WO2023011478A1 - 一种北斗通信系统中的数据压缩方法、系统及相关装置 - Google Patents

一种北斗通信系统中的数据压缩方法、系统及相关装置 Download PDF

Info

Publication number
WO2023011478A1
WO2023011478A1 PCT/CN2022/109726 CN2022109726W WO2023011478A1 WO 2023011478 A1 WO2023011478 A1 WO 2023011478A1 CN 2022109726 W CN2022109726 W CN 2022109726W WO 2023011478 A1 WO2023011478 A1 WO 2023011478A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
terminal
user
beidou
slc
Prior art date
Application number
PCT/CN2022/109726
Other languages
English (en)
French (fr)
Inventor
姚振东
钱锋
李振洲
朱颖
林力新
姚楚婷
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111069259.8A external-priority patent/CN115707034A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22852190.2A priority Critical patent/EP4369780A1/en
Publication of WO2023011478A1 publication Critical patent/WO2023011478A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/12Messaging; Mailboxes; Announcements
    • H04W4/14Short messaging services, e.g. short message services [SMS] or unstructured supplementary service data [USSD]
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M7/00Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
    • H03M7/30Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/04Protocols for data compression, e.g. ROHC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/26Network addressing or numbering for mobility support
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/18Processing of user or subscriber data, e.g. subscribed services, user preferences or user profiles; Transfer of user or subscriber data
    • H04W8/183Processing at user equipment or user record carrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • the present application relates to the field of Beidou communication technology and the field of compression technology, and in particular to a data compression method, system and related devices in the Beidou communication system.
  • the Beidou satellite navigation system is a major infrastructure independently developed by my country that integrates positioning, timing, and communication.
  • the Beidou short message system uses the Beidou satellite system to realize the transmission of short message information. It is especially suitable for communication in areas where mobile communication is not covered, or cannot be covered, or the communication system is destroyed, such as oceans, deserts, grasslands, and uninhabited areas.
  • the short message system of the Beidou-3 satellite has upgraded the short message technical system, and opened some necessary resources of the Beidou short message system to civilian use. For civilian business and equipment characteristics, it needs to be designed according to the characteristics of the Beidou short message system letter of agreement.
  • each user is assigned a user number for identifying the user's identity, and the user number is also called a user ID.
  • the frame header overhead for uplink and downlink transmission should be as simple as possible.
  • the traditional mobile phone number encoding method uses BCD code (Binary-Coded Decimal). If this encoding method is used, more waste will be wasted frame header overhead.
  • the present application provides a data compression method, system, and related device in the Beidou communication system. Through the method provided in the embodiment of the present application, frame header overhead can be reduced during data transmission.
  • a data compression method in the Beidou communication system may include: the first terminal encodes the first user ID of the first terminal into binary first data at the satellite link control layer SLC, and the first The user ID includes second data and third data, the first data includes binary fourth data and binary fifth data, the fourth data is obtained by encoding the sixth data, the sixth data is obtained by compressing the second data, and the sixth data The data length is less than the second data, and the fifth data is obtained by encoding the third data; the first terminal fills the first data into the user ID field in the frame header information of the first user frame at the SLC layer; A user frame is sent to Beidou network equipment.
  • the first user ID may be the mobile phone number of the first terminal
  • the second data may be the national destination code NDC in the mobile phone number
  • the third data may be the customer number SN in the mobile phone number.
  • bits occupied by the user ID in the frame header information of the user frame can be reduced.
  • the terminal sends user frames to Beidou network equipment, it can reduce the frame header overhead.
  • the first terminal encodes the first user ID of the first terminal into binary first data at the satellite link control layer SLC, including: the first terminal encodes the first user ID at the SLC layer
  • the second data in the first user ID of the first terminal is compressed into sixth data, the first user ID is composed of the second data and the third data, and the data length of the sixth data is smaller than the second data;
  • the first terminal is at the SLC layer Encoding the sixth data into fourth data, and encoding the third data into fifth data; the first terminal composes the fourth data and the fifth data into first data.
  • bits occupied by the user ID in the frame header information of the user frame can be reduced.
  • the first terminal compresses the second data in the first user ID of the first terminal into sixth data at the SLC layer, including: the first terminal compresses the second data at the SCL layer The second data in a user ID is mapped to the sixth data in the mapping table; the mapping table includes second data of multiple values and sixth data of multiple values, wherein the second data of multiple values includes the first The second data of a value, the sixth data of a plurality of values include the sixth data of a second value, and the second data of the first data is mapped to the sixth data of a second value.
  • a second piece of data can be compressed into a piece of sixth piece of data with a shorter data length.
  • the second data corresponds to the sixth data one-to-one, and there is no correspondence between one compressed data and one uncompressed data. In this way, there will be no errors when decoding.
  • the first terminal compresses the second data in the first user ID of the first terminal into sixth data at the SLC layer, including: the first terminal compresses the second data at the SCL layer A preset offset value is subtracted from the second data in the user ID to obtain the sixth data.
  • a second piece of data can be compressed into a piece of sixth piece of data with a shorter data length.
  • the first terminal encodes the sixth data into fourth data at the SLC layer, and encodes the third data into fifth data, including: the first terminal encodes the fourth data at the SLC layer
  • the sixth data is converted into binary fourth data as a decimal integer; the third data is converted into binary fifth data as a decimal integer.
  • the sixth data and the third data can be encoded into shorter binary data.
  • the method may further include: first The terminal detects the first operation, and the first operation is used to instruct the first terminal to send the first message to the second terminal; the first terminal compresses the second user ID of the second terminal at the application APP layer and encodes it into seventh data; the first The terminal generates a first message at the APP layer, where the first message includes a header and message data; the header includes seventh data, and the message data includes content of the first message.
  • the method may further include: the first terminal sends the first message to the The SLC layer obtains one or more satellite link control layer service data units SLC SDU, and the one or more SLC SDUs include the first SLC SDU; the first terminal segments the first SLC SDU into one or more user frames, The one or more user frames include the first user frame.
  • the method may further include: the first terminal receives the second user frame sent by the Beidou network device, and the second user frame is sent by the second terminal to the first terminal ; The first terminal decodes and decompresses the user ID field in the frame header information of the second user frame at the SLC layer to obtain the first user ID of the first terminal.
  • the terminal can decompress the user ID of the terminal from the user ID field in the frame header information of the user frame.
  • the method may further include: the first terminal receives the second user frame sent by the Beidou network device, and the second user frame is sent by the second terminal to the first terminal The first terminal decodes and decompresses the user ID field in the frame header information of the second user frame at the SLC layer to obtain user ID data; when the first terminal determines that the user ID data is identical to the first user ID, the first terminal The terminal uploads the second user frame to the message data convergence MDCP layer; when the first terminal determines that the user ID data is different from the first user ID, the first terminal discards the second user frame.
  • the first terminal decodes and decompresses the user ID field in the header information of the second user frame at the SLC layer to obtain the first user ID of the first terminal
  • the method may further include: the first terminal uploads the user data in the second user frame to the application layer to obtain the second message message; the first terminal uploads the message header of the second message message in the APP layer
  • the user ID field is decoded and decompressed to obtain the second user ID of the second terminal; the first terminal determines that the second message is sent by the second terminal based on the second user ID.
  • a data compression method in a Beidou communication system may include: Beidou network equipment encodes the first user ID of the first terminal into binary first data at the satellite link control layer SLC, and the first The user ID includes second data and third data, the first data includes binary fourth data and binary fifth data, the fourth data is obtained by encoding the sixth data, the sixth data is obtained by compressing the second data, and the sixth data The data length is less than the second data, and the fifth data is obtained by encoding the third data; Beidou network equipment fills the first data into the user ID field in the frame header information of the second user frame at the SLC layer; The second user frame is sent to the first terminal.
  • the first user ID may be the mobile phone number of the first terminal
  • the second data may be the national destination code NDC in the mobile phone number
  • the third data may be the customer number SN in the mobile phone number.
  • the method may further include: Beidou network The device acquires the first user ID of the first terminal.
  • the Beidou network device acquires the first user ID of the first terminal, including: the Beidou network device receives the first user frame sent by the first terminal, and the frame of the first user frame The user ID field in the header information is used to indicate the first user ID of the first terminal; the Beidou network equipment decodes the first user ID from the first user frame.
  • the Beidou network device acquires the first user ID of the first terminal, including: the Beidou network device receives the first user frame sent by the first terminal, and the frame of the first user frame The user ID field in the header information is used to indicate the first data; the Beidou network equipment decompresses and decodes the first data to obtain the first user ID.
  • the Beidou network device obtains the first user ID of the first terminal, including: the Beidou network device receives the second message message, and the second message message is passed by the second terminal
  • the Beidou network equipment sends to the first terminal, and the second message includes a user ID field used to indicate the first user ID of the first terminal; the Beidou network equipment uses the user ID field in the header of the second message
  • the first user ID is decoded in .
  • the Beidou network equipment encodes the first user ID of the first terminal into binary first data at the satellite link control layer SLC, including: the Beidou network equipment encodes at the SLC layer
  • the second data in the first user ID of the first terminal is compressed into sixth data, the first user ID is composed of the second data and the third data, and the data length of the sixth data is smaller than the second data;
  • Beidou network equipment is at the SLC layer
  • the sixth data is encoded into fourth data, and the third data is encoded into fifth data; the Beidou network equipment composes the fourth data and the fifth data into the first data.
  • bits occupied by the user ID in the frame header information of the user frame can be reduced.
  • the Beidou network device compresses the second data in the first user ID of the first terminal into sixth data at the SLC layer, including: the Beidou network device compresses the second data at the SCL layer The second data in a user ID is mapped to the sixth data in the mapping table; the mapping table includes second data of multiple values and sixth data of multiple values, wherein the second data of multiple values includes the first The second data of a value, the sixth data of a plurality of values include the sixth data of a second value, and the second data of the first data is mapped to the sixth data of a second value.
  • a second piece of data can be compressed into a piece of sixth piece of data with a shorter data length.
  • the second data corresponds to the sixth data one-to-one, and there is no correspondence between one compressed data and one uncompressed data. In this way, there will be no errors when decoding.
  • the Beidou network device compresses the second data in the first user ID of the first terminal into sixth data at the SLC layer, including: the Beidou network device compresses the second data at the SCL layer A preset offset value is subtracted from the second data in the user ID to obtain the sixth data.
  • a second piece of data can be compressed into a piece of sixth piece of data with a shorter data length.
  • the Beidou network device encodes the sixth data into fourth data at the SLC layer, and encodes the third data into fifth data, including: the first terminal encodes the fourth data at the SLC layer
  • the sixth data is converted into binary fourth data as a decimal integer; the third data is converted into binary fifth data as a decimal integer.
  • the sixth data and the third data can be encoded into shorter binary data.
  • a Beidou communication system may include a first terminal and Beidou network equipment. in:
  • the first terminal is used to encode the first user ID of the first terminal into binary first data at the satellite link control layer SLC, the first user ID includes second data and third data, and the first data includes binary fourth data. data and binary fifth data, the fourth data is obtained by encoding the sixth data, the sixth data is obtained by compressing the second data, the data length of the sixth data is smaller than the second data, and the fifth data is obtained by encoding the third data;
  • the first terminal is used to fill the first data into the user ID field in the frame header information of the first user frame at the SLC layer;
  • the first terminal is configured to send the first user frame to a Beidou network device
  • the Beidou network device is configured to receive the first user frame, and decode the first user ID from the user ID field in the frame header information of the first user frame.
  • Beidou network equipment is used for:
  • the first user ID of the first terminal is encoded into binary first data, the first user ID includes second data and third data, and the first data includes binary fourth data and binary second data.
  • Five data the fourth data is obtained by encoding the sixth data, the sixth data is obtained by compressing the second data, the data length of the sixth data is smaller than the second data, and the fifth data is obtained by encoding the third data;
  • the Beidou network device may also execute the method in any possible implementation manner of the foregoing second aspect.
  • the terminal may further execute the method in any possible implementation manner of the foregoing first aspect.
  • the present application provides a communication device, including one or more processors, one or more memories, and a transceiver.
  • the transceiver, the one or more memories are coupled to the one or more processors, the one or more memories are used to store computer program codes, the computer program codes include computer instructions, and when the one or more processors execute the computer instructions, the The communication device executes the method in any possible implementation manner of the foregoing first aspect.
  • the communication device may be a terminal or other product form equipment.
  • the present application provides a communication device, including one or more processors, one or more memories, and a transceiver.
  • the transceiver, the one or more memories are coupled to the one or more processors, the one or more memories are used to store computer program codes, the computer program codes include computer instructions, and when the one or more processors execute the computer instructions, the The communication device executes the method in any possible implementation manner of the second aspect above.
  • the communication device may be Beidou network equipment, or any network element or a combination of multiple network elements in the Beidou network equipment.
  • the present application provides a computer storage medium, including computer instructions.
  • the computer instructions When the computer instructions are run on the computer, the computer is made to execute the method in any possible implementation manner of the first aspect above.
  • the present application provides a computer storage medium, including computer instructions.
  • the computer instructions When the computer instructions are run on the computer, the computer is made to execute the method in any possible implementation manner of the second aspect above.
  • the present application provides a computer program product, which, when the computer program product is run on a computer, causes the computer to execute the method in any possible implementation manner of the first aspect above.
  • the present application provides a computer program product, which, when the computer program product is run on a computer, causes the computer to execute the method in any possible implementation manner of the second aspect above.
  • the present application provides a chip or a chip system, which is applied to a terminal, and includes a processing circuit and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processing circuit, and the processing circuit is used to run the code instructions To execute the method in any possible implementation manner of the first aspect above.
  • FIG. 1 is a schematic structural diagram of a Beidou communication system 10 provided by an embodiment of the present application.
  • Fig. 2 is a schematic diagram of the transmission process of data inbound and outbound in a Beidou communication system provided by an embodiment of the present application;
  • FIG. 3 is a schematic diagram of a protocol encapsulation framework for inbound data of a Beidou communication system 10 provided in an embodiment of the present application;
  • FIG. 4 is a schematic diagram of a protocol analysis framework for inbound data of a Beidou communication system 10 provided by an embodiment of the present application;
  • FIG. 5 is a schematic diagram of a protocol encapsulation framework for outbound data of a Beidou communication system 10 provided by an embodiment of the present application;
  • FIG. 6 is a schematic diagram of a protocol analysis framework for outbound data of a Beidou communication system 10 provided by an embodiment of the present application;
  • FIG. 7 is a schematic diagram of a frame format of an SLC frame provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a frame format of another SLC frame provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a frame format of another ACK frame provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a frame format of another application layer receipt frame provided by an embodiment of the present application.
  • Fig. 11A is a schematic flowchart of a data compression method in a Beidou communication system provided by an embodiment of the present application
  • FIG. 11B is a schematic flowchart of a data compression method in a Beidou communication system provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a terminal 100 provided in an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • first and second are used for descriptive purposes only, and cannot be understood as implying or implying relative importance or implicitly specifying the quantity of indicated technical features. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present application, unless otherwise specified, the “multiple” The meaning is two or more.
  • a Beidou communication system 10 provided in the embodiment of the present application is introduced below.
  • Fig. 1 shows a schematic diagram of a Beidou communication system 10 provided in an embodiment of the present application.
  • a Beidou communication system 10 may include a terminal 100 , a Beidou short message satellite 21 , a Beidou network device 200 , a short message center 25 and a terminal 300 .
  • the Beidou communication system 10 may also include an emergency rescue platform 26 and an emergency rescue center 27 .
  • the terminal 100 can send the short message information to the Beidou short message satellite 21, and the Beidou short message satellite 21 only relays and directly forwards the short message information sent by the terminal 100 to the Beidou network equipment 200 on the ground.
  • the Beidou network device 200 can analyze the short message information forwarded by the satellite according to the Beidou communication protocol, and forward the content of the general message type parsed from the short message information to the short message center (short message service center, SMSC) 25.
  • SMSC short message service center
  • the short message center 25 can forward the content of the message to the terminal 300 through a traditional cellular communication network.
  • the Beidou network device 200 may also send the emergency message sent by the terminal 100 to the emergency rescue center 27 through the emergency rescue platform 26 .
  • the terminal 300 can also send the short message to the short message center 25 through a traditional cellular communication network.
  • the short message center 25 can forward the short message of the terminal 300 to the Beidou network device 200 .
  • the Beidou network device 200 can relay the short message of the terminal 300 to the terminal 100 through the Beidou short message satellite 21 .
  • the above-mentioned Beidou network equipment 200 may include a Beidou ground transceiver station 22 , a Beidou central station 23 and a Beidou short message integrated communication platform 24 .
  • the Beidou ground transceiver station 22 may include one or more devices with a sending function and one or more devices with a receiving function, or may include one or more devices with a sending function and a receiving function, which is not limited herein .
  • the Beidou ground transceiver station 22 can be used for the Beidou network device 200 to process data at the physical (physical layer protocol, PHY) layer.
  • the Beidou central station 23 can be used for the Beidou network equipment 200 to process data at the satellite link control (satellite link control protocol, SLC) layer and the message data convergence protocol (message data convergence protocol, MDCP) layer.
  • the Beidou short message fusion communication platform 24 can be used to process data at the application (application layer protocol, APP) layer.
  • the Beidou communication system 10 since the Beidou communication system 10 communicates through satellite links, its main characteristics are: time extension (about 270 ms in one direction) and large link loss.
  • the services currently supported by the Beidou communication system 10 are mainly burst short message services, and do not support link state management, mobility management, and broadcast control information.
  • the working mode of the Beidou network device 200 may be a duplex mode, and data may be sent and received at the same time.
  • the data sent by the terminal 100 to the Beidou network device 200 may be called inbound, and the data sent by the terminal 100 to the Beidou network device 200 may be called inbound data.
  • the data sent by the Beidou network device 200 to the terminal 100 may be called outbound, and the data sent by the Beidou network device 200 to the terminal 100 may be called outbound data.
  • the terminal 100 can send the inbound data to the Beidou short message satellite 21, and then send the inbound data to the Beidou ground transceiver station 22 via the Beidou short message satellite 21, and the Beidou ground transceiver station 22 can send the incoming Station data is sent to Beidou central station 23.
  • the Beidou central station 23 in the Beidou network device 200 can send outbound data to the Beidou ground transceiver station 22 . Then, the Beidou ground transceiver station 22 sends the outbound data to the Beidou short message satellite 21, and sends it to the terminal 100 via the Beidou short message satellite 21.
  • a protocol encapsulation framework for inbound data of the Beidou communication system 10 provided in the embodiment of the present application is introduced below.
  • FIG. 3 shows a schematic diagram of a protocol encapsulation architecture of inbound data of the Beidou communication system 10 provided in the embodiment of the present application.
  • the Beidou message transmission protocol layer on the terminal 100 can be divided into application layer protocol (application layer protocol, APP), message data convergence layer (message data convergence protocol, MDCP), satellite link control layer (satellite link control protocol, SLC) and physical layer (physical layer protocol, PHY).
  • application layer protocol application layer protocol
  • MDCP message data convergence layer
  • MDCP message data convergence protocol
  • SLC satellite link control layer
  • PHY physical layer protocol
  • the workflow of the Beidou message transmission protocol on the terminal 100 can be as follows:
  • the terminal 100 can compress the original data into compressed data through a compression algorithm, and add a compression indication field in front of the compressed data, wherein the compression indication field can be used to indicate the compression algorithm type of the compressed data.
  • the terminal 100 may encrypt the compressed data to obtain encrypted data, and add an encryption algorithm field to the header of the encrypted data, where the encryption algorithm field is used to indicate the encryption algorithm type of the encrypted data.
  • the terminal 100 may encapsulate the encrypted data, the compressed indication field, and the encrypted indication field into an application layer message and send it to the MDCP layer.
  • the application layer message includes a message header and message data.
  • the message header includes a compression indication field, an encryption indication field, and the like.
  • the message data includes the above-mentioned encrypted data.
  • the terminal 100 may also encrypt the compression indication field and the compressed data together to obtain encrypted data.
  • the terminal 100 can obtain the application layer message sent by the APP layer through the interlayer interface, and use the application layer message as an MDCP service data unit (service data unit, SDU).
  • the terminal 100 can add padding to a specified length at the end of the MDCP SDU, and add a redundant length indication field at the head of the MDCP SDU.
  • the redundant length indication field may be used to indicate the length of the padding data.
  • the terminal 100 can split the padding data and the MDCP SDU after adding the redundant length indication field into one or more fixed-length MDCP segment data (M_segement), and add a follow-up indication to the header of each MDCP segment data field to get the MDCP protocol data unit (protocol data unit, PDU), that is, the MDCP PDU includes the M_segment and the successor indication field.
  • the follow-up indication field can be used to indicate that the current MDCP PDU is the initial MDCP PDU or the middle MDCP PDU or the last MDCP PDU of multiple MDCP PDUs sent continuously; or it is an MDCP PDU sent separately.
  • the terminal 100 can obtain the MDCP PDU sent by the MDCP layer through the interlayer interface as the SLC SDU.
  • the terminal 100 can segment the SLC SDU into one or more (up to 4) fixed-length SLC segment data (S_segement), and add frame header information to each S_segment header to obtain the SLC PDU.
  • the frame header information includes a service data unit alternated indicator (service data unit alternated indicator, SAI) field, a frame total number field, and a frame sequence number field.
  • SAI service data unit alternated indicator
  • the SAI field can be used to indicate whether the SLC PDU belongs to a SLC SDU that has not been sent.
  • the total number of frames field can be used to indicate the total number of SLC PDUs included in the SLC SDU to which the SLC PDU belongs.
  • the frame sequence number field can be used to indicate the sequence number of the SLC PDU in the SLC SDU to which it belongs.
  • the terminal 100 can obtain the SLC PDU issued by the SLC layer through the interlayer interface, as a code block (code block) of the PHY layer, and add a synchronization header at the head of the code block, and add a calibration at the end of the code block. Parity field.
  • a cyclic redundancy check (cyclic redundancy check, CRC) may be used to check the code block, therefore, the check digit field may include a CRC code.
  • the terminal 100 can code the code block and the parity field (such as polar coding) to obtain coded data (coded data), and then insert a pilot into the coded data to obtain pilot coded data (pilot+data).
  • the terminal 100 sequentially modulates the synchronization header and pilot coded data through the underlying hardware to obtain modulated data (modulated data).
  • modulated data modulated data
  • the terminal 100 may perform spectrum spreading on the modulated data to obtain spread spectrum modulated data (spread+modulated data).
  • the terminal 100 can send the spread-spectrum modulated data to the Beidou short message satellite 21, and then forward it to the Beidou network device 200 via the Beidou short message satellite 21.
  • a protocol analysis framework for inbound data of the Beidou communication system 10 provided in the embodiment of the present application is introduced below.
  • FIG. 4 shows a schematic diagram of a protocol analysis architecture of inbound data of the Beidou communication system 10 provided in the embodiment of the present application.
  • the Beidou short message transmission protocol layer of the Beidou network device 200 can be divided into an application layer (application layer protocol, APP), a message data convergence layer (message data convergence protocol, MDCP), and a satellite link control layer ( Satellite link control protocol, SLC) and physical layer (physical layer protocol, PHY).
  • the Beidou network device 200 may include a Beidou ground transceiver station 22 , a Beidou central station 23 and a Beidou short message integrated communication platform 24 .
  • the Beidou ground transceiver station 22 can be used to be responsible for the protocol processing of the PHY layer.
  • the Beidou central station 23 can be used to be responsible for the protocol processing of the SLC layer and the MDCP layer.
  • the Beidou short message fusion communication platform 24 can be used to be responsible for the protocol processing of the APP layer.
  • the workflow of the Beidou short message transmission protocol layer of the Beidou network device 200 can be as follows:
  • the Beidou network device 200 can obtain the modulated and spread-spectrum coded pilot data sent by the terminal 100 .
  • the Beidou network device 200 may despread the received spread spectrum modulated data (spread+modulated data) to obtain modulated data (modulated data). Then, the Beidou network device 200 can demodulate the modulated data to obtain pilot coded data (pilot+data). Next, the Beidou network device 200 removes the pilot information in the pilot coded data to obtain coded data (code data). Then, the Beidou network device 200 can decode the coded data, and verify the integrity of the code block (code block) through the check data in the check bit field. If it is complete, the Beidou network device 200 can extract the code block (code block), and present it to the SLC layer through the interlayer interface as the SLC PDU of the SLC layer.
