窝网络。
这样,当终端的附近有多个基站时,终端可以先按照信号强度更大的基站的信息进行搜网。一般,终端可以接收到基站的信号强度越大,终端搜网成功率更大。这样,可以提高终端搜网的效率,节约终端的功耗。
结合第一方面,在一种可能的实现方式中,第一查询结果为第三报文,第三报文中包含终端预设距离内满足预设条件第三基站的信息,终端根据所述第一查询结果搜索蜂窝网络,在搜索蜂窝网络成功的情况下,终端驻留到蜂窝网络,可以包括:终端开始根据第三基站的信息搜索蜂窝网络,在搜索蜂窝网络成功的情况下,终端驻留到蜂窝网络。
这样,终端直接按照北斗网络设备筛选出的终端附近的满足预设条件的基站的信息搜网,可以提高终端搜网的效率,节约终端的功耗。
结合第一方面,在一种可能的实现方式中,第一查询结果为第三报文,第三报文中包含终端预设距离内满足预设条件第三基站的信息、第四基站的信息,终端根据第一查询结果搜索蜂窝网络,在搜索蜂窝网络成功的情况下,终端驻留到蜂窝网络,可以包括:终端确定终端接收到所述第三基站的信号强度大于终端接收到第四基站的信号强度;终端开始根据第三基站的信息搜索蜂窝网络,在搜索蜂窝网络成功的情况下,终端驻留到蜂窝网络;在搜索蜂窝网络失败的情况下,终端根据所述第四基站的信息搜索蜂窝网络。
这样,当终端的附近有多个基站时,终端可以先按照信号强度更大的基站的信息进行搜网。一般,终端可以接收到基站的信号强度越大,终端搜网成功率更大。这样,可以提高终端搜网的效率,节约终端的功耗。
结合第一方面,在一种可能的实现方式中,终端开始搜索蜂窝网络,在搜索蜂窝网络成功的情况下,终端驻留到蜂窝网络,包括:终端按照终端中预设的搜网序列开始搜索蜂窝网络,在搜索蜂窝网络成功的情况下,终端驻留到蜂窝网络;其中,搜网序列用于指示终端搜 索蜂窝网络的一个或多个网络制式、以及搜索一个或多个网络制式的顺序。
这样,终端在北斗网络下没有收发数据时,可以搜索蜂窝网络。这样,终端可以尽快地从北斗网络下回到蜂窝网络。
结合第一方面,在一种可能的实现方式中,终端开始搜索蜂窝网络,在搜索蜂窝网络成功的情况下,终端驻留到蜂窝网络,可以包括:终端确定存储有先验信息,先验信息包括终端预设距离内的蜂窝网络信息;终端按照先验信息搜索蜂窝网络,在搜索蜂窝网络成功的情况下,终端驻留到蜂窝网络。
其中,蜂窝网络信息包括一个或多个地理位置的经纬度、一个或多个地理位置与基站的距离、一个或多个地理位置处覆盖的蜂窝网络的小区号、一个或多个地理位置处覆盖蜂窝网络的小区号的网络制式和频点、一个或多个地理位置处覆盖蜂窝网络的信号强度、基站发送功率中的一项或多项。
这样,终端可以借助于先验信息进行搜网,可以提高终端搜网的效率,节约终端的功耗。
第二方面,提供一种切换网络的方法,该方法可以包括:北斗网络设备接收到终端发送的第一查询请求,第一查询请求用于查询基站的信息,第一查询请求携带有终端的位置信息;北斗网络设备向终端发送第一查询结果,第一查询结果包括终端预设距离内的一个或多个基站的信息,第一查询结果用于终端搜索蜂窝网络。
这样,通过本申请实施例提供的切换网络的方法,北斗网络设备可以在终端搜网时,提供终端附近的基站的信息,这样,可以辅助终端搜网,提高终端搜网的成功率。
结合第二方面,在一种可能的实现方式中,第一查询请求为第一报文,第一报文中包括第一蜂窝信息类型字段、终端经纬度字段;第一蜂窝信息类型字段用于指示北斗网络设备向终端回复的第一查询结果的类型;终端经纬度字段用于指示终端的经纬度。
结合第二方面,在一种可能的实现方式中,第一蜂窝信息类型字段为第一值,第一值用于指示第一查询结果为终端预设距离内的一个或多个基站的信息;第一蜂窝信息类型字段为第二值,第二值用于指示第一查询结果为终端预设距离内满足预设条件的一个或多个基站的信息。
这样,终端可以利用该蜂窝信息类型字段指示北斗网络设备回复查询结果的类型。
结合第二方面,在一种可能的实现方式中,基站的信息包括基站的经纬度、基站的网络制式、基站的频点、基站的小区号,以及基站的发送功率中的一项或多项。
结合第二方面,在一种可能的实现方式中,预设条件为终端接收基站发送信号的信号强度大于第一阈值。信号强度由基站的发送功率计算得到,在一些例子中,终端接收基站发送信号的信号强度可以用来指示终端接收基站发送信号的接收功率。
结合第二方面,在一种可能的实现方式中,第一查询结果为第二报文,第二报文包括第二蜂窝信息类型字段、第一基站数量字段、第一经纬度字段、第一网络制式字段、第一频点字段、第一小区号字段;其中,第二蜂窝信息类型字段为第一值,用于指示第一查询结果为终端预设距离内的一个或多个基站的信息,基站数量字段用于指示终端预设距离内的基站的数量;第一经纬度字段用于指示终端预设距离内的基站的经纬度;第一网络制式字段用于指示终端预设距离内的基站的网络制式;第一频点字段用于指示终端预设距离内的基站的频点;第一小区号字段用于指示终端预设距离内的基站的小区号。
这样,终端可以根据查询结果中的基站的信息进行搜网,可以提高终端搜网的效率,节约终端的功耗。
结合第二方面,在一种可能的实现方式中,第二报文还包括第一基站发送功率字段,第一基站发送功率字段用于指示终端预设距离内的基站的发送功率。
这样,终端可以根据基站的发送功率计算出信号强度,然后根据信号强度是否大于第一阈值来评判是否按照该基站的网络制式进行搜网。当信号强度大于或等于第一阈值时,终端才根据该基站的网络制式进行搜网,若信号强度小于第一阈值,终端可以不按照该基站的网络制式进行搜网。这样,可以避免无效搜网,可以提高终端搜网的效率,节约终端的功耗。
结合第二方面,在一种可能的实现方式中,第一查询结果为第三报文,第三报文中包括第三蜂窝信息类型字段、第二基站数量字段、第二网络制式字段、第二频点字段、第二小区号字段;第三蜂窝信息类型字段为第二值,第一查询结果为终端预设距离内满足预设条件的一个或多个基站的信息;第二基站数量字段用于指示终端预设距离内满足预设条件的基站的数量;第二网络制式字段用于指示终端预设距离内满足预设条件的基站的网络制式,第二频点字段用于指示终端预设距离内满足预设条件的基站的频点,第二小区号字段用于终端预设距离内满足预设条件的基站的小区号。
这样,终端可以直接按照北斗网络设备提供的基站的信息进行搜网。终端无需评估该基站的搜网成功率。这样,可以提高终端搜网的效率,节约终端的功耗。
结合第二方面,在一种可能的实现方式中,北斗网络设备向终端发送第一查询结果,第一查询结果包括终端预设距离内的一个或多个基站的信息,可以包括:北斗网络设备根据终端的位置信息查询终端预设距离内的一个或多个基站的信息;北斗网络设备向终端发送第一查询结果,第一查询结果包括终端预设距离内的一个或多个基站的信息。
结合第二方面,在一种可能的实现方式中,北斗网络设备根据终端的位置信息查询终端预设距离内的一个或多个基站的信息,包括:北斗网络设备根据终端的位置向蜂窝核心网设备查询终端预设距离内的一个或多个基站的信息,蜂窝核心网设备中存储有运营商部署的所有基站的信息。
第三方面,提供一种北斗通信系统,该系统可以包括终端和北斗网络设备,其中:
终端未驻留在蜂窝网络,用于检测到终端在预设时长内未向北斗网络设备发送数据或未接收北斗网络设备发送的数据;
终端用于向北斗网络设备发送第一查询请求,第一查询请求用于查询基站信息,第一请求携带有终端的位置信息;
终端用于接收到北斗网络设备发送的第一查询结果,第一查询结果包括终端预设距离内的一个或多个基站的信息;
终端用于根据第一查询结果搜索蜂窝网络,在搜索蜂窝网络成功的情况下,终端驻留到蜂窝网络;
北斗网络设备用于接收终端发送的第一查询请求,
北斗网络设备用于向终端发送第一查询结果。
结合第三方面,在一种可能的实现方式中,北斗网络设备还可以执行上述第二方面中任一种可能的实现方式中的方法。
结合第三方面,在一种可能的实现方式中,终端还可以执行上述第一方面中任一种可能的实现方式中的方法。
第四方面,本申请提供了一种通信装置,包括一个或多个处理器、一个或多个存储器和收发器。收发器、该一个或多个存储器与一个或多个处理器耦合,一个或多个存储器用于存 储计算机程序代码,计算机程序代码包括计算机指令,当一个或多个处理器执行计算机指令时,使得通信装置执行上述第一方面任一项可能的实现方式中的方法。
其中,该通信装置可以为终端或其他产品形态的设备。
第五方面,本申请提供了一种通信装置,包括一个或多个处理器、一个或多个存储器和收发器。收发器、该一个或多个存储器与一个或多个处理器耦合,一个或多个存储器用于存储计算机程序代码,计算机程序代码包括计算机指令,当一个或多个处理器执行计算机指令时,使得通信装置执行上述第二方面任一项可能的实现方式中的方法。
其中,该通信装置可以为北斗网络设备,或北斗网络设备中的任一网元或多个网元的组合。
第六方面,本申请提供了一种计算机存储介质,包括计算机指令,当计算机指令在计算机上运行时,使得计算机执行上述第一方面任一项可能的实现方式中的方法。
第七方面,本申请提供了一种计算机存储介质,包括计算机指令,当计算机指令在计算机上运行时,使得计算机执行上述第二方面任一项可能的实现方式中的方法。
第八方面,本申请提供了一种计算机程序产品,当计算机程序产品在计算机上运行时,使得计算机执行上述第一方面任一项可能的实现方式中的方法。
第九方面,本申请提供了一种计算机程序产品,当计算机程序产品在计算机上运行时,使得计算机执行上述第二方面任一项可能的实现方式中的方法。
第十方面,本申请提供了一种芯片或芯片系统,应用于终端,包括处理电路和接口电路,接口电路用于接收代码指令并传输至所述处理电路,处理电路用于运行所述代码指令以执行上述第一方面任一项可能的实现方式中的方法。
附图说明
图1是本申请实施例提供的一种北斗通信系统10的架构示意图;
图2是本申请实施例提供的一种切换网络的方法示意流程图;
图3是本申请实施例提供的一种搜网示意图;
图4是本申请实施例提供的一种切换网络的方法示意流程图;
图5是本申请实施例提供的一种搜网场景示意图;
图6是本申请实施例提供的另一种搜网场景示意图;
图7是本申请实施例提供的一种切换网络的方法示意流程图;
图8是本申请实施例提供的一种北斗通信系统10的入站数据的协议封装架构示意图;
图9是本申请实施例提供的一种北斗通信系统10的入站数据的协议解析架构示意图;
图10是本申请实施例提供的一种北斗通信系统10的出站数据的协议封装架构示意图;
图11是本申请实施例提供的一种北斗通信系统10的出站数据的协议解析架构示意图;
图12是本申请实施例提供的电子设备的结构示意图;
图13为本申请实施例提供的一种通信装置的结构示意图;
图14为本申请实施例提供的另一种通信装置的结构示意图;
图15为本申请实施例提供的另一种通信装置的结构示意图;
图16为本申请实施例提供的另一种通信装置的结构示意图。
具体实施方式
本申请以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括复数表达形式,除非其上下文中明确地有相反指示。还应当理解,本申请中使用的术语“和/或”是指并包含一个或多个所列出项目的任何或所有可能组合。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为暗示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征,在本申请实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
下面介绍本申请实施例中提供的一种北斗通信系统10。
图1示出了本申请实施例中提供的一种北斗通信系统10的架构示意图。
如图1所示,在北斗短报文系统10的中,北斗通信系统10可以包括终端100、北斗短报文卫星21、北斗网络设备200、短消息中心(short message service center,SMSC)41。
其中,在时刻1时,终端100处于北斗网络下,无蜂窝网络或无线局域网络(例如,无线保真(wirelessfidelity,Wi-Fi)),终端100可以在北斗网络下,通过北斗短报文卫星21向北斗网络设备200发送消息,或者接收北斗网络设备300发送的消息。
具体地,终端100可以发送短报文信息给北斗短报文卫星21,北斗短报文卫星21只进行中继,直接将终端100发送的短报文信息转发给地面的北斗网络设备200。北斗网络设备200可以根据北斗通信协议解析卫星转发的短报文信息,并将从短报文信息中解析出的通用报文类型的报文内容转发给短消息中心41。短消息中心41可以通过传统的蜂窝通信网络,将报文内容转发给目标终端。
其中,北斗网络设备200可以包括北斗地面接收站31、北斗地面发射站35、信号接收处理设备32、信号处理中心33、信号发送处理设备36、运行控制中心37、北斗短报文融合通信平台34。北斗地面接收站31可以包括具有接收功能的一个或多个设备。北斗地面发射站35可以包括具有发送功能的一个或多个设备。北斗地面接收站31和北斗地面发射站35可用于北斗网络设备200在物理层(physical layer protocol,PHY)对数据的处理功能。信号接收处理设备32、信号处理中心33、信号发送处理设备36、运行控制中心37可用于北斗网络设备200在卫星链路控制层(satellite link control protocol,SLC)层和消息数据汇聚层(message data convergence protocol,MDCP)对数据的处理功能。北斗短报文融合通信平台34可用于北斗网络设备200在应用层(application layer protocol,APP)对数据的处理功能。
在时刻2时,终端100处于北斗网络下,但是已经在蜂窝网络覆盖下了,终端100需要从北斗网络回到蜂窝网络下,才可以接收到短消息中心41通过蜂窝网络发送的消息。
在当前北斗短报文协议架构下,当终端100在北斗网络下时,终端100中的蜂窝网络不保持驻留态(即使是有蜂窝网络环境)。当用户选择了北斗网络后,终端不会主动进行蜂窝网络的搜网。用户想要回到蜂窝网络,需要关闭终端中北斗通信功能(即主动去关闭北斗网络),再去进行蜂窝搜网。因此,终端从北斗网络下回到蜂窝的时间由用户的行为决定了。这样,不同的用户可能导致不同的使用感受。
可以理解的是,一般地,终端用户在运营商处开通了北斗通信业务才可以在北斗网络下接收或发送消息。由于北斗卫星的民用资源有限,通常情况下,北斗网络下的业务计费要高于蜂窝网络,因此,当用户所处的环境存在蜂窝网络时,用户还是希望终端100能够尽快从 北斗网络切换到蜂窝网络。
本申请实施例提供一种切换网络的方法,终端处于北斗网络,即终端中的北斗通信功能开启。当终端在没有收发业务时,可以搜索蜂窝网络,若搜索到可以连接的蜂窝网络,终端可以从北斗网络切换到蜂窝网络。这样,无需用户关闭终端中的北斗网络,终端可以及时回到蜂窝网络。
在本申请实施例中,终端处于北斗网络可以指,终端未驻留在蜂窝网络,终端中的移动通信模块关闭,北斗通信模块开启,蓝牙模块、和无线局域网模块也可以是关闭的。终端从北斗网络切换到蜂窝网络可以是指,终端中北斗通信模块关闭,移动通信模块开启,终端驻留到蜂窝网络。
由于现在终端设计中,终端的北斗通信模块和移动通信模块共用一套射频模块;还有,在北斗网络下时,移动通信模块若是开启,会对北斗通信模块收发信号产生干扰,再加上考虑到终端的功耗,所以,一般情况下,终端中的北斗通信模块和移动通信模块不同时开启。下面结合附图详细介绍本申请实施例提供的一种切换网络的方法。
图2示出了本申请实施例提供的一种切换网络的方法流程示意图。
如图2所示,本申请实施例提供的一种切换网络的方法可以包括如下步骤:
S101、终端100开启北斗网络,在检测到北斗通信模块处于空闲状态时,终端100开始搜索蜂窝网络。
