WO2023185655A1 - 一种信号处理方法、系统以及相关设备 - Google Patents

一种信号处理方法、系统以及相关设备 Download PDF

Info

Publication number
WO2023185655A1
WO2023185655A1 PCT/CN2023/083508 CN2023083508W WO2023185655A1 WO 2023185655 A1 WO2023185655 A1 WO 2023185655A1 CN 2023083508 W CN2023083508 W CN 2023083508W WO 2023185655 A1 WO2023185655 A1 WO 2023185655A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
orthogonal
frequency
network element
frequency conversion
Prior art date
Application number
PCT/CN2023/083508
Other languages
English (en)
French (fr)
Inventor
张森
张婷婷
钟其文
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023185655A1 publication Critical patent/WO2023185655A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/525Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/32Reducing cross-talk, e.g. by compensating

Definitions

  • This application relates to the field of data communications, and in particular, to a data security policy configuration method, device and system.
  • the network element In order to save the space and weight of the transmission medium, the network element usually uses the same cable to send and receive signals, such as coaxial cable, twisted pair, PCB, etc., for two-way simultaneous transmission, that is, full-duplex communication. If there is partial spectrum overlap between the sending signal and the receiving signal, and the sending signal and the receiving signal are transmitted in the same transmission medium, due to reasons such as insufficient isolation of the network element's combining and branching units and impedance mismatch in the lines, the network element In addition to receiving the received signal sent by the peer network element, it also receives the echo noise of the sent signal from the local network element, that is, self-interference noise, thus causing interference to the received signal.
  • signals such as coaxial cable, twisted pair, PCB, etc.
  • ADC analog to digital converter
  • DSP Digital Signal Process
  • the present application provides a signal processing method, system and related equipment, in which the first network element sends a frequency-converted first signal, that is, a second signal, to the second network element, and the second network element sends the frequency-converted first signal to the second network element according to the frequency-converted first signal.
  • the first signal is recovered, and at the same time, the second network element sends a third signal to the first network element on the same channel, and the first network element receives the third signal.
  • This application can solve the problem of interference between the first signal and the third signal without causing signal distortion.
  • a signal processing method applied to a first network element, including: performing frequency conversion according to a first signal to determine a second signal, where the spectrum width occupied by the second signal in the positive frequency part is consistent with the third signal.
  • a signal occupies the same spectrum width in the positive frequency part.
  • the frequency of the first signal is converted, and the spectrum width occupied by the positive frequency part of the signal after frequency conversion is the same as the spectrum width occupied by the positive frequency part of the signal before frequency conversion.
  • the signal when the signal is frequency converted and then the self-interference noise is filtered out, the signal will not be distorted and the signal energy will not be lost.
  • converting the frequency of the signal to a range that does not overlap the spectrum of the third signal can also reduce the sampling rate and sampling bandwidth requirements of the ADC and DAC, as well as the requirements for the DSP.
  • the method before performing frequency conversion according to the first signal and determining the second signal, the method further includes determining a first orthogonal signal according to the first signal, and the first orthogonal signal and the first signal Orthogonal; performing frequency conversion according to the first signal to determine the second signal includes: performing frequency conversion according to the first signal and the first orthogonal signal to determine the second signal.
  • the frequency conversion of the first signal is obtained through the orthogonal signal of the first signal and the first signal.
  • the frequency spectrum range occupied by the frequency-converted signal will not be too wide, reducing the impact on the chain.
  • Other device requirements in the circuit such as reducing the sampling bandwidth requirements of ADC and DAC.
  • the method before performing frequency conversion according to the first signal and determining the second signal, the method further includes: obtaining the spectrum range or preset frequency value of the third signal; determining the first orthogonal signal according to the first signal. signal, the first orthogonal signal is orthogonal to the first signal; performing frequency conversion according to the first signal to determine the second signal includes: performing frequency conversion according to the spectrum range of the first signal, the first orthogonal signal and the third signal, determining the third signal Two signals, or frequency conversion is performed according to the first signal, the first orthogonal signal and the preset frequency value to determine the second signal.
  • the frequency conversion of the first signal is obtained through the orthogonal signal of the first signal and the spectrum range of the first signal and the third signal.
  • the third signal is other signals transmitted in the line.
  • the frequency conversion is performed according to the spectrum range of the third signal, so that there is no spectrum overlap between the first signal and the third signal after frequency conversion, thereby avoiding interference between signals.
  • the frequency conversion of the first signal may also be performed based on a preset frequency conversion frequency, so that no matter what the spectrum range of the third signal is, the first signal is always frequency converted to the same spectrum range. In this way, every time the first signal after frequency conversion is transmitted, that is, when the second signal is transmitted, other components in the link process the second signal in the same spectrum range, and there is no need to obtain the spectrum of the third signal, which reduces the processing process. difficulty.
  • the first orthogonal signal is Fourier transformed according to the first signal to obtain a frequency domain representation of the first signal, and the sum of the positive frequency components in the frequency domain representation of the first signal is The result after processing the negative frequency component is obtained by performing inverse Fourier transform; or, the first orthogonal signal is obtained by performing Hilbert transform based on the first signal.
  • the second aspect is applied to the second network element, including: performing frequency conversion according to the second signal to determine the first signal.
  • the spectrum width occupied by the first signal in the positive frequency part is the same as that of the second signal in the positive frequency part. parts occupy the same spectrum width.
  • Performing frequency conversion according to the second signal and determining the first signal before performing frequency conversion according to the second signal and determining the first signal, it further includes: determining a second orthogonal signal according to the second signal, and the second orthogonal signal is orthogonal to the second signal. ; Performing frequency conversion according to the second signal to determine the first signal includes: performing frequency conversion according to the second signal and the second orthogonal signal to determine the first signal.
  • the second signal before performing frequency conversion according to the second signal and determining the first signal before performing frequency conversion according to the second signal and determining the first signal, it further includes: obtaining the spectrum range or preset frequency value of the third signal; determining the second orthogonal signal according to the second signal. signal, the second orthogonal signal is orthogonal to the second signal; performing frequency conversion according to the second signal to determine the first signal includes: performing frequency conversion according to the spectrum range of the second signal, the second orthogonal signal and the third signal, determining the third signal A signal, or frequency conversion is performed according to the second signal, the second orthogonal signal and the preset frequency value to determine the first signal.
  • the second orthogonal signal is Fourier transformed according to the second signal to obtain the frequency domain representation of the second signal, and the sum of the positive frequency components in the frequency domain representation of the second signal is The result of processing the negative frequency component is obtained by performing inverse Fourier transform; or, the second orthogonal signal is obtained by performing Hilbert transform based on the second signal.
  • the present application provides a network device, including a determining unit configured to perform frequency conversion according to a first signal and determine a second signal.
  • the spectrum width occupied by the second signal in the positive frequency part is the same as the spectrum width occupied by the first signal in the positive frequency part.
  • the spectrum width occupied by the positive frequency part is the same.
  • the determining unit is further configured to determine the first orthogonal signal according to the first signal, and the first orthogonal signal is orthogonal to the first signal; the determining unit is further configured to determine the first orthogonal signal according to the first signal, the first orthogonal signal and the first orthogonal signal.
  • An orthogonal signal is frequency converted to determine a second signal.
  • the network device further includes an acquisition unit, the acquisition unit is used to acquire the spectrum range or the preset frequency value of the third signal; the determination unit is also used to determine the first orthogonal signal according to the first signal , the first correct The intersection signal is orthogonal to the first signal; the determination unit is further configured to perform frequency conversion according to the spectrum range of the first signal, the first orthogonal signal and the third signal to determine the second signal; or the determination unit is further configured to Frequency conversion is performed according to the first signal, the first orthogonal signal and the preset frequency value to determine the second signal.
  • the determining unit performs frequency conversion according to the first signal and the first orthogonal signal to determine the second signal, which specifically includes: determining the second signal according to the spectrum range of the first signal, the first orthogonal signal and the third signal. .
  • the second signal is determined based on the first signal, the first orthogonal signal and the preset frequency value, that is, the first signal is frequency converted to the same spectrum range. In this way, every time the first signal after frequency conversion is transmitted, that is, when the second signal is transmitted, other components in the link process the second signal in the same spectrum range, and there is no need to obtain the spectrum of the third signal, which reduces the processing process. difficulty.
  • the first orthogonal signal is Fourier transformed according to the first signal to obtain the frequency domain representation of the first signal, and the sum of the positive frequency components in the frequency domain representation of the first signal is The result after processing the negative frequency component is obtained by performing inverse Fourier transform; or, the first orthogonal signal is obtained by performing Hilbert transform based on the first signal.
  • the present application provides a network device, including a determining unit configured to perform frequency conversion according to the second signal and determine the first signal.
  • the spectrum width occupied by the first signal in the positive frequency part is the same as the spectrum width occupied by the second signal in the positive frequency part.
  • the spectrum width occupied by the positive frequency part is the same.
  • the determining unit is further configured to determine a second orthogonal signal based on the second signal, and the second orthogonal signal is orthogonal to the second signal; the determining unit is further configured to determine based on the second signal, the second orthogonal signal.
  • the two orthogonal signals are frequency converted to determine the first signal.
  • the network device further includes an acquisition unit, the acquisition unit is used to acquire the spectrum range or the preset frequency value of the third signal; the determination unit is also used to determine the second orthogonal signal according to the second signal , the second orthogonal signal is orthogonal to the second signal; the determination unit is also configured to perform frequency conversion according to the spectrum range of the second signal, the second orthogonal signal and the third signal to determine the first signal; or, the determination unit is further Used to perform frequency conversion according to the second signal, the second orthogonal signal and the preset frequency value to determine the first signal.
  • the second orthogonal signal is Fourier transformed according to the second signal to obtain a frequency domain representation of the second signal, and the sum of the positive frequency components in the frequency domain representation of the second signal is The result of processing the negative frequency component is obtained by performing inverse Fourier transform; or, the second orthogonal signal is obtained by performing Hilbert transform based on the second signal.
  • this application provides a signal processing system, including a first network element and a second network element.
  • the first network element is used to perform the method described in the first aspect
  • the second network element is used to perform the second network element. method described in the aspect.
  • the first network element sends the frequency-converted first signal to the second network element, and at the same time, the second network element sends the third signal to the first network element.
  • the first network element is also used to receive the third signal.
  • the second network element is also used to receive the frequency-converted first signal and recover the first signal based on the frequency-converted first signal.
  • the present application provides a computing device, including a processor and a memory.
  • the memory is used to store instructions
  • the processor is used to execute instructions.
  • the execution is as described in the first aspect or the second aspect.
  • the present application provides a computer-readable storage medium. Instructions are stored in the computer-readable storage medium. When the instructions are run on a computing device, the method described in the first or second aspect is executed.
  • the present application provides a computer program product.
  • the computer program product includes computer instructions. When executed by a computing device, the computing device performs the method described in the first or second aspect.
  • the signal processing method, system and related equipment provided by this application convert the frequency of the transmitted signal so that it does not overlap with the spectrum of the received signal, thereby avoiding interference between the transmitted signal and the received signal.
  • Network element enters again Perform frequency conversion to recover the transmitted signal without affecting the spectrum of the transmitted signal.
  • This application can reduce the requirements for the effective quantization bit width of the ADC and reduce the complexity in the DSP processing process.
  • the frequency conversion of the transmitted signal is carried out through the transmitted signal and the orthogonal signal of the transmitted signal. In this way, the spectrum range of the transmitted signal after frequency conversion is not too wide, which reduces the requirements for other devices in the link, such as reducing Sampling rate and sampling bandwidth requirements for ADC and DAC.
  • Figure 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of a full-duplex communication system provided by an embodiment of the present application.
  • Figure 3 is a schematic structural diagram of a signal processing system provided by an embodiment of the present application.
  • Figure 4 is a schematic diagram of a first signal and a third signal PSD provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of a second signal PSD provided by an embodiment of the present application.
  • Figure 6 is a schematic diagram of a transmission signal PSD in a transmission medium provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another signal processing system provided by an embodiment of the present application.
  • Figure 8 is a schematic flow chart of a signal processing method provided by an embodiment of the present application.
  • Figure 9 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • Figure 10 is a schematic structural diagram of another network device provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a computing device provided by an embodiment of the present application.
  • the communication system includes network element 110 and network element 120.
  • Network element 110 and network element 120 may be user equipment (user equipment, UE), or called terminal equipment.
  • the terminal device in the embodiment of the present application may be a mobile phone, a tablet, a computer, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, an Internet of Things device, etc., which are not specifically limited in this application.
  • the network element 110 is a terminal device
  • the network element 120 can also be a switch, router, gateway, bridge, server, repeater, firewall, etc., or a satellite in a satellite communication system, which is not specifically limited in this application. .
  • the network element 110 and the network element 120 may also be two modules in the terminal device.
  • Figure 1 shows the structure of the communication system of the camera.
  • the communication system of the camera can be applied to systems such as automobiles, airplanes, and ships, and is specifically installed at the front end and/or the rear end of the above-mentioned vehicles.
  • the camera communication system includes: network element 110 is one or more camera modules that capture images, and network element 120 is an electronic control unit (Electronic Control Unit, ECU) that controls the camera modules and receives image data.
  • ECU Electronic Control Unit
  • the transmission medium used between network element 110 and network element 120 can be wired transmission media such as cables, printed circuit boards (Printed Circuit Board, PCB), optical fibers, plastic waveguides, etc., or wireless transmission media such as microwaves and infrared rays. Through the transmission medium, data exchange between the network element 110 and the network element 120 can be realized.
  • Figure 1 only shows one possible communication system architecture to which embodiments of the present application can be applied. In other possible scenarios, the communication system architecture may also include only some devices or other devices. .
  • Full-duplex communication is usually required between the network element 110 and the network element 120.
  • full-duplex communication refers to Network elements can send and receive information at the same time.
  • network element 110 can upload data to network element 120 and also receive data sent by network element 120.
  • the uplink and downlink rates of network elements can also be different, that is, asymmetric transmission.
  • the camera module needs to upload image data to the ECU, and the ECU needs to send control signals to the camera, for example, to control the camera module to start shooting images or upload images, etc.
  • the camera module uses high-speed signals to upload data such as images or videos, such as 10G bit rate (bits per second, bps) signals. Since the data volume of the control signal is small, when the ECU sends the control signal to the camera module, it uses a low-speed signal, such as a 100Mbps signal. Among them, the spectrum of high-speed signals is wider than that of low-speed signals.
  • the network element receives and sends signals through the same transmission medium.
  • asymmetrically transmitted signals usually use one cable for simultaneous transmission of bidirectional signals.
  • a combiner and splitter unit is added to the camera module and the ECU respectively, where the combiner and splitter unit is used to couple the local signal to the transmission cable, and Receive signals from the opposite end from the transmission cable, so that high-speed signals and low-speed signals between the camera module and the ECU can be transmitted in the same cable.
  • the combining and splitting unit includes a combining function and a splitting function.
  • the combining function refers to coupling multiple signals to one cable
  • the splitting function refers to dividing the signal into multiple signals for output.
  • baseband amplitude modulation is simple to implement, such as non-return to zero (NRZ) code
  • high-speed signals and low-speed signals usually use baseband amplitude modulation.
  • the high-speed signal of the camera module such as video data
  • the high-speed signal output by the high-speed transmitter is coupled to the combining and splitting unit of the camera module and then output to the transmission cable.
  • the combiner and splitter unit on the ECU side outputs the high-speed signal to the high-speed receiver, and then recovers the video data after demodulation, demapping and decoding.
  • the demodulation process can include equalization, decision-making and other operations.
  • the control signal at the ECU end is coded and mapped and then modulated to the low-speed transmitter output at the ECU end.
  • the low-speed transmitter output signal is coupled to the combining and splitting unit at the ECU end and then output to the transmission cable.
  • the combining and splitting unit at the camera end outputs the low-speed signal to the low-speed The receiver then recovers the control data after demodulation, demapping and decoding.
  • the network element will not only receive the opposite network
  • the self-interference noise of the signals sent by the local network element will also be received.
  • the ECU will receive self-interference noise from the high-speed signal sent by the camera module and the low-speed signal sent by the ECU itself.
  • the network element can directly filter the signal, and then couple the filtered signal to the transmission medium through the combining and demultiplexing unit.