  • the Beidou network device 200 can splice the SLC PDUs belonging to the same SLC SDU into one SLC SDU based on the frame header information of the SLC PDU.
  • the Beidou network device 200 can present the SLC SDU to the MDCP layer through the interlayer interface as the MDCP PDU of the MDCP layer.
  • Beidou network device 200 can splice all MDCP PDUs belonging to the same MDCP SDU into one MDCP SDU.
  • the Beidou network device 200 can present the MDCP SDU to the APP layer through the interlayer interface as an application layer message received by the APP layer.
  • the Beidou network device 200 can decrypt and decompress the application layer message based on the message header of the application layer message to obtain the original data.
  • a protocol encapsulation framework for outbound data of the Beidou communication system 10 provided in the embodiment of the present application is introduced below.
  • FIG. 5 shows a schematic diagram of a protocol encapsulation architecture of outbound data of the Beidou communication system 10 provided in the embodiment of the present application.
  • the Beidou short message transmission protocol layer in the Beidou network device 200 can be an application layer (application layer protocol, APP), a message data convergence layer (message data convergence protocol, MDCP), a satellite link control layer (satellite link control protocol, SLC) and physical layer (physical layer protocol, PHY).
  • the Beidou network device 200 may include a Beidou ground transceiver station 22 , a Beidou central station 23 and a Beidou short message integrated communication platform 24 .
  • the Beidou ground transceiver station 22 can be used to be responsible for the protocol processing of the PHY layer.
  • the Beidou central station 23 can be used to be responsible for the protocol processing of the SLC layer and the MDCP layer.
  • the Beidou short message fusion communication platform 24 can be used to be responsible for the protocol processing of the APP layer.
  • the workflow of the Beidou short message transmission protocol in the Beidou network device 200 can be as follows:
  • the Beidou network device 200 can compress the original data into compressed data through a compression algorithm, and add a compression indication field in front of the compressed data, where the compression indication field can be used to indicate the compression algorithm type of the compressed data. Afterwards, the Beidou network device 200 can encrypt the compressed data to obtain encrypted data, and add an encryption algorithm field to the header of the encrypted data, and the encryption algorithm field is used to indicate the encryption algorithm type of the encrypted data. The Beidou network device 200 can encapsulate the encrypted data, the compressed indication field, and the encrypted indication field into an application layer message and send it to the MDCP layer.
  • the application layer message may include a message header and message data.
  • the packet header may include a compression indication field, an encryption indication field, and the like.
  • the message data includes the above-mentioned encrypted data.
  • the Beidou network device 200 divides the MDCP SDU into multiple MDCP PDUs at the MDCP layer, and the Beidou network device 200 can transmit the multiple MDCP PDUs to the SLC of the Beidou network device 200 layer.
  • the Beidou network device 200 can obtain the application layer message sent by the APP layer through the interlayer interface, and use the application layer message as an MDCP SDU.
  • Beidou network device 200 can split an MDCP SDU into one or more fixed-length MDCP segment data (M_segement), and add a follow-up indication field to the header of each MDCP segment data to obtain an MDCP PDU , that is, the MDCP PDU includes M_segment and successor indication fields.
  • M_segement fixed-length MDCP segment data
  • the follow-up indication field can be used to indicate that the current MDCP PDU is the initial MDCP PDU or the middle MDCP PDU or the last MDCP PDU of multiple MDCP PDUs sent continuously; or it is an MDCP PDU sent separately.
  • the Beidou network device 200 can obtain the MDCP PDU sent by the MDCP layer through the interlayer interface as the SLC SDU.
  • the Beidou network device 200 can segment the SLC SDU into one or more (up to 4) fixed-length SLC segment data (S_segement), and add frame header information to each S_segment header to obtain the SLC PDU .
  • the Beidou network device 200 can obtain the SLC PDU delivered by the SLC layer through the interlayer interface.
  • the Beidou network device 200 can obtain the SLC PDUs of one user or multiple users from the SLC layer.
  • the Beidou network device 200 can splice the SLC PDUs of multiple users together, add the frame header of the physical frame (such as the version number) as the code block (code block) of the PHY layer, and add a check digit at the end of the code block (for example, cyclic redundancy check (cyclic redundancy check, CRC) code), and encode the code block and CRC code (for example, polar encoding), the encoded physical frame plus the reserved segment can form a fixed-length physical time
  • the coded data of the message branch (S2C_d branch) of the slot can form a fixed-length physical time
  • the coded data of the message branch (S2C_d branch) of the slot can form a fixed-length physical time
  • the Beidou network device 200 can put multiple SLC PDUs of a user into different physical frames respectively. Then, the Beidou network device 200 composes the coded data of the S2C_d branch and the pilot information of the pilot branch (S2C_p branch) into pilot coded data, that is, outbound data. The Beidou network device 200 can send the outbound data to the Beidou short message satellite 21 , and forward it to the terminal 100 via the Beidou short message satellite 21 .
  • the pilot information of the S2C_p branch is related to the satellite beam.
  • the pilot information of the S2C_p branch is also known and does not need to be decoded.
  • the coded data of the S2C_d branch needs to be decoded.
  • a protocol analysis framework for outbound data of the Beidou communication system 10 provided in the embodiment of the present application is introduced below.
  • FIG. 6 shows a schematic diagram of a protocol analysis architecture of outbound data of the Beidou communication system 10 provided in the embodiment of the present application.
  • the Beidou short message transmission protocol layer of terminal 100 can be divided into application layer protocol (application layer protocol, APP), message data convergence layer (message data convergence protocol, MDCP), satellite link control layer (satellite link control protocol, SLC) and physical layer (physical layer protocol, PHY).
  • application layer protocol application layer protocol
  • MDCP message data convergence layer
  • MDCP message data convergence protocol
  • SLC satellite link control layer
  • PHY physical layer protocol
  • the workflow of the Beidou short message transmission protocol layer of the terminal 100 can be as follows:
  • the terminal 100 can obtain the modulated and spread-spectrum coded pilot data sent by the Beidou network device 200 .
  • the terminal 100 may despread the received spread spectrum modulated data (spread+modulated data) to obtain modulated data (modulated data). Then, the terminal 100 may demodulate the modulated data to obtain pilot coded data (pilot+data). Next, the terminal 100 may remove the pilot information in the pilot coded data to obtain coded data (code data). Then, the terminal 100 can decode the coded data, and verify the integrity of the code block (code block) through the check data in the check bit field. If it is complete, the terminal 100 can extract the code block (code block), and present it to the SLC layer through the interlayer interface as the SLC PDU of the SLC layer.
  • the pilot coded data is the outbound data sent by the Beidou network device 200, and the outbound data is composed of the coded data of the S2C_d branch and the pilot information of the pilot branch (S2C_p branch).
  • the terminal 100 can splice the SLC PDUs belonging to the same SLC SDU into one SLC SDU based on the frame header information of the SLC PDU.
  • the terminal 100 can present the SLC SDU to the MDCP layer through the interlayer interface as the MDCP PDU of the MDCP layer.
  • the terminal 100 can splice all MDCP PDUs belonging to the same MDCP SDU into one MDCP SDU.
  • the terminal 100 can present the MDCP SDU to the APP layer through the interlayer interface as an application layer message received by the APP layer.
  • the terminal 100 may decrypt and decompress the application layer message based on the message header of the application layer message to obtain original data.
  • the terminal 100 can generate a user frame at the SLC layer, and the frame header information of the user frame can include a user ID field, and the user ID field includes the user ID of the terminal 100.
  • the user frame generated by the terminal 100 may include an SLC PDU, an acknowledgment character (acknowledge character, ACK) frame, and an application layer receipt frame.
  • the Beidou network device 200 may also generate a user frame at the SLC layer.
  • the frame header information of the user frame may include a user ID field, and the user ID field includes the user ID of the terminal receiving the user frame.
  • the user frames generated by the Beidou network device 200 may also include SLC PDUs, ACK frames, and application layer receipt frames.
  • FIG. 7 shows a frame format of an inbound SLC PDU provided by the embodiment of the present application.
  • the frame header information of the SLC PDU sent by the terminal 100 to the Beidou network device 200 may include: a version number field, a subtype indication field, a user identity identification number (identity document, ID) field, confirmation Mode enable (AM enable) field, frame total number field, frame sequence number field, SAI field and reservation (reserve, RSV) field.
  • the version number field can be used to indicate the version of the Beidou communication protocol, and the version number field can support the evolution of the Beidou communication protocol for each frame type format.
  • the embodiment of the present application does not limit the length of the version number field.
  • the subtype field can be used to indicate that the frame type of the user frame sent by the terminal 100 is a general data frame, that is, SLC PDU.
  • the length of the subtype field may be 1 bit.
  • the value of the subtype field is "0”, indicating that the user frame is a general data frame, that is, SLC PDU.
  • the value of the subtype field is "1”, it indicates that the user frame sent by the terminal 100 is an ACK frame. Since the SLC PDU is a general data frame sent by the terminal 100, the value of the subtype field in the SLC PDU is "0".
  • the embodiment of the present application does not limit the length of the subtype field.
  • the user ID field may be used to indicate the user ID of the terminal 100 .
  • the user ID of the terminal 100 is contained in the user ID field.
  • the AM enable field can be used to indicate whether the terminal 100 transmits the SLC PDU in the confirmation mode.
  • the embodiment of the present application does not limit the length of the AM enable field and the specific value of the AM enable field.
  • the total number of frames field can be used to indicate the total number of SLC PDUs included in the SLC SDU where the SLC PDU is located.
  • the length of the frame total number field may be 2 bits.
  • one SLC PDU can include up to 4 SLC PDUs.
  • the frame sequence number field can be used to indicate the sequence number of the SLC PDU in an SLC SDU.
  • the length of the frame sequence number field may be 2 bits. The embodiment of the present application does not limit the length of the frame sequence number field.
  • the service data unit alternated indicator (service data unit alternated indicator, SAI) field can occupy 1 bit.
  • SAI field can be used to indicate whether the SLC PDU is a retransmitted SLC PDU.
  • the SAI field can be reserved for other functions.
  • the RSV field can be used for frame header data byte alignment and is reserved for other functions.
  • the length of the RSV field can be 4 bits or other bits. The embodiment of the present application does not limit the length of the RSV field.
  • the frame format of the outbound SLC PDU shown in FIG. 7 is only an example.
  • the embodiment of the present application does not limit the arrangement order of the cell parameters in the frame header information field.
  • Fig. 8 shows a frame format of an outbound SLC PDU provided by the embodiment of the present application.
  • the frame header information of the SLC PDU sent by the Beidou network device 200 to the terminal 100 may include: a frame type field, an acknowledgment mode enable (acknowledge mode enable, AM enable) field, a frame length field, a user ID field, frame total number field and frame sequence number field.
  • the frame type field can be used to indicate the type of the SLC frame.
  • the length of the frame type field may be 2 bits.
  • the embodiment of the present application does not limit the length of the frame type field.
  • the AM enable field indicates whether the Beidou network device 200 uses the confirmation mode to transmit the SLC PDU.
  • the length of the AM enable field may be 1 bit. If the value in the AM enable field is the first value (for example: 1), it indicates that the terminal 100 needs to reply ACK to the Beidou network device 200 after receiving the SLC PDU sent by the Beidou network device 200. If the value in the AM enable field is the second value (for example: 0), it indicates that the terminal 100 does not need to reply ACK to the Beidou network device 200 after receiving the SLC PDU of the Beidou network device 200.
  • the embodiment of the present application does not limit the length of the AM enable field and the specific value of the AM enable field.
  • the frame length field is used to identify the length of the SLC frame, and the length of the frame length field may be 8 bits.
  • the embodiment of the present application does not limit the length of the frame length field.
  • the user ID field can be used to indicate that the SLC PDU is sent by the Beidou network device 200 to the terminal 100.
  • the user ID field may contain the user ID of the terminal 100 .
  • the total number of frames field can be used to indicate the total number of SLC PDUs included in the SLC SDU where the SLC PDU is located.
  • the length of the frame total number field may be 2 bits.
  • one SLC PDU can include up to 4 SLC PDUs.
  • the frame sequence number field can be used to indicate the sequence number of the SLC PDU in an SLC SDU.
  • the length of the frame sequence number field may be 2 bits. The embodiment of the present application does not limit the length of the frame sequence number field.
  • the frame format of the outbound SLC PDU shown in FIG. 8 is only an example.
  • the embodiment of the present application does not limit the arrangement order of the cell parameters in the frame header information field.
  • FIG. 9 shows a frame format of an ACK frame provided by an embodiment of the present application.
  • the ACK frame may include frame header information and user information.
  • the frame header information may include a frame type field and a user ID field.
  • a frame type field may be used to indicate the type of the ACK frame.
  • the length of the frame type field may be 2 bits. The embodiment of the present application does not limit the length of the frame type field.
  • the user ID field may indicate the user ID of the terminal that transmitted or received the ACK frame.
  • the ACK frame is used to indicate whether the terminal 100 or the Beidou network device 200 that sent the ACK frame has successfully received the SLC SDU.
  • the frame format of the ACK frame shown in FIG. 9 is only an example.
  • the embodiment of the present application does not limit the arrangement order of the cell parameters in the frame header information field.
  • FIG. 10 shows a frame format of an application layer receipt frame provided by an embodiment of the present application.
  • the application layer receipt frame may include frame header information and user information.
  • the frame header information may include a frame type field and a user ID field.
  • the frame type field can be used to indicate the type of the application layer receipt frame.
  • the length of the frame type field may be 2 bits. The embodiment of the present application does not limit the length of the frame type field.
  • the user ID field may indicate the user ID of the terminal that sent or received the application layer acknowledgment frame.
  • the application layer receipt frame is used to indicate whether the terminal 100 or the Beidou network device 200 that sent the application layer receipt frame successfully parses the received application layer message.
  • the frame format of the application layer receipt frame shown in FIG. 10 is only an example.
  • the embodiment of the present application does not limit the arrangement order of the cell parameters in the frame header information field.
  • the binary data in the user ID field included in the frame header information of the user frame may indicate the mobile phone number of the terminal 100 .
  • the mobile phone numbers of all countries in the world adopt the E.164 code number format announced by the International Telecommunication Union (ITU). ) and the international public telephone number scheme used by some data networks, while defining the format of the specific number.
  • E.164 defines a maximum of 15 digits, and the complete number has an international call prefix.
  • E.164 defines the specific format of the mobile subscriber international integrated service digital network number (MSISDN).
  • the MSISDN number is the number that the calling user needs to dial to call the user in the mobile communication network.
  • Table 1 exemplarily shows the format of the MSISDN.
  • the longest CC is 4 digits, such as 1671 in Guam, and most of them are two digits, such as 86 in China.
  • NDC can also be called a network access number, and each sovereign country can authorize one or more network operators to form and operate a mobile network.
  • the network access numbers of China Mobile among the three major mobile operators in China are 134-139, 150-152, 188, etc.
  • the network access numbers of China Unicom are 130-132, 185, 186, etc.
  • the network access numbers of China Telecom The access numbers are 133, 153, 180, 189, etc.
  • SN does not exceed 8 digits, for example, the length of SN user number in mainland China is 8 digits.
  • the structure of MSISDN in format 1 can be the following expression:
  • the NDC part can be composed of three digits of N1N2N3, and the SN part can be composed of 8 digits of H0H1H2H3 and ABCD.
  • the four digits of H0H1H2H3 can be the identification number of the home location register (home location register, HLR) of each mobile service local network in the SN, and ABCD is the mobile client code.
  • the MSISDN number can be "8613966666666", where "86” is the CC code, "139” can be the NDC code, or N1N2N3; “66666666” can be the SN code, or it can be H0H1H2H3+ABCD.
  • the part of the MSISDN that does not include the CC may be called the terminal's domestic identity number, or may be called a mobile phone number, or may be called a mobile phone number.
  • the part of the MSISDN that does not include the CC is referred to as the mobile phone number hereinafter.
  • the mobile phone number of a terminal is generally an 11-digit decimal string.
  • the MSISDN number is encoded using binary coded decimal (BCD) encoding.
  • BCD binary coded decimal
  • the BCD encoding uses four bits to store a decimal number.
  • the mobile phone number of 11 being removed the MSISDN sign indicating number after CC
  • the capacity of forty-four bits For example, as shown in Table 2, the mobile phone number "139666666" can be encoded into a 44-bit string in binary format through BCD encoding.
  • each decimal character in the mobile phone number "13966666666” can be encoded into a four-bit binary string.
  • the decimal character "1” can be encoded into a four-bit binary string "0001” by BCD encoding.
  • the decimal character “3” can be encoded into a four-bit binary string “0011” by means of BCD encoding.
  • the decimal character “9” can be encoded into a four-bit binary string "1001” by means of BCD encoding.
  • the decimal character “6” can be encoded into a four-bit binary string "0110” by means of BCD encoding.
  • the mobile phone number "139666666” can be encoded into a forty-four-bit binary string "0001 0011 1001 0110 0110 0110 0110 0110 0110 0110 0110” by BCD encoding.
  • the user ID field requires a capacity of forty-four bits, resulting in a large frame header overhead.
  • An embodiment of the present application provides a data compression method in the Beidou communication system
  • the data compression method can be applied to the terminal 100
  • the compression method can include: the terminal 100 can encode the user ID of the terminal 100 into binary first data, the user The ID can contain second data and third data, the first data contains binary fourth data and binary fifth data, the fourth data is obtained by encoding the sixth data, the sixth data is obtained by compressing the second data, and the sixth data
  • the data length of the second data is less than the data length of the second data; the fifth data is obtained by encoding the third data;
  • the terminal 100 fills the first data into the user ID field contained in the frame header information of the first user frame.
  • the first data in the user ID field may be used to indicate the user ID of the terminal 100 .
  • the user ID may be the mobile phone number of the terminal 100
  • the second data may be the NDC data in the mobile phone number of the terminal 100
  • the third data may be the SN data in the mobile phone number of the terminal 100.
  • the terminal 100 can compress the user ID of the terminal 100 through the compression method, and fill the compressed user ID into the user ID field after encoding, so that the user ID field can be reduced. bits, which can reduce the header overhead.
  • Fig. 11A exemplarily shows a schematic flow chart of a data compression method in the Beidou communication system provided by the embodiment of the present application.
  • the data compression method may include the following steps:
  • the terminal 100 encodes the mobile phone number of the terminal 100 into binary data D1, the mobile phone number includes NDC1 and SN1, the data D1 includes data D2 and data D3, the data D2 is obtained by encoding the data D4, the data D4 is obtained by compressing the NDC1, and the data D4
  • the data length of D3 is less than the data length of NDC1, and the data D3 is encoded by SN1.
  • the mobile phone number of terminal 100 may include NDC1 and SN1, and terminal 100 may compress NDC1 into data D4 at the SLC layer, and the data length of data D4 is smaller than that of NDC1. Then data D4 is encoded into data D2, and SN1 is encoded into data D3, and data D2 and data D3 can be combined into data D1.
  • the terminal 100 may be referred to as a first terminal.
  • the user ID of the terminal 100 may be referred to as a first user ID.
  • Data D1 may be called first data
  • NDC1 may be called second data
  • SN1 may be called third data
  • data D2 may be called fourth data
  • data D3 may be called fifth data
  • data D4 may be called sixth data .
  • the terminal 100 may convert the mobile phone number into a Chinese mobile phone number.
  • a mobile phone number in China may be referred to as a domestic mobile phone number
  • a mobile phone number in a country other than China may be referred to as a foreign mobile phone number.
  • the terminal 100 may map the mobile phone numbers abroad as a whole to domestic mobile phone numbers.
  • a mapping table may exist in the terminal 100, and the mapping table may include foreign numbers and corresponding domestic numbers.
  • the terminal 100 may convert the NDC in the foreign mobile phone number to the domestic NDC, and then combine the domestic NDC and the SN in the foreign mobile phone number to form a mobile phone number.
  • the terminal 100 may compress the NDC1 into data D4, and then the terminal 100 encodes the data D4 into data D2.
  • the terminal 100 compressing NDC1 into data D4 may include: the terminal 100 maps NDC1 to the mapping table relationship data D4, and the data D4 is the short message communication corresponding to NDC1 in the mapping table relationship User ID (short message communication identity document, SMCID).
  • SMCID short message communication identity document
  • SN1 can be converted into a binary short message communication subscriber number (short message communication subscriber number, SMCSN). That is, data D1 includes encoded SMCID and SMCSN.
  • a mapping relationship table between NDC and SMCID exists in the terminal 100 .
  • mapping relationship between NDC and SMCID of domestic mobile phone numbers may be as shown in Table 4.
  • NDC SMCID the 0 (for dedicated terminal use) 130 ⁇ 139 NDC-130+1(1 ⁇ 10) 144 ⁇ 159 NDC-134+1(11 ⁇ 26) 162 27 165 28 166 29 167 30 170 ⁇ 178 NDC-140+1(31 ⁇ 39) 180 ⁇ 189 NDC-140(40 ⁇ 49) 191 50 195 51 198 52 199 53
  • the NDC number segments of domestic mobile phone numbers are currently distributed between 13x and 19x. Therefore, the mapping conversion from NDC to SMCID can be realized through the mapping table shown in Table 4.
  • the NDC When the NDC is 130, it can be mapped to 1 in the SMCID; when the NDC is 139, it can be mapped to 10 in the SMCID.
  • the NDC When the NDC is in the range of 130 to 139, it can be mapped to 1 to 10 in the SMCID.
  • the NDC is in the range of 144 to 159, it can be mapped to 11 to 26 in the SMCID.
  • NDC When NDC is 162, it can be mapped to 27 in SMCID; when NDC is 165, it can be mapped to 28 in SMCID; when NDC is 166, it can be mapped to 29 in SMCID; when NDC is 167, it can be mapped to SMCID 30.
  • NDC When the NDC is in the 170-178 range, it can be mapped to 31-39 in the SMCID.
  • the NDC is in the 180-189 range, it can be mapped to 40-49 in the SMCID.
  • NDC When NDC is 191, it can be mapped to 50 in SMCID; when NDC is 195, it can be mapped to 51 in SMCID; when NDC is 198, it can be mapped to 52 in SMCID; when NDC is 199, it can be mapped to SMCID 53.
  • the value range of SMCID is generally 0x00 ⁇ 0x7F, including 128 SMCID categories.
  • a 7-bit binary number can accommodate 128 SMCIDs.
  • the SMCID of the dedicated terminal is fixed at 0, and the remaining 127 SMCIDs are used by civilian terminals.
  • SMCIDs are shown in Table 4, and the remaining 74 SMCIDs can be used as reserved resources. If the subsequent operator adds a new NDC, it can be upgraded by over the air (OTA) The mapping relationship between the new NDC and the reserved SMCID is added to the mapping relationship table shown in Table 3.
  • OTA over the air
  • NDC in Table 4 may be called second data, and SMCID may be called sixth data.
  • Table 4 contains NDCs with multiple values, and SMCIDs with multiple values. The NDC of each value is in one-to-one correspondence with the SMCID of a value.
  • 7-bit binary data can be obtained after SMCID encoding. If the binary data obtained by SMCID encoding is less than 7 bits, the high bits of the data can be filled with 0 to make up 7 bits.
  • the value range of SN is 0 to 99999999, so a 27-bit binary number is required to accommodate all SNs. If the SMCSN obtained after SN encoding is less than 27 bits, the upper bits of the SMCSN can be filled with 0 to make up 27 bits.
  • the mobile phone number is "13966666666” as an example for description.
  • the NDC is "139” and the SN is “66666666”.
  • NDC "139” can be mapped to "10” in Table 3, that is, data D4.
  • "10” can be encoded as binary data "1010”. Since “1010” is less than 7 digits, the high digits are filled with 0, and the 7-digit binary data of "0001010” is obtained. That is, the encoding result of NDC "139” is "0001010", which is data D2.
  • 66666666 can be coded into binary data "111111100101000000101010” 26-bit binary data, less than 27 bits, the high bits are filled with 0, and "0111111100101000000101010” 27-bit binary data is obtained. That is, the encoding result of SN "66666666” is "0111111100101000000101010", which is data D3.
  • the terminal 100 can combine the encoding result of NDC "139” and the encoding result of SN "66666666” into the encoding result of the mobile phone number "13966666666", which is the binary data of "00010100111111100101000000101010", which is binary data D1.
  • the terminal 100 compressing NDC1 into data D4 may include: the terminal 100 subtracts a preset offset value from NDC1 to obtain data D5, and the data length of data D5 is less than the data of NDC1 length.
  • the SMCID can be obtained by subtracting a preset offset value from the NDC.
  • the preset offset value may be 100, and the mobile phone number is "13966666666” as an example for illustration.
  • the NDC is "139” and the SN is “66666666”.
  • the NDC "139” minus the preset offset value "100” equals "39", that is, the data D5.
  • "39” can be encoded as binary data "100111”. Since "100111” is less than 7 bits, the high bits are filled with 0s to obtain 7-bit encoded data "0100111”. That is, the encoding result of NDC "139” is "0100111", which is data D2.
  • 66666666 can be coded into binary data "111111100101000000101010" 26-bit binary data, less than 27 bits, the high bits are filled with 0, and "0111111100101000000101010” 27-bit binary data is obtained. That is, the encoding result of SN "66666666” is "0111111100101000000101010", which is data D3.
  • the terminal 100 can combine the encoding result of NDC "139” and the encoding result of SN "66666666” into the encoding result of the mobile phone number "13966666666", which is the binary data of "01001110111111100101000000101010", which is binary data D1.
  • the preset offset value may be 100 or other values, which is not limited in this embodiment of the present application.
  • the terminal 100 fills the data D1 into the user ID field included in the frame header information of the first user frame.
  • the terminal 100 may fill the data D1 into the user ID field included in the frame header information of the first user frame at the SLC layer.
  • the binary data D1 filled in the user ID field may be "000101001111111001010000001010” or "010011101111111001010000001010", a total of 34 bits of binary data.
  • the terminal 100 may send the first user frame to the Beidou network device 200.
  • the Beidou network device 200 may decode and decompress the user ID in the user ID field in the first user frame at the SLC layer to obtain the original user ID.
  • the user ID is a mobile phone number
  • the Beidou network device 200 decodes and decompresses the binary user ID field at the SLC layer to obtain an 11-digit mobile phone number.
  • the Beidou network device 200 can decode the binary user ID in the user ID field, that is, the data D2 in the data D1 into data D4, and decode the data D3 in the data D1 into SN1. Then decompress the data D4 into NDC1.
  • the user ID field of the first user frame may include a user ID compression indication field, where the user ID compression indication field is used to indicate a user ID compression method.
  • the Beidou network device 200 may decompress the data D4 into NDC1 according to the compression method indicated by the user ID compression indication field.
  • terminal 100 maps NDC1 to mapping table relationship data D4, and data D4 is SMCID corresponding to NDC1.
  • the Beidou network device 200 decompresses the data D4 according to the method of compressing NDC1 by the terminal 100 to obtain NDC1.
  • the Beidou network device 200 may look up the NDC1 corresponding to the data D4 in the mapping relationship table.
  • the Beidou network device 200 may decompress the data D4 according to the order of the preset decompression methods. For example, if the terminal 100 compresses the NDC1 into the data D4, there are three methods, for example, compression method 1, compression method 2, and compression method 2.
  • the first user frame sent by the terminal 100 does not indicate the compression method of the user ID field by the terminal 100, and the Beidou network device 200 presets the user ID decompression method, decompression method 1 (can decompress the data compressed by the compression method 1 ), decompression method 2 (can decompress data compressed by compression method 2), decompression method 3 (can decompress data compressed by compression method 3), and the order of the preset decompression methods is first use decompression Compression method 1 is used for decompression, if the decompression is unsuccessful, then decompression method 2 is used for decompression, and if decompression is still successful, decompression method 3 is used for decompression.
