WO2023185797A1 - 用于侧链路的资源选择方法及相关设备 - Google Patents

用于侧链路的资源选择方法及相关设备 Download PDF

Info

Publication number
WO2023185797A1
WO2023185797A1 PCT/CN2023/084278 CN2023084278W WO2023185797A1 WO 2023185797 A1 WO2023185797 A1 WO 2023185797A1 CN 2023084278 W CN2023084278 W CN 2023084278W WO 2023185797 A1 WO2023185797 A1 WO 2023185797A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
resource pool
electronic device
resource
band resource
Prior art date
Application number
PCT/CN2023/084278
Other languages
English (en)
French (fr)
Inventor
王晓雪
Original Assignee
索尼集团公司
王晓雪
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼集团公司, 王晓雪 filed Critical 索尼集团公司
Publication of WO2023185797A1 publication Critical patent/WO2023185797A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/40Resource management for direct mode communication, e.g. D2D or sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections

Definitions

  • the present disclosure relates to the field of wireless communications, and in particular, to resource selection methods for side links and related devices.
  • a side link can enable multiple user equipments (UEs) to communicate in a peer-to-peer (that is, direct) manner without going through a certain wireless access point (AP) or base station (BS). Therefore, side links can be used to carry communications in the Internet of Things, such as D2D (Device-to-Device) communications.
  • D2D Device-to-Device
  • An example of D2D communication is V2X (Vehicle to Everything) communication associated with vehicles.
  • side-link transmission only occurs in the licensed frequency bands of wireless communication systems.
  • side links require higher data throughput to support these services. Therefore, side-link transmission may require additional resources in addition to licensed band resources.
  • new resource selection methods are also needed to achieve reliable, effective, and flexible resource selection to ensure the performance of side-link transmission.
  • the present disclosure provides a resource selection method and related equipment for side link transmission.
  • an unlicensed frequency band resource pool is also configured for side link transmission of the UE.
  • the resource selection method according to the present disclosure can select a suitable candidate resource set from the two resource pools for side link transmission of the UE.
  • One aspect of the present disclosure relates to an electronic device for a UE, wherein the electronic device includes: a processing circuit configured to: determine side link transmission available for the UE based on resource configuration information a licensed frequency band resource pool and an unlicensed frequency band resource pool; and determining a candidate resource set for side link transmission of the UE from the licensed frequency band resource pool and the unlicensed frequency band resource pool.
  • Another aspect of the present disclosure relates to a method performed by user equipment UE, wherein the method includes: determining a licensed frequency band resource pool and an unlicensed frequency band resource available for sidelink transmission of the UE based on resource configuration information pool; and determining a candidate resource set for side-link transmission of the UE from the licensed frequency band resource pool and the unlicensed frequency band resource pool.
  • Another aspect of the present disclosure relates to a computer-readable storage medium storing one or more instructions that, when executed by one or more processing circuits of an electronic device, cause the electronic device to perform as described herein Disclosure of any method described.
  • Another aspect of the disclosure relates to a computer program product, comprising a computer program which, when executed by a processor, implements any method as described in the disclosure.
  • Another aspect of the present disclosure relates to an apparatus comprising means for performing any method as described in the present disclosure.
  • FIG. 1 illustrates an exemplary block diagram of an electronic device according to an embodiment of the present disclosure.
  • FIG. 2 shows an exemplary flowchart of a resource selection method according to an embodiment of the present disclosure.
  • 3A-3B illustrate an example situation in which the licensed frequency band resource pool and the unlicensed frequency band resource pool do not overlap in the time domain according to an embodiment of the present disclosure.
  • 3C-3D illustrate an example situation in which the licensed frequency band resource pool and the unlicensed frequency band resource pool do not overlap in the time domain according to an embodiment of the present disclosure.
  • FIG. 4 is a block diagram illustrating a first example of a schematic configuration of a gNB to which techniques of the present disclosure may be applied.
  • FIG. 5 is a block diagram illustrating a second example of a schematic configuration of a gNB to which the technology of the present disclosure may be applied.
  • FIG. 6 is a block diagram illustrating an example of a schematic configuration of a communication device to which the technology of the present disclosure can be applied.
  • FIG. 7 is a block diagram illustrating an example of a schematic configuration of a car navigation device to which the technology of the present disclosure can be applied.
  • FIG. 1 shows an exemplary block diagram of an electronic device 100 according to an embodiment of the present disclosure.
  • the electronic device 100 may include a communication unit 110, a storage unit 120, and a processing circuit 130.
  • the electronic device 100 may be used to implement the resource selection method for side links described in this disclosure.
  • the resource selection method is executed on the UE side of the wireless communication system. Therefore, the electronic device 100 may be implemented on the UE side.
  • Electronic device 100 may be used to perform one or more UE-related operations described herein.
  • the electronic device 100 may be implemented as the UE itself, as a part of the UE, or as a control device for controlling the UE.
  • the electronic device 100 may be implemented as a chip for controlling a UE.
  • the electronic device 100 is implemented as a UE itself, which is only for the convenience of description and is not intended to constitute a limitation.
  • the communication unit 110 of the electronic device 100 may be used to receive or send radio transmissions. Communications unit 110 may be used to establish and maintain one or more communications links. Each communication link can carry associated transmissions. For example, the one or more communication links may be communication links between the electronic device 100 and a base station (not shown).
  • the one or more communication links may include one or more side links between the electronic device 100 and one or more other UEs (not shown).
  • the communication unit 110 may perform sidelink transmissions with other UEs through the one or more sidelinks using the allocated resources.
  • Resources for sidelink transmission may be determined by the processing circuit 130 based on the resource selection method described in this disclosure, which will be further described below.
  • the communication unit 110 may perform, on the transmitted radio signal, such as frequency upconversion, functions such as digital-to-analog conversion, and/or perform functions such as down-conversion, analog-to-digital conversion on the received radio signal.
  • Communication unit 110 may be implemented using various technologies.
  • the communication unit 110 may be implemented as communication interface components such as an antenna device, a radio frequency circuit, and a portion of a baseband processing circuit.
  • the communication unit 110 is drawn with a dashed line as it may alternatively be located within the processing circuit 130 or external to the electronic device 100 .
  • the storage unit 120 of the electronic device 100 may store information generated by the processing circuit 130, information received from or to be sent to other devices through the communication unit 110, programs, machine codes and data used for the operation of the electronic device 100, etc. .
  • the storage unit 120 may store resource configuration information.
  • the resource configuration information may be used to determine a licensed frequency band resource pool and an unlicensed frequency band resource pool for side link transmission of the electronic device 100 .
  • a "resource pool” in this article may refer to a collection of one or more resources.
  • “Resources” herein may refer to time-frequency resources used for wireless transmission. Each time-frequency resource may have a corresponding time and a corresponding frequency. The time corresponding to the time-frequency resource may refer to one or more time segments (eg, time slots). Accordingly, performing radio transmission using a specific time-frequency resource may refer to performing the radio transmission at a specific time period and frequency corresponding to the specific time-frequency resource.
  • the storage unit 120 may be a volatile memory and/or a non-volatile memory.
  • the storage unit 120 may include, but is not limited to, random access memory (RAM), dynamic random access memory (DRAM), static random access memory (SRAM), read only memory (ROM), and flash memory.
  • RAM random access memory
  • DRAM dynamic random access memory
  • SRAM static random access memory
  • ROM read only memory
  • flash memory flash memory
  • the processing circuitry 130 of the electronic device 100 may be configured to perform one or more operations to provide various functions of the electronic device 100 .
  • the processing circuit 130 may perform corresponding operations by executing one or more executable instructions stored in the storage unit 120 .
  • processing circuit 130 may perform one or more operations to implement the resource selection methods described herein.
  • the processing circuit 130 may include a resource pool determination unit 131 and a candidate resource determination unit 132.
  • the resource pool determination unit 131 may be configured to determine a licensed frequency band resource pool and an unlicensed frequency band resource pool that can be used for side link transmission of the electronic device 100 (or, UE) based on the resource configuration information.
  • the candidate resource determining unit 132 may be configured to determine a candidate resource set for side link transmission of the electronic device 100 from the licensed frequency band resource pool and the unlicensed frequency band resource pool.
  • the electronic device 100 (or UE) can select a candidate resource set for sidelink transmission from both the licensed frequency band resource pool and the unlicensed frequency band resource pool.
  • the device 100 can form a larger size candidate resource set. This helps improve the data throughput of the side link, allowing the side link to have higher data rates, better transmission performance, and support more services. More details of the resource selection method according to embodiments of the present disclosure are described below in conjunction with FIG. 3 .
  • modules described above are exemplary and/or preferred modules for implementing the processes described in this disclosure. These modules may be hardware units (such as central processing units, field programmable gate arrays, digital signal processors or application specific integrated circuits, etc.) and/or software modules (such as computer readable programs).
  • the above is not an exhaustive description of the modules used to implement the various steps described below. However, as long as there are steps for performing a certain process, there may be corresponding modules or units (implemented by hardware and/or software) for implementing the same process.
  • Technical solutions defined by the steps described below and all combinations of units corresponding to these steps are included in the disclosure of the present disclosure, as long as the technical solutions they constitute are complete and applicable.
  • a device composed of various units can be incorporated into a hardware device such as a computer as a functional module.
  • the electronic device can of course have other hardware or software components.
  • FIG. 2 shows an exemplary flowchart of a resource selection method 200 according to an embodiment of the present disclosure.
  • the method 200 may be performed by a device on the UE side.
  • the device on the UE side may include the UE itself, a part of the UE, or a control device used to control the UE.
  • the method 200 may be performed by the processing circuit 130 of the electronic device 100 .
  • the method 100 is described as being executed by the UE itself, which is only for convenience of description and is not intended to constitute a limitation.
  • method 200 may be performed in response to an expectation that a sidelink transmission associated with the UE will occur, thereby providing a set of candidate resources for the sidelink transmission.
  • multiple resource selection modes can exist.
  • the base station can select resources for side link transmission, and then the base station directly indicates the selected resources to the UE.
  • the UE may perform sidelink transmission using resources selected and directed by the base station.
  • the second resource selection mode the UE may select resources for side link transmission.
  • the second resource selection mode can reduce the participation of the base station and improve the autonomy of the UE, so that the resources used for side link transmission can be personalized and the flexibility of resource selection is improved.
  • the method 200 may be performed in the second resource selection mode.
  • Method 200 may begin with step 210.
  • the UE may be configured to determine, based on the resource configuration information, a licensed frequency band resource pool and an unlicensed frequency band resource pool that can be used for side link transmission of the UE.
  • the resource configuration information may indicate that it is located in a licensed frequency band (Licensored Band)
  • a licensed frequency band (Licensored Band)
  • One or more resources each resource is associated with a corresponding time slot and a corresponding frequency in the licensed band.
  • the one or more resources form a pool of authorized frequency band resources that can be used for side link transmission of the UE.
  • Authorized frequency bands are specific frequency intervals specified by protocols or standards of wireless communication systems.
  • a licensed band resource pool may include multiple resources located at the same frequency and different time slots.
  • the licensed band resource pool may also include multiple resources located at the same time slot and different frequencies.
  • block 310 in FIGS. 3A to 3D shows the distribution of the authorized frequency band resource pool 310 across time domain (horizontal axis) and frequency domain (vertical axis).
  • the resource configuration information may also indicate one or more resources located in an unlicensed band (Unlicensed Band), and each resource is associated with a corresponding time slot and a corresponding frequency in the unlicensed band.
  • the one or more resources form an unlicensed frequency band resource pool that can be used for side link transmission of the UE.
  • Unlicensed frequency bands are different from licensed frequency bands specified by protocols or standards of wireless communication systems. For example, unlicensed frequency bands can be separated from licensed frequency bands.
  • An unlicensed band resource pool may include multiple resources located at the same frequency and different time slots.
  • the unlicensed band resource pool may also include multiple resources located at the same time slot and different frequencies.
  • block 320 in FIGS. 3A to 3D shows the distribution of the unlicensed frequency band resource pool across time domain (horizontal axis) and frequency domain (vertical axis).
  • the resource configuration information may have multiple parts, wherein a first part is used to configure a licensed frequency band resource pool, and a second part that is different from the first part is used to configure an unlicensed frequency band resource pool.
  • the first part and the second part of the resource configuration information may be configured independently of each other.
  • resource configuration information may be provided to the UE in various ways.
  • the resource configuration information may be preconfigured and/or dynamically configured by signaling from the base station.
  • resource configuration information may be preconfigured.
  • the resource configuration information may be preloaded in the UE (eg, the storage unit 120 of the electronic device 100) by the manufacturer or seller of the UE. This preconfiguration process may be performed during the production, sale, and/or activation of the UE.
  • the manufacturer of the vehicle may load the resource configuration information into the vehicle's on-board system.
  • different resource configuration information may be preconfigured for different types of UEs.
  • the UE may dynamically receive resource configuration information from an external device. For example, when the UE camps on a specific cell, the base station serving the cell may provide resource configuration information to the UE.
  • the base station can provide resource configuration information to the UE in various ways.