  • the following is an example of an example in which network element 110 sends a high-speed signal to network element 120 and network element 120 sends a low-speed signal to network element 110 with reference to FIG. 2 .
  • network element 110 before network element 110 sends a high-speed signal, it first performs high-pass filtering to filter out the components in the spectrum that low-speed signals will occupy in the high-speed signal, and then passes through the combining and splitting unit of network element 110.
  • the filtered high-speed signal is coupled to the transmission medium.
  • the network element 110 receives the low-speed signal sent by the network element 120, it will pass the received signal through low-pass filtering to filter out the self-interference noise of the high-speed signal sent by the network element 110, and then restore it through operations such as demodulation and decision-making.
  • a low speed signal is output.
  • the low-speed signal sent by the network element 120 is coupled by the combining and demultiplexing unit and then output to the transmission medium.
  • the combining and branching unit of network element 120 will also receive high-speed signals from network element 110.
  • network element 120 will perform high-pass filtering to filter out the low-speed signals that will occupy the spectrum. components in the signal, and then through operations such as demodulation and judgment, the high-speed signal sent by the network element 110 is restored.
  • the components in the received signal that overlap with the spectrum of the transmitted signal are filtered out, or the components in the transmitted signal that overlap with the spectrum of the received signal are filtered out.
  • This method is called direct filtering method here.
  • This direct filtering method will cause signal distortion to the transmitted signal and/or received signal, resulting in loss of signal energy.
  • the low-frequency part of the high-speed signal is filtered out.
  • the self-interference noise is filtered, it also causes distortion to the high-speed signal and loses the energy of the low-frequency component of the high-speed signal.
  • this application provides a signal processing system 10 that can The transmitted signal is frequency converted so that there is no spectrum overlap between the transmitted signal and the received signal, and then the transmitted signal is restored at the receiving end without causing signal distortion or energy loss.
  • This application does not limit the division of functional units in the signal processing system 10, and each unit in the signal processing system can be added, reduced, or combined as needed.
  • the signal processing system 10 includes a first network element 200 and a second network element 300 .
  • the first network element 200 is used to send the frequency-converted first signal to the second network element 300, where the spectrum range of the first signal is [-f 1 , f 1 ], and f 1 is a positive number.
  • A) in FIG. 4 exemplarily shows a power spectral density (PSD) image of the first signal.
  • the second network element 300 is used to send the third signal to the first network element 200, where the spectrum range of the third signal is [-f 2 , f 2 ], and f 2 is a positive number.
  • B in FIG. 4 exemplarily shows a PSD image of the third signal.
  • the frequency of a signal is a positive number in practical applications, but in order to facilitate mathematical calculations, there is a negative frequency component of the signal, and the positive frequency component and the negative frequency component are symmetrical.
  • the spectrum of the signal may also have a symmetrical relationship with respect to the remaining frequencies, for example, the spectrum of the signal may be a periodic function. That is to say, the signal may have multiple symmetry units, and this application does not specifically limit the type of the signal.
  • the first network element 200 includes a first frequency conversion unit 201 and a first combining and dividing unit 202
  • the second network element 300 includes a second frequency converting unit 301 and a second combining and dividing unit 302.
  • the first combining and dividing unit 202 and the second combining and dividing unit 302 may be frequency combining and dividing units or power combining and dividing units.
  • the frequency combining and splitting unit here is a three-port device. At the input port, two input signals in different frequency ranges can be combined into one output, and one input signal can be split into two output signals in different frequency ranges. .
  • the power combiner and splitter unit here is also a three-port device, used to couple different input signals to one output, and also used to divide one input signal into multiple signal outputs, where the power of the multiple signals Ratio can be adjusted. That is to say, in addition to the combining function and the splitting function, the frequency combining and splitting unit also includes a filtering function.
  • the first network element 200 includes the first frequency conversion unit 201 and the first The combining and branching unit 202
  • the second network element 300 includes a second frequency conversion unit 301 and a second combining and branching unit 302.
  • the first frequency conversion unit 201 is used to convert the frequency of the first signal to obtain a second signal, where the frequency shifting frequency is determined according to the spectrum range of the third signal, or the frequency shifting frequency is a preset frequency value.
  • the frequency moving frequency may be ⁇ , ⁇ 2 ⁇ f 2 .
  • the first frequency conversion unit 201 first obtains a first orthogonal signal according to the first signal, where the first orthogonal signal is an orthogonal signal of the first signal, and the first orthogonal signal may be obtained by Fourier conversion of the first signal.
  • Leaf transform Frier Transform, FT
  • IFT inverse Fourier transform
  • the signal undergoes Hilbert Transform (Hilbert Transform, HT) obtained.
  • frequency shifting is performed based on the first signal and the first orthogonal signal to obtain the second signal.
  • the spectrum of the first signal can be moved to other frequency ranges.
  • the first signal can be moved to a spectrum range that has no spectrum overlap with the third signal.
  • the second signal is that the first frequency conversion unit 201 moves the spectrum of the first signal in [0, f 1 ] to [f 2 , f 1 +f 2 ], obtained by moving the spectrum of the first signal at [-f 1 ,0] to [-f 1 -f 2 ,-f 2 ].
  • the first signal is a modulated signal. That is to say, the first network element 200 also includes a modulation unit, which is used to modulate the first signal before the first frequency conversion unit 201 performs frequency conversion on the first signal to obtain the second signal.
  • Signal modulation methods include Pulse Amplitude Modulation (PAM), such as PAM4, PAM8, Quadrature Phase Shift Keying (QPSK), or Quadrature Amplitude Modulation (QAM), such as ,16QAM. It should be understood that this application does not specifically limit the modulation method of the first signal.
  • D/A conversion is performed on the second signal to convert the discrete digital signal of the second signal into a continuous analog signal to facilitate transmitted in the channel.
  • the D/A conversion of the second signal may be performed by a DAC independent of the first frequency conversion unit 201.
  • the DAC sends the second signal to the first combining and dividing unit 202.
  • the third signal received by the first combining and tapping unit 202 is an analog signal
  • the first network element 200 further includes an ADC
  • the ADC is used to combine the third signal received by the first combining and tapping unit 202 Perform analog to digital (A/D) conversion to sample and quantize the third signal to restore it to a digital signal.
  • the A/D conversion of the third signal is generally performed independently of the ADC of the first combining and dividing unit 202 .
  • the first network element 200 also includes a demodulation unit.
  • the demodulation unit is configured to demodulate the third signal after the first combining and splitting unit 202 receives the third signal.
  • the second network element 300 demodulates the third signal in accordance with the modulation method.
  • the first network element 200 when the channel in the transmission medium is not an ideal channel, the first network element 200 will also perform DSP channel equalization on the third signal received by the first combining and demultiplexing unit 202, including eliminating or weakening the signal during communication. Problems such as inter-symbol crosstalk caused by multipath delay.
  • the second combining and demultiplexing unit 302 is configured to receive the second signal sent by the first network element 200, and to send the third signal to the first network element 200.
  • the second signal received by the second combining unit 302 is an analog signal
  • the second network element 300 further includes an ADC.
  • the ADC is used to process the second signal received by the second combining unit 302.
  • A/D conversion perform sampling, quantization and other operations on the second signal, and restore the second signal to a digital signal.
  • A/D conversion of the second signal is generally performed independently It is performed in the ADC of the second combining and branching unit 302.
  • the third signal is a modulated signal. That is to say, the second network element 300 also includes a modulation unit. Before the second combining and splitting unit 302 sends the third signal to the first network element 200, the modulation unit will also modulate the third signal, such as PAM4, PAM8, 16QAM, QPSK, etc. It should be understood that this application does not specifically limit the modulation method of the third signal.
  • the second combiner and splitter unit 302 is also used to perform D/A conversion on the third signal before sending the third signal, and is used to perform digital-to-analog conversion on the third signal to obtain a signal that is convenient for channel transmission. analog signal.
  • the D/A conversion of the third signal is generally performed independently of the DAC of the second combining and dividing unit 302 .
  • the second frequency conversion unit 301 is used to convert the frequency of the second signal to recover the first signal. Specifically, the second frequency conversion unit 301 first obtains the second orthogonal signal according to the second signal.
  • the second orthogonal signal is the orthogonal signal of the second signal.
  • the second orthogonal signal can be obtained by performing FT on the second signal, and then respectively It is obtained by processing the positive and negative frequency components in the frequency domain of the second signal and then performing IFT; or it is obtained by performing HT on the second signal. Then, frequency shifting is performed according to the second signal and the second orthogonal signal, and the first signal can be restored.
  • the frequency of the frequency shifting is the same as the frequency of the frequency shifting by the first frequency conversion unit 201, and the frequency shifting direction is the same as the frequency of the first frequency conversion unit 201.
  • Unit 201 moves in the opposite direction. For example, when the first signal is frequency-shifted to obtain the second signal, up-conversion is used, and when the second signal is frequency-shifted to recover the first signal, frequency down-conversion is used.
  • the second frequency conversion unit 301 performs frequency conversion processing on the second signal to convert
  • the spectrum of the second signal at [-f 1 -f 2 , -f 2 ] is moved to [-f 1 ,0]
  • the spectrum of the second signal at [f 2 , f 1 +f 2 ] is moved to [0, f 1 ], and then recover the first signal.
  • the second network element 300 further includes a demodulation unit. After the second frequency conversion unit 301 obtains the first signal according to the second signal, the demodulation unit is used to demodulate the first signal. Specifically, the demodulation is performed according to the modulation mode of the first signal performed by the first network element 200 .
  • the second network element 300 when the channel in the transmission medium is not an ideal channel, the second network element 300 will also perform DSP channel equalization on the signal obtained after frequency conversion of the second signal, including eliminating or weakening the multipath delay during communication. Problems such as inter-symbol crosstalk are caused, and the first signal can be recovered.
  • the signal processing system 10 includes a first network element 200 and a second network element. Yuan 300.
  • the first network element 200 includes a first frequency conversion unit 201, a first combining and branching unit 202, and a first filtering unit 203.
  • the second network element 300 includes a second frequency converting unit 301, a second combining and branching unit 302, and a second filtering unit. 303.
  • the first frequency conversion unit 201 is used to convert the frequency of the first signal to obtain a second signal, where the frequency shifting frequency is determined according to the spectrum range of the third signal, or the frequency shifting frequency is a preset frequency value.
  • the first combiner and splitter unit 202 is used to couple the second signal to the transmission medium. For details, reference may be made to the relevant description of the first frequency conversion unit 201 and the first combining and branching unit 202 in FIG. 3 , which will not be described again here.
  • the first signal is a modulated signal. That is to say, the first network element 200 also includes a modulation unit. Before the first frequency conversion unit 201 converts the frequency of the first signal to obtain the second signal, the modulation unit is used to modulate the first signal, such as PAM4, PAM8, 16QAM, QPSK, etc.
  • D/A conversion is performed on the second signal to convert the second signal into an analog signal.
  • the D/A conversion of the second signal may be performed by a DAC independent of the first frequency conversion unit 201.
  • the DAC sends the second signal to the first combining and dividing unit 202.
  • the third signal received by the first combining and tapping unit 202 is an analog signal
  • the first network element 200 further includes an ADC
  • the ADC is used to combine the third signal received by the first combining and tapping unit 202 Perform analog to digital (A/D) conversion to sample and quantize the third signal to restore it to a digital signal.
  • the first filtering unit 203 is used to filter the third signal, filter out signals outside the frequency range [0, f 2 ], and further filter out the second signal that crosstalks to the third signal.
  • the first filtering unit 203 may be an analog device or a digital signal processing (Digital Signal Process, DSP) digital filter.
  • the first filtering unit 203 may be an independent unit, or may be integrated on the port through which the first combining and branching unit 202 outputs the third signal.
  • the first network element 200 also includes a demodulation unit.
  • the demodulation unit is configured to demodulate the third signal after the first combining and splitting unit 202 receives the third signal.
  • the second network element 300 demodulates the third signal in accordance with the modulation method.
  • the first network element 200 when the channel in the transmission medium is not an ideal channel, the first network element 200 will also perform DSP channel equalization on the signal received by the first combining and demultiplexing unit 202, including eliminating or weakening multipath during communication. Problems such as inter-symbol crosstalk caused by time delay.
  • the second combining and demultiplexing unit 302 is configured to receive the second signal sent by the first network element 200, and to send the third signal to the first network element 200.
  • the second combining and demultiplexing unit 302 is configured to receive the second signal sent by the first network element 200, and to send the third signal to the first network element 200.
  • the second signal received by the second combiner and splitter unit 302 is an analog signal
  • the second network element 300 is also used to perform A/D conversion on the second signal, sample and quantize the second signal, etc. Operation to restore the second signal to a digital signal.
  • the A/D conversion of the second signal is generally performed independently of the ADC of the second combining and dividing unit 302 .
  • the third signal is a modulated signal. That is to say, the second network element 300 also includes a modulation unit. Before the second combining and splitting unit 302 sends the third signal to the first network element 200, the modulation unit will also modulate the third signal, such as PAM4, PAM8, 16QAM, QPSK, etc. It should be understood that this application does not specifically limit the modulation method of the third signal.
  • the second combiner and splitter unit 302 is also used to perform D/A conversion on the third signal before sending the third signal, and is used to perform digital-to-analog conversion on the third signal to obtain a signal that is convenient for channel transmission. analog signal.
  • the D/A conversion of the third signal is generally performed independently of the DAC of the second combining and dividing unit 302 .
  • the second filtering unit 303 may be an analog device or a digital filter of a DSP.
  • the second filtering unit 303 may be an independent unit, or may be integrated on the port through which the second combining and branching unit 302 outputs the third signal.
  • the second frequency conversion unit 301 is used to perform frequency conversion on the filtered second signal to restore the first signal.
  • the second network element 300 further includes a demodulation unit. After the second frequency conversion unit 301 obtains the first signal according to the second signal, the demodulation unit is used to demodulate the first signal. Specifically, the demodulation is performed according to the modulation mode of the first signal performed by the first network element 200 .
  • the second network element 300 when the channel in the transmission medium is not an ideal channel, the second network element 300 will also perform DSP channel equalization on the signal obtained after frequency conversion of the second signal, including eliminating or weakening the multipath delay during communication. Problems such as inter-symbol crosstalk are caused, and the first signal can be recovered.
  • the signal processing system 10 converts the frequency of the transmitted signal so that it does not overlap with the spectrum of the received signal, thereby avoiding interference between the transmitted signal and the received signal, and then performs frequency conversion on the opposite end network element to restore the transmitted signal.
  • signal send
  • the frequency spectrum of the transmitted signal has no effect.
  • This application can reduce the requirements for the effective quantization bit width of the ADC and reduce the complexity in the DSP processing process.
  • the frequency conversion of the transmitted signal is carried out through the transmitted signal and the orthogonal signal of the transmitted signal. In this way, the spectrum range of the transmitted signal after frequency conversion is not too wide, which reduces the requirements for other devices in the link, such as reducing Sampling rate and sampling bandwidth requirements for ADC and DAC.
  • This application provides a signal processing method that can convert the frequency of the transmitted signal so that the transmitted signal There is no spectrum overlap with the received signal.
  • the signal processing method may include the following steps:
  • the first network element 200 performs frequency conversion on the first signal to obtain a second signal.
  • the first frequency conversion unit 201 of the first network element 200 performs frequency conversion on the first signal to obtain a second signal, where the frequency moving frequency is determined according to the spectrum range of the third signal, or the frequency moving frequency is a preset frequency value .
  • the first frequency conversion unit 201 first obtains the first orthogonal signal based on the first signal, and then performs frequency shifting based on the first signal and the first orthogonal signal to obtain the second signal.
  • the frequency shifting frequency is based on the third
  • the spectrum range of the signal is determined, or the frequency moving frequency is a preset frequency value.
  • the moving frequency can be ⁇ , ⁇ 2 ⁇ f 2 .
  • the first orthogonal signal is the orthogonal signal of the first signal.
  • the first orthogonal signal can be performed by performing FT on the first signal, and then the positive frequency component and the negative frequency component in the frequency domain of the first signal are processed respectively, and then Obtained by IFT; or obtained by performing HT on the first signal.
  • the first signal is represented by f 1 (t)
  • the first orthogonal signal can be represented by Qf 1 (t).
  • the spectrum range of the first signal is [-f 1 , f 1 ].
  • 2 ⁇ f 2
  • the second signal moves the spectrum of the first signal in [0, f 1 ] to [f 2 ,f 1 +f 2 ], obtained by moving the spectrum of the first signal at [-f 1,0 ] to [-f 1 -f 2 ,-f 2 ].
  • the first signal can be moved to a spectrum range that has no spectrum overlap with the third signal. It should be understood that when ⁇ >2 ⁇ f 2 , the positive frequency part of the second signal is in the spectrum range greater than f 2 , and the negative frequency part is in the range less than -f 2 .
  • the first signal is represented by f 1 (t).
  • the obtained frequency domain can be expressed as F 1 ( ⁇ ).
  • the calculation method of F 1 ( ⁇ ) can refer to the following formula (1).
  • j is the imaginary unit.
  • the calculation method of QF 1 ( ⁇ ) can refer to the following formula (2).
  • the calculation method of Qf 1 (t) can refer to the following formula (3).
  • the following describes in detail the first orthogonal signal Qf 1 (t) obtained by performing HT on the first signal f 1 (t).
  • the second signal can be obtained by frequency shifting the first signal and the first orthogonal signal.
  • the second signal can be represented by f′ 1 (t).
  • the calculation method of the second signal f′ 1 (t) can refer to the following formula (5).
  • f′ 1 (t) f 1 (t) ⁇ cos( ⁇ t)+Qf 1 (t) ⁇ sin( ⁇ t) (5)
  • the first network element 200 before frequency conversion of the first signal, the first network element 200 further modulates the first signal, such as PAM4, PAM8, 16QAM or QPSK. It should be understood that this application does not specifically limit the modulation method of the first signal.
  • the first network element 200 sends the second signal to the second network element 300.
  • the first combining and demultiplexing unit 202 of the first network element 200 couples the second signal to the transmission medium, and then sends the second signal to the second network element 300 .