终端100可以基于用户操作开启北斗网络。用户操作可以有多种,例如,用户点击终端100中用于开启北斗网络的控件,或者,用户打开终端100中可以用于开启北斗网络的应用,或者,用户通过语音指令指示终端100开启北斗网络,本申请实施例对此不作限定。
终端100开启北斗网络后,终端100可以通过北斗通信模块接收北斗网络设备200发送的消息、向北斗网络设备200发送消息。终端100检测到北斗通信模块在预设时长T1内未发送消息或接收消息,终端100可以确定该北斗通信模块处于空闲状态。
当终端100的北斗通信模块处于空闲状态时,终端100开始搜索蜂窝网络。
S102、终端100按照预置的搜网序列进行搜网,当终端100可以搜索到满足预设条件的蜂窝网络时,终端100从北斗网络切换到蜂窝网络。
在一种可能的实现方式中,终端100中无先验信息,终端100按照预置的搜网序列(制式,频段遍历)搜索蜂窝网络。终端100中可以预置有搜网序列,第一网络制式,第二网络制式,…,第R网络制式。其中,R为整数。每个网络制式下有多个网络频段。终端100可以从第一个网络制式开始搜网,终端100搜索第一网络制式下的第一频段,如果该网络满足预设条件,终端100可以连接该第一网络制式下的第一频段。如果该网络不满足条件,终端100可以开始搜索第一网络制式下的第二频段,终端100按照预置的搜网序列依次进行搜网。
示例性地,图3示例性地提供了一种终端100在北斗网络下搜索蜂窝网络示意图。如图3所示,终端100处于北斗网络下,终端100可以存在接收业务和发送业务。即终端100可以向北斗网络设备200发送消息,也可以接收北斗网络设备200发送的消息。当终端100在北斗网络下处于空闲状态,即终端100的北斗通信模块处于空闲模块时,终端100开始搜索蜂窝网络。
如图3所示,终端100可以依次搜索每个网络制式的每个频段。终端100搜网的序列可以是先搜索新无线(newradio,NR)网络制式下各个频段、然后再搜索长期演进(long term evolution,LTE)网络制式下的各个频段,然后再搜索宽带码分多址(Wideband Code Division  Multiple Access,WCDMA)网络制式下的各个频段,直到终端100搜索到可以连接的蜂窝网络。下文终端100搜索LTE网络制式下的各个频段为例进行阐述。
终端100搜索NR网络制式下的各个频段,没有搜索到可连接的频段后,终端100可以搜索LTE网络制式下的各个频段。LTE网络制式下的各个频段可以包括B1频段、B3频段、B7频段等等。终端100可以依次搜索B1频段、B3频段、B7频段。
当终端100搜索到满足预设条件的蜂窝网络时,终端100可以从北斗网络切换到蜂窝网络。预设条件可以是网络制式下的第一频段的信号强度大于阈值A。
在一种可能的实现方式中,当终端100没有搜索到满足预设条件的蜂窝网络时,终端100可以按照搜网的序列再次搜网,直至搜索到满足预设条件的蜂窝网络、或者直至终端100中的北斗通信模块开始收发消息。
这样,不需要用户操作,终端100可以在用户无感知的情况下从北斗网络切换到蜂窝网络。但是由于终端100在搜索蜂窝网络时,没有先验信息,导致终端100搜网耗时长,耗电多。
本申请实施例提供一种切换网络的方法,终端100在有蜂窝网络时存储有先验信息,当终端100在北斗网络下处于空闲状态时,可以基于先验信息搜索蜂窝网络。
图4示例性地示出了本申请实施例提供的一种切换网络的方法,如图4所示,本申请实施例提供的一种切换网络的方法可以包括如下步骤:
S201、终端100开启北斗网络,在检测到北斗通信模块处于空闲状态时,确定终端100中是否存储有终端100所在位置预设距离内蜂窝网络的先验信息。
终端100基于先验信息搜索蜂窝网络,终端100中存储有终端100所在位置预设距离内蜂窝网络的先验信息。
当用户在荒漠、无人区等无蜂窝网络覆盖或者蜂窝通信被破坏的地区时,用户可以开启终端100中的北斗网络。终端100可以通过北斗网络收发信息。当用户暂时不需要收发信息,即终端100的北斗通信模块处于空闲状态时,终端100可以确定终端100中是否存储有终端100所在位置预设距离内蜂窝网络的先验信息。在终端100开启北斗网络之前,终端100已通过蜂窝网络下载有先验信息。
在一种可能的实现方式中,终端100在检测到北斗通信模块处于空闲状态时,先确定终端100中是否存储有先验信息,若存储有先验信息,终端100再确认先验信息中是否包含终端100所在位置预设距离内蜂窝网络的先验信息。
可选地,在一种可能的实现方式中,若终端100中没有存储先验信息,终端100可以按照上述步骤S101-步骤S102的方法进行搜网。
可选地,在另一种可能的实现方式中,若终端100中没有存储先验信息,终端100可以不进行搜网,即终端100可以不执行步骤S202-步骤S203。
该先验信息可以是终端100所处位置处存在的网络制式以及频段。
在一种可能的实现方式中,该先验信息可以是以信号地图的形式存储在终端100中。
可选地,该信号地图可以包含N米*N米栅格范围内的非独立组网(non-standalone,NSA)小区信息。
进一步地,在一种可能的实现方式中,信号地图可以由云服务器(或服务器,下文以云服务器为例进行阐述)根据各个用户的终端上传的终端所处位置(例如,经纬度),以及该位 置对应的小区信息(例如,网络制式、频段等等信息)生成。具体地,终端100可以将终端100所处位置,以及该位置对应的小区信息上传到云服务器。云服务器可以根据大量用户的终端上传的位置,以及位置对应的小区信息生成信号地图。
在终端100有蜂窝网络时,终端100可以从云服务器获取终端100所处位置的先验信息。终端100还可以周期性地从云服务器获取先验信息,从而更新终端100中存储的先验信息。云服务器中存储的先验信息可以是不同用户在不同位置发送的上报信息。该上报信息可以是任一终端所在位置对应的蜂窝小区号(可以简称小区号),该终端所在位置的经纬度、蜂窝小区的网络制式、频点、网络强度、路损、基站发送功率等等。
在一种可能的实现方式中,终端100所在预设距离内(例如,终端100所在信号地图的栅格内)只有一个基站,即终端100的先验信息中包括不同终端在不同位置接收到该基站发射信号的网络制式、频点、基站发送信息等等信息。
示例性地,图5示出了终端100所在预设距离只有一个基站的搜网场景。如图5所示,终端100的预设距离内存在基站A,终端100与基站A的距离为d-A。云服务器中存储有终端在该基站A覆盖到的位置①、位置②、位置③处的上报信息。例如,终端在位置①处接收到基站A发射信号时的上报信息1、以及在位置②处接收到基站A发射信号时的上报信息2、和在位置③处接收到基站A发射信号时的上报信息3。
其中,位置①与基站A的距离为d1,该上报信息1可以包含位置①对应的小区号1、该位置①的经纬度1、该小区1的制式1、频点1、网络强度1、路损1、基站发送功率1等等信息。位置②与基站A的距离为d2,该上报信息2可以包含位置②对应的小区号2、该位置②的经纬度2、该小区2的制式2、频点2、网络强度2、路损2、基站发送功率2等等。位置③与基站A的距离为d3,该上报信息3可以包含位置③对应的小区号3、该位置③的经纬度3、该小区3的制式3、频点3、网络强度3、路损3、基站发送功率3等等信息。
终端100可以在连接蜂窝网络时,下载上述上报信息1、上报信息2、以及上报信息3作为先验信息。同时,北斗网络设备200也可以从云服务器更新、下载上述上报信息1、上报信息2、以及上报信息3。
可以理解的是,位置①、位置②、位置③可以处于同一个蜂窝网络的小区,也可以处于不同的小区。
在一种可能的实现方式中,终端100所在预设距离内有多个基站(大于或等于2个基站),即终端100的先验信息中包括不同终端在不同位置接收到该多个基站发射信号的网络制式、频点、基站发送信息等等信息。
示例性地,图6示出了终端100所在预设距离有两个基站的搜网场景。如图5所示,终端100的预设距离内存在基站A和基站B,终端100与基站A的距离为d-A,终端100与基站B的距离为d-A。云服务器中存储有终端在该基站A覆盖到的位置①、位置②、位置③处的上报信息,以及终端在基站B覆盖到的位置④、位置⑤、位置⑥处的上报信息。终端在位置①处接收到基站A发射信号时的上报信息1、以及在位置②处接收到基站A发射信号时的上报信息2、和在位置③处接收到基站A发射信号的上报信息3;终端在位置④处接收到基站B发射信号时的上报信息4、以及在位置⑤处接收到基站B发射信号时的上报信息5、和在位置⑥处接收到基站B发射信号的上报信息6。
其中,位置①与基站A的距离为d1,该上报信息1可以包含位置①对应的小区号1、该位置①的经纬度1、该小区1的制式1、频点1、网络强度1、路损1、基站发送功率1等等 信息。位置②与基站A的距离为d2,该上报信息2可以包含位置②对应的小区号2、该位置②的经纬度2、该小区2的制式2、频点2、网络强度2、路损2、基站发送功率2等等。位置③与基站A的距离为d3,该上报信息3可以包含位置③对应的小区号3、该位置③的经纬度3、该小区3的制式3、频点3、网络强度3、路损3、基站发送功率3等等信息。
位置④与基站B的距离为d4,该上报信息4可以包含位置④对应的小区号4、该位置④的经纬度4、该小区4的制式4、频点4、网络强度4、路损4、基站发送功率4等等信息。位置⑤与基站B的距离为d5,该上报信息5可以包含位置⑤对应的小区号5、该位置⑤的经纬度5、该小区5的制式5、频点5、网络强度5、路损5、基站发送功率5等等。位置⑥与基站B的距离为d6,该上报信息6可以包含位置⑥对应的小区号6、该位置⑥处的经纬度6、该小区6的制式6、频点6、网络强度6、路损6、基站发送功率6等等信息。
终端100可以在连接蜂窝网络时,下载上述上报信息1、上报信息2、上报信息3、以及上报信息4、上报信息5、上报信息6作为先验信息。同时,北斗网络设备200也可以从云服务器更新、下载上述上报信息1、上报信息2、上报信息3、以及上报信息4、上报信息5、上报信息6。
可以理解的是,位置①、位置②、位置③可以处于同一个蜂窝网络的小区,也可以处于不同的小区。位置④、位置⑤、位置⑥可以处于同一个蜂窝网络的小区,也可以处于不同的小区。
S202、若终端100中存在终端100所在位置预设距离内蜂窝网络的先验信息,终端100开始搜索蜂窝网络。
在一种可能的实现方式中,若终端100所在位置对应的先验信息中包含N条上报信息,N大于预设阈值时,终端100可以按照上报信息中网络制式或频点搜索蜂窝网络。
或者,在一种可能的实现方式中,若终端100所在位置对应的先验信息中包含N条上报信息,N小于预设阈值时,终端100可以不进行搜网。当上报信息太少时,终端100可能会搜网不成功,因此,终端100可以先不进行搜网,可以节约终端100的功耗。
在一种可能的实现方式中,若终端100中不存在终端100所在位置预设距离内蜂窝网络的先验信息,终端100可以不开启搜网。
在一种可能的实现方式中,若终端100所在位置对应的先验信息中包含M条上报信息,且M条上报信息中小区号相同时,M等于或大于预设阈值时,终端100可以根据M条上报信息计算出基站的位置。
可以理解的是,当多个的位置地点对应的小区号相同时,多个位置地点接收到的蜂窝网络信号可以是同一个基站发送的。但是,小区号和基站不是一一对应的关系,当多个的位置地点对应的小区号不相同时,多个位置地点接收到的蜂窝网络信号也可以是同一个基站发送的。
进一步地,终端100可以根据先验信息计算出终端100与基站的距离,以及终端100接收基站信号的接收成功率。终端100可以根据接收成功率判断搜网成功率。
举例来说,以图4示出的搜网场景为例,终端100可以按照如下步骤计算出终端100接收基站A发送信号时的接收成功率。
首先,终端100可以根据位置①与基站A的距离为d1,位置②与基站A的距离为d2,位置③与基站A的距离为d3,计算出基站A的位置坐标。具体地,终端100可以根据三点 定位方法计算出基站A的位置坐标。关于三点定位方法可以参考现有技术中的描述,此处不再赘述。其中,位置①、位置②以及位置③对应的小区号可以是相同的。
然后,进一步地,终端100根据终端的位置坐标和基站A的位置坐标,计算出终端100与基站A的距离d-A。
接着,终端100可以根据终端100与基站A的距离d-A,计算出终端100与基站A之间的路损。示例性地,路损计算公式可以如下:
PL=20log 10(d-A)+32.45+20.0log 10(f c),公式1
其中,上述公式1中,d-A为终端100与基站A之间的距离,f c为载波频率,PL是终端100与基站A之间的路损。
终端100可以按照上述公式1计算终端100与基站A之间的路损。可以理解的是,上述公式1仅为路损计算公式的示例,终端100还可以通过其他计算路损的公式来计算终端100与基站A之间的路损,本申请实施例对此不作限定。
最后,终端100可以根据先验信息中包含的基站A的发送功率,以及终端100与基站A之间的路损,计算出终端100的接收功率,例如,在一种可能的实现方式中,接收功率=基站发送功率-路损,可以理解的是,本申请实施例对接收功率的计算方法不作限定。终端100可以根据接收功率判断搜网的成功率。
若终端100的接收成功率大于预设接收功率阈值时,终端100可以按照该先验信息中该基站A对应的网络制式、以及频点进行搜网。
当终端100处于北斗网络时,终端100的预设距离内可以存在一个或多个基站,终端100可以按照上述步骤计算终端接收每个基站发射信号的接收功率。
在一种可能的实现方式中,若终端100接收每个基站发射信号的接收功率低于预设接收功率阈值,终端100可以停止搜网。
在一种可能的实现方式中,终端100可以按照接收功率最高的基站对应的网络制式和频点进行搜网。
终端100基于先验信息中与基站的距离、以及基站的发送功率等信息计算终端100的接收功率,若接收功率大于预设接收功率阈值,终端100可以按照先验信息中该基站对应的网络制式、频点进行搜网。
S203、当终端100搜索到满足预设条件的蜂窝网络时,终端100从北斗网络切换到蜂窝网络。
终端100根据先验信息进行搜网,若搜网成功(即搜索到满足预设条件的蜂窝网络),终端100切换到蜂窝网络。
可以理解的是,这里,预设条件可以是终端100的接收功率大于预设接收功率阈值。进一步地,终端100切换到蜂窝网络时或者切换到蜂窝网络后,关闭北斗网络。
通过上述实施例提供的一种切换网络的方法,终端100可以借助于先验信息进行搜网,这样,可以避免遍历式搜网,按照先验信息中的网络制式和频点进行搜网,能够更快,有效地搜索蜂窝网络。从而,可以节约终端100的功耗。
终端100在蜂窝网络时从云服务器获取的先验信息。云服务器中的先验信息是依靠其他终端在各个位置主动上报得到。如果在某个位置没有终端向云服务器上报过终端所处的位置 以及所处位置对应的蜂窝网络信息,那么云服务器中就不会有该位置处的蜂窝网络信息。终端100也无法获取该位置的先验信息。例如,没有终端在位置location1处上报终端所处的位置,以及所处位置对应的蜂窝网络信息给云服务器。那么云服务器中就不会存储有位置location1处的蜂窝网络信息,即使位置location1的预设距离内存在蜂窝基站。
本申请实施例提供另一种切换网络的方法,当终端100在北斗网络下,该终端100无发送和接收信息时,终端100可以开始搜索蜂窝网络。终端100可以向北斗网络设备200发送蜂窝网络信息查询请求报文,北斗网络设备200可以将终端100附近的蜂窝网络信息发送终端100,终端100可以基于北斗网络设备200发送的蜂窝网络信息进行搜网。这样,终端100可以通过北斗网络向北斗网络设备200实时获取终端100附近的蜂窝网络信息,然后有针对性性地进行搜网,这样,可以提供终端100搜网的成功率,并且可以节约终端100的功耗。
