WO2023185782A1 - 用于冰箱的引风风道总成以及具有其的冰箱 - Google Patents

用于冰箱的引风风道总成以及具有其的冰箱 Download PDF

Info

Publication number
WO2023185782A1
WO2023185782A1 PCT/CN2023/084219 CN2023084219W WO2023185782A1 WO 2023185782 A1 WO2023185782 A1 WO 2023185782A1 CN 2023084219 W CN2023084219 W CN 2023084219W WO 2023185782 A1 WO2023185782 A1 WO 2023185782A1
Authority
WO
WIPO (PCT)
Prior art keywords
air duct
damper
door frame
frame body
duct assembly
Prior art date
Application number
PCT/CN2023/084219
Other languages
English (en)
French (fr)
Inventor
冯磊
李波
周兆涛
任树飞
毛宝龙
伊智慧
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Publication of WO2023185782A1 publication Critical patent/WO2023185782A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/04Preventing the formation of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/08Removing frost by electric heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/14Collecting or removing condensed and defrost water; Drip trays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features

Definitions

  • the present invention relates to refrigeration equipment, in particular to an induced air duct assembly for a refrigerator and a refrigerator equipped with the same.
  • the induced air duct assembly is used to guide the heat exchange airflow flowing through the evaporator to a specific storage room to adjust the temperature of the storage room.
  • the rated effective capacity of a refrigerator is one of the key indicators that consumers pay close attention to when purchasing. There are many factors that affect the rated effective volume of a refrigerator, and the volume of the induced air duct assembly is one of the many factors.
  • An object of the present invention is to overcome at least one technical defect in the prior art and provide an air induction duct assembly for a refrigerator and a refrigerator having the same.
  • a further object of the present invention is to reduce the volume of the induced air duct assembly without affecting its inherent function, thereby maintaining a higher rated effective volume of the refrigerator.
  • Another further object of the present invention is to reduce or avoid wind resistance while reducing the volume of the induced air duct assembly.
  • Yet another further object of the present invention is to reduce or prevent the damper of the induced air duct assembly from being unable to open or close due to freezing.
  • an air duct assembly for a refrigerator including: a housing defining an air inlet and an air outlet and an air duct connected between the air inlet and the air outlet; and
  • the damper is placed obliquely in the air duct and is configured to be opened and closed in a controlled manner to open and close the air duct.
  • an installation section is formed in the air duct, and a positioning piece and an escape groove are provided in the installation section; and the positioning piece is configured so that the air door is tilted at a preset angle relative to the cross section of the installation section to avoid the
  • the slot is configured to provide the movement space required for the controlled opening process of the damper.
  • the positioning member is configured to form an included angle of 15 to 60° between the damper and the cross section of the installation section, so as to reduce the size of the housing and reduce the wind resistance of the damper.
  • the draft air duct assembly also includes: a wind door frame, which defines a ventilation opening and a door frame body enclosing the ventilation opening.
  • the door can be pivotally assembled on the door frame body to open or close the ventilation opening, thereby opening and closing the air duct; and the installation section is a horizontal air duct section within the air duct; the door frame body extends obliquely from bottom to top toward the inside of the air duct. , so that the damper assembled on it is tilted synchronously with it.
  • the positioning member includes a lower protrusion protruding downward from the top of the housing, and a chute portion inclined downwardly and recessed from the bottom of the housing; wherein the lower protrusion has a top portion for the door frame body to abut against it.
  • the inclined groove part has at least a part of the bottom of the door frame body to be inserted obliquely into it to realize the inclined downward concave inclined groove; the degree of inclination of the downward protruding inclined surface and the concave inclined groove is the same and common. Limit the inclination of the door frame body.
  • the door frame body is provided with an axis hole for the pivot shaft of the air door to be inserted into it to achieve rotatable matching;
  • the central axis of the pivot shaft is inclined at a preset angle and is parallel to the length direction of the door frame body;
  • the air door It is plate-shaped, and is configured to be arranged at a preset angle relative to the vertical surface when the vent is closed, and to rotate around the pivot axis toward the inside of the air duct when the vent is opened.
  • the air inlet is located at the lateral end of the casing, and the air outlet is located at the bottom of the casing, below the door frame body and the air door, and connected to the avoidance groove.
  • a confluence portion located below the door frame body and the damper is also formed in the installation section.
  • the confluence portion is connected to the escape groove and has a plurality of confluence surfaces extending downward and toward the escape groove.
  • the confluence surface is configured to allow dripping of its The condensed water on the air outlet flows to the avoidance groove and is discharged from the housing through the air outlet.
  • electric heating components are provided on the door frame body and the damper respectively, and the electric heating components are configured to controllably energize and generate heat to heat the door frame body and the damper.
  • a refrigerator including: any one of the above induced air duct assembly for the refrigerator.
  • the induced air duct assembly for a refrigerator of the present invention and the refrigerator equipped with the same can provide an angled air door in the casing of the induced air duct assembly and use the inclined air door to open and close the air duct. To a certain extent, the vertical space occupied by the air door is reduced, and the vertical size of the casing is reduced, thereby reducing its volume without affecting the inherent function of the air induction duct assembly, so that the refrigerator maintains a high rated effective volume.
  • the vertical size of the casing can be effectively reduced, and the vertical size of the casing can also be reduced. Keep the wind resistance at the damper within a reasonable range, thereby reducing or avoiding wind resistance while reducing the volume of the induced air duct assembly, so that the miniaturized induced air duct assembly still has a good air supply effect.
  • Adopting the solution of the present invention can reduce or avoid the air door of the induced air duct assembly from being unable to open and close due to freezing, which is beneficial to improving Reliability of the induced air duct assembly.
  • Figure 1 is a schematic structural diagram of an air induction duct assembly for a refrigerator according to one embodiment of the present invention
  • Figure 2 is a schematic exploded view of the air induction duct assembly for the refrigerator shown in Figure 1;
  • Figure 3 is a front view of a partial structure of the air induction duct assembly for the refrigerator shown in Figure 2;
  • Figure 4 is a front view of a partial structure of the air induction duct assembly for the refrigerator shown in Figure 3;
  • Figure 5 is a schematic structural diagram of a damper frame for an air induction duct assembly of a refrigerator according to one embodiment of the present invention
  • Figure 6 is a schematic structural diagram of a damper for an air induction duct assembly of a refrigerator according to one embodiment of the present invention
  • Figure 7 is a schematic structural view of the rear housing of the air induction duct assembly for the refrigerator according to one embodiment of the present invention.
  • Figure 8 is a schematic structural view of the front housing of the air induction duct assembly for the refrigerator according to one embodiment of the present invention.
  • Figure 9 is a schematic structural diagram of a refrigerator according to an embodiment of the present invention.
  • Figure 10 is a schematic structural diagram of a partial structure of a refrigerator according to an embodiment of the present invention.
  • Figure 1 is a schematic structural diagram of an air induction duct assembly 210 for a refrigerator 10 according to an embodiment of the present invention.