  • the user ID of the terminal 100 is not limited to the mobile phone number of the terminal 100, and may also be the MSISDN of the terminal 100, an international mobile subscriber identification number (international mobile subscriber identification number, IMSI) or an international mobile equipment identification Code (international mobile equipment identity, IMEI) and so on.
  • IMSI international mobile subscriber identification number
  • IMEI international mobile equipment identity
  • the terminal 100 can compress the user ID.
  • the user ID is an 11-digit mobile phone number
  • BCD encoding is used in the prior art, and the user ID field needs to occupy 44 bits, but the user ID field only needs to occupy 34 bits through the data compression method of the embodiment of the present application. In this way, the bits occupied by the user ID field in the frame header information of each user frame can be reduced.
  • the terminal 100 may send a first user frame to the Beidou network device 200, and the first user frame may be used to query cellular network information near the terminal 100, or the number of letters received by the terminal 100, or the content of letters received by the terminal 100.
  • the first user frame may also indicate whether the terminal 100 successfully received the user frame sent by the Beidou network device last time, or be used to indicate whether the terminal 100 successfully parsed the application layer message sent by the Beidou network device 200 .
  • the Beidou network device 200 may reply to the terminal 100 with the second user frame.
  • the second user frame may be used to indicate the query result of the cellular network information near the terminal 100, or the number of letters received by the terminal 100, or the content of letters received by the terminal 100.
  • the second user frame may also indicate whether the Beidou network device 200 successfully receives the first user frame sent by the terminal 100 , or may also indicate whether the Beidou network device 200 successfully parses the application layer message sent by the terminal 100 .
  • the user ID in the user ID field needs to occupy more bits, so the overhead of the frame header is large.
  • the embodiment of the present application provides a compression method, which can be applied to Beidou network equipment 200, and the compression method can include: Beidou network equipment 200 obtains the user ID of terminal 100, and then Beidou network equipment 200 can use the user ID After compression, it is encoded into binary data D6, and the Beidou network device 200 fills the data D6 into the user ID field contained in the frame header information of the second user frame.
  • the user ID may be the mobile phone number of the terminal 100 .
  • the Beidou network device 200 can compress the user ID of the terminal 100 through this compression method, and fill the compressed user ID into the user ID field after encoding, so that the user ID field can be reduced Occupied bits, which can reduce the overhead of the frame header.
  • Fig. 11B exemplarily shows a schematic flow diagram of a data compression method in a communication system provided by the embodiment of the present application.
  • the data compression method may include the following steps:
  • the Beidou network device 200 acquires the user ID of the terminal 100.
  • the Beidou network device 200 may acquire the user ID of the terminal 100 from the user ID field of the received first user frame of the terminal 100 .
  • the Beidou network device 200 parses the acquired binary data in the user ID field in the first user frame sent by the terminal 100 into a user ID (for example, the mobile phone number "13966666666" of the terminal 100 ).
  • the Beidou network device 200 may acquire binary data in the user ID field in the first user frame of the terminal 100 .
  • the Beidou network device 200 may directly fill the binary data in the user ID field into the user ID field of the second user frame. Beidou network device 200 does not need to perform steps S202-S203.
  • the Beidou network device 200 compresses the user ID of the terminal 100 into data D6, and encodes the data D6 into binary data D7, wherein the data length of the data D6 is smaller than the data length of the user ID.
  • the user ID of the terminal 100 may be a mobile phone number of the terminal 100, wherein the mobile phone number includes NDC1 and SN1.
  • Beidou network device 200 can compress NDC1 in the mobile phone number to obtain SMCID1, and the data length of SMCID1 is smaller than the data length of NDC1.
  • Data D6 is SMCID1 and SN1. Then Beidou network device 200 can encode SMCID1 and SN1 to obtain binary data D7.
  • Beidou network device 200 compresses NDC1 to obtain SMCID1.
  • SMCID1 For details, refer to the implementation process of terminal 100 compressing NDC1 into data D4 in step S101 above, which will not be repeated here.
  • the user ID of the terminal 100 may be the mobile phone number of the terminal 100, such as "13966666666", where NDC1 may be “139”, and SN1 may be "66666666”.
  • the Beidou network device 200 follows the method of mapping NDC1 to SMCID1 in the above step S102, the Beidou network device 200 can compress NDC1 "139” into "10". If the Beidou network device 200 subtracts the preset Set the offset value to get the compression method of SMCID1. Taking the default offset value of 100 as an example, Beidou network equipment can compress NDC1 "139" into "39".
  • the Beidou network device 200 fills the data D7 into the user ID field included in the frame header information of the second user frame.
  • the Beidou network device 200 may fill the data D7 into the user ID field contained in the frame header information of the second user frame.
  • the binary data D1 filled in the user ID field may be "000101001111111001010000001010” or "010011101111111001010000001010", a total of 34 bits of binary data.
  • the Beidou network device 200 may send the second user frame to the terminal 100.
  • the user ID of the terminal 100 is not limited to the mobile phone number of the terminal 100, and may also be the MSISDN of the terminal 100, or an international mobile equipment identity (international mobile equipment identity, IMEI) and the like.
  • IMEI international mobile equipment identity
  • the Beidou network device 200 can compress the user ID of the terminal 100 through a data compression method in the Beidou communication system provided in the embodiment of the present application.
  • the user ID is an 11-digit mobile phone number
  • BCD encoding is used in the prior art, and the user ID field needs to occupy 44 bits, but the user ID field only needs to occupy 34 bits through the data compression method of the embodiment of the present application. In this way, the bits occupied by the user ID field in the frame header information of each user frame can be reduced.
  • the terminal 100 can be under the Beidou network, that is, the terminal 100 does not reside on the cellular network.
  • the terminal 100 can send a short message to the terminal 300 through the Beidou network device 200 to obtain and receive the short message sent by the terminal 300. short message.
  • the terminal 300 may reside on the cellular network, or the terminal 300 may be under the Beidou network without residing on the cellular network, which is not limited herein.
  • the Beidou short message fusion communication platform 24 in the Beidou network device 200 can determine whether the terminal 300 receiving the message is under the Beidou network or in a cellular network. under the network. If the terminal 300 is under the cellular network, the Beidou short message fusion communication platform 24 can send the message to the short message center 25, and then the short message center can send the message to the terminal 300.
  • the terminal 100 under the Beidou network sends a message to the terminal 400 under the Beidou network equipment
  • the message sent by the terminal 100 is forwarded to the Beidou ground transceiver station 22 via the Beidou short message satellite 21 .
  • the Beidou ground transceiver station 22 sends the message to the Beidou central station 23, and then the Beidou central station 23 sends the message to the Beidou short message fusion communication platform 24.
  • the Beidou short message fusion communication platform 24 can analyze the user ID of the terminal 400, and determine that the terminal 400 is under the Beidou network according to the user ID of the terminal 400.
  • the Beidou short message fusion communication platform 24 sends the message to the Beidou central station 23 .
  • the Beidou central station 23 sends the message to the Beidou ground transceiver station 22 .
  • the Beidou ground transceiver station 22 sends the message to the terminal 400 via the Beidou short message satellite 21 .
  • Scenario 1 Terminal 100 under the Beidou network sends a message to terminal 300 under the cellular network
  • the short message may carry the user ID of the terminal 100 and the user ID of the terminal 300.
  • the terminal 100 generates a first message packet in the application layer, and the first message packet may include specific message content and the user ID of the terminal 300 .
  • the terminal 100 may compress the user ID of the terminal 300 at the application layer and encode it into binary data, and then fill the binary data into the header of the first message packet.
  • the terminal 100 may compress and encode the user ID of the terminal 300 into binary data at the application layer according to the method shown in the above step S101-step S102, which will not be repeated here.
  • the terminal 100 adds the user ID of the terminal 100 after sending the first message packet to the SLC layer, and generates a first user frame.
  • the terminal 100 compresses and encodes the user of the terminal 100 into binary data at the SLC layer, and then fills it into the frame header information of the first user frame.
  • the terminal 100 can compress and encode the user ID of the terminal 100 into binary data at the APP layer according to the method shown in the above step S101-step S102, and fill it into the frame header information of the first user frame. I won't repeat them here.
  • the terminal 100 sends the first user frame to the Beidou network device 200 .
  • the Beidou network device 200 can decode and decompress the user ID field of the terminal 100 in the first user frame at the SLC layer, that is, the Beidou central station 23 in the Beidou network device 200, to obtain the user ID of the terminal 100 . Then, the Beidou network device 200 can decode and decompress the user ID field of the terminal 300 at the APP layer, that is, the Beidou short message integrated communication platform 24 in the Beidou network device 200 , to obtain the user ID of the terminal 300 . Then, the Beidou network device may send the message packet carried in the first message packet to the terminal 300 at the APP layer.
  • Scenario 2 The terminal 100 under the Beidou network receives the message sent by the terminal 300 under the cellular network
  • the Beidou network device 200 will forward the message sent to the terminal 100 by other devices to the terminal 100 . In this way, transmission resources in the Beidou communication system can be saved. Moreover, it can save the fee for the terminal 100 to send and receive messages under the Beidou network.
  • the Beidou network device 200 can decompress and decode the user ID of the terminal 100 from the message request at the SLC layer. The user ID of the terminal 100 is then saved. The Beidou network device 200 can obtain the message sent from the terminal 300 to the terminal 100 .
  • the Beidou network device 200 can parse out the user ID of the terminal 300 contained in the message at the application layer. Then, the Beidou network device 200 can encapsulate the message sent by the terminal 300 into a second message packet at the APP layer.
  • the second message packet may include specific message content and a user ID field of the terminal 300 .
  • the Beidou network device 200 compresses the user ID of the terminal 300, encodes it into binary data, and fills it into the user ID field in the header of the second message message.
  • the Beidou network device 200 can compress the user ID of the terminal 300 at the APP layer according to the method shown in the above step S201-step S203, encode it into binary data, and fill it into the frame header information of the second message message middle.
  • the Beidou network device 200 may segment the second message to the SLC layer into one or more user frames, and the multiple user frames include the second user frame.
  • the Beidou network device 200 compresses the saved user ID of the terminal 100, encodes it into binary data, and fills it into the user ID field of the frame header information of the second user frame.
  • the Beidou network device 200 can compress the user ID of the terminal 100 at the SLC layer according to the method shown in the above step S201-step S203, and encode it into binary data and fill it into the frame header information of the second user frame , which will not be repeated here. Then, the Beidou network device 200 sends the second user frame to the terminal 100 .
  • the terminal 100 may decode the user ID field of the terminal 100 in the second user frame at the SLC layer to obtain the user ID of the terminal 100 .
  • the terminal 100 may decode and decompress the user ID field of the terminal 300 at the APP layer to obtain the user ID of the terminal 300 .
  • the terminal 100 may not need to send a request to the Beidou network device 200.
  • the Beidou network device 200 may send the message to the terminal 100 . In this way, the terminal 100 can timely receive messages sent to the terminal 100 by other devices.
  • the Beidou network device 200 can obtain the message sent from the terminal 300 to the terminal 100 . Then, the Beidou network device 200 can parse out the user ID and the user ID of the terminal 300 from the message sent by the terminal 300 at the APP layer. The Beidou network device 200 may encapsulate the message into a second message packet.
  • the second message packet may include specific message content and a user ID field of the terminal 300 .
  • the Beidou network device 200 compresses the user ID of the terminal 300, encodes it into binary data, and fills it into the user ID field of the second message message.
  • the Beidou network device 200 can compress the user ID of the terminal 300 at the APP layer according to the method shown in the above step S201-step S203, and encode it into binary data and fill it into the header of the second message message middle.
  • the Beidou network device 200 delivers the second message to the SLC layer and segments it into one or more user frames, where the one or more user frames include the second user frame.
  • the Beidou network device 200 compresses the user ID of the terminal 100, encodes it into binary data, and fills it into the user ID field of the frame header information of the second user frame.
  • the Beidou network device 200 can compress the user ID of the terminal 100 at the SLC layer according to the method shown in the above step S201-step S203, and encode it into binary data and fill it into the frame header information of the second user frame , which will not be repeated here. Then, the Beidou network device 200 sends the second user frame to the terminal 100 .
  • the short message may carry the user ID of the terminal 100 and the user ID of the terminal 400.
  • the terminal 100 generates a third message packet in the application layer, and the third message packet may include specific message content and the user ID of the terminal 400 .
  • the terminal 100 may compress the user ID of the terminal 400 at the application layer and encode it into binary data, and then fill the binary data into the header of the first message packet.
  • the terminal 100 may compress and encode the user ID of the terminal 400 into binary data at the application layer according to the method shown in the above step S101-step S102, which will not be repeated here.
  • the terminal 100 adds the user ID of the terminal 100 after sending the first message packet to the SLC layer, and generates a first user frame.
  • the terminal 100 compresses and encodes the user of the terminal 100 into binary data at the SLC layer, and then fills it into the frame header information of the first user frame.
  • the terminal 100 may compress and encode the user ID of the terminal 100 into binary data at the APP layer according to the method shown in the above step S101-step S102, and then fill it into the frame header information of the first user frame. I won't repeat them here. Then the terminal 100 sends the first user frame to the Beidou network device 200 .
  • the Beidou network device 200 can decode and decompress the user ID field of the terminal 100 in the first user frame at the SLC layer, that is, the Beidou central station 23 in the Beidou network device 200, to obtain the user ID of the terminal 100 . Then, the Beidou network device 200 can decode and decompress the user ID field of the terminal 400 at the APP layer, that is, the Beidou short message integrated communication platform 24 in the Beidou network device 200 , to obtain the user ID of the terminal 400 .
  • the Beidou short message fusion communication platform 24 determines that the terminal 400 is under the Beidou network, and then compresses and encodes the user ID of the terminal 400 to obtain a compressed and encoded user ID.
  • the Beidou short message fusion communication platform 24 compresses and encodes the user ID and the specific content of the message and encapsulates it into a fourth message message. Then, the Beidou short message integrated communication platform 24 sends the fourth message to the Beidou central station 23 .
  • the Beidou central station 23 may segment the fourth message into one or more user frames, and the one or more user frames include the fourth user frame.
  • the Beidou central station 23 compresses and encodes the user ID of the terminal 100 and fills it into the user ID field of the fourth user frame. Then, the Beidou central station 23 sends the fourth user frame to the Beidou ground transceiver station 22 .
  • the Beidou ground transceiver station 22 sends the fourth user frame to the terminal 100 via the Beidou short message satellite 21 .
  • the Beidou network device 200 can compress the user ID of the terminal 400 at the APP layer according to the method shown in the above step S201-step S203, and encode it into binary data and fill it into the header of the fourth message message in the User ID field in the .
  • the Beidou network device 200 can compress the user ID of the terminal 100 at the SLC layer according to the method shown in the above step S201-step S203, encode it into binary data, and fill it into the frame header information of the fourth user frame in the User ID field.
  • the terminal 100 may decode the user ID field of the terminal 100 in the fourth user frame at the SLC layer to obtain the user ID of the terminal 100 .
  • the terminal 100 may decode and decompress the user ID field of the terminal 400 at the APP layer to obtain the user ID of the terminal 400 .
  • Scenario 4 The terminal 100 under the Beidou network receives the message sent by the terminal 400 under the Beidou network
  • the Beidou network device 200 may send the message sent by the terminal 400 to the terminal 100 after receiving the request from the terminal 100 to receive the message. Alternatively, after receiving the message sent by the terminal 400, the Beidou network device 200 may directly send it to the terminal 100 without a request from the terminal 100. When the Beidou network device 200 sends the message sent by the terminal 400 to the terminal 100 , the Beidou network device 200 may obtain the user ID of the terminal 100 from the message sent by the terminal 400 . The Beidou network device 200 may also be the user ID of the terminal 100 obtained from the request sent by the terminal 100 .
  • the terminal 300 or the terminal 400 may be called a second terminal, and the user ID of the terminal 300 or the user ID of the terminal 400 may be called a second user ID.
  • the exemplary terminal 100 provided by the embodiment of the present application is firstly introduced below.
  • FIG. 12 is a schematic structural diagram of a terminal 100 provided by an embodiment of the present application.
  • terminal 100 may have more or fewer components than shown in the figures, may combine two or more components, or may have a different configuration of components.
  • the various components shown in the figures may be implemented in hardware, software, or a combination of hardware and software including one or more signal processing and/or application specific integrated circuits.
  • the terminal 100 may include: a processor 110, an external memory interface 120, an internal memory 121, a universal serial bus (universal serial bus, USB) interface 130, a charging management module 140, a power management module 141, a battery 142, an antenna 1, and an antenna 2 , mobile communication module 150, wireless communication module 160, audio module 170, speaker 170A, receiver 170B, microphone 170C, earphone jack 170D, sensor module 180, button 190, motor 191, indicator 192, camera 193, display screen 194 and user An identification module (subscriber identification module, SIM) card interface 195 and the like.
  • SIM subscriber identification module
  • the sensor module 180 may include a pressure sensor 180A, a gyroscope sensor 180B, an air pressure sensor 180C, a magnetic sensor 180D, an acceleration sensor 180E, a distance sensor 180F, a proximity light sensor 180G, a fingerprint sensor 180H, a temperature sensor 180J, a touch sensor 180K, an ambient light sensor 180L, bone conduction sensor 180M, etc.
  • the structure illustrated in the embodiment of the present invention does not constitute a specific limitation on the terminal 100 .
  • the terminal 100 may include more or fewer components than shown in the figure, or combine certain components, or separate certain components, or arrange different components.
  • the illustrated components can be realized in hardware, software or a combination of software and hardware.
  • the processor 110 may include one or more processing units, for example: the processor 110 may include an application processor (application processor, AP), a modem processor, a graphics processing unit (graphics processing unit, GPU), an image signal processor (image signal processor, ISP), controller, memory, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural network processor (neural-network processing unit, NPU) wait. Wherein, different processing units may be independent devices, or may be integrated in one or more processors.
  • application processor application processor, AP
  • modem processor graphics processing unit
  • GPU graphics processing unit
  • image signal processor image signal processor
  • ISP image signal processor
  • controller memory
  • video codec digital signal processor
  • DSP digital signal processor
  • baseband processor baseband processor
  • neural network processor neural-network processing unit, NPU
  • the controller may be the nerve center and command center of the terminal 100 .
  • the controller can generate an operation control signal according to the instruction opcode and timing signal, and complete the control of fetching and executing the instruction.
  • a memory may also be provided in the processor 110 for storing instructions and data.
  • the memory in processor 110 is a cache memory.
  • the memory may hold instructions or data that the processor 110 has just used or recycled. If the processor 110 needs to use the instruction or data again, it can be called directly from the memory. Repeated access is avoided, and the waiting time of the processor 110 is reduced, thus improving the efficiency of the system.
  • processor 110 may include one or more interfaces.
  • the interface may include an integrated circuit (inter-integrated circuit, I2C) interface, an integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, a pulse code modulation (pulse code modulation, PCM) interface, a universal asynchronous transmitter (universal asynchronous receiver/transmitter, UART) interface, mobile industry processor interface (mobile industry processor interface, MIPI), general-purpose input and output (general-purpose input/output, GPIO) interface, subscriber identity module (subscriber identity module, SIM) interface, and /or universal serial bus (universal serial bus, USB) interface, etc.
  • I2C integrated circuit
  • I2S integrated circuit built-in audio
  • PCM pulse code modulation
  • PCM pulse code modulation
  • UART universal asynchronous transmitter
  • MIPI mobile industry processor interface
  • GPIO general-purpose input and output
  • subscriber identity module subscriber identity module
  • SIM subscriber identity module
  • USB universal serial bus
  • the I2C interface is a bidirectional synchronous serial bus, including a serial data line (serial data line, SDA) and a serial clock line (derail clock line, SCL).
  • processor 110 may include multiple sets of I2C buses.
  • the processor 110 can be respectively coupled to the touch sensor 180K, the charger, the flashlight, the camera 193 and the like through different I2C bus interfaces.
  • the processor 110 may be coupled to the touch sensor 180K through the I2C interface, so that the processor 110 and the touch sensor 180K communicate through the I2C bus interface to realize the touch function of the terminal 100 .
  • the I2S interface can be used for audio communication.
  • processor 110 may include multiple sets of I2S buses.
  • the processor 110 may be coupled to the audio module 170 through an I2S bus to implement communication between the processor 110 and the audio module 170 .
  • the audio module 170 can transmit audio signals to the wireless communication module 160 through the I2S interface, so as to realize the function of answering calls through the Bluetooth headset.
  • the PCM interface can also be used for audio communication, sampling, quantizing and encoding the analog signal.
  • the audio module 170 and the wireless communication module 160 may be coupled through a PCM bus interface.
  • the audio module 170 can also transmit audio signals to the wireless communication module 160 through the PCM interface, so as to realize the function of answering calls through the Bluetooth headset. Both the I2S interface and the PCM interface can be used for audio communication.
  • the UART interface is a universal serial data bus used for asynchronous communication.
  • the bus can be a bidirectional communication bus. It converts the data to be transmitted between serial communication and parallel communication.
  • a UART interface is generally used to connect the processor 110 and the wireless communication module 160 .
  • the processor 110 communicates with the Bluetooth module in the wireless communication module 160 through the UART interface to realize the Bluetooth function.
  • the audio module 170 can transmit audio signals to the wireless communication module 160 through the UART interface, so as to realize the function of playing music through the Bluetooth headset.
  • the MIPI interface can be used to connect the processor 110 with peripheral devices such as the display screen 194 and the camera 193 .
  • MIPI interface includes camera serial interface (camera serial interface, CSI), display serial interface (display serial interface, DSI), etc.
  • the processor 110 communicates with the camera 193 through a CSI interface to realize the shooting function of the terminal 100 .
  • the processor 110 communicates with the display screen 194 through the DSI interface to realize the display function of the terminal 100 .
  • the GPIO interface can be configured by software.
  • the GPIO interface can be configured as a control signal or as a data signal.
  • the GPIO interface can be used to connect the processor 110 with the camera 193 , the display screen 194 , the wireless communication module 160 , the audio module 170 , the sensor module 180 and so on.
  • the GPIO interface can also be configured as an I2C interface, I2S interface, UART interface, MIPI interface, etc.
  • the SIM interface can be used to communicate with the SIM card interface 195 to realize the function of transmitting data to the SIM card or reading data in the SIM card.
  • the USB interface 130 is an interface conforming to the USB standard specification, specifically, it can be a Mini USB interface, a Micro USB interface, a USB Type C interface, and the like.
  • the USB interface 130 can be used to connect a charger to charge the terminal 100, and can also be used to transmit data between the terminal 100 and peripheral devices. It can also be used to connect headphones and play audio through them. This interface can also be used to connect other electronic devices, such as AR devices.
  • the interface connection relationship between the modules shown in the embodiment of the present invention is only a schematic illustration, and does not constitute a structural limitation of the terminal 100 .
  • the terminal 100 may also adopt different interface connection modes in the foregoing embodiments, or a combination of multiple interface connection modes.
  • the charging management module 140 is configured to receive a charging input from a charger.
  • the charger may be a wireless charger or a wired charger.
  • the power management module 141 is used for connecting the battery 142 , the charging management module 140 and the processor 110 .
  • the power management module 141 receives the input from the battery 142 and/or the charging management module 140 to provide power for the processor 110 , the internal memory 121 , the external memory, the display screen 194 , the camera 193 , and the wireless communication module 160 .
  • the wireless communication function of the terminal 100 can be realized by the antenna 1, the antenna 2, the mobile communication module 150, the wireless communication module 160, the modem processor and the baseband processor.
  • Antenna 1 and Antenna 2 are used to transmit and receive electromagnetic wave signals.
  • Each antenna in terminal 100 may be used to cover single or multiple communication frequency bands. Different antennas can also be multiplexed to improve the utilization of the antennas.
  • Antenna 1 can be multiplexed as a diversity antenna of a wireless local area network.
  • the antenna may be used in conjunction with a tuning switch.
  • the mobile communication module 150 can provide wireless communication solutions including 2G/3G/4G/5G applied on the terminal 100 .
  • the mobile communication module 150 may include at least one filter, switch, power amplifier, low noise amplifier (low noise amplifier, LNA) and the like.
  • the mobile communication module 150 can receive electromagnetic waves through the antenna 1, filter and amplify the received electromagnetic waves, and send them to the modem processor for demodulation.
  • the mobile communication module 150 can also amplify the signals modulated by the modem processor, and convert them into electromagnetic waves through the antenna 1 for radiation.
  • at least part of the functional modules of the mobile communication module 150 may be set in the processor 110 .
  • at least part of the functional modules of the mobile communication module 150 and at least part of the modules of the processor 110 may be set in the same device.
  • a modem processor may include a modulator and a demodulator.
  • the modulator is used for modulating the low-frequency baseband signal to be transmitted into a medium-high frequency signal.
  • the demodulator is used to demodulate the received electromagnetic wave signal into a low frequency baseband signal. Then the demodulator sends the demodulated low-frequency baseband signal to the baseband processor for processing.
  • the low-frequency baseband signal is passed to the application processor after being processed by the baseband processor.
  • the application processor outputs sound signals through audio equipment (not limited to speaker 170A, receiver 170B, etc.), or displays images or videos through display screen 194 .
  • the modem processor may be a stand-alone device.
  • the modem processor may be independent from the processor 110, and be set in the same device as the mobile communication module 150 or other functional modules.
  • the wireless communication module 160 can provide wireless local area networks (wireless local area networks, WLAN) (such as wireless fidelity (Wi-Fi) network), bluetooth (bluetooth, BT), global navigation satellite system, etc. (global navigation satellite system, GNSS), Beidou communication module, frequency modulation (frequency modulation, FM), near field communication technology (near field communication, NFC), infrared technology (infrared, IR) and other wireless communication solutions.
  • the wireless communication module 160 may be one or more devices integrating at least one communication processing module.
  • the wireless communication module 160 receives electromagnetic waves via the antenna 2 , frequency-modulates and filters the electromagnetic wave signals, and sends the processed signals to the processor 110 .
  • the wireless communication module 160 can also receive the signal to be sent from the processor 110 , frequency-modulate it, amplify it, and convert it into electromagnetic waves through the antenna 2 for radiation.
  • the Beidou communication module can be used to communicate with the Beidou network device 200 .
  • the Beidou communication module can support short message transmission with the Beidou network device 200 .
  • the antenna 1 of the terminal 100 is coupled to the mobile communication module 150, and the antenna 2 is coupled to the wireless communication module 160, so that the terminal 100 can communicate with the network and other devices through wireless communication technology.
  • the wireless communication technology may include global system for mobile communications (GSM), general packet radio service (general packet radio service, GPRS), code division multiple access (code division multiple access, CDMA), broadband Code division multiple access (wideband code division multiple access, WCDMA), time division code division multiple access (time-division code division multiple access, TD-SCDMA), long term evolution (long term evolution, LTE), BT, GNSS, WLAN, NFC , FM, and/or IR techniques, etc.
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • code division multiple access code division multiple access
  • CDMA broadband Code division multiple access
  • WCDMA wideband code division multiple access
  • time division code division multiple access time-division code division multiple access
  • TD-SCDMA time-division code division multiple access
  • LTE long
  • the GNSS may include a global positioning system (global positioning system, GPS), a global navigation satellite system (global navigation satellite system, GLONASS), a Beidou navigation satellite system (beidou navigation satellite system, BDS), a quasi-zenith satellite system (quasi -zenith satellite system (QZSS) and/or satellite based augmentation systems (SBAS).
  • GPS global positioning system
  • GLONASS global navigation satellite system
  • Beidou navigation satellite system beidou navigation satellite system
  • BDS Beidou navigation satellite system
  • QZSS quasi-zenith satellite system
  • SBAS satellite based augmentation systems
  • the terminal 100 realizes the display function through the GPU, the display screen 194, and the application processor.
  • the GPU is a microprocessor for image processing, and is connected to the display screen 194 and the application processor. GPUs are used to perform mathematical and geometric calculations for graphics rendering.
  • Processor 110 may include one or more GPUs that execute program instructions to generate or change display information.
  • the display screen 194 is used to display images, videos and the like.
  • the display screen 194 includes a display panel.
  • the display panel can be a liquid crystal display (LCD), an organic light-emitting diode (OLED), an active matrix organic light emitting diode or an active matrix organic light emitting diode (active-matrix organic light emitting diode, AMOLED), flexible light-emitting diode (flex light-emitting diode, FLED), Miniled, MicroLed, Micro-oLed, quantum dot light emitting diodes (quantum dot light emitting diodes, QLED), etc.
  • the terminal 100 may include 1 or N display screens 194, where N is a positive integer greater than 1.
  • the terminal 100 can realize the shooting function through the ISP, the camera 193 , the video codec, the GPU, the display screen 194 and the application processor.
  • the ISP is used for processing the data fed back by the camera 193 .
  • the light is transmitted to the photosensitive element of the camera through the lens, and the light signal is converted into an electrical signal, and the photosensitive element of the camera transmits the electrical signal to the ISP for processing, and converts it into an image visible to the naked eye.
  • ISP can also perform algorithm optimization on image noise, brightness, and color.
  • ISP can also optimize the exposure, color temperature and other parameters of the shooting scene.
  • the ISP may be located in the camera 193 .
  • Camera 193 is used to capture still images or video.
  • the object generates an optical image through the lens and projects it to the photosensitive element.
  • the photosensitive element may be a charge coupled device (CCD) or a complementary metal-oxide-semiconductor (CMOS) phototransistor.
  • CMOS complementary metal-oxide-semiconductor
  • the photosensitive element converts the light signal into an electrical signal, and then transmits the electrical signal to the ISP to convert it into a digital image signal.
  • the ISP outputs the digital image signal to the DSP for processing.
  • DSP converts digital image signals into standard RGB, YUV and other image signals.
  • the terminal 100 may include 1 or N cameras 193, where N is a positive integer greater than 1.
  • Digital signal processors are used to process digital signals. In addition to digital image signals, they can also process other digital signals. For example, when the terminal 100 selects a frequency point, the digital signal processor is used to perform Fourier transform on the energy of the frequency point.
  • Video codecs are used to compress or decompress digital video.
  • Terminal 100 may support one or more video codecs.
  • the terminal 100 can play or record videos in various encoding formats, for example: moving picture experts group (moving picture experts group, MPEG) 1, MPEG2, MPEG3, MPEG4, etc.
  • the NPU is a neural-network (NN) computing processor.
  • NN neural-network
  • Applications such as intelligent cognition of the terminal 100 can be implemented through the NPU, such as image recognition, face recognition, speech recognition, text understanding, and the like.
  • the internal memory 121 may include one or more random access memories (random access memory, RAM) and one or more non-volatile memories (non-volatile memory, NVM).
  • RAM random access memory
  • NVM non-volatile memory
  • Random access memory can include static random-access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (synchronous dynamic random access memory, SDRAM), double data rate synchronous Dynamic random access memory (double data rate synchronous dynamic random access memory, DDR SDRAM, such as the fifth generation DDR SDRAM is generally called DDR5 SDRAM), etc.;
  • Non-volatile memory may include magnetic disk storage devices, flash memory (flash memory).
  • flash memory can include NOR FLASH, NAND FLASH, 3D NAND FLASH, etc.
  • it can include single-level storage cells (single-level cell, SLC), multi-level storage cells (multi-level cell, MLC), three-level storage unit (triple-level cell, TLC), fourth-level storage unit (quad-level cell, QLC), etc.
  • can include universal flash storage English: universal flash storage, UFS) according to storage specifications , embedded multimedia memory card (embedded multi media Card, eMMC), etc.
  • the random access memory can be directly read and written by the processor 110, and can be used to store executable programs (such as machine instructions) of an operating system or other running programs, and can also be used to store data of users and application programs.
  • the non-volatile memory can also store executable programs and data of users and application programs, etc., and can be loaded into the random access memory in advance for the processor 110 to directly read and write.
  • the terminal 100 may implement an audio function through an audio module 170 , a speaker 170A, a receiver 170B, a microphone 170C, an earphone interface 170D, and an application processor. Such as music playback, recording, etc.
  • the audio module 170 is used to convert digital audio information into analog audio signal output, and is also used to convert analog audio input into digital audio signal.
  • the audio module 170 may also be used to encode and decode audio signals.
  • the audio module 170 may be set in the processor 110 , or some functional modules of the audio module 170 may be set in the processor 110 .
  • Speaker 170A also referred to as a "horn" is used to convert audio electrical signals into sound signals. Terminal 100 can listen to music through speaker 170A, or listen to hands-free calls.
  • Receiver 170B also called “earpiece” is used to convert audio electrical signals into sound signals.
  • the receiver 170B can be placed close to the human ear to listen to the voice.
  • the microphone 170C also called “microphone” or “microphone” is used to convert sound signals into electrical signals.
  • the user can put his mouth close to the microphone 170C to make a sound, and input the sound signal to the microphone 170C.
  • the terminal 100 may be provided with at least one microphone 170C.
  • the terminal 100 may be provided with two microphones 170C, which may also implement a noise reduction function in addition to collecting sound signals.
  • the terminal 100 can also be equipped with three, four or more microphones 170C to realize sound signal collection, noise reduction, identify sound sources, realize directional recording functions, and the like.
  • the earphone interface 170D is used for connecting wired earphones.
  • the earphone interface 170D can be a USB interface 130, or a 3.5mm open mobile terminal platform (OMTP) standard interface, or a cellular telecommunications industry association of the USA (CTIA) standard interface.
  • OMTP open mobile terminal platform
  • CTIA cellular telecommunications industry association of the USA
  • the pressure sensor 180A is used to sense the pressure signal and convert the pressure signal into an electrical signal.
  • pressure sensor 180A may be disposed on display screen 194 .
  • pressure sensors 180A such as resistive pressure sensors, inductive pressure sensors, and capacitive pressure sensors.
  • a capacitive pressure sensor may be comprised of at least two parallel plates with conductive material.
  • the terminal 100 determines the strength of the pressure from the change in capacitance.
  • the terminal 100 detects the intensity of the touch operation according to the pressure sensor 180A.
  • the terminal 100 may also calculate the touched position according to the detection signal of the pressure sensor 180A.
  • touch operations acting on the same touch position but with different touch operation intensities may correspond to different operation instructions. For example: when a touch operation with a touch operation intensity less than the first pressure threshold acts on the short message application icon, an instruction to view short messages is executed. When a touch operation whose intensity is greater than or equal to the first pressure threshold acts on the icon of the short message application, the instruction of creating a new short message is executed.
  • the gyro sensor 180B can be used to determine the motion posture of the terminal 100 .
  • the angular velocity of the terminal 100 around three axes ie, x, y and z axes
  • the gyro sensor 180B can be used for image stabilization.
  • the gyro sensor 180B detects the shaking angle of the terminal 100, and calculates the distance that the lens module needs to compensate according to the angle, and allows the lens to counteract the shaking of the terminal 100 through reverse movement to achieve anti-shake.
  • the gyro sensor 180B can also be used for navigation and somatosensory game scenes.
  • the air pressure sensor 180C is used to measure air pressure.
  • the terminal 100 calculates the altitude through the air pressure value measured by the air pressure sensor 180C to assist positioning and navigation.
  • the magnetic sensor 180D includes a Hall sensor.
  • the terminal 100 may use the magnetic sensor 180D to detect the opening and closing of the flip holster.
  • the terminal 100 when the terminal 100 is a clamshell machine, the terminal 100 can detect the opening and closing of the clamshell according to the magnetic sensor 180D.
  • features such as automatic unlocking of the flip cover are set.
  • the acceleration sensor 180E can detect the acceleration of the terminal 100 in various directions (generally three axes).
  • the magnitude and direction of gravity can be detected when the terminal 100 is stationary. It can also be used to identify the posture of electronic devices, and can be used in applications such as horizontal and vertical screen switching, pedometers, etc.
  • the distance sensor 180F is used to measure the distance.
  • the terminal 100 can measure the distance by infrared or laser. In some embodiments, when shooting a scene, the terminal 100 may use the distance sensor 180F for distance measurement to achieve fast focusing.
  • Proximity light sensor 180G may include, for example, light emitting diodes (LEDs) and light detectors, such as photodiodes.
  • the light emitting diodes may be infrared light emitting diodes.
  • the terminal 100 emits infrared light through the light emitting diode.
  • Terminal 100 uses photodiodes to detect infrared reflected light from nearby objects. When sufficient reflected light is detected, it may be determined that there is an object near the terminal 100 . When insufficient reflected light is detected, the terminal 100 may determine that there is no object near the terminal 100 .
  • the terminal 100 can use the proximity light sensor 180G to detect that the user holds the terminal 100 close to the ear to make a call, so as to automatically turn off the screen to save power.
  • the proximity light sensor 180G can also be used in leather case mode, automatic unlock and lock screen in pocket mode.
  • the ambient light sensor 180L is used for sensing ambient light brightness.
  • the terminal 100 may adaptively adjust the brightness of the display screen 194 according to the perceived ambient light brightness.
  • the ambient light sensor 180L can also be used to automatically adjust the white balance when taking pictures.
  • the ambient light sensor 180L can also cooperate with the proximity light sensor 180G to detect whether the terminal 100 is in the pocket, so as to prevent accidental touch.
  • the fingerprint sensor 180H is used to collect fingerprints.
  • the terminal 100 can use the collected fingerprint characteristics to realize fingerprint unlocking, access to the application lock, take pictures with fingerprints, answer incoming calls with fingerprints, and so on.
  • the temperature sensor 180J is used to detect temperature.
  • the terminal 100 uses the temperature detected by the temperature sensor 180J to implement a temperature processing strategy. For example, when the temperature reported by the temperature sensor 180J exceeds the threshold, the terminal 100 executes reducing the performance of a processor located near the temperature sensor 180J, so as to reduce power consumption and implement thermal protection.
  • the terminal 100 when the temperature is lower than another threshold, the terminal 100 heats the battery 142 to avoid abnormal shutdown of the terminal 100 due to low temperature.
  • the terminal 100 boosts the output voltage of the battery 142 to avoid abnormal shutdown caused by low temperature.
  • Touch sensor 180K also known as "touch panel”.
  • the touch sensor 180K can be disposed on the display screen 194, and the touch sensor 180K and the display screen 194 form a touch screen, also called a “touch screen”.
  • the touch sensor 180K is used to detect a touch operation on or near it.
  • the touch sensor can pass the detected touch operation to the application processor to determine the type of touch event.
  • Visual output related to the touch operation can be provided through the display screen 194 .
  • the touch sensor 180K may also be disposed on the surface of the terminal 100 , which is different from the position of the display screen 194 .
  • the keys 190 include a power key, a volume key and the like.
  • the key 190 may be a mechanical key. It can also be a touch button.
  • the terminal 100 may receive key input and generate key signal input related to user settings and function control of the terminal 100 .
  • the motor 191 can generate a vibrating reminder.
  • the motor 191 can be used for incoming call vibration prompts, and can also be used for touch vibration feedback.
  • touch operations applied to different applications may correspond to different vibration feedback effects.
  • the motor 191 may also correspond to different vibration feedback effects for touch operations acting on different areas of the display screen 194 .
  • Different application scenarios for example: time reminder, receiving information, alarm clock, games, etc.
  • the touch vibration feedback effect can also support customization.
  • the indicator 192 can be an indicator light, and can be used to indicate charging status, power change, and can also be used to indicate messages, missed calls, notifications, and the like.
  • the SIM card interface 195 is used for connecting a SIM card.
  • the SIM card can be connected and separated from the terminal 100 by inserting it into the SIM card interface 195 or pulling it out from the SIM card interface 195 .
  • the terminal 100 may support 1 or N SIM card interfaces, where N is a positive integer greater than 1.
  • SIM card interface 195 can support Nano SIM card, Micro SIM card, SIM card etc. Multiple cards can be inserted into the same SIM card interface 195 at the same time. The types of the multiple cards may be the same or different.
  • the SIM card interface 195 is also compatible with different types of SIM cards.
  • the SIM card interface 195 is also compatible with external memory cards.
  • the terminal 100 interacts with the network through the SIM card to implement functions such as calling and data communication.
  • the above content elaborates the method provided by the present application in detail.
  • the embodiments of the present application also provide corresponding devices or equipment.
  • the embodiment of the present application can divide the functional modules of the terminal 100 and the Beidou network device 200 according to the above-mentioned method example, for example, each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module middle.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic, and is only a logical function division, and there may be other division methods in actual implementation.
  • FIG. 13 is a schematic structural diagram of a communication device 1300 provided in an embodiment of the present application.
  • the communication device 1300 may be the terminal 100 in the foregoing embodiments.
  • the communication device 1300 may be a chip/chip system, for example, a Beidou communication chip.
  • the communication device 1300 may include a transceiver unit 1310 and a processing unit 1320 .
  • the transceiver unit 1310 may be configured to send the first user frame to the Beidou network device 200 .
  • the processing unit 1320 is configured to compress the user ID of the terminal 100, encode the compressed user ID into binary data, and then fill the binary data into the user ID field included in the frame header information of the first user frame.
  • the transceiver unit 1310 may also be configured to perform the functional steps related to sending and receiving performed by the terminal 100 in the method embodiment shown in FIG. 11A above.
  • processing unit 1320 may also be configured to execute functional steps related to protocol parsing and encapsulation and calculation determination performed by the terminal 100 in the method embodiment shown in FIG. 11A above.
  • the communication device 1300 in this design can correspondingly perform the method steps performed by the terminal 100 in the foregoing embodiments, and for the sake of brevity, details are not repeated here.
  • FIG. 14 is a schematic structural diagram of a communication device 1400 provided by an embodiment of the present application.
  • the communication device 1400 may be the Beidou network device 200 in the foregoing embodiments.
  • the communication device 1400 can be a specific network element in the Beidou network equipment 200, for example, one or more network elements in the Beidou ground transceiver station 22, the Beidou central station 23, and the Beidou short message fusion communication platform 24 The combination.
  • the communication device 1400 may include a transceiver unit 1410 and a processing unit 1420 .
  • the transceiver unit 1410 may be configured to receive user frames sent by the terminal 100 .
  • the processing unit 1420 can be used to obtain the user ID of the terminal 100 from the user frame sent by the terminal 100, and compress the user ID of the terminal 100, and then encode the compressed user ID into binary data, and finally the binary data Fill in the user ID field included in the frame header information of the user frame sent by the Beidou network device 200 to the terminal 100.
  • the transceiver unit 1410 may also be configured to perform the functional steps related to sending and receiving performed by the Beidou network device 200 in the method embodiment shown in FIG. 11B above.
  • the processing unit 1420 may also be configured to perform functional steps related to protocol parsing and encapsulation and calculation determination performed by the Beidou network device 200 in the method embodiment shown in FIG. 11B above.
  • the communication device 1400 in this design can correspondingly perform the method steps performed by the Beidou network device 200 in the foregoing embodiments, and for the sake of brevity, details are not repeated here.
  • the terminal 100 and the Beidou network device 200 of the embodiment of the present application have been introduced above. It should be understood that any product of any form having the functions of the terminal 100 described above in FIG. Products of any form with functions fall within the scope of protection of the embodiments of the present application.
  • the terminal 100 described in the embodiment of this application can be realized by a general bus architecture.
  • FIG. 15 is a schematic structural diagram of a communication device 1500 provided by an embodiment of the present application.
  • the communication device 1500 may be the terminal 100, or a device therein.
  • the communication device 1500 includes a processor 1501 and a transceiver 1502 internally connected and communicating with the processor.
  • the processor 1501 is a general purpose processor or a special purpose processor or the like.
  • it may be a baseband processor or a central processing unit for satellite communications.
  • the baseband processor of satellite communication can be used to process satellite communication protocols and satellite communication data
  • the central processing unit can be used to control communication devices (such as baseband chips, terminals, terminal chips, etc.), execute computer programs, and process computer Program data.
  • the transceiver 1502 may be called a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement a transceiver function.
  • the transceiver 1502 may include a receiver and a transmitter, and the receiver may be called a receiver or a receiving circuit for realizing a receiving function; the transmitter may be called a transmitter or a sending circuit for realizing a sending function.
  • the communication device 1500 may further include an antenna 1503 and/or a radio frequency unit (not shown in the figure).
  • the antenna 1503 and/or the radio frequency unit may be located inside the communication device 1500, or may be separated from the communication device 1400, that is, the antenna 1503 and/or the radio frequency unit may be remote or distributed.
  • the communication device 1500 may include one or more memories 1504, on which instructions may be stored, the instructions may be computer programs, and the computer programs may be run on the communication device 1500, so that the communication device 1500 executes the above-mentioned Methods described in the Examples.
  • data may also be stored in the memory 1504 .
  • the communication device 1500 and the memory 1504 can be set separately or integrated together.
  • the processor 1501, the transceiver 1502, and the memory 1504 may be connected through a communication bus.
  • the communication device 1500 can be used to perform the functions of the terminal 100 in the foregoing embodiments: the processor 1501 can be used to perform the functions related to protocol analysis and encapsulation and operation determination performed by the terminal 100 in the embodiment shown in FIG. 11A Steps and/or other processes used in the technology described herein; the transceiver 1502 may be used to execute the functional steps related to protocol parsing and encapsulation and calculation determination performed by the terminal 100 in the embodiment shown in FIG. 11A and/or for Other procedures of the techniques described herein.
  • the processor 1501 may include a transceiver for implementing receiving and sending functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit may be used for signal transmission or transmission.
  • the processor 1501 may store instructions, and the instructions may be computer programs, and the computer programs run on the processor 1501 to enable the communication device 1500 to perform the method steps performed by the terminal 100 in the above method embodiments.
  • the computer program may be fixed in the processor 1501, and in this case, the processor 1501 may be implemented by hardware.
  • the communication device 1500 may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this application can be implemented in integrated circuits (integrated circuits, ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed-signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (bipolar junction transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • Communications apparatus 1500 may be a stand-alone device or may be part of a larger device.
  • the communication device 1500 may be:
  • a set of one or more ICs may also include storage components for storing data and computer programs;
  • ASIC such as modem (Modem);
  • any network element for example, Beidou ground transceiver station 22, Beidou central station 23, Beidou short message fusion communication platform 24
  • Beidou network equipment 200 described in the embodiment of the application can Implemented by a generic bus architecture.
  • FIG. 16 is a schematic structural diagram of a communication device 1600 provided by an embodiment of the present application.
  • the communication device 1600 may be the Beidou network device 200, or a device therein.
  • the communication device 1600 includes a processor 1601 and a transceiver 1602 internally connected and communicating with the processor.
  • the processor 1601 is a general purpose processor or a special purpose processor or the like.
  • it may be a baseband processor or a central processing unit for satellite communications.
  • the baseband processor of the satellite communication can be used to process the satellite communication protocol and satellite communication data
  • the central processing unit can be used to control the communication device (eg, baseband chip, etc.), execute the computer program, and process the data of the computer program.
  • the transceiver 1602 may be called a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement a transceiver function.
  • the transceiver 1602 may include a receiver and a transmitter, and the receiver may be called a receiver or a receiving circuit for realizing a receiving function; the transmitter may be called a transmitter or a sending circuit for realizing a sending function.
  • the communication device 1600 may further include an antenna 1603 and/or a radio frequency unit (not shown in the figure).
  • the antenna 1603 and/or the radio frequency unit may be located inside the communication device 1600, or may be separated from the communication device 1600, that is, the antenna 1603 and/or the radio frequency unit may be remote or distributed.
  • the communication device 1600 may include one or more memories 1604, on which instructions may be stored.
  • the instructions may be computer programs, and the computer programs may be run on the communication device 1600, so that the communication device 1600 executes the above-mentioned Methods described in the Examples.
  • data may also be stored in the memory 1604 .
  • the communication device 1600 and the memory 1604 can be set separately or integrated together.
  • processor 1601, the transceiver 1602, and the memory 1604 may be connected through a communication bus.
  • the communication device 1600 can be used to perform the functions of the Beidou network device 200 in the foregoing embodiments: the processor 1601 can be used to perform the related protocol parsing and encapsulation performed by the Beidou network device 200 in the embodiment shown in FIG. 11B and The functional steps determined by calculation and/or other processes used in the technology described herein; the transceiver 1602 can be used to perform the functions related to protocol parsing and encapsulation and calculation determination performed by the Beidou network device 200 in the embodiment shown in FIG. 11B steps and/or other processes for the techniques described herein.
  • the processor 1601 may include a transceiver for implementing receiving and sending functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit may be used for signal transmission or transmission.
  • the processor 1601 may store instructions, which may be computer programs, and the computer programs run on the processor 1601 to enable the communication device 1600 to perform the method steps performed by the terminal 100 in the above method embodiments.
  • the computer program may be solidified in the processor 1601, and in this case, the processor 1601 may be implemented by hardware.
  • the embodiment of the present application also provides a computer-readable storage medium, where computer program code is stored in the computer-readable storage medium, and when the above-mentioned processor executes the computer program code, the communication device executes the method in any of the above-mentioned embodiments .
  • An embodiment of the present application further provides a computer program product, which, when the computer program product is run on a computer, causes the computer to execute the method in any one of the foregoing embodiments.
  • the embodiment of the present application also provides a communication device, which can exist in the product form of a chip.
  • the structure of the device includes a processor and an interface circuit.
  • the processor is used to communicate with other devices through a receiving circuit, so that the device performs the aforementioned The method in any of the examples.
  • the embodiment of the present application also provides a Beidou communication system, including a terminal 100 and a Beidou network device 200.
  • the terminal 100 and the Beidou network device 200 can execute the method in any of the foregoing embodiments.
  • This application fully introduces the communication function of short messages in the Beidou communication system. It is understandable that there may be communication functions supporting short messages in other satellite systems. Therefore, it is not limited to the Beidou communication system. If other satellite systems also support the short message communication function, the method introduced in this application is also applicable to the communication of other satellite systems.
  • the term “when” may be interpreted to mean “if” or “after” or “in response to determining" or “in response to detecting".
  • the phrases “in determining” or “if detected (a stated condition or event)” may be interpreted to mean “if determining" or “in response to determining" or “on detecting (a stated condition or event)” or “in response to detecting (a stated condition or event)”.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server, or data center Transmission to another website site, computer, server, or data center by wired (eg, coaxial cable, optical fiber, DSL) or wireless (eg, infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media (eg, solid state hard disk), etc.
  • the processes can be completed by computer programs to instruct related hardware.
  • the programs can be stored in computer-readable storage media.
  • When the programs are executed may include the processes of the foregoing method embodiments.
  • the aforementioned storage medium includes: ROM or random access memory RAM, magnetic disk or optical disk, and other various media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

本申请公开了一种北斗通信系统中的数据压缩方法、系统及相关装置,终端将终端的用户ID压缩后编码成二进制数据,然后终端将该二进制数据填入终端生成的第一用户帧的帧头信息包含的用户ID字段中;终端向北斗网络设备发送第一用户帧。这样,可以减少用户帧中的帧头开销。

Description

一种北斗通信系统中的数据压缩方法、系统及相关装置
本申请要求于2021年08月06日提交中国专利局、申请号为202110903759.0、申请名称为“一种北斗通信系统中的手机号压缩方法及相关装置”的中国专利申请的优先权,以及于2021年09月13日提交中国专利局、申请号为202111069259.8、申请名称为“一种北斗通信系统中的数据压缩方法、系统及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及北斗通信技术领域、以及压缩技术领域,尤其涉及一种北斗通信系统中的数据压缩方法、系统及相关装置。
背景技术
北斗卫星导航系统是我国自主研制的集定位、授时、通信于一体的重大基础设施。北斗短报文系统是利用北斗卫星系统,实现短报文信息的发送。特别适用于在海洋,沙漠,草原、无人区等移动通信未覆盖、或覆盖不了、或通信系统被破坏的区域进行通信。
北斗三号卫星的短报文系统对短报文技术体制进行了升级,将北斗短报文系统一些必要的资源开放给民用,针对民用业务和设备特性,需要依据北斗短报文系统的特性设计通信协议。
目前,在北斗短报文通信系统中,每个用户会分配一个用户号码,用于识别用户的身份,该用户号码又称为用户ID。受当前大众终端卫星通信收发能力限制,上下行发送的帧头开销应尽可能的精简,传统的手机号码编码方式采用的是BCD码(Binary-Coded Decimal),若采用该编码方式则浪费更多的帧头开销。
因此,在北斗系统中如何对用户ID编码,尽量减少帧头开销,称为本领域技术人员亟待解决的问题。
发明内容
本申请提供了一种北斗通信系统中的数据压缩方法、系统及相关装置,通过本申请实施例提供的方法,可以在传输数据时减少帧头开销。
第一方面,提供一种北斗通信系统中的数据压缩方法,该方法可以包括:第一终端在卫星链路控制层SLC将第一终端的第一用户ID编码成二进制的第一数据,第一用户ID包括第二数据和第三数据,第一数据包括二进制的第四数据和二进制的第五数据,第四数据由第六数据编码得到,第六数据由第二数据压缩得到,第六数据的数据长度小于第二数据,第五数据由第三数据编码得到;第一终端在SLC层将所述第一数据填入第一用户帧的帧头信息中的用户ID字段中;终端将第一用户帧发送给北斗网络设备。
其中,第一用户ID可以是第一终端的手机号码,第二数据可以是手机号码中的国内目的码NDC,第三数据可以是手机号码中的客户号码SN。
这样,可以减少用户帧的帧头信息中用户ID所占比特位。在终端向北斗网络设备发送用户帧时,可以减少帧头开销。
结合第一方面,在一种可能的实现方式中,第一终端在卫星链路控制层SLC将第一终端 的第一用户ID编码成二进制的第一数据,包括:第一终端在SLC层将第一终端的第一用户ID中的第二数据压缩成第六数据,第一用户ID由第二数据和第三数据组成,第六数据的数据长度小于第二数据;第一终端在SLC层将第六数据编码成第四数据,将第三数据编码成第五数据;第一终端将第四数据和第五数据组成第一数据。
这样,可以减少用户帧的帧头信息中用户ID所占比特位。
结合第一方面,在一种可能的实现方式中,第一终端在SLC层将第一终端的第一用户ID中的第二数据压缩成第六数据,包括:第一终端在SCL层将第一用户ID中的第二数据映射为映射表中的第六数据;映射表中包括多个数值的第二数据和多个数值的第六数据,其中,多个数值的第二数据包括第一数值的第二数据,多个数值的第六数据包括第二数值的第六数据,第一数据的第二数据映射为第二数值的第六数据。
这样,可以把一个第二数据压缩成一个数据长度更短的第六数据。并且,第二数据和第六数据一一对应,不会出现一个压缩后的数据对应对个压缩前的数据。这样,解码的时候不会出现错误。
结合第一方面,在一种可能的实现方式中,第一终端在SLC层将第一终端的第一用户ID中的第二数据压缩成第六数据,包括:第一终端在SCL层将第一用户ID中的第二数据减去预设偏移值,得到第六数据。
这样,可以把一个第二数据压缩成一个数据长度更短的第六数据。
结合第一方面,在一种可能的实现方式中,第一终端在SLC层将第六数据编码成第四数据,将第三数据编码成第五数据,包括:第一终端在SLC层将第六数据作为十进制整数,转换为二进制的第四数据;将第三数据作为十进制整数,转换为二进制的第五数据。
由于将一个数据当成整体编码得到二进制数据的数据长度,比将一个数据按照8421编码方式编码得到的二进制数据的数据长度短。这样,可以将第六数据和第三数据编码成数据更短的二进制数据。
结合第一方面,在一种可能的实现方式中,第一终端在卫星链路控制层SLC将第一终端的第一用户ID编码成二进制的第一数据之前,该方法还可以包括:第一终端检测第一操作,第一操作用于指示第一终端向第二终端发送第一消息;第一终端在应用APP层将第二终端的第二用户ID压缩后编码成第七数据;第一终端在所述APP层生成第一消息报文,第一消息报文中包括报文头和报文数据;报文头中包括第七数据,报文数据中包括第一消息的内容。
这样,可以减少报文中报文头中用户ID所占的比特位。
结合第一方面,在一种可能的实现方式中,第一终端在所述APP层生成第一消息报文之后,该方法还可以包括:第一终端将第一消息报文下发至所述SLC层,得到一个或多个卫星链路控制层服务数据单元SLC SDU,一个或多个SLC SDU中包括第一SLC SDU;第一终端将第一SLC SDU分段成一个或多个用户帧,一个或多个用户帧中包括第一用户帧。
结合第一方面,在一种可能的实现方式中,该方法还可以包括:第一终端接收到北斗网络设备发送的第二用户帧,第二用户帧由第二终端发送给所述第一终端;第一终端在SLC层将第二用户帧的帧头信息中的用户ID字段解码和解压缩,得到第一终端的第一用户ID。
这样,终端可以从用户帧的帧头信息中的用户ID字段中解压缩出终端的用户ID。
结合第一方面,在一种可能的实现方式中,该方法还可以包括:第一终端接收到北斗网络设备发送的第二用户帧,第二用户帧由第二终端发送给所述第一终端;第一终端在SLC层将第二用户帧的帧头信息中的用户ID字段解码和解压缩,得到用户ID数据;在第一终端确 定用户ID数据与第一用户ID相同的情况下,第一终端将第二用户帧上传至消息数据汇聚MDCP层;在第一终端确定用户ID数据与第一用户ID不相同的情况下,第一终端丢弃第二用户帧。
结合第一方面,在一种可能的实现方式中,第一终端在所述SLC层将第二用户帧的帧头信息中的用户ID字段解码和解压缩,得到第一终端的第一用户ID之后,该方法还可以包括:第一终端将第二用户帧中的用户数据上传到应用层,得到第二消息报文;第一终端在APP层中将第二消息报文的报文头中的用户ID字段解码和解压缩,得到第二终端的第二用户ID;第一终端基于第二用户ID,确定第二消息报文由第二终端发送。
第二方面,提供一种北斗通信系统中的数据压缩方法,该方法可以包括:北斗网络设备在卫星链路控制层SLC将第一终端的第一用户ID编码成二进制的第一数据,第一用户ID包括第二数据和第三数据,第一数据包括二进制的第四数据和二进制的第五数据,第四数据由第六数据编码得到,第六数据由第二数据压缩得到,第六数据的数据长度小于第二数据,第五数据由第三数据编码得到;北斗网络设备在SLC层将第一数据填入第二用户帧的帧头信息中的用户ID字段中;北斗网络设备将所述第二用户帧发送给第一终端。
其中,第一用户ID可以是第一终端的手机号码,第二数据可以是手机号码中的国内目的码NDC,第三数据可以是手机号码中的客户号码SN。
这样,可以减少用户帧的帧头信息中用户ID所占比特位。在北斗网络设备向终端发送用户帧时,可以减少帧头开销。
结合第二方面,在一种可能的实现方式中,北斗网络设备在卫星链路控制层SLC将第一终端的第一用户ID编码成二进制的第一数据之前,该方法还可以包括:北斗网络设备获取第一终端的第一用户ID。
结合第二方面,在一种可能的实现方式中,北斗网络设备获取第一终端的第一用户ID,包括:北斗网络设备接收到第一终端发送的第一用户帧,第一用户帧的帧头信息中的用户ID字段用于指示第一终端的第一用户ID;北斗网络设备从第一用户帧中解码出第一用户ID。
结合第二方面,在一种可能的实现方式中,北斗网络设备获取第一终端的第一用户ID,包括:北斗网络设备接收到第一终端发送的第一用户帧,第一用户帧的帧头信息中的用户ID字段用于指示第一数据;北斗网络设备将第一数据解压缩和解码,得到第一用户ID。
结合第二方面,在一种可能的实现方式中,北斗网络设备获取第一终端的第一用户ID,包括:北斗网络设备接收到第二消息报文,第二消息报文由第二终端通过北斗网络设备发送给第一终端,第二消息报文中包括用于指示第一终端的第一用户ID的用户ID字段;北斗网络设备从第二消息报文的报文头中的用户ID字段中解码出第一用户ID。
结合第二方面,在一种可能的实现方式中,北斗网络设备在卫星链路控制层SLC将第一终端的第一用户ID编码成二进制的第一数据,包括:北斗网络设备在SLC层将第一终端的第一用户ID中的第二数据压缩成第六数据,第一用户ID由第二数据和第三数据组成,第六数据的数据长度小于第二数据;北斗网络设备在SLC层将第六数据编码成第四数据,将第三数据编码成第五数据;北斗网络设备将第四数据和第五数据组成第一数据。
这样,可以减少用户帧的帧头信息中用户ID所占比特位。
结合第二方面,在一种可能的实现方式中,北斗网络设备在SLC层将第一终端的第一用户ID中的第二数据压缩成第六数据,包括:北斗网络设备在SCL层将第一用户ID中的第二数据映射为映射表中的第六数据;映射表中包括多个数值的第二数据和多个数值的第六数据, 其中,多个数值的第二数据包括第一数值的第二数据,多个数值的第六数据包括第二数值的第六数据,第一数据的第二数据映射为第二数值的第六数据。
这样,可以把一个第二数据压缩成一个数据长度更短的第六数据。并且,第二数据和第六数据一一对应,不会出现一个压缩后的数据对应对个压缩前的数据。这样,解码的时候不会出现错误。
结合第二方面,在一种可能的实现方式中,北斗网络设备在SLC层将第一终端的第一用户ID中的第二数据压缩成第六数据,包括:北斗网络设备在SCL层将第一用户ID中的第二数据减去预设偏移值,得到第六数据。
这样,可以把一个第二数据压缩成一个数据长度更短的第六数据。
结合第二方面,在一种可能的实现方式中,北斗网络设备在SLC层将第六数据编码成第四数据,将第三数据编码成第五数据,包括:第一终端在SLC层将第六数据作为十进制整数,转换为二进制的第四数据;将第三数据作为十进制整数,转换为二进制的第五数据。
由于将一个数据当成整体编码得到二进制数据的数据长度,比将一个数据按照8421编码方式编码得到的二进制数据的数据长度短。这样,可以将第六数据和第三数据编码成数据更短的二进制数据。
第三方面,提供一种北斗通信系统,该系统可以包括第一终端和北斗网络设备。其中:
第一终端用于在卫星链路控制层SLC将第一终端的第一用户ID编码成二进制的第一数据,第一用户ID包括第二数据和第三数据,第一数据包括二进制的第四数据和二进制的第五数据,第四数据由第六数据编码得到,第六数据由第二数据压缩得到,第六数据的数据长度小于第二数据,第五数据由第三数据编码得到;
第一终端用于在SLC层将第一数据填入第一用户帧的帧头信息中的用户ID字段中;
第一终端用于将所述第一用户帧发送给北斗网络设备;
北斗网络设备用于接收第一用户帧,从第一用户帧的帧头信息中的用户ID字段中解码出第一用户ID。
结合第三方面,在一种可能的实现方式中,北斗网络设备用于:
在卫星链路控制层SLC将第一终端的第一用户ID编码成二进制的第一数据,第一用户ID包括第二数据和第三数据,第一数据包括二进制的第四数据和二进制的第五数据,第四数据由第六数据编码得到,第六数据由第二数据压缩得到,第六数据的数据长度小于第二数据,第五数据由第三数据编码得到;
在SLC层将第一数据填入第二用户帧的帧头信息中的用户ID字段中。
结合第三方面,在一种可能的实现方式中,北斗网络设备还可以执行上述第二方面中任一种可能的实现方式中的方法。
结合第三方面,在一种可能的实现方式中,终端还可以执行上述第一方面中任一种可能的实现方式中的方法。
第四方面,本申请提供了一种通信装置,包括一个或多个处理器、一个或多个存储器和收发器。收发器、该一个或多个存储器与一个或多个处理器耦合,一个或多个存储器用于存储计算机程序代码,计算机程序代码包括计算机指令,当一个或多个处理器执行计算机指令时,使得通信装置执行上述第一方面任一项可能的实现方式中的方法。
其中,该通信装置可以为终端或其他产品形态的设备。
第五方面,本申请提供了一种通信装置,包括一个或多个处理器、一个或多个存储器和 收发器。收发器、该一个或多个存储器与一个或多个处理器耦合,一个或多个存储器用于存储计算机程序代码,计算机程序代码包括计算机指令,当一个或多个处理器执行计算机指令时,使得通信装置执行上述第二方面任一项可能的实现方式中的方法。
其中,该通信装置可以为北斗网络设备,或北斗网络设备中的任一网元或多个网元的组合。
第六方面,本申请提供了一种计算机存储介质,包括计算机指令,当计算机指令在计算机上运行时,使得计算机执行上述第一方面任一项可能的实现方式中的方法。
第七方面,本申请提供了一种计算机存储介质,包括计算机指令,当计算机指令在计算机上运行时,使得计算机执行上述第二方面任一项可能的实现方式中的方法。
第八方面,本申请提供了一种计算机程序产品,当计算机程序产品在计算机上运行时,使得计算机执行上述第一方面任一项可能的实现方式中的方法。
第九方面,本申请提供了一种计算机程序产品,当计算机程序产品在计算机上运行时,使得计算机执行上述第二方面任一项可能的实现方式中的方法。
第十方面,本申请提供了一种芯片或芯片系统,应用于终端,包括处理电路和接口电路,接口电路用于接收代码指令并传输至所述处理电路,处理电路用于运行所述代码指令以执行上述第一方面任一项可能的实现方式中的方法。
附图说明
图1是本申请实施例提供的一种北斗通信系统10的架构示意图;
图2是本申请实施例提供的一种北斗通信系统中数据出入站的传输过程示意图;
图3是本申请实施例提供的一种北斗通信系统10的入站数据的协议封装架构示意图;
图4是本申请实施例提供的一种北斗通信系统10的入站数据的协议解析架构示意图;
图5是本申请实施例提供的一种北斗通信系统10的出站数据的协议封装架构示意图;
图6是本申请实施例提供的一种北斗通信系统10的出站数据的协议解析架构示意图;
图7是本申请实施例提供的一种SLC帧的帧格式示意图;
图8是本申请实施例提供的另一种SLC帧的帧格式示意图;
图9是本申请实施例提供的又一种ACK帧的帧格式示意图;
图10是本申请实施例提供的又一种应用层回执帧的帧格式示意图;
图11A是本申请实施例提供的一种北斗通信系统中的数据压缩方法流程示意图;
图11B是本申请实施例提供的一种北斗通信系统中的数据压缩方法流程示意图;
图12是本申请实施例提供的终端100的结构示意图;
图13为本申请实施例提供的一种通信装置的结构示意图;
图14为本申请实施例提供的另一种通信装置的结构示意图;
图15为本申请实施例提供的另一种通信装置的结构示意图;
图16为本申请实施例提供的另一种通信装置的结构示意图。
具体实施方式
本申请以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一 个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括复数表达形式,除非其上下文中明确地有相反指示。还应当理解,本申请中使用的术语“和/或”是指并包含一个或多个所列出项目的任何或所有可能组合。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为暗示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征,在本申请实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
下面介绍本申请实施例提供的一种北斗通信系统10。
图1示出了本申请实施例中提供的一种北斗通信系统10的架构示意图。
如图1所示,北斗通信系统10可以包括终端100、北斗短报文卫星21、北斗网络设备200、短消息中心25和终端300。可选的,该北斗通信系统10还可以包括紧急救援平台26、紧急救援中心27。
其中,终端100可以发送短报文信息给北斗短报文卫星21,北斗短报文卫星21只进行中继,直接将终端100发送的短报文信息转发给地面的北斗网络设备200。北斗网络设备200可以根据北斗通信协议解析卫星转发的短报文信息,并将从短报文信息中解析出的通用报文类型的报文内容转发给短消息中心(short message service center,SMSC)25。短消息中心25可以通过传统的蜂窝通信网络,将报文内容转发给终端300。北斗网络设备200也可以将终端100发送的紧急求救类型的报文,通过紧急救援平台26发送给紧急救援中心27。
终端300也可以通过传统的蜂窝通信网络,将短消息发送给短消息中心25。短消息中心25可以将终端300的短消息转发给北斗网络设备200。北斗网络设备200可以将终端300的短消息通过北斗短报文卫星21中继发送给终端100。
其中,上述北斗网络设备200可以包括北斗地面收发站22、北斗中心站23和北斗短报文融合通信平台24。其中,北斗地面收发站22可以包括分别具有发送功能的一个或多个设备和具有接收功能的一个或多个设备,或者可以包括具有发送功能和接收功能的一个或多个设备,此处不作限定。北斗地面收发站22可用于北斗网络设备200在物理(physical layer protocol,PHY)层对数据的处理功能。北斗中心站23可用于北斗网络设备200在卫星链路控制(satellite link control protocol,SLC)层和消息数据汇聚(message data convergence protocol,MDCP)层对数据的处理功能。北斗短报文融合通信平台24可用于在应用(application layer protocol,APP)层对数据的处理功能。
其中,由于北斗通信系统10是通过卫星链路进行通信,其主要特性是:时延长(单向约270ms),链路损耗大。当前北斗通信系统10支持的业务主要是突发短消息业务,不支持链接状态管理、移动性管理和广播控制信息等。
其中,北斗网络设备200的工作模式可以是双工模式,可以同时收发数据。
在本申请实施例中,终端100向北斗网络设备200发送数据可以称为入站,终端100向北斗网络设备200发送的数据可以称为入站数据。北斗网络设备200向终端100发送数据可以称为出站,北斗网络设备200向终端100发送的数据可以称为出站数据。如图2所示,终端100可以将入站数据发送给北斗短报文卫星21,然后经由北斗短报文卫星21将入站数据发送给北斗地面收发站22,北斗地面收发站22可以将入站数据发送给北斗中心站23。北斗网络设备200中的北斗中心站23可以向北斗地面收发站22发送出站数据。然后,北斗地面 收发站22将出站数据发送给北斗短报文卫星21,经由北斗短报文卫星21发送给终端100。
下面介绍本申请实施例中提供的一种北斗通信系统10的入站数据的协议封装架构。
图3示出了本申请实施例中提供的一种北斗通信系统10的入站数据的协议封装架构示意图。
如图3所示,终端100上的北斗报文传输协议层可以分为应用层(application layer protocol,APP)、消息数据汇聚层(message data convergence protocol,MDCP)、卫星链路控制层(satellite link control protocol,SLC)和物理层(physical layer protocol,PHY)。
终端100发送数据给北斗网络设备200时,终端100上的北斗报文传输协议的工作流程可以如下:
在APP层,终端100可以将原始数据通过压缩算法,压缩成压缩数据,并在压缩数据前面添加压缩指示字段,其中,压缩指示字段可用于表示该压缩数据的压缩算法类型。之后,终端100可以将压缩数据加密,得到加密后数据,并在加密后数据的头部添加加密算法字段,该加密算法字段用于表示该加密后的数据的加密算法类型。终端100可以将加密后数据、压缩指示字段、加密指示字段封装成应用层报文下发给MDCP层。其中,该应用层报文包括报文头和报文数据。该报文头中包括压缩指示字段和加密指示字段等等。该报文数据包括上述加密后数据。
可选的,终端100也可以将压缩指示字段和压缩数据一起进行加密,得到加密后数据。
在MDCP层,终端100可以通过层间接口获取到APP层下发的应用层报文,并将应用层报文作为一个MDCP服务数据单元(service data unit,SDU)。在MDCP层,终端100可以在MDCP SDU的尾部添加填充数据(padding)至指定长度,并在MDCP SDU的头部添加冗余长度指示字段。该冗余长度指示字段可用于表示该填充数据的长度。终端100可以将填充数据以及增加冗余长度指示字段之后的MDCP SDU,拆分成一个或多个固定长度的MDCP分段数据(M_segement),并在每个MDCP分段数据的头部添加后继指示字段,得到MDCP协议数据单元(protocol data unit,PDU),即MDCP PDU包括M_segement和后继指示字段。其中,后继指示字段可用于表示当前的MDCP PDU是连续发送的多个MDCP PDU的起始MDCP PDU或中间MDCP PDU或最后一个MDCP PDU;或者是单独发送的一个MDCP PDU。
在SLC层,终端100可以通过层间接口获取到MDCP层下发的MDCP PDU,作为SLC SDU。在SLC层,终端100可以将SLC SDU分段成一个或多个(最多4个)固定长度的SLC分段数据(S_segement),并在每个S_segement头部添加帧头信息,得到SLC PDU。其中,帧头信息中包括服务数据单元交替指示(service data unit alternated Indicator,SAI)字段、帧总数字段和帧序号字段。
其中,SAI字段可用于表示该SLC PDU是否属于一个未发送过的SLC SDU。
帧总数字段,可用于表示该SLC PDU所属的SLC SDU中包括SLC PDU的总数量。
帧序号字段,可用于表示该SLC PDU在所属的SLC SDU中的序号。
在PHY层,终端100可以通过层间接口获取到SLC层下发的SLC PDU,作为PHY层的编码块(code block),并在code block的头部添加同步头,在code block的尾部添加校验位字段。其中,在上述北斗通信系统10中,可以采用循环冗余校验(cyclic redundancy check,CRC)对编码块进行校验,因此,该校验位字段中可以包括CRC码。终端100可以code block和校验位字段进行编码(例如polar编码),得到编码数据(coded data),再在coded data中 插入导频,得到导频编码数据(pilot+data)。然后,终端100通过底层硬件对同步头和导频编码数据依次进行调制得到调制数据(modulated data)。终端100可以对调制数据进行扩频,得到扩频调制数据(spread+modulated data)。终端100可以将扩频调制数据发送给北斗短报文卫星21,经由北斗短报文卫星21中继转发给北斗网络设备200。
下面介绍本申请实施例中提供的一种北斗通信系统10的入站数据的协议解析架构。
图4示出了本申请实施例中提供的一种北斗通信系统10的入站数据的协议解析架构示意图。
如图4所示,北斗网络设备200的北斗短报文传输协议层可以分为应用层(application layer protocol,APP)、消息数据汇聚层(message data convergence protocol,MDCP)、卫星链路控制层(satellite link control protocol,SLC)和物理层(physical layer protocol,PHY)。其中,北斗网络设备200可以包括北斗地面收发站22、北斗中心站23和北斗短报文融合通信平台24。北斗地面收发站22可用于负责PHY层的协议处理。北斗中心站23可用于负责SLC层和MDCP层的协议处理。北斗短报文融合通信平台24可用于负责APP层的协议处理。
北斗网络设备200在接收到终端100发送的数据时,北斗网络设备200的北斗短报文传输协议层的工作流程可以如下:
在PHY层,北斗网络设备200可以获取到终端100发送的经过调制和扩频后的导频编码数据。北斗网络设备200可以对接收到的扩频调制数据(spread+modulated data)进行解扩频,得到调制数据(modulated data)。然后,北斗网络设备200可以对调制数据进行解调,得到导频编码数据(pilot+data)。接着,北斗网络设备200去除导频编码数据中的导频信息,得到编码数据(code data)。然后,北斗网络设备200可以对编码数据进行解码,并通过校验位字段中的校验数据验证编码块(code block)的完整性。若完整,则北斗网络设备200可以提取出编码块(code block),通过层间接口呈递给SLC层,作为SLC层的SLC PDU。
在SLC层,北斗网络设备200可以基于SLC PDU的帧头信息,将属于同一个SLC SDU的SLC PDU拼接成一个SLC SDU。北斗网络设备200可以将SLC SDU通过层间接口呈递给MDCP层,作为MDCP层的MDCP PDU。
在MDCP层,北斗网络设备200可以将属于同一个MDCP SDU的所有MDCP PDU拼接成一个MDCP SDU。北斗网络设备200可以将MDCP SDU通过层间接口呈递到APP层,作为APP层接收到的应用层报文。
在APP层,北斗网络设备200可以基于应用层报文的报文头,对应用层报文进行解密、解压缩,得到原始数据。
本申请实施例中,上述协议处理过程仅为示例说明,本申请对协议处理的具体操作不作限定。
下面介绍本申请实施例中提供的一种北斗通信系统10的出站数据的协议封装架构。
图5示出了本申请实施例中提供的一种北斗通信系统10的出站数据的协议封装架构示意图。
如图5所示,北斗网络设备200中的北斗短报文传输协议层可以应用层(application layer protocol,APP)、消息数据汇聚层(message data convergence protocol,MDCP)、卫星链路控制层(satellite link control protocol,SLC)和物理层(physical layer protocol,PHY)。其中, 北斗网络设备200可以包括北斗地面收发站22、北斗中心站23和北斗短报文融合通信平台24。北斗地面收发站22可用于负责PHY层的协议处理。北斗中心站23可用于负责SLC层和MDCP层的协议处理。北斗短报文融合通信平台24可用于负责APP层的协议处理。
北斗网络设备200发送数据给终端100时,北斗网络设备200中的北斗短报文传输协议的工作流程可以如下:
在APP层,北斗网络设备200可以将原始数据通过压缩算法,压缩成压缩数据,并在压缩数据前面添加压缩指示字段,其中,压缩指示字段可用于表示该压缩数据的压缩算法类型。之后,北斗网络设备200可以将压缩数据加密,得到加密后数据,并在加密后数据的头部添加加密算法字段,该加密算法字段用于表示该加密后的数据的加密算法类型。北斗网络设备200可以将加密后数据、压缩指示字段、加密指示字段封装成应用层报文下发给MDCP层。其中,该应用层报文可以包括报文头和报文数据。该报文头中可以包括压缩指示字段、加密指示字段等等。该报文数据包括上述加密后数据。
可选地,在一种可能的实现方式中,北斗网络设备200在MDCP层将MDCP SDU切分成多个MDCP PDU,北斗网络设备200可以将多个MDCP PDU一并传输到北斗网络设备200的SLC层。
在MDCP层,北斗网络设备200可以通过层间接口获取到APP层下发的应用层报文,并将应用层报文作为一个MDCP SDU。在MDCP层,北斗网络设备200可以将一个MDCP SDU拆分成一个或多个固定长度的MDCP分段数据(M_segement),并在每个MDCP分段数据的头部添加后继指示字段,得到MDCP PDU,即MDCP PDU包括M_segement和后继指示字段。其中,后继指示字段可用于表示当前的MDCP PDU是连续发送的多个MDCP PDU的起始MDCP PDU或中间MDCP PDU或最后一个MDCP PDU;或者是单独发送的一个MDCP PDU。
在SLC层,北斗网络设备200可以通过层间接口获取到MDCP层下发的MDCP PDU,作为SLC SDU。在SLC层,北斗网络设备200可以将SLC SDU分段成一个或多个(最多4个)固定长度的SLC分段数据(S_segement),并在每个S_segement头部添加帧头信息,得到SLC PDU。
在PHY层,北斗网络设备200可以通过层间接口获取到SLC层下发的SLC PDU。北斗网络设备200可以从SLC层获取到一个用户或多个用户的SLC PDU。北斗网络设备200可以将多个用户的SLC PDU拼接在一起,再加上物理帧的帧头(例如版本号)作为PHY层的编码块(code block),并在code block的尾部添加校验位(例如,循环冗余校验(cyclic redundancy check,CRC)码),并对code block和CRC码进行编码(例如polar编码),编码后的物理帧加上保留段可以组成一个固定长度的物理时隙的电文支路(S2C_d支路)的编码数据。其中,北斗网络设备200可以将一个用户的多个SLC PDU分别放到不同的物理帧中。然后,北斗网络设备200将S2C_d支路的编码数据和导频支路(S2C_p支路)的导频信息组成导频编码数据,即出站数据。北斗网络设备200可以将出站数据发送给北斗短报文卫星21,经由北斗短报文卫星21中继转发给终端100。
可以理解的是,S2C_p支路的导频信息与卫星波束相关。当卫星波束号时已知信息时,S2C_p支路的导频信息也是已知的,无需解码的。而S2C_d支路的编码数据是需要解码的。
下面介绍本申请实施例中提供的一种北斗通信系统10的出站数据的协议解析架构。
图6示出了本申请实施例中提供的一种北斗通信系统10的出站数据的协议解析架构示意图。
如图6所示,终端100的北斗短报文传输协议层可以分为应用层(application layer protocol,APP)、消息数据汇聚层(message data convergence protocol,MDCP)、卫星链路控制层(satellite link control protocol,SLC)和物理层(physical layer protocol,PHY)。
终端100在接收到北斗网络设备发送的数据时,终端100的北斗短报文传输协议层的工作流程可以如下:
在PHY层,终端100可以获取到北斗网络设备200发送的经过调制和扩频后的导频编码数据。终端100可以对接收到的扩频调制数据(spread+modulated data)进行解扩频,得到调制数据(modulated data)。然后,终端100可以对调制数据进行解调,得到导频编码数据(pilot+data)。接着,终端100可以去除导频编码数据中的导频信息,得到编码数据(code data)。然后,终端100可以对编码数据进行解码,并通过校验位字段中的校验数据验证编码块(code block)的完整性。若完整,则终端100可以提取出编码块(code block),通过层间接口呈递给SLC层,作为SLC层的SLC PDU。
这里,该导频编码数据即为上述北斗网络设备200发送的出站数据,该出站数据由S2C_d支路的编码数据和导频支路(S2C_p支路)的导频信息组成。
在SLC层,终端100可以基于SLC PDU的帧头信息,将属于同一个SLC SDU的SLC PDU拼接成一个SLC SDU。终端100可以将SLC SDU通过层间接口呈递给MDCP层,作为MDCP层的MDCP PDU。
在MDCP层,终端100可以将属于同一个MDCP SDU的所有MDCP PDU拼接成一个MDCP SDU。终端100可以将MDCP SDU通过层间接口呈递到APP层,作为APP层接收到的应用层报文。
在APP层,终端100可以基于应用层报文的报文头,对应用层报文进行解密、解压缩,得到原始数据。
本申请实施例中,上述协议处理过程仅为示例说明,本申请对协议处理的具体操作不作限定。
在北斗通信系统10中,终端100可以在SLC层生成用户帧,该用户帧的帧头信息中可以包含有用户ID字段,用户ID字段中包含终端100的用户ID。终端100生成的用户帧可以包括SLC PDU、确认字符(acknowledge character,ACK)帧、以及应用层回执帧。北斗网络设备200也可以在SLC层生成用户帧,该用户帧的帧头信息中可以包含有用户ID字段,用户ID字段中包含接收该用户帧的终端的用户ID。北斗网络设备200生成的用户帧也可以包括SLC PDU、ACK帧、以及应用层回执帧。
图7示出了本申请实施例提供的一种入站SLC PDU的帧格式。
如图7所示,入站时,终端100向北斗网络设备200发送的SLC PDU的帧头信息可以包括:版本号字段、子类型指示字段、用户身份标识号(identity document,ID)字段、确认模式使能(AM enable)字段、帧总数字段、帧序号字段、SAI字段和保留(reserve,RSV)字段。
其中,版本号字段,可用于指示北斗通信协议的版本,通过版本号字段可以支持北斗通信协议针对每种帧类型的格式分别进行演进。本申请实施例对版本号字段的长度不作限定。
子类型字段,可用于指示终端100发送的用户帧的帧类型为通用数据帧,即SLC PDU。其中,子类型字段的长度可以为1bit。例如,子类型字段的值为“0”,表示该用户帧为通用数据帧,即SLC PDU。子类型字段的值为“1”时,表示终端100发送的用户帧为ACK帧。由于SLC PDU为终端100发送的通用数据帧,因此,SLC PDU中的子类型字段取值为“0”。本申请实施例对子类型字段的长度不作限定。
用户ID字段,可用于指示终端100的用户ID。用户ID字段中包含终端100的用户ID。
AM enable字段,可用于指示终端100是否采用确认模式传输SLC PDU。本申请实施例对该AM enable字段的长度以及该AM enable字段的具体数值不作限定。
帧总数字段,可用于表示该SLC PDU所在的SLC SDU中包括SLC PDU的总数量。其中,该帧总数字段的长度可以是2bit。当帧总数字段的长度为2bit时,一个SLC PDU中最多可包括4个SLC PDU。