图7示例性地示出了本申请实施例提供的一种切换网络的方法流程示意图。如图7所示,本申请实施例提供的一种切换网络的方法可以包括如下步骤:
S301、终端100已开启北斗网络,终端100检测到北斗通信模块处于空闲状态。
当终端100处于北斗网络时,终端100检测到北斗通信模块在预设时长T1内未发送消息或接收消息,终端100可以确定北斗通信模块处于空闲状态。
这里,终端100在预设时长T1内未发送消息或接收消息可以是,终端100检测在预设时长T1内无用户触发的发送消息或者接收消息。即,用户在预设时长T1内,没有触发终端100发送消息或接收消息。
当终端100检测到北斗通信模块处于空闲状态时,终端100可以执行步骤S302。
S302、终端100向北斗网络设备200发送蜂窝网络信息查询请求。
终端100可以在北斗通信模块处于空闲状态时向北斗网络设备200发送蜂窝网络信息查询请求。该蜂窝网络信息查询请求用于查询终端附件的蜂窝网络信息(网络制式、频点、小区号等等信息)。
在本申请实施例中,蜂窝网络信息查询请求可以称为第一查询请求。
可选地,在一种可能的实现方式中,当终端100处于北斗网络时,终端100可以周期地向北斗网络设备200发送蜂窝网络信息查询请求。即终端100可以无需执行步骤S301。
可选地,终端100可以在北斗通信模块处于空闲状态时,周期性地向北斗网络设备200发送蜂窝网络信息查询请求。
终端100发送的蜂窝网络信息查询请求可以是报文,该报文可以称为蜂窝网络信息查询请求报文。
该蜂窝网络信息查询请求报文的格式可以如下表1所示:
表1
Figure PCTCN2022114731-appb-000001
如表1所示,蜂窝网络信息查询请求报文中可以包括回执指示字段、业务类型字段、加密指示字段、压缩指示字段、蜂窝信息类型字段、终端经纬度字段。其中:
回执指示字段用于指示接收设备(即北斗网络设备)是否需要回复应用层回执。回执指 示字段的长度可以是1比特bit。当回执指示字段为数值C1(例如,1)时,该回执指示可以用于指示接收设备回复应用层回执。当回执指示字段为数值C2(例如,0)时,该回执指示可以用于指示接收设备不回复应用层回执。应用层回执用于指示接收该蜂窝网络信息查询请求报文的设备是否正确解析出该蜂窝网络信息查询请求报文。可以理解的是,本申请实施例对该回执指示字段的长度不作限定。
业务类型字段用于指示该蜂窝网络信息查询请求的业务类型。该蜂窝网络信息查询请求的业务类型字段为数值C3(例如,111),用于指示该蜂窝网络信息查询请求报文的业务类型为申请蜂窝网络信息业务。业务类型字段的长度可以是3bit,但本申请实施例对该业务类型字段的长度不作限定。
示例性地,以业务类型字段的长度为3bit为例,表2示例性地展示了当业务类型字段为不同数值时,对应的不同的业务类型。
表2
Figure PCTCN2022114731-appb-000002
如表2所示,当业务类型字段的数值为“000”时,表示为通用报文业务;当业务类型字段的数值为“001”时,表示为查询信箱概况业务,仅查询白名单用户发给终端100的信件的数量;当业务类型字段的数值为“010”时,表示为查询信箱概况业务,查询所有用户发给终端100的信件的数量;当业务类型字段的数值为“011”时,表示为信箱概况业务,查询单独用户(非白名单用户)发送给终端100的信件的数量;当业务类型字段的数值为“100”时,表示为信件下载业务,仅下载白名单用户发送给终端100的信件;当业务类型字段的数值为“101”时,表示为信件下载业务,下载所有用户发送给终端100的信件;当业务类型字段的数值为“110”时,表示为信件下载业务,下载单独用户(非白名单用户)发送给终端100的信件;当业务类型字段的数值为“111”时,表示为申请蜂窝网络信息业务。
在一些实施例中,信件也可以称为短消息、短信、或者信息等等,此处不作限定。
可以理解的是,上述表2仅为示意,业务类型字段的值和值对应的类型也可以和表2中示出的不同。
加密指示字段可用于指示该蜂窝网络信息查询请求报文是否加密。该加密指示字段的长度可以是2bit,可以理解的是,本申请实施例对该加密指示字段的长度不作限定。
压缩指示字段可用于指示该蜂窝网络信息查询请求报文是否压缩。该压缩指示字段的长度可以是2bit,可以理解的是,本申请实施例对该压缩指示字段的长度不作限定。
蜂窝信息类型字段用于指示接收设备回复的蜂窝网络信息查询结果的类型。当蜂窝信息类型字段为数值C4时,指示接收设备(即为北斗网络设备200)回复终端100附近的蜂窝小 区信息。当蜂窝信息类型字段为数值C5时,用于指示接收设备回复该接收设备判定的终端100附近的蜂窝小区中可以进行搜网的蜂窝小区信息。该蜂窝信息类型字段的长度可以为1bit,可以理解的是,本申请实施例对该蜂窝信息类型字段的长度不作限定。
在本申请实施例中,蜂窝网络信息查询请求的接收设备为北斗网络设备200。因此,在本申请实施例,接收设备即为北斗网络设备200。
终端经纬度字段用于指示终端100的经纬度。该终端经纬度字段的长度可以是47bit,可以理解的是,本申请实施例对该终端经纬度字段的长度不作限定。
在一种可行的示例中,该蜂窝网络信息查询请求报文中可以包含更多或者更少字段,本申请实施例对此不作限定。例如,蜂窝网络信息查询请求报文中可以仅包含业务类型字段、蜂窝信息类型字段、终端经纬度字段。又例如,蜂窝网络信息查询请求中还可以包含用户ID字段,即该蜂窝网络信息查询请求中不仅包含上述表1中示出的字段,还包含用户ID字段。用户ID字段用于指示终端100的ID。另外,本申请实施例对蜂窝网络信息查询请求报文中包含的字段的排列顺序和排列方式均不限定。
在本申请实施例中,蜂窝网络信息查询请求报文可以称为第一报文。
S303、北斗网络设备200向终端100发送蜂窝网络信息查询结果。
北斗网络设备200接收到蜂窝网络信息查询请求后,可以根据该蜂窝网络信息查询请求中携带的终端100的位置查询终端100预设距离内(例如,终端100所在信号地图的栅格内)的蜂窝网络信息。
在本申请实施例中,蜂窝网络信息查询结果可以称为第一查询结果。
在一种可能的实现方式中,若北斗网络设备200接收到的蜂窝网络信息查询请求中的蜂窝信息类型字段为数值C4,那么北斗网络设备200回复给终端100的蜂窝网络信息查询结果可以是终端100预设距离内所有蜂窝小区的网络信息。
北斗网络设备200发送的蜂窝网络信息查询结果可以是报文,该报文可以称为蜂窝网络信息查询结果报文。
示例性地,该蜂窝网络信息查询结果报文的格式可以如下表3所示。
表3
Figure PCTCN2022114731-appb-000003
如表3所示,蜂窝网络信息查询结果报文中可以包含消息类型指示字段、加密指示字段、压缩指示字段、蜂窝类型指示字段、基站数量字段、经纬度字段、网络制式字段、频点字段、小区号字段、基站发送功率字段。其中:
消息类型指示字段用于指示蜂窝网络信息查询结果报文的类型。该消息类型指示字段的数值可以是C6(例如,10),用于指示蜂窝网络信息查询结果报文为基站信息。消息类型指示字段的长度可以是2bit,可以理解是,本申请实施例对该消息类型指示字段的长度不作限定。
下面以消息类型指示字段的长度为2bit为例,具体阐述消息类型指示字段的字段值对应 的消息类型。下表4示出了消息类型指示字段不同的数值对应的消息类型。
表4
消息类型指示 消息类型
00 信箱概况
01 信件消息
10 基站信息
11 保留待用(reserve,RSV)
如上表4所示,当报文中的消息类型指示字段为00时,表示该报文用于回复终端100发送的信箱概况查询请求,该报文中包含终端100查询的信箱概况。当报文中的消息类型指示字段为01时,表示该报文用于回复终端100发送信件下载请求,该报文中包含终端100下载的信件的内容。当报文中的消息类型指示字段为10时,表示该报文用于回复终端100发送的蜂窝网络信息查询请求,该报文中包含终端100附近的基站信息。该消息类型指示字段中的数值11暂时保留待用。
可以理解的是,在本申请实施例中,终端100附近的基站是指,与终端100的距离在预设距离内(例如,终端100所在信号地图的栅格内)的基站。
加密指示字段可以用于指示该蜂窝网络信息查询结果报文是否加密。加密指示字段的长度可以2bit,可以理解的是,本申请实施例对该加密指示字段的长度不作限定。
压缩指示字段可以用于指示该蜂窝网络信息查询结果报文是否压缩。压缩指示字段的长度可以是2bit,可以理解的是,本申请实施例对该压缩指示字段的长度不作限定。
蜂窝信息类型字段用于指示接收设备(即北斗网络设备200)回复的蜂窝网络信息查询结果的类型。北斗网络设备200回复的蜂窝网络信息查询结果报文中的蜂窝信息类型字段的数值,和北斗网络设备200接收到的蜂窝网络信息查询请求报文中的蜂窝信息类型字段的数值相同。表3中的蜂窝网络信息查询结果报文中的蜂窝信息类型字段可以为数值C4,指示接收设备(即为北斗网络设备200)回复终端100附近的蜂窝小区信息。即,该蜂窝网络信息查询结果报文中包含终端100附近的蜂窝小区信息。该蜂窝信息类型字段可以参考上文对表2的描述,此处不再赘述。
在本申请实施例中,数值C4可以称为第一值。
基站数量字段用于指示终端100附近的基站的数量。基站数量字段的长度可以是2bit,可以理解的是,本申请实施例对该基站数量字段的长度不作限定。当基站数量字段的长度为2bit时,表示终端100附近的基站的数量为0个至3个。例如,当基站数量字段为00时,表示终端100附近的基站数量为0个。当基站数量字段为01时,表示终端100附近的基站数量为1个。当基站数量字段为10时,表示终端100附近的基站数量为2个。当基站数量字段为11时,表示终端100附近的基站数量为3个。可以理解的是,由于本申请实施例对基站数量字段的长度不作限定,因此,当指示基站数量的比特位增多时,基站数量字段中可以指示的基站的数量也可以增多。
经纬度字段用于指示终端100附近的基站的经纬度。当基站数量字段指示终端100附近有K个基站时,K为整数。当K为0时,该蜂窝网络信息查询结果报文中可以不包含该经纬度字段。当K大于0时,该经纬度字段中可以包含终端100附近的K个基站的经纬度。经纬度字段的长度可以是47bit,但可以理解的是,本申请实施例对该经纬度字段的长度不作限定。
下面以经纬度字段的长度为47bit为例,详细阐述经纬度字段的具体格式。下表5示出了 经纬度字段的具体格式。
表5
Figure PCTCN2022114731-appb-000004
如上表5所示,经纬度字段中可以包括经度字段和纬度字段,经度字段的长度可以是24bit。纬度字段的长度可以是23bit。
其中,经度字段中可以包括符号位字段和经度值字段。符号位字段的长度可以是1bit,经度值字段的长度可以是23bit。符号位字段为数值S1时,表示东经,符号位字段为数值S2时,表示西经。数值S1与数值S2不相同。具体地,数值S1可以为0,数值S2可以为1。可选地,数值S1可以为1,数值S2可以为0。经度值字段表示的经度值的范围为0-648000,其单位为角,秒。
其中,纬度字段中可以包括符号位字段和纬度值字段。符号位字段的长度可以是1bit,纬度值字段的长度可以是22bit。符号位字段为数值T1时,表示北纬,符号位字段为数值T2时,表示南纬。数值T1与数值T2不相同。具体地,数值T1可以为0,数值T2可以为1。可选地,数值T1可以为1,数值T2可以为0。纬度值字段表示的经度值的范围为0-324000,其单位为角,秒。
网络制式字段用于指示终端100附近的基站的网络制式。终端100附近的基站的网络制式可以包括NR、LTE、WCDMA、全球移动通信系统(globalsystemformobilecommunication,GSM)、码分多址(codedivisionmultipleaccess,CDMA)等等。当基站数量字段指示终端100附近有K个基站时,K为整数。当K为0时,该蜂窝网络信息查询结果报文中可以不包含该网络制式字段。当K大于0时,该网络制式字段中可以包含终端100附近的K个基站的网络制式。本申请实施例对该网络制式字段的长度不作限定。
频点字段用于指示终端100附近的基站的频点。频点字段中的基站频点可以为蜂窝协议中标准频点。当基站数量字段指示终端100附近有K个基站时,K为整数。当K为0时,该蜂窝网络信息查询结果报文中可以不包含该频点字段。当K大于0时,该网络制式字段中可以包含终端100附近的K个基站的频点。本申请实施例对该频点字段的长度不作限定。
小区号字段用于指示终端100附近的基站对应的小区号。该小区号字段中基站对应的小区号可以为蜂窝协议中标准小区号。当基站数量字段指示终端100附近有K个基站时,K为整数。当K为0时,该蜂窝网络信息查询结果报文中可以不包含该小区号字段。当K大于0时,该网络制式字段中可以包含终端100附近的K个基站对应的小区号。本申请实施例对该小区号字段的长度不作限定。
基站发送功率字段用于指示终端100附近的基站的发送功率。当基站数量字段指示终端100附近有K个基站时,K为整数。当K为0时,该蜂窝网络信息查询结果报文中可以不包含该基站发送功率字段。当K大于0时,该网络制式字段中可以包含终端100附近的K个基站对应的发送功率。本申请实施例对该基站发送功率字段的长度不作限定。
在一种可能的实现方式中,该基站发送功率为可选字段,即蜂窝网络信息查询结果报文中可以不包含该基站发送功率字段。终端100可以根据终端100中存储的经验值计算蜂窝网 络信息查询结果报文中多包含基站的基站发送功率。
可以理解的是,若北斗网络设备200返回的蜂窝网络信息查询结果中包含多个基站的信息。以三个基站为例(可以理解的是,本申请实施例对基站的数量不作限定)那么上述表3中示出的蜂窝网络信息查询结果报文的经纬度字段中包含第一个基站的经纬度,第二个基站的经纬度以及第三个基站的经纬度。网络制式字段中包含第一个基站的网络制式、第二个基站的网络制式、第三个基站的网络制式。频点字段中包含第一个基站的频点、第二个基站的频点、第三个基站的频点。小区号字段中包含第一个基站的小区号、第二个基站的小区号、第三个基站的小区号。基站发送功率字段中包含第一个基站的发送功率、第二个基站的发送功率、第三个基站的发送功率。
可以理解的是,本申请实施例对蜂窝网络信息查询结果报文中够可以包括比上述表3更多或更少的字段。例如,蜂窝网络信息查询结果报文中还可以包括用户ID字段,该用户ID字段用于指示终端100的ID。又例如,蜂窝网络信息查询结果报文中可以不包含加密指示字段和压缩指示字段、基站发送功率字段中的一个或多个。又例如,当蜂窝网络信息查询结果报文中的基站数量字段指示终端100附近的基站个数为0时,该蜂窝网络信息查询结果报文中可以不包含经纬度字段、网络指示字段、频点字段、小区号字段、以及基站发送功率字段。即,表示终端100附近没有蜂窝小区。
可选地,在另一种可能的实现方式中,若北斗网络设备200接收到的蜂窝网络信息查询请求中的蜂窝信息类型字段为数值C5,那么北斗网络设备200回复给终端100的蜂窝网络信息查询结果可以是北斗网络设备200判定的终端100预设距离内所有蜂窝小区的网络信息中搜网成功率较大的蜂窝小区的网络信息。
在本申请实施例中,上述表3示出的蜂窝网络信息查询结果报文可以称为第二报文。表3中示出的蜂窝网络信息查询结果报文中的蜂窝信息类型字段可以称为第二蜂窝信息类型字段、基站数量字段可以称为第一基站数量字段、经纬度字段可以称为第一经纬度字段、网络制式字段可以称为第一网络制式字段、频点字段可以称为第一频点字段、小区号字段可以称为第一小区号字段。北斗网络设备200发送的蜂窝网络信息查询结果可以是报文,该报文可以称为蜂窝网络信息查询结果报文。
示例性地,该蜂窝网络信息查询结果报文的格式可以如下表6所示。
表6