  • the first combining and dividing unit 202 may be a frequency combining and dividing unit or a power combining and dividing unit.
  • the supported frequency range is [f 2 ,f 1 +f 2 ].
  • the signal transmitted on the transmission medium is an analog signal
  • the first network element 200 also needs to perform D/A conversion on the second signal before sending the second signal.
  • the D/A conversion of the second signal is generally performed independently of the DAC of the first frequency conversion unit 201 and the first combining and branching unit 202.
  • the DAC After converting the second signal into an analog signal, the DAC sends the second signal to The first combining and dividing unit 202 couples the second signal to the transmission medium.
  • the second network element 300 sends the third signal to the first network element 200.
  • the second combining and demultiplexing unit 302 of the second network element 300 couples the third signal to the transmission medium, and then sends the third signal to the first network element 200 .
  • the second combining and dividing unit 302 may be a frequency combining and dividing unit or a power combining and dividing unit.
  • the frequency range supported by the port that receives the third signal is [0, f 2 ].
  • the second network element 300 before the second network element 300 sends the third signal to the first network element 200, the second network element 300 will also modulate the third signal, such as PAM4, PAM8, 16QAM, QPSK, etc. It should be understood that this application does not specifically limit the modulation method of the third signal.
  • the third signal is a digital signal.
  • the second network element 300 is also used to perform D/A conversion on the third signal to convert the third signal into an analog signal that is convenient for channel transmission. signal, and then couple the third signal to the transmission medium.
  • step S820 and step S830 may be performed simultaneously. That is to say, while the first network element 200 sends the second signal to the second network element 300, the second network element 300 sends the third signal to the first network element 200.
  • the first network element 200 receives the third signal.
  • the first combining and demultiplexing unit 202 of the first network element 200 receives the third signal sent by the second network element 300.
  • the first combining and dividing unit 202 is a frequency combining and dividing unit
  • the frequency range supported by the port that receives the third signal is [0, f 2 ].
  • the first combiner and taper unit 202 is a power combiner and taper unit
  • the first network element 200 after receiving the third signal, the first network element 200 will also filter the third signal to filter out the second signal that crosstalks to the third signal.
  • the third signal with the frequency range [0, f 2 ] is retained.
  • the received third signal is an analog signal
  • A/D conversion is performed on the third signal, and the third signal is sampled and quantized to restore it to a digital signal.
  • the first network element 200 is also configured to demodulate the third signal after receiving the third signal, specifically according to the modulation method of the third signal performed by the second network element 300.
  • the first network element 200 when the channel in the transmission medium is not an ideal channel, the first network element 200 will also perform DSP channel equalization on the received third signal, including eliminating or weakening the multipath delay caused by communication. Inter-code crosstalk and other issues.
  • S850 and the second network element 300 perform frequency conversion operation on the second signal to recover the first signal.
  • the second combiner and splitter unit 302 of the second network element 300 receives the second signal, and then the second frequency conversion unit 301 of the second network element 300 performs frequency conversion processing on the second signal, and moves the spectrum of the negative frequency part of the second signal to [ -f 1 ,0], move the spectrum of the second signal at the positive frequency to [0,f 1 ], and then restore the first signal.
  • the second combining and dividing unit 302 may be a frequency combining and dividing unit or a power combining and dividing unit.
  • the frequency range supported by the port that receives the second signal is the spectrum range of the second signal.
  • the second network element 300 also filters the second signal, and the second filtering unit 303 filters out signals outside the spectrum range of the second signal, and then Filter out crosstalk of the third signal to the second signal.
  • the frequency conversion processing of the second signal by the second frequency conversion unit 301 will be described in detail below.
  • the second frequency conversion unit 301 first generates the orthogonal signal of the second signal f′ 1 (t), that is, the second orthogonal signal Qf′ 1 (t).
  • the method of generating the second orthogonal signal Qf′ 1 (t) may refer to the above formula (1) to formula (4) and their related descriptions, which will not be described again here.
  • the frequency value of the frequency shifting is ⁇ , and the frequency shifting direction The frequency moving direction is opposite to that when the second signal is obtained based on the first signal.
  • f 1 (t) f′ 1 (t) ⁇ cos( ⁇ t)-Qf′ 1 (t) ⁇ sin( ⁇ t) (6)
  • the second signal received by the second combiner and splitter unit 302 is an analog signal
  • the second network element 300 is also used to perform A/D conversion on the second signal, sample and quantize the second signal, etc. Operation to restore the second signal to a digital signal.
  • the A/D conversion of the second signal is generally performed independently of the ADC of the second combining and dividing unit 302 .
  • the second network element after obtaining the first signal according to the second signal, the second network element further demodulates the first signal. Specifically, the demodulation is performed according to the modulation mode of the first signal performed by the first network element 200 .
  • the second network element 300 when the channel in the transmission medium is not an ideal channel, the second network element 300 will also perform DSP channel equalization on the signal obtained after frequency conversion of the second signal, including eliminating or weakening the multipath delay during communication. Problems such as inter-symbol crosstalk caused by the problem, and then the first signal can be recovered.
  • steps S840 and S850 may be performed simultaneously. That is to say, the first network element 200 receives the third signal and the second network element 300 performs a frequency conversion operation on the second signal to recover the first signal, which can be performed at the same time.
  • the signal processing method converts the frequency of the transmitted signal so that it does not overlap with the spectrum of the received signal, thereby avoiding interference between the transmitted signal and the received signal.
  • the opposite network element then performs frequency conversion to restore the transmitted signal. , has no impact on the spectrum of the transmitted signal.
  • This application can reduce the requirements for the effective quantization bit width of the ADC and reduce the complexity in the DSP processing process.
  • the frequency conversion of the transmitted signal is carried out through the transmitted signal and the orthogonal signal of the transmitted signal. In this way, the spectrum range of the transmitted signal after frequency conversion is not too wide, which reduces the requirements for other devices in the link, such as reducing Sampling rate and sampling bandwidth requirements for ADC and DAC.
  • this application provides a network device 900 that can convert the frequency of the transmitted signal so that there is no spectrum overlap between the transmitted signal and the received signal. As shown in FIG. 9 , the network device 900 includes a determining unit 910 .
  • the determining unit 910 is configured to perform frequency conversion according to the first signal and determine a second signal.
  • the spectrum width occupied by the second signal in the positive frequency part is the same as the spectrum width occupied by the first signal in the positive frequency part.
  • the determining unit 910 is further configured to determine a first orthogonal signal according to the first signal, and the first orthogonal signal is orthogonal to the first signal; the determining unit 910 is further configured to determine a first orthogonal signal according to the first signal, the first orthogonal signal. The signal undergoes frequency conversion to determine the second signal.
  • the network device 900 further includes an acquisition unit 920, which is configured to acquire the spectrum range or preset frequency value of the third signal; the determination unit 910 is further configured to determine based on the first signal The first orthogonal signal, the first orthogonal signal is orthogonal to the first signal; the determining unit 910 is also configured to perform frequency conversion according to the spectrum range of the first signal, the first orthogonal signal and the third signal to determine the second signal; or , the determining unit 910 is further configured to perform frequency conversion according to the first signal, the first orthogonal signal and the preset frequency value to determine the second signal.
  • the first orthogonal signal is a result of performing FT on the first signal to obtain a frequency domain representation of the first signal, and processing the positive frequency component and the negative frequency component in the frequency domain representation of the first signal. , obtained by performing IFT; or, the first orthogonal signal is obtained by performing HT based on the first signal.
  • the network device 900 avoids interference between the sending signal and the receiving signal by converting the frequency of the sending signal so that the frequency spectrum does not overlap with the receiving signal.
  • This application can reduce the requirements for the effective quantization bit width of the ADC and reduce the complexity in the DSP processing process.
  • the frequency conversion of the transmitted signal is carried out through the transmitted signal and the orthogonal signal of the transmitted signal. In this way, the spectrum range of the transmitted signal after frequency conversion is not too wide, which reduces the requirements for other devices in the link, such as reducing Sampling rate and sampling bandwidth requirements for ADC and DAC.
  • the network device 1000 In order to solve the problem of spectrum overlap between the received signal and the transmitted signal, direct filtering is used to filter self-interference noise, which will cause signal distortion and energy loss.
  • This application provides a network device 1000 that can recover the original signal through the frequency-converted signal. .
  • the network device 1000 includes a determining unit 1010 .
  • the determining unit 1010 is configured to perform frequency conversion according to the second signal to determine the first signal.
  • the spectrum width occupied by the first signal in the positive frequency part is the same as the spectrum width occupied by the second signal in the positive frequency part.
  • the determining unit 1010 is further configured to determine a second orthogonal signal according to the second signal, and the second orthogonal signal is orthogonal to the second signal; the determining unit 1010 is further configured to determine a second orthogonal signal according to the second signal, the second orthogonal signal.
  • the signal undergoes frequency conversion to determine the first signal.
  • the network device 1000 further includes an acquisition unit 1020, which is configured to acquire the spectrum range or preset frequency value of the third signal; the determination unit 1010 is further configured to determine the second orthogonal signal according to the second signal, The second orthogonal signal is orthogonal to the second signal; the determining unit is also configured to perform frequency conversion according to the spectrum range of the second signal, the second orthogonal signal and the third signal to determine the first signal; or, the determining unit 1010 is further configured to Frequency conversion is performed according to the second signal, the second orthogonal signal and the preset frequency value to determine the first signal.
  • an acquisition unit 1020 which is configured to acquire the spectrum range or preset frequency value of the third signal
  • the determination unit 1010 is further configured to determine the second orthogonal signal according to the second signal, The second orthogonal signal is orthogonal to the second signal
  • the determining unit is also configured to perform frequency conversion according to the spectrum range of the second signal, the second orthogonal signal and the third signal to determine the first signal
  • the determining unit 1010
  • the second orthogonal signal is a result of performing FT on the second signal to obtain a frequency domain representation of the second signal, and processing the positive frequency component and the negative frequency component in the frequency domain representation of the second signal. , obtained by performing IFT; or, the second orthogonal signal is obtained by performing Hilbert transform based on the second signal.
  • the network device 1000 restores the transmitted signal by converting the frequency of the converted transmission signal, which will not cause signal distortion and energy loss, and can reduce the requirements for the effective quantization bit width of the ADC and reduce the DSP processing time. complexity in the processing process. At the same time, the spectrum range of the transmitted signal after frequency conversion is narrow, and the requirements for other devices in the link are not high. For example, the sampling rate and sampling bandwidth requirements for ADC and DAC are reduced.
  • FIG. 11 is a schematic structural diagram of a computing device 1100 provided by this application.
  • the computing device 1100 may be the network device 900 or the network device 1000 in the aforementioned content.
  • computing device 1100 includes: processor 1110 , communication interface 1120 , and memory 1130 .
  • the processor 1110, the communication interface 1120 and the memory 1130 can be connected to each other through the internal bus 1140, or can communicate through other means such as wireless transmission.
  • the embodiment of the present application takes connection through bus 1140 as an example.
  • the bus 1140 may be a Peripheral Component Interconnect Express (PCIe) bus, an extended industry standard architecture (EISA) bus, a unified bus (unifiedbus, Ubus or UB).
  • PCIe Peripheral Component Interconnect Express
  • EISA extended industry standard architecture
  • Ubus Ubus
  • UB unified bus
  • the bus 1140 can be divided into an address bus, a data bus, a control bus, etc. In addition to the data bus, the bus 1140 may also include a power bus, a control bus, a status signal bus, etc. However, for the sake of clarity, the various buses are labeled bus 1140 in the figure.
  • the processor 1110 may be composed of at least one general-purpose processor, such as a central processing unit (Central Processing Unit, CPU), or a combination of a CPU and a hardware chip.
  • the above-mentioned hardware chip can be an application-specific integrated circuit (Application-Specific Integrated Circuit, ASIC), a programmable logic device (Programmable Logic Device, PLD), or a combination thereof.
  • the above-mentioned PLD can be a complex programmable logic device (Complex Programmable Logic Device, CPLD), a field programmable gate array (Field-Programmable Gate Array, FPGA), a general array logic (Generic Array Logic, GAL), or any combination thereof.
  • Processor 1110 executes various types of digital storage instructions, such as software or firmware programs stored in memory 1130 , that enable computing device 1100 to provide a variety of services.
  • the memory 1130 is used to store program codes, and is controlled and executed by the processor 1110 to execute the processing steps of the network element equipment operation and maintenance method in the above embodiment.
  • the program code may include one or more software modules, and the one or more software modules may be the software modules provided in the embodiment of Figure 9, such as a determining unit and an acquisition unit: the determining unit is used to perform frequency conversion according to the first signal, determine The spectrum width occupied by the second signal in the positive frequency part is the same as the spectrum width occupied by the first signal in the positive frequency part.
  • the determining unit is further configured to determine the first orthogonal signal according to the first signal, and the first orthogonal signal is orthogonal to the first signal; the determining unit is further configured to determine based on the first signal and the first orthogonal signal. Frequency conversion to determine the second signal.
  • the obtaining unit is used to obtain the spectrum range or the preset frequency value of the third signal; the determining unit is also used to determine the first orthogonal signal according to the first signal; the determining unit is also used to perform frequency conversion according to the first signal and the first orthogonal signal and the spectrum range of the third signal to determine the second signal; or, the determination unit is further configured to perform frequency conversion according to the first signal, the first orthogonal signal and the preset frequency value to determine the second signal.
  • the program code may include one or more software modules.
  • the one or more software modules may be the software modules provided in the embodiment of FIG. 10 , such as a determination unit and an acquisition unit.
  • the determination unit is used to perform frequency conversion according to the second signal. , determine the first signal, and the spectrum width occupied by the first signal in the positive frequency part is the same as the spectrum width occupied by the second signal in the positive frequency part.
  • the determining unit is further configured to determine a second orthogonal signal based on the second signal, and the second orthogonal signal is orthogonal to the second signal; the determining unit is further configured to determine based on the second signal and the second orthogonal signal. Frequency conversion to determine the first signal.
  • the unit is used to obtain the spectrum range or the preset frequency value of the third signal; the determination unit is also used to determine the second orthogonal signal according to the second signal; the determination unit is also used to determine the second orthogonal signal according to the second signal, the second orthogonal signal and the third
  • the spectrum range of the signal is subjected to frequency conversion to determine the first signal; or, the determining unit is further configured to perform frequency conversion according to the second signal, the second orthogonal signal and the preset frequency value to determine the first signal.
  • this embodiment can be implemented by a general-purpose physical server, such as an ARM server or an A complete computer system with complete hardware system functions and running in a completely isolated environment is not specifically limited in this application.
  • the memory 1130 may include volatile memory (VolatileMemory), such as random access memory (RandomAccessMemory, RAM); the memory 1130 may also include non-volatile memory (Non-VolatileMemory), such as read-only memory (Read-OnlyMemory, ROM). , flash memory (FlashMemory), hard disk (HardDiskDrive, HDD) or solid-state drive (Solid-StateDrive, SSD); the memory 1130 may also include a combination of the above types.
  • the memory 1130 may store program codes to specifically execute S810 - step S850 in the embodiment of FIG. 8 and its optional steps, which will not be described again here.
  • the communication interface 1120 may be a wired interface (such as an Ethernet interface), an internal interface (such as a high-speed serial computer expansion bus (Peripheral Component Interconnect Express, PCIe) bus interface), a wired interface (such as an Ethernet interface), or a wireless interface (such as a cellular network). interface or using the wireless LAN interface) for communicating with other devices or modules.
  • a wired interface such as an Ethernet interface
  • an internal interface such as a high-speed serial computer expansion bus (Peripheral Component Interconnect Express, PCIe) bus interface
  • PCIe Peripheral Component Interconnect Express
  • Ethernet interface such as an Ethernet interface
  • a wireless interface such as a cellular network
  • FIG. 11 is only a possible implementation manner of the embodiment of the present application.
  • the computing device 1100 may also include more or fewer components, which is not limited here.
  • content not shown or described in the embodiment of the present application please refer to the relevant explanations in the embodiment of FIG. 8 , and will not be described again here.
  • computing device shown in Figure 11 can also be a computer cluster composed of at least one server, which is not specifically limited in this application.
  • Embodiments of the present application also provide a computer-readable storage medium. Instructions are stored in the computer-readable storage medium. When the instructions are run on the processor, the method flow shown in Figure 8 is implemented.
  • An embodiment of the present application also provides a computer program product.
  • the computer program product is run on a processor, the method flow shown in Figure 8 is implemented.
  • the above embodiments may be implemented in whole or in part by software, hardware, firmware, or any other combination.
  • the above-described embodiments may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the processes or functions described in accordance with the embodiments of the present invention are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmit to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, Digital Subscriber Line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer can read
  • the storage medium can be any available media that can be accessed by a computer or a data storage device such as a server or data center that contains one or more sets of available media.
  • the available media can be magnetic media (for example, floppy disks, hard disks, tapes), Optical media (for example, high-density digital video disc (DVD)), or semiconductor media.
  • the semiconductor media may be SSD.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本申请提供了一种信号处理方法、系统以及相关设备,应用于第一网元,第一网元用于向第二网元发送变频后的第一信号,即第二信号,第二网元用于同时在同一信道中向第一网元发送第三信号,包括:根据第一信号进行变频,得到第二信号,第二信号是通过第一信号、第一正交信号以及搬频频率得到的,第二信号在正频部分所占的频谱宽度与第一信号在正频部分所占的频谱宽度相同,且第二信号在负频部分所占的频谱宽度与第一信号在负频部分所占的频谱宽度相同,即第二信号的正频部分为第一信号正频部分往正搬,第二信号的负频部分为第一信号负频部分往负搬,以使得第三信号所占频谱范围内第二信号的频谱功率为零。