  • the resource configuration information may be included in one or more signalings sent by the base station to the UE.
  • the base station may send RRC signaling to the UE, the RRC signaling including the parameter SL-ResourcePool associated with the authorized frequency band resource pool, where sl-TimeResource may be used to configure the time associated with the authorized frequency band resource pool. domain parameters.
  • a base station can To send signaling associated with the unlicensed frequency band resource pool to the UE.
  • the resource configuration information may be provided to the UE in a hybrid configuration.
  • the first part of the resource configuration information may be in a preconfigured manner, while the second part may be dynamically received from an external device.
  • the second part of the resource configuration information may be in a preconfigured manner, while the first part may be dynamically received from the external device.
  • the UE can parse the stored/received resource configuration information, extract information associated with each licensed frequency band resource and unlicensed frequency band resources (including time domain configuration information and frequency domain configuration information), thereby determining available Licensed frequency band resource pool and unlicensed frequency band resource pool for side link transmission of UE.
  • Method 200 may then continue to step 220.
  • the UE may be configured to determine a candidate resource set for side link transmission of the UE from the licensed frequency band resource pool and the unlicensed frequency band resource pool determined in step 210.
  • the set of candidate resources may include one or more candidate resources that may be selected for use by sidelink transmissions.
  • the selection in step 220 may be based on one or more factors.
  • the candidate resource set may be a subset of the licensed frequency band resource pool, or a subset of the unlicensed frequency band resource pool, or include a subset of the licensed frequency band resource pool and a subset of the unlicensed frequency band resource pool. both.
  • the one or more factors may include overlap in the time domain between the licensed frequency band resource pool and the unlicensed frequency band resource pool.
  • the licensed frequency band resource pool and the unlicensed frequency band resource pool are separated in the frequency domain, but may at least partially overlap in the time domain. If any resource in the licensed frequency band resource pool and any resource in the unlicensed frequency band resource pool correspond to different time slots, the licensed frequency band resource pool and the unlicensed frequency band resource pool do not overlap in the time domain.
  • 3A-3B illustrate situations 300A and 300B in which the licensed frequency band resource pool 310 and the unlicensed frequency band resource pool 320 do not overlap in the time domain. If the first resource in the licensed frequency band resource pool and the second resource in the unlicensed frequency band resource pool correspond to the same time slot, the licensed frequency band resource pool and the unlicensed frequency band resource pool overlap in the time domain.
  • FIG. 3C shows a situation 300C where the licensed frequency band resource pool 310 and the unlicensed frequency band resource pool 320 partially overlap in the time domain
  • FIG. 3D shows the situation where the licensed frequency band resource pool 310 and the unlicensed frequency band resource pool 320 overlap in the time domain. Completely overlapping situation on 300D.
  • the UE may determine whether the licensed frequency band resource pool and the unlicensed frequency band resource pool at least partially overlap in the time domain based on the resource configuration information. For example, the UE may compare each time slot associated with the licensed band resource pool with each time slot associated with the unlicensed band resource pool. If the licensed frequency band resource pool and the unlicensed resource pool have one or more common time slots, then the licensed frequency band resource pool and the unlicensed resource pool are in the time domain to Overlap to a small extent. Preferably, the UE may also determine each licensed frequency band resource and unlicensed frequency band resource that overlap in the time domain.
  • the UE when the licensed frequency band resource pool and the unlicensed frequency band resource pool do not overlap in the time domain, the UE may be configured to select resources from the licensed frequency band resource pool and the unlicensed frequency band resource pool that are earlier in the time domain. Select one or more candidate resources from the pool as at least part of the candidate resource set.
  • the licensed frequency band resource pool 310 is earlier than the unlicensed frequency band resource pool 320 in the time domain. Accordingly, the UE may be configured to select one or more candidate resources from the licensed frequency band resource pool 310 as at least part of the candidate resource set. In some embodiments, the UE may select one or more candidate resources from the authorized frequency band resource pool 310 through resource sensing (Resource Sensing) operations.
  • Resource Sensing Resource Sensing
  • the unlicensed frequency band resource pool 320 is earlier than the licensed frequency band resource pool 310 in the time domain. Accordingly, the UE may be configured to select one or more candidate resources from the unlicensed band resource pool 320 as at least part of the candidate resource set. In some embodiments, the UE may select one or more candidate resources from the licensed frequency band resource pool 310 through a Listen Before Talk (LBT) operation.
  • LBT Listen Before Talk
  • LBT operation the UE can continuously monitor the unlicensed channel. If it is detected that the energy of the channel is lower than the threshold within a continuous period of time, the UE can determine that the channel is idle and the UE can occupy the channel for a period of time for transmission. This channel monitoring is hierarchical. Under different listening levels, the duration of monitoring is different, and the time that the UE can continuously occupy the channel after the LBT operation is successful is also different.
  • any suitable level of listening may be employed.
  • the highest (Cat4) listening level can be used. LBT operations with this level of monitoring require a longer time to monitor the channel, and the channel time that can be occupied after success is also long. In other embodiments, LBT operation with any other suitable listening level may be employed.
  • the UE may be further configured to select one or more additional candidate resources from a later resource pool in the time domain between the licensed frequency band resource pool and the unlicensed frequency band resource pool, as at least one of the candidate resource sets.
  • the one or more candidate resources selected from the authorized frequency band resource pool 310 are sufficient to meet the side link transmission requirements of the UE, the one or more candidate resources may be determined as step 220 The set of candidate resources in the set of candidate resources without having to determine at least one additional part of the set of candidate resources.
  • one or more candidate resources selected from the licensed band resource pool 310 may It is not enough to meet the side link transmission requirements of the UE. This is because the authorized frequency band resource pool 310 allocated to the UE and available for side link transmission may be limited, and the side link transmission of the UE requires more resources to support high throughput.
  • the UE may be configured to select one or more additional candidate resources from the unlicensed band resource pool 320 as the second part of the set of candidate resources. This second part is an additional part of the set of candidate resources. In this way, the UE can combine the first part and the second part determined from different types of resource pools as the candidate resource set in step 220, thereby making up for the shortcoming of insufficient candidate resources in a single resource pool.
  • the UE may be configured to further based on the association with the side link transmission. QoS to determine whether to select additional candidate resources from the unlicensed band resource pool 320. For example, the UE may make this determination based on delay parameters associated with sidelink transmissions. This is because the LBT operation for selecting candidate resources from the unlicensed band resource pool 320 is time-consuming. If the delay allowed by the delay parameter of the sidelink transmission is large enough (e.g., greater than a threshold to allow the UE to complete the LBT operation), the UE may be configured to perform the LBT operation to select additional candidate resources available for the sidelink transmission. . If the delay allowed by the delay parameter of side link transmission is not large enough, the UE may not perform the LBT operation.
  • the UE when the licensed frequency band resource pool and the unlicensed frequency band resource pool overlap in the time domain, for the overlapping partial resources, the UE may be configured to select at least one of the following operations to perform: (1) and The resource awareness operation associated with the licensed frequency band resource pool is used to select the first candidate resource set from the licensed frequency band resource pool; (2) The LBT operation associated with the unlicensed frequency band resource pool is used to select the first candidate resource set from the unlicensed frequency band resource pool. Select a second candidate resource set.
  • the UE may choose to perform at least one of a resource-aware operation and a LBT operation based on the UE's capabilities. Specifically, in response to the UE's capabilities being above a threshold condition, the UE may choose to perform both resource aware operations and LBT operations. In response to the UE's capability not being higher than the threshold condition, the UE may select one of the resource sensing operation and the LBT operation to perform.
  • the capabilities of the UE may involve multiple aspects of the UE, including but not limited to the UE's communication capabilities, processing capabilities, power consumption, temperature, and so on.
  • the UE when the UE chooses to perform both the resource-aware operation and the LBT operation, the UE may further choose to start performing the resource-aware operation before the listen-before-send operation.
  • LBT operations may take a long time to complete. For example, for LBT operation with listening level Cat 4, the UE needs to perform channel detection for up to 80ms. Only after detecting that the channel is idle during the 80ms period, the UE can obtain the channel occupancy time of up to 10ms. Such testing is time consuming. Moreover, for the load-based LBT operation, the LBT operation does not perform signaling until the data packets on the channel arrive. Road detection. Compared with LBT operation, resource-aware operation can start before the data packet arrives. Therefore, the delay caused by LBT operations may be greater than the delay caused by resource-aware operations. According to embodiments of the present disclosure, the UE may be configured to start performing resource awareness operations before the LBT operation in order to determine the candidate resource set (or at least part of the candidate resource set) as soon as possible.
  • the resource-aware operation for selecting candidate resources from the authorized frequency band resource pool may include a resource exclusion operation.
  • the UE When performing a resource exclusion operation, the UE may be configured to obtain measurement results associated with each resource in the set of available resources in the licensed band resource pool.
  • the measurement may be a measure of the characteristics of the channel associated with each resource.
  • the available resource set may initially be a subset of resources in the licensed frequency band resource pool that overlaps with the unlicensed frequency band resource pool in the time domain.
  • the UE may be configured to compare the measurements associated with each resource to a specific exclusion threshold. Based on the result of the comparison, the UE may exclude one or more resources that meet specific exclusion conditions from the set of available resources, thereby obtaining a reduced set of available resources.
  • the UE may determine candidate resources from the reduced set of available resources.
  • the UE may be configured to obtain the reference signal received power (RSRP) of the channel associated with each resource.
  • the UE may compare the RSRP with the RSRP threshold. If the RSRP of the channel associated with a specific resource is greater than the RSRP threshold, the UE can expect that the specific resource may be used by other devices in the wireless communication system, so the resource has low reliability and is not suitable for use as the current UE.
  • RSRP reference signal received power
  • the UE may exclude the specific resource from the set of available resources in the authorized frequency band resource pool.
  • the UE can expect that the specific resource may not be used by any other device, so the resource has high reliability and is suitable for use as side link transmission for the current UE candidate resources.
  • the UE may perform the above comparison process for each resource in the available resource set. In this way, the UE can exclude one or more resources with poor performance from the available resource set and retain one or more resources with better performance as candidate resources. It is easy to understand that the lower the RSRP threshold is set, the better the performance of the reserved candidate resources will be, but the smaller the number of candidate resources will be.
  • the reduced set of available resources obtained through a round of resource awareness operations may not be sufficient for sidelink transmission.
  • the number of candidate resources in the reduced set of available resources may be too few, or may not be sufficient to support the desired transmission rate.
  • the UE can increase the number of candidate resources in various ways.
  • the UE may change specific exclusion thresholds associated with resource exclusion operations. Specifically, in response to the number of resources in the reduced set of available resources being less than a specified number threshold, the UE may change the number of resources associated with the resource.
  • a specific exclusion threshold associated with the source exclusion action correspondingly, one or more resources that were excluded in the previous round of resource sensing operations can be retained in the available resource set in the new round of resource sensing operations.
  • the specific exclusion threshold is an RSRP threshold
  • the UE may increase the RSRP threshold from a first threshold to a second threshold, such that those resources corresponding to a certain RSRP value between the first threshold and the second threshold will be Remain in the set of available resources rather than being excluded.
  • these resources may have lower reliability.
  • the UE may perform a LBT operation to select a second set of candidate resources from the unlicensed band resource pool.
  • the second set of candidate resources may serve as additional candidate resources.
  • the UE may combine the first candidate resource set selected from the licensed frequency band resource pool through the resource exclusion operation with the second candidate resource set selected from the unlicensed frequency band resource pool through the LBT operation, and the resulting candidate resource set will be larger than the third candidate resource set.
  • a collection of candidate resources may be performed by the a LBT operation to select a second set of candidate resources from the unlicensed band resource pool.
  • the UE may preferably not change the specific exclusion threshold associated with the resource exclusion operation. Specifically, in resource-aware operation, in response to the number of resources in the reduced set of available resources being less than a specified number threshold, the UE may keep the specific exclusion threshold unchanged. In other words, when there is a second candidate resource set as a supplement, the UE may not need to reserve one or more resources with low reliability by changing the specific exclusion threshold in the resource-aware operation. Therefore, the resources in the finally obtained candidate resource set can have higher reliability.
  • the UE may both perform an LBT operation to select a second set of candidate resources from the unlicensed band resource pool, and also expand the resource awareness operation by changing a specific exclusion threshold associated with the resource exclusion operation. Get the collection of available resources. Compared with the previous two methods, this method allows the UE to obtain the largest set of candidate resources. The largest set of candidate resources may include some resources with lower reliability. This hybrid approach can be used when both the licensed frequency band resource pool and the unlicensed frequency band resource pool are insufficient.