Figure PCTCN2022114731-appb-000005
如表6所示,蜂窝网络信息查询结果报文中可以包含消息类型指示字段、加密指示字段、压缩指示字段、蜂窝类型指示字段、基站数量字段、网络制式字段、频点字段、小区号字段。其中:
消息类型指示字段用于指示蜂窝网络信息查询结果报文的类型。该消息类型指示字段的数值可以是C6(例如,10),用于指示蜂窝网络信息查询结果报文为基站信息。消息类型指示字段的长度可以是2bit,可以理解是,本申请实施例对该消息类型指示字段的长度不作限定。该消息类型指示字段可以参考上文对表3的描述,此处不再赘述。
加密指示字段可以用于指示该蜂窝网络信息查询结果报文是否加密。加密指示字段的长 度可以2bit,可以理解的是,本申请实施例对该加密指示字段的长度不作限定。
压缩指示字段可以用于指示该蜂窝网络信息查询结果报文是否压缩。压缩指示字段的长度可以是2bit,可以理解的是,本申请实施例对该压缩指示字段的长度不作限定。
蜂窝信息类型字段用于指示接收设备(即北斗网络设备200)回复的蜂窝网络信息查询结果的类型。北斗网络设备200回复的蜂窝网络信息查询结果报文中的蜂窝信息类型字段的数值,和北斗网络设备200接收到的蜂窝网络信息查询请求报文中的蜂窝信息类型字段的数值相同。表6中的蜂窝网络信息查询结果报文中的蜂窝信息类型字段可以为数值C5,指示接收设备回复该北斗网络设备200判定的终端100附件的蜂窝小区中可以进行搜网的蜂窝小区信息。即,该蜂窝网络信息查询结果报文中包含北斗网络设备200判定的终端100附件的蜂窝小区中可以进行搜网的蜂窝小区信息。该蜂窝信息类型字段可以参考上文对表2的描述,此处不再赘述。
在本申请实施例中,数值C5可以称为第二值。
基站数量字段用于指示北斗网络设备200确定的搜网成功率较大的基站的数量。即北斗网络设备200在终端100附近的基站中筛选出的搜网成功率较大、即满足预设条件的基站的数量。北斗网络设备200可以根据基站的发送功率,基站的经纬度,以及终端100的经纬度确定出终端100可以接收到基站发送信号的接收功率或信号强度。当北斗网络设备200确定出的终端100可以接收到该基站发送信号的接收功率大于预设接收功率阈值、或信号强度大于预设信号强度阈值时,北斗网络设备200可以确定终端100按照该基站的网络制式以及频点进行搜网,搜网成功率较大。
预设条件可以是终端100可以接收到该基站发送信号的接收功率大于预设接收功率阈值、或信号强度大于预设信号强度阈值。信号强度由基站的发送功率计算得到,在一些例子中,终端接收基站发送信号的信号强度可以用来指示终端接收基站发送信号的接收功率。
在本申请实施例中,信号强度阈值可以称为第一阈值。
基站数量字段的长度可以是2bit,可以理解的是,本申请实施例对该基站数量字段的长度不作限定。当基站数量字段的长度为2bit时,表示终端100附近的基站的数量为0个至3个。例如,当基站数量字段为00时,表示指示北斗网络设备200确定的搜网成功率较大的基站数量为0个。当基站数量字段为01时,表示指示北斗网络设备200确定的搜网成功率较大的基站数量为1个。当基站数量字段为10时,表示指示北斗网络设备200确定的搜网成功率较大的基站数量为2个。当基站数量字段为11时,表示指示北斗网络设备200确定的搜网成功率较大的基站数量为3个。
网络制式字段用于指示北斗网络设备200确定的搜网成功率较大的基站的网络制式。该网络制式字段可以参考上文中对表3的描述,此处不再赘述。
频点字段用于指示北斗网络设备200确定的搜网成功率较大的基站的频点。该频点字段可以参考上文中对表3的描述,此处不再赘述。
小区号字段用于指示北斗网络设备200确定的搜网成功率较大的基站的小区号。该小区号字段可以参考上文中对表3的描述,此处不再赘述。
可以理解的是,若北斗网络设备200返回的蜂窝网络信息查询结果中包含多个基站的信息。以三个基站为例(可以理解的是,本申请实施例对基站的数量不作限定)那么上述表6中示出的网络制式字段中包含第一个基站的网络制式、第二个基站的网络制式、第三个基站的网络制式。频点字段中包含第一个基站的频点、第二个基站的频点、第三个基站的频点。 小区号字段中包含第一个基站的小区号、第二个基站的小区号、第三个基站的小区号。
可以理解的是,本申请实施例对蜂窝网络信息查询结果报文中够可以包括比上述表6更多或更少的字段。例如,蜂窝网络信息查询结果报文中还可以包括用户ID字段,该用户ID字段用于指示终端100的ID。又例如,蜂窝网络信息查询结果报文中可以不包含加密指示字段和压缩指示字段。又例如,当蜂窝网络信息查询结果报文中的基站数量字段指示终端100附近的基站个数为0时,该蜂窝网络信息查询结果报文中可以不包含经纬度字段、网络指示字段、频点字段、以及小区号字段。
在本申请实施例中,上述表6示出的蜂窝网络信息查询结果报文可以称为第三报文。表6中示出的蜂窝网络信息查询结果报文中的蜂窝信息类型字段可以称为第三蜂窝信息类型字段、基站数量字段可以称为第二基站数量字段、经纬度字段可以称为第二经纬度字段、网络制式字段可以称为第二网络制式字段、频点字段可以称为第二频点字段、小区号字段可以称为第二小区号字段。
可选地,在一种可能的实现方式中,当北斗网络设备200确定终端100的附近无基站时,北斗网络设备可以不回复蜂窝网络信息查询结果。
进一步地,在一种可能的实现方式中,终端100在预设时长T2内未接收到北斗网络设备200返回的蜂窝网络信息查询结果,终端100可以停止搜网,即终端100可以不执行步骤S304和步骤S305。
S304、终端100蜂窝网络信息查询结果进行搜网。
终端100在接收到蜂窝网络信息查询结果后,会确定终端100附近是否有可以进行搜网的基站,如果有,终端100可以启动搜网;若没有,终端100不执行搜网,终端100可以等到下一个周期再开始执行步骤S301-步骤S304。
可以进行搜网的基站是指,终端100计算出接收到该基站的信号强度大于信号强度阈值,或者接收功率大于预设接收功率阈值。信号强度由基站的发送功率计算得到,在一些例子中,终端接收基站发送信号的信号强度可以用来指示终端接收基站发送信号的接收功率。
在一种可能的实现方式中,终端100接收到的蜂窝网络信息查询结果可以是表3中示出的蜂窝网络信息查询结果报文,该蜂窝网络信息查询结果报文中可以包含一个或多个基站的基站信息。
在一种可能的实现方式中,该蜂窝网络信息查询结果报文中包含多个基站的基站信息(例如,基站的经纬度、网络制式、频点、基站发送功率等等)。终端100可以计算出终端100接收每一个基站发送信号的接收功率或信号强度。可选地,在一种可能的实现方式中,终端100中可以配置有经验值,该经验值可以是不同覆盖能力(即覆盖半径)的基站对应的发射功率范围。终端100可以根据北斗网络设备200发送的蜂窝网络信息查询结果以及终端100中的经验值计算出每一个基站发送信号的接收功率或信号强度。然后终端100可以按照接收功率最大或信号强度最大的基站对应的网络制式以及频点进行搜网,接入该基站对应的小区。
在另一种可能的实现方式中,该蜂窝网络信息查询结果报文中只包含一个基站的基站信息,终端100可以按照该基站对应的网络制式以及频点进行搜网,接入该基站对应的小区。
进一步地,在一种可能的实现方式中,该蜂窝网络信息查询结果报文中只包含一个基站的基站信息,且该基站在终端100的预设距离内(例如,在终端100所在信号地图的栅格内),终端100可以按照该基站对应的网络制式以及频点进行搜网,接入该基站对应的小区。若该 基站不在终端100的预设距离内,则终端100可以不启动搜网。
进一步地,在一种可能的实现方式中,该蜂窝网络信息查询结果报文中只包含一个基站的基站信息,终端100可以计算出终端100接收该基站发送信号的接收功率或信号强度。若接收功率大于预设接收功率阈值或信号强度大于信号强度阈值,则终端100可以按照该基站对应的网络制式以及频点进行搜网,接入该基站对应的小区。若接收功率小于预设接收功率阈值或信号强度小于信号强度阈值,则终端100可以停止搜网。
在一种可能的实现方式中,终端100接收到的蜂窝网络信息查询结果可以是表6中示出的蜂窝网络信息查询结果报文,该蜂窝网络信息查询结果报文中可以包含一个或多个基站的基站信息。
在一种可能的实现方式中,终端100可以按照该蜂窝网络信息查询结果报文中包含的一个或多个基站的网络制式、频点依次进行搜网。例如,若该蜂窝网络信息查询结果报文中包含基站1的网络制式1、频点1,以及基站2的网络制式2、频点2,终端100可以先按照基站1的网络制式1、频点1进行搜网,若搜网成功,则接入基站1对应的小区1。若搜网失败,终端100再按照基站2的网络制式2、频点2进行搜网。
可选地,在一种可能的实现方式中,若蜂窝网络查询结果中包含多个基站,则终端100分别可以计算出终端100接收每个基站的信号强度,若终端100接收每个基站的信号强度大于信号强度阈值,则终端100启动搜网。终端100按照信号强度由强到弱的顺序进行搜网。即终端100先按照信号强度最大的基站的网络制式、频点进行搜网,若搜网成功,若搜网成功,则接入该蜂窝网络。若搜网失败,则按照信号强度由强到弱的顺序依次进行搜网。
在一些可行的例子中,北斗网络设备200回复的蜂窝网络信息查询结果可以仅包含网络制式与终端100可以支持的网络制式相同的基站信息。若蜂窝网络信息查询结果中基站的网络制式是终端不支持的网络制式,终端100可以停止搜网。例如,终端100为4G智能手机,该智能手机可以接入2G/3G/4G网络,该4G智能手机可以支持LTE、WCDMA、GSM、CDMA等网络制式。北斗网络设备200回复的蜂窝网络信息查询结果包含网络制式为LTE、WCDMA、GSM、CDMA等的基站。北斗网络设备200回复的蜂窝网络信息查询结果中可以不包含网络制式为NR网络制式的基站。
可以理解的是,北斗网络设备200中可以存储有不同位置的基站信息,北斗网络设备200可以根据终端100的经纬度查找到终端100附近的基站信息。或者北斗网络设备200可以从存储有不同位置的基站信息的服务器或云服务器获取终端100附近的基站信息。或者,研发人员将获知的运营商部署的基站信息预置在北斗网络设备200。或者北斗网络设备200可以从基站(或蜂窝核心网)获取到运营商部署的基站信息。本申请实施例对此不作限定。
S305、当终端100搜索到满足预设条件的蜂窝网络时,终端100从北斗网络切换到蜂窝网络。
当终端100搜网成功时,终端100可以从北斗网络切换到蜂窝网络。
在一种可能的实现方式中,终端100搜网成功后,可以通过提示消息提示用户搜索到蜂窝网络,用户可以通过提示信息选择切换到蜂窝网络,
进一步地,提示消息可以文字消息,显示在终端100的显示屏中。提示消息也可以是语音播报消息或者铃声。提示消息也可以是振动消息,当终端100搜网成功后,终端100中的马达可以振动。可以理解的是,本申请实施例对提示消息的形式和内容不作限定。
在一种可能的实现方式中,终端100中的北斗通信模块处于空闲状态,且达到终端100查询基站信息的查询周期时,终端100中有先验信息,终端100可以查询先验信息中是否有满足条件的基站信息,若有,则按照该基站信息中的网络制式、以及频点进行搜网。这里可以参考上述步骤S201-步骤S202中的描述,此处不再赘述。若无,终端100按照北斗网络设备200回复的基站信息中的网络指示、以及频点进行搜网。若搜网成功,则终端100可以从北斗网络切换到蜂窝网络。
通过本申请实施例提供的网络切换的方法,终端100可以尽快从北斗网络回到蜂窝网络。终端100可以根据北斗网络设备200提供的终端100附近基站的基站信息进行搜网。这样,可以更快,更有效地搜索到蜂窝网络,可以避免终端100的无效搜网,从而可以提高终端100的搜网成功率,节约了终端100的功耗。
在本申请实施例中,终端100向北斗网络设备200发送消息可以称为入站,北斗网络设备200向终端100发送消息可以称为出站。
下面介绍终端100向北斗网络设备200发送蜂窝网络信息查询请求报文时,终端100中蜂窝网络信息查询请求报文的封装过程。以及北斗网络设备200接收到蜂窝网络信息查询请求报文时,北斗网络设备200对该蜂窝网络信息查询请求报文的解析过程。
下面介绍本申请实施例中提供的一种北斗通信系统10的入站数据的协议封装架构。
图8示出了本申请实施例中提供的一种北斗通信系统10的入站数据的协议封装架构示意图。
如图8所示,终端100上的北斗报文传输协议层可以分为应用层(application layer protocol)、消息数据汇聚层(message data convergence protocol,MDCP)、卫星链路控制层(satellite link control protocol,SLC)和物理层(physical layer protocol,PHY)。
终端100发送数据给北斗网络设备200时,终端100上的北斗报文传输协议的工作流程可以如下:
在APP层,终端100可以将原始数据封装成应用层报文,然后,终端可以通过层间接口将应用层报文发送给MDCP层。
示例性地,该应用层报文可以是上表1示出的蜂窝网络信息查询请求报文。该蜂窝网络信息查询请求报文中,终端经纬度字段中的终端100的经纬度可以是原始数据。在APP层,终端100可以将终端经纬度和蜂窝信息类型通过压缩算法,压缩成压缩数据,并在压缩数据前加入压缩指示。之后,终端100可以将压缩数据加密,得到加密后数据,并在加密后数据的头部添加加密指示字段。终端100还可以在加密后数据的加密指示前加上业务类型字段和回执指示字段后封装成应用层报文。
在MDCP层,终端100可以通过层间接口获取到APP层下发的应用层报文,并将应用层报文作为一个MDCP SDU。在MDCP层,终端100可以在MDCP SDU的尾部添加填充数据(padding)至指定长度,并在MDCP SDU的头部添加冗余长度指示字段。该冗余长度指示字段可用于表示该填充数据的长度。终端100可以将填充数据以及增加冗余长度指示字段之后的MDCP SDU,拆分成一个或多个固定长度的MDCP分段数据(M_segement),并在每个MDCP分段数据的头部添加后继指示字段,得到MDCP PDU,即MDCP PDU包括M_segement和后继指示字段。其中,后继指示字段可用于表示当前的MDCP PDU是连续发送的多个MDCP PDU的起始MDCP PDU或中间MDCP PDU或最后一个MDCP PDU;或者 是单独发送的一个MDCP PDU。
在SLC层,终端100可以通过层间接口获取到MDCP层下发的MDCP PDU,作为SLC SDU。在SLC层,终端100可以将SLC SDU分段成一个或多个(最多4个)固定长度的SLC分段数据(S_segement),并在每个S_segement头部添加帧头信息,得到SLC PDU。其中,帧头信息中包括服务数据单元交替指示(service data unit alternated Indicator,SAI)字段、帧总数字段和帧序号字段。
其中,SAI字段可用于表示该SLC PDU是否属于一个未发送过的SLC SDU。
帧总数字段,可用于表示该SLC PDU所属的SLC SDU中包括SLC PDU的总数量。
帧序号字段,可用于表示该SLC PDU在所属的SLC SDU中的序号。
在PHY层,终端100可以通过层间接口获取到SLC层下发的SLC PDU,作为PHY层的编码块(code block),并在code block的头部添加同步头,在code block的尾部添加校验位字段。其中,在上述北斗通信系统10中,可以采用循环冗余校验(cyclic redundancy check,CRC)对编码块进行校验,因此,该校验位字段中可以包括CRC码。终端100可以code block和校验位字段进行编码(例如polar编码),得到编码数据(coded data),再在coded data中插入导频,得到导频编码数据(pilot+data)。然后,终端100通过底层硬件对同步头和导频编码数据依次进行调制得到调制数据(modulated data)。终端100可以对调制数据进行扩频,得到扩频调制数据(spread+modulated data)。终端100可以将扩频调制数据发送给北斗短报文卫星21,经由北斗短报文卫星21中继转发给北斗网络设备200。