Description

一种信号处理方法、系统以及相关设备
本申请要求于2022年3月30日提交中国专利局、申请号为202210324986.2、申请名称为“一种信号处理方法、系统以及相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及数据通信领域,尤其涉及一种数据安全策略配置方法、设备以及系统。
背景技术
为了节省传输介质的空间和重量,网元发送信号和接收信号通常使用同一线缆,比如同轴电缆、双绞线、PCB等,进行双向同时传输,也就是全双工通信。如果发送信号和接收信号存在部分频谱重叠,发送信号和接收信号在同一传输介质中传输时,由于网元的合分路单元隔离度不够高以及线路中存在阻抗不匹配等原因,会使得网元除了接收到对端网元发送的接收信号之外,还会收到来自本端网元的发送信号的回波噪声,即自干扰噪声,从而对接收信号造成干扰。为了避免发送信号的自干扰噪声对接收信号的干扰,通常会将接收信号中与发送信号频谱重叠的成分过滤掉,但是这样会对信号造成畸变,损失了信号的能量。或者,采用高位宽的模拟数字转换器(analog to digital converter,ADC)采集混了自干扰噪声的接收信号,然后通过较为复杂的数字信号处理(Digital Signal Process,DSP)算法进行自干扰噪声消除,该方式会增加芯片成本和功耗。
因此,如何在不对信号造成畸变的情况下,消除发送信号和接收信号之间存在的干扰,是亟待解决的问题。
发明内容
本申请提供了一种信号处理方法、系统以及相关设备,其中,第一网元向第二网元发送变频后的第一信号,即第二信号,第二网元根据变频后的第一信号恢复得到第一信号,同时第二网元在同一信道向第一网元发送第三信号,第一网元接收第三信号。本申请能在不对信号造成畸变的情况下,解决第一信号和第三信号之间存在干扰的问题。
第一方面,提供一种信号处理方法,应用于第一网元,包括:根据第一信号进行变频,确定第二信号,所述第二信号在正频部分所占的频谱宽度与所述第一信号在正频部分所占的频谱宽度相同。
在上述方案中,对第一信号进行变频,且变频后信号的正频部分所占的频谱宽度和变频前信号在正频部分所占的频谱宽度相同。这样,将信号变频后再滤除自干扰噪声时,不会对信号造成畸变,不会损失信号能量。并且,将信号变频到与第三信号没有频谱重叠的范围,还能降低对ADC、DAC的采样率和采样带宽要求,以及降低了对DSP的要求。
结合第一方面,在一些实现方式中,在根据第一信号进行变频,确定第二信号之前,该方法还包括,根据第一信号确定第一正交信号,第一正交信号与第一信号正交;根据第一信号进行变频,确定第二信号,包括:根据第一信号、第一正交信号进行变频,确定第二信号。
在上述方案中,对第一信号进行变频,是通过第一信号的正交信号和第一信号得到的,这样,能使得变频后的信号所占的频谱范围不会太宽,降低了对链路中其他器件要求,例如降低了对ADC和DAC采样带宽要求。
结合第一方面,在一些实现方式中,在根据第一信号进行变频,确定第二信号之前,还包括:获取第三信号的频谱范围或者预设频率值;根据第一信号确定第一正交信号,第一正交信号与第一信号正交;根据第一信号进行变频,确定第二信号,包括:根据第一信号、第一正交信号以及第三信号的频谱范围进行变频,确定第二信号,或者,根据第一信号、第一正交信号以及预设频率值进行变频,确定第二信号。
在上述方案中,对第一信号进行变频,是通过第一信号的正交信号、第一信号和第三信号的频谱范围得到的。第三信号为线路中传输的其他信号,根据第三信号的频谱范围进行变频,能使得变频后的第一信号和第三信号没有频谱重叠,避免了信号间的干扰。另外,对第一信号进行变频还可以是根据预设的变频频率进行的,使得不管第三信号的频谱范围为多少,第一信号总是被变频到相同的频谱范围内。这样,每次传输变频后的第一信号时,即传输第二信号时,链路其他器件都是对同样频谱范围的第二信号进行处理,并且不用获取第三信号的频谱,降低了处理过程的难度。
结合第一方面,在一些实现方式中,第一正交信号是根据第一信号做傅里叶变换得到第一信号的频域表示,并根据第一信号的频域表示中的正频成分和负频成分进行处理后的结果,做傅里叶反变换得到的;或者,第一正交信号是根据第一信号做希尔伯特变换得到的。
第二方面,在一些实现方式中,应用于第二网元,包括:根据第二信号进行变频,确定第一信号,第一信号在正频部分所占的频谱宽度与第二信号在正频部分所占的频谱宽度相同。
结合第二方面,在一些实现方式中,在根据第二信号进行变频,确定第一信号之前,还包括:根据第二信号确定第二正交信号,第二正交信号与第二信号正交;根据第二信号进行变频,确定第一信号,包括:根据第二信号、第二正交信号进行变频,确定第一信号。
结合第二方面,在一些实现方式中,在根据第二信号进行变频,确定第一信号之前,还包括:获取第三信号的频谱范围或者预设频率值;根据第二信号确定第二正交信号,第二正交信号与第二信号正交;根据第二信号进行变频,确定第一信号,包括:根据第二信号、第二正交信号以及第三信号的频谱范围进行变频,确定第一信号,或者,根据所述第二信号、所述第二正交信号以及所述预设频率值进行变频,确定所述第一信号。
结合第二方面,在一些实现方式中,第二正交信号是根据第二信号做傅里叶变换得到第二信号的频域表示,并根据第二信号的频域表示中的正频成分和负频成分进行处理后的结果,做傅里叶反变换得到的;或者,第二正交信号是根据第二信号做希尔伯特变换得到的。
第三方面,本申请提供了一种网络设备,包括确定单元,确定单元用于根据第一信号进行变频,确定第二信号,第二信号在正频部分所占的频谱宽度与第一信号在正频部分所占的频谱宽度相同。
结合第三方面,在一些实现方式中,确定单元还用于根据第一信号确定第一正交信号,第一正交信号与第一信号正交;确定单元还用于根据第一信号、第一正交信号进行变频,确定第二信号。
结合第三方面,在一些实现方式中,网络设备还包括获取单元,获取单元用于获取第三信号的频谱范围或者预设频率值;确定单元还用于根据第一信号确定第一正交信号,第一正 交信号与第一信号正交;确定单元还用于根据第一信号、第一正交信号以及所述第三信号的频谱范围进行变频,确定第二信号;或者,所述确定单元还用于根据所述第一信号、所述第一正交信号以及所述预设频率值进行变频,确定所述第二信号。
在上述方案中,确定单元根据第一信号、第一正交信号进行变频,确定第二信号,具体包括:根据第一信号、第一正交信号、第三信号的频谱范围,确定第二信号。这样,能使得变频后的第一信号和第三信号没有频谱重叠,避免了信号间的干扰。或者,根据第一信号、第一正交信号以及预设频率值,确定第二信号,即第一信号被变频到相同的频谱范围内。这样,每次传输变频后的第一信号时,即传输第二信号时,链路其他器件都是对同样频谱范围的第二信号进行处理,并且不用获取第三信号的频谱,降低了处理过程的难度。
结合第三方面,在一些实现方式中,第一正交信号是根据第一信号做傅里叶变换得到第一信号的频域表示,并根据第一信号的频域表示中的正频成分和负频成分进行处理后的结果,做傅里叶反变换得到的;或者,第一正交信号是根据第一信号做希尔伯特变换得到的。
第四方面,本申请提供了一种网络设备,包括确定单元,确定单元用于根据第二信号进行变频,确定第一信号,第一信号在正频部分所占的频谱宽度与第二信号在正频部分所占的频谱宽度相同。
结合第四方面,在一些实现方式中,确定单元还用于根据第二信号确定第二正交信号,第二正交信号与第二信号正交;确定单元还用于根据第二信号、第二正交信号进行变频,确定第一信号。
结合第四方面,在一些实现方式中,网络设备还包括获取单元,获取单元用于获取第三信号的频谱范围或者预设频率值;确定单元还用于根据第二信号确定第二正交信号,第二正交信号与第二信号正交;确定单元还用于根据第二信号、第二正交信号以及第三信号的频谱范围进行变频,确定第一信号;或者,所述确定单元还用于根据所述第二信号、所述第二正交信号以及所述预设频率值进行变频,确定所述第一信号。
结合第四方面,在一些实现方式中,第二正交信号是根据第二信号做傅里叶变换得到第二信号的频域表示,并根据第二信号的频域表示中的正频成分和负频成分进行处理后的结果,做傅里叶反变换得到的;或者,第二正交信号是根据第二信号做希尔伯特变换得到的。
第五方面,本申请提供了一种信号处理系统,包括第一网元和第二网元,第一网元用于执行第一方面所描述的方法,第二网元用于执行如第二方面所描述的方法。
在上述方案中,第一网元向第二网元发送变频后的第一信号,同时第二网元向第一网元发送第三信号,第一网元还用于接收第三信号,第二网元还用于接收变频后的第一信号并根据变频后的第一信号恢复得到第一信号。
第六方面,本申请提供了一种计算设备,包括处理器和存储器,存储器用于存储指令,处理器用于执行指令,当处理器执行该指令时,执行如第一方面或第二方面所描述的方法。
第七方面,本申请提供一种计算机可读存储介质,计算机可读存储介质中存储有指令,当指令在计算设备上运行时,执行如第一方面或第二方面所描述的方法。
第八方面,本申请提供了一种计算机程序产品,计算机程序产品包括计算机指令,在被计算设备执行时,计算设备执行如第一方面或第二方面所描述的方法。
综上所述,本申请提供的信号处理方法、系统以及相关设备,通过对发送信号进行变频,使其与接收信号频谱不重叠,从而避免了发送信号和接收信号之间的干扰,在对端网元再进 行变频,恢复出发送信号,对发送信号的频谱没有影响。本申请能降低对ADC的有效量化位宽的要求以及降低了DSP处理过程中的复杂度。并且,对发送信号进行变频是通过发送信号和发送信号的正交信号进行的,这样,能使得变频后的发送信号频谱范围不会太宽,降低了对链路中其他器件要求,例如降低了对ADC和DAC的采样率和采样带宽要求。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍。
图1是本申请实施例提供的一种通信系统的结构示意图;
图2是本申请实施例提供的一种全双工通信系统的结构示意图;
图3是本申请实施例提供的一种信号处理系统的结构示意图;
图4是本申请实施例提供的一种第一信号和第三信号PSD的示意图;
图5是本申请实施例提供的一种第二信号PSD的示意图;
图6是本申请实施例提供的一种传输介质中传输信号PSD的示意图;
图7是本申请实施例提供的另一种信号处理系统的结构示意图;
图8是本申请实施例提供的一种信号处理方法的流程示意图;
图9是本申请实施例提供的一种网络设备的结构示意图;
图10是本申请实施例提供的另一种网络设备的结构示意图;
图11是本申请实施例提供的一种计算设备的结构示意图。
具体实施方式
首先,对本申请实施例涉及的应用场景进行介绍。
通信系统包括网元110、网元120。网元110和网元120可以是用户设备(userequipment,UE),或称为终端设备。本申请的实施例中的终端设备可以是手机、平板电脑、电脑、虚拟现实(virtualreality,VR)终端设备、增强现实(augmentedreality,AR)终端设备、物联网设备等等,本申请不做具体限定。当网元110为终端设备时,网元120还可以为交换机、路由器、网关、网桥、服务器、中继器、防火墙等等,还可以为卫星通信系统中的卫星,本申请不做具体限定。
在一些实施例中,网元110和网元120还可以是终端设备中的两个模块。如图1所示,图1示出了摄像头的通信系统结构,该摄像头的通信系统可以应用于汽车、飞机以及轮船等系统中,具体安装在上述交通工具的前端和/或后端。摄像头的通信系统包括:网元110为一个或多个捕捉影像的摄像头模块,网元120为控制摄像头模块并接收影像数据的电子控制单元(Electronic Control Unit,ECU)组成。
网元110与网元120之间采用的传输介质可以为电缆、印刷电路板(Printed Circuit Board,PCB)、光纤、塑料波导等有线传输介质,也可以是微波、红外线等无线传输介质。通过传输介质,可以实现网元110与网元120的数据交换。可以理解的是,图1仅示出了本申请实施例可以应用的一种可能的通信系统架构,在其他可能的场景中,所述通信系统架构中也可以只包括部分设备,或者包括其他设备。
网元110与网元120之间通常需要采用全双工(full-duplex)通信。其中,全双工通信是指 网元可以同时发送和接收信息,例如,网元110可以在向网元120上传数据的同时,还可以接收网元120下发的数据。
在全双工通信中,网元上下行的速率还可以不相同,即非对称传输。举例来说,在如图1所示的摄像头的通信系统中,摄像头模块需要向ECU上传影像数据,ECU需要向摄像头下发控制信号,例如,控制摄像头模块开始拍摄图像或者上传图像等。为了缩短上传时间,摄像头模块采用的是高速信号上传图像或视频等数据,例如10G比特率(bits per second,bps)的信号。由于控制信号数据量较小,因此,ECU向摄像头模块下发控制信号时,采用的是低速信号,例如100Mbps的信号。其中,高速信号的频谱比低速信号的频谱宽。
为了减少传输介质的空间以及重量,在一些实现方式中,网元接收信号和发送信号都通过同一传输介质进行。举例来说,在汽车、飞机以及轮船中,对各个元件和线路的空间大小和重量要求较高,通常需要减小用于传送数据的电缆的空间以及重量。因此,非对称传输的信号通常采用一条线缆进行双向信号的同时传输。具体地,在如图1所示的摄像头的通信系统中,通过在摄像头模块和ECU上分别增加合分路单元,其中,合分路单元用于以将本端信号耦合到传输线缆,以及从传输线缆接收来自对端的信号,使得摄像头模块和ECU之间的高速信号和低速信号能在同一线缆中传输。其中,合分路单元包括合路功能和分路功能,合路功能是指将多路信号耦合到一个线缆上,分路功能是指将信号分成多路信号输出。
由于基带幅度调制实现简单,例如不归零码(not return to zero,NRZ),因此高速信号和低速信号通常都采用基带幅度调制的方式。摄像头模块的高速信号,比如视频数据,被编码映射后调制到摄像头模块的高速发射机输出,高速发射机输出的高速信号耦合到摄像头模块的合分路单元,然后输出到传输线缆。ECU端的合分路单元将高速信号输出到高速接收机,然后经过解调、解映射以及解码后恢复出视频数据,解调过程可以包括均衡、判决等操作。ECU端的控制信号被编码映射后调制到ECU端的低速发射机输出,低速发射机输出信号耦合到ECU端的合分路单元,然后输出到传输线缆,摄像头端的合分路单元将低速信号输出到低速接收机,然后经过解调、解映射以及解码后恢复出控制数据。
但是,由于两者是同时在信道中传输,且合分路单元很难做到非常高的隔离度以及线路中存在阻抗不匹配等原因引入的反射信号,使得网元除了会接收到对端网元发送的信号之外,还会接收到本端网元发送信号的自干扰噪声。例如,ECU会接收到摄像头模块发送的高速信号和ECU自身发送的低速信号的自干扰噪声。
为了消除对端信号的自干扰噪声,网元可以对信号进行直接滤波,然后再将滤波后的信号通过合分路单元耦合到传输介质上。下面结合图2,以网元110向网元120发送高速信号,网元120向网元110发送低速信号为例进行举例说明。
举例来说,如图2所示,网元110在发送高速信号之前,先进行高通滤波,过滤掉高速信号中低速信号会占用频谱中的成分,然后经过网元110的合分路单元,将滤波后的高速信号耦合到传输介质上。网元110在接收网元120发送的低速信号时,会将接收到的信号经过低通滤波,过滤掉网元110发送的高速信号的自干扰噪声,之后再经过解调和判决等操作,恢复出低速信号。同样地,网元120发送的低速信号经过合分路单元的耦合之后,输出到传输介质上。网元120的合分路单元还会接收来自网元110的高速信号,为了避免网元120发送的低速信号的自干扰噪声的干扰,网元120会进行高通滤波,过滤掉低速信号会占用频谱 中的成分,然后经过解调和判决等操作,进而恢复出网元110发送的高速信号。
但是,为了避免本端网元发送信号的自干扰噪声对接收信号的干扰,将接收信号中与发送信号频谱重叠的成分过滤掉,或者,将发送信号中与接收信号频谱重叠的成分过滤掉。在此把这种方式称为直接滤波方式。该直接滤波方式会对发送信号和/或接收信号造成信号畸变,造成信号能量的损失。例如图2中将高速信号中的低频部分过滤掉,虽然过滤了自干扰噪声,但也对高速信号造成了畸变,损失了高速信号在低频成分的能量。
为了解决接收信号和发送信号存在频谱重叠,采用直接滤波方式过滤自干扰噪声,会造成信号畸变以及信号能量损失的问题,如图3所示,本申请提供了一种信号处理系统10,可以对发送信号进行变频,使得发送信号和接收信号不存在频谱重叠,然后再在接收端恢复出发送信号,不会造成信号畸变和能量损失。本申请对该信号处理系统10中的功能单元的划分不做限定,可以根据需要对该信号处理系统中的各个单元进行增加、减少或合并。
如图3所示,信号处理系统10包括第一网元200和第二网元300。第一网元200用于发送变频后的第一信号给第二网元300,其中,第一信号频谱范围为[-f1,f1],f1为正数。图4中的(A)示例性地展示了第一信号的一种功率谱密度(Power Spectral density,PSD)图像。第二网元300用于发送第三信号给第一网元200,其中,第三信号频谱范围为[-f2,f2],f2为正数。图4中的(B)示例性地展示了第三信号的一种PSD图像。
应理解,信号的频率在实际应用中为正数,但为了便于数学计算,存在信号的负频率成分,且正频率成分和负频率成分是对称的。在一些实施例中,信号的频谱还可以关于其余频率成对称关系,例如,信号的频谱为周期函数。也即是说,信号可以存在多个对称单元,本申请对信号的类型不作具体限定。
第一网元200中包括第一变频单元201和第一合分路单元202,第二网元300中包括第二变频单元301和第二合分路单元302。第一合分路单元202和第二合分路单元302可以为频率合分路单元,也可以为功率合分路单元。其中,此处的频率合分路单元是一个三端口器件,在输入端口可以实现不同频率范围的两路输入信号合路一路输出,以及将一路输入信号分路为不同频率范围的两路输出信号。此处的功率合分路单元也是一个三端口器件,用于将不同路的输入信号耦合到一路输出,并且,还用于将一路输入信号分为多路信号输出,其中,多路信号的功率比可以调节。也即是说,频率合分路单元除了合路功能和分路功能,还包括滤波的功能。
当第一合分路单元202和第二合分路单元302为频率合分路单元时,信号处理系统10的结构如图3所示,第一网元200包括第一变频单元201以及第一合分路单元202,第二网元300包括第二变频单元301以及第二合分路单元302。
第一变频单元201用于对第一信号进行变频,得到第二信号,其中,搬频频率是根据第三信号的频谱范围确定的,或所述搬频频率为预设频率值。举例来说,将第一信号的频谱搬移到与第三信号没有频谱重叠的范围时,搬频频率可以为Δω,Δω≥2πf2
具体地,第一变频单元201先根据第一信号得到第一正交信号,其中,第一正交信号为第一信号的正交信号,第一正交信号可以是通过第一信号做傅里叶变换(Fourier Transform,FT),然后分别对第一信号频域的正频成分和负频成分进行处理后,再进行傅里叶反变换(Inverse Fourier transform,IFT)得到的;或者由第一信号做希尔伯特变换(Hilbert Transform, HT)得到的。然后根据第一信号和第一正交信号进行搬频,就能得到第二信号。这样,通过变频操作,可以将第一信号的频谱搬移到其它频率范围,例如,可以使第一信号被搬移到与第三信号没有频谱重叠的频谱范围。
举例来说,当Δω=2πf2时,如图5所示,第二信号是第一变频单元201将第一信号在[0,f1]的频谱搬移到[f2,f1+f2],将第一信号在[-f1,0]的频谱搬移到[-f1-f2,-f2]得到的。
在一些实施例中,第一信号是经过了调制后的信号。也即是说,第一网元200还包括调制单元,在第一变频单元201对第一信号进行变频,得到第二信号之前,调制单元用于对第一信号进行调制。信号的调制方式包括脉冲幅度调制(Pulse Amplitude Modulation,PAM),例如PAM4、PAM8,正交相移键控(Quadrature Phase Shift Keying,QPSK),或者正交幅度调制(Quadrature Amplitude Modulation,QAM),例如,16QAM。应理解,本申请对第一信号的调制方式不作具体限定。
在一些实施例中,得到第二信号后,还会对第二信号进行数模转换(Digital to Analog,D/A),用于将第二信号的离散数字信号转化为连续模拟信号,以方便在信道中传输。对第二信号进行D/A转换可以是独立于第一变频单元201的DAC进行的,DAC在将第二信号转化为模拟信号后,再将第二信号发送给第一合分路单元202。
第一合分路单元202用于将第二信号耦合到传输介质上,发送给第二网元300,并用于接收第二网元300发送的第三信号。应理解,在传输介质中,第二信号和第三信号是同时在进行传输的。举例来说,当Δω=2πf2时,传输介质中信号的PSD如图6所示。第一合分路单元202为频率合分路单元,在频率合分路单元的端口处能对信号进行滤波,具体地,第一合分路单元202接收第三信号的端口支持的频率范围为[0,f2],发送第二信号的端口支持的频率范围为第二信号的频谱范围。举例来说,当Δω=2πf2,发送第二信号的端口支持的频率范围为[f2,f1+f2]。
在一些实施例中,第一合分路单元202接收到的第三信号为模拟信号,第一网元200中还包括ADC,ADC用于将第一合分路单元202接收到的第三信号进行模数转换(Analog to Digital,A/D),将第三信号进行采样、量化,从而恢复为数字信号。对第三信号进行A/D转换一般是独立于第一合分路单元202的ADC进行的。
在一些实施例中,第一网元200中还包括解调单元,解调单元用于在第一合分路单元202接收到第三信号之后,对第三信号进行解调,具体根据后文中第二网元300对第三信号进行的调制方式对应进行解调。
在一些实施例中,当传输介质中的信道不是理想信道时,第一网元200还会对第一合分路单元202接收到的第三信号做DSP信道均衡,包括消除或者减弱通信时的多径时延带来的码间串扰等问题。
第二合分路单元302用于接收第一网元200发送的第二信号,并用于将第三信号发送给第一网元200。具体地,第一合分路单元202为频率合分路单元,发送第三信号的端口支持的频率为[0,f2],接收第二信号的端口支持频率为第二信号的频谱范围。举例来说,当Δω=2πf2,接收第二信号的端口支持的频率范围为[f2,f1+f2]。
在一些实施例中,第二合分路单元302接收到的第二信号为模拟信号,第二网元300还包括ADC,ADC用于将第二合分路单元302接收到的第二信号进行A/D转换,对第二信号进行采样、量化等操作,将第二信号恢复为数字信号。对第二信号进行A/D转换一般是独立 于第二合分路单元302的ADC进行的。
在一些实施例中,第三信号是经过了调制后的信号。也即是说,第二网元300还包括调制单元,在第二合分路单元302将第三信号发送给第一网元200之前,调制单元还会对第三信号进行调制,例如PAM4、PAM8、16QAM、QPSK等等。应理解,本申请对第三信号的调制方式不作具体限定。
在一些实施例中,第二合分路单元302在发送第三信号前,还用于对第三信号进行D/A转换,用于将第三信号进行数模转换,得到方便于信道传输的模拟信号。对第三信号进行D/A转换一般是独立于第二合分路单元302的DAC进行的。
第二变频单元301用于对第二信号进行变频,恢复得到第一信号。具体地,第二变频单元301先根据第二信号得到第二正交信号,第二正交信号为第二信号的正交信号,第二正交信号可以是对第二信号做FT,然后分别对第二信号频域的正频成分和负频成分进行处理后,再进行IFT得到的;或者由第二信号做HT得到的。然后根据第二信号和第二正交信号进行搬频,就能恢复得到第一信号,其中,搬频的频率和第一变频单元201进行搬频的频率数值相同,搬频方向和第一变频单元201进行搬频的方向相反。例如,当对第一信号搬频得到第二信号是采用上变频时,对第二信号搬频恢复得到第一信号时将采用下变频。
举例来说,第二信号的频谱范围为[-f1-f2,-f2]∪[f2,f1+f2]时,第二变频单元301将第二信号进行变频处理,将第二信号在[-f1-f2,-f2]的频谱搬移到[-f1,0],将第二信号在[f2,f1+f2]的频谱搬移到[0,f1],进而恢复得到第一信号。
在一些实施例中,第二网元300还包括解调单元,在第二变频单元301根据第二信号得到第一信号后,解调单元用于对第一信号进行解调。具体根据第一网元200对第一信号的进行的调制方式对应进行解调。
在一些实施例中,当传输介质中的信道不是理想信道时,第二网元300还会对第二信号进行变频后得到的信号做DSP信道均衡,包括消除或者减弱通信时的多径时延带来的码间串扰等问题,进而可以恢复得到第一信号。
当第一合分路单元202和第二合分路单元302为功率合分路单元时,信号处理系统10的结构如图7所示,信号处理系统10包括第一网元200和第二网元300。第一网元200包括第一变频单元201、第一合分路单元202以及第一滤波单元203,第二网元300包括第二变频单元301、第二合分路单元302以及第二滤波单元303。
第一变频单元201用于对第一信号进行变频,得到第二信号,其中,搬频频率是根据第三信号的频谱范围确定的,或所述搬频频率为预设频率值。第一合分路单元202用于将第二信号耦合到传输介质上。具体可参考关于图3中第一变频单元201和第一合分路单元202的相关描述,此处不再赘述。
在一些实施例中,第一信号是经过了调制后的信号。也即是说,第一网元200还包括调制单元,在第一变频单元201对第一信号进行变频,得到第二信号之前,调制单元用于对第一信号进行调制,例如PAM4、PAM8、16QAM、QPSK等等。
在一些实施例中,得到第二信号后,还会对第二信号进行D/A转换,将第二信号转化为模拟信号。对第二信号进行D/A转换可以是独立于第一变频单元201的DAC进行的,DAC在将第二信号转化为模拟信号后,再将第二信号发送给第一合分路单元202。
在一些实施例中,第一合分路单元202接收到的第三信号为模拟信号,第一网元200中还包括ADC,ADC用于将第一合分路单元202接收到的第三信号进行模数转换(Analog to Digital,A/D),将第三信号进行采样、量化,从而恢复为数字信号。
第一滤波单元203用于对第三信号进行滤波,滤掉频率范围[0,f2]之外的信号,进而滤除串扰到第三信号的第二信号。第一滤波单元203可以是模拟器件,也可以是数字信号处理(Digital Signal Process,DSP)的数字滤波器。第一滤波单元203,可以是独立的单元,也可以集成在第一合分路单元202输出第三信号的端口上。
在一些实施例中,第一网元200中还包括解调单元,解调单元用于在第一合分路单元202接收到第三信号之后,对第三信号进行解调,具体根据后文中第二网元300对第三信号进行的调制方式对应进行解调。
在一些实施例中,当传输介质中的信道不是理想信道时,第一网元200还会对第一合分路单元202接收到的信号做DSP信道均衡,包括消除或者减弱通信时的多径时延带来的码间串扰等问题。
第二合分路单元302用于接收第一网元200发送的第二信号,并用于将第三信号发送给第一网元200。具体可参考关于图3中第二合分路单元302的相关描述,此处不再赘述。
在一些实施例中,第二合分路单元302接收到的第二信号为模拟信号,第二网元300还用于对第二信号进行A/D转换,对第二信号进行采样、量化等操作,将第二信号恢复为数字信号。对第二信号进行A/D转换一般是独立于第二合分路单元302的ADC进行的。
在一些实施例中,第三信号是经过了调制后的信号。也即是说,第二网元300还包括调制单元,在第二合分路单元302将第三信号发送给第一网元200之前,调制单元还会对第三信号进行调制,例如PAM4、PAM8、16QAM、QPSK等等。应理解,本申请对第三信号的调制方式不作具体限定。
在一些实施例中,第二合分路单元302在发送第三信号前,还用于对第三信号进行D/A转换,用于将第三信号进行数模转换,得到方便于信道传输的模拟信号。对第三信号进行D/A转换一般是独立于第二合分路单元302的DAC进行的。
第二滤波单元303用于对第二信号进行滤波,滤掉串扰到第二信号的第三信号。举例来说,当Δω=2πf2时,需要滤除掉频率范围为[f2,f1+f2]之外的信号。同样地,第二滤波单元303可以是模拟器件,也可以是DSP的数字滤波器。第二滤波单元303,可以是独立的单元,也可以集成在第二合分路单元302输出第三信号的端口上。
第二变频单元301用于对滤波后的第二信号进行变频,恢复得到第一信号。具体可参考关于图3中第二变频单元301的相关描述,此处不再赘述。
在一些实施例中,第二网元300还包括解调单元,在第二变频单元301根据第二信号得到第一信号后,解调单元用于对第一信号进行解调。具体根据第一网元200对第一信号的进行的调制方式对应进行解调。
在一些实施例中,当传输介质中的信道不是理想信道时,第二网元300还会对第二信号进行变频后得到的信号做DSP信道均衡,包括消除或者减弱通信时的多径时延带来的码间串扰等问题,进而可以恢复得到第一信号。
综上所述,信号处理系统10通过对发送信号进行变频,使其与接收信号频谱不重叠,从而避免了发送信号和接收信号之间的干扰,在对端网元再进行变频,恢复出发送信号,对发 送信号的频谱没有影响。本申请能降低对ADC的有效量化位宽的要求以及降低了DSP处理过程中的复杂度。并且,对发送信号进行变频是通过发送信号和发送信号的正交信号进行的,这样,能使得变频后的发送信号频谱范围不会太宽,降低了对链路中其他器件要求,例如降低了对ADC和DAC的采样率和采样带宽要求。
为了解决接收信号和发送信号存在频谱重叠,采用直接滤波方式过滤自干扰噪声,会造成信号畸变以及能量损失的问题,本申请提供了一种信号处理方法,可以对发送信号进行变频,使得发送信号和接收信号不存在频谱重叠。
下面对本申请提供的信号处理方法进行详细描述,如图8所示,该信号处理方法可以包括以下步骤:
S810、第一网元200对第一信号进行变频,得到第二信号。
第一网元200的第一变频单元201对第一信号进行变频,得到第二信号,其中,搬频频率是根据第三信号的频谱范围确定的,或所述搬频频率为预设频率值。
具体地,第一变频单元201是先根据第一信号得到第一正交信号,然后根据第一信号和第一正交信号进行搬频,就能得到第二信号,搬频频率是根据第三信号的频谱范围确定的,或所述搬频频率为预设频率值。举例来说,搬频频率可以为Δω,Δω≥2πf2。第一正交信号为第一信号的正交信号,第一正交信号可以是通过第一信号做FT,然后分别对第一信号频域的正频成分和负频成分进行处理后,再进行IFT得到的;或者由第一信号做HT得到的。第一信号用f1(t)表示,则第一正交信号可以表示为Qf1(t)。
如图5所示,第一信号的频谱范围为[-f1,f1],当Δω=2πf2时,第二信号是将第一信号在[0,f1]的频谱搬移到[f2,f1+f2],将第一信号在[-f1,0]的频谱搬移到[-f1-f2,-f2]得到的。这样,通过变频操作,可以使第一信号被搬移到与第三信号没有频谱重叠的频谱范围。应理解,当Δω>2πf2时,第二信号的正频部分在大于f2的频谱范围内,负频部分在小于-f2的范围内。
下面对第一正交信号f1(t)做FT,然后对第一信号频域的正频部分和负频部分的频谱进行处理,得到第一正交信号Qf1(t)进行详细说明。
第一信号用f1(t)表示,第一信号做FT后,得到的频域可以表示为F1(ω),F1(ω)的计算方式可以参考如下公式(1)。
其中,j为虚数单位。
将F1(ω)的正频部分乘-j,F1(ω)的负频部分乘j,得到第一正交信号QF1(ω)。QF1(ω)的计算方式可以参考如下公式(2)。
再将QF1(ω)做傅里叶反变换(Inverse Fourier transform,IFT),得到第一正交信号Qf1(t)。Qf1(t)的计算方式可以参考如下公式(3)。
下面对第一信号f1(t)做HT得到第一正交信号Qf1(t),进行详细描述。
将第一信号f1(t)与卷积,得到第一正交信号Qf1(t),具体可参考下述公式(4)。
下面对根据第一信号和第一正交信号进行搬频,就能得到第二信号,进行详细描述。
第二信号可以用f′1(t)表示,第二信号f′1(t)的计算方式可以参考如下所示公式(5)。
f′1(t)=f1(t)·cos(Δωt)+Qf1(t)·sin(Δωt)      (5)
在一些实施例中,第一网元200在对第一信号进行变频之前,还包括对第一信号进行调制,例如PAM4、PAM8、16QAM或者QPSK。应理解,本申请对第一信号的调制方式不作具体限定。
S820、第一网元200向第二网元300发送第二信号。
第一网元200的第一合分路单元202将第二信号耦合到传输介质上,进而将第二信号发送给第二网元300。其中,第一合分路单元202可以为频率合分路单元,也可以为功率合分路单元。当第一合分路单元202为频率合分路单元时,接收第二信号的端口支持的频率范围为第二信号的频谱范围,举例来说,当Δω=2πf2,接收第二信号的端口支持的频率范围为[f2,f1+f2]。
在一些实施例中,在传输介质上传输的信号为模拟信号,第一网元200在发送第二信号之前还需要对第二信号进行D/A转换。对第二信号进行D/A转换一般是独立于第一变频单元201和第一合分路单元202的DAC进行的,DAC在将第二信号转化为模拟信号后,再将第二信号发送给第一合分路单元202,由第一合分路单元202将第二信号耦合到传输介质上。
S830、第二网元300向第一网元200发送第三信号。
第二网元300的第二合分路单元302将第三信号耦合到传输介质上,进而向第一网元200发送第三信号。第二合分路单元302可以为频率合分路单元,也可以为功率合分路单元。当第二合分路单元302为频率合分路单元时,接收第三信号的端口支持的频率范围为[0,f2]。
在一些实施例中,在第二网元300向第一网元200发送第三信号之前,第二网元300还会对第三信号进行调制,例如PAM4、PAM8、16QAM、QPSK等等。应理解,本申请对第三信号的调制方式不作具体限定。
在一些实施例中,第三信号为数字信号,第二网元300在发送第三信号之前,还用于对第三信号进行D/A转换,将第三信号转化为方便于信道传输的模拟信号,然后再将第三信号耦合到传输介质上。
在一些实施例中,步骤S820和步骤S830可以同步进行。也即是说,在第一网元200向第二网元300发送第二信号的同时,第二网元300向第一网元200发送第三信号。
S840、第一网元200接收第三信号。
第一网元200的第一合分路单元202接收第二网元300发送的第三信号。当第一合分路单元202为频率合分路单元时,接收第三信号的端口支持的频率范围为[0,f2]。当第一合分路单元202为功率合分路单元时,第一网元200在接收到第三信号后,还会对第三信号进行滤波,滤除串扰到第三信号的第二信号,保留频率范围为[0,f2]的第三信号。
在一些实施例中,接收到第三信号为模拟信号,还会对第三信号进行A/D转换,将第三信号进行采样、量化,从而恢复为数字信号。
在一些实施例中,第一网元200还用于在接收到第三信号之后,对第三信号进行解调,具体根据第二网元300对第三信号进行的调制方式对应进行解调。
在一些实施例中,当传输介质中的信道不是理想信道时,第一网元200还会对接收到的第三信号做DSP信道均衡,包括消除或者减弱通信时的多径时延带来的码间串扰等问题。
S850、第二网元300对第二信号进行变频操作,恢复得到第一信号。
第二网元300的第二合分路单元302接收第二信号,然后第二网元300的第二变频单元301将第二信号进行变频处理,将第二信号负频部分的频谱搬移到[-f1,0],将第二信号在正频的频谱搬移到[0,f1],进而恢复得到第一信号。
其中,第二合分路单元302可以为频率合分路单元,也可以为功率合分路单元。当第二合分路单元302为频率合分路单元时,接收第二信号的端口支持的频率范围为第二信号的频谱范围。当第二合分路单元302为功率合分路单元时,第二网元300还会对第二信号进行滤波,由第二滤波单元303滤掉第二信号所在频谱范围之外的信号,进而滤除串扰到第二信号的第三信号。
下面对第二变频单元301将第二信号进行变频处理进行详细描述。
第二变频单元301先产生第二信号f′1(t)的正交信号,即第二正交信号Qf′1(t)。其中,生成第二正交信号Qf′1(t)的方式可以参考上述公式(1)-公式(4)及其相关描述,此处不再赘述。根据第二信号f′1(t)和第二正交信号Qf′1(t)进行搬频,就能恢复得到第一信号f1(t),搬频的频率值为Δω,搬频方向与根据第一信号得到第二信号时的搬频方向相反。例如,当对第一信号搬频得到第二信号是采用上变频时,对第二信号搬频恢复得到第一信号时将采用下变频。恢复得到第一信号f1(t)的计算方式可以参考下述公式(6)。
f1(t)=f′1(t)·cos(Δωt)-Qf′1(t)·sin(Δωt)      (6)
在一些实施例中,第二合分路单元302接收到的第二信号为模拟信号,第二网元300还用于对第二信号进行A/D转换,对第二信号进行采样、量化等操作,将第二信号恢复为数字信号。对第二信号进行A/D转换一般是独立于第二合分路单元302的ADC进行的。
在一些实施例中,在根据第二信号得到第一信号后,第二网元还会对第一信号进行解调。具体根据第一网元200对第一信号的进行的调制方式对应进行解调。
在一些实施例中,当传输介质中的信道不是理想信道时,第二网元300还会对第二信号做变频后得到的信号做DSP信道均衡,包括消除或者减弱通信时的多径时延带来的码间串扰等问题,然后可以恢复得到第一信号。
在一些实施例中,步骤S840和步骤S850可以同步进行。也即是说,第一网元200接收第三信号和第二网元300对第二信号进行变频操作,恢复得到第一信号,可以同时进行。
综上所述,信号处理方法通过对发送信号进行变频,使其与接收信号频谱不重叠,从而避免了发送信号和接收信号之间的干扰,在对端网元再进行变频,恢复出发送信号,对发送信号的频谱没有影响。本申请能降低对ADC的有效量化位宽的要求以及降低了DSP处理过程中的复杂度。并且,对发送信号进行变频是通过发送信号和发送信号的正交信号进行的,这样,能使得变频后的发送信号频谱范围不会太宽,降低了对链路中其他器件要求,例如降低了对ADC和DAC的采样率和采样带宽要求。
为了解决接收信号和发送信号存在频谱重叠,采用直接滤波方式过滤自干扰噪声,会造 成信号畸变以及能量损失的问题,本申请提供了一种网络设备900,可以对发送信号进行变频,使得发送信号和接收信号不存在频谱重叠。如图9所示,网络设备900包括确定单元910。
确定单元910用于根据第一信号进行变频,确定第二信号,第二信号在正频部分所占的频谱宽度与第一信号在正频部分所占的频谱宽度相同。
在一些实施例中,确定单元910还用于根据第一信号确定第一正交信号,第一正交信号与第一信号正交;确定单元910还用于根据第一信号、第一正交信号进行变频,确定第二信号。
在一些实施例中,如图9所示,网络设备900还包括获取单元920,获取单元920用于获取第三信号的频谱范围或者预设频率值;确定单元910还用于根据第一信号确定第一正交信号,第一正交信号与第一信号正交;确定单元910还用于根据第一信号、第一正交信号以及第三信号的频谱范围进行变频,确定第二信号;或者,确定单元910还用于根据所述第一信号、所述第一正交信号以及所述预设频率值进行变频,确定所述第二信号。
在一些实施例中,第一正交信号是根据第一信号做FT得到第一信号的频域表示,并根据第一信号的频域表示中的正频成分和负频成分进行处理后的结果,做IFT得到的;或者,第一正交信号是根据第一信号做HT得到的。
综上所述,网络设备900通过对发送信号进行变频,使其与接收信号频谱不重叠,从而避免了发送信号和接收信号之间的干扰。本申请能降低对ADC的有效量化位宽的要求以及降低了DSP处理过程中的复杂度。并且,对发送信号进行变频是通过发送信号和发送信号的正交信号进行的,这样,能使得变频后的发送信号频谱范围不会太宽,降低了对链路中其他器件要求,例如降低了对ADC和DAC的采样率和采样带宽要求。
为了解决接收信号和发送信号存在频谱重叠,采用直接滤波方式过滤自干扰噪声,会造成信号畸变以及能量损失的问题,本申请提供了一种网络设备1000,可以通过变频后的信号恢复得到原始信号。如图10所示,网络设备1000包括确定单元1010。
确定单元1010用于根据第二信号进行变频,确定第一信号,第一信号在正频部分所占的频谱宽度与第二信号在正频部分所占的频谱宽度相同。
在一些实施例中,确定单元1010还用于根据第二信号确定第二正交信号,第二正交信号与第二信号正交;确定单元1010还用于根据第二信号、第二正交信号进行变频,确定第一信号。
在一些实施例中,网络设备1000还包括获取单元1020,获取单元1020用于获取第三信号的频谱范围或者预设频率值;确定单元1010还用于根据第二信号确定第二正交信号,第二正交信号与第二信号正交;确定单元还用于根据第二信号、第二正交信号以及第三信号的频谱范围进行变频,确定第一信号;或者,确定单元1010还用于根据所述第二信号、所述第二正交信号以及所述预设频率值进行变频,确定所述第一信号。
在一些实施例中,第二正交信号是根据第二信号做FT得到第二信号的频域表示,并根据第二信号的频域表示中的正频成分和负频成分进行处理后的结果,做IFT得到的;或者,第二正交信号是根据第二信号做希尔伯特变换得到的。
综上所述,网络设备1000通过对变频后的发送信号进行变频,恢复得到发送信号,不会造成信号的畸变以及能量损失,且能降低对ADC的有效量化位宽的要求以及降低了DSP处 理过程中的复杂度。同时,变频后的发送信号频谱范围较窄,对链路中其他器件要求不高,例如降低了对ADC和DAC的采样率和采样带宽要求。
上述详细阐述了本申请实施例的方法,为了便于更好的实施本申请实施例上述方案,相应地,下面还提供用于配合实施上述方案的相关设备。
图11是本申请提供的一种计算设备1100的结构示意图,该计算设备1100可以是前述内容中的网络设备900或者网络设备1000。如图11所示,计算设备1100包括:处理器1110、通信接口1120以及存储器1130。其中,处理器1110、通信接口1120以及存储器1130可以通过内部总线1140相互连接,也可通过无线传输等其他手段实现通信。本申请实施例以通过总线1140连接为例,总线1140可以是快捷外围部件互连标准(PeripheralComponentInterconnectExpress,PCIe)总线,或扩展工业标准结构(extendedindustrystandardarchitecture,EISA)总线、统一总线(unifiedbus,Ubus或UB)、计算机快速链接(computeexpresslink,CXL)、缓存一致互联协议(cachecoherentinterconnectforaccelerators,CCIX)等。总线1140可以分为地址总线、数据总线、控制总线等。总线1140除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线1140。
处理器1110可以由至少一个通用处理器构成,例如中央处理器(CentralProcessingUnit,CPU),或者CPU和硬件芯片的组合。上述硬件芯片可以是专用集成电路(Application-Specific Integrated Circuit,ASIC)、可编程逻辑器件(ProgrammableLogicDevice,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(ComplexProgrammableLogicDevice,CPLD)、现场可编程门阵列(Field-ProgrammableGateArray,FPGA)、通用阵列逻辑(GenericArrayLogic,GAL)或其任意组合。处理器1110执行各种类型的数字存储指令,例如存储在存储器1130中的软件或者固件程序,它能使计算设备1100提供多种服务。
存储器1130用于存储程序代码,并由处理器1110来控制执行,以执行上述实施例中网元设备运维方法的处理步骤。程序代码中可以包括一个或多个软件模块,这一个或多个软件模块可以为图9实施例中提供的软件模块,如确定单元、获取单元:确定单元用于根据第一信号进行变频,确定第二信号,第二信号在正频部分所占的频谱宽度与第一信号在正频部分所占的频谱宽度相同。在一些实施例中,确定单元还用于根据第一信号确定第一正交信号,第一正交信号与第一信号正交;确定单元还用于根据第一信号、第一正交信号进行变频,确定第二信号。获取单元用于获取第三信号的频谱范围或者预设频率值;确定单元还用于根据第一信号确定第一正交信号;确定单元还用于根据第一信号、第一正交信号进行变频以及第三信号的频谱范围,确定第二信号;或者,确定单元还用于根据第一信号、第一正交信号以及预设频率值进行变频,确定第二信号。
或者,程序代码中可以包括一个或多个软件模块,这一个或多个软件模块可以为图10实施例中提供的软件模块,如确定单元、获取单元,确定单元用于根据第二信号进行变频,确定第一信号,第一信号在正频部分所占的频谱宽度与第二信号在正频部分所占的频谱宽度相同。在一些实施例中,确定单元还用于根据第二信号确定第二正交信号,第二正交信号与第二信号正交;确定单元还用于根据第二信号、第二正交信号进行变频,确定第一信号。获取 单元用于获取第三信号的频谱范围或者预设频率值;确定单元还用于根据第二信号确定第二正交信号;确定单元还用于根据第二信号、第二正交信号以及第三信号的频谱范围进行变频,确定第一信号;或者,确定单元还用于根据第二信号、第二正交信号以及预设频率值进行变频,确定第一信号。
需要说明的是,本实施例可以是通用的物理服务器实现的,例如,ARM服务器或者X86服务器,也可以是基于通用的物理服务器结合NFV技术实现的虚拟机实现的,虚拟机指通过软件模拟的具有完整硬件系统功能的、运行在一个完全隔离环境中的完整计算机系统,本申请不作具体限定。
存储器1130可以包括易失性存储器(VolatileMemory),例如随机存取存储器(RandomAccessMemory,RAM);存储器1130也可以包括非易失性存储器(Non-VolatileMemory),例如只读存储器(Read-OnlyMemory,ROM)、快闪存储器(FlashMemory)、硬盘(HardDiskDrive,HDD)或固态硬盘(Solid-StateDrive,SSD);存储器1130还可以包括上述种类的组合。存储器1130可以存储有程序代码,具体执行图8实施例中的S810-步骤S850及其可选步骤,这里不再进行赘述。
通信接口1120可以为有线接口(例如以太网接口),可以为内部接口(例如高速串行计算机扩展总线(PeripheralComponentInterconnectexpress,PCIe)总线接口)、有线接口(例如以太网接口)或无线接口(例如蜂窝网络接口或使用无线局域网接口),用于与其他设备或模块进行通信。
需要说明的,图11仅仅是本申请实施例的一种可能的实现方式,实际应用中,计算设备1100还可以包括更多或更少的部件,这里不作限制。关于本申请实施例中未示出或未描述的内容,可参见前述图8实施例中的相关阐述,这里不再赘述。
应理解,图11所示的计算设备还可以是至少一个服务器构成的计算机集群,本申请不作具体限定。
本申请实施例还提供一种计算机可读存储介质,计算机可读存储介质中存储有指令,当其在处理器上运行时,图8所示的方法流程得以实现。
本申请实施例还提供一种计算机程序产品,当计算机程序产品在处理器上运行时,图8所示的方法流程得以实现。
上述实施例,可以全部或部分地通过软件、硬件、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载或执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DigitalSubscriberLine,DSL)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(DigitalVideoDisc,DVD)、或者半导体介质。半导体介质可以是SSD。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (19)

  1. 一种信号处理方法,其特征在于,应用于第一网元,包括:
    根据第一信号进行变频,确定第二信号,所述第二信号在正频部分所占的频谱宽度与所述第一信号在正频部分所占的频谱宽度相同。
  2. 根据权利要求1所述的方法,其特征在于,在所述根据第一信号进行变频,确定第二信号之前,还包括:
    根据第一信号确定第一正交信号,所述第一正交信号与所述第一信号正交;
    所述根据第一信号进行变频,确定第二信号,包括:
    根据所述第一信号、所述第一正交信号进行变频,确定所述第二信号。
  3. 根据权利要求1所述的方法,其特征在于,在所述根据第一信号进行变频,确定第二信号之前,还包括:
    获取第三信号的频谱范围或者预设频率值;
    根据第一信号确定第一正交信号,所述第一正交信号与所述第一信号正交;
    所述根据第一信号进行变频,确定第二信号,包括:
    根据所述第一信号、所述第一正交信号以及所述第三信号的频谱范围进行变频,确定所述第二信号,或者,根据所述第一信号、所述第一正交信号以及所述预设频率值进行变频,确定所述第二信号。
  4. 根据权利要求2或3任一所述的方法,其特征在于,
    所述第一正交信号是根据所述第一信号做傅里叶变换得到所述第一信号的频域表示,并根据所述第一信号的频域表示中的正频成分和负频成分进行处理后的结果做傅里叶反变换得到的;或者,所述第一正交信号是根据所述第一信号做希尔伯特变换得到的。
  5. 一种信号处理方法,其特征在于,应用于第二网元,包括:
    根据第二信号进行变频,确定第一信号,所述第一信号在正频部分所占的频谱宽度与所述第二信号在正频部分所占的频谱宽度相同。
  6. 根据权利要求5所述的方法,其特征在于,在所述根据第二信号进行变频,确定第一信号之前,还包括:
    根据第二信号确定第二正交信号,所述第二正交信号与所述第二信号正交;
    所述根据第二信号进行变频,确定第一信号,包括:
    根据所述第二信号、所述第二正交信号进行变频,确定所述第一信号。
  7. 根据权利要求5所述的方法,其特征在于,在所述根据第二信号进行变频,确定第一信号之前,还包括:
    获取第三信号的频谱范围或者预设频率值;
    根据第二信号确定第二正交信号,所述第二正交信号与所述第二信号正交;
    所述根据第二信号进行变频,确定第一信号,包括:
    根据所述第二信号、所述第二正交信号以及所述第三信号的频谱范围进行变频,确定所述第一信号,或者,根据所述第二信号、所述第二正交信号以及所述预设频率值进行变频,确定所述第一信号。
  8. 根据权利要求6或7任一所述的方法,其特征在于,
    所述第二正交信号是根据所述第二信号做傅里叶变换得到所述第二信号的频域表示,并根据所述第二信号的频域表示中的正频成分和负频成分进行处理后的结果做傅里叶反变换得到的;或者,所述第二正交信号是根据所述第二信号做希尔伯特变换得到的。
  9. 一种网络设备,其特征在于,包括确定单元,
    所述确定单元用于根据第一信号进行变频,确定第二信号,所述第二信号在正频部分所占的频谱宽度与所述第一信号在正频部分所占的频谱宽度相同。
  10. 根据权利要求9所述的网络设备,其特征在于,
    所述确定单元还用于根据第一信号确定第一正交信号,所述第一正交信号与所述第一信号正交;
    所述确定单元还用于根据所述第一信号、所述第一正交信号进行变频,确定所述第二信号。
  11. 根据权利要求9所述的网络设备,其特征在于,所述网络设备还包括获取单元,
    所述获取单元用于获取第三信号的频谱范围或者预设频率值;
    所述确定单元还用于根据第一信号确定第一正交信号,所述第一正交信号与所述第一信号正交;
    所述确定单元还用于根据所述第一信号、所述第一正交信号以及所述第三信号的频谱范围进行变频,确定所述第二信号;或者,所述确定单元还用于根据所述第一信号、所述第一正交信号以及所述预设频率值进行变频,确定所述第二信号。
  12. 根据权利要求10或11任一所述的网络设备,其特征在于,
    所述第一正交信号是根据所述第一信号做傅里叶变换得到所述第一信号的频域表示,并根据所述第一信号的频域表示中的正频成分和负频成分进行处理后的结果做傅里叶反变换得到的;或者,所述第一正交信号是根据所述第一信号做希尔伯特变换得到的。
  13. 一种网络设备,其特征在于,包括确定单元,
    所述确定单元用于根据第二信号进行变频,确定第一信号,所述第一信号在正频部分所占的频谱宽度与所述第二信号在正频部分所占的频谱宽度相同。
  14. 根据权利要求13所述的网络设备,其特征在于,
    所述确定单元还用于根据第二信号确定第二正交信号,所述第二正交信号与所述第二信号正交;
    所述确定单元还用于根据所述第二信号、所述第二正交信号进行变频,确定所述第一信号。
  15. 根据权利要求13所述的网络设备,其特征在于,所述网络设备还包括获取单元,
    所述获取单元用于获取第三信号的频谱范围或者预设频率值;
    所述确定单元还用于根据第二信号确定第二正交信号,所述第二正交信号与所述第二信号正交;
    所述确定单元还用于根据所述第二信号、所述第二正交信号以及所述第三信号的频谱范围进行变频,确定所述第一信号;或者,所述确定单元还用于根据所述第二信号、所述第二正交信号以及所述预设频率值进行变频,确定所述第一信号。
  16. 根据权利要求14或15任一所述的网络设备,其特征在于,
    所述第二正交信号是根据所述第二信号做傅里叶变换得到所述第二信号的频域表示,并根据所述第二信号的频域表示中的正频成分和负频成分进行处理后的结果做傅里叶反变换得到的;或者,所述第二正交信号是根据所述第二信号做希尔伯特变换得到的。
  17. 一种信号处理系统,其特征在于,包括第一网元和第二网元,
    所述第一网元用于执行如权利要求1至4任一项所述的方法,所述第二网元用于执行如权利要求5至8任一项所述的方法。
  18. 一种计算设备,其特征在于,包括处理器和存储器,所述存储器用于存储指令,所述处理器用于执行所述指令,当所述处理器执行所述指令时,执行如权利要求1至4任一项所述的方法或权利要求5至8任一项所述的方法。
  19. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机指令,在被计算设备执行时,计算设备执行如权利要求1至4任一项所述的方法或权利要求5至8任一项所述的方法。
PCT/CN2023/083508 2022-03-30 2023-03-23 一种信号处理方法、系统以及相关设备 WO2023185655A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210324986.2A CN116938280A (zh) 2022-03-30 2022-03-30 一种信号处理方法、系统以及相关设备
CN202210324986.2 2022-03-30

Publications (1)

Publication Number Publication Date
WO2023185655A1 true WO2023185655A1 (zh) 2023-10-05

Family

ID=88199304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/083508 WO2023185655A1 (zh) 2022-03-30 2023-03-23 一种信号处理方法、系统以及相关设备

Country Status (2)

Country Link
CN (1) CN116938280A (zh)
WO (1) WO2023185655A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102638228A (zh) * 2012-03-09 2012-08-15 北京创毅讯联科技股份有限公司 上变频器及上变频方法
US20170141937A1 (en) * 2014-07-31 2017-05-18 Huawei Technologies Co., Ltd. Self-interference channel estimation method and device
CN111526106A (zh) * 2019-02-01 2020-08-11 华为技术有限公司 通信方法及装置
CN113922937A (zh) * 2021-09-01 2022-01-11 中国信息通信研究院 一种无线信号传输方法和设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102638228A (zh) * 2012-03-09 2012-08-15 北京创毅讯联科技股份有限公司 上变频器及上变频方法
US20170141937A1 (en) * 2014-07-31 2017-05-18 Huawei Technologies Co., Ltd. Self-interference channel estimation method and device
CN111526106A (zh) * 2019-02-01 2020-08-11 华为技术有限公司 通信方法及装置
CN113922937A (zh) * 2021-09-01 2022-01-11 中国信息通信研究院 一种无线信号传输方法和设备

Also Published As

Publication number Publication date
CN116938280A (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
US10187158B2 (en) Optical communication system and optical transmitter
US9338040B2 (en) Use of multi-level modulation signaling for short reach data communications
US7349484B2 (en) Adjustable dual-band link
JP3272875B2 (ja) トランシーバ装置、通信方法および通信システム
US7388904B2 (en) Near-end, far-end and echo cancellers in a multi-channel transceiver system
US6556581B1 (en) Ethernet to phase shift key converter
US8675504B2 (en) Energy efficient ethernet (EEE) with 10GBASE-T structures
US7782930B2 (en) Optimized short initialization after low power mode for digital subscriber line (DSL) communications
JP3614762B2 (ja) データ送信器
US20170012802A1 (en) Method for Sending and Receiving Signal, and Corresponding Device and System
US4780884A (en) Suppressed double-sideband communication system
WO2023273478A1 (zh) 对合成单边带信号光强度信息的色散补偿方法与系统
US7248890B1 (en) Channel power balancing in a multi-channel transceiver system
JP2020526133A (ja) 通信方法、通信装置、および記憶媒体
CN203616749U (zh) 一种实现高速板级通讯的装置
CN109417395B (zh) 一种数据发送、接收的方法、设备以及数据传输系统
WO2023185655A1 (zh) 一种信号处理方法、系统以及相关设备
US4730345A (en) Vestigial sideband signal decoder
CN110492946B (zh) 一种采用单探测器的光场重建与色散补偿系统与方法
US20170019230A1 (en) Communicating a Data Payload and an Acknowledgment of the Data Payload on Different Channels
CN113890793A (zh) 一种数据传输方法及装置
CN115134005B (zh) 基于cadd接收机的偏置双边带信号的直接检测方法及系统
JPH11122312A (ja) ディジタル変調装置、ディジタル復調装置、ディジタル変復調装置、ディジタル変調方法、ディジタル復調方法及びディジタル変復調方法
EP1941663B1 (en) Method for establishing a subscriber connection and a system utilizing the method
CN115134006B (zh) 一种基于并行多延迟的载波辅助差分检测方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23778024

Country of ref document: EP

Kind code of ref document: A1