帧序号字段,可用于表示该SLC PDU在一个SLC SDU中的序号。该帧序号字段的长度可以是2bit。本申请实施例对帧序号字段的长度不作限定。
服务数据单元交替指示(service data unit alternated Indicator,SAI)字段,可占1bit。当终端100采用确认模式传输SLC PDU时,即,AM-enable字段的值为“1”,SAI字段可用于表示是否表示该SLC PDU是否是重传的SLC PDU。当终端100采用非确认模式传输SLC PDU时,即,AM-enable字段的值为“0”,SAI字段可保留段,留作其他功能使用。
RSV字段,可用于帧头数据字节对齐,以及预留给其他功能使用,RSV字段的长度可以是4bit,也可以是其他比特数,本申请实施例对RSV字段的长度不作限定。
可以理解的是,图7示出出站SLC PDU的帧格式仅为示例。本申请实施例对该帧头信息字段中的信元参数的排列顺序不作限定。
图8示出了本申请实施例提供的一种出站SLC PDU的帧格式。
如图8所示,出站时,北斗网络设备200向终端100发送的SLC PDU的帧头信息可以包括:帧类型字段、开启确认模式(acknowledge mode enable,AM enable)字段、帧长字段、用户ID字段、帧总数字段和帧序号字段。
其中,帧类型字段,可用于指示该SLC帧的类型。该帧类型字段的长度可以是2bit。本申请实施例对帧类型字段的长度不作限定。
AM enable字段,指示北斗网络设备200是否采用确认模式传输SLC PDU。该AM enable字段的长度可以是1bit。若该AM enable字段中数值为第一数值(例如:1),则表明终端100在接收到北斗网络设备200发送的SLC PDU后需要向北斗网络设备200回复ACK。若该AM enable字段中数值为第二数值(例如:0),则表明终端100在接收到北斗网络设备200的SLC PDU后不需要向北斗网络设备200回复ACK。本申请实施例对该AM enable字段的长度以及该AM enable字段的具体数值不作限定。
帧长字段用于标识该SLC帧的长度,该帧长字段的长度可以是8bit。本申请实施例对该帧长字段的长度不作限定。
用户ID字段,可用于指示该SLC PDU是北斗网络设备200发送给终端100的。该用户ID字段中可以包含终端100的用户ID。
帧总数字段,可用于表示该SLC PDU所在的SLC SDU中包括SLC PDU的总数量。其中,该帧总数字段的长度可以是2bit。当帧总数字段的长度为2bit时,一个SLC PDU中最多可包括4个SLC PDU。
帧序号字段,可用于表示该SLC PDU在一个SLC SDU中的序号。该帧序号字段的长度可以是2bit。本申请实施例对帧序号字段的长度不作限定。
可以理解的是,图8示出的出站SLC PDU的帧格式仅为示例。本申请实施例对该帧头信息字段中的信元参数的排列顺序不作限定。
图9示出了本申请实施例提供的一种ACK帧的帧格式。
如图9所示,ACK帧可以包括帧头信息和用户信息。其中,帧头信息中可以包括帧类型字段和用户ID字段。帧类型字段可以用于指示该ACK帧的类型。该帧类型字段的长度可以是2bit。本申请实施例对该帧类型字段的长度不作限定。用户ID字段可以指示发送或接收该ACK帧的终端的用户ID。
ACK帧用于指示发送该ACK帧的终端100或者北斗网络设备200是否成功接收到SLC SDU。
可以理解的是,图9示出的ACK帧的帧格式仅为示例。本申请实施例对该帧头信息字段中的信元参数的排列顺序不作限定。
图10示出了本申请实施例提供的一种应用层回执帧的帧格式。
如图10所示,应用层回执帧可以包括帧头信息和用户信息。其中,帧头信息中可以包括帧类型字段和用户ID字段。帧类型字段可以用于指示该应用层回执帧的类型。该帧类型字段的长度可以是2bit。本申请实施例对该帧类型字段的长度不作限定。用户ID字段可以指示发送或接收该应用层回执帧的终端的用户ID。
应用层回执帧用于指示发送该应用层回执帧的终端100或者北斗网络设备200是否成功解析接收到的应用层报文。
可以理解的是,图10示出的应用层回执帧的帧格式仅为示例。本申请实施例对该帧头信息字段中的信元参数的排列顺序不作限定。
在本申请实施例中,用户帧的帧头信息包含的用户ID字段中的二进制的数据可以指示的是终端100的移动手机号码。目前世界各国的移动手机号码均采用国际电信联盟(international telecommunication union,ITU)公布的E.164码号格式,E.164号码是国际电信联盟定义的在公用电话交换网(public switch telephone network,PSTN)和一些数据网使用的国际公共电话码号方案,同时定义了具体的码号的格式。E.164定义了最大15个数字,完整号码有国际呼叫前缀。E.164定义了移动用户国际综合业务数字网号码(mobile subscriber international integrated service digital network number,MSISDN)的具体格式。
MSISDN号码是主叫用户为呼叫移动通信网中用户所需拨号的号码。下面简要介绍MSISDN号码的格式。表1示例性地示出了MSISDN的格式。
表1
Figure PCTCN2022109726-appb-000001
如表1所示,MSISDN号码可以按照格式1示出的方式进行编排,其中,格式1的示出的具体格式为:格式1:MSISDN=CC+NDC+SN(CC=国家码;NDC=国内目的码;SN=用户号码)。即MSISDN由国家码(country code,CC)、国内目的地码(national destination code,NDC)以及客户号码(subscriber number,SN)组成。
按目前国家码的定义分布,CC最长为4位,如关岛为1671,大部分是两位,如中国86。
NDC又可以称为网络接入号,每个主权国家都可以授权一个或多个网络运营商组建并经营移动网络。例如,中国三大移动运营商中的中国移动的网络接入号为134-139、150-152、188等,中国联通的网络接入号为130-132、185、186等,中国电信的网络接入号为133、153、180、189等。
SN不超过8位,如中国大陆的SN用户号码长度为8位。
其中,格式1中的MSISDN的结构可以为如下表达式:
MSISDN=CC+N1N2N3+H0H1H2H3+ABCD
其中,NDC部分可以由N1N2N3三位数字组成,SN部分可以由H0H1H2H3和ABCD共8位数字组成。其中,H0H1H2H3四位数字可以是SN中每个移动业务本地网的归属位置寄存器(home location register,HLR)的识别号,ABCD为移动客户码。
如表1所示,MSISDN号码可以为“8613966666666”,其中“86”为CC码,“139”可以是NDC码,或者N1N2N3;“66666666”可以是SN码,或者可以是H0H1H2H3+ABCD。
在本申请实施例中,MSISDN中不包含CC的部分(即NDC和SN)可以称为终端的国内身份号码,或者可以称为移动手机号码,或者可以称为手机号码。为了便于描述,下文中将MSISDN中不包含CC的部分称为手机号码。在中国,终端的手机号码一般为11位的十进制字符串。
一般,采用二进制编码的十进制(binary coded decimal,BCD)编码对MSISDN号码进行编码。BCD这种编码形式利用了四个位元来存储一个十进制的数码。这样,11位的手机号码(即除去CC后的MSISDN码)采用BCD编码,需要四十四比特位的容量。例如,如表2所示,手机号码“13966666666”通过BCD编码可以编码成四十四比特位的二进制格式的字符串。
表2
Figure PCTCN2022109726-appb-000002
如表2所示,手机号码“13966666666”中的每一位十进制字符可以编码成四比特的二进制字符串。例如,十进制字符“1”可以通过BCD编码方式编码为四比特的二进制字符串“0001”。十进制字符“3”可以通过BCD编码方式编码为四比特的二进制字符串“0011”。十进制字符“9”可以通过BCD编码方式编码为四比特的二进制字符串“1001”。十进制字符“6”可以通过BCD编码方式编码为四比特的二进制字符串“0110”。这样,手机号码“13966666666”可以通过BCD编码方式编码为四十四比特位的二进制字符串“0001 0011 1001 0110 0110 0110 0110 0110 0110 0110 0110”。这样,用户ID字段需要四十四比特的容量,导致帧头开销大。
本申请实施例提供一种北斗通信系统中的数据压缩方法,该数据压缩方法可以应用于终端100,该压缩方法可以包括:终端100可以将终端100的用户ID编码成二进制的第一数据, 用户ID可以包含第二数据和第三数据,第一数据包含二进制的第四数据和二进制的第五数据,第四数据由第六数据编码得到,第六数据由第二数据压缩得到,第六数据的数据长度小于第二数据的数据长度;第五数据由第三数据编码得到;终端100将第一数据填入第一用户帧的帧头信息包含的用户ID字段中。该用户ID字段中的第一数据可以用于指示终端100的用户ID。
其中,用户ID可以是终端100的手机号码,第二数据可以是终端100的手机号码中的NDC数据,第三数据可以是终端100的手机号码中的SN数据。
通过本申请实施例提供的压缩方法,终端100可以通过该压缩方法对终端100的用户ID进行压缩,将压缩后的用户ID编码后填入用户ID字段中,这样,可以减少用户ID字段所占的比特位,从而可以减少帧头开销。
图11A示例性地示出了本申请实施例提供的一种北斗通信系统中的数据压缩方法流程示意图,以用户ID为手机号码为例,该数据压缩方法可以包括如下步骤:
S101、终端100将终端100的手机号码编码成二进制的数据D1,手机号码包含NDC1和SN1,数据D1包含数据D2和数据D3,数据D2由数据D4编码得到,数据D4由NDC1压缩得到,数据D4的数据长度小于NDC1的数据长度,数据D3由SN1编码得到。
表3
Figure PCTCN2022109726-appb-000003
如表3所示,终端100的手机号可以包括NDC1和SN1,终端100可以在SLC层将NDC1压缩成数据D4,数据D4的数据长度小于NDC1的数据长度。然后将数据D4编码成数据D2,将SN1编码成数据D3,数据D2和数据D3可以组合成数据D1。
在本申请实施例中,终端100可以称为第一终端。终端100的用户ID可以称为第一用户ID。数据D1可以称为第一数据,NDC1可以称为第二数据,SN1可以称为第三数据,数据D2可以称为第四数据,数据D3可以成为第五数据,数据D4可以称为第六数据。
若终端100的手机号码为除中国以外的其他国家的号码,终端100可以将手机号码转换为中国的手机号码。在本申请实施例中,中国的手机号码可以称为国内的手机号码,除中国以外其他国家的手机号码可以称为国外的手机号码。
在一种可能的实现方式中,终端100可以将国外的手机号码整体映射为国内的手机号码。终端100中可以存在一个映射表,该映射表中可以包含国外号码和对应的国内号码。
可选地,在一种可能的实现方式中,终端100可以将国外的手机号码中的NDC转换为国内的NDC,然后国内的NDC和国外的手机号码中的SN组合成一个手机号码。
在一种可能的实现方式中,终端100可以将NDC1压缩成数据D4,然后终端100将数据D4编码成数据D2。
可选地,在一种可能的实现方式中,终端100将NDC1压缩成数据D4可以包括:终端100将NDC1映射为映射表关系数据D4,数据D4为映射表关系中NDC1对应的短报文通信用户标识(short message communication identity document,SMCID)。SN1可以转换成二进制的短报文通信客户号码(short message communication subscriber number,SMCSN)。即,数 据D1包括编码后的SMCID和SMCSN。终端100中存在NDC与SMCID的映射关系表。
示例性地,国内手机号码的NDC与SMCID的映射关系表可以如表4所示。
表4
NDC SMCID
  0(专用终端使用)
130~139 NDC-130+1(1~10)
144~159 NDC-134+1(11~26)
162 27
165 28
166 29
167 30
170~178 NDC-140+1(31~39)
180~189 NDC-140(40~49)
191 50
195 51
198 52
199 53
如表4所示,目前国内的手机号码的NDC号段分布在13x~19x之间,因此,可以通过表4示出的映射表,实现NDC到SMCID的映射转换。NDC为130时,可以映射为SMCID中的1,NDC为139时,可以映射为SMCID中的10。NDC为130~139号码段时,可以映射为SMCID中的1~10。NDC为144~159号码段时,可以映射为SMCID中的11~26。NDC为162时,可以映射为SMCID中的27,NDC为165时,可以映射为SMCID中的28,NDC为166时,可以映射为SMCID中的29,NDC为167时,可以映射为SMCID中的30。NDC为170~178号码段时,可以映射为SMCID中的31~39。NDC为180~189号码段时,可以映射为SMCID中的40~49。NDC为191时,可以映射为SMCID中的50,NDC为195时,可以映射为SMCID中的51,NDC为198时,可以映射为SMCID中的52,NDC为199时,可以映射为SMCID中的53。
SMCID的取值范围一般为0x00~0x7F,共包括128个SMCID类别。7位的二进制数可以容纳128个SMCID。其中,专用终端的SMCID固定为0,其余的127个SMCID为民用终端使用。
进一步地,可选地,表4中仅示出54个SMCID,剩余74个SMCID可以作为预留资源,若后续运营商增加新的NDC,可以通过空中下载(over the air,OTA)升级的方式在如表3示出的映射关系表中增加新的NDC和预留的SMCID的映射关系。
表4中的NDC可以称为第二数据,SMCID可以称为第六数据。表4中包含多个数值的NDC,和多个数值的SMCID。每一个数值的NDC和一个数值的SMCID一一对应。
这样,在一些可行的例子中,SMCID编码后可得到7位的二进制数据。若SMCID编码得到的二进制数据不足7位,可将该数据高位补0,补足7位。
SN的取值范围为0~99999999,因此需要27位的二进制数来容纳所有的SN。若SN编码后得到的SMCSN不足27位,可将SMCSN高位补0,补足27位。
示例性地,以手机号码为“13966666666”为例进行说明。手机号码“13966666666”中,NDC为“139”,SN为“66666666”。其中,NDC“139”可以映射为表3中的“10”,也即是数据D4。“10”可以编码成二进制的数据“1010”。由于“1010”不足7位,高位补0,得到 “0001010”7位的二进制数据。即NDC“139”的编码结果为“0001010”,也即是数据D2。“66666666”可以编码成二进制的数据“111111100101000000101010”26位的二进制数据,不足27位,高位补0,得到“0111111100101000000101010”27位的二进制数据。即SN“66666666”的编码结果为“0111111100101000000101010”,也即是数据D3。终端100可以将NDC“139”的编码结果和SN“66666666”的编码结果组合成手机号码“13966666666”的编码结果,即为“00010100111111100101000000101010”共34位的二进制数据,也即是二进制数据D1。
可选地,在另一种可能的实现方式中,终端100将NDC1压缩成数据D4可以包括:终端100将NDC1减去预设偏移值,得到数据D5,数据D5的数据长度小于NDC1的数据长度。
由于目前NDC号码段分布在13x~19x之间,而7bit的SMCID取值范围0~127,故SMCID可通过NDC减去一个预设偏移值可以得到。
示例性地,预设偏移值可以为100,以手机号码为“13966666666”为例进行说明。手机号码“13966666666”中,NDC为“139”,SN为“66666666”。其中,NDC“139”减去预设偏移值“100”等于“39”,也即是数据D5。“39”可以编码成二进制数据“100111”。由于“100111”不足7位,高位补0,得到7位的编码数据“0100111”。即NDC“139”的编码结果为“0100111”,也即是数据D2。“66666666”可以编码成二进制的数据“111111100101000000101010”26位的二进制数据,不足27位,高位补0,得到“0111111100101000000101010”27位的二进制数据。即SN“66666666”的编码结果为“0111111100101000000101010”,也即是数据D3。终端100可以将NDC“139”的编码结果和SN“66666666”的编码结果组合成手机号码“13966666666”的编码结果,即为“01001110111111100101000000101010”共34位的二进制数据,也即是二进制数据D1。
可以理解的,预设偏移值可以是100,也可以是其他值,本申请实施例对此不作限定。
S102、终端100将数据D1填入第一用户帧的帧头信息包含的用户ID字段中。
终端100可以在SLC层将数据D1填入第一用户帧的帧头信息包含的用户ID字段中。例如,当用户ID是手机号码“13966666666”时,填入用户ID字段中二进制的数据D1可以是“00010100111111100101000000101010”或“01001110111111100101000000101010”共34位的二进制数据。
进一步地,终端100在执行完步骤S102后,终端100可以将第一用户帧发送给北斗网络设备200。
进一步地,北斗网络设备200可以在SLC层将第一用户帧中的用户ID字段中用户ID进行解码和解压缩,得到原始的用户ID。例如,用户ID为手机号码,北斗网络设备200在SLC层将二进制的用户ID字段进行解码和解压缩,得到11位的手机号码。
具体地,北斗网络设备200可以将用户ID字段中二进制的用户ID,即数据D1中的数据D2解码成数据D4,将数据D1中的数据D3解码成SN1。然后再将数据D4解压缩成NDC1。
在一种可能的实现方式中,第一用户帧的用户ID字段钱可以包括用户ID压缩指示字段,该用户ID压缩指示字段用于指示用户ID的压缩方法。北斗网络设备200可以按照用户ID压缩指示字段指示的压缩方法将数据D4解压缩成NDC1。
可选地,在另一种可能的实现方式中,若终端100将NDC1压缩为数据D4的方式只有一种,例如,终端100将NDC1映射为映射表关系数据D4,数据D4为映射表关系中NDC1对应的SMCID。那么北斗网络设备200就按照终端100压缩NDC1的方法来解压缩数据D4, 得到NDC1。举例来说,北斗网络设备200可以在映射关系表中查找数据D4对应的NDC1。
可选地,在另一种可能的实现方式中,若终端100将NDC1压缩成数据D4的方式有多种,北斗网络设备200可以按照预设的解压缩方法的顺序对数据D4进行解压缩。举例来说,若终端100将NDC1压缩成数据D4的方法有三种,例如,压缩方法1,压缩方法2、压缩方法2。终端100发送的第一用户帧中未指示终端100对用户ID字段的压缩方法,北斗网络设备200中预设用户ID解压缩方法,解压缩方法1(可以对压缩方法1压缩过的数据解压缩),解压缩方法2(可以对压缩方法2压缩过的数据解压缩),解压缩方法3(可以对压缩方法3压缩过的数据解压缩),预设的解压缩方法的顺序为先用解压缩方法1进行解压缩,若未成功解压缩,再用解压缩方法2进行解压缩,若仍然为成功解压缩,则用解压缩方法3进行解压缩。
可以理解的,本申请实施例中,终端100的用户ID不限于终端100的手机号码,还可以是终端100的MSISDN、国际移动用户识别码(international mobile subscriber identification number,IMSI)或者国际移动设备识别码(international mobile equipment identity,IMEI)等等。
通过本申请实施例提供的一种北斗通信系统中的数据压缩方法,终端100可以对用户ID进行压缩。当用户ID为11位的手机号码时,现有技术中采用BCD编码,用户ID字段需要占据44个比特位,而通过本申请实施例的数据压缩方法用户ID字段只需要占34个比特位。这样,可以减少每个用户帧的帧头信息中用户ID字段所占的比特位。
终端100可以向北斗网络设备200发送第一用户帧,该第一用户帧可以用于查询终端100附近的蜂窝网络信息,或者终端100的接收的信件的数量,或者终端100接收到的信件内容。或者第一用户帧也可以表示终端100上一次是否成功接收北斗网络设备发送的用户帧,或者用于表示终端100是否成功解析北斗网络设备200发送的应用层报文。当北斗网络设备200收到终端100的第一用户帧时,北斗网络设备200可以向终端100回复第二用户帧。第二用户帧可以用于表示终端100附近的蜂窝网络信息的查询结果,或者,终端100的接收的信件的数量,或者终端100接收到的信件内容。或者,第二用户帧还可以表示北斗网络设备200是否成功接收终端100发送的第一用户帧,或者还可以表示北斗网络设备200是否成功解析终端100发送的应用层报文。北斗网络设备200向终端100发送的第二用户帧的帧头信息中终端100的用户ID。这样,终端100还可以知道第二用户帧是北斗网络设备200发送给终端100的。
由于现有技术中,用户ID字段中的用户ID需要占据较多的比特位,这样,帧头开销大。
本申请实施例提供一种压缩方法,该压缩方法可以应用于北斗网络设备200,该压缩方法可以包括:北斗网络设备200获取终端100的用户ID,然后北斗网络设备200可以将终端100的用户ID压缩后,编码成二进制的数据D6,北斗网络设备200将数据D6填入第二用户帧的帧头信息包含的用户ID字段中。
其中,用户ID可以是终端100的手机号码。
通过本申请实施例提供的压缩方法,北斗网络设备200可以通过该压缩方法对终端100的用户ID进行压缩,将压缩后的用户ID编码后填入用户ID字段中,这样,可以减少用户ID字段所占的比特位,从而可以减少帧头开销。
图11B示例性地示出了本申请实施例提供的一种通信系统中的数据压缩方法流程示意 图,以用户ID为手机号码为例,该数据压缩方法可以包括如下步骤:
S201、北斗网络设备200获取终端100的用户ID。
北斗网络设备200可以从接收到的终端100的第一用户帧的用户ID字段中获取终端100的用户ID。
在一种可能的实现方式中,北斗网络设备200将获取到的终端100发送的第一用户帧中的用户ID字段中的二进制的数据解析成用户ID(例如,终端100的手机号码“13966666666”)。
可选地,在另一种可能的实现方式中,北斗网络设备200可以获取到终端100的第一用户帧中的用户ID字段中的二进制的数据。北斗网络设备200可以将该用户ID字段中的二进制的数据直接填入第二用户帧的用户ID字段中。北斗网络设备200无需执行步骤S202-S203。
S202、北斗网络设备200将终端100的用户ID压缩成数据D6,将数据D6编码成二进制的数据D7,其中,数据D6的数据长度小于用户ID的数据的长度。
终端100的用户ID可以是终端100的手机号码,其中,该手机号码包括NDC1和SN1。北斗网络设备200可以将手机号中的NDC1进行压缩,得到SMCID1,SMCID1的数据长度小于NDC1的数据长度。数据D6即为SMCID1和SN1。然后北斗网络设备200可以将SMCID1和SN1进行编码,得到二进制的数据D7。
北斗网络设备200将NDC1进行压缩,得到SMCID1,具体可以参考上述步骤S101中终端100将NDC1压缩成数据D4的实现过程,此处不再赘述。
示例性地,终端100的用户ID可以终端100的手机号码,例如“13966666666”,其中NDC1可以是“139”,SN1可以是“66666666”。若北斗网络设备200按照上述步骤S102中的将NDC1映射成SMCID1的方法,北斗网络设备200可以将NDC1“139”压缩成“10”.若北斗网络设备200按照上述步骤S102中将NDC1减去预设偏移值得到SMCID1的压缩方法,以预设偏移值为100为例,北斗网络设备可以将NDC1“139”压缩成“39”。
当“139”压缩成“10”时,“13966666666”最终可以编码成二进制的数据D7,即为“00010100111111100101000000101010”,当“139”压缩成“39”时,“13966666666”最终可以编码成二进制的数据D7,即为“01001110111111100101000000101010”。
S203、北斗网络设备200将数据D7填入第二用户帧的帧头信息包含的用户ID字段中。
北斗网络设备200可以将数据D7填入第二用户帧的帧头信息包含的用户ID字段中。例如,当用户ID是手机号码“13966666666”时,填入用户ID字段中二进制的数据D1可以是“00010100111111100101000000101010”或“01001110111111100101000000101010”共34位的二进制数据。
进一步地,北斗网络设备200在执行完步骤S203后,北斗网络设备200可以将第二用户帧发送给终端100。
可以理解的,本申请实施例中,终端100的用户ID不限于终端100的手机号码,还可以是终端100的MSISDN、或者国际移动设备识别码(international mobile equipment identity,IMEI)等等。
通过本申请实施例提供的一种北斗通信系统中的数据压缩方法,北斗网络设备200可以对终端100的用户ID进行压缩。当用户ID为11位的手机号码时,现有技术中采用BCD编码,用户ID字段需要占据44个比特位,而通过本申请实施例的数据压缩方法用户ID字段只需要占34个比特位。这样,可以减少每个用户帧的帧头信息中用户ID字段所占的比特位。
在一些场景中,终端100可以在北斗网络下,即终端100未驻留蜂窝网络,终端100中北斗通信模块开启时,终端100可以通过北斗网络设备200向终端300发送短信息获取收取终端300发送的短信息。其中,终端300可以驻留在蜂窝网络,或者终端300可以在北斗网络下,未驻留蜂窝网络,此处不作限定。
可以理解的是,参考上述图1,当终端100向终端300发送消息时,北斗网络设备200中的北斗短报文融合通信平台24可以确定出接收消息的终端300是在北斗网络下还是处于蜂窝网络下。若终端300处于蜂窝网络下,北斗短报文融合通信平台24可以将消息发送给短消息中心25,然后短消息中心再发送给终端300。
当北斗网络下的终端100向北斗网络设备下的终端400发送消息时,首先,终端100发送的消息经由北斗短报文卫星21转发至北斗地面收发站22。然后,北斗地面收发站22再将消息发送至北斗中心站23,然后北斗中心站23再将消息发送给北斗短报文融合通信平台24。北斗短报文融合通信平台24可以解析出终端400的用户ID,根据终端400的用户ID确定终端400处于北斗网络下。然后,北斗短报文融合通信平台24将消息发送北斗中心站23。然后,北斗中心站23再将消息发送至北斗地面收发站22。最后北斗地面收发站22经由北斗短报文卫星21将消息发送给终端400。
场景1:北斗网络下的终端100向蜂窝网络下的终端300发送消息
当终端100通过北斗网络设备200向终端300发送短信息时,该短消息中可以携带终端100的用户ID和终端300的用户ID。具体地,终端100在应用层中生成第一消息报文,该第一消息报文中可以包括具体的消息内容和终端300的用户ID。终端100可以在应用层将终端300的用户ID进行压缩,并编码成二进制的数据,然后将该二进制的数据填入到第一消息报文的报文头中。具体地,终端100可以按照上述步骤S101-步骤S102中示出的方法在应用层将终端300的用户ID进行压缩并编码成二进制的数据,此处不再赘述。终端100在该第一消息报文下发到SLC层后加入终端100的用户ID,并生成第一用户帧。终端100在SLC层将终端100的用户进行压缩并编码成二进制的数据后填入第一用户帧的帧头信息中。具体地,终端100可以按照上述步骤S101-步骤S102中示出的方法在APP层将终端100的用户ID进行压缩并编码成二进制的数据后填入到第一用户帧的帧头信息中,此处不再赘述。然后终端100将第一用户帧发送给北斗网络设备200。
北斗网络设备200接收第一用户帧后可以在SLC层,即北斗网络设备200中的北斗中心站23将第一用户帧中的终端100的用户ID字段进行解码解压缩,得到终端100的用户ID。然后,北斗网络设备200可以在APP层,即北斗网络设备200中的北斗短报文融合通信平台24将终端300用户ID字段进行解码解压缩,得到终端300的用户ID。然后,北斗网络设备可以在APP层将第一消息报文中携带的消息报文发送给终端300。
场景2:北斗网络下的终端100接收蜂窝网络下的终端300发送的消息
在一些场景中,终端100只有自动向北斗网络设备200发送请求,北斗网络设备200才会将其他设备发送给终端100的消息转发给终端100。这样,可以节约北斗通信系统中的传输资源。并且,可以节约终端100在北斗网络下收发消息的资费。北斗网络设备200在接收到终端100发送的获取消息请求后,可以在SLC层从消息请求中解压缩和解码出终端100的用户ID。然后保存该终端100的用户ID。北斗网络设备200可以获取终端300向终端100发送的消息。北斗网络设备200可以在应用层解析出该消息中包含的终端300的用户ID。然 后,北斗网络设备200可以在APP层将终端300发送的消息封装成第二消息报文。该第二消息报文中可以包括具体的消息内容和终端300的用户ID字段。北斗网络设备200将终端300的用户ID进行压缩,并编码成二进制的数据后填入到第二消息报文的报文头中的用户ID字段中。具体地,北斗网络设备200可以按照上述步骤S201-步骤S203示出的方法在APP层将终端300的用户ID进行压缩,并编码成二进制的数据后填入到第二消息报文的帧头信息中。北斗网络设备200将第二消息报文下发到SLC层可以分段成一个或多个用户帧,多个用户帧中包括第二用户帧。北斗网络设备200将保存的终端100的用户ID进行压缩,并编码成二进制的数据后填入到第二用户帧的帧头信息的用户ID字段。具体地,北斗网络设备200可以按照上述步骤S201-步骤S203示出的方法在SLC层将终端100的用户ID进行压缩,并编码成二进制的数据后填入到第二用户帧的帧头信息中,此处不再赘述。然后,北斗网络设备200将第二用户帧发送给终端100。
终端100接收到第二用户帧后可以在SLC层将第二用户帧中的终端100的用户ID字段进行解码,得到终端100的用户ID。终端100可以在APP层将终端300用户ID字段进行解码解压缩,得到终端300的用户ID。
可选地,在另一些场景中,终端100可以无需向北斗网络设备200发送请求,当北斗网络设备200收到其他终端发送给终端100的消息时,北斗网络设备200可以将该消息发送终端100。这样,终端100可以及时收取到其他设备发送给终端100的消息。
北斗网络设备200可以获取终端300向终端100发送的消息。然后,北斗网络设备200可以在APP层从终端300发送的消息中解析出用户ID和终端300的用户ID。北斗网络设备200可以将该消息封装成第二消息报文。该第二消息报文中可以包括具体的消息内容和终端300的用户ID字段。北斗网络设备200将终端300的用户ID进行压缩,并编码成二进制的数据后填入到第二消息报文的用户ID字段中。具体地,北斗网络设备200可以按照上述步骤S201-步骤S203示出的方法在APP层将终端300的用户ID进行压缩,并编码成二进制的数据后填入到第二消息报文的报文头中。北斗网络设备200将第二消息报文下发到SLC层分段成一个或多个用户帧,该一个或多个用户帧中包括第二用户帧。然后,北斗网络设备200将终端100的用户ID进行压缩,并编码成二进制的数据后填入到第二用户帧的帧头信息的用户ID字段。具体地,北斗网络设备200可以按照上述步骤S201-步骤S203示出的方法在SLC层将终端100的用户ID进行压缩,并编码成二进制的数据后填入到第二用户帧的帧头信息中,此处不再赘述。然后,北斗网络设备200将第二用户帧发送给终端100。
场景3:北斗网络下的终端100向北斗网络下的终端400发送消息
当终端100通过北斗网络设备200向终端400发送短信息时,该短消息中可以携带终端100的用户ID和终端400的用户ID。具体地,终端100在应用层中生成第三消息报文,该第三消息报文中可以包括具体的消息内容和终端400的用户ID。终端100可以在应用层将终端400的用户ID进行压缩,并编码成二进制的数据,然后将该二进制的数据填入到第一消息报文的报文头中。具体地,终端100可以按照上述步骤S101-步骤S102中示出的方法在应用层将终端400的用户ID进行压缩并编码成二进制的数据,此处不再赘述。终端100在该第一消息报文下发到SLC层后加入终端100的用户ID,并生成第一用户帧。终端100在SLC层将终端100的用户进行压缩并编码成二进制的数据后填入第一用户帧的帧头信息中。具体地, 终端100可以按照上述步骤S101-步骤S102中示出的方法在APP层将终端100的用户ID进行压缩并编码成二进制的数据后填入到第一用户帧的帧头信息中,此处不再赘述。然后终端100将第一用户帧发送给北斗网络设备200。
北斗网络设备200接收第一用户帧后可以在SLC层,即北斗网络设备200中的北斗中心站23将第一用户帧中的终端100的用户ID字段进行解码解压缩,得到终端100的用户ID。然后,北斗网络设备200可以在APP层,即北斗网络设备200中的北斗短报文融合通信平台24将终端400用户ID字段进行解码解压缩,得到终端400的用户ID。北斗短报文融合通信平台24确定终端400在北斗网络下,然后将终端400的用户ID进行压缩编码得到压缩编码后的用户ID。然后,北斗短报文融合通信平台24压缩编码后的用户ID和消息的具体内容封装成第四消息报文。然后,北斗短报文融合通信平台24将第四消息报文发送给北斗中心站23。北斗中心站23可以将该第四消息报文分段成一个或多个用户帧,该一个或多个用户帧中包括第四用户帧。北斗中心站23将终端100的用户ID压缩并编码后填入到第四用户帧的用户ID字段中。然后,北斗中心站23将该第四用户帧发送给北斗地面收发站22。北斗地面收发站22经由北斗短报文卫星21将该第四用户帧发送给终端100。具体地,北斗网络设备200可以按照上述步骤S201-步骤S203示出的方法在APP层将终端400的用户ID进行压缩,并编码成二进制的数据后填入到第四消息报文的报文头中的用户ID字段中。具体地,北斗网络设备200可以按照上述步骤S201-步骤S203示出的方法在SLC层将终端100的用户ID进行压缩,并编码成二进制的数据后填入到第四用户帧的帧头信息的用户ID字段中。
终端100接收到第二用户帧后可以在SLC层将第四用户帧中的终端100的用户ID字段进行解码,得到终端100的用户ID。终端100可以在APP层将终端400用户ID字段进行解码解压缩,得到终端400的用户ID。
场景4:北斗网络下的终端100接收北斗网络下的终端400发送的消息
终端400将给终端100发送消息的过程可以参考上述场景1-场景3中的描述,此处不再赘述。
可以理解的是,北斗网络设备200可以在接收到终端100接收消息的请求后,再将终端400发送的消息发送给终端100。或者,北斗网络设备200也可以在接收到终端400发送的消息后,直接发送给终端100,无需终端100的请求。当北斗网络设备200将终端400发送的消息发送给终端100时,北斗网络设备200可以从终端400发送的消息获取到的终端100的用户ID。北斗网络设备200也可以是从终端100发送的请求中获取到的终端100的用户ID。
在本申请实施例中,终端300或终端400可以称为第二终端,终端300的用户ID或终端400的用户ID可以称为第二用户ID。
下面首先介绍本申请实施例提供的示例性终端100。
图12是本申请实施例提供的终端100的结构示意图。
下面以终端100为例对实施例进行具体说明。应该理解的是,终端100可以具有比图中所示的更多的或者更少的部件,可以组合两个或多个的部件,或者可以具有不同的部件配置。图中所示出的各种部件可以在包括一个或多个信号处理和/或专用集成电路在内的硬件、软件、或硬件和软件的组合中实现。
终端100可以包括:处理器110,外部存储器接口120,内部存储器121,通用串行总线 (universal serial bus,USB)接口130,充电管理模块140,电源管理模块141,电池142,天线1,天线2,移动通信模块150,无线通信模块160,音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,传感器模块180,按键190,马达191,指示器192,摄像头193,显示屏194以及用户标识模块(subscriber identification module,SIM)卡接口195等。其中传感器模块180可以包括压力传感器180A,陀螺仪传感器180B,气压传感器180C,磁传感器180D,加速度传感器180E,距离传感器180F,接近光传感器180G,指纹传感器180H,温度传感器180J,触摸传感器180K,环境光传感器180L,骨传导传感器180M等。
可以理解的是,本发明实施例示意的结构并不构成对终端100的具体限定。在本申请另一些实施例中,终端100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
处理器110可以包括一个或多个处理单元,例如:处理器110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,存储器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(neural-network processing unit,NPU)等。其中,不同的处理单元可以是独立的器件,也可以集成在一个或多个处理器中。
其中,控制器可以是终端100的神经中枢和指挥中心。控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器110中还可以设置存储器,用于存储指令和数据。在一些实施例中,处理器110中的存储器为高速缓冲存储器。该存储器可以保存处理器110刚用过或循环使用的指令或数据。如果处理器110需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了系统的效率。
在一些实施例中,处理器110可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
I2C接口是一种双向同步串行总线,包括一根串行数据线(serial data line,SDA)和一根串行时钟线(derail clock line,SCL)。在一些实施例中,处理器110可以包含多组I2C总线。处理器110可以通过不同的I2C总线接口分别耦合触摸传感器180K,充电器,闪光灯,摄像头193等。例如:处理器110可以通过I2C接口耦合触摸传感器180K,使处理器110与触摸传感器180K通过I2C总线接口通信,实现终端100的触摸功能。
I2S接口可以用于音频通信。在一些实施例中,处理器110可以包含多组I2S总线。处理器110可以通过I2S总线与音频模块170耦合,实现处理器110与音频模块170之间的通信。在一些实施例中,音频模块170可以通过I2S接口向无线通信模块160传递音频信号,实现通过蓝牙耳机接听电话的功能。
PCM接口也可以用于音频通信,将模拟信号抽样,量化和编码。在一些实施例中,音频模块170与无线通信模块160可以通过PCM总线接口耦合。在一些实施例中,音频模块170也可以通过PCM接口向无线通信模块160传递音频信号,实现通过蓝牙耳机接听电话的功能。 所述I2S接口和所述PCM接口都可以用于音频通信。
UART接口是一种通用串行数据总线,用于异步通信。该总线可以为双向通信总线。它将要传输的数据在串行通信与并行通信之间转换。在一些实施例中,UART接口通常被用于连接处理器110与无线通信模块160。例如:处理器110通过UART接口与无线通信模块160中的蓝牙模块通信,实现蓝牙功能。在一些实施例中,音频模块170可以通过UART接口向无线通信模块160传递音频信号,实现通过蓝牙耳机播放音乐的功能。
MIPI接口可以被用于连接处理器110与显示屏194,摄像头193等外围器件。MIPI接口包括摄像头串行接口(camera serial interface,CSI),显示屏串行接口(display serial interface,DSI)等。在一些实施例中,处理器110和摄像头193通过CSI接口通信,实现终端100的拍摄功能。处理器110和显示屏194通过DSI接口通信,实现终端100的显示功能。
GPIO接口可以通过软件配置。GPIO接口可以被配置为控制信号,也可被配置为数据信号。在一些实施例中,GPIO接口可以用于连接处理器110与摄像头193,显示屏194,无线通信模块160,音频模块170,传感器模块180等。GPIO接口还可以被配置为I2C接口,I2S接口,UART接口,MIPI接口等。
SIM接口可以被用于与SIM卡接口195通信,实现传送数据到SIM卡或读取SIM卡中数据的功能。
USB接口130是符合USB标准规范的接口,具体可以是Mini USB接口,Micro USB接口,USB Type C接口等。USB接口130可以用于连接充电器为终端100充电,也可以用于终端100与外围设备之间传输数据。也可以用于连接耳机,通过耳机播放音频。该接口还可以用于连接其他电子设备,例如AR设备等。
可以理解的是,本发明实施例示意的各模块间的接口连接关系,只是示意性说明,并不构成对终端100的结构限定。在本申请另一些实施例中,终端100也可以采用上述实施例中不同的接口连接方式,或多种接口连接方式的组合。
充电管理模块140用于从充电器接收充电输入。其中,充电器可以是无线充电器,也可以是有线充电器。
电源管理模块141用于连接电池142,充电管理模块140与处理器110。电源管理模块141接收电池142和/或充电管理模块140的输入,为处理器110,内部存储器121,外部存储器,显示屏194,摄像头193,和无线通信模块160等供电。
终端100的无线通信功能可以通过天线1,天线2,移动通信模块150,无线通信模块160,调制解调处理器以及基带处理器等实现。
天线1和天线2用于发射和接收电磁波信号。终端100中的每个天线可用于覆盖单个或多个通信频带。不同的天线还可以复用,以提高天线的利用率。例如:可以将天线1复用为无线局域网的分集天线。在另外一些实施例中,天线可以和调谐开关结合使用。
移动通信模块150可以提供应用在终端100上的包括2G/3G/4G/5G等无线通信的解决方案。移动通信模块150可以包括至少一个滤波器,开关,功率放大器,低噪声放大器(low noise amplifier,LNA)等。移动通信模块150可以由天线1接收电磁波,并对接收的电磁波进行滤波,放大等处理,传送至调制解调处理器进行解调。移动通信模块150还可以对经调制解调处理器调制后的信号放大,经天线1转为电磁波辐射出去。在一些实施例中,移动通信模块150的至少部分功能模块可以被设置于处理器110中。在一些实施例中,移动通信模块150的至少部分功能模块可以与处理器110的至少部分模块被设置在同一个器件中。
调制解调处理器可以包括调制器和解调器。其中,调制器用于将待发送的低频基带信号调制成中高频信号。解调器用于将接收的电磁波信号解调为低频基带信号。随后解调器将解调得到的低频基带信号传送至基带处理器处理。低频基带信号经基带处理器处理后,被传递给应用处理器。应用处理器通过音频设备(不限于扬声器170A,受话器170B等)输出声音信号,或通过显示屏194显示图像或视频。在一些实施例中,调制解调处理器可以是独立的器件。在另一些实施例中,调制解调处理器可以独立于处理器110,与移动通信模块150或其他功能模块设置在同一个器件中。
无线通信模块160可以提供应用在终端100上的包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),北斗通信模块,调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等无线通信的解决方案。无线通信模块160可以是集成至少一个通信处理模块的一个或多个器件。无线通信模块160经由天线2接收电磁波,将电磁波信号调频以及滤波处理,将处理后的信号发送到处理器110。无线通信模块160还可以从处理器110接收待发送的信号,对其进行调频,放大,经天线2转为电磁波辐射出去。
其中,北斗通信模块可用于与北斗网络设备200进行通信。北斗通信模块可支持与北斗网络设备200进行短报文传输。
在一些实施例中,终端100的天线1和移动通信模块150耦合,天线2和无线通信模块160耦合,使得终端100可以通过无线通信技术与网络以及其他设备通信。所述无线通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),宽带码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),BT,GNSS,WLAN,NFC,FM,和/或IR技术等。所述GNSS可以包括全球卫星定位系统(global positioning system,GPS),全球导航卫星系统(global navigation satellite system,GLONASS),北斗卫星导航系统(beidou navigation satellite system,BDS),准天顶卫星系统(quasi-zenith satellite system,QZSS)和/或星基增强系统(satellite based augmentation systems,SBAS)。
终端100通过GPU,显示屏194,以及应用处理器等实现显示功能。GPU为图像处理的微处理器,连接显示屏194和应用处理器。GPU用于执行数学和几何计算,用于图形渲染。处理器110可包括一个或多个GPU,其执行程序指令以生成或改变显示信息。
显示屏194用于显示图像,视频等。显示屏194包括显示面板。显示面板可以采用液晶显示屏(liquid crystal display,LCD),有机发光二极管(organic light-emitting diode,OLED),有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light emitting diode,AMOLED),柔性发光二极管(flex light-emitting diode,FLED),Miniled,MicroLed,Micro-oLed,量子点发光二极管(quantum dot light emitting diodes,QLED)等。在一些实施例中,终端100可以包括1个或N个显示屏194,N为大于1的正整数。
终端100可以通过ISP,摄像头193,视频编解码器,GPU,显示屏194以及应用处理器等实现拍摄功能。
ISP用于处理摄像头193反馈的数据。例如,拍照时,打开快门,光线通过镜头被传递 到摄像头感光元件上,光信号转换为电信号,摄像头感光元件将所述电信号传递给ISP处理,转化为肉眼可见的图像。ISP还可以对图像的噪点,亮度,颜色进行算法优化。ISP还可以对拍摄场景的曝光,色温等参数优化。在一些实施例中,ISP可以设置在摄像头193中。
摄像头193用于捕获静态图像或视频。物体通过镜头生成光学图像投射到感光元件。感光元件可以是电荷耦合器件(charge coupled device,CCD)或互补金属氧化物半导体(complementary metal-oxide-semiconductor,CMOS)光电晶体管。感光元件把光信号转换成电信号,之后将电信号传递给ISP转换成数字图像信号。ISP将数字图像信号输出到DSP加工处理。DSP将数字图像信号转换成标准的RGB,YUV等格式的图像信号。在一些实施例中,终端100可以包括1个或N个摄像头193,N为大于1的正整数。
数字信号处理器用于处理数字信号,除了可以处理数字图像信号,还可以处理其他数字信号。例如,当终端100在频点选择时,数字信号处理器用于对频点能量进行傅里叶变换等。
视频编解码器用于对数字视频压缩或解压缩。终端100可以支持一种或多种视频编解码器。这样,终端100可以播放或录制多种编码格式的视频,例如:动态图像专家组(moving picture experts group,MPEG)1,MPEG2,MPEG3,MPEG4等。
NPU为神经网络(neural-network,NN)计算处理器,通过借鉴生物神经网络结构,例如借鉴人脑神经元之间传递模式,对输入信息快速处理,还可以不断的自学习。通过NPU可以实现终端100的智能认知等应用,例如:图像识别,人脸识别,语音识别,文本理解等。
内部存储器121可以包括一个或多个随机存取存储器(random access memory,RAM)和一个或多个非易失性存储器(non-volatile memory,NVM)。
随机存取存储器可以包括静态随机存储器(static random-access memory,SRAM)、动态随机存储器(dynamic random access memory,DRAM)、同步动态随机存储器(synchronous dynamic random access memory,SDRAM)、双倍资料率同步动态随机存取存储器(double data rate synchronous dynamic random access memory,DDR SDRAM,例如第五代DDR SDRAM一般称为DDR5 SDRAM)等;
非易失性存储器可以包括磁盘存储器件、快闪存储器(flash memory)。
快闪存储器按照运作原理划分可以包括NOR FLASH、NAND FLASH、3D NAND FLASH等,按照存储单元电位阶数划分可以包括单阶存储单元(single-level cell,SLC)、多阶存储单元(multi-level cell,MLC)、三阶储存单元(triple-level cell,TLC)、四阶储存单元(quad-level cell,QLC)等,按照存储规范划分可以包括通用闪存存储(英文:universal flash storage,UFS)、嵌入式多媒体存储卡(embedded multi media Card,eMMC)等。
随机存取存储器可以由处理器110直接进行读写,可以用于存储操作系统或其他正在运行中的程序的可执行程序(例如机器指令),还可以用于存储用户及应用程序的数据等。
非易失性存储器也可以存储可执行程序和存储用户及应用程序的数据等,可以提前加载到随机存取存储器中,用于处理器110直接进行读写。
终端100可以通过音频模块170,扬声器170A,受话器170B,麦克风170C,耳机接口170D,以及应用处理器等实现音频功能。例如音乐播放,录音等。
音频模块170用于将数字音频信息转换成模拟音频信号输出,也用于将模拟音频输入转换为数字音频信号。音频模块170还可以用于对音频信号编码和解码。在一些实施例中,音频模块170可以设置于处理器110中,或将音频模块170的部分功能模块设置于处理器110中。
扬声器170A,也称“喇叭”,用于将音频电信号转换为声音信号。终端100可以通过扬声器170A收听音乐,或收听免提通话。
受话器170B,也称“听筒”,用于将音频电信号转换成声音信号。当终端100接听电话或语音信息时,可以通过将受话器170B靠近人耳接听语音。
麦克风170C,也称“话筒”,“传声器”,用于将声音信号转换为电信号。当拨打电话或发送语音信息时,用户可以通过人嘴靠近麦克风170C发声,将声音信号输入到麦克风170C。终端100可以设置至少一个麦克风170C。在另一些实施例中,终端100可以设置两个麦克风170C,除了采集声音信号,还可以实现降噪功能。在另一些实施例中,终端100还可以设置三个,四个或更多麦克风170C,实现采集声音信号,降噪,还可以识别声音来源,实现定向录音功能等。
耳机接口170D用于连接有线耳机。耳机接口170D可以是USB接口130,也可以是3.5mm的开放移动电子设备平台(open mobile terminal platform,OMTP)标准接口,美国蜂窝电信工业协会(cellular telecommunications industry association of the USA,CTIA)标准接口。
压力传感器180A用于感受压力信号,可以将压力信号转换成电信号。在一些实施例中,压力传感器180A可以设置于显示屏194。压力传感器180A的种类很多,如电阻式压力传感器,电感式压力传感器,电容式压力传感器等。电容式压力传感器可以是包括至少两个具有导电材料的平行板。当有力作用于压力传感器180A,电极之间的电容改变。终端100根据电容的变化确定压力的强度。当有触摸操作作用于显示屏194,终端100根据压力传感器180A检测所述触摸操作强度。终端100也可以根据压力传感器180A的检测信号计算触摸的位置。在一些实施例中,作用于相同触摸位置,但不同触摸操作强度的触摸操作,可以对应不同的操作指令。例如:当有触摸操作强度小于第一压力阈值的触摸操作作用于短消息应用图标时,执行查看短消息的指令。当有触摸操作强度大于或等于第一压力阈值的触摸操作作用于短消息应用图标时,执行新建短消息的指令。
陀螺仪传感器180B可以用于确定终端100的运动姿态。在一些实施例中,可以通过陀螺仪传感器180B确定终端100围绕三个轴(即,x,y和z轴)的角速度。陀螺仪传感器180B可以用于拍摄防抖。示例性的,当按下快门,陀螺仪传感器180B检测终端100抖动的角度,根据角度计算出镜头模组需要补偿的距离,让镜头通过反向运动抵消终端100的抖动,实现防抖。陀螺仪传感器180B还可以用于导航,体感游戏场景。
气压传感器180C用于测量气压。在一些实施例中,终端100通过气压传感器180C测得的气压值计算海拔高度,辅助定位和导航。
磁传感器180D包括霍尔传感器。终端100可以利用磁传感器180D检测翻盖皮套的开合。在一些实施例中,当终端100是翻盖机时,终端100可以根据磁传感器180D检测翻盖的开合。进而根据检测到的皮套的开合状态或翻盖的开合状态,设置翻盖自动解锁等特性。
加速度传感器180E可检测终端100在各个方向上(一般为三轴)加速度的大小。当终端100静止时可检测出重力的大小及方向。还可以用于识别电子设备姿态,应用于横竖屏切换,计步器等应用。
距离传感器180F,用于测量距离。终端100可以通过红外或激光测量距离。在一些实施例中,拍摄场景,终端100可以利用距离传感器180F测距以实现快速对焦。
接近光传感器180G可以包括例如发光二极管(LED)和光检测器,例如光电二极管。发光二极管可以是红外发光二极管。终端100通过发光二极管向外发射红外光。终端100使用光 电二极管检测来自附近物体的红外反射光。当检测到充分的反射光时,可以确定终端100附近有物体。当检测到不充分的反射光时,终端100可以确定终端100附近没有物体。终端100可以利用接近光传感器180G检测用户手持终端100贴近耳朵通话,以便自动熄灭屏幕达到省电的目的。接近光传感器180G也可用于皮套模式,口袋模式自动解锁与锁屏。
环境光传感器180L用于感知环境光亮度。终端100可以根据感知的环境光亮度自适应调节显示屏194亮度。环境光传感器180L也可用于拍照时自动调节白平衡。环境光传感器180L还可以与接近光传感器180G配合,检测终端100是否在口袋里,以防误触。
指纹传感器180H用于采集指纹。终端100可以利用采集的指纹特性实现指纹解锁,访问应用锁,指纹拍照,指纹接听来电等。
温度传感器180J用于检测温度。在一些实施例中,终端100利用温度传感器180J检测的温度,执行温度处理策略。例如,当温度传感器180J上报的温度超过阈值,终端100执行降低位于温度传感器180J附近的处理器的性能,以便降低功耗实施热保护。在另一些实施例中,当温度低于另一阈值时,终端100对电池142加热,以避免低温导致终端100异常关机。在其他一些实施例中,当温度低于又一阈值时,终端100对电池142的输出电压执行升压,以避免低温导致的异常关机。
触摸传感器180K,也称“触控面板”。触摸传感器180K可以设置于显示屏194,由触摸传感器180K与显示屏194组成触摸屏,也称“触控屏”。触摸传感器180K用于检测作用于其上或附近的触摸操作。触摸传感器可以将检测到的触摸操作传递给应用处理器,以确定触摸事件类型。可以通过显示屏194提供与触摸操作相关的视觉输出。在另一些实施例中,触摸传感器180K也可以设置于终端100的表面,与显示屏194所处的位置不同。
按键190包括开机键,音量键等。按键190可以是机械按键。也可以是触摸式按键。终端100可以接收按键输入,产生与终端100的用户设置以及功能控制有关的键信号输入。
马达191可以产生振动提示。马达191可以用于来电振动提示,也可以用于触摸振动反馈。例如,作用于不同应用(例如拍照,音频播放等)的触摸操作,可以对应不同的振动反馈效果。作用于显示屏194不同区域的触摸操作,马达191也可对应不同的振动反馈效果。不同的应用场景(例如:时间提醒,接收信息,闹钟,游戏等)也可以对应不同的振动反馈效果。触摸振动反馈效果还可以支持自定义。
指示器192可以是指示灯,可以用于指示充电状态,电量变化,也可以用于指示消息,未接来电,通知等。
SIM卡接口195用于连接SIM卡。SIM卡可以通过插入SIM卡接口195,或从SIM卡接口195拔出,实现和终端100的接触和分离。终端100可以支持1个或N个SIM卡接口,N为大于1的正整数。SIM卡接口195可以支持Nano SIM卡,Micro SIM卡,SIM卡等。同一个SIM卡接口195可以同时插入多张卡。所述多张卡的类型可以相同,也可以不同。SIM卡接口195也可以兼容不同类型的SIM卡。SIM卡接口195也可以兼容外部存储卡。终端100通过SIM卡和网络交互,实现通话以及数据通信等功能。
上述内容详细阐述了本申请提供的方法,为了便于更好地实施本申请实施例的上述方案,本申请实施例还提供了相应的装置或设备。
本申请实施例可以根据上述方法示例对终端100和北斗网络设备200进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一 个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
下面将结合图13至图16详细描述本申请实施例的通信装置。
在采用集成的单元的情况下,参见图13,图13是本申请实施例提供的通信装置1300的结构示意图。该通信装置1300可以为上述实施例中的终端100。可选的,通信装置1300可以为一种芯片/芯片系统,例如,北斗通信芯片。如图13所示,该通信装置1300可以包括收发单元1310和处理单元1320。
一种设计中,收发单元1310,可用于向北斗网络设备200发送第一用户帧。
处理单元1320,可用于将终端100的用户ID进行压缩,并将压缩后的用户ID编码成二进制的数据,然后将二进制的数据填入第一用户帧的帧头信息包含的用户ID字段中。
可选的,收发单元1310,还可用于执行上述图11A所示方法实施例中终端100执行的有关发送和接收的功能步骤。
可选的,处理单元1320,还可用于执行上述图11A所示方法实施例中终端100执行的有关协议解析与封装以及运算确定的功能步骤。
应理解,该种设计中的通信装置1300可对应执行前述实施例中终端100执行的方法步骤,为了简洁,在此不再赘述。
在采用集成的单元的情况下,参见图14,图14是本申请实施例提供的通信装置1400的结构示意图。该通信装置1400可以为上述实施例中的北斗网络设备200。可选的,通信装置1400可以为北斗网络设备200中的具体网元,例如,北斗地面收发站22、北斗中心站23、北斗短报文融合通信平台24中的一个网元或多个网元的组合。如图14所示,该通信装置1400可以包括收发单元1410和处理单元1420。
一种设计中,收发单元1410,可用于接收终端100发送的用户帧。
处理单元1420,可以用于终端100发送的用户帧中获取终端100的用户ID,并对终端100的用户ID进行压缩,然后将压缩后的用户ID编码成二进制的数据,最后将该二进制的数据填入北斗网络设备200发送给终端100的用户帧的帧头信息包含的用户ID字段中。
可选的,收发单元1410,还可用于执行上述图11B所示方法实施例中北斗网络设备200执行的有关发送和接收的功能步骤。
可选的,处理单元1420,还可用于执行上述图11B所示方法实施例中北斗网络设备200执行的有关协议解析与封装以及运算确定的功能步骤。
应理解,该种设计中的通信装置1400可对应执行前述实施例中北斗网络设备200执行的方法步骤,为了简洁,在此不再赘述。
以上介绍了本申请实施例的终端100和北斗网络设备200,应理解,但凡具备上述图12所述的终端100的功能的任何形态的产品,但凡具备上述图13所述的北斗网络设备200的功能的任何形态的产品,都落入本申请实施例的保护范围。
作为一种可能的产品形态,本申请实施例所述的终端100,可以由一般性的总线体系结 构来实现。
参见图15,图15是本申请实施例提供的通信装置1500的结构示意图。该通信装置1500可以是终端100,或其中的装置。如图15所示,该通信装置1500包括处理器1501和与所述处理器内部连接通信的收发器1502。其中,处理器1501是通用处理器或者专用处理器等。例如可以是卫星通信的基带处理器或中央处理器。卫星通信的基带处理器可以用于对卫星通信协议以及卫星通信数据进行处理,中央处理器可以用于对通信装置(如,基带芯片,终端、终端芯片等)进行控制,执行计算机程序,处理计算机程序的数据。收发器1502可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1502可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。可选的,通信装置1500还可以包括天线1503和/或射频单元(图未示意)。所述天线1503和/或射频单元可以位于所述通信装置1500内部,也可以与所述通信装置1400分离,即所述天线1503和/或射频单元可以是拉远或分布式部署的。
可选的,通信装置1500中可以包括一个或多个存储器1504,其上可以存有指令,该指令可为计算机程序,所述计算机程序可在通信装置1500上被运行,使得通信装置1500执行上述方法实施例中描述的方法。可选的,所述存储器1504中还可以存储有数据。通信装置1500和存储器1504可以单独设置,也可以集成在一起。
其中,处理器1501、收发器1502、以及存储器1504可以通过通信总线连接。
一种设计中,通信装置1500可以用于执行前述实施例中终端100的功能:处理器1501可以用于执行上述图11A所示实施例中终端100执行的有关协议解析与封装以及运算确定的功能步骤和/或用于本文所描述的技术的其它过程;收发器1502可以用于执行上述图11A所示实施例中终端100执行的有关协议解析与封装以及运算确定的功能步骤和/或用于本文所描述的技术的其它过程。
在上述任一种设计中,处理器1501中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在上述任一种设计中,处理器1501可以存有指令,该指令可为计算机程序,计算机程序在处理器1501上运行,可使得通信装置1500执行上述方法实施例中终端100执行的方法步骤。计算机程序可能固化在处理器1501中,该种情况下,处理器1501可能由硬件实现。
在一种实现方式中,通信装置1500可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图15的限 制。通信装置1500可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置1500可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端、智能终端、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
作为一种可能的产品形态,本申请实施例所述的北斗网络设备200中的任一网元(例如、北斗地面收发站22、北斗中心站23、北斗短报文融合通信平台24),可以由一般性的总线体系结构来实现。
参见图16,图16是本申请实施例提供的通信装置1600的结构示意图。该通信装置1600可以是北斗网络设备200,或其中的装置。如图16所示,该通信装置1600包括处理器1601和与所述处理器内部连接通信的收发器1602。其中,处理器1601是通用处理器或者专用处理器等。例如可以是卫星通信的基带处理器或中央处理器。卫星通信的基带处理器可以用于对卫星通信协议以及卫星通信数据进行处理,中央处理器可以用于对通信装置(如,基带芯片等)进行控制,执行计算机程序,处理计算机程序的数据。收发器1602可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1602可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。可选的,通信装置1600还可以包括天线1603和/或射频单元(图未示意)。所述天线1603和/或射频单元可以位于所述通信装置1600内部,也可以与所述通信装置1600分离,即所述天线1603和/或射频单元可以是拉远或分布式部署的。
可选的,通信装置1600中可以包括一个或多个存储器1604,其上可以存有指令,该指令可为计算机程序,所述计算机程序可在通信装置1600上被运行,使得通信装置1600执行上述方法实施例中描述的方法。可选的,所述存储器1604中还可以存储有数据。通信装置1600和存储器1604可以单独设置,也可以集成在一起。
其中,处理器1601、收发器1602、以及存储器1604可以通过通信总线连接。
一种设计中,通信装置1600可以用于执行前述实施例中北斗网络设备200的功能:处理器1601可以用于执行上述图11B所示实施例中北斗网络设备200执行的有关协议解析与封装以及运算确定的功能步骤和/或用于本文所描述的技术的其它过程;收发器1602可以用于执行上述图11B所示实施例中北斗网络设备200执行的有关协议解析与封装以及运算确定的功能步骤和/或用于本文所描述的技术的其它过程。
在上述任一种设计中,处理器1601中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在上述任一种设计中,处理器1601可以存有指令,该指令可为计算机程序,计算机程序在处理器1601上运行,可使得通信装置1600执行上述方法实施例中终端100执行的方法步骤。计算机程序可能固化在处理器1601中,该种情况下,处理器1601可能由硬件实现。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序代码,当上述处理器执行该计算机程序代码时,使得通信装置执行前述任一实施例中的方法。
本申请实施例还提供一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行前述任一实施例中的方法。
本申请实施例还提供一种通信装置,该装置可以以芯片的产品形态存在,该装置的结构中包括处理器和接口电路,该处理器用于通过接收电路与其它装置通信,使得该装置执行前述任一实施例中的方法。
本申请实施例还提供一种北斗通信系统,包括终端100和北斗网络设备200,该终端100和北斗网络设备200可以执行前述任一实施例中的方法。
本申请全文介绍了北斗通信系统中短报文的通信功能,可以理解的是,其他卫星系统中也可能存在支持短报文的通信功能。因此,不限制在北斗通信系统中,若有其他卫星系统也支持短报文的通信功能,本申请中介绍的方法,也同样适用于其他卫星系统的通信。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。
上述实施例中所用,根据上下文,术语“当…时”可以被解释为意思是“如果…”或“在…后”或“响应于确定…”或“响应于检测到…”。类似地,根据上下文,短语“在确定…时”或“如果检测到(所陈述的条件或事件)”可以被解释为意思是“如果确定…”或“响应于确定…”或“在检测到(所陈述的条件或事件)时”或“响应于检测到(所陈述的条件或事件)”。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如DVD)、或者半导体介质(例如固态硬盘)等。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来指令相关的硬件完成,该程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:ROM或随机存储记忆体RAM、磁碟或者光盘等各种可存储程序代码的介质。

Claims (28)

  1. 一种北斗通信系统中的数据压缩方法,其特征在于,包括:
    第一终端在卫星链路控制层SLC将所述第一终端的第一用户ID编码成二进制的第一数据,所述第一用户ID包括第二数据和第三数据,所述第一数据包括二进制的第四数据和二进制的第五数据,所述第四数据由第六数据编码得到,所述第六数据由所述第二数据压缩得到,所述第六数据的数据长度小于所述第二数据,所述第五数据由所述第三数据编码得到;
    所述第一终端在所述SLC层将所述第一数据填入第一用户帧的帧头信息中的用户ID字段中;
    所述终端将所述第一用户帧发送给北斗网络设备。
  2. 根据权利要求1所述的方法,其特征在于,所述第一终端在卫星链路控制层SLC将所述第一终端的第一用户ID编码成二进制的第一数据,包括:
    所述第一终端在SLC层将所述第一终端的第一用户ID中的第二数据压缩成第六数据,所述第一用户ID由所述第二数据和第三数据组成,所述第六数据的数据长度小于所述第二数据;
    所述第一终端在SLC层将所述第六数据编码成第四数据,将所述第三数据编码成第五数据;
    所述第一终端将所述第四数据和所述第五数据组成第一数据。
  3. 根据权利要求2所述的方法,其特征在于,所述第一终端在SLC层将所述第一终端的第一用户ID中的第二数据压缩成第六数据,包括:
    所述第一终端在SCL层将所述第一用户ID中的第二数据映射为映射表中的第六数据;所述映射表中包括多个数值的第二数据和多个数值的第六数据,其中,所述多个数值的第二数据包括第一数值的第二数据,所述多个数值的第六数据包括第二数值的第六数据,所述第一数据的第二数据映射为所述第二数值的第六数据。
  4. 根据权利要求2所述的方法,其特征在于,所述第一终端在SLC层将第一终端的第一用户ID中的第二数据压缩成第六数据,包括:
    所述第一终端在SCL层将所述第一用户ID中的第二数据减去预设偏移值,得到所述第六数据。
  5. 根据权利要求2-4任一项所述的方法,其特征在于,所述第一终端在SLC层将所述第六数据编码成第四数据,将所述第三数据编码成第五数据,包括:
    所述第一终端在SLC层将所述第六数据作为十进制整数,转换为二进制的第四数据;将所述第三数据作为十进制整数,转换为二进制的第五数据。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述第一用户ID为手机号码,所述第二数据为所述手机号码中的国内目的码NDC,所述第三数据为所述手机号码中的客户号码SN。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述第一终端在卫星链路控制层SLC将所述第一终端的第一用户ID编码成二进制的第一数据之前,所述方法还包括:
    所述第一终端检测第一操作,所述第一操作用于指示所述第一终端向第二终端发送第一消息;
    所述第一终端在应用APP层将所述第二终端的第二用户ID压缩后编码成第七数据;
    所述第一终端在所述APP层生成第一消息报文,所述第一消息报文中包括报文头和报文数据;所述报文头中包括所述第七数据,所述报文数据中包括所述第一消息的内容。
  8. 根据权利要求7所述的方法,其特征在于,所述第一终端在所述APP层生成第一消息报文之后,所述方法还包括:
    所述第一终端将所述第一消息报文下发至所述SLC层,得到一个或多个卫星链路控制层服务数据单元SLC SDU,所述一个或多个SLC SDU中包括第一SLC SDU,
    所述第一终端将所述第一SLC SDU分段成一个或多个用户帧,所述一个或多个用户帧中包括第一用户帧。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端接收到北斗网络设备发送的第二用户帧,所述第二用户帧由第二终端发送给所述第一终端;
    所述第一终端在所述SLC层将所述第二用户帧的帧头信息中的用户ID字段解码和解压缩,得到用户ID数据;
    在所述第一终端确定所述用户ID数据与所述第一用户ID相同的情况下,所述第一终端将所述第二用户帧上传至消息数据汇聚MDCP层;
    在所述第一终端确定所述用户ID数据与所述第一用户ID不相同的情况下,所述第一终端丢弃所述第二用户帧。
  10. 根据权利要求9所述的方法,其特征在于,所述第一终端在所述SLC层将所述第二用户帧的帧头信息中的用户ID字段解码和解压缩,得到所述第一终端的所述第一用户ID之后,所述方法还包括:
    所述第一终端将所述第二用户帧中的用户数据上传到APP层,得到第二消息报文;
    所述第一终端在所述APP层中将所述第二消息报文的头中的用户ID字段解码和解压缩,得到所述第二终端的所述第二用户ID;
    所述第一终端基于所述第二用户ID,确定所述第二消息报文由所述第二终端发送。
  11. 一种北斗通信系统中的数据压缩方法,其特征在于,包括:
    北斗网络设备在卫星链路控制层SLC将第一终端的第一用户ID编码成二进制的第一数据,所述第一用户ID包括第二数据和第三数据,所述第一数据包括二进制的第四数据和二进制的第五数据,所述第四数据由第六数据编码得到,所述第六数据由所述第二数据压缩得到,所述第六数据的数据长度小于所述第二数据,所述第五数据由所述第三数据编码得到;
    所述北斗网络设备在所述SLC层将所述第一数据填入第二用户帧的帧头信息中的用户 ID字段中;
    所述北斗网络设备将所述第二用户帧发送给第一终端。
  12. 根据权利要求11所述的方法,其特征在于,所述北斗网络设备在卫星链路控制层SLC将第一终端的第一用户ID编码成二进制的第一数据之前,所述方法还包括:
    所述北斗网络设备获取所述第一终端的第一用户ID。
  13. 根据权利要求12所述的方法,其特征在于,所述北斗网络设备获取所述第一终端的第一用户ID,包括:
    所述北斗网络设备接收到所述第一终端发送的第一用户帧,所述第一用户帧的帧头信息中的用户ID字段用于指示所述第一终端的所述第一用户ID;
    所述北斗网络设备从所述第一用户帧中解码出所述第一用户ID。
  14. 根据权利要求12所述的方法,其特征在于,所述北斗网络设备获取所述第一终端的第一用户ID,包括:
    所述北斗网络设备接收到所述第一终端发送的第一用户帧,所述第一用户帧的帧头信息中的用户ID字段用于指示所述第一数据;
    所述北斗网络设备将所述第一数据解压缩和解码,得到所述第一用户ID。
  15. 根据权利要求12所述的方法,其特征在于,所述北斗网络设备获取所述第一终端的第一用户ID,包括:
    所述北斗网络设备接收到第二消息报文,所述第二消息报文由第二终端通过所述北斗网络设备发送给所述第一终端,所述第二消息报文中包括用于指示所述第一终端的所述第一用户ID的用户ID字段;
    所述北斗网络设备从所述第二消息报文的报文头中的用户ID字段中解码出所述第一用户ID。
  16. 根据权利要求12-15任一项所述的方法,其特征在于,所述北斗网络设备在卫星链路控制层SLC将第一终端的第一用户ID编码成二进制的第一数据,包括:
    所述北斗网络设备在SLC层将所述第一终端的第一用户ID中的第二数据压缩成第六数据,所述第一用户ID由所述第二数据和第三数据组成,所述第六数据的数据长度小于所述第二数据;
    所述北斗网络设备在SLC层将所述第六数据编码成第四数据,将所述第三数据编码成第五数据;
    所述北斗网络设备将所述第四数据和所述第五数据组成第一数据。
  17. 根据权利要求16所述的方法,其特征在于,所述北斗网络设备在SLC层将所述第一终端的第一用户ID中的第二数据压缩成第六数据,包括:
    所述北斗网络设备在SCL层将所述第一用户ID中的第二数据映射为映射表中的第六数据;所述映射表中包括多个数值的第二数据和多个数值的第六数据,其中,所述多个数值的 第二数据包括第一数值的第二数据,所述多个数值的第六数据包括第二数值的第六数据,所述第一数据的第二数据映射为所述第二数值的第六数据。
  18. 根据权利要求16所述的方法,其特征在于,所述北斗网络设备在SLC层将所述第一终端的第一用户ID中的第二数据压缩成第六数据,包括:
    所述北斗网络设备在SCL层将所述第一用户ID中的第二数据减去预设偏移值,得到所述第六数据。
  19. 根据权利要求16-18任一项所述的方法,其特征在于,所述北斗网络设备在SLC层将所述第六数据编码成第四数据,将所述第三数据编码成第五数据,包括:
    所述第一终端在SLC层将所述第六数据作为十进制整数,转换为二进制的第四数据;将所述第三数据作为十进制整数,转换为二进制的第五数据。
  20. 根据权利要求12-19任一项所述的方法,其特征在于,所述第一用户ID为手机号码,所述第二数据为所述手机号码中的国内目的码NDC,所述第三数据为所述手机号码中的客户号码SN。
  21. 一种北斗通信系统,其特征在于,包括第一终端和北斗网络设备,其中:
    所述第一终端用于在卫星链路控制层SLC将所述第一终端的第一用户ID编码成二进制的第一数据,所述第一用户ID包括第二数据和第三数据,所述第一数据包括二进制的第四数据和二进制的第五数据,所述第四数据由第六数据编码得到,所述第六数据由所述第二数据压缩得到,所述第六数据的数据长度小于所述第二数据,所述第五数据由所述第三数据编码得到;
    所述第一终端用于在所述SLC层将所述第一数据填入第一用户帧的帧头信息中的用户ID字段中;
    所述第一终端用于将所述第一用户帧发送给所述北斗网络设备;
    所述北斗网络设备用于接收所述第一用户帧,从所述第一用户帧的帧头信息中的用户ID字段中解码出所述第一用户ID。
  22. 根据权利要求21所述的方法,其特征在于,所述北斗网络设备用于:
    在卫星链路控制层SLC将第一终端的第一用户ID编码成二进制的第一数据,所述第一用户ID包括第二数据和第三数据,所述第一数据包括二进制的第四数据和二进制的第五数据,所述第四数据由第六数据编码得到,所述第六数据由所述第二数据压缩得到,所述第六数据的数据长度小于所述第二数据,所述第五数据由所述第三数据编码得到;
    在所述SLC层将所述第一数据填入第二用户帧的帧头信息中的用户ID字段中。
  23. 一种通信装置,其特征在于,包括一个或多个处理器、一个或多个存储器和收发器;其中,所述收发器、所述一个或多个存储器与所述一个或多个处理器耦合,所述一个或多个存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,当一个或多个处理器在执行所述计算机指令时,使得所述通信装置执行如权利要求1-10任一项所述的方法。
  24. 根据权利要求23所述的通信装置,其特征在于,所述通信装置为终端。
  25. 一种通信装置,其特征在于,包括一个或多个处理器、一个或多个存储器和收发器;其中,所述收发器、所述一个或多个存储器与所述一个或多个处理器耦合,所述一个或多个存储器用于存储计算机程序代码,所述计算机程序代码包括计算机指令,当一个或多个处理器在执行所述计算机指令时,使得所述通信装置执行如权利要求11-20任一项所述的方法。
  26. 根据权利要求25所述的通信装置,其特征在于,所述通信装置为北斗网络设备。
  27. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在计算机上运行时,使得所述计算机执行如权利要求1-10任一项所述的方法。
  28. 一种芯片或芯片系统,应用于终端,其特征在于,包括处理电路和接口电路,所述接口电路用于接收代码指令并传输至所述处理电路,所述处理电路用于运行所述代码指令以执行如权利要求1-10任一项所述的方法。
PCT/CN2022/109726 2021-08-06 2022-08-02 一种北斗通信系统中的数据压缩方法、系统及相关装置 WO2023011478A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22852190.2A EP4369780A1 (en) 2021-08-06 2022-08-02 Data compression method and system in beidou communication system, and related apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110903759.0 2021-08-06
CN202110903759 2021-08-06
CN202111069259.8A CN115707034A (zh) 2021-08-06 2021-09-13 一种北斗通信系统中的数据压缩方法、系统及相关装置
CN202111069259.8 2021-09-13

Publications (1)

Publication Number Publication Date
WO2023011478A1 true WO2023011478A1 (zh) 2023-02-09

Family

ID=85154818

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/109726 WO2023011478A1 (zh) 2021-08-06 2022-08-02 一种北斗通信系统中的数据压缩方法、系统及相关装置

Country Status (2)

Country Link
EP (1) EP4369780A1 (zh)
WO (1) WO2023011478A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030233478A1 (en) * 2002-06-17 2003-12-18 Chuah Mooi Choo Protocol message compression in a wireless communications system
CN104066117A (zh) * 2014-07-02 2014-09-24 中国人民解放军电子工程学院 基于北斗通信功能的人防应急警报信息报文压缩编码方法
CN107566999A (zh) * 2017-09-15 2018-01-09 山东东进航空科技有限公司 一种北斗短报文数据压缩加密方法、装置及处理器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030233478A1 (en) * 2002-06-17 2003-12-18 Chuah Mooi Choo Protocol message compression in a wireless communications system
CN104066117A (zh) * 2014-07-02 2014-09-24 中国人民解放军电子工程学院 基于北斗通信功能的人防应急警报信息报文压缩编码方法
CN107566999A (zh) * 2017-09-15 2018-01-09 山东东进航空科技有限公司 一种北斗短报文数据压缩加密方法、装置及处理器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU FEI: "The Research and Implementation of ADS-B Data Transmission Technology Based on Beidou RDSS", INFORMATION SCIENCE AND TECHNOLOGY, CHINESE MASTER’S THESES FULL-TEXT DATABASE, no. 11, 15 November 2020 (2020-11-15), XP093033096 *

Also Published As

Publication number Publication date
EP4369780A1 (en) 2024-05-15

Similar Documents

Publication Publication Date Title
WO2023011362A1 (zh) 一种北斗通信系统中出站传输控制方法、系统及相关装置
WO2023025075A1 (zh) 北斗通信系统中出站数据传输方法、系统及相关装置
WO2023011376A1 (zh) 一种北斗通信系统中密钥更新方法、系统及相关装置
WO2023030152A1 (zh) 一种切换网络的方法及相关装置
CN115696237A (zh) 一种北斗通信系统中加密方法、系统及相关装置
WO2023011379A1 (zh) 一种北斗通信系统中入站传输控制方法、系统及相关装置
EP4358431A1 (en) Multi-frame fusion transmission method in beidou communication system, and related apparatus
WO2023011605A1 (zh) 北斗通信系统中的信件下载查询方法、系统及相关装置
WO2023011386A1 (zh) 一种北斗通信系统中白名单控制方法及相关装置
WO2023011478A1 (zh) 一种北斗通信系统中的数据压缩方法、系统及相关装置
CN115842799A (zh) 北斗通信系统中的信箱概况查询方法、系统及相关装置
EP4207870A1 (en) Data sending method, electronic device, chip system, and storage medium
CN116032336A (zh) 北斗通信系统中波束选择方法、系统及相关装置
WO2023011329A1 (zh) 一种北斗通信系统中数据传输控制方法、系统及相关装置
WO2023083027A1 (zh) 一种北斗通信系统中的参数更新方法、系统及相关装置
WO2023011594A1 (zh) 北斗通信系统中的信箱概况查询方法、系统及相关装置
CN115707034A (zh) 一种北斗通信系统中的数据压缩方法、系统及相关装置
WO2023011377A1 (zh) 一种北斗通信系统中应用层回执传输方法、系统及装置
WO2023011603A1 (zh) 一种北斗通信系统中位置上报方法、系统及相关装置
CN115842800B (zh) 北斗通信系统中的信件下载查询方法、系统及相关装置
CN115706603A (zh) 北斗通信系统中紧凑传输方法、系统及相关装置
CN115941016A (zh) 北斗通信系统中紧凑反馈方法、系统及相关装置
CN116708317B (zh) 数据包mtu的调整方法、装置和终端设备
CN117424678A (zh) 北斗通信系统中入站压缩传输方法、系统及装置
CN115706605A (zh) 北斗通信系统中入站调度方法及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852190

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022852190

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022852190

Country of ref document: EP

Effective date: 20240207

NENP Non-entry into the national phase

Ref country code: DE