下面介绍本申请实施例中提供的一种北斗通信系统10的入站数据的协议解析架构。
图9示出了本申请实施例中提供的一种北斗通信系统10的入站数据的协议解析架构示意图。
如图9所示,北斗网络设备200的北斗短报文传输协议层可以分为应用层(application layer protocol)、消息数据汇聚层(message data convergence protocol,MDCP)、卫星链路控制层(satellite link control protocol,SLC)和物理层(physical layer protocol,PHY)。其中,北斗网络设备200可以包括北斗地面接收站31、北斗地面发射站35、信号接收处理设备32、信号处理中心33、信号发送处理设备36、运行控制中心37和北斗短报文融合通信平台34。北斗地面接收站31和北斗地面发射站35可用于负责PHY层的协议处理。信号接收处理设备32、信号处理中心33、信号发送处理设备36和运行控制中心37可用于负责SLC层和MDCP层的协议处理。北斗短报文融合通信平台34可用于负责APP层的协议处理。
北斗网络设备200在接收到终端100发送的数据时,北斗网络设备200的北斗短报文传输协议层的工作流程可以如下:
在PHY层,北斗网络设备200可以获取到终端100发送的经过调制和扩频后的导频编码数据。北斗网络设备200可以对接收到的扩频调制数据(spread+modulated data)进行解扩频,得到调制数据(modulated data)。然后,北斗网络设备200可以对调制数据进行解调,得到导频编码数据(pilot+data)。接着,北斗网络设备200去除导频编码数据中的导频信息,得到编码数据(code data)。然后,北斗网络设备200可以对编码数据进行解码,并通过校验位字段中的校验数据验证编码块(code block)的完整性。若完整,则北斗网络设备200可以提取出编码块(code block),通过层间接口呈递给SLC层,作为SLC层的SLC PDU。
在SLC层,北斗网络设备200可以基于SLC PDU的帧头信息,将属于同一个SLC SDU 的SLC PDU拼接成一个SLC SDU。北斗网络设备200可以将SLC SDU通过层间接口呈递给MDCP层,作为MDCP层的MDCP PDU。
在MDCP层,北斗网络设备200可以将属于同一个MDCP SDU的所有MDCP PDU拼接成一个MDCP SDU。北斗网络设备200可以将MDCP SDU通过层间接口呈递到APP层,作为APP层接收到的应用层报文。
在APP层,北斗网络设备200可以基于应用层报文的报文头,对应用层报文进行解密、解压缩,得到原始数据。示例性地,该原始数据可以是终端100的经纬度,例如表1中示出的蜂窝网络信息查询请求报文中的终端经纬度字段中包含的经纬度值。
本申请实施例中,上述协议处理过程仅为示例说明,本申请对协议处理的具体操作不作限定。
下面介绍北斗网络设备200向终端100发送蜂窝网络信息查询结果报文时,北斗网络设备200中蜂窝网络信息查询结果报文的封装过程。以及终端100接收到蜂窝网络信息查询结果报文时,终端100对该蜂窝网络信息查询结果报文的解析过程。
下面介绍本申请实施例中提供的一种北斗通信系统10的出站数据的协议封装架构。
图10示出了本申请实施例中提供的一种北斗通信系统10的出站数据的协议封装架构示意图。
如图10所示,北斗网络设备200中的北斗短报文传输协议层可以应用层(application layer protocol)、消息数据汇聚层(message data convergence protocol,MDCP)、卫星链路控制层(satellite link control protocol,SLC)和物理层(physical layer protocol,PHY)。其中,北斗网络设备200可以包括北斗地面接收站31、北斗地面发射站35、信号接收处理设备32、信号处理中心33、信号发送处理设备36、运行控制中心37和北斗短报文融合通信平台34。北斗地面接收站31和北斗地面发射站35可用于负责PHY层的协议处理。信号接收处理设备32、信号处理中心33、信号发送处理设备36和运行控制中心37可用于负责SLC层和MDCP层的协议处理。北斗短报文融合通信平台34可用于负责APP层的协议处理。
北斗网络设备200发送数据给终端100时,北斗网络设备200中的北斗短报文传输协议的工作流程可以如下:
在APP层,北斗网络设备200可以将原始数据封装成应用层报文,然后将应用层报文通过层间接口发送给MDCP层。
示例性地,北斗网络设备200生成的应用层报文可以是表3示出的蜂窝网络信息查询结果报文、或者也可以是表6中示出的蜂窝网络信息查询结果报文。表3示出的蜂窝网络信息查询结果报文中基站个数、基站的经纬度、网络制式、频点、小区号以及基站发送功率等可以是原始数据。表6示出的蜂窝网络信息查询结果报文中基站个数、网络制式、频点、小区号等可以是原始数据。北斗网络设备200可以在原始数据前加上蜂窝类型指示字段、将原始数据和蜂窝类型指示字段压缩后,得到压缩后的数据,并在压缩后的数据前加上压缩指示字段。北斗网络设备200可以将压缩后的数据以及压缩指示字段进行加密,得到加密后数据,并在加密后数据前加上加密指示字段以及消息类型指示字段后封装成应用层报文。
可选地,在一种可能的实现方式中,北斗网络设备200在MDCP层将MDCP SDU切分成多个MDCP PDU,北斗网络设备200可以将多个MDCP PDU一并传输到北斗网络设备200的SLC层。
在MDCP层,北斗网络设备200可以通过层间接口获取到APP层下发的应用层报文,并将应用层报文作为一个MDCP SDU。在MDCP层,北斗网络设备200可以将一个MDCP SDU拆分成一个或多个固定长度的MDCP分段数据(M_segement),并在每个MDCP分段数据的头部添加后继指示字段,得到MDCP PDU,即MDCP PDU包括M_segement和后继指示字段。其中,后继指示字段可用于表示当前的MDCP PDU是连续发送的多个MDCP PDU的起始MDCP PDU或中间MDCP PDU或最后一个MDCP PDU;或者是单独发送的一个MDCP PDU。
在SLC层,北斗网络设备200可以通过层间接口获取到MDCP层下发的MDCP PDU,作为SLC SDU。在SLC层,北斗网络设备200可以将SLC SDU分段成一个或多个(最多4个)固定长度的SLC分段数据(S_segement),并在每个S_segement头部添加帧头信息,得到SLC PDU。
在PHY层,北斗网络设备200可以通过层间接口获取到SLC层下发的SLC PDU。北斗网络设备200可以从SLC层获取到一个用户或多个用户的SLC PDU。北斗网络设备200可以将多个用户的SLC PDU拼接在一起,再加上物理帧的帧头(例如版本号)作为PHY层的编码块(code block),并在code block的尾部添加校验位(例如,循环冗余校验(cyclic redundancy check,CRC)码),并对code block和CRC码进行编码(例如polar编码),编码后的物理帧加上保留段可以组成一个固定长度的物理时隙的电文支路(S2C_d支路)的编码数据。其中,北斗网络设备200可以将一个用户的多个SLC PDU分别放到不同的物理帧中。然后,北斗网络设备200将S2C_d支路的编码数据和导频支路(S2C_p支路)的导频信息组成导频编码数据,即出站数据。北斗网络设备200可以将出站数据发送给北斗短报文卫星21,经由北斗短报文卫星21中继转发给终端100。
可以理解的是,S2C_p支路的导频信息与卫星波束相关。当卫星波束号时已知信息时,S2C_p支路的导频信息也是已知的,无需解码的。而S2C_d支路的编码数据是需要解码的。
下面介绍本申请实施例中提供的一种北斗通信系统10的出站数据的协议解析架构。
图11示出了本申请实施例中提供的一种北斗通信系统10的出站数据的协议解析架构示意图。
如图11所示,终端100的北斗短报文传输协议层可以分为应用层(application layer protocol)、消息数据汇聚层(message data convergence protocol,MDCP)、卫星链路控制层(satellite link control protocol,SLC)和物理层(physical layer protocol,PHY)。
终端100在接收到北斗网络设备发送的数据时,终端100的北斗短报文传输协议层的工作流程可以如下:
在PHY层,终端100可以获取到北斗网络设备200发送的经过调制和扩频后的导频编码数据。终端100可以对接收到的扩频调制数据(spread+modulated data)进行解扩频,得到调制数据(modulated data)。然后,终端100可以对调制数据进行解调,得到导频编码数据(pilot+data)。接着,终端100可以去除导频编码数据中的导频信息,得到编码数据(code data)。然后,终端100可以对编码数据进行解码,并通过校验位字段中的校验数据验证编码块(code block)的完整性。若完整,则终端100可以提取出编码块(code block),通过层间接口呈递给SLC层,作为SLC层的SLC PDU。
这里,该导频编码数据即为上述北斗网络设备200发送的出站数据,该出站数据由S2C_d 支路的编码数据和导频支路(S2C_p支路)的导频信息组成。
在SLC层,终端100可以基于SLC PDU的帧头信息,将属于同一个SLC SDU的SLC PDU拼接成一个SLC SDU。终端100可以将SLC SDU通过层间接口呈递给MDCP层,作为MDCP层的MDCP PDU。
在MDCP层,终端100可以将属于同一个MDCP SDU的所有MDCP PDU拼接成一个MDCP SDU。终端100可以将MDCP SDU通过层间接口呈递到APP层,作为APP层接收到的应用层报文。
在APP层,终端100可以基于应用层报文的报文头,对应用层报文进行解密、解压缩,得到原始数据。原始数据可以是终端100附近的基站个数、基站的经纬度、网络制式、频点、小区号以及基站发送功率等数据。
本申请实施例中,上述协议处理过程仅为示例说明,本申请对协议处理的具体操作不作限定。
下面首先介绍本申请实施例提供的示例性终端100。
图12是本申请实施例提供的终端100的结构示意图。
下面以终端100为例对实施例进行具体说明。应该理解的是,终端100可以具有比图中所示的更多的或者更少的部件,可以组合两个或多个的部件,或者可以具有不同的部件配置。图中所示出的各种部件可以在包括一个或多个信号处理和/或专用集成电路在内的硬件、软件、或硬件和软件的组合中实现。
终端100可以包括:处理器110,外部存储器接口120,内部存储器121,通用串行总线(universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194以及用户标识模块(subscriber identification module,SIM)卡接口195等。其中传感器模块180可以包括压力传感器180A,陀螺仪传感器180B,气压传感器180C,磁传感器180D,加速度传感器180E,距离传感器180F,接近光传感器180G,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,骨传导传感器180M等。
可以理解的是,本发明实施例示意的结构并不构成对终端100的具体限定。在本申请另一些实施例中,终端100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,存储器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
其中,控制器可以是终端100的神经中枢和指挥中心。控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数 据。如果处理器110需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了系统的效率。
在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
I2C接口是一种双向同步串行总线,包括一根串行数据线(serial data line,SDA)和一根串行时钟线(derail clock line,SCL)。在一些实施例中,处理器110可以包含多组I2C总线。处理器110可以通过不同的I2C总线接口分别耦合触摸传感器180K,充电器,闪光灯,摄像头193等。例如:处理器110可以通过I2C接口耦合触摸传感器180K,使处理器110与触摸传感器180K通过I2C总线接口通信,实现终端100的触摸功能。
I2S接口可以用于音频通信。在一些实施例中,处理器110可以包含多组I2S总线。处理器110可以通过I2S总线与音频模块170耦合,实现处理器110与音频模块170之间的通信。在一些实施例中,音频模块170可以通过I2S接口向无线通信模块160传递音频信号,实现通过蓝牙耳机接听电话的功能。
PCM接口也可以用于音频通信,将模拟信号抽样,量化和编码。在一些实施例中,音频模块170与无线通信模块160可以通过PCM总线接口耦合。在一些实施例中,音频模块170也可以通过PCM接口向无线通信模块160传递音频信号,实现通过蓝牙耳机接听电话的功能。所述I2S接口和所述PCM接口都可以用于音频通信。
UART接口是一种通用串行数据总线,用于异步通信。该总线可以为双向通信总线。它将要传输的数据在串行通信与并行通信之间转换。在一些实施例中,UART接口通常被用于连接处理器110与无线通信模块160。例如:处理器110通过UART接口与无线通信模块160中的蓝牙模块通信,实现蓝牙功能。在一些实施例中,音频模块170可以通过UART接口向无线通信模块160传递音频信号,实现通过蓝牙耳机播放音乐的功能。
MIPI接口可以被用于连接处理器110与显示屏194,摄像头193等外围器件。MIPI接口包括摄像头串行接口(camera serial interface,CSI),显示屏串行接口(display serial interface,DSI)等。在一些实施例中,处理器110和摄像头193通过CSI接口通信,实现终端100的拍摄功能。处理器110和显示屏194通过DSI接口通信,实现终端100的显示功能。
GPIO接口可以通过软件配置。GPIO接口可以被配置为控制信号,也可被配置为数据信号。在一些实施例中,GPIO接口可以用于连接处理器110与摄像头193,显示屏194,无线通信模块160,音频模块170,传感器模块180等。GPIO接口还可以被配置为I2C接口,I2S接口,UART接口,MIPI接口等。
SIM接口可以被用于与SIM卡接口195通信,实现传送数据到SIM卡或读取SIM卡中数据的功能。
USB接口130是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等。USB接口130可以用于连接充电器为终端100充电,也可以用于终端100与外围设备之间传输数据。也可以用于连接耳机,通过耳机播放音频。该接口还可以用于连接其他电子设备,例如AR设备等。