  • the UE may decide not to additionally perform the LBT operation. As such, the UE may not select the second candidate resource set from the unlicensed band resource pool.
  • the first candidate resource set selected by the UE from the authorized frequency band resource pool through resource awareness operation may be used as the candidate resource combination determined in step 220.
  • the UE when the UE chooses to perform both resource-aware operations and LBT operations based on its capabilities, the UE may further choose to perform LBT operations and resource-aware operations in parallel. For example, for a sidelink transmission with a high priority (e.g., in response to the priority associated with the sidelink transmission being above a priority threshold), The UE may choose to perform LBT operations and resource awareness operations in parallel.
  • the LBT operation performed is not a load-based LBT operation. In other words, the LBT operation does not have to wait until the data packet arrives before performing channel detection, but can be performed in advance. Specifically, the UE can predict the arrival time of the data packet and start performing the LBT operation before the predicted arrival time.
  • the UE For some periodically transmitted data packets, their arrival time can be predicted by the UE.
  • the UE By advancing the LBT operation to be performed in parallel with the resource-aware operation (rather than after the resource-aware operation), the UE is able to more quickly determine the second set of candidate resources from the unlicensed resource pool, thereby determining candidates faster overall Resource collection. This is especially beneficial for sidelink transmissions with high priority.
  • the UE may also perform LBT operations and resource awareness operations in parallel for side link transmissions with normal priority. Alternatively, the UE may perform LBT operations and resource-aware operations in parallel without considering the priority of side-link transmission.
  • the UE may perform the resource sensing operation in one or more of the foregoing manners. For example, in one approach, in response to the number of resources in the reduced set of available resources being less than a specified number threshold, the UE may change a specific exclusion threshold associated with the resource exclusion operation to increase the number of resources in the set of available resources. . In a preferred manner, in response to the number of resources in the reduced available resource set being less than the specified quantity threshold, the UE may not change the specific exclusion threshold associated with the resource exclusion operation to ensure the quality of the resources in the available resource set. In either way, the UE may use a combination of the second candidate resource set obtained through the LBT operation and the first candidate resource set obtained through the resource awareness operation as the candidate resource set in step 220.
  • the UE in response to the capability of the UE not being higher than the threshold condition, may select one of the resource sensing operation and the LBT operation to perform.
  • the UE may be configured to based on at least one of a priority of a packet associated with a sidelink transmission, a size of the packet, and/or a packet delay budget associated with the packet.
  • the user can select one of resource-aware operations and LBT operations to be performed.
  • the UE may choose to perform an LBT operation through which the UE determines a second set of candidate resources from the unlicensed band resource pool, as The set of candidate resources determined in step 220. Otherwise, the UE may choose to perform a resource sensing operation, through which the UE determines the first candidate resource set from the authorized frequency band resource pool as the candidate resource set determined in step 220.
  • the UE may choose to perform an LBT operation to determine from the unlicensed band resource pool for the sidelink transmission associated with the data packet. Determine the set of candidate resources. Otherwise, the UE may choose to perform resource aware operations.
  • the UE may choose to perform an LBT operation to determine candidates for sidelink transmission associated with the packet Resource collection. Otherwise, the UE may choose to perform resource aware operations.
  • each of the above factors may also be considered in combination. For example, if a data packet has a high priority, a large size, and a large packet delay budget, the UE may choose to perform an LBT operation to determine candidates from the unlicensed band resource pool for the sidelink transmission associated with the data packet. Resource collection. Otherwise, the UE may choose to perform resource aware operations. Other combinations of the above factors are also possible.
  • the UE may repeat the LBT operation until the LBT operation succeeds, or until the number of times the LBT operation is repeated reaches the failure count threshold.
  • the LBT operation succeeds if it detects an available idle channel. If the LBT operation fails to detect available idle channels for all resources in the unlicensed band resource pool, this round of LBT operation fails.
  • the UE may be configured to determine whether the LBT operation has been repeated up to a threshold number of failures. If the number of times the LBT operation is repeated has not reached the failure threshold, the UE may start the next round of LBT operation. If the number of times the LBT operation is repeated reaches the failure threshold, the UE may stop the LBT operation.
  • a threshold number of failures associated with the LBT operation may be determined based on the priority of the data packets associated with the sidelink transmission. For example, for data packets with high priority (eg, higher than the priority threshold), a low failure threshold can be specified to ensure that data with high priority can be sent in time. For packets with low priority (for example, not above the priority threshold), you can specify a high number of failures threshold.
  • part of the resource configuration information may include mapping information between the failure number threshold and the priority of the data packet. By accessing the mapping information, the UE can determine the corresponding failure number threshold based on the priority of the data packets associated with the sidelink transmission. The UE may apply the determined failure number threshold to the LBT operation associated with the data packet.
  • the mapping information may be configured through resource configuration information as part of the configuration information of the unlicensed frequency band resource pool. Preferably, the mapping information can be provided to the UE in a preconfigured manner.
  • the corresponding failure number threshold can be determined based on the priority of the data packet associated with the side link transmission.
  • the UE when the UE selects to perform the LBT operation from the resource awareness operation and the LBT operation, if the number of times the LBT operation is repeated has reached the failure number threshold, the UE may stop the LBT operation, and switches to resource-aware operations.
  • the UE determines the first candidate resource set from the authorized frequency band resource pool through this resource sensing operation as the candidate resource set determined in step 220.
  • the UE may select one or more resources from the candidate resource set to perform side link transmission of the UE.
  • the resources actually used for side link transmission may be a subset of the candidate resource set.
  • the UE may be configured to enable one or both of a licensed frequency band resource pool and/or an unlicensed frequency band resource pool.
  • the UE may receive signaling from the base station, which may indicate the UE's enabling capabilities regarding the licensed frequency band resource pool and/or the unlicensed frequency band resource pool.
  • This signaling can be of multiple types (eg, with different parameters).
  • the first type of signaling may instruct the UE to enable only the licensed frequency band resource pool.
  • the second type of signaling may instruct the UE to enable only the unlicensed frequency band resource pool.
  • the third type of signaling may instruct the UE to enable both the licensed band resource pool and the unlicensed band resource pool.
  • the UE may be configured to enable the specific resource pool indicated by the signaling.
  • the base station may determine the type of signaling to be sent based on the capabilities reported by the UE.
  • method 200 is exemplary only. Those skilled in the art can understand that the method on the UE side may not only include the steps that have been described with respect to the method 200, but may also include one or more of the steps of the previously described method.
  • the methods and devices described in this disclosure provide both a licensed frequency band resource pool and an unlicensed frequency band resource pool for side link transmission, so that side link communication can support higher transmission rates and more services.
  • the resource selection method according to the present disclosure can select a suitable candidate resource set from the two resource pools for side link transmission of the UE.
  • the technology of the present disclosure can be applied to various products.
  • control-side electronic device may be implemented as or included in various control devices/base stations.
  • transmitting device and the terminal device according to the embodiments of the present disclosure may be implemented as or included in various terminal devices.
  • the control device/base station mentioned in this disclosure may be implemented as any type of base station, such as an eNB, such as a macro eNB and a small eNB.
  • a small eNB may be an eNB covering a smaller cell than a macro cell, such as a pico eNB, a micro eNB, and a home (femto) eNB.
  • it may be implemented as a gNB, such as a macro gNB and a small gNB.
  • a small gNB may be a gNB covering a cell smaller than a macro cell, such as pico gNB, micro gNB, and home (femto). micro)gNB.
  • the base station may be implemented as any other type of base station, such as a NodeB and a Base Transceiver Station (BTS).
  • the base station may include: a main body (also called a base station device) configured to control wireless communication; and one or more remote radio heads (RRH) disposed in a different place from the main body.
  • a main body also called a base station device
  • RRH remote radio heads
  • various types of terminals to be described below may operate as base stations by temporarily or semi-persistently performing base station functions.
  • the terminal device mentioned in the present disclosure may, in some embodiments, be implemented as a mobile terminal (such as a smartphone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/dongle-type mobile router, and digital camera) or vehicle-mounted terminal (such as car navigation equipment).
  • the terminal device may also be implemented as a terminal that performs machine-to-machine (M2M) communication (also called a machine type communication (MTC) terminal).
  • M2M machine-to-machine
  • MTC machine type communication
  • the terminal device may be a wireless communication module (such as an integrated circuit module including a single chip) installed on each of the above-mentioned terminals.
  • a base station in this disclosure has the full breadth of its ordinary meaning and includes at least a wireless communication station used to facilitate communications as a wireless communication system or part of a radio system.
  • a base station may be, for example but not limited to, the following: a base station may be one or both of a base transceiver station (BTS) and a base station controller (BSC) in a GSM system, and may be a radio network controller in a WCDMA system
  • BTS base transceiver station
  • BSC base station controller
  • RNC radio network controller
  • Node B can be the eNB in LTE and LTE-Advanced systems, or can be the corresponding network node in the future communication system (such as gNB, eLTE that may appear in the 5G communication system eNB etc.).
  • Some functions in the base station of the present disclosure can also be implemented as entities with communication control functions in D2D, M2M and V2V communication scenarios, or as entities that play a spectrum coordination role in cognitive radio communication
  • gNB 2100 includes multiple antennas 2110 and base station equipment 2120.
  • the base station device 2120 and each antenna 2110 may be connected to each other via an RF cable.
  • the gNB 2100 (or base station device 2120) here may correspond to the above-mentioned control side electronic device.
  • Each of the antennas 2110 includes a single or multiple antenna elements, such as multiple antenna elements included in a multiple-input multiple-output (MIMO) antenna, and is used by the base station device 2120 to transmit and receive wireless signals.
  • gNB 2100 may include multiple antennas 2110.
  • multiple antennas 2110 may be used with gNB The 2100 is compatible with multiple frequency bands.
  • the base station device 2120 includes a controller 2121, a memory 2122, a network interface 2123, and a wireless communication interface 2125.
  • the controller 2121 may be, for example, a CPU or a DSP, and operates various functions of higher layers of the base station device 2120 . For example, the controller 2121 determines the target terminal device in the at least one terminal device according to the positioning information of at least one terminal device on the terminal side in the wireless communication system and the specific location configuration information of the at least one terminal device acquired by the wireless communication interface 2125. location information.
  • the controller 2121 may have logical functions to perform controls such as radio resource control, radio bearer control, mobility management, access control, and scheduling. This control can be performed in conjunction with nearby gNB or core network nodes.
  • the memory 2122 includes RAM and ROM, and stores programs executed by the controller 2121 and various types of control data such as terminal lists, transmission power data, and scheduling data.
  • the network interface 2123 is a communication interface used to connect the base station device 2120 to the core network 2124. Controller 2121 may communicate with core network nodes or additional gNBs via network interface 2123. In this case, the gNB 2100 and the core network node or other gNBs may be connected to each other through logical interfaces such as the S1 interface and the X2 interface.
  • the network interface 2123 may also be a wired communication interface or a wireless communication interface for a wireless backhaul line. If the network interface 2123 is a wireless communication interface, the network interface 2123 may use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 2125.
  • the wireless communication interface 2125 supports any cellular communication scheme such as Long Term Evolution (LTE) and LTE-Advanced, and provides wireless connection to terminals located in the cell of the gNB 2100 via the antenna 2110 .
  • Wireless communication interface 2125 may generally include, for example, a baseband (BB) processor 2126 and RF circuitry 2127.
  • the BB processor 2126 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform layers such as L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol ( Various types of signal processing for PDCP)).
  • MAC Medium Access Control
  • RLC Radio Link Control
  • Packet Data Convergence Protocol Various types of signal processing for PDCP
  • the BB processor 2126 may have part or all of the above-mentioned logical functions.
  • the BB processor 2126 may be a memory that stores a communication control program, or a module including a processor and related circuitry configured to execute the program.
  • the update program can cause the functionality of the BB processor 2126 to change.
  • the module may be a card or blade that plugs into a slot of the base station device 2120. Alternatively, the module may be a chip mounted on a card or blade.
  • the RF circuit 2127 may include, for example, a mixer, filter, and amplifier, and transmit and receive wireless signals via the antenna 2110.
  • FIG. 4 shows an example in which one RF circuit 2127 is connected to one antenna 2110, the present disclosure is not limited to this illustration, but one RF circuit 2127 can be connected to multiple antennas 2110 at the same time.
  • the wireless communication interface 2125 may include multiple BB processors 2126 .
  • multiple BB processors 2126 may be compatible with multiple frequency bands used by gNB 2100.
  • wireless communication interface 2125 may include a plurality of RF circuits 2127.
  • multiple RF circuits 2127 may be compatible with multiple antenna elements.
  • FIG. 4 shows an example in which the wireless communication interface 2125 includes multiple BB processors 2126 and multiple RF circuits 2127, the wireless communication interface 2125 may also include a single BB processor 2126 or a single RF circuit 2127.
  • gNB 2200 includes multiple antennas 2210, RRH 2220 and base station equipment 2230. RRH 2220 and each antenna 2210 may be connected to each other via RF cables. The base station equipment 2230 and the RRH 2220 may be connected to each other via high-speed lines such as fiber optic cables.
  • the gNB 2200 (or base station device 2230) here may correspond to the above-mentioned control side electronic device.
  • Antennas 2210 each include a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and are used by RRH 2220 to transmit and receive wireless signals.
  • gNB 2200 may include multiple antennas 2210.
  • multiple antennas 2210 may be compatible with multiple frequency bands used by gNB 2200.
  • the base station device 2230 includes a controller 2231, a memory 2232, a network interface 2233, a wireless communication interface 2234, and a connection interface 2236.
  • the controller 2231, the memory 2232, and the network interface 2233 are the same as the controller 2121, the memory 2122, and the network interface 2123 described with reference to FIG. 4 .
  • the wireless communication interface 2234 supports any cellular communication scheme, such as LTE and LTE-Advanced, and provides wireless communication to terminals located in the sector corresponding to the RRH 2220 via the RRH 2220 and the antenna 2210.
  • the wireless communication interface 2234 may generally include a BB processor 2235, for example.
  • the BB processor 2235 is the same as the BB processor 2126 described with reference to FIG. 4 except that the BB processor 2235 is connected to the RF circuit 2222 of the RRH 2220 via the connection interface 2236.
  • the wireless communication interface 2234 may include multiple BB processors 2235 .
  • multiple BB processors 2235 may be compatible with multiple frequency bands used by gNB 2200.
  • FIG. 5 shows an example in which the wireless communication interface 2234 includes multiple BB processors 2235, the wireless communication interface 2234 may also include a single BB processor 2235.
  • connection interface 2236 is an interface for connecting the base station device 2230 (wireless communication interface 2234) to the RRH 2220.
  • the connection interface 2236 may also be a communication module for communication in the above-mentioned high-speed line that connects the base station device 2230 (wireless communication interface 2234) to the RRH 2220.
  • RRH 2220 includes a connection interface 2223 and a wireless communication interface 2221.
  • connection interface 2223 is an interface for connecting the RRH 2220 (wireless communication interface 2221) to the base station device 2230.
  • the connection interface 2223 may also be a communication module used for communication in the above-mentioned high-speed line.
  • Wireless communication interface 2221 transmits and receives wireless signals via antenna 2210.
  • Wireless communication interface 2221 may generally include RF circuitry 2222, for example.
  • RF circuitry 2222 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via antenna 2210.
  • FIG. 5 shows an example in which one RF circuit 2222 is connected to one antenna 2210, the present disclosure is not limited to this illustration, but one RF circuit 2222 can be connected to multiple antennas 2210 at the same time.
  • wireless communication interface 2221 may include a plurality of RF circuits 2222.
  • multiple RF circuits 2222 may support multiple antenna elements.
  • FIG. 5 shows an example in which the wireless communication interface 2221 includes a plurality of RF circuits 2222, the wireless communication interface 2221 may also include a single RF circuit 2222.
  • the communication device 2300 includes a processor 2301, a memory 2302, a storage device 2303, an external connection interface 2304, a camera 2306, a sensor 2307, a microphone 2308, an input device 2309, a display device 2310, a speaker 2311, a wireless communication interface 2312, one or more Antenna switch 2315, one or more antennas 2316, bus 2317, battery 2318, and auxiliary controller 2319.
  • the communication device 2300 (or processor 2301) here may correspond to the above-mentioned transmitting device or terminal-side electronic device.
  • the processor 2301 may be, for example, a CPU or a system on a chip (SoC), and controls functions of the application layer and further layers of the communication device 2300 .
  • the memory 2302 includes RAM and ROM, and stores data and programs executed by the processor 2301.
  • the storage device 2303 may include storage media such as semiconductor memory and hard disk.
  • the external connection interface 2304 is an interface for connecting external devices, such as memory cards and universal serial bus (USB) devices, to the communication device 2300 .
  • the camera 2306 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS) and generates a captured image.
  • Sensors 2307 may include a group of sensors such as measurement sensors, gyroscope sensors, geomagnetic sensors, and acceleration sensors.
  • Microphone 2308 converts sound input to communication device 2300 into audio signals.
  • Input device 2309 includes, for example, a device configured to detect display device 2310 A touch sensor that touches a screen, keypad, keyboard, button, or switch and receives input from the user.
  • the display device 2310 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the communication device 2300 .
  • the speaker 2311 converts the audio signal output from the communication device 2300 into sound.
  • the wireless communication interface 2312 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • the wireless communication interface 2312 may generally include a BB processor 2313 and an RF circuit 2314, for example.
  • the BB processor 2313 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • RF circuitry 2314 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via antenna 2316.
  • the wireless communication interface 2312 may be a chip module on which the BB processor 2313 and the RF circuit 2314 are integrated.
  • the wireless communication interface 2312 may include multiple BB processors 2313 and multiple RF circuits 2314.
  • FIG. 6 shows an example in which the wireless communication interface 2312 includes multiple BB processors 2313 and multiple RF circuits 2314, the wireless communication interface 2312 may also include a single BB processor 2313 or a single RF circuit 2314.
  • the wireless communication interface 2312 may support other types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 2312 may include a BB processor 2313 and an RF circuit 2314 for each wireless communication scheme.
  • Each of the antenna switches 2315 switches the connection destination of the antenna 2316 between a plurality of circuits included in the wireless communication interface 2312 (for example, circuits for different wireless communication schemes).
  • Antennas 2316 each include single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and are used by wireless communication interface 2312 to transmit and receive wireless signals.
  • communication device 2300 may include multiple antennas 2316.
  • FIG. 6 shows an example in which communication device 2300 includes multiple antennas 2316, communication device 2300 may also include a single antenna 2316.
  • communication device 2300 may include antennas 2316 for each wireless communication scheme.
  • the antenna switch 2315 may be omitted from the configuration of the communication device 2300.
  • the bus 2317 connects the processor 2301, the memory 2302, the storage device 2303, the external connection interface 2304, the camera 2306, the sensor 2307, the microphone 2308, the input device 2309, the display device 2310, the speaker 2311, the wireless communication interface 2312, and the auxiliary controller 2319 to each other. connect.
  • the battery 2318 provides power to the various blocks of the communications device 2300 shown in FIG. 6 via feeders, which are partially shown as dashed lines in the figure.
  • the auxiliary controller 2319 operates the minimum necessary functions of the communication device 2300, such as in sleep mode.
  • the car navigation device 2400 includes a processor 2401, a memory 2402, a global positioning system (GPS) module 2404, a sensor 2405, a data interface 2406, a content player 2407, a storage media interface 2408, an input device 2409, a display device 2510, a speaker 2411, a wireless Communication interface 2413, one or more antenna switches 2416, one or more antennas 2417, and battery 2418.
  • the car navigation device 2400 (or processor 2401) here may correspond to a transmitting device or a terminal-side electronic device.
  • the processor 2401 may be, for example, a CPU or an SoC, and controls the navigation function and other functions of the car navigation device 2400.
  • the memory 2402 includes RAM and ROM, and stores data and programs executed by the processor 2401.
  • the GPS module 2404 measures the location (such as latitude, longitude, and altitude) of the car navigation device 2400 using GPS signals received from GPS satellites.
  • Sensors 2405 may include a group of sensors such as gyroscope sensors, geomagnetic sensors, and air pressure sensors.
  • the data interface 2406 is connected to, for example, the vehicle-mounted network 2421 via a terminal not shown, and acquires data generated by the vehicle (such as vehicle speed data).
  • the content player 2407 reproduces content stored in storage media, such as CDs and DVDs, which are inserted into the storage media interface 2408 .
  • the input device 2409 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 2510, and receives an operation or information input from a user.
  • the display device 2510 includes a screen such as an LCD or an OLED display, and displays an image of a navigation function or reproduced content.
  • the speaker 2411 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 2413 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • Wireless communication interface 2413 may generally include, for example, BB processor 2414 and RF circuitry 2415.
  • the BB processor 2414 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 2415 may include, for example, a mixer, filter, and amplifier, and transmit and receive wireless signals via the antenna 2417.
  • the wireless communication interface 2413 can also be a chip module on which the BB processor 2414 and the RF circuit 2415 are integrated. As shown in FIG.
  • the wireless communication interface 2413 may include multiple BB processors 2414 and multiple RF circuits 2415 .
  • FIG. 7 shows an example in which the wireless communication interface 2413 includes multiple BB processors 2414 and multiple RF circuits 2415, the wireless communication interface 2413 may also include a single BB processor 2414 or a single RF circuit 2415.
  • the wireless communication interface 2413 may support additional types of wireless communication Solutions, such as short-range wireless communication solutions, near-field communication solutions, and wireless LAN solutions.
  • the wireless communication interface 2413 may include a BB processor 2414 and an RF circuit 2415 for each wireless communication scheme.
  • Each of the antenna switches 2416 switches the connection destination of the antenna 2417 between a plurality of circuits included in the wireless communication interface 2413, such as circuits for different wireless communication schemes.
  • Antennas 2417 each include a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and are used by wireless communication interface 2413 to transmit and receive wireless signals.
  • the car navigation device 2400 may include a plurality of antennas 2417 .
  • FIG. 7 shows an example in which the car navigation device 2400 includes multiple antennas 2417, the car navigation device 2400 may also include a single antenna 2417.
  • the car navigation device 2400 may include an antenna 2417 for each wireless communication scheme.
  • the antenna switch 2416 may be omitted from the configuration of the car navigation device 2400.
  • the battery 2418 provides power to the various blocks of the car navigation device 2400 shown in FIG. 7 via feeders, which are partially shown in the figure as dotted lines. Battery 2418 accumulates power provided from the vehicle.
  • the technology of the present disclosure may also be implemented as an in-vehicle system (or vehicle) 2420 including one or more blocks of the car navigation device 2400, the in-vehicle network 2421, and the vehicle module 2422.
  • vehicle module 2422 generates vehicle data such as vehicle speed, engine speed, and fault information, and outputs the generated data to the vehicle network 2421.
  • machine-executable instructions in the machine-readable storage medium or program product may be configured to perform operations corresponding to the above-described apparatus and method embodiments.
  • the embodiments of the machine-readable storage medium or program product will be clear to those skilled in the art, and therefore will not be described again.
  • Machine-readable storage media and program products for carrying or including the above-described machine-executable instructions are also within the scope of the present disclosure.
  • Such storage media may include, but are not limited to, floppy disks, optical disks, magneto-optical disks, memory cards, memory sticks, and the like.
  • a plurality of functions included in one unit in the above embodiments may be implemented by separate devices.
  • multiple functions implemented by multiple units in the above embodiments may be implemented by separate devices respectively.
  • one of the above functions can be implemented by multiple units. Needless to say, such a configuration is included in the technical scope of the present disclosure.
  • the steps described in the flowchart include not only processing performed sequentially in time series but also processing performed in parallel or individually and not necessarily in time series. Furthermore, even in steps processed in time series, it goes without saying that the order can be appropriately changed.
  • An electronic device for user equipment UE wherein the electronic device includes:
  • Processing circuit the processing circuit is configured to:
  • a set of candidate resources for side link transmission of the UE is determined from the licensed frequency band resource pool and the unlicensed frequency band resource pool.
  • the processing circuit is configured to:
  • One or more additional candidate resources are selected from a resource pool that is later in time domain among the licensed frequency band resource pool and the unlicensed frequency band resource pool as at least one additional part of the candidate resource set.
  • the processing circuit is configured to:
  • the listen-before-send operation associated with the unlicensed frequency band resource pool is used to select a second candidate resource set from the unlicensed frequency band resource pool.
  • the at least one operation is selected based on capabilities of the UE.
  • Both the resource-aware operation and the listen-before-send operation are performed in response to the UE's capabilities being above a threshold condition.
  • the resource sensing operation starts before the listen-before-serve operation.
  • the listen-before-serve operation and the resource-aware operation are performed in parallel.
  • processing circuit is configured to:
  • the resource sensing operation and the listen-before-serve operation are performed in parallel.
  • processing circuit is further configured to:
  • the listen-before-serve operation is performed based on the predicted arrival time.
  • one or more resources are excluded from the set of available resources to obtain a reduced set of available resources.
  • processing circuit is further configured to:
  • the specific exclusion threshold is changed in response to the number of resources in the reduced set of available resources being less than a specified number threshold.
  • processing circuit is further configured to:
  • the specific exclusion threshold is left unchanged.
  • one of the resource-aware operation and the listen-before-send operation is selected for execution.
  • processing circuit is configured to:
  • the one of the resource-aware operation and the listen-before-fire operation is selected based on at least one of:
  • the packet delay budget associated with the packet is the packet delay budget associated with the packet.
  • processing circuit is further configured to:
  • failure number threshold is determined based on a priority of a data packet associated with the side link transmission.
  • part of the resource configuration information includes mapping information between the specified failure number threshold and the priority of the data packet.
  • the processing circuit is further configured to:
  • One or more resources are selected from the set of candidate resources to perform sidelink transmission of the UE.
  • Receive signaling from a base station instructs the UE to enable the licensed frequency band resource pool and/or the unlicensed frequency band resource pool;
  • a set of candidate resources for side link transmission of the UE is determined from the licensed frequency band resource pool and the unlicensed frequency band resource pool.
  • a computer-readable storage medium storing one or more instructions, which when executed by one or more processing circuits of an electronic device, cause the electronic device to perform as described in Embodiment 22 Methods.
  • a computer program product comprising a computer program that implements the method of embodiment 22 when executed by a processor.
  • An apparatus comprising means for performing the method of embodiment 22.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开涉及用于侧链路的资源选择方法及相关设备。公开了一种用于用户设备UE的电子设备,被配置为:基于资源配置信息,确定可用于UE的侧链路传输的授权频段资源池和非授权频段资源池;以及从授权频段资源池和非授权频段资源池中确定用于UE的侧链路传输的候选资源集合。

Description

用于侧链路的资源选择方法及相关设备
优先权声明
本申请要求于2022年3月31日递交、申请号为202210337858.1、发明名称为“用于侧链路的资源选择方法及相关设备”的中国专利申请的优先权,其全部内容通过引用并入本文。
技术领域
本公开涉及无线通信领域,并且具体而言,涉及用于侧链路的资源选择方法及相关设备。
背景技术
在无线通信系统中,侧链路(Sidelink)可以使得多个用户设备(UE)能够以对等(即直接)方式通信,而不必通过某个无线接入点(AP)或基站(BS)。因此,侧链路可以被用于承载物联网中的通信,例如D2D(Device-to-Device)通信。D2D通信的一个示例是与车辆相关联的V2X(Vehicle to Everything)通信。
传统地,侧链路传输只发生在无线通信系统的授权频段上。然而,随着侧链路可以支持的服务越来越丰富,侧链路需要更高的数据吞吐量来支持这些服务。因此,除了授权频段资源以外,侧链路传输可能需要附加的资源。相应地,也需要新的资源选择方法,从而实现可靠、有效、灵活的资源选择以确保侧链路传输的性能。
发明内容
本公开提供了用于侧链路传输的资源选择方法以及相关设备。在本公开中,除了授权频段资源池以外,还为UE的侧链路传输配置非授权频段资源池。当存在授权频段资源池和非授权频段资源池二者时,根据本公开的资源选择方法能够从这两种资源池中选择合适的候选资源集合以用于所述UE的侧链路传输。
本公开的一方面涉及一种用于UE的电子设备,其中,所述电子设备包括:处理电路,所述处理电路被配置为:基于资源配置信息,确定可用于所述UE的侧链路传输的授权频段资源池和非授权频段资源池;以及从所述授权频段资源池和所述非授权频段资源池中确定用于所述UE的侧链路传输的候选资源集合。
本公开的另一个方面涉及一种由用户设备UE执行的方法,其中,所述方法包括:基于资源配置信息,确定可用于所述UE的侧链路传输的授权频段资源池和非授权频段资源池;以及从所述授权频段资源池和所述非授权频段资源池中确定用于所述UE的侧链路传输的候选资源集合。
本公开的另一个方面涉及一种存储有一个或多个指令的计算机可读存储介质,该一个或多个指令在由电子设备的一个或多个处理电路执行时,使得该电子设备执行如本公开所述的任何方法。
本公开的另一个方面涉及一种计算机程序产品,包括计算机程序,该计算机程序在被处理器执行时实现如本公开所述的任何方法。
本公开的另一个方面涉及一种包括用于执行如本公开所述的任何方法的构件的装置。
附图说明
下面结合具体的实施例,并参照附图,对本公开的上述和其它目的和优点做进一步的描述。在附图中,相同的或对应的技术特征或部件将采用相同或对应的附图标记来表示。
图1示出了根据本公开的实施例的电子设备的示例性框图。
图2示出了根据本公开的实施例的资源选择方法的示例性流程图。
图3A-3B示出了根据本公开的实施例的授权频段资源池与非授权频段资源池在时域不重叠的示例情形。
图3C-3D示出了根据本公开的实施例的授权频段资源池与非授权频段资源池在时域不重叠的示例情形。
图4是示出可以应用本公开内容的技术的gNB的示意性配置的第一示例的框图。
图5是示出可以应用本公开内容的技术的gNB的示意性配置的第二示例的框图。
图6是示出可以应用本公开内容的技术的通信设备的示意性配置的示例的框图。
图7示出可以应用本公开内容的技术的汽车导航设备的示意性配置的示例的框图。
虽然在本公开内容中所描述的实施例可能易于有各种修改和另选形式,但是其具体实施例在附图中作为示例示出并且在本文中被详细描述。但是,应当理解,附图以及对其的详细描述不是要将实施例限定到所公开的特定形式,而是相反,目的是要涵盖属于权利要求的精神和范围内的所有修改、等同和另选方案。
具体实施方式
在下文中将结合附图对本公开的示范性实施例进行描述。为了清楚和简明起见,在说明书中并未描述实施例的所有特征。然而,应该了解,在对实施例进行实施的过程中必须做出很多特定于实施方式的设置,以便实现开发人员的具体目标,例如,符合与设备及业务相关的那些限制条件,并且这些限制条件可能会随着实施方式的不同而有所改变。此外,还应该了解,虽然开发工作有可能是非常复杂和费时的,但对得益于本公开内容的本领域技术人员来说,这种开发工作仅仅是例行的任务。
在此,还应当注意,为了避免因不必要的细节而模糊了本公开,在附图中仅仅示出了与至少根据本公开的方案密切相关的处理步骤和/或设备结构,而省略了与本公开关系不大的其他细节。
1、示例性设备
图1示出了根据本公开的实施例的电子设备100的示例性框图。电子设备100可以包括通信单元110、存储单元120以及处理电路130。
电子设备100可以被用于实施本公开描述的用于侧链路的资源选择方法。该资源选择方法在无线通信系统的UE侧执行。因此,电子设备100可以被实现在UE侧。可以使用电子设备100来执行本文描述的与UE相关的一个或多个操作。具体地,电子设备100可以被实现为UE本身、实现为UE的一部分、或者实现为用于控制UE的控制设备。例如,电子设备100可以被实现为用于控制UE的芯片。在本文中,将电子设备100实现为UE本身,这仅仅是为了描述的方便而不旨在构成限制。
电子设备100的通信单元110可以被用于接收或发送无线电传输。通信单元110可以被用于建立和维护一个或多个通信链路。每个通信链路可以承载相关联的传输。例如,该一个或多个通信链路可以电子设备100与基站(未示出)之间的通信链路。
根据本公开的实施例,该一个或多个通信链路可以包括电子设备100与一个或多个其他UE(未示出)之间的一个或多个侧链路。通信单元110可以使用所分配的资源通过该一个或多个侧链路来执行与其他UE之间的侧链路传输。用于侧链路传输的资源可以由处理电路130基于本公开描述的资源选择方法而确定,这将在后面进一步描述。
在本公开的实施例中,通信单元110可以对所发送的无线电信号执行诸如上变频、 数字-模拟转换之类的功能,和/或对所接收的无线电信号执行诸如下变频、模拟-数字变换之类的功能。可以使用各种技术来实现通信单元110。例如,通信单元110可以被实现为天线器件、射频电路和部分基带处理电路等通信接口部件。
在图1中,通信单元110用虚线绘出,因为它可以替代地位于处理电路130内或者位于电子设备100之外。
电子设备100的存储单元120可以存储由处理电路130产生的信息,通过通信单元110从其他设备接收的信息或将要发送到其他设备的信息,用于电子设备100操作的程序、机器代码和数据等。
根据本公开的实施例,存储单元120可以存储资源配置信息。如后面进一步描述的,该资源配置信息可以被用于确定用于电子设备100的侧链路传输的授权频段资源池和非授权频段资源池。本文中的“资源池”可以指一个或多个资源的汇集。本文中的“资源”可以指用于无线传输的时间-频率资源。每个时间-频率资源可以具有对应的时间以及对应的频率。与时间-频率资源对应的时间可以指一个或多个时间区段(例如,时隙)。相应地,使用特定时间-频率资源来执行无线电传输可以指在与该特定时间-频率资源对应的特定时间区段和频率处执行该无线电传输。
存储单元120可以是易失性存储器和/或非易失性存储器。例如,存储单元120可以包括但不限于随机存取存储器(RAM)、动态随机存取存储器(DRAM)、静态随机存取存储器(SRAM)、只读存储器(ROM)以及闪存存储器。存储单元120用虚线绘出,因为它可以替代地位于处理电路130内或者位于电子设备100之外。
电子设备100的处理电路130可以被配置为执行一个或多个操作,从而提供电子设备100的各种功能。处理电路130可以通过执行存储单元120所存储的一个或多个可执行指令而执行对应的操作。
根据本公开的实施例,处理电路130可以执行一个或多个操作从而实现与本文描述的资源选择方法。为此,处理电路130可以包括资源池确定单元131和候选资源确定单元132。资源池确定单元131可以被配置为基于资源配置信息而确定可用于电子设备100(或者说,UE)的侧链路传输的授权频段资源池和非授权频段资源池。候选资源确定单元132可以被配置为从该授权频段资源池和该非授权频段资源池中确定用于电子设备100的侧链路传输的候选资源集合。通过这种方式,电子设备100(或者说,UE)可以从授权频段资源池和非授权频段资源池二者中选择用于侧链路传输的候选资源集合。与仅使用授权频段资源的传统设备相比,根据本公开的实施例的电子设 备100可以形成更大尺寸的候选资源集合。这有助于提高侧链路的数据吞吐量,使得侧链路可以具有更高的数据速率、更好的传输性能以及支持更多的服务。下面结合图3描述了根据本公开的实施例的资源选择方法的更多细节。
应当注意的是,以上描述的各个单元是用于实施本公开中描述的处理的示例性和/或优选的模块。这些模块可以是硬件单元(诸如中央处理器、现场可编程门阵列、数字信号处理器或专用集成电路等)和/或软件模块(诸如计算机可读程序)。以上并未详尽地描述用于实施下文描述各个步骤的模块。然而,只要有执行某个处理的步骤,就可以有用于实施同一处理的对应的模块或单元(由硬件和/或软件实施)。通过下文所描述的步骤以及与这些步骤对应的单元的所有组合限定的技术方案都被包括在本公开的公开内容中,只要它们构成的这些技术方案是完整并且可应用的。
此外,由各种单元构成的设备可以作为功能模块被并入到诸如计算机之类的硬件设备中。除了这些功能模块之外,电子设备当然可以具有其他硬件或者软件部件。
2、示例性方法
图2示出了根据本公开的实施例的资源选择方法200的示例性流程图。方法200可以由UE侧的设备执行。UE侧的设备可以包括UE本身、UE的一部分、或者用于控制UE的控制设备。例如,当电子设备100被用于实现本公开所描述的UE侧的设备时,方法200可以由电子设备100的处理电路130执行。在本文中,将方法100描述为由UE本身执行,这仅仅是为了描述的方便而不旨在构成限制。
根据本公开的实施例,方法200可以响应于预期将会发生与UE相关联的侧链路传输而执行,从而为该侧链路传输提供候选资源集合。对于侧链路传输,可以存在多种资源选择模式。在第一种资源选择模式下,可以由基站来选择用于侧链路传输的资源,然后基站向UE直接指示所选择的资源。UE可以使用由基站选择和指示的资源来执行侧链路传输。在第二种资源选择模式下,可以由UE来选择用于侧链路传输的资源。第二种资源选择模式可以减少基站的参与并且可以提高UE的自主性,从而使得用于侧链路传输的资源能够被个性化地确定,提高了资源选择的灵活性。优选地,方法200可以在第二种资源选择模式下执行。
方法200可以从步骤210开始。在步骤210中,UE可以被配置为基于资源配置信息,确定可用于UE的侧链路传输的授权频段资源池和非授权频段资源池。
根据本公开的实施例,资源配置信息可以指示位于授权频段(Licensed Band)中 一个或多个资源,每个资源与相应时隙以及授权频段中的相应频率相关联。该一个或多个资源形成可用于UE的侧链路传输的授权频段资源池。授权频段是由无线通信系统的协议或标准指定的特定频率区间。授权频段资源池可以包括位于相同的频率和不同的时隙处的多个资源。授权频段资源池也可以包括位于相同的时隙和不同的频率处的多个资源。作为示例,图3A至图3D中的框310示出了授权频段资源池310跨时域(横轴)和频域(纵轴)的分布。
根据本公开的实施例,资源配置信息还可以指示位于非授权频段(Unlicensed Band)中一个或多个资源,每个资源与相应时隙以及非授权频段中的相应频率相关联。该一个或多个资源形成可用于UE的侧链路传输的非授权频段资源池。非授权频段不同于由无线通信系统的协议或标准指定的授权频段。例如,非授权频段可以与授权频段分离。非授权频段资源池可以包括位于相同的频率和不同的时隙处的多个资源。非授权频段资源池也可以包括位于相同的时隙和不同的频率处的多个资源。作为示例,图3A至图3D中的框320示出了非授权频段资源池跨时域(横轴)和频域(纵轴)的分布。
根据本公开的实施例,资源配置信息可以具有多个部分,其中第一部分被用于配置授权频段资源池,而不同于第一部分的第二部分被用于配置非授权频段资源池。优选地,资源配置信息的第一部分和第二部分可以彼此单独地配置。
根据本公开的实施例,可以通过各种方式将资源配置信息提供给UE。例如,资源配置信息可以是预配置的和/或是由基站的信令动态地配置的。
在一些实施例中,资源配置信息可以是预配置的。例如,可以由UE的生产商或销售商将资源配置信息预先加载在UE(例如,电子设备100的存储单元120)中。该预配置过程可以在UE的生产、销售、和/或激活过程中执行。作为具体的示例,车辆的制造商可以将资源配置信息加载到车辆的车载系统中。在一些情况下,可以为不同类型的UE预配置不同的资源配置信息。
在另一些实施例中,UE可以从外部设备动态地接收资源配置信息。例如,当UE驻留在特定小区时,服务于该小区的基站可以将资源配置信息提供给UE。基站可以通过各种方式将资源配置信息提供给UE。例如,资源配置信息可以被包含在基站发送给UE的一个或多个信令中。在一个示例中,基站可以向UE发送RRC信令,该RRC信令包括与授权频段资源池相关联的参数SL-ResourcePool,其中sl-TimeResource可以被用于配置与授权频段资源池相关联的时域参数。类似地,基站可 以向UE发送与非授权频段资源池相关联的信令。
在可选的实施例中,可以以混合配置的方式来向UE提供资源配置信息。例如,资源配置信息的第一部分可以采用预配置的方式,而第二部分可以是动态地从外部设备接收的。替代地,资源配置信息的第二部分可以采用预配置的方式,而第一部分可以是动态地从外部设备接收的。
根据本公开的实施例,UE可以解析所存储/接收的资源配置信息、提取与各个授权频段资源以及非授权频段资源相关联的信息(包括时域配置信息和频域配置信息),从而确定可用于UE的侧链路传输的授权频段资源池和非授权频段资源池。
然后,方法200可以继续到步骤220。在步骤220中,UE可以被配置为从步骤210中确定的授权频段资源池和非授权频段资源池中确定用于UE的侧链路传输的候选资源集合。
候选资源集合可以包括可供侧链路传输选择以使用的一个或多个候选资源。根据本公开的实施例,步骤220中的选择可以基于一个或多个因素而进行。取决于该一个或多个因素,候选资源集合可能是授权频段资源池的子集,或者是非授权频段资源池的子集,或者包括授权频段资源池的子集和非授权频段资源池的子集二者。
根据本公开的实施例,该一个或多个因素可以包括授权频段资源池和非授权频段资源池在时域的重叠。
授权频段资源池和非授权频段资源池在频域上是分离的,但是在时域上可能至少部分地重叠。如果授权频段资源池中的任何资源与非授权频段资源池中的任何资源都对应于不同的时隙,则授权频段资源池与非授权频段资源池在时域上不重叠。图3A-3B示出了授权频段资源池310与非授权频段资源池320在在时域上不重叠的情形300A和300B。如果授权频段资源池中的第一资源与非授权频段资源池中的第二资源对应于相同的时隙,则授权频段资源池与非授权频段资源池在时域上重叠。图3C示出了授权频段资源池310与非授权频段资源池320在在时域上部分重叠的情形300C,而图3D示出了授权频段资源池310与非授权频段资源池320在在时域上完全重叠的情形300D。
根据本公开的实施例,UE可以基于资源配置信息来确定授权频段资源池和非授权频段资源池在时域上是否至少部分地重叠。例如,UE可以比较与授权频段资源池关联的每个时隙和与非授权频段资源池关联的每个时隙。如果授权频段资源池与非授权资源池具有一个或多个公共的时隙,则授权频段资源池与非授权资源池在时域上至 少部分地重叠。优选地,UE还可以确定在时域上重叠的各个授权频段资源和非授权频段资源。
根据本公开的实施例,当授权频段资源池与非授权频段资源池在时域不重叠时,UE可以被配置为从授权频段资源池与非授权频段资源池中的时域上在先的资源池中选择一个或多个候选资源,作为候选资源集合的至少一部分。
在图3A的示例情形中,授权频段资源池310在时域上早于非授权频段资源池320。相应地,UE可以被配置为从授权频段资源池310中选择一个或多个候选资源,作为候选资源集合的至少一部分。在一些实施例中,UE可以通过资源感知(Resource Sensing)操作来从授权频段资源池310中选择一个或多个候选资源。
在图3B的示例情形中,非授权频段资源池320在时域上早于授权频段资源池310。相应地,UE可以被配置为从非授权频段资源池320中选择一个或多个候选资源,作为候选资源集合的至少一部分。在一些实施例中,UE可以通过先听后发(Listen Before Talk,LBT)操作来从授权频段资源池310中选择一个或多个候选资源。
在5G NR中,非授权频段上存在有其他通信系统(例如Wi-Fi)。在这种情况下,UE要尽量采用公平共存的机制来进行资源选择。因此,上行非授权频段的资源选择可以通过LBT操作进行。在LBT操作中,UE可以连续地对非授权信道进行监听。如果检测到在一个连续时间内,该信道的能量低于门限值,则UE可以判断该信道是空闲的并且UE可以占用该信道一段时间来进行传输。这种信道监听是分等级的。在不同监听等级下,监听的持续时间不同,并且LBT操作成功后UE可以连续占用该信道的时间也不同。在本公开的实施例中,可以采用任何合适的监听等级。例如,可以采用最高(Cat4)的监听等级。具有这种监听等级的LBT操作需要监听信道的时间较长,成功后可以占用的信道时间也长。在其他实施例中,也可以采用具有任何其他合适的监听等级的LBT操作。
根据本公开的实施例,UE还可以被配置为从授权频段资源池与非授权频段资源池中的时域上在后的资源池中选择一个或多个附加候选资源,作为候选资源集合的至少一个附加部分。
以图3A的示例情形为例,如果从授权频段资源池310中选择的一个或多个候选资源足以满足UE的侧链路传输的需求,则可以将该一个或多个候选资源确定为步骤220中的候选资源集合,而不必再确定候选资源集合的至少一个附加部分。
然而,在一些情况下,从授权频段资源池310中选择的一个或多个候选资源可能 不足以满足UE的侧链路传输的需求。这是因为分配给UE的可用于侧链路传输的授权频段资源池310可能是受限的,而UE的侧链路传输需要更多的资源来支持高的吞吐量。在这种情况下,UE可以被配置为从非授权频段资源池320中选择一个或多个附加候选资源,作为候选资源集合的第二部分。该第二部分是候选资源集合的附加部分。通过这种方式,UE可以将从不同类型的资源池中确定的第一部分与第二部分组合作为步骤220中的候选资源集合,从而弥补弥补单个资源池中候选资源不足的缺陷。
在可选的实施例中,当从较早的授权频段资源池310中选择的候选资源不足以满足UE的侧链路传输的需求时,UE可以被配置为进一步基于与侧链路传输相关联的QoS来确定是否要从非授权频段资源池320中选择附加候选资源。例如,UE可以基于与侧链路传输相关联的延迟参数来进行这种确定。这是因为用于从非授权频段资源池320中选择候选资源的LBT操作是耗时的。如果侧链路传输的延迟参数所允许的延迟足够大(例如,大于阈值从而允许UE完成LBT操作),则UE可以被配置为执行LBT操作来选择可供该侧链路传输使用的附加候选资源。如果侧链路传输的延迟参数所允许的延迟不够大,则UE可以不执行LBT操作。
根据本公开的实施例,当授权频段资源池与非授权频段资源池在时域重叠时,对于重叠的部分资源,UE可以被配置为从以下操作中选择至少一者来执行:(1)与授权频段资源池相关联的资源感知操作,用于从授权频段资源池中选择第一候选资源集合;(2)与非授权频段资源池相关联的LBT操作,用于从非授权频段资源池中选择第二候选资源集合。
根据本公开的实施例,UE可以基于UE的能力来选择执行资源感知操作和LBT操作中的至少一者。具体而言,响应于UE的能力高于阈值条件,UE可以选择执行资源感知操作以及LBT操作二者。响应于UE的能力不高于阈值条件,UE可以从资源感知操作以及LBT操作中选择一者来执行。UE的能力可以涉及UE的多个方面,包括但不限于UE的通信能力、处理能力、功耗和温度等等。
在一些实施例中,当UE选择执行资源感知操作以及LBT操作二者时,UE可以进一步选择在先听后发操作之前开始执行资源感知操作。
如上所述,LBT操作可能需要花费较长的时间才能完成。例如,对于具有监听等级Cat 4的LBT操作,UE需要进行最长80ms的信道检测。当检测到信道在该80ms期间都为空闲后,UE才可以获得最长10ms的信道占用时间。这样的检测是耗时的。而且,对于基于负载的LBT操作,该LBT操作在信道上的数据包到达后才会进行信 道检测。与LBT操作相比,资源感知操作可以在数据包到达之前就开始。因此,LBT操作所造成的延迟可能大于资源感知操作所造成的延迟。根据本公开的实施例,UE可以被配置为在LBT操作之前开始执行资源感知操作,以便尽快确定候选资源集合(或候选资源集合的至少一部分)。
根据本公开的实施例,用于从授权频段资源池中选择候选资源的资源感知操作可以包括资源排除操作。
在执行资源排除操作时,UE可以被配置为获得与授权频段资源池中的可用资源集合中的每个资源相关联的测量结果。该测量结果可以是与每个资源相关联的信道的特性的度量。可用资源集合初始地可以是授权频段资源池中的与非授权频段资源池在时域上重叠的资源子集。UE可以被配置为将与每个资源相关联的测量结果与特定排除门限进行比较。基于该比较的结果,UE可以从可用资源集合中排除符合特定排除条件的一个或多个资源,从而获得缩减的可用资源集合。UE可以从缩减的可用资源集合确定候选资源。
作为资源排除操作的具体示例,UE可以被配置为获得与每个资源相关联的信道的参考信号接收功率(RSRP)。UE可以将该RSRP与RSRP阈值比较。如果与某个特定资源相关联的信道的RSRP大于该RSRP阈值,UE可以预期该特定资源可能正被无线通信系统中的其他设备使用,因此该资源的可靠性低,不适合用作当前UE的侧链路传输的候选资源。相应地,UE可以将该特定资源从授权频段资源池中的可用资源集合中排除。如果与该特定资源相关联的信道的RSRP不大于该RSRP阈值,则UE可以预期该特定资源可能未被任何其他设备使用,因此该资源的可靠性高,适合用作当前UE的侧链路传输的候选资源。UE可以对可用资源集合中的每个资源执行上述比较过程。通过这种方式,UE可以从可用资源集合中排除性能不佳的一个或多个资源,而保留性能较好的一个或多个资源作为候选资源。容易理解,所设置的RSRP的阈值越低,被保留的候选资源的性能就越好,但候选资源的数量也越少。
在一些情况下,通过一轮资源感知操作所得到的缩减的可用资源集合对于侧链路传输可能是不够充足的。例如,缩减的可用资源集合中的候选资源的数量可能太少,或者可能不足以支持期望的传输速率。根据本公开的实施例,UE可以通过多种方式来增加候选资源的数量。
在一种方式中,UE可以改变与资源排除操作相关联的特定排除门限。具体而言,响应于缩减的可用资源集合中的资源的数量小于指定的数量阈值,UE可以改变与资 源排除操作相关联的特定排除门限。相应地,在前一轮资源感知操作中被排除的一个或多个资源在新一轮的资源感知操作中能够被保留在可用资源集合中。在特定排除门限为RSRP阈值的示例中,UE可以将RSRP阈值从第一阈值增大到第二阈值,这使得与第一阈值和第二阈值之间的某个RSRP值对应的那些资源将被保留在可用资源集合中而不是被排除。然而,这些资源可能具有较低的可靠性。
在另一种方式中,UE可以执行LBT操作以从非授权频段资源池中选择第二候选资源集合。该第二候选资源集合可以作为附加的候选资源。UE可以将通过资源排除操作从授权频段资源池中选择的第一候选资源集合与通过LBT操作从非授权频段资源池中选择的第二候选资源集合进行组合,所得到的候选资源集合将大于第一候选资源集合。
在这种情况下,由于存在第二候选资源集合作为附加候选资源,UE可以优选地不改变与资源排除操作相关联的特定排除门限。具体而言,在资源感知操作中,响应于缩减的可用资源集合中的资源的数量小于指定的数量阈值,UE可以保持特定排除门限不变。换句话说,当存在第二候选资源集合作为补充时,UE在资源感知操作中可以不必通过改变特定排除门限来保留可靠性低的一个或多个资源。因此,最终得到的候选资源集合中的资源可以具有较高的可靠性。
在还有的一种混合方式中,UE可以既执行LBT操作以从非授权频段资源池中选择第二候选资源集合,又通过改变与资源排除操作相关联的特定排除门限来扩大通过资源感知操作获得的可用资源集合。与前述两种方式相比,这种方式允许UE获得最大的候选资源集合。该最大的候选资源集合可能包括具有较低的可靠性的一些资源。可以在授权频段资源池与非授权频段资源池二者都不够充足时采用这种混合方式。
根据本公开的实施例,如果UE通过资源感知操作从授权频段资源池中选择的第一候选资源集合足以满足侧链路传输的需求(例如,第一候选资源集合包含足够多的资源,或者第一候选资源集合能够支持高速率的数据传输),则UE可以决定不再附加地执行LBT操作。照此,UE可以不从非授权频段资源池中选择第二候选资源集合。在这种情况下,UE通过资源感知操作从授权频段资源池中选择的第一候选资源集合可以作为步骤220中确定的候选资源组合。
在一些实施例中,当UE基于其能力而选择执行资源感知操作以及LBT操作二者时,UE可以进一步选择并行地执行LBT操作和资源感知操作。例如,对于具有高优先级的侧链路传输(例如,响应于与侧链路传输相关联的优先级高于优先级阈值), UE可以选择并行地执行LBT操作和资源感知操作。在这种情况下,所执行的LBT操作不是基于负载的LBT操作。也就是说,该LBT操作不必等到数据包到达后才进行信道检测,而是可以提前执行。具体而言,UE可以预测数据包的到达时间,并且在该预测的到达时间之前就开始执行LBT操作。对于一些周期性传输的数据包,其到达时间能够被UE预测。通过将LBT操作提前到与资源感知操作并行地执行(而不是在资源感知操作之后执行),UE能够更快地从非授权资源池中确定第二候选资源集合,从而整体地更快地确定候选资源集合。这对于具有高优先级的侧链路传输尤其是有益的。
在可选的实施例中,如果UE的能力足够强,则UE可以对具有普通优先级的侧链路传输也并行地执行LBT操作和资源感知操作。或者,UE可以并行地执行LBT操作和资源感知操作而不考虑侧链路传输的优先级。
应当注意,在并行执行LBT操作和资源感知操作的过程中,UE可以按照前述的一种或多种方式来执行资源感知操作。例如,在一种方式中,响应于缩减的可用资源集合中的资源的数量小于指定的数量阈值,UE可以改变与资源排除操作相关联的特定排除门限,以增加可用资源集合中的资源的数量。在优选的方式中,响应于缩减的可用资源集合中的资源的数量小于指定的数量阈值,UE可以不改变与资源排除操作相关联的特定排除门限,以保证可用资源集合中的资源的质量。在任一方式下,UE可以使用通过LBT操作获得的第二候选资源集合和通过资源感知操作获得的第一候选资源集合的组合,作为步骤220中的候选资源集合。
根据本公开的实施例,响应于UE的能力不高于阈值条件,UE可以从资源感知操作以及LBT操作中选择一者来执行。
在一些实施例中,UE可以被配置为基于与侧链路传输相关联的数据包的优先级、该数据包的尺寸、和/或与该数据包相关联的数据包延迟预算中的至少一者来选择资源感知操作和LBT操作中要被执行的一种操作。
在一个示例中,如果数据包具有高优先级(例如,高于优先级阈值),则UE可以选择执行LBT操作,UE通过该LBT操作从非授权频段资源池中确定第二候选资源集合,作为步骤220中确定的候选资源集合。否则,UE可以选择执行资源感知操作,UE通过该资源感知操作从授权频段资源池中确定第一候选资源集合,作为步骤220中确定的候选资源集合。
在另一个示例中,如果数据包具有大的尺寸(例如,大于尺寸阈值),则UE可以选择执行LBT操作来为与该数据包相关联的侧链路传输从非授权频段资源池中确 定候选资源集合。否则,UE可以选择执行资源感知操作。
在还有的示例中,如果数据包具有大的数据包延迟预算(例如,大于延迟阈值)的数据包,则UE可以选择执行LBT操作来为与该数据包相关联的侧链路传输确定候选资源集合。否则,UE可以选择执行资源感知操作。
在可选的示例中,以上各个因素也可以组合地考虑。例如,如果数据包具有高优先级、大的尺寸和大的数据包延迟预算,则UE可以选择执行LBT操作来为与该数据包相关联的侧链路传输从非授权频段资源池中确定候选资源集合。否则,UE可以选择执行资源感知操作。以上因素的其他组合也是可能的。
根据本公开的实施例,在从非授权频段资源池中确定候选资源集合的过程中,UE可以重复LBT操作,直到LBT操作成功,或者直到重复该LBT操作的次数达到了失败次数阈值。如果LBT操作检测到可用的空闲信道,则LBT操作成功。如果对于非授权频段资源池中的所有资源,LBT操作都未能检测到可用的空闲信道,则该轮LBT操作失败。响应于LBT操作失败,UE可以被配置为确定该LBT操作是否已经被重复达到失败次数阈值。如果重复该LBT操作的次数还没有达到失败次数阈值,则UE可以开始下一轮LBT操作。如果重复该LBT操作的次数已经达到失败次数阈值,则UE可以停止LBT操作。
在一些实施例中,可以基于与侧链路传输相关联的数据包的优先级来确定与LBT操作相关联的失败次数阈值。例如,对于具有高优先级的数据包(例如,高于优先级阈值),可以指定低的失败次数阈值,以确保具有高优先级的数据能够被及时发送。对于具有低优先级的数据包(例如,不高于优先级阈值),可以指定高的失败次数阈值。在一个示例中,资源配置信息的一部分可以包括失败次数阈值与数据包的优先级之间的映射信息。通过访问该映射信息,UE可以基于与侧链路传输相关联的数据包的优先级来确定对应的失败次数阈值。UE可以将所确定的失败次数阈值应用于于该数据包相关联的LBT操作。该映射信息可以作为非授权频段资源池的配置信息的一部分而通过资源配置信息来配置。优选地,可以通过预配置的方式来将该映射信息提供给UE。
应当理解,对于本公开所描述的各种情况下的LBT操作,都可以基于与侧链路传输相关联的数据包的优先级来确定对应的失败次数阈值。
根据本公开的实施例,当UE从资源感知操作和LBT操作中选择执行LBT操作时,如果重复该LBT操作的次数已经达到失败次数阈值,则UE可以停止LBT操作, 并转而执行资源感知操作。UE通过该资源感知操作从授权频段资源池中确定第一候选资源集合,作为步骤220中确定的候选资源集合。
根据本公开的实施例,在步骤220中确定了候选资源集合之后,UE可以从候选资源集合中选择一个或多个资源来执行UE的侧链路传输。侧链路传输实际使用的资源可以是候选资源集合的子集。
根据本公开的实施例,UE可以被配置为启用授权频段资源池和/或非授权频段资源池中的一者或两者。例如,UE可以从基站接收信令,该信令可以指示UE关于授权频段资源池和/或非授权频段资源池的启用能力。该信令可以具有多种类型(例如,具有不同的参数)。第一类型的信令可以指示UE仅启用授权频段资源池。第二类型的信令可以指示UE仅启用非授权频段资源池。第三类型的信令可以指示UE启用授权频段资源池和非授权频段资源池二者。响应于接收到该信令,UE可以被配置为启用该信令所指示的特定资源池。在一些实施例中,基站可以基于UE上报的能力而确定将发出的信令的类型。
应当理解,方法200仅仅是示例性的。本领域技术人员可以理解,UE侧的方法可以不仅包括关于方法200已经描述的这些步骤,还可以包括在前面描述的方法的步骤中的一个或多个。
本公开所描述的方法和设备为侧链路传输提供了授权频段资源池和非授权频段资源池二者,使得侧链路通信能够支持更高的传输速率和更多的服务。当存在授权频段资源池和非授权频段资源池二者时,根据本公开的资源选择方法能够从这两种资源池中选择合适的候选资源集合以用于所述UE的侧链路传输。
3、应用示例
本公开的技术能够应用于各种产品。
例如,根据本公开的实施例的控制侧电子设备可以被实现为各种控制设备/基站或者被包含在各种控制设备/基站中。例如,根据本公开的实施例的发射设备和终端设备可以被实现为各种终端设备或者被包含在各种终端设备中。
例如,本公开中提到的控制设备/基站可以被实现为任何类型的基站,例如eNB,诸如宏eNB和小eNB。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。还例如,可以实现为gNB,诸如宏gNB和小gNB。小gNB可以为覆盖比宏小区小的小区的gNB,诸如微微gNB、微gNB和家庭(毫微 微)gNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(Base Transceiver Station,BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(Remote Radio Head,RRH)。另外,下面将描述的各种类型的终端均可以通过暂时地或半持久性地执行基站功能而作为基站工作。
例如,本公开中提到的终端设备,在一些实施例中可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。终端设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,终端设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
以下将参照附图描述根据本公开的应用示例。
[关于基站的示例]
应当理解,本公开中的基站一词具有其通常含义的全部广度,并且至少包括被用于作为无线通信系统或无线电系统的一部分以便于通信的无线通信站。基站的示例可以例如是但不限于以下:基站可以是GSM系统中的基站收发信机(BTS)和基站控制器(BSC)中的一者或两者,可以是WCDMA系统中的无线电网络控制器(RNC)和Node B中的一者或两者,可以是LTE和LTE-Advanced系统中的eNB,或者可以是未来通信系统中对应的网络节点(例如可能在5G通信系统中出现的gNB,eLTE eNB等等)。本公开的基站中的部分功能也可以实现为在D2D、M2M以及V2V通信场景下对通信具有控制功能的实体,或者实现为在认知无线电通信场景下起频谱协调作用的实体。
第一示例
图4是示出可以应用本公开内容的技术的gNB的示意性配置的第一示例的框图。gNB 2100包括多个天线2110以及基站设备2120。基站设备2120和每个天线2110可以经由RF线缆彼此连接。在一种实现方式中,此处的gNB 2100(或基站设备2120)可以对应于上述控制侧电子设备。
天线2110中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备2120发送和接收无线信号。如图4所示,gNB 2100可以包括多个天线2110。例如,多个天线2110可以与gNB  2100使用的多个频段兼容。
基站设备2120包括控制器2121、存储器2122、网络接口2123以及无线通信接口2125。
控制器2121可以为例如CPU或DSP,并且操作基站设备2120的较高层的各种功能。例如,控制器2121根据由无线通信接口2125获取的无线通信系统中的终端侧的至少一个终端设备的定位信息和至少一个终端设备的特定位置配置信息来确定至少一个终端设备中的目标终端设备的位置信息。控制器2121可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接入控制和调度。该控制可以结合附近的gNB或核心网节点来执行。存储器2122包括RAM和ROM,并且存储由控制器2121执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口2123为用于将基站设备2120连接至核心网2124的通信接口。控制器2121可以经由网络接口2123而与核心网节点或另外的gNB进行通信。在此情况下,gNB 2100与核心网节点或其他gNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口2123还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口2123为无线通信接口,则与由无线通信接口2125使用的频段相比,网络接口2123可以使用较高频段用于无线通信。
无线通信接口2125支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-Advanced),并且经由天线2110来提供到位于gNB 2100的小区中的终端的无线连接。无线通信接口2125通常可以包括例如基带(BB)处理器2126和RF电路2127。BB处理器2126可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器2121,BB处理器2126可以具有上述逻辑功能的一部分或全部。BB处理器2126可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器2126的功能改变。该模块可以为插入到基站设备2120的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路2127可以包括例如混频器、滤波器和放大器,并且经由天线2110来传送和接收无线信号。虽然图4示出一个RF电路2127与一根天线2110连接的示例,但是本公开并不限于该图示,而是一个RF电路2127可以同时连接多根天线2110。
如图4所示,无线通信接口2125可以包括多个BB处理器2126。例如,多个BB处理器2126可以与gNB 2100使用的多个频段兼容。如图4所示,无线通信接口2125可以包括多个RF电路2127。例如,多个RF电路2127可以与多个天线元件兼容。虽然图4示出其中无线通信接口2125包括多个BB处理器2126和多个RF电路2127的示例,但是无线通信接口2125也可以包括单个BB处理器2126或单个RF电路2127。
第二示例
图5是示出可以应用本公开内容的技术的gNB的示意性配置的第二示例的框图。gNB 2200包括多个天线2210、RRH 2220和基站设备2230。RRH 2220和每个天线2210可以经由RF线缆而彼此连接。基站设备2230和RRH 2220可以经由诸如光纤线缆的高速线路而彼此连接。在一种实现方式中,此处的gNB 2200(或基站设备2230)可以对应于上述控制侧电子设备。
天线2210中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于RRH 2220发送和接收无线信号。如图5所示,gNB 2200可以包括多个天线2210。例如,多个天线2210可以与gNB 2200使用的多个频段兼容。
基站设备2230包括控制器2231、存储器2232、网络接口2233、无线通信接口2234以及连接接口2236。控制器2231、存储器2232和网络接口2233与参照图4描述的控制器2121、存储器2122和网络接口2123相同。
无线通信接口2234支持任何蜂窝通信方案(诸如LTE和LTE-Advanced),并且经由RRH 2220和天线2210来提供到位于与RRH 2220对应的扇区中的终端的无线通信。无线通信接口2234通常可以包括例如BB处理器2235。除了BB处理器2235经由连接接口2236连接到RRH 2220的RF电路2222之外,BB处理器2235与参照图4描述的BB处理器2126相同。如图5所示,无线通信接口2234可以包括多个BB处理器2235。例如,多个BB处理器2235可以与gNB 2200使用的多个频段兼容。虽然图5示出其中无线通信接口2234包括多个BB处理器2235的示例,但是无线通信接口2234也可以包括单个BB处理器2235。
连接接口2236为用于将基站设备2230(无线通信接口2234)连接至RRH 2220的接口。连接接口2236还可以为用于将基站设备2230(无线通信接口2234)连接至RRH 2220的上述高速线路中的通信的通信模块。
RRH 2220包括连接接口2223和无线通信接口2221。
连接接口2223为用于将RRH 2220(无线通信接口2221)连接至基站设备2230的接口。连接接口2223还可以为用于上述高速线路中的通信的通信模块。
无线通信接口2221经由天线2210来传送和接收无线信号。无线通信接口2221通常可以包括例如RF电路2222。RF电路2222可以包括例如混频器、滤波器和放大器,并且经由天线2210来传送和接收无线信号。虽然图5示出一个RF电路2222与一根天线2210连接的示例,但是本公开并不限于该图示,而是一个RF电路2222可以同时连接多根天线2210。
如图5所示,无线通信接口2221可以包括多个RF电路2222。例如,多个RF电路2222可以支持多个天线元件。虽然图5示出其中无线通信接口2221包括多个RF电路2222的示例,但是无线通信接口2221也可以包括单个RF电路2222。
[关于用户设备/终端设备的示例]
第一示例
图6是示出可以应用本公开内容的技术的通信设备2300(例如,智能电话,联络器等等)的示意性配置的示例的框图。通信设备2300包括处理器2301、存储器2302、存储装置2303、外部连接接口2304、摄像装置2306、传感器2307、麦克风2308、输入装置2309、显示装置2310、扬声器2311、无线通信接口2312、一个或多个天线开关2315、一个或多个天线2316、总线2317、电池2318以及辅助控制器2319。在一种实现方式中,此处的通信设备2300(或处理器2301)可以对应于上述发射设备或终端侧电子设备。
处理器2301可以为例如CPU或片上系统(SoC),并且控制通信设备2300的应用层和另外层的功能。存储器2302包括RAM和ROM,并且存储数据和由处理器2301执行的程序。存储装置2303可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口2304为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至通信设备2300的接口。
摄像装置2306包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器2307可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风2308将输入到通信设备2300的声音转换为音频信号。输入装置2309包括例如被配置为检测显示装置2310的 屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置2310包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示通信设备2300的输出图像。扬声器2311将从通信设备2300输出的音频信号转换为声音。
无线通信接口2312支持任何蜂窝通信方案(诸如LTE和LTE-Advanced),并且执行无线通信。无线通信接口2312通常可以包括例如BB处理器2313和RF电路2314。BB处理器2313可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路2314可以包括例如混频器、滤波器和放大器,并且经由天线2316来传送和接收无线信号。无线通信接口2312可以为其上集成有BB处理器2313和RF电路2314的一个芯片模块。如图6所示,无线通信接口2312可以包括多个BB处理器2313和多个RF电路2314。虽然图6示出其中无线通信接口2312包括多个BB处理器2313和多个RF电路2314的示例,但是无线通信接口2312也可以包括单个BB处理器2313或单个RF电路2314。
此外,除了蜂窝通信方案之外,无线通信接口2312可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口2312可以包括针对每种无线通信方案的BB处理器2313和RF电路2314。
天线开关2315中的每一个在包括在无线通信接口2312中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线2316的连接目的地。
天线2316中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口2312传送和接收无线信号。如图6所示,通信设备2300可以包括多个天线2316。虽然图6示出其中通信设备2300包括多个天线2316的示例,但是通信设备2300也可以包括单个天线2316。
此外,通信设备2300可以包括针对每种无线通信方案的天线2316。在此情况下,天线开关2315可以从通信设备2300的配置中省略。
总线2317将处理器2301、存储器2302、存储装置2303、外部连接接口2304、摄像装置2306、传感器2307、麦克风2308、输入装置2309、显示装置2310、扬声器2311、无线通信接口2312以及辅助控制器2319彼此连接。电池2318经由馈线向图6所示的通信设备2300的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器2319例如在睡眠模式下操作通信设备2300的最小必需功能。
第二示例
图7是示出可以应用本公开内容的技术的汽车导航设备2400的示意性配置的示例的框图。汽车导航设备2400包括处理器2401、存储器2402、全球定位系统(GPS)模块2404、传感器2405、数据接口2406、内容播放器2407、存储介质接口2408、输入装置2409、显示装置2510、扬声器2411、无线通信接口2413、一个或多个天线开关2416、一个或多个天线2417以及电池2418。在一种实现方式中,此处的汽车导航设备2400(或处理器2401)可以对应于发射设备或终端侧电子设备。
处理器2401可以为例如CPU或SoC,并且控制汽车导航设备2400的导航功能和另外的功能。存储器2402包括RAM和ROM,并且存储数据和由处理器2401执行的程序。
GPS模块2404使用从GPS卫星接收的GPS信号来测量汽车导航设备2400的位置(诸如纬度、经度和高度)。传感器2405可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口2406经由未示出的终端而连接到例如车载网络2421,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器2407再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被插入到存储介质接口2408中。输入装置2409包括例如被配置为检测显示装置2510的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置2510包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器2411输出导航功能的声音或再现的内容。
无线通信接口2413支持任何蜂窝通信方案(诸如LTE和LTE-Advanced),并且执行无线通信。无线通信接口2413通常可以包括例如BB处理器2414和RF电路2415。BB处理器2414可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路2415可以包括例如混频器、滤波器和放大器,并且经由天线2417来传送和接收无线信号。无线通信接口2413还可以为其上集成有BB处理器2414和RF电路2415的一个芯片模块。如图7所示,无线通信接口2413可以包括多个BB处理器2414和多个RF电路2415。虽然图7示出其中无线通信接口2413包括多个BB处理器2414和多个RF电路2415的示例,但是无线通信接口2413也可以包括单个BB处理器2414或单个RF电路2415。
此外,除了蜂窝通信方案之外,无线通信接口2413可以支持另外类型的无线通信 方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口2413可以包括BB处理器2414和RF电路2415。
天线开关2416中的每一个在包括在无线通信接口2413中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线2417的连接目的地。
天线2417中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口2413传送和接收无线信号。如图7所示,汽车导航设备2400可以包括多个天线2417。虽然图7示出其中汽车导航设备2400包括多个天线2417的示例,但是汽车导航设备2400也可以包括单个天线2417。
此外,汽车导航设备2400可以包括针对每种无线通信方案的天线2417。在此情况下,天线开关2416可以从汽车导航设备2400的配置中省略。
电池2418经由馈线向图7所示的汽车导航设备2400的各个块提供电力,馈线在图中被部分地示为虚线。电池2418累积从车辆提供的电力。
本公开内容的技术也可以被实现为包括汽车导航设备2400、车载网络2421以及车辆模块2422中的一个或多个块的车载系统(或车辆)2420。车辆模块2422生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络2421。
以上参照附图描述了本公开的示例性实施例,但是本公开当然不限于以上示例。本领域技术人员可在所附权利要求的范围内得到各种变更和修改,并且应理解这些变更和修改自然将落入本公开的技术范围内。
应当理解,根据本公开实施例的机器可读存储介质或程序产品中的机器可执行指令可以被配置为执行与上述设备和方法实施例相应的操作。当参考上述设备和方法实施例时,机器可读存储介质或程序产品的实施例对于本领域技术人员而言是明晰的,因此不再重复描述。用于承载或包括上述机器可执行指令的机器可读存储介质和程序产品也落在本公开的范围内。这样的存储介质可以包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
另外,应当理解,上述系列处理和设备也可以通过软件和/或固件实现。在通过软件和/或固件实现的情况下,在相关设备的存储介质存储构成相应软件的相应程序,当程序被执行时,能够执行各种功能。
例如,在以上实施例中包括在一个单元中的多个功能可以由分开的装置来实现。替选地,在以上实施例中由多个单元实现的多个功能可分别由分开的装置来实现。另 外,以上功能之一可由多个单元来实现。无需说,这样的配置包括在本公开的技术范围内。
在该说明书中,流程图中所描述的步骤不仅包括以顺序按时间序列执行的处理,而且包括并行地或单独地而不是必须按时间序列执行的处理。此外,甚至在按时间序列处理的步骤中,无需说,也可以适当地改变该顺序。
4、本公开的示例性实施例实现
根据本公开的实施例,可以想到各种实现本公开的概念的示例性实现方式,包括但不限于:
1、一种用于用户设备UE的电子设备,其中,所述电子设备包括:
处理电路,所述处理电路被配置为:
基于资源配置信息,确定可用于所述UE的侧链路传输的授权频段资源池和非授权频段资源池;以及
从所述授权频段资源池和所述非授权频段资源池中确定用于所述UE的侧链路传输的候选资源集合。
2、如实施例1所述的电子设备,其中,所述资源配置信息是预配置的和/或是由基站的信令动态地配置的。
3、如实施例1所述的电子设备,其中,当所述授权频段资源池与所述非授权频段资源池在时域不重叠时,所述处理电路被配置为:
从所述授权频段资源池与所述非授权频段资源池中的时域上在先的资源池中选择一个或多个候选资源,作为所述候选资源集合的至少一部分。
4、如实施例3所述的电子设备,其中,所述处理电路还被配置为:
从所述授权频段资源池与所述非授权频段资源池中的时域上在后的资源池中选择一个或多个附加候选资源,作为所述候选资源集合的至少一个附加部分。
5、如实施例1所述的电子设备,其中,当所述授权频段资源池与所述非授权频段 资源池在时域至少部分地重叠时,所述处理电路被配置为:
从以下操作中选择至少一个操作来执行:
与所述授权频段资源池相关联的资源感知操作,用于从所述授权频段资源池中选择第一候选资源集合;或
与所述非授权频段资源池相关联的先听后发操作,用于从所述非授权频段资源池中选择第二候选资源集合。
6、如实施例5所述的电子设备,其中,所述处理电路被配置为:
基于所述UE的能力来选择所述至少一个操作。
7、如实施例6所述的电子设备,其中,所述处理电路被配置为:
响应于所述UE的能力高于阈值条件,执行所述资源感知操作以及所述先听后发操作二者。
8、如实施例7所述的电子设备,其中,所述处理电路被配置为:
在所述先听后发操作之前开始执行所述资源感知操作。
9、如实施例7所述的电子设备,其中,所述处理电路被配置为:
并行地执行所述先听后发操作与所述资源感知操作。
10、如实施例9所述的电子设备,其中,所述处理电路被配置为:
响应于与所述侧链路传输相关联的优先级高于预定优先级阈值,并行执行所述资源感知操作与所述先听后发操作。
11、如实施例9所述的电子设备,其中,所述处理电路还被配置为:
预测数据包的到达时间;以及
基于所述预测的到达时间而执行所述先听后发操作。
12、如实施例7所述的电子设备,其中,所述资源感知操作包括资源排除操作,所述资源排除操作包括:
将与所述授权频段资源池中的可用资源集合中的每个资源相关联的测量结果与特定排除门限进行比较;以及
基于所述比较,从所述可用资源集合中排除一个或多个资源,以获得缩减的可用资源集合。
13、如实施例12所述的电子设备,其中,所述处理电路还被配置为:
响应于缩减的可用资源集合中的资源的数量小于指定的数量阈值,改变所述特定排除门限。
14、如实施例12所述的电子设备,其中,所述处理电路还被配置为:
响应于缩减的可用资源集合中的资源的数量小于指定的数量阈值,保持所述特定排除门限不变。
15、如实施例6所述的电子设备,其中,所述处理电路被配置为:
响应于所述UE的能力不高于阈值条件,选择所述资源感知操作和所述先听后发操作中的一者以执行。
16、如实施例15所述的电子设备,其中,所述处理电路被配置为:
基于以下各项中的至少一者来选择所述资源感知操作和所述先听后发操作中的所述一者:
与所述侧链路传输相关联的数据包的优先级;
所述数据包的大小;或
与所述数据包相关联的数据包延迟预算。
17、如实施例15所述的电子设备,其中,所述处理电路还被配置为:
响应于选择执行所述先听后发操作:
响应于所述先发后听操作的失败次数达到失败次数阈值:
停止执行所述先听后发操作,并且
执行所述资源感知操作。
18、如实施例17所述的电子设备,其中,所述失败次数阈值是基于与所述侧链路传输相关联的数据包的优先级而确定的。
19、如实施例18所述的电子设备,其中,所述资源配置信息的一部分包括所述指定失败次数阈值与数据包的优先级的映射信息。
20、如实施例1所述的电子设备,所述处理电路还被配置为:
从所述候选资源集合中选择一个或多个资源来执行所述UE的侧链路传输。
21、如实施例1所述的电子设备,其中,所述处理电路还被配置为:
从基站接收信令,所述信令指示所述UE启用所述授权频段资源池和/或所述非授权频段资源池;以及
启用所述信令所指示的资源池。
22、一种由用户设备UE执行的方法,其中,所述方法包括:
基于资源配置信息,确定可用于所述UE的侧链路传输的授权频段资源池和非授权频段资源池;以及
从所述授权频段资源池和所述非授权频段资源池中确定用于所述UE的侧链路传输的候选资源集合。
23、一种计算机可读存储介质,存储有一个或多个指令,所述一个或多个指令在由电子设备的一个或多个处理电路执行时,使得该电子设备执行如实施例22所述的方法。
24、一种计算机程序产品,包括计算机程序,所述计算机程序在被处理器执行时实现如实施例22所述的方法。
25、一种包括用于执行如实施例22所述的方法的构件的装置。

Claims (25)

  1. 一种用于用户设备UE的电子设备,其中,所述电子设备包括:
    处理电路,所述处理电路被配置为:
    基于资源配置信息,确定可用于所述UE的侧链路传输的授权频段资源池和非授权频段资源池;以及
    从所述授权频段资源池和所述非授权频段资源池中确定用于所述UE的侧链路传输的候选资源集合。
  2. 如权利要求1所述的电子设备,其中,所述资源配置信息是预配置的和/或是由基站的信令动态地配置的。
  3. 如权利要求1所述的电子设备,其中,当所述授权频段资源池与所述非授权频段资源池在时域不重叠时,所述处理电路被配置为:
    从所述授权频段资源池与所述非授权频段资源池中的时域上在先的资源池中选择一个或多个候选资源,作为所述候选资源集合的至少一部分。
  4. 如权利要求3所述的电子设备,其中,所述处理电路还被配置为:
    从所述授权频段资源池与所述非授权频段资源池中的时域上在后的资源池中选择一个或多个附加候选资源,作为所述候选资源集合的至少一个附加部分。
  5. 如权利要求1所述的电子设备,其中,当所述授权频段资源池与所述非授权频段资源池在时域至少部分地重叠时,所述处理电路被配置为:
    从以下操作中选择至少一个操作来执行:
    与所述授权频段资源池相关联的资源感知操作,用于从所述授权频段资源池中选择第一候选资源集合;或
    与所述非授权频段资源池相关联的先听后发操作,用于从所述非授权频段资源池中选择第二候选资源集合。
  6. 如权利要求5所述的电子设备,其中,所述处理电路被配置为:
    基于所述UE的能力来选择所述至少一个操作。
  7. 如权利要求6所述的电子设备,其中,所述处理电路被配置为:
    响应于所述UE的能力高于阈值条件,执行所述资源感知操作以及所述先听后发操作二者。
  8. 如权利要求7所述的电子设备,其中,所述处理电路被配置为:
    在所述先听后发操作之前开始执行所述资源感知操作。
  9. 如权利要求7所述的电子设备,其中,所述处理电路被配置为:
    并行地执行所述先听后发操作与所述资源感知操作。
  10. 如权利要求9所述的电子设备,其中,所述处理电路被配置为:
    响应于与所述侧链路传输相关联的优先级高于预定优先级阈值,并行执行所述资源感知操作与所述先听后发操作。
  11. 如权利要求9所述的电子设备,其中,所述处理电路还被配置为:
    预测数据包的到达时间;以及
    基于所述预测的到达时间而执行所述先听后发操作。
  12. 如权利要求7所述的电子设备,其中,所述资源感知操作包括资源排除操作,所述资源排除操作包括:
    将与所述授权频段资源池中的可用资源集合中的每个资源相关联的测量结果与特定排除门限进行比较;以及
    基于所述比较,从所述可用资源集合中排除一个或多个资源,以获得缩减的可用资源集合。
  13. 如权利要求12所述的电子设备,其中,所述处理电路还被配置为:
    响应于缩减的可用资源集合中的资源的数量小于指定的数量阈值,改变所述特定排除门限。
  14. 如权利要求12所述的电子设备,其中,所述处理电路还被配置为:
    响应于缩减的可用资源集合中的资源的数量小于指定的数量阈值,保持所述特定排除门限不变。
  15. 如权利要求6所述的电子设备,其中,所述处理电路被配置为:
    响应于所述UE的能力不高于阈值条件,选择所述资源感知操作和所述先听后发操作中的一者以执行。
  16. 如权利要求15所述的电子设备,其中,所述处理电路被配置为:
    基于以下各项中的至少一者来选择所述资源感知操作和所述先听后发操作中的所述一者:
    与所述侧链路传输相关联的数据包的优先级;
    所述数据包的大小;或
    与所述数据包相关联的数据包延迟预算。
  17. 如权利要求15所述的电子设备,其中,所述处理电路还被配置为:
    响应于选择执行所述先听后发操作:
    响应于所述先发后听操作的失败次数达到失败次数阈值:
    停止执行所述先听后发操作,并且
    执行所述资源感知操作。
  18. 如权利要求17所述的电子设备,其中,所述失败次数阈值是基于与所述侧链路传输相关联的数据包的优先级而确定的。
  19. 如权利要求18所述的电子设备,其中,所述资源配置信息的一部分包括所述指定失败次数阈值与数据包的优先级的映射信息。
  20. 如权利要求1所述的电子设备,所述处理电路还被配置为:
    从所述候选资源集合中选择一个或多个资源来执行所述UE的侧链路传输。
  21. 如权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    从基站接收信令,所述信令指示所述UE启用所述授权频段资源池和/或所述非授权频段资源池;以及
    启用所述信令所指示的资源池。
  22. 一种由用户设备UE执行的方法,其中,所述方法包括:
    基于资源配置信息,确定可用于所述UE的侧链路传输的授权频段资源池和非授权频段资源池;以及
    从所述授权频段资源池和所述非授权频段资源池中确定用于所述UE的侧链路传输的候选资源集合。
  23. 一种计算机可读存储介质,存储有一个或多个指令,所述一个或多个指令在由电子设备的一个或多个处理电路执行时,使得该电子设备执行如权利要求22所述的方法。
  24. 一种计算机程序产品,包括计算机程序,所述计算机程序在被处理器执行时实现如权利要求22所述的方法。
  25. 一种包括用于执行如权利要求22所述的方法的构件的装置。
PCT/CN2023/084278 2022-03-31 2023-03-28 用于侧链路的资源选择方法及相关设备 WO2023185797A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210337858.1 2022-03-31
CN202210337858.1A CN116939867A (zh) 2022-03-31 2022-03-31 用于侧链路的资源选择方法及相关设备

Publications (1)

Publication Number Publication Date
WO2023185797A1 true WO2023185797A1 (zh) 2023-10-05

Family

ID=88199156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/084278 WO2023185797A1 (zh) 2022-03-31 2023-03-28 用于侧链路的资源选择方法及相关设备

Country Status (2)

Country Link
CN (1) CN116939867A (zh)
WO (1) WO2023185797A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106162900A (zh) * 2016-08-15 2016-11-23 宇龙计算机通信科技(深圳)有限公司 非授权频段上的d2d通信方法、d2d通信装置、终端和基站
CN110475343A (zh) * 2018-05-10 2019-11-19 索尼公司 电子装置、无线通信方法和计算机可读介质
WO2021030031A1 (en) * 2019-08-14 2021-02-18 Qualcomm Incorporated Spatial resource pool techniques for multiple concurrent transmissions in sidelink wireless communications
CN112822778A (zh) * 2019-11-15 2021-05-18 联发科技股份有限公司 用于侧行链路传送的方法及用户设备
CN112930657A (zh) * 2018-11-02 2021-06-08 苹果公司 Nr v2x侧链路通信的资源分配和处理行为
CN113812177A (zh) * 2019-05-13 2021-12-17 华为技术有限公司 侧行链路免授权传输的感测和资源选择

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106162900A (zh) * 2016-08-15 2016-11-23 宇龙计算机通信科技(深圳)有限公司 非授权频段上的d2d通信方法、d2d通信装置、终端和基站
CN110475343A (zh) * 2018-05-10 2019-11-19 索尼公司 电子装置、无线通信方法和计算机可读介质
CN112930657A (zh) * 2018-11-02 2021-06-08 苹果公司 Nr v2x侧链路通信的资源分配和处理行为
CN113812177A (zh) * 2019-05-13 2021-12-17 华为技术有限公司 侧行链路免授权传输的感测和资源选择
WO2021030031A1 (en) * 2019-08-14 2021-02-18 Qualcomm Incorporated Spatial resource pool techniques for multiple concurrent transmissions in sidelink wireless communications
CN112822778A (zh) * 2019-11-15 2021-05-18 联发科技股份有限公司 用于侧行链路传送的方法及用户设备

Also Published As

Publication number Publication date
CN116939867A (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
EP3606164B1 (en) Electronic apparatus for wireless communication and wireless communication method
CN113396633B (zh) 用户设备、网络侧设备、无线通信方法和存储介质
TWI755472B (zh) 中繼通訊裝置、基地台、通訊方法及記錄媒體
US11997716B2 (en) Electronic device for wireless communication system, method and storage medium
RU2742926C2 (ru) Электронное устройство, устройство для обработки информации и способ обработки информации
WO2020063525A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
JP2020526077A (ja) 電子機器、無線通信装置、及び無線通信方法
US20220046705A1 (en) Wireless communication device and wireless communication method
JP2020527876A (ja) 電子装置及び無線通信方法
US10820337B2 (en) Device in wireless communication system, and wireless communication method
WO2019218909A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
CN116326139A (zh) 用于无线通信的电子设备、方法和存储介质
WO2016002332A1 (ja) 装置、方法及びプログラム
WO2021159999A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
KR20200116900A (ko) 전자 장치, 무선 통신 방법, 및 컴퓨터 판독가능 매체
WO2023185797A1 (zh) 用于侧链路的资源选择方法及相关设备
CN113852964A (zh) 电子设备、无线通信方法和非暂态计算机可读存储介质
CN107950046B (zh) 设备和方法
WO2021147713A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
US20170026848A1 (en) Apparatus
CN115968059A (zh) 基站、电子设备、通信方法和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23778162

Country of ref document: EP

Kind code of ref document: A1