  • the induced air duct assembly 210 of this embodiment is used to guide air.
  • it can be used to guide the heat exchange airflow flowing through the evaporator to a specific storage room to adjust the temperature of the storage room.
  • FIG. 2 is a schematic exploded view of the air induction duct assembly 210 for the refrigerator 10 shown in FIG. 1 .
  • the induced air duct assembly 210 may generally include a housing 211 and a damper 213 .
  • the housing 211 defines an air inlet 218 and an air outlet 212 as well as an air channel connected between the air inlet 218 and the air outlet 212 .
  • the air inlet 218 is used to allow external airflow to flow into the air duct.
  • the air outlet 212 is used to allow the air flowing through the air duct to flow out of the air duct.
  • the air inlet 218 may be connected to the cold supply end.
  • the cold supply end may be a heat exchange cavity for generating heat exchange airflow or an evaporator installation cavity.
  • the air outlet 212 may be connected to a cold receiving end, such as a storage room.
  • the damper 213 is placed obliquely in the air duct, and is configured to be controlled and openable to open and close the air duct. For example, when the damper 213 is in a closed state, the damper 213 can be blocked in the air duct to cut off the air duct. When the air duct needs to be guided, the damper 213 can be switched to an open state through posture adjustment or position change to clear the air duct.
  • offset may refer to a deviation from a vertical attitude setting within a certain range, or may refer to a deviation from a horizontal attitude setting within a certain range.
  • the vertical space occupied by the damper 213 can be reduced to a certain extent.
  • the vertical size of the casing 211 reduces the volume of the induced air duct assembly 210 without affecting its inherent function, allowing the refrigerator 10 to maintain a higher rated effective volume.
  • the housing 211 may include a front housing 211a and a rear housing 211b that are assembled with each other.
  • the front housing 211a and the rear housing 211b can clamp the damper frame 215 described below in the front-rear direction, further improving the assembly stability of the damper frame 215.
  • FIG. 3 is a front view of a partial structure of the air induction duct assembly 210 for the refrigerator 10 shown in FIG. 2 , with the front shell 211a hidden in the figure.
  • FIG. 4 is a front view of a partial structure of the air induction duct assembly 210 for the refrigerator 10 shown in FIG. 3 , with the damper frame 215 and the damper 213 hidden in the figure.
  • an installation section is formed in the air duct, and a positioning member 280 and an escape groove 290 are provided in the installation section.
  • the positioning member 280 is used to tilt the damper 213 at a preset angle relative to the cross section of the installation section.
  • the escape groove 290 provides the movement space required for the controlled opening process of the damper 213.
  • the preset angle can refer to any angle within the range of 0 to 90°.
  • the positioning part 280 is used to install the damper 213.
  • the damper 213 may be directly or indirectly fixedly connected to the positioning part 280, or directly or indirectly assembled to the positioning part 280 to be tilted at a preset angle.
  • the avoidance groove 290 is used to allow the damper 213 to perform opening and closing actions therein, thereby avoiding mechanical interference in the opening and closing process of the damper 213 .
  • the cross-section of the installation section refers to the cross-section of the installation section.
  • the cross section of the installation section may be substantially a vertical plane.
  • the cross section of the installation section may be approximately a horizontal plane.
  • the mounting section can be directly molded into the housing 211 .
  • Using the installation section to position the damper 213 and allowing the damper 213 to have sufficient space for movement can simplify the assembly structure of the damper 213 and ensure that the tilted damper 213 can still perform its normal opening and closing functions.
  • the installation section is configured to form an included angle of 15 to 60° between the damper 213 and the cross section of the installation section, so as to reduce the size of the housing 211 and reduce the wind resistance of the damper 213 .
  • the included angle between the damper 213 and the cross section of the installation section may be 20°, 30° or 45°, but is not limited thereto.
  • the vertical size of the housing 211 can be effectively reduced, and the wind resistance at the damper 213 can be within a reasonable range, thereby reducing the total length of the induced air duct. into 210 volumes while reducing or avoiding the production of Wind resistance enables the small-sized induced air duct assembly 210 to still have a good air supply effect.
  • the installation section is a horizontal air duct section within the air duct.
  • the damper 213 extends obliquely toward the inside of the air duct from bottom to top.
  • the air inlet 218 may be located at one lateral end of the housing 211.
  • the mounting section may be located within a horizontal air duct section disposed adjacent the air inlet 218 .
  • the damper 213 can extend inwardly along the air duct from bottom to top.
  • Figure 5 is a schematic structural diagram of the air door frame 215 used in the air induction duct assembly 210 of the refrigerator 10 according to one embodiment of the present invention.
  • the induced air duct assembly 210 may further include a damper frame 215, which defines a vent 215a and a door frame body 215b enclosing the vent 215a.
  • the damper 213 is pivotably assembled.
  • the ventilation opening 215a is opened or closed on the door frame body 215b to open or close the air duct.
  • the damper frame 215 and the damper 213 form a damper assembly.
  • the activity space required for the opening and closing process of the damper 213 can be reduced as much as possible, and the airtightness of the air duct can be ensured.
  • the positioning member 280 includes a lower protruding portion 281 protruding downward from the top of the housing 211.
  • the lower protruding portion 281 has a lower protruding inclined surface 281a for the top of the door frame body 215b to abut against to achieve inclination.
  • the plane of the downward protruding inclined surface 281a and the plane of the damper 213 in the closed state may be arranged parallel to each other.
  • the inclination degree of the downward protruding inclined surface 281a may be the same as the inclination degree of the damper 213 and the inclination degree of the door frame body 215b.
  • the inclination angle of the downwardly protruding inclined surface 281a determines the inclination angle of the door frame body 215b, and further determines the inclination angle of the damper 213.
  • the inclination angle of the downward protruding inclined surface 281a can be changed.
  • the positioning member 280 also includes a chute portion 282 that is inclined downward from the bottom of the housing 211.
  • the chute portion 282 has a concave inclined groove 282a into which at least a portion of the bottom of the door frame body 215b is obliquely inserted to achieve inclination.
  • the downward protruding inclined surface 281a and the concave inclined groove 282a have the same inclination degree, and jointly define the inclination degree of the door frame body 215b.
  • an annular convex rib can be formed on the outer surface of the door frame body 215b, and the size of the concave inclined groove 282a can be adapted to the shape of the annular convex rib, so that the bottom of the annular convex rib can be inserted into the concave inclined groove 282a. , to fix the door frame body 215b, and make the door frame body 215b tilt according to the preset angle.
  • the door frame body 215b can be stably tilted into the housing 211, which is beneficial to improving the stability of the door frame body 215b.
  • only “one insertion that is, inserting the bottom of the annular convex edge of the door frame body 215b obliquely into the concave inclined groove 282a)
  • “one leaning” that is, making the top of the door frame body 215b It can be pressed against the downward protruding inclined surface 281a).
  • the method is simple, the operation is convenient, and it saves time and effort.
  • the door frame body 215b is provided with an axis hole 215c for the pivot axis 213a of the air door 213. Insert into it to achieve a rotatable fit.
  • the central axis of the pivot shaft 213a is inclined at a preset angle and parallel to the length direction of the door frame body 215b.
  • the pivot axis 213a of the damper 213 may be disposed on the damper 213, extend along the length direction of the damper 213, and be disposed at one end of the damper 213.
  • FIG. 6 is a schematic structural diagram of the damper 213 used in the air induction duct assembly 210 of the refrigerator 10 according to an embodiment of the present invention.
  • the damper 213 may be plate-shaped, and is configured to be disposed at a preset angle relative to the vertical plane when closing the vent 215a, and to rotate around the pivot axis 213a toward the inside of the air duct when opening the vent 215a.
  • the inner side of the air duct refers to the side away from the air inlet 218 .
  • the air door 213 can be rotated around the pivot axis 213a toward the inner side of the air duct during the process of opening the vent 215a.
  • the air door assembly can be arranged close to the air inlet 218 and the air door 213 can be avoided as much as possible. Mechanical interference occurs during rotation.
  • the air inlet is located at the lateral end of the housing 211
  • the air outlet 212 is located at the bottom of the housing 211 , below the door frame body 215 b and the damper 213 , and communicates with the avoidance groove 290 .
  • a confluence portion located below the door frame body 215b and the damper 213 is also formed in the installation section.
  • the confluence portion is connected to the avoidance groove 290 and has a plurality of confluence surfaces extending downward and toward the avoidance groove 290.
  • the confluence surfaces are configured to allow dripping to occur.
  • the condensed water flows to the escape groove 290 and is discharged from the housing 211 through the air outlet 212 .
  • Figure 7 is a schematic structural diagram of the rear housing 211b of the air induction duct assembly 210 of the refrigerator 10 according to one embodiment of the present invention. The figure shows multiple converging surfaces of the converging portion.
  • connection method between the converging surface and the escape groove 290 can be set according to actual needs, as long as the condensed water flowing through the converging surface can be converged to the avoidance groove 290 .
  • the escape groove 290 of this embodiment may include the bottom wall and the top wall of the installation section and the space between them.
  • Figure 8 is a schematic structural diagram of the front housing 211a of the air induction duct assembly 210 of the refrigerator 10 according to one embodiment of the present invention, and the avoidance groove 290 is shown in the figure.
  • the busing surface includes a first busing surface 231 , a second busing surface 232 , a third busing surface 233 and a fourth busing surface 234 .
  • the first converging surface 231 may be a vertical surface and is formed on the outer wall of the concave inclined groove 282a to reduce or avoid condensation water formed on the damper assembly from being deposited in the housing 211.
  • the second converging surface 232 is an inclined surface, and the plane where it is located is The second converging surface 232 is perpendicular to the plane where the damper 213 is in the closed state.
  • the second converging surface 232 is in contact with the bottom of the door frame body 215b, and is used to allow the condensed water formed on the door frame body 215b to flow along its surface and be discharged.
  • the third converging surface 233 is an inclined plane, and its inclination degree is greater than any value in the range of 4 to 10°.
  • the third converging surface 233 connects the ends of the first converging surface 231 and the second converging surface 232 and is used to connect the first converging surface.
  • the condensed water derived from the surface 231 and the second converging surface 232 is guided to the bottom wall of the escape groove 290 , and flows out of the housing 211 through the air outlet 212 .
  • the fourth converging surface 234 is an inclined plane, and its plane is parallel to the plane of the damper 213 in the closed state.
  • the top end of the fourth converging surface 234 is connected to the bottom of the door frame body 215b, and the bottom end of the fourth converging surface 234 is connected to the bottom wall of the escape groove 290, for allowing the condensed water formed on the door frame body 215b to flow along its surface. and discharged to the escape groove 290.
  • the condensed water that flows into the air outlet 212 can flow downward from the air outlet 212 out of the housing 211 .
  • the air outlet 212 of the induced air duct assembly 210 may be connected to the air flow inlet of another induced air duct assembly 210 .
  • the condensed water discharged from the housing 211 from the air outlet 212 can flow downward into the air duct of another air induction duct assembly 210. Under the action of the air flow, the evaporation of the condensed water can be accelerated, thereby completing the discharge and treatment of the condensed water.
  • the avoidance groove 290 not only provides an escape space for the opening and closing of the inclined damper 213, but also allows the condensed water to flow to its recess, and then flow downward through the air outlet 212, and naturally evaporates and dissipates during the flow process, which can reduce Or to prevent the condensed water from being frozen again and affecting the opening and closing of the damper 213.
  • the minimum distance between the bottom wall of the escape groove 290 and the damper 213 needs to be greater than or equal to any value in the range of 1 to 10 mm.
  • electric heating components are provided on the door frame body 215b and the damper 213 respectively, and the electric heating components are configured to controllably energize and generate heat to heat the door frame body 215b and the damper 213.
  • the electrical heating component may be a heating wire.
  • the heating wire can be wound around the door frame body 215b or the damper 213, or can be embedded in the door frame body 215b or the damper 213.
  • the damper assembly By arranging an electric heating component on the damper assembly, the damper assembly can be defrosted regularly to keep the damper 213 in a better state, thereby performing the opening and closing function normally.
  • FIG 9 is a schematic structural diagram of the refrigerator 10 according to one embodiment of the present invention.
  • the refrigerator 10 may generally include the induced air duct assembly 210 as in any of the above embodiments.
  • the induced air duct assembly 210 is used to guide air.
  • it can be provided in an inner bag, and is used to guide the heat exchange airflow from the outside of the inner bag to the storage compartment defined by the inner bag. Regulate the temperature of storage compartments.
  • Figure 10 is a schematic structural diagram of a partial structure of the refrigerator 10 according to one embodiment of the present invention.
  • the refrigerator 10 may further include an inner bladder 320 for assembling with the box shell of the refrigerator 10 to form the box body 110 .
  • Figure 10 shows the liner 320 equipped with the induced air duct assembly 210.
  • the inner bladder 320 is formed with an air duct installation area for installing the air duct assembly 210 and a low temperature storage area 322 located in front of the air duct installation area.
  • the low-temperature storage area 322 of the liner 320 can receive heat exchange airflow from the outside.
  • the heat exchange airflow can come from another liner adjacent to the liner 320, and Share the cooling capacity of the evaporators installed in adjacent liner. It is not necessary to install a separate evaporator in the inner tank 320 equipped with the induced air duct assembly 210, which can increase the effective storage volume of the inner tank 320 to a certain extent.
  • the induced air duct assembly 210 for the refrigerator 10 of the present invention and the refrigerator 10 provided with the same are provided with an inclined damper 213 in the housing 211 of the induced air duct assembly 210 and utilize the inclined damper 213 Opening and closing the air duct can reduce the vertical space occupied by the damper 213 to a certain extent and reduce the vertical size of the housing 211, thereby reducing its volume without affecting the inherent function of the induced air duct assembly 210. , so that the refrigerator 10 maintains a higher rated effective volume. At the same time, it can also reduce or prevent the air door 213 of the induced air duct assembly 210 from being unable to open or close due to freezing, which is beneficial to improving the reliability of the induced air duct assembly 210.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

本发明提供了一种用于冰箱的引风风道总成以及具有其的冰箱,其中,引风风道总成包括壳体和风门,壳体限定出进风口和出风口以及连接于二者之间的风道,风门斜置于风道内,且配置成受控可开闭地设置以通断风道。本发明可以在不影响引风风道总成固有功能的情况下减小其体积,使冰箱保持较高的额定有效容积。

Description

用于冰箱的引风风道总成以及具有其的冰箱 技术领域
本发明涉及制冷设备,特别是涉及一种用于冰箱的引风风道总成以及具有其的冰箱。
背景技术
在制冷设备领域,引风风道总成用于将流经蒸发器的换热气流导引至特定的储物间室,以调节储物间室的温度。
冰箱的额定有效容积是消费者在选购时十分关注的关键指标之一。影响冰箱额定有效容积的因素众多,而引风风道总成的体积是众多因素之一。
发明人认识到,为尽可能地扩大冰箱的有效容积,显然需要尽可能地减小引风风道总成等其他部件的体积。因此,如何在不影响引风风道总成固有功能的情况下减小其体积,成为本领域技术人员亟待解决的技术问题。
本背景技术所公开的上述信息仅仅用于增加对本申请背景技术的理解,因此,其可能包括不构成本领域普通技术人员已知的现有技术。
发明内容
本发明的一个目的是要克服现有技术中的至少一个技术缺陷,提供一种用于冰箱的引风风道总成以及具有其的冰箱。
本发明的一个进一步的目的是在不影响引风风道总成固有功能的情况下减小其体积,从而使冰箱保持较高的额定有效容积。
本发明的另一个进一步的目的是在减小引风风道总成体积的同时减少或避免产生风阻。
本发明的又一个进一步的目的是减少或避免引风风道总成的风门因发生冻结而无法开闭。
根据本发明的一方面,提供了一种用于冰箱的引风风道总成,包括:壳体,其限定出进风口和出风口以及连接于进风口和出风口之间的风道;和风门,斜置于风道内,且配置成受控可开闭地设置,以通断风道。
可选地,风道内形成有安装区段,安装区段内设置有定位件和避让槽;且定位件配置成使风门相对于安装区段的横截面呈预设角度地斜置其上,避让槽被配置成提供风门受控打开过程所需的活动空间。
可选地,定位件配置成使风门与安装区段的横断面之间形成15~60°的夹角,以减小壳体的尺寸且降低风门的风阻。
可选地,引风风道总成还包括:风门框,其限定出通气口以及围合出通气口的门框本体,风 门可枢转地装配于门框本体以打开或封闭通气口,从而通断风道;且安装区段为风道内的水平风道区段;门框本体自下而上地朝向风道的内侧倾斜延伸,使得装配其上的风门与其同步斜置。
可选地,定位件包括自壳体的顶部向下突出的下突部、以及自壳体的底部向下倾斜凹陷的斜槽部;其中下突部具有供门框本体的顶部抵靠其上以实现斜置的下突倾斜面,斜槽部具有供门框本体的底部的至少一部分斜插其中以实现斜置的下凹倾斜槽;下突倾斜面和下凹倾斜槽的倾斜程度相同,且共同限定门框本体的倾斜程度。
可选地,门框本体上开设有轴孔,以供风门的枢转轴插入其中从而实现可转动地配合;枢转轴的中心轴线呈预设角度地斜置,且平行于门框本体的长度方向;风门为板状,其配置成在封闭通气口时相对于竖直面呈预设角度地设置,且在打开通气口的过程中绕枢转轴朝向风道的内侧转动。
可选地,进风口位于壳体的横向端部,出风口位于壳体的底部,且位于门框本体和风门的下方,并连通避让槽。
可选地,安装区段内还形成有位于门框本体和风门下方的汇流部,汇流部连通避让槽,且具有向下且朝向避让槽延伸的多个汇流面,汇流面配置成使得滴落其上的冷凝水向避让槽汇流,从而自出风口排出壳体。
可选地,门框本体和风门上分别设置有电加热部件,电加热部件配置成受控地通电产热,以加热门框本体和风门。
根据本发明的另一方面,还提供了一种冰箱,包括:如以上任一项的用于冰箱的引风风道总成。
本发明的用于冰箱的引风风道总成以及具有其的冰箱,通过在引风风道总成的壳体内设置斜置的风门,并利用斜置的风门通断风道,可在一定程度上减小风门所占用的竖向空间,缩小壳体的竖向尺寸,从而在不影响引风风道总成固有功能的情况下减小其体积,使冰箱保持较高的额定有效容积。
进一步地,本发明的用于冰箱的引风风道总成以及具有其的冰箱,当风门按照15~60°的预设角度倾斜设置时,既可有效缩小壳体的竖向尺寸,还可使风门处的风阻处于合理范围内,从而在减小引风风道总成体积的同时减少或避免产生风阻,使体积小型化的引风风道总成仍然具备良好的送风效果。
进一步地,本发明的用于冰箱的引风风道总成以及具有其的冰箱,通过使风门倾斜设置,风门上的凝露可以顺势下流并汇集至指定位置,风门几乎不会滞留任何水分,因而不会发生冻结。采用本发明的方案,可以减少或避免引风风道总成的风门因发生冻结而无法开闭,这有利于提高 引风风道总成的可靠性。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的用于冰箱的引风风道总成的示意性结构图;
图2是图1所示的用于冰箱的引风风道总成的示意性分解图;
图3是图2所示的用于冰箱的引风风道总成的部分结构的主视图;
图4是图3所示的用于冰箱的引风风道总成的部分结构的主视图;
图5是根据本发明一个实施例的用于冰箱的引风风道总成的风门框的示意性结构图;
图6是根据本发明一个实施例的用于冰箱的引风风道总成的风门的示意性结构图;
图7是根据本发明一个实施例的用于冰箱的引风风道总成的后壳体的示意性结构图;
图8是根据本发明一个实施例的用于冰箱的引风风道总成的前壳体的示意性结构图;
图9是根据本发明一个实施例的冰箱的示意性结构图;
图10是根据本发明一个实施例的冰箱的部分结构的示意性结构图。
具体实施方式
图1是根据本发明一个实施例的用于冰箱10的引风风道总成210的示意性结构图。
本实施例的引风风道总成210用于导风,例如可以用于将流经蒸发器的换热气流导引至特定的储物间室,以调节储物间室的温度。
图2是图1所示的用于冰箱10的引风风道总成210的示意性分解图。
引风风道总成210一般性地可包括壳体211和风门213。其中,壳体211限定出进风口218和出风口212以及连接于进风口218和出风口212之间的风道。
进风口218用于允许外部气流经其流入风道。出风口212则用于允许流经风道的气流经其流出风道。进风口218可以连通冷量供应端,例如冷量供应端可以为用于产生换热气流的换热腔或者蒸发器安装腔。出风口212可以连通冷量接收端,例如储物间室。
风门213斜置于风道内,且配置成受控可开闭地设置,以通断风道。例如,当风门213处于关闭状态时,风门213可以堵塞在风道内从而切断风道,而当需要导通风道时,风门213可以通过姿态调整或者位置变换切换至打开状态,从而疏通风道。
需要说明的是,上述“斜置”是相对于竖直姿态或者水平姿态而言的。“偏置”可以指在一定范围内偏离于竖直姿态设置,或者可以指在一定范围内偏离于水平姿态设置。
通过在引风风道总成210的壳体211内设置斜置的风门213,并利用斜置的风门213通断风道,可在一定程度上减小风门213所占用的竖向空间,缩小壳体211的竖向尺寸,从而在不影响引风风道总成210固有功能的情况下减小其体积,使冰箱10保持较高的额定有效容积。
当壳体211的竖向尺寸缩小时,可以在引风风道总成210的上方或者下方避让出较多空间,这些空间可以用来安装冰箱10的其他部件,使冰箱10若干个部件的安装布局更加紧凑,从而可以腾出更多空间来储物。
壳体211可以包括相互装配的前壳体211a和后壳体211b。前壳体211a和后壳体211b可以在前后方向上夹持下述风门框215,进一步提高风门框215的装配稳定性。
图3是图2所示的用于冰箱10的引风风道总成210的部分结构的主视图,图中隐去了前壳体211a。图4是图3所示的用于冰箱10的引风风道总成210的部分结构的主视图,图中隐去了风门框215和风门213。
在一些可选的实施例中,风道内形成有安装区段,安装区段内设置有定位件280和避让槽290。其中,定位件280用于使风门213相对于安装区段的横截面呈预设角度地斜置其上。避让槽290提供风门213受控打开过程所需的活动空间。预设角度可以指0~90°范围内的任意角度。
换言之,定位件280用于安装风门213,风门213可以直接或间接地与定位件280固定连接,或者直接或间接地装配至定位件280,以呈预设角度地倾斜定位。避让槽290用于允许风门213在其中执行开闭动作,避免风门213的开闭过程发生机械干涉。
安装区段的横截面是指安装区段的截断面。例如,当安装区段在风道内所属的区段沿水平方向延伸时,安装区段的横截面大致可以为竖直面。当安装区段在风道内所属的区段沿竖直方向延伸时,安装区段的横截面大致可以为水平面。
通过对成型模具进行改进,可以直接在壳体211内成型出安装区段。利用安装区段定位风门213,并使风门213具有足够的活动空间,可以简化风门213的装配结构,且保证斜置后的风门213仍能正常发挥开闭功能,
在一些可选的实施例中,安装区段配置成使风门213与安装区段的横断面之间形成15~60°的夹角,以减小壳体211的尺寸且降低风门213的风阻。例如,风门213与安装区段的横断面之间形成可以形成20°、30°或者45°的夹角,但不限于此。
当风门213按照15~60°的预设角度倾斜设置时,既可有效缩小壳体211的竖向尺寸,还可使风门213处的风阻处于合理范围内,从而在减小引风风道总成210体积的同时减少或避免产生 风阻,使体积小型化的引风风道总成210仍然具备良好的送风效果。
在一些可选的实施例中,安装区段为风道内的水平风道区段。风门213自下而上地朝向风道内侧倾斜延伸。例如,进风口218可以位于壳体211的横向一端。安装区段可以位于邻近进风口218设置的水平风道区段内。且风门213可以自下而上地沿风道向内倾斜延伸。
图5是根据本发明一个实施例的用于冰箱10的引风风道总成210的风门框215的示意性结构图。
在一些可选的实施例中,引风风道总成210还可以进一步地包括风门框215,其限定出通气口215a以及围合出通气口215a的门框本体215b,风门213可枢转地装配于门框本体215b以打开或封闭通气口215a,从而通断风道。通过装配,风门框215和风门213形成风门组件。
通过使风门213可枢转地装配于门框本体215b,可以尽可能地减少风门213的开闭过程所需的活动空间,且保证风道的密闭性。
定位件280包括自壳体211的顶部向下突出的下突部281,下突部281具有供门框本体215b的顶部抵靠其上以实现斜置的下突倾斜面281a。
例如,在一些可选的实施例中,下突倾斜面281a所在平面与处于关闭状态下的风门213所在平面可以平行设置。下突倾斜面281a的倾斜程度与风门213的倾斜程度以及门框本体215b的倾斜程度可以相同。
下突倾斜面281a的倾斜角度决定门框本体215b的倾斜角度,进而决定风门213的倾斜角度。当需要调整风门213的倾斜角度时,可以变换下突倾斜面281a的倾斜角度。
定位件280还包括自壳体211的底部向下倾斜凹陷的斜槽部282,斜槽部282具有供门框本体215b的底部的至少一部分斜插其中以实现斜置的下凹倾斜槽282a。下突倾斜面281a和下凹倾斜槽282a的倾斜程度相同,且共同限定出门框本体215b的倾斜程度。
例如,门框本体215b的外表面可以形成有环状凸棱,下凹倾斜槽282a的尺寸可以与环状凸棱的外形相适配,使得环状凸棱的底部可以插入下凹倾斜槽282a内,以固定门框本体215b,且使门框本体215b按照预设角度斜置。
利用下突倾斜面281a和下凹倾斜槽282a分别定位并固定门框本体215b的顶部和底部,可使门框本体215b稳固地斜置于壳体211内,有利于提高门框本体215b的稳定性。在装配门框本体215b的过程中,仅需要“一插(即,使门框本体215b的环状凸棱的底部斜插入下凹倾斜槽282a内)”“一靠(即,使门框本体215b的顶部抵靠于下突倾斜面281a上)”即可,方法简单,操作便捷,省时省力。
在一些可选的实施例中,门框本体215b上开设有轴孔215c,以供风门213的枢转轴213a 插入其中从而实现可转动地配合。枢转轴213a的中心轴线呈预设角度地斜置,且平行于门框本体215b的长度方向。
例如,风门213的枢转轴213a可以设置在风门213上,且沿风门213的长度方向延伸,并设置在风门213的一端。
图6是根据本发明一个实施例的用于冰箱10的引风风道总成210的风门213的示意性结构图。风门213可以为板状,其配置成在封闭通气口215a时相对于竖直面呈预设角度地设置,且在打开通气口215a的过程中绕枢转轴213a朝向风道的内侧转动。其中,风道的内侧是指远离进风口218的一侧。
由于风道的内侧空间较为充足,使风门213在打开通气口215a的过程中绕枢转轴213a朝向风道的内侧转动,可以在靠近进风口218的位置布置风门组件,且尽可能地避免风门213在转动时发生机械干涉。
需要强调的是,通过使风门213倾斜设置,风门213上的凝露可以顺势下流并汇集至指定位置,风门213几乎不会滞留任何水分,因而不会发生冻结。以上实施例的各个方案,可以减少或避免引风风道总成210的风门213因发生冻结而无法开闭,因此还有利于提高引风风道总成210的可靠性。
在一些可选的实施例中,进风口位于壳体211的横向端部,出风口212位于壳体211的底部,且位于门框本体215b和风门213的下方,并连通避让槽290。
安装区段内还形成有位于门框本体215b和风门213下方的汇流部,汇流部连通避让槽290,且具有向下且朝向避让槽290延伸的多个汇流面,汇流面配置成使得滴落其上的冷凝水向避让槽290汇流,从而自出风口212排出壳体211。
图7是根据本发明一个实施例的用于冰箱10的引风风道总成210的后壳体211b的示意性结构图,图中示出了汇流部的多个汇流面。
汇流面与避让槽290之间的连通方式可以根据实际需要进行设置,只要保证流经汇流面的冷凝水能够汇流至避让槽290即可。本实施例的避让槽290可以包括安装区段的底壁和顶壁以及二者之间的空间。
图8是根据本发明一个实施例的用于冰箱10的引风风道总成210的前壳体211a的示意性结构图,图中示出了避让槽290。
在一些可选的实施例中,汇流面包括第一汇流面231、第二汇流面232、第三汇流面233和第四汇流面234。其中,第一汇流面231可以为竖直面,且形成于下凹倾斜槽282a的外侧壁上,用于减少或避免风门组件上形成的冷凝水淤积在壳体211内。第二汇流面232为斜面,其所在平 面垂直于关闭状态下的风门213所在平面,该第二汇流面232与门框本体215b的底部接触,用于使门框本体215b上所形成的冷凝水沿其表面流动并排出。第三汇流面233为斜面,且其倾斜程度大于4~10°范围内的任意值,该第三汇流面233连接第一汇流面231和第二汇流面232的末端,用于将第一汇流面231和第二汇流面232所导出的冷凝水导向避让槽290的底壁,并经出风口212流出壳体211。第四汇流面234为斜面,其所在平面平行于关闭状态下的风门213所在平面。该第四汇流面234的顶端连接至门框本体215b的底部,且第四汇流面234的底端连接至避让槽290的底壁,用于使门框本体215b上所形成的冷凝水沿其表面流动并排出至避让槽290。汇流至出风口212的冷凝水可以自出风口212向下流出壳体211。
在一些可选的实施例中,引风风道总成210的出风口212可以连接至另一引风风道总成210的气流入口。自出风口212排出壳体211的冷凝水可以向下流入另一引风风道总成210的风道内,在气流的作用下,可以加速冷凝水的蒸发,从而完成冷凝水的排放和处理。
避让槽290不仅为斜置风门213的开闭提供避让空间,也使冷凝水可汇流至其凹陷处,继而经出风口212向下流动,并在流动的过程中自然蒸发而消散,这可以减少或避免冷凝水再次受冷冻结而影响风门213的开闭。
为避免避让槽290干涉风门213的开闭,避让槽290的底壁与风门213之间的最小距离需大于等于1~10mm范围内的任意值。
在一些可选的实施例中,门框本体215b和风门213上分别设置有电加热部件,电加热部件配置成受控地通电产热,以加热门框本体215b和风门213。
例如,电加热部件可以为加热丝。加热丝可以缠绕于门框本体215b或者风门213,或者可以嵌设于门框本体215b或者风门213。
通过在风门组件上布置电加热部件,可以针对风门组件定期化霜,使风门213保持较佳状态,从而正常执行开闭功能。
在了解本实施例文字介绍的基础上,本领域技术人员应当易于获知电加热部件的结构以及电加热部件与门框本体215b或者风门213之间的连接方式,因此,附图中未予标识。
图9是根据本发明一个实施例的冰箱10的示意性结构图。冰箱10一般性地可包括如以上任一实施例的引风风道总成210。该引风风道总成210用于导风,例如可以设置于一内胆内,并用于将来自该内胆外部的换热气流导引至该内胆所限定出的储物间室,以调节储物间室的温度。
图10是根据本发明一个实施例的冰箱10的部分结构的示意性结构图。在一些实施例中,冰箱10还可以进一步地包括内胆320,用于与冰箱10的箱壳装配,形成箱体110。图10示出了装配有引风风道总成210的内胆320。
内胆320形成有用于安装引风风道总成210的风道安装区以及位于风道安装区前侧的低温储存区322。
在引风风道总成210的作用下,内胆320的低温储存区322可以接收来自外部的换热气流,例如,换热气流可以来自与该内胆320相邻的另一内胆,并共用相邻内胆所安装蒸发器的冷量。装配有引风风道总成210的内胆320之内可以不必单独安装蒸发器,这可以在一定程度上增大内胆320的有效储物容积。
本发明的用于冰箱10的引风风道总成210以及具有其的冰箱10,通过在引风风道总成210的壳体211内设置斜置的风门213,并利用斜置的风门213通断风道,可在一定程度上减小风门213所占用的竖向空间,缩小壳体211的竖向尺寸,从而在不影响引风风道总成210固有功能的情况下减小其体积,使冰箱10保持较高的额定有效容积。同时,还可以减少或避免引风风道总成210的风门213因发生冻结而无法开闭,这有利于提高引风风道总成210的可靠性。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种用于冰箱的引风风道总成,其特征在于,包括:
    壳体,其限定出进风口和出风口以及连接于所述进风口和所述出风口之间的风道;和
    风门,斜置于所述风道内,且配置成受控可开闭地设置,以通断所述风道。
  2. 根据权利要求1所述的引风风道总成,其特征在于,
    所述风道内形成有安装区段,所述安装区段内设置有定位件和避让槽;且
    所述定位件配置成使所述风门相对于所述安装区段的横截面呈预设角度地斜置其上,所述避让槽被配置成提供所述风门受控打开过程所需的活动空间。
  3. 根据权利要求2所述的引风风道总成,其特征在于,
    所述定位件配置成使所述风门与所述安装区段的横断面之间形成15~60°的夹角,以减小所述壳体的尺寸且降低所述风门的风阻。
  4. 根据权利要求2所述的引风风道总成,其特征在于,还包括:
    风门框,其限定出通气口以及围合出所述通气口的门框本体,所述风门可枢转地装配于所述门框本体以打开或封闭所述通气口,从而通断所述风道;且
    所述安装区段为所述风道内的水平风道区段;所述门框本体自下而上地朝向所述风道的内侧倾斜延伸,使得装配其上的所述风门与其同步斜置。
  5. 根据权利要求4所述的引风风道总成,其特征在于,
    所述定位件包括自所述壳体的顶部向下突出的下突部、以及自所述壳体的底部向下倾斜凹陷的斜槽部;其中
    所述下突部具有供所述门框本体的顶部抵靠其上以实现斜置的下突倾斜面,所述斜槽部具有供所述门框本体的底部的至少一部分斜插其中以实现斜置的下凹倾斜槽;所述下突倾斜面和所述下凹倾斜槽的倾斜程度相同,且共同限定所述门框本体的倾斜程度。
  6. 根据权利要求4所述的引风风道总成,其特征在于,
    所述门框本体上开设有轴孔,以供所述风门的枢转轴插入其中从而实现可转动地配合;所述枢转轴的中心轴线呈所述预设角度地斜置,且平行于所述门框本体的长度方向;
    所述风门为板状,其配置成在封闭所述通气口时相对于竖直面呈所述预设角度地设置,且在打开所述通气口的过程中绕所述枢转轴朝向所述风道的内侧转动。
  7. 根据权利要求4所述的引风风道总成,其特征在于,
    所述进风口位于所述壳体的横向端部,所述出风口位于所述壳体的底部,且位于所述门框本体和所述风门的下方,并连通所述避让槽。
  8. 根据权利要求7所述的引风风道总成,其特征在于,
    所述安装区段内还形成有位于所述门框本体和所述风门下方的汇流部,所述汇流部连通所述避让槽,且具有向下且朝向所述避让槽延伸的多个汇流面,所述汇流面配置成使得滴落其上的冷凝水向所述避让槽汇流,从而自所述出风口排出所述壳体。
  9. 根据权利要求4所述的引风风道总成,其特征在于,
    所述门框本体和所述风门上分别设置有电加热部件,所述电加热部件配置成受控地通电产热,以加热所述门框本体和所述风门。
  10. 一种冰箱,其特征在于,包括:
    如权利要求1所述的用于冰箱的引风风道总成。
PCT/CN2023/084219 2022-03-31 2023-03-28 用于冰箱的引风风道总成以及具有其的冰箱 WO2023185782A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210344848.0A CN114659331A (zh) 2022-03-31 2022-03-31 用于冰箱的引风风道总成以及具有其的冰箱
CN202210344848.0 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023185782A1 true WO2023185782A1 (zh) 2023-10-05

Family

ID=82034280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/084219 WO2023185782A1 (zh) 2022-03-31 2023-03-28 用于冰箱的引风风道总成以及具有其的冰箱

Country Status (2)

Country Link
CN (1) CN114659331A (zh)
WO (1) WO2023185782A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114659331A (zh) * 2022-03-31 2022-06-24 青岛海尔电冰箱有限公司 用于冰箱的引风风道总成以及具有其的冰箱

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0229581A (ja) * 1988-07-19 1990-01-31 Sanyo Electric Co Ltd 冷蔵庫
CN204268786U (zh) * 2014-10-24 2015-04-15 合肥美的电冰箱有限公司 风门泡沫和风冷冰箱
CN209197246U (zh) * 2018-10-29 2019-08-02 青岛海尔股份有限公司 风冷冰箱
CN114659331A (zh) * 2022-03-31 2022-06-24 青岛海尔电冰箱有限公司 用于冰箱的引风风道总成以及具有其的冰箱
CN217465077U (zh) * 2022-03-31 2022-09-20 青岛海尔电冰箱有限公司 用于冰箱的引风风道总成以及具有其的冰箱

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0229581A (ja) * 1988-07-19 1990-01-31 Sanyo Electric Co Ltd 冷蔵庫
CN204268786U (zh) * 2014-10-24 2015-04-15 合肥美的电冰箱有限公司 风门泡沫和风冷冰箱
CN209197246U (zh) * 2018-10-29 2019-08-02 青岛海尔股份有限公司 风冷冰箱
CN114659331A (zh) * 2022-03-31 2022-06-24 青岛海尔电冰箱有限公司 用于冰箱的引风风道总成以及具有其的冰箱
CN217465077U (zh) * 2022-03-31 2022-09-20 青岛海尔电冰箱有限公司 用于冰箱的引风风道总成以及具有其的冰箱

Also Published As

Publication number Publication date
CN114659331A (zh) 2022-06-24

Similar Documents

Publication Publication Date Title
US6675604B2 (en) Cooling air passage apparatus of refrigerator
KR100441000B1 (ko) 팬케이싱을 갖춘 일체형 공기조화기
ES2954486T3 (es) Módulo de conducto de aire integrado y refrigerador que tiene un módulo de conducto de aire integrado
WO2023185782A1 (zh) 用于冰箱的引风风道总成以及具有其的冰箱
EP2789940B1 (en) Refrigerator
CN204629732U (zh) 空调器室内机和具有其的空调器
WO2021213148A1 (zh) 冰箱
CN217465077U (zh) 用于冰箱的引风风道总成以及具有其的冰箱
AU2021260530B2 (en) Refrigerator
CN107642939B (zh) 一种冰箱冷冻风道组件及冰箱
CN218763937U (zh) 空调室内机
KR102615590B1 (ko) 냉장고
EP4008981B1 (en) Refrigerator
CN210511918U (zh) 空调柜机
CN114165965A (zh) 冰箱
KR100931078B1 (ko) 버스용 냉방장치
JPH11118317A (ja) 冷蔵庫
US20230213265A1 (en) Refrigerator
JP7496031B2 (ja) 蒸発器が箱体の底部に設けられた冷蔵庫
CN216448442U (zh) 冰箱
CN108317803A (zh) 制冷设备用分段柜体及制冷设备
CN219037312U (zh) 用于冰箱的散热装置及冰箱
CN215260110U (zh) 空调室内机和空调器
CN215723640U (zh) 空调器室内机
US11635228B2 (en) Air conditioner indoor unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23778147

Country of ref document: EP

Kind code of ref document: A1