可以理解的是,本发明实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对终端100的结构限定。在本申请另一些实施例中,终端100也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
充电管理模块140用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。
电源管理模块141用于连接电池142,充电管理模块140与处理器110。电源管理模块141接收电池142和/或充电管理模块140的输入,为处理器110,内部存储器121,外部存储器,显示屏194,摄像头193,和无线通信模块160等供电。
终端100的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。终端100中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在终端100上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器通过音频设备(不限于扬声器170A,受话器170B等)输出声音信号,或通过显示屏194显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器110,与移动通信模块150或其他功能模块设置在同一个器件中。
无线通信模块160可以提供应用在终端100上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),北斗通信模块,调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
其中,北斗通信模块可用于与北斗网络设备200进行通信。北斗通信模块可支持与北斗网络设备200进行短报文传输。
在一些实施例中,终端100的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得终端100可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无 线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。所述GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite system,BDS),准天顶卫星系统(quasi-zenith satellite system,QZSS)和/或星基增强系统(satellite based augmentation systems,SBAS)。
终端100通过GPU,显示屏194,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏194用于显示图像,视频等。显示屏194包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode,AMOLED),柔性发光二极管(flex light-emitting diode,FLED),Miniled,MicroLed,Micro-oLed,量子点发光二极管(quantum dot light emitting diodes,QLED)等。在一些实施例中,终端100可以包括1个或N个显示屏194,N为大于1的正整数。
终端100可以通过ISP,摄像头193,视频编解码器,GPU,显示屏194以及应用处理器等实现拍摄功能。
ISP用于处理摄像头193反馈的数据。例如,拍照时,打开快门,光线通过镜头被传递到摄像头感光元件上,光信号转换为电信号,摄像头感光元件将所述电信号传递给ISP处理,转化为肉眼可见的图像。ISP还可以对图像的噪点,亮度,颜色进行算法优化。ISP还可以对拍摄场景的曝光,色温等参数优化。在一些实施例中,ISP可以设置在摄像头193中。
摄像头193用于捕获静态图像或视频。物体通过镜头生成光学图像投射到感光元件。感光元件可以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管。感光元件把光信号转换成电信号,之后将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理。DSP将数字图像信号转换成标准的RGB,YUV等格式的图像信号。在一些实施例中,终端100可以包括1个或N个摄像头193,N为大于1的正整数。
数字信号处理器用于处理数字信号,除了可以处理数字图像信号,还可以处理其他数字信号。例如,当终端100在频点选择时,数字信号处理器用于对频点能量进行傅里叶变换等。
视频编解码器用于对数字视频压缩或解压缩。终端100可以支持一种或多种视频编解码器。这样,终端100可以播放或录制多种编码格式的视频,例如:动态图像专家组(moving picture experts group,MPEG)1,MPEG2,MPEG3,MPEG4等。
NPU为神经网络(neural-network,NN)计算处理器,通过借鉴生物神经网络结构,例如借鉴人脑神经元之间传递模式,对输入信息快速处理,还可以不断的自学习。通过NPU可以实现终端100的智能认知等应用,例如:图像识别,人脸识别,语音识别,文本理解等。
内部存储器121可以包括一个或多个随机存取存储器(random access memory,RAM)和一个或多个非易失性存储器(non-volatile memory,NVM)。
随机存取存储器可以包括静态随机存储器(static random-access memory,SRAM)、动态 随机存储器(dynamic random access memory,DRAM)、同步动态随机存储器(synchronous dynamic random access memory,SDRAM)、双倍资料率同步动态随机存取存储器(double data rate synchronous dynamic random access memory,DDR SDRAM,例如第五代DDR SDRAM一般称为DDR5SDRAM)等;
非易失性存储器可以包括磁盘存储器件、快闪存储器(flash memory)。
快闪存储器按照运作原理划分可以包括NOR FLASH、NAND FLASH、3D NAND FLASH等,按照存储单元电位阶数划分可以包括单阶存储单元(single-level cell,SLC)、多阶存储单元(multi-level cell,MLC)、三阶储存单元(triple-level cell,TLC)、四阶储存单元(quad-level cell,QLC)等,按照存储规范划分可以包括通用闪存存储(英文:universal flash storage,UFS)、嵌入式多媒体存储卡(embedded multi media Card,eMMC)等。
随机存取存储器可以由处理器110直接进行读写,可以用于存储操作系统或其他正在运行中的程序的可执行程序(例如机器指令),还可以用于存储用户及应用程序的数据等。
非易失性存储器也可以存储可执行程序和存储用户及应用程序的数据等,可以提前加载到随机存取存储器中,用于处理器110直接进行读写。
终端100可以通过音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,以及应用处理器等实现音频功能。例如音乐播放,录音等。
音频模块170用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。音频模块170还可以用于对音频信号编码和解码。在一些实施例中,音频模块170可以设置于处理器110中,或将音频模块170的部分功能模块设置于处理器110中。
扬声器170A,也称“喇叭”,用于将音频电信号转换为声音信号。终端100可以通过扬声器170A收听音乐,或收听免提通话。
受话器170B,也称“听筒”,用于将音频电信号转换成声音信号。当终端100接听电话或语音信息时,可以通过将受话器170B靠近人耳接听语音。
麦克风170C,也称“话筒”,“传声器”,用于将声音信号转换为电信号。当拨打电话或发送语音信息时,用户可以通过人嘴靠近麦克风170C发声,将声音信号输入到麦克风170C。终端100可以设置至少一个麦克风170C。在另一些实施例中,终端100可以设置两个麦克风170C,除了采集声音信号,还可以实现降噪功能。在另一些实施例中,终端100还可以设置三个,四个或更多麦克风170C,实现采集声音信号,降噪,还可以识别声音来源,实现定向录音功能等。
耳机接口170D用于连接有线耳机。耳机接口170D可以是USB接口130,也可以是3.5mm的开放移动电子设备平台(open mobile terminal platform,OMTP)标准接口,美国蜂窝电信工业协会(cellular telecommunications industry association of the USA,CTIA)标准接口。
压力传感器180A用于感受压力信号,可以将压力信号转换成电信号。在一些实施例中,压力传感器180A可以设置于显示屏194。压力传感器180A的种类很多,如电阻式压力传感器,电感式压力传感器,电容式压力传感器等。电容式压力传感器可以是包括至少两个具有导电材料的平行板。当有力作用于压力传感器180A,电极之间的电容改变。终端100根据电容的变化确定压力的强度。当有触摸操作作用于显示屏194,终端100根据压力传感器180A检测所述触摸操作强度。终端100也可以根据压力传感器180A的检测信号计算触摸的位置。在一些实施例中,作用于相同触摸位置,但不同触摸操作强度的触摸操作,可以对应不同的 操作指令。例如:当有触摸操作强度小于第一压力阈值的触摸操作作用于短消息应用图标时,执行查看短消息的指令。当有触摸操作强度大于或等于第一压力阈值的触摸操作作用于短消息应用图标时,执行新建短消息的指令。
陀螺仪传感器180B可以用于确定终端100的运动姿态。在一些实施例中,可以通过陀螺仪传感器180B确定终端100围绕三个轴(即,x,y和z轴)的角速度。陀螺仪传感器180B可以用于拍摄防抖。示例性的,当按下快门,陀螺仪传感器180B检测终端100抖动的角度,根据角度计算出镜头模组需要补偿的距离,让镜头通过反向运动抵消终端100的抖动,实现防抖。陀螺仪传感器180B还可以用于导航,体感游戏场景。
气压传感器180C用于测量气压。在一些实施例中,终端100通过气压传感器180C测得的气压值计算海拔高度,辅助定位和导航。
磁传感器180D包括霍尔传感器。终端100可以利用磁传感器180D检测翻盖皮套的开合。在一些实施例中,当终端100是翻盖机时,终端100可以根据磁传感器180D检测翻盖的开合。进而根据检测到的皮套的开合状态或翻盖的开合状态,设置翻盖自动解锁等特性。
加速度传感器180E可检测终端100在各个方向上(一般为三轴)加速度的大小。当终端100静止时可检测出重力的大小及方向。还可以用于识别电子设备姿态,应用于横竖屏切换,计步器等应用。
距离传感器180F,用于测量距离。终端100可以通过红外或激光测量距离。在一些实施例中,拍摄场景,终端100可以利用距离传感器180F测距以实现快速对焦。
接近光传感器180G可以包括例如发光二极管(LED)和光检测器,例如光电二极管。发光二极管可以是红外发光二极管。终端100通过发光二极管向外发射红外光。终端100使用光电二极管检测来自附近物体的红外反射光。当检测到充分的反射光时,可以确定终端100附近有物体。当检测到不充分的反射光时,终端100可以确定终端100附近没有物体。终端100可以利用接近光传感器180G检测用户手持终端100贴近耳朵通话,以便自动熄灭屏幕达到省电的目的。接近光传感器180G也可用于皮套模式,口袋模式自动解锁与锁屏。
环境光传感器180L用于感知环境光亮度。终端100可以根据感知的环境光亮度自适应调节显示屏194亮度。环境光传感器180L也可用于拍照时自动调节白平衡。环境光传感器180L还可以与接近光传感器180G配合,检测终端100是否在口袋里,以防误触。
指纹传感器180H用于采集指纹。终端100可以利用采集的指纹特性实现指纹解锁,访问应用锁,指纹拍照,指纹接听来电等。
温度传感器180J用于检测温度。在一些实施例中,终端100利用温度传感器180J检测的温度,执行温度处理策略。例如,当温度传感器180J上报的温度超过阈值,终端100执行降低位于温度传感器180J附近的处理器的性能,以便降低功耗实施热保护。在另一些实施例中,当温度低于另一阈值时,终端100对电池142加热,以避免低温导致终端100异常关机。在其他一些实施例中,当温度低于又一阈值时,终端100对电池142的输出电压执行升压,以避免低温导致的异常关机。
触摸传感器180K,也称“触控面板”。触摸传感器180K可以设置于显示屏194,由触摸传感器180K与显示屏194组成触摸屏,也称“触控屏”。触摸传感器180K用于检测作用于其上或附近的触摸操作。触摸传感器可以将检测到的触摸操作传递给应用处理器,以确定触摸事件类型。可以通过显示屏194提供与触摸操作相关的视觉输出。在另一些实施例中,触摸传感器180K也可以设置于终端100的表面,与显示屏194所处的位置不同。
按键190包括开机键,音量键等。按键190可以是机械按键。也可以是触摸式按键。终端100可以接收按键输入,产生与终端100的用户设置以及功能控制有关的键信号输入。
马达191可以产生振动提示。马达191可以用于来电振动提示,也可以用于触摸振动反馈。例如,作用于不同应用(例如拍照,音频播放等)的触摸操作,可以对应不同的振动反馈效果。作用于显示屏194不同区域的触摸操作,马达191也可对应不同的振动反馈效果。不同的应用场景(例如:时间提醒,接收信息,闹钟,游戏等)也可以对应不同的振动反馈效果。触摸振动反馈效果还可以支持自定义。
指示器192可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。
SIM卡接口195用于连接SIM卡。SIM卡可以通过插入SIM卡接口195,或从SIM卡接口195拔出,实现和终端100的接触和分离。终端100可以支持1个或N个SIM卡接口,N为大于1的正整数。SIM卡接口195可以支持Nano SIM卡,Micro SIM卡,SIM卡等。同一个SIM卡接口195可以同时插入多张卡。所述多张卡的类型可以相同,也可以不同。SIM卡接口195也可以兼容不同类型的SIM卡。SIM卡接口195也可以兼容外部存储卡。终端100通过SIM卡和网络交互,实现通话以及数据通信等功能。
上述内容详细阐述了本申请提供的方法,为了便于更好地实施本申请实施例的上述方案,本申请实施例还提供了相应的装置或设备。
本申请实施例可以根据上述方法示例对终端100和北斗网络设备200进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
下面将结合图13至图16详细描述本申请实施例的通信装置。
在采用集成的单元的情况下,参见图13,图13是本申请实施例提供的通信装置1300的结构示意图。该通信装置1300可以为上述实施例中的终端100。可选的,通信装置1300可以为一种芯片/芯片系统,例如,北斗通信芯片。如图13所示,该通信装置1300可以包括收发单元1310和处理单元1320。
一种设计中,收发单元1310,可用于接收北斗网络设备200发送的蜂窝网络信息查询结果。
处理单元1320,可用于计算终端100存储的先验信息中基站与终端100之间的路损,以及终端100该基站发送信号的接收成功率或基站的信号强度,基于先验信息中的基站的网络制式、频点进行搜网。
处理单元1320,还可用于计算北斗网络设备200发送的蜂窝网络信息查询结果中终端100附近的基站的信号强度,以及终端100接收该基站发送信号的接收功率,以及按照蜂窝网络信息查询结果中基站的网络制式以及频点进行搜网。
可选的,收发单元1310,还可用于执行上述图7所示方法实施例中终端100执行的有关发送和接收的功能步骤。
可选的,处理单元1320,还可用于执行上述图4以及图7所示方法实施例中终端100执 行的有关协议解析与封装以及运算确定的功能步骤。
应理解,该种设计中的通信装置1300可对应执行前述实施例中终端100执行的方法步骤,为了简洁,在此不再赘述。
在采用集成的单元的情况下,参见图14,图14是本申请实施例提供的通信装置1400的结构示意图。该通信装置1400可以为上述实施例中的北斗网络设备200。可选的,通信装置1400可以为北斗网络设备200中的具体网元,例如,北斗地面接收站31、北斗地面发射站35、信号接收处理设备32、信号处理中心33、信号发送处理设备36、运行控制中心37和北斗短报文融合通信平台34中的一个网元或多个网元的组合。如图14所示,该通信装置1400可以包括收发单元1410和处理单元1420。
一种设计中,收发单元1410,可用于发送蜂窝网络信息查询结果。
处理单元1420,可以用于基于终端100的经纬度查询终端100附近的基站、以及基站信息,并确定终端100附近的基站中可以搜网成功率较大的基站。
可选的,收发单元1410,还可用于执行上述图7所示方法实施例中北斗网络设备200执行的有关发送和接收的功能步骤。
可选的,处理单元1420,还可用于执行上述图7所示方法实施例中北斗网络设备200执行的有关协议解析与封装以及运算确定的功能步骤。
应理解,该种设计中的通信装置1400可对应执行前述实施例中北斗网络设备200执行的方法步骤,为了简洁,在此不再赘述。
以上介绍了本申请实施例的终端100和北斗网络设备200,应理解,但凡具备上述图12所述的终端100的功能的任何形态的产品,但凡具备上述图13所述的北斗网络设备200的功能的任何形态的产品,都落入本申请实施例的保护范围。
作为一种可能的产品形态,本申请实施例所述的终端100,可以由一般性的总线体系结构来实现。
参见图15,图15是本申请实施例提供的通信装置1500的结构示意图。该通信装置1500可以是终端100,或其中的装置。如图15所示,该通信装置1500包括处理器1501和与所述处理器内部连接通信的收发器1502。其中,处理器1501是通用处理器或者专用处理器等。例如可以是卫星通信的基带处理器或中央处理器。卫星通信的基带处理器可以用于对卫星通信协议以及卫星通信数据进行处理,中央处理器可以用于对通信装置(如,基带芯片,终端、终端芯片等)进行控制,执行计算机程序,处理计算机程序的数据。收发器1502可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1502可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。可选的,通信装置1500还可以包括天线1503和/或射频单元(图未示意)。所述天线1503和/或射频单元可以位于所述通信装置1500内部,也可以与所述通信装置1400分离,即所述天线1503和/或射频单元可以是拉远或分布式部署的。
可选的,通信装置1500中可以包括一个或多个存储器1504,其上可以存有指令,该指令可为计算机程序,所述计算机程序可在通信装置1500上被运行,使得通信装置1500执行上述方法实施例中描述的方法。可选的,所述存储器1504中还可以存储有数据。通信装置 1500和存储器1504可以单独设置,也可以集成在一起。
其中,处理器1501、收发器1502、以及存储器1504可以通过通信总线连接。
一种设计中,通信装置1500可以用于执行前述实施例中终端100的功能:处理器1501可以用于执行上述图11所示实施例中终端100执行的有关协议解析与封装以及运算确定的功能步骤和/或用于本文所描述的技术的其它过程;收发器1502可以用于执行上述图2、图4和图7所示实施例中终端100执行的有关协议解析与封装以及运算确定的功能步骤和/或用于本文所描述的技术的其它过程。
在上述任一种设计中,处理器1501中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在上述任一种设计中,处理器1501可以存有指令,该指令可为计算机程序,计算机程序在处理器1501上运行,可使得通信装置1500执行上述方法实施例中终端100执行的方法步骤。计算机程序可能固化在处理器1501中,该种情况下,处理器1501可能由硬件实现。
在一种实现方式中,通信装置1500可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图15的限制。通信装置1500可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置1500可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端、智能终端、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
作为一种可能的产品形态,本申请实施例所述的北斗网络设备200中的任一网元(例如、北斗地面接收站31、北斗地面发射站35、信号接收处理设备32、信号处理中心33、信号发送处理设备36、运行控制中心37和北斗短报文融合通信平台34),可以由一般性的总线体系结构来实现。
参见图16,图16是本申请实施例提供的通信装置1600的结构示意图。该通信装置1600可以是北斗网络设备200,或其中的装置。如图16所示,该通信装置1600包括处理器1601和与所述处理器内部连接通信的收发器1602。其中,处理器1601是通用处理器或者专用处理器等。例如可以是卫星通信的基带处理器或中央处理器。卫星通信的基带处理器可以用于对卫星通信协议以及卫星通信数据进行处理,中央处理器可以用于对通信装置(如,基带芯片等)进行控制,执行计算机程序,处理计算机程序的数据。收发器1602可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1602可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。可选的,通信装置1600还可以包括天线1603和/或射频单元(图未示意)。所述天线1603和/或射频单元可以位于所述通信装置1600内部,也可以与所述通信装置1600分离,即所述天线1603和/或射频单元可以是拉远或分布式部署的。
可选的,通信装置1600中可以包括一个或多个存储器1604,其上可以存有指令,该指令可为计算机程序,所述计算机程序可在通信装置1600上被运行,使得通信装置1600执行上述方法实施例中描述的方法。可选的,所述存储器1604中还可以存储有数据。通信装置1600和存储器1604可以单独设置,也可以集成在一起。
其中,处理器1601、收发器1602、以及存储器1604可以通过通信总线连接。
一种设计中,通信装置1600可以用于执行前述实施例中北斗网络设备200的功能:处理器1601可以用于执行上述图7所示实施例中北斗网络设备200执行的有关协议解析与封装以及运算确定的功能步骤和/或用于本文所描述的技术的其它过程;收发器1602可以用于执行上述图7所示实施例中北斗网络设备200执行的有关协议解析与封装以及运算确定的功能步骤和/或用于本文所描述的技术的其它过程。
在上述任一种设计中,处理器1601中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在上述任一种设计中,处理器1601可以存有指令,该指令可为计算机程序,计算机程序在处理器1601上运行,可使得通信装置1600执行上述方法实施例中终端100执行的方法步骤。计算机程序可能固化在处理器1601中,该种情况下,处理器1601可能由硬件实现。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序代码,当上述处理器执行该计算机程序代码时,使得通信装置执行前述任一实施例中的方法。
本申请实施例还提供一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行前述任一实施例中的方法。
本申请实施例还提供一种通信装置,该装置可以以芯片的产品形态存在,该装置的结构中包括处理器和接口电路,该处理器用于通过接收电路与其它装置通信,使得该装置执行前述任一实施例中的方法。
本申请实施例还提供一种北斗通信系统,包括终端100和北斗网络设备200,该终端100和北斗网络设备200可以执行前述任一实施例中的方法。
本申请全文介绍了北斗通信系统中短报文的通信功能,可以理解的是,其他卫星系统中也可能存在支持短报文的通信功能。因此,不限制在北斗通信系统中,若有其他卫星系统也支持短报文的通信功能,本申请中介绍的方法,也同样适用于其他卫星系统的通信。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。
上述实施例中所用,根据上下文,术语“当…时”可以被解释为意思是“如果…”或“在…后”或“响应于确定…”或“响应于检测到…”。类似地,根据上下文,短语“在确定…时”或“如果检测到(所陈述的条件或事件)”可以被解释为意思是“如果确定…”或“响应于确定…”或“在检测到(所陈述的条件或事件)时”或“响应于检测到(所陈述的条件或事件)”。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如DVD)、或者半导体介质(例如固态硬盘)等。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来指令相关的硬件完成,该程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:ROM或随机存储记忆体RAM、磁碟或者光盘等各种可存储程序代码的介质。

Claims (34)

  1. 一种切换网络的方法,其特征在于,包括:
    终端未驻留到蜂窝网络,检测到所述终端在预设时长内未向北斗网络设备发送数据或未接收北斗网络设备发送的数据;
    所述终端开始搜索蜂窝网络,在搜索蜂窝网络成功的情况下,所述终端驻留到蜂窝网络。
  2. 根据权利要求1所述的方法,其特征在于,所述终端开始搜索蜂窝网络,在搜索蜂窝网络成功的情况下,所述终端驻留到蜂窝网络,包括:
    所述终端向北斗网络设备发送第一查询请求,所述第一查询请求用于查询基站的信息,所述第一请求携带有所述终端的位置信息;
    所述终端接收到所述北斗网络设备发送的第一查询结果,所述第一查询结果包括所述终端预设距离内的一个或多个基站的信息;
    所述终端根据所述第一查询结果搜索蜂窝网络,在搜索蜂窝网络成功的情况下,所述终端驻留到蜂窝网络。
  3. 根据权利要求2所述的方法,其特征在于,所述第一查询请求为第一报文,所述第一报文中包括第一蜂窝信息类型字段、终端经纬度字段;所述第一蜂窝信息类型字段用于指示所述北斗网络设备向所述终端回复的第一查询结果的类型;所述终端经纬度字段用于指示所述终端的经纬度。
  4. 根据权利要求3所述的方法,其特征在于,所述第一蜂窝信息类型字段为第一值,所述第一值用于指示所述第一查询结果为所述终端预设距离内的一个或多个基站的信息;
    所述第一蜂窝信息类型字段为第二值,所述第二值用于指示所述第一查询结果为所述终端预设距离内满足预设条件的一个或多个基站的信息。
  5. 根据权利要求4所述的方法,其特征在于,所述基站的信息包括基站的经纬度、基站的网络制式、基站的频点、基站的小区号,以及基站的发送功率中的一项或多项。
  6. 根据权利要求4所述的方法,其特征在于,所述预设条件为所述终端接收基站发送信号的信号强度大于第一阈值。
  7. 根据权利要求6所述的方法,其特征在于,所述第一查询结果为第二报文,所述第二报文包括第二蜂窝信息类型字段、第一基站数量字段、第一经纬度字段、第一网络制式字段、第一频点字段、第一小区号字段;其中,所述第二蜂窝信息类型字段为第一值,用于指示所述第一查询结果为所述终端预设距离内的一个或多个基站的信息,所述基站数量字段用于指示所述终端预设距离内的基站的数量;所述第一经纬度字段用于指示所述终端预设距离内的基站的经纬度;所述第一网络制式字段用于指示所述终端预设距离内的基站的网络制式;所述第一频点字段用于指示所述终端预设距离内的基站的频点;所述第一小区号字段用于指示所述终端预设距离内的基站的小区号。
  8. 根据权利要求7所述的方法,其特征在于,所述第二报文还包括第一基站发送功率字段,所述第一基站发送功率字段用于指示所述终端预设距离内的基站的发送功率。
  9. 根据权利要求6所述的方法,其特征在于,所述第一查询结果为第三报文,所述第三报文中包括第三蜂窝信息类型字段、第二基站数量字段、第二网络制式字段、第二频点字段、第二小区号字段;所述第三蜂窝信息类型字段为第二值,所述第一查询结果为所述终端预设距离内满足预设条件的一个或多个基站的信息;所述第二基站数量字段用于指示所述终端预设距离内满足预设条件的基站的数量;所述第二网络制式字段用于指示所述终端预设距离内满足预设条件的基站的网络制式,所述第二频点字段用于指示所述终端预设距离内满足预设条件的基站的频点,所述第二小区号字段用于所述终端预设距离内满足预设条件的基站的小区号。
  10. 根据权利要求7所述的方法,其特征在于,所述第一查询结果为第二报文,所述第二报文中包含所述终端预设距离内第一基站的信息,所述终端根据所述第一查询结果搜索蜂窝网络,在搜索蜂窝网络成功的情况下,所述终端驻留到蜂窝网络,包括:
    所述终端根据所述第二报文中第一基站的信息确定所述第一基站满足预设条件;
    所述终端开始根据所述第一基站的信息搜索蜂窝网络,在搜索蜂窝网络成功的情况下,所述终端驻留到蜂窝网络。
  11. 根据权利要求10所述的方法,其特征在于,所述第一查询结果为第二报文,所述第二报文中包含所述终端预设距离内第一基站的信息、第二基站的信息,所述终端根据所述第一查询结果搜索蜂窝网络,在搜索蜂窝网络成功的情况下,所述终端驻留到蜂窝网络,包括:
    所述终端根据所述第二报文中第一基站的信息确定所述第一基站满足预设条件,所述终端根据所述第二报文中第二基站的信息确定所述第二基站满足预设条件;
    所述终端确定所述终端接收到所述第一基站的信号强度大于所述终端接收到所述第二基站的信号强度;
    所述终端开始根据所述第一基站的信息搜索蜂窝网络,在搜索蜂窝网络成功的情况下,所述终端驻留到蜂窝网络;在搜索蜂窝网络失败的情况下,所述终端根据所述第二基站的信息搜索蜂窝网络。
  12. 根据权利要求9所述的方法,其特征在于,所述第一查询结果为第三报文,所述第三报文中包含所述终端预设距离内满足预设条件第三基站的信息,所述终端根据所述第一查询结果搜索蜂窝网络,在搜索蜂窝网络成功的情况下,所述终端驻留到蜂窝网络,包括:
    所述终端开始根据所述第三基站的信息搜索蜂窝网络,在搜索蜂窝网络成功的情况下,所述终端驻留到蜂窝网络。
  13. 根据权利要求12所述的方法,其特征在于,所述第一查询结果为第三报文,所述第三报文中包含所述终端预设距离内满足预设条件第三基站的信息、第四基站的信息,所述终端根据所述第一查询结果搜索蜂窝网络,在搜索蜂窝网络成功的情况下,所述终端驻留到蜂窝网络,包括:
    所述终端确定所述终端接收到所述第三基站的信号强度大于所述终端接收到所述第四基站的信号强度;
    所述终端开始根据所述第三基站的信息搜索蜂窝网络,在搜索蜂窝网络成功的情况下,所述终端驻留到蜂窝网络;在搜索蜂窝网络失败的情况下,所述终端根据所述第四基站的信息搜索蜂窝网络。
  14. 根据权利要求1所述的方法,其特征在于,所述终端开始搜索蜂窝网络,在搜索蜂窝网络成功的情况下,所述终端驻留到蜂窝网络,包括:
    所述终端按照所述终端中预设的搜网序列开始搜索蜂窝网络,在搜索蜂窝网络成功的情况下,所述终端驻留到蜂窝网络;
    其中,所述搜网序列用于指示所述终端搜索蜂窝网络的一个或多个网络制式、以及搜索所述一个或多个网络制式的顺序。
  15. 根据权利要求1所述的方法,其特征在于,所述终端开始搜索蜂窝网络,在搜索蜂窝网络成功的情况下,所述终端驻留到蜂窝网络,包括:
    所述终端确定存储有先验信息,所述先验信息包括所述终端100预设距离内的蜂窝网络信息;
    所述终端按照所述先验信息搜索蜂窝网络,在搜索蜂窝网络成功的情况下,所述终端驻留到蜂窝网络。
  16. 根据权利要求15所述的方法,其特征在于,所述蜂窝网络信息包括一个或多个地理位置的经纬度、所述一个或多个地理位置与基站的距离、所述一个或多个地理位置处覆盖的蜂窝网络的小区号、所述一个或多个地理位置处覆盖蜂窝网络的小区号的网络制式和频点、所述一个或多个地理位置处覆盖蜂窝网络的信号强度、基站发送功率中的一项或多项。
  17. 一种切换网络的方法,其特征在于,包括:
    北斗网络设备接收到终端发送的第一查询请求,所述第一查询请求用于查询基站的信息,所述第一查询请求携带有所述终端的位置信息;
    所述北斗网络设备向所述终端发送第一查询结果,所述第一查询结果包括所述终端预设距离内的一个或多个基站的信息,所述第一查询结果用于所述终端搜索蜂窝网络。
  18. 根据权利要求17所述的方法,其特征在于,所述第一查询请求为第一报文,所述第一报文中包括第一蜂窝信息类型字段、终端经纬度字段;所述第一蜂窝信息类型字段用于指示所述北斗网络设备向所述终端回复的第一查询结果的类型;所述终端经纬度字段用于指示所述终端的经纬度。
  19. 根据权利要求18所述的方法,其特征在于,所述第一蜂窝信息类型字段为第一值,所述第一值用于指示所述第一查询结果为所述终端预设距离内的一个或多个基站的信息;
    所述第一蜂窝信息类型字段为第二值,所述第二值用于指示所述第一查询结果为所述终端预设距离内满足预设条件的一个或多个基站的信息。
  20. 根据权利要求19所述的方法,其特征在于,所述基站的信息包括基站的经纬度、基站的网络制式、基站的频点、基站的小区号,以及基站的发送功率中的一项或多项。
  21. 根据权利要求20所述的方法,其特征在于,所述预设条件为所述终端接收基站发送信号的信号强度大于第一阈值。
  22. 根据权利要求18所述的方法,其特征在于,所述第一查询结果为第二报文,所述第二报文包括第二蜂窝信息类型字段、第一基站数量字段、第一经纬度字段、第一网络制式字段、第一频点字段、第一小区号字段;其中,所述第二蜂窝信息类型字段为第一值,用于指示所述第一查询结果为所述终端预设距离内的一个或多个基站的信息,所述基站数量字段用于指示所述终端预设距离内的基站的数量;所述第一经纬度字段用于指示所述终端预设距离内的基站的经纬度;所述第一网络制式字段用于指示所述终端预设距离内的基站的网络制式;所述第一频点字段用于指示所述终端预设距离内的基站的频点;所述第一小区号字段用于指示所述终端预设距离内的基站的小区号。
  23. 根据权利要求22所述的方法,其特征在于,所述第二报文还包括第一基站发送功率字段,所述第一基站发送功率字段用于指示所述终端预设距离内的基站的发送功率。
  24. 根据权利要求23所述的方法,其特征在于,所述第一查询结果为第三报文,所述第三报文中包括第三蜂窝信息类型字段、第二基站数量字段、第二网络制式字段、第二频点字段、第二小区号字段;所述第三蜂窝信息类型字段为第二值,所述第一查询结果为所述终端预设距离内满足预设条件的一个或多个基站的信息;所述第二基站数量字段用于指示所述终端预设距离内满足预设条件的基站的数量;所述第二网络制式字段用于指示所述终端预设距离内满足预设条件的基站的网络制式,所述第二频点字段用于指示所述终端预设距离内满足预设条件的基站的频点,所述第二小区号字段用于所述终端预设距离内满足预设条件的基站的小区号。
  25. 根据权利要求17-24任一项所述的方法,其特征在于,所述北斗网络设备向所述终端发送第一查询结果,所述第一查询结果包括所述终端预设距离内的一个或多个基站的信息,包括:
    所述北斗网络设备根据所述终端的位置信息查询所述终端预设距离内的一个或多个基站的信息;
    所述北斗网络设备向所述终端发送第一查询结果,所述第一查询结果包括所述终端预设距离内的一个或多个基站的信息。
  26. 根据权利要求25所述的方法,其特征在于,所述北斗网络设备根据所述终端的位置信息查询所述终端预设距离内的一个或多个基站的信息,包括:
    所述北斗网络设备根据所述终端的位置向蜂窝核心网设备查询所述终端预设距离内的一个或多个基站的信息,所述蜂窝核心网设备中存储有运营商部署的所有基站的信息。
  27. 一种北斗通信系统,其特征在于,包括终端和北斗网络设备,其中:
    所述终端未驻留在蜂窝网络,用于检测到所述终端在预设时长内未向所述北斗网络设备发送数据或未接收所述北斗网络设备发送的数据;
    所述终端用于向所述北斗网络设备发送第一查询请求,所述第一查询请求用于查询基站的信息,所述第一请求携带有所述终端的位置信息;
    所述终端用于接收到所述北斗网络设备发送的第一查询结果,所述第一查询结果包括所述终端预设距离内的一个或多个基站的信息;
    所述终端用于根据所述第一查询结果搜索蜂窝网络,在搜索蜂窝网络成功的情况下,所述终端驻留到蜂窝网络;
    所述北斗网络设备用于接收所述终端发送的第一查询请求,
    所述北斗网络设备用于向所述终端发送第一查询结果。
  28. 一种通信装置,其特征在于,包括一个或多个处理器、一个或多个存储器和收发器;其中,所述收发器、所述一个或多个存储器与所述一个或多个处理器耦合,所述一个或多个存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,当一个或多个处理器在执行所述计算机指令时,使得所述通信装置执行如权利要求1-16任一项所述的方法。
  29. 根据权利要求28所述的通信装置,其特征在于,所述通信装置为终端。
  30. 一种通信装置,其特征在于,包括一个或多个处理器、一个或多个存储器、收发器;其中,所述收发器、所述一个或多个存储器与所述一个或多个处理器耦合,所述一个或多个存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,当一个或多个处理器在执行所述计算机指令时,使得所述通信装置执行如权利要求17-27任一项所述的方法。
  31. 根据权利要求30所述的通信装置,其特征在于,所述通信装置为北斗网络设备。
  32. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在计算机上运行时,使得所述计算机执行如权利要求1-16任一项所述的方法。
  33. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在计算机上运行时,使得所述计算机执行如权利要求17-27任一项所述的方法。
  34. 一种芯片或芯片系统,应用于终端,其特征在于,包括处理电路和接口电路,所述接口电路用于接收代码指令并传输至所述处理电路,所述处理电路用于运行所述代码指令以执行如权利要求1-16任一项所述的方法。
PCT/CN2022/114731 2021-08-30 2022-08-25 一种切换网络的方法及相关装置 WO2023030152A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111003952.5 2021-08-30
CN202111003952.5A CN115734303A (zh) 2021-08-30 2021-08-30 一种切换网络的方法及相关装置

Publications (1)

Publication Number Publication Date
WO2023030152A1 true WO2023030152A1 (zh) 2023-03-09

Family

ID=85290719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/114731 WO2023030152A1 (zh) 2021-08-30 2022-08-25 一种切换网络的方法及相关装置

Country Status (2)

Country Link
CN (1) CN115734303A (zh)
WO (1) WO2023030152A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116582880A (zh) * 2023-07-06 2023-08-11 北京小米移动软件有限公司 信号强度的检测方法、装置、电子设备及存储介质
CN116996841A (zh) * 2023-09-27 2023-11-03 北京小米移动软件有限公司 短信发送方法、装置及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6181952B1 (en) * 1998-12-07 2001-01-30 Mitsubishi Denki Kabushiki Kaisha Unit and system for mobile communications
CN105722159A (zh) * 2016-02-05 2016-06-29 中国移动通信集团江苏有限公司 一种网络切换方法、确定网络切换区域的方法及装置
CN106912011A (zh) * 2015-12-23 2017-06-30 联芯科技有限公司 救援系统和救援方法
CN109890057A (zh) * 2017-12-06 2019-06-14 中国电信股份有限公司 网络切换方法、装置、终端以及计算机可读存储介质
CN111212454A (zh) * 2019-12-30 2020-05-29 广州海达安控智能科技有限公司 可智能切换数据传输方式的远程终端控制系统及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6181952B1 (en) * 1998-12-07 2001-01-30 Mitsubishi Denki Kabushiki Kaisha Unit and system for mobile communications
CN106912011A (zh) * 2015-12-23 2017-06-30 联芯科技有限公司 救援系统和救援方法
CN105722159A (zh) * 2016-02-05 2016-06-29 中国移动通信集团江苏有限公司 一种网络切换方法、确定网络切换区域的方法及装置
CN109890057A (zh) * 2017-12-06 2019-06-14 中国电信股份有限公司 网络切换方法、装置、终端以及计算机可读存储介质
CN111212454A (zh) * 2019-12-30 2020-05-29 广州海达安控智能科技有限公司 可智能切换数据传输方式的远程终端控制系统及存储介质

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116582880A (zh) * 2023-07-06 2023-08-11 北京小米移动软件有限公司 信号强度的检测方法、装置、电子设备及存储介质
CN116582880B (zh) * 2023-07-06 2023-10-03 北京小米移动软件有限公司 信号强度的检测方法、装置、电子设备及存储介质
CN116996841A (zh) * 2023-09-27 2023-11-03 北京小米移动软件有限公司 短信发送方法、装置及存储介质

Also Published As

Publication number Publication date
CN115734303A (zh) 2023-03-03

Similar Documents

Publication Publication Date Title
WO2020249062A1 (zh) 一种语音通信方法及相关装置
WO2023030152A1 (zh) 一种切换网络的方法及相关装置
WO2020244623A1 (zh) 一种空鼠模式实现方法及相关设备
WO2023011362A1 (zh) 一种北斗通信系统中出站传输控制方法、系统及相关装置
WO2023025075A1 (zh) 北斗通信系统中出站数据传输方法、系统及相关装置
CN115696237A (zh) 一种北斗通信系统中加密方法、系统及相关装置
CN115694598A (zh) 一种北斗通信系统中多帧融合传输方法及相关装置
WO2023011605A1 (zh) 北斗通信系统中的信件下载查询方法、系统及相关装置
WO2023185893A1 (zh) 一种卫星信号捕获方法及相关装置
WO2023011379A1 (zh) 一种北斗通信系统中入站传输控制方法、系统及相关装置
CN115842799A (zh) 北斗通信系统中的信箱概况查询方法、系统及相关装置
WO2023083027A1 (zh) 一种北斗通信系统中的参数更新方法、系统及相关装置
WO2023011594A1 (zh) 北斗通信系统中的信箱概况查询方法、系统及相关装置
WO2023011603A1 (zh) 一种北斗通信系统中位置上报方法、系统及相关装置
WO2023011478A1 (zh) 一种北斗通信系统中的数据压缩方法、系统及相关装置
CN115842800B (zh) 北斗通信系统中的信件下载查询方法、系统及相关装置
WO2023011329A1 (zh) 一种北斗通信系统中数据传输控制方法、系统及相关装置
WO2022228210A1 (zh) 驻网方法、电子设备及系统
WO2023011386A1 (zh) 一种北斗通信系统中白名单控制方法及相关装置
CN114449492B (zh) 数据传输方法及终端设备
WO2023011602A1 (zh) 一种卫星通信系统中传输控制方法及相关装置
CN115706602A (zh) 一种北斗通信系统中位置上报方法、系统及相关装置
CN116321265B (zh) 网络质量评估方法、电子设备以及存储介质
CN116708317B (zh) 数据包mtu的调整方法、装置和终端设备
CN115707034A (zh) 一种北斗通信系统中的数据压缩方法、系统及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22863290

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE