WO2023185453A1 - 光链路检测方法及装置 - Google Patents

光链路检测方法及装置 Download PDF

Info

Publication number
WO2023185453A1
WO2023185453A1 PCT/CN2023/081369 CN2023081369W WO2023185453A1 WO 2023185453 A1 WO2023185453 A1 WO 2023185453A1 CN 2023081369 W CN2023081369 W CN 2023081369W WO 2023185453 A1 WO2023185453 A1 WO 2023185453A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical signal
signal
link
information
Prior art date
Application number
PCT/CN2023/081369
Other languages
English (en)
French (fr)
Inventor
朱庆明
郑栋升
娄延年
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023185453A1 publication Critical patent/WO2023185453A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal

Definitions

  • the present application relates to the field of communication technology, and in particular to an optical link detection method and device.
  • the fronthaul optical network refers to the fiber-based communication network between the baseband unit (BBU) and the remote radio unit (RRU) in the wireless access network (radio access network, RAN), or it refers to the RAN
  • an optical link includes: an optical module at the transmitting end for sending optical signals, an optical module at the receiving end for receiving the optical signals, and an optical fiber connecting the two. If a fault occurs anywhere in the optical link, it may affect the quality of the optical signal transmitted between the sending end and the receiving end, thus affecting the quality of the network. So, how to detect optical links is an urgent problem to be solved.
  • Embodiments of the present application provide an optical link detection method and device, which can detect whether the optical link is faulty.
  • embodiments of the present application provide an optical link detection device, which includes a first photodetector, a second photodetector and a signal processor.
  • the first light detector is used to perform photoelectric conversion on the first light signal, obtain information of the first light signal, and output the information of the first light signal to the signal processor.
  • the first light signal is from the first optical module. optical signals that carry business data.
  • the second optical detector is used to perform photoelectric conversion on the second optical signal, obtain the information of the second optical signal, and output the information of the second optical signal to the signal processor, wherein the second optical signal is the first optical signal passing through the optical fiber.
  • the optical signal is reflected by the link, or the optical signal is reflected by the first optical signal through the optical fiber link and the second optical module.
  • the signal processor is configured to determine whether there is a fault in the optical link based on the information of the first optical signal, or based on the information of the first optical signal and the information of the second optical signal, where the optical link includes a first optical module, an optical fiber link and the second optical module.
  • the optical link detection device determines whether there is a fault in the optical link based on the optical signal carrying the business data, and can realize the optical link detection during the process of business communication between the first optical module and the second optical module, thereby enabling Realize online detection.
  • the optical link detection device does not include a light source, and the first photodetector, the second photodetector, and the signal processor in the optical link detection device can all be miniaturized, so that the optical link detection device can be miniaturized. change.
  • the optical link detection device further includes a wavelength gate.
  • the wavelength gate is used to determine the first optical signal from the third optical signal according to the first wavelength and output the first optical signal to the first optical detector, where the third optical signal includes the first optical signal.
  • the wavelength gate is also used to determine a second optical signal from the fourth optical signal according to the first wavelength, and output the second optical signal to the second optical detector, wherein the fourth optical signal includes the second optical signal, and the The four-optical signal is an optical signal obtained by reflecting the third optical signal through the optical fiber link, or an optical signal obtained by reflecting the third optical signal through the optical fiber link and the optical module that receives the third optical signal.
  • the optical link detection device also includes an optical add-drop multiplexer with an add-drop multiplexing structure.
  • the optical add-drop multiplexer is used to acquire the third optical signal and the fourth optical signal, and output the third optical signal and the fourth optical signal to the wavelength gate.
  • the third optical signal obtained based on the add-drop multiplexing structure is part of the optical signal carrying service data transmitted by the optical fiber link. This part of the optical signal is used by the optical link detection device to perform optical link detection. Detection, and the remaining optical signals in the optical signal carrying business data transmitted by the optical fiber link can be transmitted normally to the optical module that receives the optical signal, ensuring normal business communication between the optical modules that receive and receive the optical signal.
  • this embodiment also realizes using one device to obtain the third optical signal and the fourth optical signal, instead of having to use two devices to obtain the third optical signal and the fourth optical signal respectively.
  • the optical link detection device further includes a microresonator.
  • the microresonator is used to determine the first optical signal from the third optical signal according to the first wavelength and output the first optical signal to the first optical detector, wherein the third optical signal includes the first optical signal.
  • the microresonator is also used to determine a second optical signal from the fourth optical signal according to the first wavelength and output the second optical signal to the second optical detector, wherein the fourth optical signal includes the second optical signal, and the fourth The optical signal is an optical signal obtained by reflecting the third optical signal through the optical fiber link, or an optical signal obtained by reflecting the third optical signal through the optical fiber link and the optical module that receives the third optical signal.
  • the microresonator has an add-drop multiplexing structure; the microresonator is also used to obtain the third optical signal and the fourth optical signal.
  • the signal processor determines whether there is a fault in the optical link based on the information of the first optical signal. Specifically: when the average power corresponding to the information of the first optical signal is less than the first value, determines whether the optical link has a fault. There is a fault in the link, where the first value is a power threshold of the first optical signal.
  • the average power corresponding to the information of the first optical signal is less than the first value, it is determined that there is a fault in the first optical module in the optical link, or it is determined that there is a fault in the optical fiber link connecting the first optical module and the optical link detection device. Fault.
  • the signal processor determines whether there is a fault in the optical link based on the information of the first optical signal and the information of the second optical signal. Specifically, it calculates the amplitude of the first optical signal after photoelectric conversion.
  • the cross-correlation function between the information and the amplitude information after photoelectric conversion of the second optical signal obtains one or more cross-correlation coefficients. If there is a cross-correlation coefficient in one or more cross-correlation coefficients that is greater than a second value, it is determined that there is a fault in the optical link, wherein the second value is an amplitude threshold determined based on the noise in the first optical signal and the noise in the second optical signal. .
  • the signal processor is further configured to determine the location of the fault point on the optical link based on the time corresponding to each of the one or more cross-correlation coefficients that is greater than the second value.
  • the signal processor is further configured to determine the reflection loss of the fault point on the optical link based on the value of each of the one or more cross-correlation coefficients that is greater than the second value.
  • embodiments of the present application provide an optical link detection device, which includes a first photodetector, a second photodetector, and a signal processor.
  • the first photodetector is used to perform photoelectric conversion on the fifth optical signal, obtain the information of the fifth optical signal, and output the information of the fifth optical signal to the second signal processor.
  • the fifth optical signal is a signal of the first optical signal.
  • the first optical signal is obtained by modulating the optical signal, and the first optical signal is an optical signal carrying service data from the first optical module.
  • the second photodetector is used to perform photoelectric conversion on the sixth optical signal, obtain information of the sixth optical signal, and output the information of the sixth optical signal to the second signal processor, where the sixth optical signal is the fifth optical signal.
  • the optical signal is reflected by the optical fiber link, or the fifth optical signal is reflected by the optical fiber link and the second optical module.
  • the signal processor is configured to determine whether there is a fault in the optical link based on the information of the fifth optical signal or the information of the sixth optical signal, where the optical link includes a first optical module, an optical fiber link and a second optical module.
  • the optical link detection device determines whether there is a fault in the optical link based on the modulated optical signal carrying the business data.
  • the optical link detection device is more sensitive and can detect minor faults (faults with smaller losses). ) recognition ability Stronger.
  • the optical link detection device does not include a light source, and the first photodetector, the second photodetector, and the signal processor in the optical link detection device can all be miniaturized, so that the optical link detection device can be miniaturized. change.
  • the optical link detection device further includes a wavelength gate.
  • the wavelength gate is used to determine a fifth optical signal from the seventh optical signal according to the first wavelength and output the fifth optical signal to the first optical detector, where the seventh optical signal includes the fifth optical signal.
  • the wavelength gate is also used to determine a sixth optical signal from the eighth optical signal according to the first wavelength, and output the sixth optical signal to the second optical detector, wherein the eighth optical signal includes the sixth optical signal, and the The eight-light signal is an optical signal obtained by reflecting the seventh optical signal through the optical fiber link, or an optical signal obtained by reflecting the seventh optical signal through the optical fiber link and the optical module that receives the seventh optical signal.
  • the optical link detection device also includes an optical add-drop multiplexer with an add-drop multiplexing structure.
  • the optical add-drop multiplexer is used to acquire the seventh optical signal and the eighth optical signal, and output the seventh optical signal and the eighth optical signal to the wavelength gate.
  • the optical link detection device also includes an optical modulator.
  • the optical modulator is used to modulate the ninth optical signal, and output the modulated ninth optical signal to the optical add-drop multiplexer; wherein the ninth optical signal includes the first optical signal, and the modulated ninth optical signal includes Seventh Light Signal.
  • the optical add-drop multiplexer acquires the seventh optical signal and the eighth optical signal. Specifically: it acquires part of the optical signal from the modulated ninth optical signal as the seventh optical signal; The optical signal reflected on the optical fiber link obtains part of the optical signal as the eighth optical signal, or the optical signal is reflected from the modulated ninth optical signal on the optical fiber link and the optical module that receives the modulated ninth optical signal. Part of the optical signal is taken as the eighth optical signal.
  • the optical link detection device further includes a microresonator.
  • the microresonator is used to determine a fifth optical signal from the seventh optical signal according to the first wavelength and output the fifth optical signal to the first optical detector, where the seventh optical signal includes the fifth optical signal.
  • the microresonator is further used to determine a sixth optical signal from the eighth optical signal according to the first wavelength and output the sixth optical signal to the second optical detector, wherein the eighth optical signal includes the sixth optical signal, and the eighth optical signal is The optical signal is an optical signal obtained by reflecting the seventh optical signal through the optical fiber link, or an optical signal obtained by reflecting the fifth optical signal through the optical fiber link and the optical module that receives the fifth optical signal.
  • the microresonator has an add-drop multiplexing structure; the microresonator is also used to obtain the seventh optical signal and the eighth optical signal.
  • the microresonator is also used to modulate the ninth optical signal.
  • the microresonator obtains the seventh optical signal and the eighth optical signal. Specifically: a part of the optical signal is obtained from the modulated ninth optical signal as the seventh optical signal, and the modulated ninth optical signal is reflected from the optical fiber link. Obtain part of the optical signal from the optical signal as the eighth optical signal, or obtain part of the optical signal from the optical signal reflected by the modulated ninth optical signal on the optical fiber link and the optical module that receives the modulated ninth optical signal. as the eighth light signal.
  • the signal processor determines whether there is a fault in the optical link based on the information of the fifth optical signal. Specifically: if the peak value of the pulse of the fifth optical signal is less than the third value and greater than the fourth value, It is determined that the optical link is faulty.
  • the third value is the amplitude threshold of the pulse in the fifth optical signal
  • the fourth value is the amplitude threshold of the noise in the fifth optical signal.
  • the peak value of the pulse of the fifth optical signal is less than the third value and greater than the fourth value, it is determined that there is a fault in the first optical module in the optical link, or it is determined that the optical fiber link connecting the first optical module and the optical link detection device There is a fault in the road.
  • the signal processor determines whether there is a fault in the optical link based on the information of the sixth optical signal. Specifically: if the peak value of the pulse of the sixth optical signal is greater than the fifth value, it is determined that the optical link exists. Fault; where the fifth value is the amplitude threshold of noise in the sixth optical signal.
  • the peak value of the pulse of the sixth optical signal is greater than the fifth value, it is determined that there is a fault in the second optical module in the optical link, or it is determined that there is a fault in the optical fiber link connecting the second optical module and the optical link detection device.
  • the signal processor is also configured to determine the fault point corresponding to the pulse on the optical link based on the time delay of each pulse in the sixth optical signal with a peak value greater than the fifth value relative to the pulse of the fifth optical signal. Fault location.
  • the signal processor is also configured to determine the amplitude value of each pulse whose peak value is greater than the fifth value in the sixth optical signal. and the amplitude value included in the pulse of the fifth optical signal to determine the reflection loss of the pulse at the corresponding fault point on the optical link.
  • embodiments of the present application provide an optical link detection device, which includes a first photodetector, a second photodetector, and a signal processor.
  • the first photodetector is used to perform photoelectric conversion on the tenth optical signal, obtain the information of the tenth optical signal, and output the information of the tenth optical signal to the signal processor.
  • the tenth optical signal comes from the third optical module. optical pulse signal; the third optical module does not belong to the optical link detection device.
  • the second photodetector is used to perform photoelectric conversion on the eleventh optical signal, obtain the information of the eleventh optical signal, and output the information of the eleventh optical signal to the signal processor, where the eleventh optical signal is the tenth optical signal.
  • the optical signal is an optical signal reflected by the optical fiber link, or the tenth optical signal is reflected by the optical fiber link and the fourth optical module.
  • the signal processor is configured to determine whether there is a fault in the optical link based on the information of the tenth optical signal or the information of the eleventh optical signal, where the optical link includes a third optical module, an optical fiber link and a fourth optical module.
  • the optical link detection device determines whether there is a fault in the optical link based on the optical pulse signal generated by the optical module that does not belong to the optical link detection device.
  • the optical link detection device is more sensitive and can detect minor faults ( Faults with smaller losses) have stronger identification capabilities.
  • the optical link detection device does not include a light source, and the first photodetector, the second photodetector, and the signal processor in the optical link detection device can all be miniaturized, so that the optical link detection device can be miniaturized. change.
  • the optical link detection device further includes a wavelength gate.
  • the wavelength gate is used to determine a tenth optical signal from the twelfth optical signal according to the first wavelength, and output the tenth optical signal to the first optical detector, where the eleventh optical signal includes the tenth optical signal.
  • the wavelength gate is also used to determine an eleventh optical signal from the thirteenth optical signal according to the first wavelength, and output the twelfth optical signal to the second optical detector, wherein the thirteenth optical signal includes a tenth optical signal.
  • the first optical signal and the thirteenth optical signal are the optical signals obtained by reflecting the twelfth optical signal through the optical fiber link, or the light obtained by reflecting the twelfth optical signal through the optical fiber link and the optical module that receives the twelfth optical signal. Signal.
  • the optical link detection device also includes an optical add-drop multiplexer with an add-drop multiplexing structure.
  • the optical add-drop multiplexer is used to acquire the twelfth optical signal and the thirteenth optical signal, and output the twelfth optical signal and the thirteenth optical signal to the wavelength gate.
  • the optical link detection device further includes a microresonator.
  • the microresonator is used to determine a tenth optical signal from the twelfth optical signal according to the first wavelength and output the tenth optical signal to the first optical detector, where the twelfth optical signal includes the tenth optical signal.
  • the microresonator is also used to determine an eleventh optical signal from the thirteenth optical signal according to the first wavelength, and output the eleventh optical signal to the second optical detector, wherein the thirteenth optical signal includes an eleventh optical signal.
  • the thirteenth optical signal is the optical signal obtained by the reflection of the eleventh optical signal through the optical fiber link, or the optical signal obtained by the reflection of the eleventh optical signal through the optical fiber link and the optical module that receives the eleventh optical signal.
  • the microresonator has an add-drop multiplexing structure; the microresonator is also used to obtain the twelfth optical signal and the thirteenth optical signal.
  • the signal processor determines whether there is a fault in the optical link based on the information of the tenth optical signal. Specifically: if the peak value of the pulse of the tenth optical signal is less than the sixth value and greater than the seventh value, It is determined that there is a fault in the optical link; where the fifth value is the amplitude threshold of the pulse in the tenth optical signal, and the sixth value is the amplitude threshold of the noise in the tenth optical signal.
  • the signal processor determines whether there is a fault in the optical link based on the information of the eleventh optical signal. Specifically: if the peak value of the pulse of the eleventh optical signal is greater than the eighth value, determines whether the optical link There is a fault on the path; where the eighth value is the amplitude threshold of the noise in the eleventh optical signal.
  • the signal processor is also configured to determine the fault point corresponding to the pulse on the optical link based on the time delay of each pulse in the eleventh optical signal with a peak value greater than the eighth value relative to the pulse of the tenth optical signal. fault location.
  • the signal processor is also configured to determine whether the pulse is on the optical link based on the amplitude value included in each pulse in the eleventh optical signal with a peak value greater than the eighth value and the amplitude value included in the pulse of the tenth optical signal. The reflection loss of the corresponding fault point.
  • embodiments of the present application provide an optical link detection method, which can be executed by an optical link detection device.
  • the method includes: performing photoelectric conversion on the first optical signal, obtaining information on the first optical signal, and performing photoelectric conversion on the first optical signal.
  • the second optical signal proceeds Photoelectric conversion to obtain the information of the second optical signal.
  • the first optical signal is an optical signal carrying service data from the first optical module;
  • the second optical signal is an optical signal obtained by reflecting the first optical signal through the optical fiber link, or the first optical signal is obtained by reflecting the first optical signal through the optical fiber link and
  • the second optical module reflects the obtained optical signal. Determine whether there is a fault in the optical link according to the information of the first optical signal, or according to the information of the first optical signal and the second optical signal, where the optical link includes a first optical module, an optical fiber link and a second optical signal. module.
  • the optical link detection method may also include some or all of the implementations that can be implemented by the optical link detection device described in the first aspect, and may also have beneficial effects corresponding to these implementations, which will not be described again here.
  • embodiments of the present application provide an optical link detection method, which can be executed by an optical link detection device.
  • the method includes: performing photoelectric conversion on the fifth optical signal, obtaining information on the fifth optical signal, and performing photoelectric conversion on the fifth optical signal.
  • the sixth optical signal undergoes photoelectric conversion to obtain information of the sixth optical signal.
  • the fifth optical signal is obtained by modulating the first optical signal, which is an optical signal carrying business data from the first optical module;
  • the sixth optical signal is obtained by reflecting the fifth optical signal through the optical fiber link.
  • the optical signal, or the optical signal obtained by reflecting the fifth optical signal through the optical fiber link and the second optical module According to the information of the fifth optical signal or the information of the sixth optical signal, it is determined whether there is a fault in the optical link, where the optical link includes a first optical module, an optical fiber link and a second optical module.
  • the optical link detection method may also include some or all of the implementations that can be implemented by the optical link detection device described in the second aspect, and may also have beneficial effects corresponding to these implementations, which will not be described again here.
  • embodiments of the present application provide an optical link detection method, which can be executed by an optical link detection device.
  • the method includes: performing photoelectric conversion on a tenth optical signal, obtaining information on the tenth optical signal, and performing photoelectric conversion on the tenth optical signal.
  • the eleventh optical signal undergoes photoelectric conversion to obtain information of the eleventh optical signal.
  • the tenth optical signal is an optical pulse signal from the third optical module, and the third optical module does not belong to the optical link detection device;
  • the eleventh optical signal is an optical signal obtained by reflecting the tenth optical signal through the optical fiber link, or It is an optical signal obtained by reflecting the tenth optical signal through the optical fiber link and the fourth optical module.
  • the information of the tenth optical signal or the information of the eleventh optical signal it is determined whether there is a fault in the optical link, where the optical link includes a third optical module, an optical fiber link and a fourth optical module.
  • the optical link detection method may also include some or all of the implementations that can be implemented by the optical link detection device described in the second aspect, and may also have beneficial effects corresponding to these implementations, which will not be described again here.
  • this application provides an optical link detection device, including a memory and a processor.
  • the memory is used to store instructions or computer programs;
  • the processor is used to execute the computer programs or instructions stored in the memory, so that the optical link detection device executes any implementation that can be implemented by the optical link detection device described in the first aspect, Alternatively, perform any implementation that can be implemented by the optical link detection device described in the second aspect, or perform any implementation that can be implemented by the optical link detection device described in the third aspect.
  • the present application provides a computer-readable storage medium for storing a computer program.
  • the optical link detection device executes the optical link described in the first aspect. Any implementation that can be implemented by the detection device, or any implementation that can be implemented by the optical link detection device described in the second aspect, or any implementation that can be implemented by the optical link detection device described in the third aspect .
  • embodiments of the present application provide a chip or chip system.
  • the chip or chip system includes at least one processor and an interface.
  • the interface and the at least one processor are interconnected through lines.
  • the at least one processor is used to run computer programs or instructions.
  • the optical link detection device can be implemented in any embodiment.
  • the interface in the chip can be an input/output interface, a pin or a circuit, etc.
  • the chip system in the above aspects can be a system on chip (SOC) or a baseband chip, etc.
  • the baseband chip can include a processor, channel encoder, digital signal processor, modem, interface module, etc.
  • the chip or chip system described above in this application further includes at least one memory, and instructions are stored in the at least one memory.
  • the memory can be a storage unit inside the chip, such as a register, a cache, etc., or it can be a storage unit of the chip (such as a read-only memory, a random access memory, etc.).
  • the present application provides a computer program or computer program product, which includes computer instructions.
  • the optical link detection device causes the optical link detection device to execute the steps described in the first aspect. Any implementation that can be realized by the optical link detection device, or any implementation that can be realized by executing the optical link detection device described in the second aspect, or any implementation that can be realized by executing the optical link detection device described in the third aspect Any implementation.
  • Figure 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of another communication system provided by an embodiment of the present application.
  • Figure 3 is a schematic diagram of the installation location of an optical link detection device provided by an embodiment of the present application.
  • Figure 4 is a schematic diagram of the installation location of another optical link detection device provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of the installation location of another optical link detection device provided by an embodiment of the present application.
  • Figure 6 is a schematic diagram of the installation location of another optical link detection device provided by an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of an optical link detection device provided by an embodiment of the present application.
  • Figure 8 is a schematic structural diagram of another optical link detection device provided by an embodiment of the present application.
  • Figure 9 is a schematic diagram of an add-drop multiplexing structure provided by an embodiment of the present application.
  • Figure 10 is a schematic diagram of another add-drop multiplexing structure provided by an embodiment of the present application.
  • Figure 11 is a schematic structural diagram of another optical link detection device provided by an embodiment of the present application.
  • Figure 12 is a schematic structural diagram of another optical link detection device provided by an embodiment of the present application.
  • Figure 13 is a schematic flowchart of an optical link detection method 100 provided by an embodiment of the present application.
  • Figure 14 is a schematic flow chart of an optical link detection method 200 provided by an embodiment of the present application.
  • Figure 15 is a schematic flowchart of an optical link detection method 300 provided by an embodiment of the present application.
  • Figure 16 is a schematic structural diagram of another optical link detection device provided by an embodiment of the present application.
  • Figure 17 is a schematic structural diagram of another optical link detection device provided by an embodiment of the present application.
  • the technical solutions of the embodiments of this application can be applied to various communication scenarios based on optical fiber link communication.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • the communication system may include, but is not limited to, an optical module 101 for transmitting optical signals, an optical module 102 for receiving optical signals, and an optical fiber link 103 connecting the optical module 101 and the optical module 102.
  • the optical module 101 is an optical module that sends a single-wavelength optical signal
  • the optical module 102 is an optical module that receives a single-wavelength optical signal.
  • the optical module 101 and the optical module 102 are directly connected to each other through optical fiber architecture. That is to say, the optical signals transmitted in the optical fiber link 103 are single-wavelength optical signals, and the optical signals sent by different optical modules 101 are transmitted to the target through different optical fiber links.
  • Optical module 102 is directly connected to each other through optical fiber architecture. That is to say, the optical signals transmitted in the optical fiber link 103 are single-wavelength optical signals, and the optical signals sent by different optical modules 101 are transmitted to the target through different optical fiber links.
  • the optical module 101 can be the optical transceiver unit in the BBU
  • the optical module 102 can be the optical transceiver unit in the RRU or AAU.
  • the communication system shown in Figure 1 takes an optical module 101, an optical module 102 and an optical fiber link 103 as an example.
  • optical fiber link communication if there are multiple optical modules 101 transmitting signals to respective target optical modules 102 sends optical signals of different wavelengths.
  • the multiple optical modules 101 and their target optical modules 102 may not use optical fiber direct connection architecture, but adopt a wavelength division multiplexing (WDM) architecture.
  • WDM wavelength division multiplexing
  • multiple optical signals with different wavelengths can be transmitted to the optical modules 102 of respective targets through the same optical fiber link based on WDM. That is to say, multiple optical signals with different wavelengths can be transmitted simultaneously in the same optical fiber link, that is, multi-wavelength light signal.
  • the communication system may also include a combiner 104 and a demultiplexer 105, as shown in Figure 2.
  • the combiner 104 can be used to combine optical signals with different wavelengths from multiple optical modules 101 and couple them into the optical fiber link 103 for transmission;
  • the splitter 105 can be used to combine the light signals in the optical fiber link 103 The signal is separated and restored into multiple optical signals with different wavelengths.
  • the multiple optical modules 101 are multiple optical transceiver units in the BBU
  • the multiple optical modules 102 are multiple optical transceiver units in the RRU or AAU. .
  • optical link detection method provided by the embodiment of the present application can be executed by an optical link detection device.
  • the optical link detection device can be an independent device with a power supply interface, and it can also have a communication interface for communicating with other devices.
  • the communication interface can be used to receive parameters configured by other devices for the optical link detection device (such as optical link The period during which the detection device executes the optical link detection method, the bandwidth supported by the optical link detection device, the number of sampling points when the optical link detection device processes signals, etc.), the communication interface can also be used to execute the optical link detection method by the optical link detection device The detection results obtained by the detection method are output to other devices.
  • the optical link detection device can be placed on the side of the optical fiber link close to the optical module 101, as shown in Figure 3 , wherein the optical link detection device and the optical fiber link are connected based on coupling.
  • the optical link detection device can be used to detect whether there is a fault in the optical link (including the optical module 101, the optical fiber link 103 and the optical module 102) corresponding to the optical signal emitted by the optical module 101.
  • an optical link detection device can be installed on the optical fiber link connecting each optical module 101 and the optical module 102 to detect the light emitted by each optical module 101 respectively. Check whether the optical link corresponding to the optical signal is faulty.
  • the optical link detection device can be placed on the side of the optical fiber link 103 close to the combiner 104, as shown in Figure 4 is shown, wherein the optical link detection device and the optical fiber link are connected based on coupling.
  • the optical link detection device can be used to detect whether the optical link corresponding to the optical signal sent by each optical module 101 in the plurality of optical modules 101 has a fault, wherein the optical link corresponding to the optical signal sent by each optical module 101
  • the optical link includes: the optical module 101, the combiner 104, the optical fiber link 103, the demultiplexer 105, and the optical module 102 that receives the optical signal.
  • the optical link detection device can also be integrated into other equipment (or other functional modules), and the other equipment provides power, communication, packaging and other requirements for the optical link detection device.
  • the optical link detection device can also be integrated into the optical module 101, as shown in Figure 5.
  • the optical link detection device can be used to detect whether there is a fault in the optical link corresponding to the optical signal sent by the optical module 101.
  • the optical link of the optical signal sent by the optical module 101 includes: the optical module 101, the optical fiber link Road 103, optical module 102. If there are multiple optical modules 101 in the communication system shown in Figure 1, an optical link detection device is integrated for each optical module 101.
  • the optical link detection device integrated in a certain optical module 101 can be used to detect the optical module. Check whether the optical link corresponding to the optical signal sent by 101 is faulty.
  • the communication system shown in Figure 2 also includes an optical fiber line auto switch protection (OLP) module 106.
  • the optical link detection device can be integrated in the OLP module 106, as shown in Figure 6 Show.
  • the optical link detection device can be used to detect whether the optical link corresponding to the optical signal sent by each optical module 101 in the plurality of optical modules 101 has a fault, wherein the optical link corresponding to the optical signal sent by each optical module 101
  • the optical link includes: the optical module 101, the combiner 104, the optical fiber link, the demultiplexer 105, and the optical module 102 that receives the optical signal. If the optical link The detection device detects that there is a fault in the main optical fiber link 103a used to transmit optical signals. Then, the OLP module 106 can switch from the main optical fiber link 103a to the auxiliary optical fiber link 103b through the OLP switch, and the auxiliary optical fiber link 103b transmits the optical signal. .
  • OLP optical fiber line auto switch protection
  • optical link detection device provided by the embodiment of the present application will be described in detail below with reference to the accompanying drawings.
  • FIG. 7 is a schematic structural diagram of an optical link detection device provided by an embodiment of the present application.
  • the optical link detection device includes: a first photodetector 201, a second photodetector 202 and a signal processor 203.
  • the functions of each part in the optical link detection device include those described in Embodiment 1 to Embodiment 3.
  • Embodiment 1 the optical link detection device is used to perform the optical link detection method based on the optical signal carrying service data.
  • the functions of each part in Figure 7 are as follows:
  • the first photodetector 201 is used to perform photoelectric conversion on the first optical signal, obtain the information of the first optical signal, and output the information of the first optical signal to the signal processor 203, where the first optical signal is from the first optical signal.
  • the optical signal of the optical module carries business data.
  • the optical signal carrying business data can be an optical signal carrying cell data; if the optical link detection device is used in a data center In the access network, core network or backbone network, the optical signal carrying service data can be an optical signal carrying signaling, an optical signal carrying network node interaction information, or an optical signal carrying user data.
  • the second light detector 202 is used to perform photoelectric conversion on the second light signal, obtain the information of the second light signal, and output the information of the second light signal to the signal processor 203 , where the second light signal is the first light signal.
  • the optical signal is an optical signal obtained by reflecting the signal through the optical fiber link, or the optical signal is obtained by reflecting the first optical signal through the optical fiber link and the second optical module.
  • the first optical module is an optical module that sends the first optical signal
  • the second optical module is an optical module that receives the first optical signal.
  • the first optical module is the optical module used to send the first optical signal in the BBU
  • the second optical module is the AAU or RRU.
  • the first light detector 201 and the second light detector 202 are determined based on a commercially available optical signal modulation format in communication scenarios.
  • the commercially available optical signal modulation format in the fronthaul optical network is amplitude modulation (also called light intensity modulation)
  • the first light detector 201 and the second light detector 202 are light detectors with light intensity detection functions. Such as photodiodes.
  • the first photodetector 201 and the second photodetector 202 may be photodetectors with low bandwidth characteristics. If the first optical signal and the second optical signal are high-speed digital modulated signals, such as signals with a rate of 40Gb/s and using on-off keying (OOK) modulation, the first optical detector 201 will The optical signal undergoes photoelectric conversion and is also used to filter the first optical signal based on its own band limitation to obtain a low-speed multi-level analog signal carrying the information of the first optical signal; the second photodetector 202 in addition to the second optical signal The optical signal undergoes photoelectric conversion and is also used to filter the second optical signal based on its own band limitation to obtain a low-speed multi-level analog signal carrying the information of the second optical signal.
  • This method allows the signal processor 203 to perform optical link detection based on low-speed multi-level analog signals, which is beneficial to reducing the complexity of the signal processor 203 determining whether the optical link is faulty, and can also reduce the cost of the optical link
  • the signal processor 203 is configured to determine whether there is a fault in the optical link based on the information of the first optical signal, or based on the information of the first optical signal and the information of the second optical signal, where the optical link includes a first optical module, an optical fiber link and second optical module.
  • the signal processor 203 may determine based on the analog signal carrying the information of the first optical signal, or based on the analog signal carrying the information of the first optical signal and the analog signal carrying the second optical signal.
  • the information is determined by the analog signal.
  • the analog signal carrying the information of the first optical signal comes from the first light detector 201; the analog signal carrying the information of the second optical signal comes from the second light detector 202.
  • the signal processor 203 may based on the number of information carrying the first optical signal.
  • the word signal is determined or determined based on a digital signal carrying information of the first optical signal and a digital signal carrying information of the second optical signal.
  • the digital signal carrying the information of the first optical signal is obtained by performing analog-to-digital conversion on the analog signal carrying the information of the first optical signal from the first optical detector 201;
  • the digital signal carrying the information of the second optical signal is It is obtained by performing analog-to-digital conversion on the analog signal from the second light detector 202 that carries the information of the second light signal.
  • the signal processor 203 is also configured to perform the analog-to-digital conversion on the information of the first optical signal.
  • the digital signal and the digital signal carrying the information of the second optical signal are normalized.
  • the optical link detection device may also include an analog-to-digital converter.
  • the analog-to-digital converter may be used to perform analog-to-digital conversion on the analog signal carrying the information of the first optical signal, and to perform analog-to-digital conversion on the analog signal carrying the information of the second optical signal. Analog signals undergo analog-to-digital conversion.
  • the analog-to-digital converter may be a device independent of the first light detector 201 , the second light detector 202 and the signal processor 203 , or may be integrated into the signal processor 203 .
  • the optical link detection device may further include a wavelength gate 204, as shown in FIG. 8 .
  • the wavelength gate 204 is used to determine the first optical signal from the third optical signal according to the first wavelength, and output the first optical signal to the first optical detector 201, where the third optical signal includes the first optical signal.
  • the wavelength gate 204 is also used to determine a second optical signal from the fourth optical signal according to the first wavelength, and output the second optical signal to the second optical detector 202, where the fourth optical signal includes the second optical signal , the fourth optical signal is an optical signal obtained by reflecting the third optical signal through the optical fiber link, or an optical signal obtained by reflecting the third optical signal through the optical fiber link and the optical module that receives the third optical signal.
  • the third optical signal includes optical signals of multiple wavelengths carrying service data, which may be obtained by converging optical signals of multiple wavelengths (including the first optical signal) carrying service data in a WDM manner by a combiner.
  • the optical module that receives the third optical signal includes a plurality of optical modules (including a second optical module) that respectively receive the optical signals of the plurality of wavelengths, and the optical module that sends the third optical signal includes an optical module that respectively sends the optical signals of the plurality of wavelengths. Multiple optical modules (including the first optical module).
  • the first wavelength is the wavelength of the first optical signal, and is also the center wavelength of the wavelength gate 204 when the wavelength gate 204 determines the first optical signal from the third optical signal.
  • the signal processor 203 may further provide the wavelength gate 204 with a signal.
  • a wavelength selection signal is sent to control the center wavelength of the wavelength gate 204 to be the first wavelength. The specific implementation of determining the wavelength selection signal before the signal processor 203 sends the wavelength selection signal to the wavelength gate 204 is described below.
  • the signal processor 203 may send multiple control signals with different powers to the wavelength gate 204 .
  • the wavelength gater 204 respectively processes the third optical signal based on the plurality of control signals to obtain a plurality of optical signals #1, and outputs the plurality of optical signals #1 to the first photodetector 201, wherein a plurality of Optical signal #1 includes optical signal #1 obtained at each of the plurality of control signals.
  • the first photodetector 201 performs photoelectric conversion on the plurality of optical signals #1 respectively, obtains the electrical signal #1 corresponding to each optical signal #1 in the multiple optical signals #1, and converts the electrical signal #1 corresponding to each optical signal #1 Signal #1 is output to signal processor 203.
  • the signal processor 203 calculates the power of each electrical signal #1 to determine a curve of the power of the electrical signal #1 - the power of the control signal, which curve represents the electrical signal corresponding to the optical signal #1 obtained under each control signal. #1 power.
  • the signal processor 203 determines the maximum value point when the power of the electrical signal #1 reaches the maximum value from the curve, and selects the control signal corresponding to any maximum value point as the wavelength selection signal.
  • multiple control signals with different powers can control the central wavelength of the wavelength gate 204 to have different values, so that the wavelength gate 204 can process the third optical signal with a central wavelength that changes in value.
  • the value of the central wavelength of the wavelength gate 204 can be changed within a preset range.
  • the value of the central wavelength of the wavelength gate 204 can be within a preset range.
  • the preset interval is used as a step change, and the preset range here may be a free spectral range (FSR) range.
  • the electrical signal #1 output by the first photodetector 201 is an analog signal.
  • the signal processor 203 calculates the power of the electrical signal #1, it can directly calculate the power of the electrical signal #1 as an analog signal.
  • the power of the digital signal obtained by analog-to-digital conversion of the electrical signal #1, which is an analog signal can also be calculated.
  • the power of signal #1 has multiple maximum value points.
  • the signal processor 203 can use the control signals corresponding to the plurality of maximum value points as wavelength selection signals to control the center wavelength of the wavelength gate 204 to respectively be the center wavelength of each of the plurality of optical signals carrying service data. wavelength. Then, for each optical signal among the plurality of optical signals carrying service data and having different wavelengths, the wavelength gater 204 can determine the optical signal from the third optical signal according to the wavelength of the optical signal, and the signal processor 203 can Perform fault detection on the optical link corresponding to the optical signal.
  • the optical link detection device to perform fault detection on the optical link corresponding to each optical signal among multiple optical signals with different wavelengths carrying service data.
  • the optical link corresponding to each optical signal includes: an optical module that sends the optical signal, a combiner, an optical fiber link, a splitter, and an optical module that receives the optical signal.
  • the above-mentioned optical link detection device can also determine the faulty optical link when a fault occurs at a certain position among the multiple optical links corresponding to the multiple optical signals. Taking Figure 2 as an example, if one of the multiple ports used to receive multiple optical signals in the combiner fails, the optical link detection device detects the optical link corresponding to each of the multiple optical signals. Fault detection can determine the faulty optical link at the port position of the combiner, and then determine the faulty port in the combiner.
  • the optical link detection device sends the By performing fault detection on the optical link corresponding to each optical signal in the multiple optical signals, the optical link with the fault in the optical module in the BBU can be determined, and then the faulty optical module can be determined.
  • the plurality of wavelength selection signals determined by the signal processor 203 may be output to the wavelength gate 204 in sequence.
  • the signal processor 203 may first output a certain wavelength selection signal to the wavelength gate 204, and the wavelength gate 204 determines the wavelength with this wavelength from the third optical signal according to the center wavelength controlled by the wavelength selection signal.
  • the signal processor 203 After receiving the optical signal, the signal processor 203 outputs another wavelength selection signal to the wavelength gate 204; the above process is repeated until multiple wavelength selection signals are sequentially output to the wavelength gate 204.
  • the signal processor 203 can also first output a certain wavelength selection signal to the wavelength gate 204, and the wavelength gate 204 determines the optical signal with this wavelength from the third optical signal according to the center wavelength controlled by the wavelength selection signal.
  • the signal processor 203 performs optical link detection on the determined optical signal, it outputs another wavelength selection signal to the wavelength gate 204; the above process is repeated until multiple wavelength selection signals are sequentially output to the wavelength gate.
  • Device 204 may first output a certain wavelength selection signal to the wavelength
  • the optical link detection device may also include an optical add-drop multiplexer 205 with an add-drop multiplexing structure.
  • the optical add-drop multiplexer 205 is used to acquire the third optical signal and the fourth optical signal, and output the third optical signal and the fourth optical signal to the wavelength gate 204 .
  • the third optical signal is a partial optical signal obtained by the optical add-drop multiplexer 205 from the optical signals of multiple wavelengths carrying service data transmitted by the optical fiber link.
  • the partial optical signals here include the optical signals of the multiple wavelengths. part of the optical signal for each optical signal in . It can be seen that when the optical link detection device performs optical link detection, it uses part of the optical signals of multiple wavelengths that carry business data transmitted by the optical fiber link, and the remaining part of the optical signals can be transmitted to the receiver normally.
  • Optical module for optical signals to ensure normal business communication between the two optical modules that send and receive optical signals. Therefore, the optical link detection performed by the optical link detection device will not cause interference to the optical link-based business communication between the two optical modules that send and receive optical signals, thereby enabling online detection.
  • the optical module that sends the third optical signal includes optical module 1, optical module 2, and optical module 3.
  • Optical module 1 sends optical signal 1 that carries business data
  • optical module 2 sends optical signal 2 that carries business data
  • optical module 3 sends Carrying business data Optical signal 3, where optical signal 1, optical signal 2 and optical signal 3 have different wavelengths, and optical signal 1, optical signal 2 and optical signal 3 are combined by a combiner and coupled to the same optical fiber link for transmission based on WDM.
  • the third optical signal obtained based on the add-drop multiplexing structure includes part of the optical signal in optical signal 1, part of the optical signal in optical signal 2, and part of the optical signal in optical signal 3.
  • Figures 9 and 10 Possible forms of add-drop multiplexing structures are shown in Figures 9 and 10. The following is an example of obtaining the third optical signal from the optical signal 1 transmitted in the optical fiber link and the fourth optical signal from the optical signal 2 transmitted in the optical fiber link based on the add-drop multiplexing structure. Possible forms are described.
  • optical signal 1 is transmitted from the input port (also called the incident port) of the optical fiber link (i.e., port A) to the straight-through coupling port (i.e., port B), and optical signal 2 is transmitted from the straight-through coupling port of the optical fiber link to the input Port
  • optical signal 2 is the optical signal obtained by reflection of optical signal 1 on the optical fiber link, or the optical signal obtained by reflection of optical signal 1 on the optical fiber link and the optical module that receives optical signal 1.
  • part of the optical signal in optical signal 1 (ie, the third optical signal) is obtained from the cross-coupling port of port A (ie, port C1 in Figure 9), and the remaining part of the optical signal continues in the optical fiber link Transmission;
  • part of the optical signal in optical signal 2 (i.e., the fourth optical signal) is obtained from the cross-coupling port of port B (i.e., port C2 in Figure 9), and the remaining part of the optical signal continues to be transmitted in the optical fiber link.
  • part of the optical signal in optical signal 1 ie, the third optical signal
  • part of the optical signal in optical signal 2 i.e., the fourth optical signal
  • the download port of port B i.e., port D2 in Figure 10
  • the optical The link detection device only performs optical link detection on single-wavelength optical signals, and the optical link detection device may not include the wavelength gate 204 .
  • the optical add-drop multiplexer 205 is used to obtain the first optical signal and the second optical signal based on the add-drop multiplexing structure, output the first optical signal to the first optical detector 201, and output the second optical signal to the second optical detector 201.
  • Light detector 202 is used to obtain the first optical signal and the second optical signal based on the add-drop multiplexing structure, output the first optical signal to the first optical detector 201, and output the second optical signal to the second optical detector 201.
  • the optical add-drop multiplexer 205 and the optical fiber link are connected based on coupling. That is to say, the optical link detection device is connected to the first optical module and the second optical module, specifically as follows: the optical add-drop multiplexer 205 is connected to the first optical module through an optical fiber link, and to the second optical module. Optical modules are connected through optical fiber links, and the connection methods are all coupling methods.
  • the optical link detection device may further include a microresonator 206, as shown in FIG. 11 .
  • the microresonator 206 is configured to determine a first optical signal from a third optical signal according to a first wavelength, wherein the third optical signal includes the first optical signal.
  • the microresonator 206 is also used to determine the second optical signal from the fourth optical signal according to the first wavelength, wherein the fourth optical signal includes the second optical signal, and the fourth optical signal is obtained by reflecting the third optical signal through the optical fiber link.
  • the optical signal, or the third optical signal is the optical signal reflected by the optical fiber link and the optical module that receives the third optical signal.
  • the third optical signal and the fourth optical signal please refer to the above-mentioned relevant descriptions of the third optical signal and the fourth optical signal, which will not be described again here.
  • the microresonator 206 may have all the functions of the wavelength gate 204 in the above embodiments.
  • the microresonator 206 determines the first optical signal from the third optical signal according to the first wavelength and the fourth optical signal according to the first wavelength.
  • the second optical signal please refer to the relevant description of the wavelength gate 204 determining the first optical signal from the third optical signal according to the first wavelength and determining the second optical signal from the fourth optical signal according to the first wavelength. No further details will be given here.
  • the microresonator 206 has an add-drop multiplexing structure.
  • the microresonator 206 is also used to obtain the third optical signal and the fourth optical signal.
  • the microresonator 206 can have all the functions of the optical add-drop multiplexer 205 in the above embodiments.
  • the microresonator 206 is used to acquire the first optical signal and the second optical signal.
  • the microresonator 206 and the optical fiber link are connected based on coupling. That is to say, the optical link detection device is connected to the first optical module and the second optical module.
  • the microresonator 206 is connected to the first optical module through an optical fiber link, and is connected to the second optical module through an optical fiber link. are connected through optical fiber links, and the connection methods are all coupling methods.
  • the functions of the wavelength gate 204 and the optical add-drop multiplexer 205 in Figure 8 can be realized by a single device—the microresonator 206.
  • the microresonator 206 may be a silicon-based microring resonator, and the form of the silicon-based microring resonator is an add-drop multiplexing structure as shown in FIG. 10 .
  • the function of the wavelength gate 204 can be realized by relying on the filtering characteristics of the silicon-based microring resonator, and the adjustability of the center wavelength of the silicon-based microring resonator relies on the ability to change the waveguide integrated on the silicon-based microring resonator.
  • Refractive index elements such as metal hot electrodes, p-i-n junctions are implemented.
  • the signal processor 203 may determine whether there is a fault in the optical link based on the information of the first optical signal. Specifically, when the average power corresponding to the information of the first optical signal is less than the first value, it is determined that there is a fault in the optical link.
  • the average power corresponding to the information of the first optical signal refers to the average power of the electrical signal after the first optical signal undergoes photoelectric conversion (and optional analog-to-digital conversion).
  • the first value is the power threshold of the first optical signal; the first value may be determined based on the average power of the optical signal with the first wavelength sent by the first optical module, which may be equal to the average power of the optical signal with the first wavelength sent by the first optical module.
  • the average power of the optical signal of the wavelength is the value obtained by subtracting the insertion loss caused by each device that the optical signal passes through during transmission from the first optical module to the optical link detection device.
  • the components through which the optical signal with the first wavelength passes during the transmission process are, for example: optical fiber links, combiners, optical link detection devices and other components that connect the first optical module and the optical link detection device.
  • the average power corresponding to the information of the first optical signal is less than the first value, it can be determined that there is a fault in the first optical module in the optical link, or it can be determined that there is a fault in the optical fiber link connecting the first optical module and the optical link detection device. Fault.
  • the signal processor 203 can determine whether there is a fault in the optical link based on the information of the first optical signal and the information of the second optical signal. Specifically: calculate the value of the first optical signal after photoelectric conversion. The cross-correlation function of the amplitude information of the second optical signal and the amplitude information after photoelectric conversion is obtained to obtain one or more cross-correlation coefficients; if there is a cross-correlation coefficient greater than the second value in the one or more cross-correlation coefficients, determine the light There is a link failure.
  • the second optical module in the optical link has a fault, or it can be determined that the optical fiber link connecting the second optical module and the optical link detection device is faulty. There is a fault in the road.
  • the second value is an amplitude threshold determined based on the noise in the first optical signal and the noise in the second optical signal.
  • the second value may be determined based on the following: a cross-correlation coefficient between the photoelectrically converted amplitude information of the noise in the first optical signal and the photoelectrically converted amplitude information of the second optical signal, the first optical signal The correlation coefficient between the amplitude information after photoelectric conversion and the amplitude information after photoelectric conversion of the noise in the second optical signal, and the amplitude information after photoelectric conversion of the noise in the first optical signal and the amplitude information of the noise in the second optical signal The correlation coefficient between the amplitude information after photoelectric conversion.
  • the signal processor 203 is also used to normalize the amplitude information of the first optical signal after photoelectric conversion and the amplitude information of the second optical signal after photoelectric conversion.
  • the cross-correlation function calculated by the signal processor 203 is the information between the normalized amplitude information of the first optical signal after photoelectric conversion and the normalized information of the amplitude information of the second optical signal after photoelectric conversion. Cross-correlation function.
  • the signal processor 203 can normalize the amplitude information of the first optical signal after photoelectric conversion and the amplitude information of the second optical signal after photoelectric conversion in combination with the optical link signal-to-noise ratio.
  • the signal processor 203 may also determine the location of the fault point on the optical link based on the time corresponding to each of the one or more cross-correlation coefficients that is greater than the second value.
  • the cross-correlation spectrum composed of one or more cross-correlation coefficients obtained by the signal processor 203, there are one or more pulses with a peak value greater than the second value, and the peak value of the one or more pulses is greater than the second value in the cross-correlation spectrum.
  • the cross-correlation coefficient corresponding to one or more maximum value points of the value.
  • Each of the one or more pulses with a peak value greater than the second value corresponds to a fault point on the optical link.
  • the signal processor 203 can be based on The moment corresponding to the peak value in each pulse whose peak value is greater than the second value is determined to determine the position of the fault point corresponding to the pulse on the optical link.
  • the time corresponding to the peak value in a pulse whose peak value is greater than the second value is t, if is less than the length of the optical fiber link connecting the second optical module and the optical link detection device, then the position of the fault point corresponding to the pulse on the optical link is: in the optical fiber link connecting the second optical module and the optical link detection device, Distance from optical link detection device position; if If it is equal to the length of the optical fiber link connecting the second optical module and the optical link detection device, it indicates that the second optical module is faulty.
  • c is the speed of light transmitted by the optical signal in the optical fiber.
  • the method for determining the location of the fault point can also be: if the length ratio of the optical fiber link connecting the second optical module and the optical link detection device If the first error threshold is greater than the first error threshold, then the position of the fault point corresponding to the pulse on the optical link is: in the optical fiber link connecting the second optical module and the optical link detection device, and away from the optical link detection device position; if If the absolute value of the difference between the length of the optical fiber link connecting the second optical module and the optical link detection device is less than the first error threshold, it indicates that the second optical module is faulty.
  • the signal processor 203 is also configured to determine the reflection loss of the fault point on the optical link based on the value of each of the one or more cross-correlation coefficients that is greater than the second value.
  • a cross-correlation map composed of one or more cross-correlation coefficients Its unit is decibel (dB).
  • R 1 , R 2 ,..., R i are i mutual correlation coefficients that constitute the pulse, and the i mutual correlation coefficients are all greater than the second value, i is a positive integer;
  • P is the photoelectric conversion of the first optical signal The power of the final analog signal, or the power of the digital signal after the first optical signal undergoes photoelectric conversion and analog-to-digital conversion.
  • the signal processor 203 can also be used to output optical link fault information to the display panel to inform the user.
  • the fault information of the optical link includes at least one of the following: whether there is a fault in the optical link corresponding to the first optical signal, the fault location of the fault point, and the reflection loss of the fault point.
  • the display panel may be in the optical link detection device, or may be in other equipment with a display function that is different from the optical link detection device. If the display panel is in other equipment with a display function that is different from the optical link detection device, the optical link detection device may also include a communication interface, and the signal processor 203 may output the fault information of the optical link to the display through the communication interface. panel.
  • the signal processor 203 may be a low-cost microcontroller, such as a general-purpose microcontrol unit, a programmable logic gate array, etc.
  • each function of the above-mentioned signal processor 203 can also be implemented in a distributed manner by different hardware forms.
  • the optical link detection device determines whether there is a fault in the optical link based on the optical signal carrying business data.
  • the optical link includes an optical module that sends the optical signal carrying business data, and an optical module that transmits the optical signal carrying business data.
  • the optical fiber link and the optical module that receives the optical signal carrying business data It can be seen that the optical link detection device determines whether there is a fault in the optical link based on the optical signal carrying the business data, and will not cause interference to the optical link-based business communication between the two optical modules that receive and receive the optical signal, thereby realizing online faults. detection.
  • the optical link detection device does not include a light source, and the first photodetector, the second photodetector, the signal processor and the optional wavelength gate, optical add-drop multiplexer, Microresonators can be miniaturized, allowing the optical link detection device to be miniaturized.
  • the optical link detection device is used to perform an optical link detection method based on the modulated optical signal carrying service data.
  • the functions of each part in Figure 7 are as follows:
  • the first photodetector 201 is used to perform photoelectric conversion on the fifth optical signal, obtain the information of the fifth optical signal, and output the information of the fifth optical signal to the signal processor 203 , wherein the fifth optical signal is a signal of the first optical signal.
  • the first optical signal is obtained by modulating the optical signal, and the first optical signal is an optical signal carrying service data from the first optical module.
  • the second photodetector 202 is used to photoelectrically convert the sixth optical signal, obtain information of the sixth optical signal, and convert the sixth optical signal into The information of the optical signal is output to the signal processor 203, where the sixth optical signal is an optical signal obtained by reflecting the fifth optical signal through the optical fiber link, or the fifth optical signal is obtained by reflecting through the optical fiber link and the second optical module. light signal.
  • the method of modulating the first optical signal may be amplitude modulation (also called light intensity modulation), phase modulation, polarization modulation, frequency modulation and other modulation methods.
  • the first light detector 201 and the second light detector 202 are determined based on the modulation method of modulating the first light signal. For example, if the modulation method is amplitude modulation, the first photodetector 201 and the second photodetector 202 are detectors (such as photodiodes) with light intensity detection functions; if the modulation method is phase modulation, the first photodetector 201 The second photodetector 202 is a detector with optical phase detection function (such as an optical coherent receiver).
  • the signal processor 203 is configured to determine whether there is a fault in the optical link based on the information of the fifth optical signal or the information of the sixth optical signal, where the optical link includes a first optical module, an optical fiber link and a second optical module.
  • optical link detection device determines the fifth optical signal and the sixth optical signal may be as described in Embodiment 1 to Embodiment 3.
  • the optical link detection device further includes a wavelength gate 204, an optical add-drop multiplexer 205, and an optical modulator 207, as shown in FIG. 12 .
  • the optical link detection device is connected to the first optical module and the second optical module.
  • the optical modulator 207 is connected to the first optical module through an optical fiber link
  • the optical add-drop multiplexer 205 is connected to the first optical module.
  • the second optical modules are connected through optical fiber links, and the connection methods are all coupling methods.
  • the optical modulator 207 modulates the ninth optical signal, and outputs the modulated ninth optical signal to the optical add-drop multiplexer 205; wherein the ninth optical signal includes the first optical signal.
  • the ninth optical signal includes optical signals of multiple wavelengths that carry service data and are transmitted in the optical fiber link.
  • the optical add-drop multiplexer 205 obtains a part of the optical signal from the modulated ninth optical signal as the seventh optical signal; it is obtained from the reflection of the modulated ninth optical signal on the optical fiber link, or on the optical fiber link and receiving the third optical signal. A part of the optical signal is obtained as an eighth optical signal from the optical signal reflected by the nine-optical signal optical module; the seventh optical signal and the eighth optical signal are output to the wavelength gate 204 .
  • the wavelength gate 204 determines a fifth optical signal from the seventh optical signal according to the first wavelength, and outputs the fifth optical signal to the first optical detector 201, wherein the seventh optical signal includes the fifth optical signal; according to the A wavelength determines a sixth optical signal from the eighth optical signal, and outputs the sixth optical signal to the second optical detector 202, wherein the eighth optical signal includes the sixth optical signal, and the eighth optical signal is the seventh optical signal.
  • the optical signal is reflected by the optical fiber link, or the seventh optical signal is reflected by the optical fiber link and the optical module that receives the seventh optical signal.
  • the manner in which the optical add-drop multiplexer 205 acquires the seventh optical signal and the eighth optical signal is similar to the manner in which the optical add-drop multiplexer 205 acquires the third optical signal and the fourth optical signal in Embodiment 1.
  • the wavelength gating The way in which the detector 204 determines the fifth optical signal and the sixth optical signal is similar to the way in which the first optical signal and the second optical signal are determined in Embodiment 1, and will not be described again here.
  • the optical link detection device further includes a microresonator 206 and an optical modulator 207 .
  • the optical link detection device is connected to the first optical module and the second optical module.
  • the optical modulator 207 and the first optical module are connected through an optical fiber link
  • the micro-resonator 206 and the second optical module are connected through an optical fiber link.
  • Optical fiber link connection, and the connection method is coupling method.
  • the optical modulator 207 has the function of the optical modulator 207 in Embodiment 1, and the optical modulator 207 outputs the modulated ninth optical signal to the microresonator 206 .
  • the microresonator 206 has the functions of the wavelength gate 204 and the optical add-drop multiplexer 205 in Embodiment 1.
  • the microresonator 206 determining the fifth optical signal and the sixth optical signal please refer to the relevant explanations in Embodiment Mode 1, which will not be described again here.
  • the optical link detection device further includes a microresonator 206, as shown in FIG. 11 .
  • the optical link detection device is connected to the first optical module and the second optical module.
  • the microresonator 206 is connected to the first optical module through an optical fiber link, and is connected to the second optical module through an optical fiber link.
  • Optical fiber link connection, and the connection method is coupling method.
  • the microresonator 206 has the functions of the wavelength gate 204, the optical add-drop multiplexer 205, and the optical modulator 207 in Embodiment 1.
  • the function of the optical modulator 207 may rely on the microresonator integrated with the The components of waveguide refractive index (such as metal hot electrodes, pin junctions) and the interference effect in waveguide coupling are realized.
  • the method of determining the fifth optical signal and the sixth optical signal is as described in Embodiment 3.1 and Embodiment 3.2.
  • the microresonator 206 modulates the ninth optical signal; then obtains part of the optical signal from the modulated ninth optical signal as the seventh optical signal; and obtains , or obtain part of the optical signal as the eighth optical signal from the optical signal reflected by the optical fiber link and the optical module that receives the ninth optical signal; determine the fifth optical signal from the seventh optical signal according to the first wavelength, and The fifth optical signal is output to the first optical detector 201; the sixth optical signal is determined from the eighth optical signal according to the first wavelength, and the sixth optical signal is output to the second optical detector 202.
  • the microresonator 206 determines an optical signal with a first wavelength from the ninth optical signal according to the first wavelength, modulates the optical signal with the first wavelength, and obtains a modulated optical signal; and then obtains a modulated optical signal from the modulated optical signal.
  • a part of the optical signal is obtained as a sixth optical signal from the optical signal reflected by the optical fiber link and the second optical module.
  • optical module 1 sends optical signal 1 carrying business data
  • optical module 2 sends optical signal 2 carrying business data
  • optical module 3 sends optical signal 3 carrying business data
  • optical signal 1, optical signal 2 and optical signal 3 have different wavelengths
  • optical signal 1, optical signal 2 and optical signal 3 are combined by a combiner based on WDM to obtain a ninth optical signal.
  • the first wavelength is the wavelength of optical signal 1.
  • the microresonator 206 modulates the optical signal 1, the optical signal 2 and the optical signal 3, and obtains a part of the optical signal from the modulated optical signal 1, the optical signal 2 and the optical signal 3 as the seventh optical signal, that is,
  • the seventh optical signal includes: a partial optical signal of the modulated optical signal 1, a partial optical signal of the modulated optical signal 2, and a partial optical signal of the modulated optical signal 3; from which the optical signal with the first wavelength is determined as the third optical signal.
  • the fifth optical signal that is, the fifth optical signal is a partial optical signal of the modulated optical signal 1.
  • the microresonator 206 determines the optical signal 1 from the ninth optical signal according to the first wavelength, and then modulates the optical signal 1; and obtains a part of the optical signal from the modulated optical signal 1 as the fifth optical signal. .
  • the optical modulator 207 or the microresonator 206 modulates the ninth optical signal, which may be specifically: the optical modulator 207 or the microresonator 206 modulates the ninth optical signal based on the received signal from the signal processor.
  • the modulation signal of 203 modulates the ninth optical signal.
  • the modulation signal generated by the signal processor 203 is a fluctuation signal with a certain regularity, and the modulation signal also has the ability to drive the optical modulator 207 or the micro-resonator 206.
  • the way in which the signal processor 203 determines whether there is a fault in the optical link is different from the way in Embodiment 1 in which the signal processor 203 determines whether there is a fault in the optical link.
  • the signal processor 203 determines whether there is a fault in the optical link according to the fifth optical signal or the sixth optical signal.
  • the optical signal determines whether there is a fault in the optical link.
  • the signal processor 203 determines whether there is a fault in the optical link according to the information of the fifth optical signal, specifically: if the peak value of the pulse of the fifth optical signal is less than the third value and greater than the fourth value, value to determine that there is a fault in the optical link; the third value is the amplitude threshold of the pulse in the fifth optical signal; the fourth value is the amplitude threshold of the noise in the fifth optical signal.
  • the pulses of the fifth optical signal refer to the pulses in the electrical signal after the fifth optical signal undergoes photoelectric conversion (and optional analog-to-digital conversion).
  • the peak value of the pulse of the fifth optical signal is less than the third value and greater than the fourth value, it can be determined that there is a fault in the first optical module in the optical link, or it can be determined that the optical fiber link connecting the first optical module and the optical link detection device is faulty. There is a fault in the road.
  • the third value may be determined based on the average power of the optical signal with the first wavelength sent by the first optical module. Specifically, it may be equal to the average power of the optical signal with the first wavelength sent by the first optical module minus the light The value obtained from the insertion loss caused by each device passing through when the signal is transmitted from the first optical module to the optical link detection device.
  • the fourth value may be determined according to an optical signal noise ratio (OSNR) of the fifth optical signal.
  • the OSNR of the fifth optical signal will be affected by noise generated by the first optical module and the optical fiber link connecting the first optical module and the optical link detection device.
  • the noise in the embodiment of the present application may be white noise, thermal noise, etc., or may be interference caused by the nonlinearity of the optical signal.
  • the signal processor 203 determines whether there is a fault in the optical link according to the information of the sixth optical signal, which may be specifically: if the peak value of the pulse of the sixth optical signal is greater than the fifth value, determines whether the optical link There is a fault in the path; the fifth value is the amplitude threshold of the noise in the sixth optical signal.
  • the pulses of the sixth optical signal refer to the pulses in the electrical signal after the sixth optical signal undergoes photoelectric conversion (and optional analog-to-digital conversion).
  • the peak value of the pulse of the sixth optical signal is greater than the fifth value, it may be determined that there is a fault in the second optical module in the optical link, or it may be determined that there is a fault in the optical fiber link connecting the second optical module and the optical link detection device.
  • the fifth value is determined based on the OSNR of the sixth optical signal.
  • the OSNR of the sixth optical signal will be affected by noise generated by the first optical module and the optical fiber link connecting the first optical module and the second optical module.
  • the signal processor 203 is also configured to determine the fault point corresponding to the pulse on the optical link based on the time delay of each pulse in the sixth optical signal with a peak value greater than the fifth value relative to the pulse of the fifth optical signal. fault location.
  • the pulses with a peak value greater than the fifth value in the sixth optical signal refer to the pulses with a peak value greater than the fifth value in the electrical signal of the sixth optical signal after photoelectric conversion (and optional analog-to-digital conversion).
  • the time delay of each pulse in the sixth optical signal with a peak value greater than the fifth value relative to the pulse of the fifth optical signal can be equal to the time corresponding to the peak value in the pulse with a peak value greater than the fifth value and the pulse of the fifth optical signal.
  • the absolute difference at the moment corresponding to the mid-peak value For example, the time corresponding to the peak value of a pulse with a peak value greater than the fifth value is t 1 , the time corresponding to the peak value of a pulse of the fifth optical signal is t 2 , and the time corresponding to the peak value of a pulse with a peak value greater than the fifth value of the sixth optical signal is t 2 .
  • the signal processor 203 is also configured to determine whether the pulse is on the optical link based on the amplitude value included in each pulse in the sixth optical signal with a peak value greater than the fifth value and the amplitude value included in the pulse of the fifth optical signal. The reflection loss of the corresponding fault point.
  • Its unit is dB.
  • a 1 , A 2 , ..., A i are i amplitude values that constitute the pulse with a peak value greater than the fifth value, and the i amplitude values are all greater than the fifth value
  • B 1 , B 2 , ..., B j are the j amplitude values of the pulses that constitute the fifth optical signal
  • i and j are both positive integers.
  • the optical link detection device determines whether there is a fault in the optical link based on the modulated optical signal that carries the service data, where the optical link includes an optical module that sends the optical signal that carries the service data. , an optical fiber link that transmits the optical signal carrying business data, and an optical module that receives the modulated optical signal from the optical signal carrying business data. It can be seen that the optical link detection device detects the optical link based on the modulated optical signal carrying the service data. It has higher sensitivity and stronger ability to identify minor faults (faults with smaller losses).
  • the optical link detection device does not include a light source, and the first photodetector, the second photodetector, the signal processor and the optional wavelength gate and optical add-drop multiplexer in the optical link detection device , micro-resonators can be miniaturized, so that the optical link detection device can be miniaturized.
  • Embodiment 3 Before the optical link detection device performs optical link detection, an optical module that does not belong to the optical link detection device can cooperate to generate an optical pulse signal, so that the optical link detection device can perform optical link detection based on the optical pulse signal. .
  • the optical link detection device is used in the fronthaul optical network.
  • the optical link detection device detects the optical link
  • the optical module in the BBU can cooperate to generate an optical pulse signal and send the optical pulse signal to the optical module in the RRU.
  • the link detection device can perform fault detection on the optical link (including the optical module in the BBU, the optical fiber link connecting the optical module in the BBU and the optical module in the RRU, and the optical module in the RRU) based on the optical pulse signal.
  • the functions of each part of the optical link detection device shown in Figure 7 can also be as follows:
  • the first photodetector 201 is used to perform photoelectric conversion on the tenth optical signal, obtain the information of the tenth optical signal, and convert the tenth optical signal into The information of the optical signal is output to the signal processor 203, where the tenth optical signal is an optical pulse signal from the third optical module; the third optical module does not belong to the optical link detection device.
  • the second photodetector 202 is used to perform photoelectric conversion on the eleventh optical signal, obtain the information of the eleventh optical signal, and output the information of the eleventh optical signal to the signal processor 203, wherein the eleventh optical signal It is an optical signal obtained by reflecting the tenth optical signal through the optical fiber link, or an optical signal obtained by reflecting the tenth optical signal through the optical fiber link and the fourth optical module.
  • the first photodetector 201 and the second photodetector 202 are determined based on the modulation format of the optical pulse signal. For example, if the modulation format of the optical pulse signal is light intensity modulation, the first photodetector 201 and the second photodetector 202 are determined based on the modulation format of the optical pulse signal.
  • the two photodetectors 202 are detectors with a light intensity detection function; if the modulation format of the optical pulse signal is phase modulation, the first photodetector 201 and the second photodetector 202 are detectors with a light phase detection function.
  • the signal processor 203 is configured to determine whether there is a fault in the optical link based on the information of the tenth optical signal or the information of the eleventh optical signal, where the optical link includes a third optical module, an optical fiber link and a fourth optical module.
  • the way in which the optical link detection device determines the tenth optical signal is similar to the way in which the optical link detection device determines the first optical signal in Embodiment 1.
  • optical fiber link transmission is an optical signal carrying business data
  • the optical link detection device is a first optical signal determined from one or more optical signals carrying business data
  • the optical fiber link transmits an optical pulse signal
  • the optical link The path detection means determines the tenth optical signal from one or more optical pulse signals.
  • the way the signal processor 203 determines whether there is a fault in the optical link based on the information of the tenth optical signal or the information of the eleventh optical signal is different from the way in which the signal processor 203 determines whether there is a fault in the optical link based on the information of the fifth optical signal in Embodiment 2.
  • the information or the information of the sixth optical signal determines whether there is a fault in the optical link in a similar manner, which will not be described again here.
  • the optical link detection device performs optical link detection based on the optical pulse signal generated by the optical module that does not belong to the optical link detection device, where the optical link includes the optical link detection device that does not belong to the optical link detection device.
  • Optical module, optical fiber link and optical module that receives the optical pulse signal.
  • the optical link detection device has higher sensitivity and stronger ability to identify minor faults (faults with smaller losses).
  • the optical link detection device does not include a light source, and the first photodetector, the second photodetector, the signal processor and the optional wavelength gate and optical add-drop multiplexer in the optical link detection device , micro-resonators can be miniaturized, so that the optical link detection device can be miniaturized.
  • the optical link detection device described in Embodiment 3 does not need to perform a modulation operation, which can reduce the complexity of the optical link detection device.
  • the structure illustrated in the embodiment of the present application does not constitute a specific limitation on the optical link detection device.
  • the optical link detection device may include more or less components than shown in the figure, or some components may be combined, or some components may be separated, or may be arranged in different components.
  • the components illustrated may be implemented in hardware, software, or a combination of software and hardware.
  • FIG. 13 is a schematic flowchart of an optical link detection method 100 provided by an embodiment of the present application.
  • the optical link detection method 100 can be executed by the optical link detection device described in Embodiment 1.
  • the optical link detection method 100 may include the following steps:
  • the optical link detection device performs photoelectric conversion on the first optical signal to obtain information on the first optical signal, where the first optical signal is an optical signal carrying service data from the first optical module.
  • the optical link detection device performs photoelectric conversion on the second optical signal to obtain information about the second optical signal, where the second optical signal is an optical signal obtained by reflecting the first optical signal through the optical fiber link, or the first optical signal.
  • the signal is an optical signal reflected by the optical fiber link and the second optical module.
  • the optical link detection method 100 further includes: the optical link detection device determines the first optical signal from the third optical signal according to the first wavelength, and determines the first optical signal from the fourth optical signal according to the first wavelength.
  • the second optical signal is determined in, wherein the third optical signal includes the first optical signal; the fourth optical signal includes the second optical signal, and the fourth optical signal is the third optical signal passing through the light The optical signal reflected by the optical fiber link, or the optical signal reflected by the third optical signal through the optical fiber link and the optical module that receives the third optical signal.
  • the optical link detection method 100 further It may include: acquiring the third optical signal and the fourth optical signal based on the add-drop multiplexing structure.
  • the optical link detection device determines whether there is a fault in the optical link based on the information of the first optical signal, or based on the information of the first optical signal and the information of the second optical signal, where the optical link includes a first optical module, Optical fiber link and second optical module.
  • the optical link detection device determines whether there is a fault in the optical link based on the information of the first optical signal, including: when the average power corresponding to the information of the first optical signal is less than the first value, It is determined that there is a fault in the optical link, wherein the first value is a power threshold of the first optical signal.
  • the average power corresponding to the information of the first optical signal is less than the first value, it may be determined that there is a fault in the first optical module, or it may be determined that there is a fault in the optical fiber link connecting the first optical module and the optical link detection device.
  • the optical link detection device determines whether there is a fault in the optical link based on the information of the first optical signal and the information of the second optical signal, including: calculating the value of the first optical signal after photoelectric conversion.
  • the cross-correlation function of the amplitude information and the amplitude information of the second optical signal after photoelectric conversion is used to obtain one or more cross-correlation coefficients; if there is a cross-correlation coefficient greater than the second value in the one or more cross-correlation coefficients, the optical chain is determined There is a fault in the path, wherein the first value is an amplitude threshold determined based on noise in the first optical signal and noise in the second optical signal.
  • the second optical module if there is a cross-correlation coefficient greater than the second value in one or more cross-correlation coefficients, it may be determined that there is a fault in the second optical module, or it may be determined that there is a fault in the optical fiber link connecting the second optical module and the optical link detection device. .
  • the optical link detection method 100 further includes: the optical link detection device determines the location of the fault point on the optical link based on the time corresponding to each of the one or more cross-correlation coefficients that is greater than the second value. .
  • the optical link detection method 100 further includes: the optical link detection device determines the reflection loss of the fault point on the optical link based on the value of each cross-correlation coefficient of one or more cross-correlation coefficients that is greater than the second value. .
  • the optical link detection device can also periodically execute the optical link detection method 100, based on the average power corresponding to the information of the first optical signal obtained each time the optical link detection method 100 is executed and one or more cross-correlation coefficients. , the fault trend at any location on the optical link can be obtained. For example, when the optical link detection device performs the optical link detection method 100 multiple times, the cross-correlation coefficient corresponding to a certain position in the optical fiber link connecting the second optical module and the optical link detection device gradually increases, indicating that there is a A tendency to malfunction. This method is conducive to timely troubleshooting to ensure normal business communication between the first optical module and the second optical module.
  • the optical link detection method 100 may also include any implementation that can be executed by the optical link detection device described in Embodiment 1, which will not be described again here.
  • the optical link detection device determines whether there is a fault in the optical link based on the optical signal carrying the service data.
  • the optical link includes a first optical link that sends the optical signal carrying the service data. module, an optical fiber link that transmits the optical signal carrying business data, and a second optical module that receives the optical signal carrying business data. It can be seen that the optical link detection method 100 can detect the optical link during the service communication process between the first optical module and the second optical module, and will not detect the optical link between the first optical module and the second optical module.
  • Business communications cause interference, thereby enabling online communications.
  • FIG. 14 is a schematic flowchart of an optical link detection method 200 provided by an embodiment of the present application.
  • the optical link detection method 200 can be executed by the optical link detection device described in Embodiment 2.
  • the optical link detection method 200 may include the following steps:
  • the optical link detection device performs photoelectric conversion on the fifth optical signal to obtain information on the fifth optical signal, where the fifth optical signal is obtained by modulating the first optical signal, and the first optical signal is derived from the first optical signal.
  • the module carries business data light signal.
  • the optical link detection device performs photoelectric conversion on the sixth optical signal to obtain information about the sixth optical signal, where the sixth optical signal is an optical signal obtained by reflecting the fifth optical signal through the optical fiber link, or the fifth optical signal.
  • the signal is an optical signal reflected by the optical fiber link and the second optical module.
  • the optical link detection device determines whether there is a fault in the optical link according to the information of the fifth optical signal or the information of the sixth optical signal, where the optical link includes a first optical module, an optical fiber link and a second optical module.
  • the optical link detection method 200 further includes: the optical link detection device determines the fifth optical signal from the seventh optical signal according to the first wavelength, and determines the fifth optical signal from the eighth optical signal according to the first wavelength.
  • the sixth optical signal is determined in, wherein the seventh optical signal includes the fifth optical signal; the eighth optical signal includes the sixth optical signal, and the eighth optical signal is the optical signal reflected by the seventh optical signal through the optical fiber link, or the The seventh optical signal is an optical signal reflected by the optical fiber link and the optical module that receives the seventh optical signal.
  • the optical link detection method 100 further It may include: acquiring the seventh optical signal and the eighth optical signal based on the add-drop multiplexing structure.
  • the optical link detection method 200 also includes: the optical link detection device modulates the ninth optical signal to obtain a modulated ninth optical signal, wherein the ninth optical signal includes the first optical signal, and the modulated ninth optical signal is The ninth light signal includes the seventh light signal.
  • the optical link detection device acquires the seventh optical signal and the eighth optical signal based on the add-drop multiplexing structure, which may include: acquiring a part of the optical signal from the modulated ninth optical signal as the seventh optical signal based on the add-drop multiplexing structure; Obtain part of the optical signal as the eighth optical signal from the optical signal reflected by the modulated ninth optical signal on the optical fiber link, or, obtain the modulated ninth optical signal from the optical fiber link and receive the modulated ninth optical signal. A part of the optical signal is obtained as the eighth optical signal from the optical signal reflected by the optical module of the signal.
  • the optical link detection device determines whether there is a fault in the optical link based on the information of the fifth optical signal, which may include: if the peak value of the pulse of the fifth optical signal is less than the third value and greater than the third value.
  • the fourth value determines that there is a fault in the optical link; the third value is the amplitude threshold of the pulse in the fifth optical signal; the fourth value is the amplitude threshold of the noise in the fifth optical signal. Further, if the peak value of the pulse of the fifth optical signal is less than the third value and greater than the fourth value, it may be determined that there is a fault in the first optical module, or it may be determined that there is a fault in the optical fiber link connecting the first optical module and the optical link detection device.
  • the optical link detection device determines whether there is a fault in the optical link based on the information of the sixth optical signal, which may include: if the peak value of the pulse of the sixth optical signal is greater than the fifth value, determining whether the optical link has a fault. There is a fault in the link; the fifth value is the amplitude threshold of the noise in the sixth optical signal. Further, if the peak value of the pulse of the sixth optical signal is greater than the fifth value, it may be determined that there is a fault in the second optical module, or it may be determined that there is a fault in the optical fiber link connecting the second optical module and the optical link detection device.
  • the optical link detection method 200 further includes: the optical link detection device determines, based on the time delay of each pulse in the sixth optical signal with a peak value greater than the fifth value relative to the pulse of the fifth optical signal, that pulse in the optical signal. The fault location of the corresponding fault point on the link.
  • the optical link detection method 200 further includes: the optical link detection device determines based on the amplitude value included in each pulse in the sixth optical signal with a peak value greater than the fifth value and the amplitude value included in the pulse of the fifth optical signal. The reflection loss of the pulse at the corresponding fault point on the optical link.
  • the optical link detection device can also periodically execute the optical link detection method 200. Based on the information of the fifth optical signal and the information of the sixth optical signal obtained each time the optical link detection method 200 is executed, the optical link can be obtained. The fault trend at any location on the road is conducive to timely troubleshooting to ensure normal business communication between the first optical module and the second optical module.
  • the optical link detection method 200 may also include any implementation manner that can be executed by the optical link detection device described in Embodiment 2, which will not be described again here.
  • the optical link detection device is based on the optical signal carrying the service data.
  • the modulated optical signal is used to determine whether there is a fault in the optical link.
  • the optical link includes an optical module that sends the optical signal that carries the business data, an optical fiber link that transmits the optical signal that carries the business data, and a fiber link that receives the optical signal that carries the business data.
  • the data optical signal is modulated into the optical signal of the optical module. It can be seen that the optical link detection device detects the optical link based on the modulated optical signal carrying the service data. It has high sensitivity and strong ability to identify minor faults (faults with small losses).
  • FIG. 15 is a schematic flowchart of an optical link detection method 300 provided by an embodiment of the present application.
  • the optical link detection method 300 can be executed by the optical link detection device described in Embodiment 3.
  • the optical link detection method 300 may include the following steps:
  • the optical link detection device performs photoelectric conversion on the tenth optical signal to obtain information about the tenth optical signal.
  • the tenth optical signal is an optical pulse signal from the third optical module; the third optical module does not belong to the optical link. detection device.
  • the optical link detection device performs photoelectric conversion on the eleventh optical signal to obtain information about the eleventh optical signal, where the eleventh optical signal is an optical signal obtained by reflecting the tenth optical signal through the optical fiber link, or The tenth optical signal is an optical signal reflected by the optical fiber link and the fourth optical module.
  • the optical link detection device determines whether there is a fault in the optical link based on the information of the tenth optical signal or the information of the eleventh optical signal, where the optical link includes a third optical module, an optical fiber link and a fourth optical module. .
  • the optical link detection method 300 further includes: the optical link detection device determines the tenth optical signal from the twelfth optical signal according to the second wavelength, and determines the tenth optical signal from the twelfth optical signal according to the second wavelength.
  • the eleventh optical signal is determined among the three optical signals, wherein the twelfth optical signal includes the tenth optical signal; the thirteenth optical signal includes the eleventh optical signal, and the thirteenth optical signal is the twelfth optical signal passing through the optical fiber chain
  • the optical link detection device may further include: acquiring the twelfth optical signal and the thirteenth optical signal based on the add-drop multiplexing structure.
  • the optical link detection device determines whether there is a fault in the optical link based on the information of the tenth optical signal, including: if the peak value of the pulse of the tenth optical signal is less than the sixth value and greater than the seventh value , it is determined that there is a fault in the optical link; the fifth value is the amplitude threshold of the pulse in the tenth optical signal; the sixth value is the amplitude threshold of the noise in the tenth optical signal.
  • the peak value of the pulse of the tenth optical signal is less than the sixth value and greater than the seventh value, it may be determined that there is a fault in the third optical module, or it may be determined that there is a fault in the optical fiber link connecting the third optical module and the optical link detection device. .
  • the optical link detection device determines whether there is a fault in the optical link based on the information of the eleventh optical signal, including: if the peak value of the pulse of the eleventh optical signal is greater than the eighth value, determining whether the optical link has a fault. There is a fault in the link; the eighth value is the amplitude threshold of the noise in the eleventh optical signal.
  • the peak value of the pulse of the eleventh optical signal is greater than the eighth value, it may be determined that there is a fault in the fourth optical module, or it may be determined that there is a fault in the optical fiber link connecting the fourth optical module and the optical link detection device.
  • the optical link detection method 300 further includes: the optical link detection device determines the pulse according to the time delay of each pulse in the eleventh optical signal with a peak value greater than the eighth value relative to the pulse of the tenth optical signal. The fault location of the corresponding fault point on the optical link.
  • the optical link detection method 300 also includes: the optical link detection device determines the amplitude value included in each pulse whose peak value is greater than the eighth value in the eleventh optical signal and the amplitude value included in the pulse of the tenth optical signal. , determine the reflection loss of the pulse at the corresponding fault point on the optical link.
  • the optical link detection device can also periodically execute the optical link detection method 300. Based on the information of the tenth optical signal and the information of the eleventh optical signal obtained each time the optical link detection method 300 is executed, the optical link detection method 300 can be obtained. The fault trend at any position on the link is conducive to timely troubleshooting to ensure normal business communication between the first optical module and the second optical module.
  • the optical link detection method 300 may also include any implementation that can be executed by the optical link detection device described in Embodiment 3, which will not be described again here.
  • the optical link detection method 300 when the optical link detection device performs optical link detection, the optical pulse signal generated by the optical module that does not belong to the optical link detection device can be used.
  • the optical link detection device is based on The optical pulse signal performs optical link detection, where the optical link includes the optical module that does not belong to the optical link detection device, the optical fiber link, and the optical module that receives the optical pulse signal.
  • the optical link detection method based on optical pulse signals has high sensitivity and strong ability to identify minor faults (faults with small losses).
  • the optical link detection device in the optical link detection method 300 does not need to perform a modulation operation, which reduces the complexity of the optical link detection device.
  • the optical link detection device includes corresponding hardware structures and/or software modules that perform each function.
  • the units and method steps of each example described in conjunction with the embodiments disclosed in this application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software driving the hardware depends on the specific application scenarios and design constraints of the technical solution.
  • optical link detection device shown in Figures 7, 8, 11 and 12
  • possible structures of the optical link detection device can also be shown in Figures 16 and 17.
  • the optical link detection device shown in Figures 16 and 17 can be used to implement the functions of the optical link detection device in the above method embodiment, and therefore can also achieve the beneficial effects of the above method embodiment.
  • the optical link detection device 1600 includes a photoelectric conversion unit 1601 and a determination unit 1602.
  • the optical link detection device 1600 is used to implement the functions of the optical link detection device in the method embodiments shown in Figure 13, Figure 14 or Figure 15.
  • the photoelectric conversion unit 1601 is used to perform photoelectric conversion on the first optical signal to obtain information on the first optical signal , wherein the first optical signal is an optical signal carrying service data from the first optical module; the second optical signal is photoelectrically converted to obtain the information of the second optical signal, wherein the second optical signal is the first optical signal passing through The optical signal is reflected by the optical fiber link, or the optical signal is reflected by the first optical signal through the optical fiber link and the second optical module.
  • the determining unit 1602 is configured to determine whether there is a fault in the optical link based on the information of the first optical signal, or based on the information of the first optical signal and the information of the second optical signal, where the optical link includes the first optical module, Optical fiber link and second optical module.
  • the photoelectric conversion unit 1601 is used to perform photoelectric conversion on the fifth optical signal to obtain information about the fifth optical signal.
  • the fifth optical signal is obtained by modulating the first optical signal, which is an optical signal carrying service data from the first optical module
  • the sixth optical signal is photoelectrically converted to obtain the sixth optical signal information, wherein the sixth optical signal is an optical signal obtained by reflecting the fifth optical signal through the optical fiber link, or an optical signal obtained by reflecting the fifth optical signal through the optical fiber link and the second optical module.
  • the determining unit 1602 is configured to determine whether there is a fault in the optical link according to the information of the fifth optical signal or the information of the sixth optical signal, where the optical link includes a first optical module, an optical fiber link and a second optical module.
  • the photoelectric conversion unit 1601 is used to perform photoelectric conversion on the tenth optical signal to obtain information on the tenth optical signal.
  • the tenth optical signal is an optical pulse signal from the third optical module; the third optical module does not belong to the optical link detection device; the eleventh optical signal is photoelectrically converted to obtain the information of the eleventh optical signal, where , the eleventh optical signal is an optical signal obtained by reflecting the tenth optical signal through the optical fiber link, or an optical signal obtained by reflecting the tenth optical signal through the optical fiber link and the fourth optical module.
  • the determining unit 1602 is configured to determine whether there is a fault in the optical link according to the information of the tenth optical signal or the information of the eleventh optical signal, where the optical link includes a third optical module, an optical fiber link and a fourth optical module.
  • the optical link detection device 1700 includes a processor 1701 and an interface circuit 1702.
  • the processor 1701 and the interface circuit 1702 are coupled to each other.
  • the interface circuit 1702 may be a transceiver or an input-output interface.
  • the optical link detection device 1700 may also include a memory 1703 for storing instructions executed by the processor 1701 or input data required for the processor 1701 to run the instructions or data generated after the processor 1701 executes the instructions.
  • the processor 1701 is used to implement the functions of the above-mentioned photoelectric conversion unit 1601 and determination unit 1602.
  • processor in the embodiment of the present application can be a central processing unit (CPU), or other general-purpose processor, digital signal processor (DSP), or application-specific integrated circuit (application specific integrated circuit, ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • CPU central processing unit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor can be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application can be implemented in hardware or in software instructions that can be executed by a processor.
  • Software instructions can be composed of corresponding software modules, and the software modules can be stored in random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only memory In memory, register, hard disk, mobile hard disk, CD-ROM or any other form of storage medium well known in the art.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and storage media may be located in an ASIC. Additionally, the ASIC can be located in the base station or terminal.
  • the processor and storage medium may also exist as discrete components in the base station or terminal.
  • the computer program product includes one or more computer programs or instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, a network device, a user equipment, or other programmable device.
  • the computer program or instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another.
  • the computer program or instructions may be transmitted from a website, computer, A server or data center transmits via wired or wireless means to another website site, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center that integrates one or more available media.
  • the available media may be magnetic media, such as floppy disks, hard disks, and tapes; optical media, such as digital video optical disks; or semiconductor media, such as solid-state hard drives.
  • the computer-readable storage medium may be volatile or nonvolatile storage media, or may include both volatile and nonvolatile types of storage media.
  • “at least one” refers to one or more, and “plurality” refers to two or more.
  • “And/or” describes the relationship between associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the related objects are an “or”relationship; in the formula of this application, the character “/” indicates that The related objects before and after are a “division” relationship.
  • “Including at least one of A, B and C” may mean: including A; including B; including C; including A and B; including A and C; including B and C; including A, B and C.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本申请实施例提供一种光链路检测方法及装置。该方法中,光链路检测装置对第一光信号和第二光信号进行光电转换,分别获得第一光信号的信息和第二光信号的信息,其中,第一光信号是来自第一光模块的承载业务数据的光信号,第二光信号是第一光信号通过光纤链路反射得到的光信号,或是第一光信号通过光纤链路和第二光模块反射得到的光信号。根据第一光信号的信息,或根据第一光信号的信息以及第二光信号的信息,确定光链路是否存在故障,其中,光链路包括第一光模块、光纤链路和第二光模块。可见,光链路检测装置确定光链路是否存在故障是基于承载业务数据的光信号确定的,能够在第一光模块和第二光模块之间进行业务通信的过程中检测光链路。

Description

光链路检测方法及装置
本申请要求于2022年3月28日提交中国专利局、申请号为202210313746.2、申请名称为“光链路检测方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种光链路检测方法及装置。
背景技术
移动通信网络中存在基于光纤通信的网络,如前传光网络。前传光网络是指无线接入网(radio access network,RAN)中基带单元(baseband unit,BBU)和射频拉远单元(remote radio unit,RRU)之间基于光纤的通信网络,或者,是指RAN中BBU和有源天线单元(active antenna unit,AAU)之间基于光纤的通信网络。
在基于光纤通信的网络中,光链路包括:发送端中用于发送光信号的光模块、接收端中用于接收该光信号的光模块,以及连接两者的光纤。若光链路中任意位置出现故障,可能会影响发送端与接收端之间传输的光信号质量,而影响到网络质量。那么,如何检测光链路是一个亟待解决的问题。
发明内容
本申请实施例提供一种光链路检测方法及装置,能够检测光链路是否故障。
第一方面,本申请实施例提供一种光链路检测装置,该装置包括第一光探测器、第二光探测器和信号处理器。其中,第一光探测器用于对第一光信号进行光电转换,获得第一光信号的信息,并将第一光信号的信息输出至信号处理器,该第一光信号是来自第一光模块的承载业务数据的光信号。第二光探测器用于对第二光信号进行光电转换,获得第二光信号的信息,并将第二光信号的信息输出至信号处理器,其中,第二光信号是第一光信号通过光纤链路反射得到的光信号,或是第一光信号通过光纤链路和第二光模块反射得到的光信号。信号处理器用于根据第一光信号的信息,或根据第一光信号的信息以及第二光信号的信息,确定光链路是否存在故障,其中,光链路包括第一光模块、光纤链路和第二光模块。
可见,该光链路检测装置基于承载业务数据的光信号确定光链路是否存在故障,能够在第一光模块和第二光模块之间进行业务通信的过程中实现光链路检测,从而可实现在线检测。另外,该光链路检测装置不包含光源,且光链路检测装置中的第一光探测器、第二光探测器、信号处理器均可实现小型化,使得光链路检测装置可实现小型化。
在一种可选的实施方式中,光链路检测装置还包括波长选通器。波长选通器用于根据第一波长从第三光信号中确定第一光信号,并将第一光信号输出至第一光探测器,其中,第三光信号包括第一光信号。波长选通器还用于根据第一波长从第四光信号中确定第二光信号,并将第二光信号输出至第二光探测器,其中,第四光信号包括第二光信号,第四光信号是第三光信号通过光纤链路反射得到的光信号,或是第三光信号通过光纤链路和接收第三光信号的光模块反射得到的光信号。
可选的,光链路检测装置还包括具有分插复用结构的光分插复用器。光分插复用器用于获取第三光信号和第四光信号,并将第三光信号和第四光信号输出至波长选通器。该实施方式中,基于分插复用结构获取的第三光信号是光纤链路传输的承载业务数据的光信号中的部分光信号,这部分光信号用于光链路检测装置进行光链路检测,而光纤链路传输的承载业务数据的光信号中其余部分的光信号可正常传输至接收光信号的光模块,保证了收发光信号的光模块之间正常的业务通信。另外,该实施方式还实现了采用一个器件获取第三光信号和第四光信号,而不必通过两个器件来分别获取第三光信号和第四光信号。
在一种可选的实施方式中,光链路检测装置还包括微谐振器。微谐振器用于根据第一波长从第三光信号中确定第一光信号,并将第一光信号输出至第一光探测器,其中,第三光信号包括第一光信号。微谐振器还用于根据第一波长从第四光信号中确定第二光信号,并将第二光信号输出至第二光探测器,其中,第四光信号包括第二光信号,第四光信号是第三光信号通过光纤链路反射得到的光信号,或是第三光信号通过光纤链路和接收第三光信号的光模块反射得到的光信号。
可选的,微谐振器具有分插复用结构;微谐振器还用于获取第三光信号和第四光信号。
在一种可选的实施方式中,信号处理器根据第一光信号的信息确定光链路是否存在故障,具体的:当第一光信号的信息对应的平均功率小于第一值时,确定光链路存在故障,其中,第一值是第一光信号的功率阈值。
可选的,如果第一光信号的信息对应的平均功率小于第一值,确定光链路中第一光模块存在故障,或者确定连接第一光模块和光链路检测装置的光纤链路中存在故障。
在一种可选的实施方式中,信号处理器根据第一光信号的信息以及第二光信号的信息,确定光链路是否存在故障,具体的:计算第一光信号经过光电转换后的幅度信息与第二光信号经过光电转换后的幅度信息的互相关函数,得到一个或多个互相关系数。如果一个或多个互相关系数中存在大于第二值的互相关系数,确定光链路存在故障,其中,第二值是基于第一光信号中噪声和第二光信号中噪声确定的幅度阈值。
可选的,如果一个或多个互相关系数中存在大于第二值的互相关系数,确定光链路中第二光模块存在故障,或者确定连接第二光模块和光链路检测装置的光纤链路中存在故障。
在一种可选的实施方式中,信号处理器还用于根据一个或多个互相关系数中大于第二值的每个互相关系数对应的时刻,确定光链路上故障点的位置。
在一种可选的实施方式中,信号处理器还用于根据一个或多个互相关系数中大于第二值的每个互相关系数的值,确定光链路上故障点的反射损耗。
第二方面,本申请实施例提供一种光链路检测装置,该装置包括第一光探测器、第二光探测器和信号处理器。其中,第一光探测器用于对第五光信号进行光电转换,获得第五光信号的信息,并将第五光信号的信息输出至第二信号处理器,该第五光信号是对第一光信号进行调制得到的,第一光信号是来自第一光模块的承载业务数据的光信号。第二光探测器用于对第六光信号进行光电转换,获得第六光信号的信息,并将第六光信号的信息输出至第二信号处理器,其中,第六光信号是第五光信号通过光纤链路反射得到的光信号,或是第五光信号通过光纤链路和第二光模块反射得到的光信号。信号处理器用于根据第五光信号的信息或第六光信号的信息,确定光链路是否存在故障,其中,光链路包括第一光模块、光纤链路和第二光模块。
可见,光链路检测装置基于对承载业务数据的光信号进行调制后的光信号,确定光链路是否存在故障,该光链路检测装置的灵敏度更高,对微小故障(损耗较小的故障)的识别能 力更强。另外,该光链路检测装置不包含光源,且光链路检测装置中的第一光探测器、第二光探测器、信号处理器均可实现小型化,使得光链路检测装置可实现小型化。
在一种可选的实施方式中,光链路检测装置还包括波长选通器。波长选通器用于根据第一波长从第七光信号中确定第五光信号,并将第五光信号输出至第一光探测器,其中,第七光信号包括第五光信号。波长选通器还用于根据第一波长从第八光信号中确定第六光信号,并将第六光信号输出至第二光探测器,其中,第八光信号包括第六光信号,第八光信号是第七光信号通过光纤链路反射得到的光信号,或是第七光信号通过光纤链路和接收第七光信号的光模块反射得到的光信号。
可选的,光链路检测装置还包括具有分插复用结构的光分插复用器。该光分插复用器用于获取第七光信号和第八光信号,并将第七光信号和第八光信号输出至波长选通器。
可选的,光链路检测装置还包括光调制器。光调制器用于对第九光信号进行调制,并将调制后的第九光信号输出至光分插复用器;其中,第九光信号包括第一光信号,调制后的第九光信号包括第七光信号。相应的,光分插复用器获取第七光信号和第八光信号,具体的:从调制后的第九光信号中获取部分光信号作为第七光信号;从调制后的第九光信号在光纤链路反射得到的光信号获取部分光信号作为第八光信号,或者,从调制后的第九光信号在光纤链路和接收调制后的第九光信号的光模块反射得到的光信号中取部分光信号作为第八光信号。
在另一种可选的实施方式中,光链路检测装置还包括微谐振器。微谐振器用于根据第一波长从第七光信号中确定第五光信号,并将第五光信号输出至第一光探测器,其中,第七光信号包括第五光信号。微谐振器还用于根据第一波长从第八光信号中确定第六光信号,并将第六光信号输出至第二光探测器,其中,第八光信号包括第六光信号,第八光信号是第七光信号通过光纤链路反射得到的光信号,或是第五光信号通过光纤链路和接收第五光信号的光模块反射得到的光信号。
可选的,微谐振器具有分插复用结构;微谐振器还用于获取第七光信号和第八光信号。
可选的,微谐振器还用于对第九光信号进行调制。微谐振器获取第七光信号和第八光信号,具体的:从调制后的第九光信号中获取部分光信号作为第七光信号,从调制后的第九光信号在光纤链路反射得到的光信号中获取部分光信号作为第八光信号,或者,从调制后的第九光信号在光纤链路和接收调制后的第九光信号的光模块反射得到的光信号中获取部分光信号作为第八光信号。
在一种可选的实施方式中,信号处理器根据第五光信号的信息确定光链路是否存在故障,具体的:如果第五光信号的脉冲的峰值小于第三值且大于第四值,确定光链路存在故障。其中,第三值是第五光信号中脉冲的幅度阈值,第四值是第五光信号中噪声的幅度阈值。
可选的,如果第五光信号的脉冲的峰值小于第三值且大于第四值,确定光链路中第一光模块存在故障,或者确定连接第一光模块和光链路检测装置的光纤链路中存在故障。
在一种可选的实施方式中,信号处理器根据第六光信号的信息确定光链路是否存在故障,具体的:如果第六光信号的脉冲的峰值大于第五值,确定光链路存在故障;其中,第五值是第六光信号中噪声的幅度阈值。
可选的,如果第六光信号的脉冲的峰值大于第五值,确定光链路中第二光模块存在故障,或者确定连接第二光模块和光链路检测装置的光纤链路中存在故障。
可选的,信号处理器还用于根据第六光信号中峰值大于第五值的每个脉冲相对于第五光信号的脉冲的时延,确定该脉冲在光链路上对应的故障点的故障位置。
可选的,信号处理器还用于根据第六光信号中峰值大于第五值的每个脉冲包括的幅度值 和第五光信号的脉冲包括的幅度值,确定该脉冲在光链路上对应的故障点的反射损耗。
第三方面,本申请实施例提供一种光链路检测装置,该装置包括第一光探测器、第二光探测器和信号处理器。其中,第一光探测器用于对第十光信号进行光电转换,获得第十光信号的信息,并将第十光信号的信息输出至信号处理器,该第十光信号是来自第三光模块的光脉冲信号;第三光模块不属于光链路检测装置。第二光探测器用于对第十一光信号进行光电转换,获得第十一光信号的信息,并将第十一光信号的信息输出至信号处理器,其中,第十一光信号是第十光信号通过光纤链路反射得到的光信号,或是第十光信号通过光纤链路和第四光模块反射得到的光信号。信号处理器用于根据第十光信号的信息或第十一光信号的信息,确定光链路是否存在故障,其中,光链路包括第三光模块、光纤链路和第四光模块。
可见,光链路检测装置是基于不属于该光链路检测装置的光模块产生的光脉冲信号,确定光链路是否存在故障的,该光链路检测装置的灵敏度更高,对微小故障(损耗较小的故障)的识别能力更强。另外,该光链路检测装置不包含光源,且光链路检测装置中的第一光探测器、第二光探测器、信号处理器均可实现小型化,使得光链路检测装置可实现小型化。
在一种可选的实施方式中,光链路检测装置还包括波长选通器。波长选通器用于根据第一波长从第十二光信号中确定第十光信号,并将第十光信号输出至第一光探测器,其中,第十一光信号包括第十光信号。波长选通器还用于根据第一波长从第十三光信号中确定第十一光信号,并将第十二光信号输出至第二光探测器,其中,第十三光信号包括第十一光信号,第十三光信号是第十二光信号通过光纤链路反射得到的光信号,或是第十二光信号通过光纤链路和接收第十二光信号的光模块反射得到的光信号。
可选的,光链路检测装置还包括具有分插复用结构的光分插复用器。光分插复用器用于获取第十二光信号和第十三光信号,并将第十二光信号和第十三光信号输出至波长选通器。
在另一种可选的实施方式中,光链路检测装置还包括微谐振器。微谐振器用于根据第一波长从第十二光信号中确定第十光信号,并将第十光信号输出至第一光探测器,其中,第十二光信号包括第十光信号。微谐振器还用于根据第一波长从第十三光信号中确定第十一光信号,并将第十一光信号输出至第二光探测器,其中,第十三光信号包括第十一光信号,第十三光信号是第十一光信号通过光纤链路反射得到的光信号,或是第十一光信号通过光纤链路和接收第十一光信号的光模块反射得到的光信号。
可选的,微谐振器具有分插复用结构;微谐振器还用于获取第十二光信号和第十三光信号。
在一种可选的实施方式中,信号处理器根据第十光信号的信息确定光链路是否存在故障,具体的:如果第十光信号的脉冲的峰值小于第六值且大于第七值,确定光链路存在故障;其中,第五值是第十光信号中脉冲的幅度阈值,第六值是第十光信号中噪声的幅度阈值。
在一种可选的实施方式中,信号处理器根据第十一光信号的信息确定光链路是否存在故障,具体的:如果第十一光信号的脉冲的峰值大于第八值,确定光链路存在故障;其中,第八值是第十一光信号中噪声的幅度阈值。
可选的,信号处理器还用于根据第十一光信号中峰值大于第八值的每个脉冲相对于第十光信号的脉冲的时延,确定该脉冲在光链路上对应的故障点的故障位置。
可选的,信号处理器还用于根据第十一光信号中峰值大于第八值的每个脉冲包括的幅度值和第十光信号的脉冲包括的幅度值,确定该脉冲在光链路上对应的故障点的反射损耗。
第四方面,本申请实施例提供一种光链路检测方法,该方法可由光链路检测装置执行,该方法包括:对第一光信号进行光电转换,获得第一光信号的信息,以及对第二光信号进行 光电转换,获得第二光信号的信息。其中,第一光信号是来自第一光模块的承载业务数据的光信号;第二光信号是第一光信号通过光纤链路反射得到的光信号,或是第一光信号通过光纤链路和第二光模块反射得到的光信号。根据第一光信号的信息,或根据第一光信号的信息以及第二光信号的信息,确定光链路是否存在故障,其中,光链路包括第一光模块、光纤链路和第二光模块。
该光链路检测方法还可包括第一方面所述的光链路检测装置可实现的部分或全部实施方式,也具有这些实施方式对应的有益效果,此处不再赘述。
第五方面,本申请实施例提供一种光链路检测方法,该方法可由光链路检测装置执行,该方法包括:对第五光信号进行光电转换,获得第五光信号的信息,以及对第六光信号进行光电转换,获得第六光信号的信息。其中,第五光信号是对第一光信号进行调制得到的,第一光信号是来自第一光模块的承载业务数据的光信号;第六光信号是第五光信号通过光纤链路反射得到的光信号,或是第五光信号通过光纤链路和第二光模块反射得到的光信号。根据第五光信号的信息或第六光信号的信息,确定光链路是否存在故障,其中,光链路包括第一光模块、光纤链路和第二光模块。
该光链路检测方法还可包括第二方面所述的光链路检测装置可实现的部分或全部实施方式,也具有这些实施方式对应的有益效果,此处不再赘述。
第六方面,本申请实施例提供一种光链路检测方法,该方法可由光链路检测装置执行,该方法包括:对第十光信号进行光电转换,获得第十光信号的信息,以及对第十一光信号进行光电转换,获得第十一光信号的信息。其中,第十光信号是来自第三光模块的光脉冲信号,第三光模块不属于光链路检测装置;第十一光信号是第十光信号通过光纤链路反射得到的光信号,或是第十光信号通过光纤链路和第四光模块反射得到的光信号。根据第十光信号的信息或第十一光信号的信息,确定光链路是否存在故障,其中,光链路包括第三光模块、光纤链路和第四光模块。
该光链路检测方法还可包括第二方面所述的光链路检测装置可实现的部分或全部实施方式,也具有这些实施方式对应的有益效果,此处不再赘述。
第七方面,本申请提供一种光链路检测装置,包括存储器和处理器。其中,存储器用于存储指令或计算机程序;处理器用于执行存储器所存储的计算机程序或指令,以使光链路检测装置执行第一方面所述的光链路检测装置可实现的任意实施方式,或者,执行第二方面所述的光链路检测装置可实现的任意实施方式,或者,执行第三方面所述的光链路检测装置可实现的任意实施方式。
第八方面,本申请提供一种计算机可读存储介质,用于存储计算机程序,当计算机程序在光链路检测装置上运行时,使得光链路检测装置执行第一方面所述的光链路检测装置可实现的任意实施方式,或者,执行第二方面所述的光链路检测装置可实现的任意实施方式,或者,执行第三方面所述的光链路检测装置可实现的任意实施方式。
第九方面,本申请实施例提供一种芯片或者芯片系统,该芯片或者芯片系统包括至少一个处理器和接口,接口和至少一个处理器通过线路互联,至少一个处理器用于运行计算机程序或指令,以执行第一方面所述的光链路检测装置可实现的任意实施方式,或者,执行第二方面所述的光链路检测装置可实现的任意实施方式,或者,执行第三方面所述的光链路检测装置可实现的任意实施方式。
其中,芯片中的接口可以为输入/输出接口、管脚或电路等。
上述方面中的芯片系统可以是片上系统(system on chip,SOC),也可以是基带芯片等, 其中基带芯片可以包括处理器、信道编码器、数字信号处理器、调制解调器和接口模块等。
在一种可能的实现中,本申请中上述描述的芯片或者芯片系统还包括至少一个存储器,该至少一个存储器中存储有指令。该存储器可以为芯片内部的存储单元,例如,寄存器、缓存等,也可以是该芯片的存储单元(例如,只读存储器、随机存取存储器等)。
第十方面,本申请提供一种计算机程序或计算机程序产品,包括计算机指令,当所述计算机指令在光链路检测装置上运行时,使得所述光链路检测装置执行第一方面所述的光链路检测装置可实现的任意实施方式,或者,执行第二方面所述的光链路检测装置可实现的任意实施方式,或者,执行第三方面所述的光链路检测装置可实现的任意实施方式。
附图说明
图1是本申请实施例提供的一种通信系统的结构示意图;
图2是本申请实施例提供的另一种通信系统的结构示意图;
图3是本申请实施例提供的一种光链路检测装置安装位置的示意图;
图4是本申请实施例提供的另一种光链路检测装置安装位置的示意图;
图5是本申请实施例提供的另一种光链路检测装置安装位置的示意图;
图6是本申请实施例提供的另一种光链路检测装置安装位置的示意图;
图7是本申请实施例提供的一种光链路检测装置的结构示意图;
图8是本申请实施例提供的另一种光链路检测装置的结构示意图;
图9是本申请实施例提供的一种分插复用结构的示意图;
图10是本申请实施例提供的另一种分插复用结构的示意图;
图11是本申请实施例提供的另一种光链路检测装置的结构示意图;
图12是本申请实施例提供的另一种光链路检测装置的结构示意图;
图13是本申请实施例提供的一种光链路检测方法100的流程示意图;
图14是本申请实施例提供的一种光链路检测方法200的流程示意图;
图15是本申请实施例提供的一种光链路检测方法300的流程示意图;
图16是本申请实施例提供的另一种光链路检测装置的结构示意图;
图17是本申请实施例提供的另一种光链路检测装置的结构示意图。
具体实施方式
本申请实施例的技术方案可应用于基于光纤链路通信的各种通信场景中。例如,无线前传光网络、光纤接入网、光纤城域网、光纤骨干网、数据中心等网络中的通信场景。
图1是本申请实施例提供的一种通信系统的结构示意图。该通信系统可包括但不限于一个用于发送光信号的光模块101、一个用于接收光信号的光模块102以及连接光模块101和光模块102的光纤链路103。其中,光模块101是发送单波长光信号的光模块,光模块102是接收单波长光信号的光模块。光模块101与光模块102之间是光纤直连架构,也就是说,光纤链路103中传输的是单波长光信号,不同光模块101发送的光信号通过不同的光纤链路传输至目标的光模块102。以无线前传光网络中BBU向RRU或AAU发送光信号的场景为例,光模块101可以是BBU中的光收发单元,光模块102可以是RRU或AAU中的光收发单元。图1所示的通信系统以一个光模块101、一个光模块102以及光纤链路103为例。
在基于光纤链路通信的通信场景中,如果存在多个光模块101分别向各自目标的光模块 102发送不同波长的光信号,多个光模块101与其目标的光模块102之间可不采用光纤直连架构,而采用波分复用(wavelength division multiplexing,WDM)架构。那么不同波长的多个光信号可基于WDM的方式通过同一光纤链路传输至各自目标的光模块102,也就是说,同一光纤链路中可同时传输波长不同的多个光信号,即多波长光信号。这一情况下,通信系统中除了光模块101、光模块102和光纤链路103之外,还可包括合波器104和分波器105,如图2所示。其中,合波器104可用于将来自多个光模块101的波长不同的光信号汇合在一起,并耦合到光纤链路103中进行传输;分波器105可用于将光纤链路103中的光信号分离,并恢复为波长不同的多个光信号。以无线前传光网络中BBU向RRU或AAU发送光信号的场景为例,多个光模块101是BBU中的多个光收发单元,多个光模块102是RRU或AAU中的多个光收发单元。
本申请实施例提供的光链路检测方法可由光链路检测装置执行。
光链路检测装置可以是具有供电接口的独立装置,其还可具有用于与其他设备通信的通讯接口,该通讯接口可用于接收其他设备为光链路检测装置配置的参数(如光链路检测装置执行光链路检测方法的周期、光链路检测装置支持的带宽、光链路检测装置处理信号时的采样点数等),该通讯接口还可用于将光链路检测装置执行光链路检测方法得到的检测结果输出至其他设备。例如,基于图1所示的通信系统,光模块101和光模块102之间为光纤直连架构时,光链路检测装置可安置于光纤链路上靠近光模块101一侧,如图3所示,其中,光链路检测装置与光纤链路基于耦合的方式连接。这一情况下,光链路检测装置可用于检测光模块101发出的光信号对应的光链路(包括光模块101、光纤链路103和光模块102)是否存在故障。如果图1所示的通信系统中存在多个光模块101,连接每个光模块101和光模块102的光纤链路上均可安装一个光链路检测装置,以分别检测每个光模块101发出的光信号对应的光链路是否存在故障。
又例如,基于图2所示的通信系统,光模块101和光模块102之间为WDM架构时,光链路检测装置可安置于光纤链路103上靠近合波器104一侧,如图4所示,其中,光链路检测装置与光纤链路基于耦合的方式连接。这一情况下,光链路检测装置可用于检测多个光模块101中每个光模块101发送的光信号对应的光链路是否存在故障,其中,每个光模块101发送的光信号对应的光链路包括:该光模块101、合波器104、光纤链路103、分波器105、接收该光信号的光模块102。
光链路检测装置还可以集成于其他设备(或其他功能模块)中,由其他设备为光链路检测装置提供电源、通讯、封装等需求。例如,基于图1所示的通信系统,光模块101与光模块102之间为光纤直连架构时,光链路检测装置还可集成于光模块101中,如图5所示。这一情况下,光链路检测装置可用于检测光模块101发送的光信号对应的光链路是否存在故障,其中,光模块101发送的光信号的光链路包括:光模块101、光纤链路103、光模块102。如果图1所示的通信系统中存在多个光模块101,针对每个光模块101分别集成一个光链路检测装置,集成于某个光模块101的光链路检测装置可用于检测该光模块101发送的光信号对应的光链路是否存在故障。
又例如,图2所示的通信系统中还包括光纤链路自动切换保护(optical fiber line auto switch protection,OLP)模块106,光链路检测装置可集成于该OLP模块106中,如图6所示。这一情况下,光链路检测装置可用于检测多个光模块101中每个光模块101发送的光信号对应的光链路是否存在故障,其中,每个光模块101发送的光信号对应的光链路包括:该光模块101、合波器104、光纤链路、分波器105、接收该光信号的光模块102。如果光链路 检测装置检测到用于传输光信号的主光纤链路103a存在故障,那么,OLP模块106可通过OLP开关从主光纤链路103a切换至辅光纤链路103b,由辅光纤链路103b传输光信号。
下面结合附图对本申请实施例提供的光链路检测装置进行详细阐述。
图7是本申请实施例提供的一种光链路检测装置的结构示意图,该光链路检测装置包括:第一光探测器201、第二光探测器202和信号处理器203。关于光链路检测装置中各部分的功能,包括实施例1至实施例3所述。
实施例1,光链路检测装置用于基于承载业务数据的光信号执行光链路检测方法,图7中各部分的功能如下:
第一光探测器201用于对第一光信号进行光电转换,获得第一光信号的信息,并将第一光信号的信息输出至信号处理器203,其中,第一光信号是来自第一光模块的承载业务数据的光信号。
其中,如果光链路检测装置应用于前传光网络、中传光网络或回传光网络中,承载业务数据的光信号可以是承载小区数据的光信号;如果光链路检测装置应用于数据中心、接入网、核心网或骨干网中,承载业务数据的光信号可以是承载信令的光信号,或是承载网络节点交互信息的光信号,或是承载用户数据的光信号。
第二光探测器202用于对第二光信号进行光电转换,获得第二光信号的信息,并将第二光信号的信息输出至信号处理器203,其中,第二光信号是第一光信号通过光纤链路反射得到的光信号,或是第一光信号通过光纤链路和第二光模块反射得到的光信号。
其中,第一光模块是发送第一光信号的光模块,第二光模块是接收第一光信号的光模块。例如,光链路检测装置应用于前传光网络中BBU向AAU或RRU发送光信号的场景时,第一光模块是BBU中用于发送第一光信号的光模块,第二光模块是AAU或RRU中用于接收第一光信号的光模块。
可选的,第一光探测器201和第二光探测器202是基于通信场景中商用的光信号调制格式确定的。例如,如果前传光网络中商用的光信号调制格式为幅度调制(也可称为光强调制),第一光探测器201和第二光探测器202为具备光强检测功能的光探测器,如光电二极管。
可选的,第一光探测器201和第二光探测器202可以是具有低带宽特性的光探测器。如果第一光信号和第二光信号是高速数字调制信号,例如具有40Gb/s的速率且采用开关键移(on-off keying,OOK)调制的信号,第一光探测器201除了对第一光信号进行光电转换,还用于基于自身的带限性对第一光信号进行滤波,得到承载了第一光信号的信息的低速多电平模拟信号;第二光探测器202除了对第二光信号进行光电转换,还用于基于自身的带限性对第二光信号进行滤波,得到承载了第二光信号的信息的低速多电平模拟信号。这一方式使得信号处理器203可基于低速多电平模拟信号进行光链路检测,有利于降低信号处理器203确定光链路是否故障的复杂度,还可降低光链路检测装置的成本。
信号处理器203用于根据第一光信号的信息,或根据第一光信号的信息以及第二光信号的信息,确定光链路是否存在故障,其中,光链路包括第一光模块、光纤链路和第二光模块。
可选的,信号处理器203在确定光链路是否故障时,可基于承载第一光信号的信息的模拟信号确定,或基于承载第一光信号的信息的模拟信号以及承载第二光信号的信息的模拟信号确定。其中,承载第一光信号的信息的模拟信号来自第一光探测器201;承载第二光信号的信息的模拟信号来自第二光探测器202。
可选的,信号处理器203在确定光链路是否故障时,可基于承载第一光信号的信息的数 字信号确定,或基于承载第一光信号的信息的数字信号以及承载第二光信号的信息的数字信号确定。其中,承载第一光信号的信息的数字信号是对来自第一光探测器201的,承载第一光信号的信息的模拟信号进行模数转换得到的;承载第二光信号的信息的数字信号是对来自第二光探测器202的,承载第二光信号的信息的模拟信号进行模数转换得到的。另外,若针对第一光信号的信息进行模数转换时的幅度采样范围与针对第二光信号的信息进行模数转换时不同,信号处理器203还用于对承载第一光信号的信息的数字信号和承载第二光信号的信息的数字信号进行归一化处理。
可选的,该光链路检测装置还可包括模数转换器,模数转换器可用于对承载第一光信号的信息的模拟信号进行模数转换,以及对承载第二光信号的信息的模拟信号进行模数转换。模数转换器可以是独立于第一光探测器201、第二光探测器202以及信号处理器203的器件,还可以集成于信号处理器203中。
在一种可选的实施方式中,光链路检测装置还可包括波长选通器204,如图8所示。波长选通器204用于根据第一波长从第三光信号中确定第一光信号,并将第一光信号输出至第一光探测器201,其中,第三光信号包括第一光信号。波长选通器204还用于根据第一波长从第四光信号中确定第二光信号,并将第二光信号输出至第二光探测器202,其中,第四光信号包括第二光信号,第四光信号是第三光信号通过光纤链路反射得到的光信号,或是第三光信号通过光纤链路和接收第三光信号的光模块反射得到的光信号。
其中,第三光信号包括承载业务数据的多个波长的光信号,其可以是由合波器基于WDM的方式对承载业务数据的多个波长的光信号(包括第一光信号)汇合得到的。接收第三光信号的光模块包括分别接收该多个波长的光信号的多个光模块(包括第二光模块),发送第三光信号的光模块包括分别发送该多个波长的光信号的多个光模块(包括第一光模块)。
另外,第一波长是第一光信号的波长,也是波长选通器204从第三光信号中确定第一光信号时,波长选通器204的中心波长。波长选通器204根据第一波长从第三光信号中确定第一光信号以及根据第一波长从第四光信号中确定第二光信号之前,信号处理器203还可向波长选通器204发送波长选择信号,以控制波长选通器204的中心波长为第一波长。下面对信号处理器203向波长选通器204发送波长选择信号之前,确定该波长选择信号的具体实施方式进行阐述。
具体地,信号处理器203可向波长选通器204发送功率不同的多个控制信号。波长选通器204基于该多个控制信号分别对第三光信号进行处理,得到多个光信号#1,并将该多个光信号#1输出至第一光探测器201,其中,多个光信号#1包括在多个控制信号中每个控制信号下得到的光信号#1。第一光探测器201对多个光信号#1分别进行光电转换,得到多个光信号#1中每个光信号#1对应的电信号#1,并将每个光信号#1对应的电信号#1输出至信号处理器203。信号处理器203计算每个电信号#1的功率,以确定电信号#1的功率-控制信号的功率的曲线,该曲线表征了在每个控制信号下得到的光信号#1对应的电信号#1的功率。信号处理器203从该曲线中确定电信号#1的功率为极大值时的极大值点,从中选择任意一个极大值点对应的控制信号作为波长选择信号。
其中,功率不同的多个控制信号可控制波长选通器204的中心波长的值不同,从而波长选通器204可实现以数值变化的中心波长对第三光信号进行处理。可选的,通过设计多个控制信号的功率的值,可使得波长选通器204的中心波长的值在预设范围内变化,例如波长选通器204的中心波长的值在预设范围内以预设间隔为步进变化,这里的预设范围可以是自由频谱宽度(free spectral range,FSR)范围。
在上述实施方式中,第一光探测器201输出的电信号#1为模拟信号,信号处理器203在计算电信号#1的功率时,可直接计算作为模拟信号的电信号#1的功率,或者,还可以计算作为模拟信号的电信号#1进行模数转换后的数字信号的功率。
另外,在承载业务数据的多个波长的光信号基于WDM的方式在同一光纤链路中传输的场景下(如图2),电信号#1的功率-控制信号的功率的曲线中,存在电信号#1的功率为极大值的多个极大值点。信号处理器203可将该多个极大值点对应的控制信号分别作为波长选择信号,以控制波长选通器204的中心波长分别为该多个承载业务数据的光信号中每个光信号的波长。那么,针对承载业务数据的且波长不同的多个光信号中每个光信号,波长选通器204可根据该光信号的波长从第三光信号中确定该光信号,以及信号处理器203可对该光信号对应的光链路进行故障检测。从而可实现光链路检测装置对承载业务数据的波长不同的多个光信号中每个光信号对应的光链路进行故障检测。其中,每个光信号对应的光链路包括:发送该光信号的光模块、合波器、光纤链路、分波器、接收该光信号的光模块。
另外,上述光链路检测装置还可以在多个光信号对应的多个光链路中某位置处出现故障时,可确定存在故障的光链路。以图2为例,若合波器中用于接收多个光信号的多个端口中某端口出现故障,光链路检测装置对该多个光信号中每个光信号对应的光链路进行故障检测,可以确定在合波器的端口位置处存在故障的光链路,进而可确定合波器中存在故障的端口。又例如,前传光网络中BBU与AAU之间基于WDM的方式通信的场景下,若BBU中的多个光模块中存在某光模块出现故障,光链路检测装置对该多个光模块发送的多个光信号中每个光信号对应的光链路进行故障检测,可以确定BBU中的光模块存在故障的光链路,进而可确定存在故障的光模块。
可选的,信号处理器203确定的多个波长选择信号可以是依次输出至波长选通器204的。具体地,信号处理器203可先将某一波长选择信号输出至波长选通器204,在波长选通器204根据该波长选择信号控制的中心波长,从第三光信号中确定具有该波长的光信号之后,信号处理器203再将另一波长选择信号输出至波长选通器204;重复上述过程直至多个波长选择信号均依次被输出至波长选通器204。或者,信号处理器203还可先将某一波长选择信号输出至波长选通器204,波长选通器204根据该波长选择信号控制的中心波长从第三光信号中确定具有该波长的光信号,信号处理器203在针对确定的光信号进行光链路检测之后,再将另一波长选择信号输出至波长选通器204;重复上述过程直至多个波长选择信号均依次被输出至波长选通器204。
可选的,结合图8,光链路检测装置还可包括具有分插复用结构的光分插复用器205。该光分插复用器205用于获取第三光信号和第四光信号,并将第三光信号和第四光信号输出至波长选通器204。
其中,第三光信号是光分插复用器205从光纤链路传输的承载业务数据的多个波长的光信号中获取的部分光信号,这里的部分光信号包括该多个波长的光信号中每个光信号的部分光信号。可见,光链路检测装置在进行光链路检测时,使用的是光纤链路传输的承载业务数据的多个波长的光信号中的部分光信号,而其余部分的光信号可正常传输至接收光信号的光模块,以保证收发光信号的两个光模块之间正常的业务通信。从而使得光链路检测装置进行光链路检测不会对收发光信号的两个光模块之间基于光链路的业务通信造成干扰,进而可实现在线检测。
例如,发送第三光信号的光模块包括光模块1、光模块2和光模块3,光模块1发送承载业务数据的光信号1,光模块2发送承载业务数据的光信号2,光模块3发送承载业务数据的 光信号3,其中,光信号1、光信号2和光信号3的波长不同,且光信号1、光信号2和光信号3基于WDM的方式由合波器汇合后耦合于同一光纤链路传输。基于分插复用结构获取的第三光信号包括光信号1中的部分光信号、光信号2中的部分光信号以及光信号3中的部分光信号。
分插复用结构的可能的形式如图9和图10所示。下面以基于分插复用结构从光纤链路中传输的光信号1中获取第三光信号,从光纤链路中传输的光信号2中获取第四光信号为例,对分插复用结构可能的形式进行阐述。其中,光信号1从光纤链路的输入端口(也可称为入射端口)(即端口A)传输至直通耦合端口(即端口B),光信号2从光纤链路的直通耦合端口传输至输入端口,光信号2是光信号1在光纤链路反射得到的,或是光信号1在光纤链路和接收光信号1的光模块反射得到的光信号。
图9中,基于路线A从端口A的交叉耦合端口(即图9中的端口C1)获取光信号1中的部分光信号(即第三光信号),其余部分光信号继续在光纤链路中传输;基于路线B从端口B的交叉耦合端口(即图9中的端口C2)获取光信号2中的部分光信号(即第四光信号),其余部分光信号继续在光纤链路中传输。
图10中,基于路线C从端口A的下载端口(即图10中的端口D1)获取光信号1中的部分光信号(即第三光信号),其余部分光信号继续在光纤链路中传输;基于路线D从端口B的下载端口(即图10中的端口D2)获取光信号2中的部分光信号(即第四光信号),其余部分光信号继续在光纤链路中传输。
另外,在第一光模块和第二光模块之间为光纤直连架构的场景(如图1)下,即光纤链路中仅传输第一光模块发送的承载业务数据的光信号,那么光链路检测装置仅对单波长光信号进行光链路检测,光链路检测装置可不包括波长选通器204。光分插复用器205用于基于分插复用结构获取第一光信号和第二光信号,并将第一光信号输出至第一光探测器201,将第二光信号输出至第二光探测器202。关于基于分插复用结构获取第一光信号和第二光信号的具体阐述可参考基于分插复用结构获取第三光信号和第四光信号的相关阐述,此处不再赘述。图8中,光分插复用器205与光纤链路之间基于耦合的方式连接。也就是说,光链路检测装置与第一光模块、第二光模块之间连接,具体表现为:光分插复用器205与第一光模块之间通过光纤链路连接,与第二光模块之间通过光纤链路连接,且连接方式均为耦合方式。
在另一种可选的实施方式中,光链路检测装置还可包括微谐振器206,如图11所示。微谐振器206用于根据第一波长从第三光信号中确定第一光信号,其中,第三光信号包括第一光信号。微谐振器206还用于根据第一波长从第四光信号中确定第二光信号,其中,第四光信号包括第二光信号,第四光信号是第三光信号通过光纤链路反射得到的光信号,或是第三光信号通过光纤链路和接收第三光信号的光模块反射得到的光信号。关于第三光信号和第四光信号的具体阐述可参见前述对第三光信号和第四光信号的相关阐述,此处不再赘述。
微谐振器206可具有上述实施方式中波长选通器204的所有功能,微谐振器206根据第一波长从第三光信号中确定第一光信号以及根据第一波长从第四光信号中确定第二光信号的具体阐述,可参考波长选通器204根据第一波长从第三光信号中确定第一光信号以及根据第一波长从第四光信号中确定第二光信号的相关阐述,此处不再赘述。
可选的,微谐振器206具有分插复用结构。微谐振器206还用于获取第三光信号和第四光信号。微谐振器206可具有上述实施方式中光分插复用器205的所有功能,具体阐述可参考前述光分插复用器205获取第三光信号和第四光信号的相关阐述,此处不再赘述。
另外,在第一光模块和第二光模块之间为光纤直连架构的场景(如图1)下,微谐振器 206用于获取第一光信号和第二光信号。图11中,微谐振器206与光纤链路之间基于耦合的方式连接。也就是说,光链路检测装置与第一光模块、第二光模块之间连接,具体表现为:微谐振器206与第一光模块之间通过光纤链路连接,与第二光模块之间通过光纤链路连接,且连接方式均为耦合方式。
可见,图8中波长选通器204的功能以及光分插复用器205的功能可由单一器件—微谐振器206实现。例如,微谐振器206可以是硅基微环谐振器,硅基微环谐振器的分插复用结构的形式如图10所示。其中,波长选通器204的功能可依赖于硅基微环谐振器的滤波特性实现,硅基微环谐振器的中心波长的可调节能力依赖于硅基微环谐振器上集成的能够改变波导折射率的元件(例如金属热电极、p-i-n结)实现。
在一种可选的实施方式中,信号处理器203可以根据第一光信号的信息确定光链路是否存在故障。具体的,当第一光信号的信息对应的平均功率小于第一值时,确定光链路存在故障。其中,第一光信号的信息对应的平均功率是指第一光信号进行光电转换后(以及可选的模数转换)的电信号的平均功率。第一值是第一光信号的功率阈值;第一值可以是根据第一光模块发送的具有第一波长的光信号的平均功率确定的,其具体可等于第一光模块发送的具有第一波长的光信号的平均功率减该光信号从第一光模块传输至光链路检测装置的过程中经过的各器件造成的插损得到的值。具有第一波长的光信号在传输过程中经过的各器件例如为:连接第一光模块和光链路检测装置的光纤链路、合波器、光链路检测装置等器件。
进一步地,如果第一光信号的信息对应的平均功率小于第一值,可确定光链路中第一光模块存在故障,或者确定连接第一光模块和光链路检测装置的光纤链路中存在故障。
在一种可选的实施方式中,信号处理器203可以根据第一光信号的信息以及第二光信号的信息,确定光链路是否存在故障,具体的:计算第一光信号经过光电转换后的幅度信息与第二光信号经过光电转换后的幅度信息的互相关函数,得到一个或多个互相关系数;如果一个或多个互相关系数中存在大于第二值的互相关系数,确定光链路存在故障。进一步地,如果一个或多个互相关系数中存在大于第二值的互相关系数,可确定光链路中第二光模块存在故障,或者确定连接第二光模块和光链路检测装置的光纤链路中存在故障。
其中,第二值是基于第一光信号中噪声和第二光信号中噪声确定的幅度阈值。具体地,第二值可以是基于以下内容确定的:第一光信号中噪声经过光电转换后的幅度信息与第二光信号进行光电转换后的幅度信息之间的互相关系数、第一光信号经过光电转换后的幅度信息与第二光信号中噪声进行光电转换后的幅度信息之间的互相关系数,以及第一光信号中噪声经过光电转换后的幅度信息与第二光信号中噪声经过光电转换后的幅度信息之间的互相关系数。
可选的,信号处理器203还用于对第一光信号经过光电转换后的幅度信息和第二光信号经过光电转换后的幅度信息进行归一化。信号处理器203计算的互相关函数是第一光信号经过光电转换后的幅度信息进行归一化后的信息和第二光信号经过光电转换后的幅度信息进行归一化后的信息之间的互相关函数。可选的,信号处理器203可结合光链路信噪比对第一光信号经过光电转换后的幅度信息和第二光信号经过光电转换后的幅度信息进行归一化。
可选的,信号处理器203还可以根据一个或多个互相关系数中大于第二值的每个互相关系数对应的时刻,确定光链路上故障点的位置。在信号处理器203得到的一个或多个互相关系数组成的互相关图谱中,存在峰值大于第二值的一个或多个脉冲,该一个或多个脉冲的峰值是互相关图谱中大于第二值的一个或多个极大值点对应的互相关系数。峰值大于第二值的一个或多个脉冲中的每个脉冲对应了光链路上的一个故障点。那么,信号处理器203可根据 峰值大于第二值的每个脉冲中峰值对应的时刻,确定该脉冲在光链路上对应的故障点的位置。
例如,峰值大于第二值的某个脉冲中峰值对应的时刻为t,若小于连接第二光模块和光链路检测装置的光纤链路的长度,则该脉冲在光链路上对应的故障点的位置为:连接第二光模块和光链路检测装置的光纤链路中,与光链路检测装置相距的位置;若等于连接第二光模块和光链路检测装置的光纤链路的长度,则说明第二光模块存在故障。其中,c为光信号在光纤中传输的光速。考虑到测量误差,判断故障点的位置的方法也可以为,若连接第二光模块和光链路检测装置的光纤链路的长度比大第一误差门限,则该脉冲在光链路上对应的故障点的位置为:连接第二光模块和光链路检测装置的光纤链路中,与光链路检测装置相距的位置;若与连接第二光模块和光链路检测装置的光纤链路的长度之间的差值的绝对值小于第一误差门限,则说明第二光模块存在故障。
可选的,信号处理器203还用于根据一个或多个互相关系数中大于第二值的每个互相关系数的值,确定光链路上故障点的反射损耗。
具体地,在一个或多个互相关系数组成的互相关图谱中, 其单位为分贝(decibel,dB)。其中,R1、R2、…、Ri是构成该脉冲的i个互相关系数,且该i个互相关系数均大于第二值,i为正整数;P是第一光信号经过光电转换后的模拟信号的功率,或是第一光信号经过光电转换以及模数转换后的数字信号的功率。
可选的,信号处理器203还可用于将光链路的故障信息输出至显示面板以告知用户。其中,光链路的故障信息包括以下至少一个:第一光信号对应的光链路是否存在故障、故障点的故障位置以及故障点的反射损耗。其中,显示面板可以是光链路检测装置中的,也可以是不同于光链路检测装置的具有显示功能的其他设备中的。如果显示面板是不同于光链路检测装置的具有显示功能的其他设备中的,光链路检测装置还可包括通讯接口,信号处理器203可通过通讯接口将光链路的故障信息输出至显示面板。
另外,信号处理器203可以是低成本微控制器,如通用微控制单元、可编程逻辑门阵列等。或者,上述信号处理器203的各个功能还可由不同硬件形式分布式实现。
综上所述,光链路检测装置基于承载业务数据的光信号确定光链路是否存在故障,该光链路包括发送该承载业务数据的光信号的光模块、传输该承载业务数据的光信号的光纤链路以及接收该承载业务数据的光信号的光模块。可见,该光链路检测装置基于承载业务数据的光信号确定光链路是否存在故障,不会对收发光信号的两个光模块之间基于光链路的业务通信造成干扰,从而实现在线故障检测。另外,光链路检测装置不包含光源,且光链路检测装置中的第一光探测器、第二光探测器、信号处理器以及可选的波长选通器、光分插复用器、微谐振器均可实现小型化,使得光链路检测装置可实现小型化。
实施例2,光链路检测装置用于基于对承载业务数据的光信号调制后的光信号执行光链路检测方法,图7中各部分的功能如下:
第一光探测器201用于对第五光信号进行光电转换,获得第五光信号的信息,并将第五光信号的信息输出至信号处理器203,其中,第五光信号是对第一光信号进行调制得到的,第一光信号是来自第一光模块的承载业务数据的光信号。
第二光探测器202用于对第六光信号进行光电转换,获得第六光信号的信息,并将第六 光信号的信息输出至信号处理器203,其中,第六光信号是第五光信号通过光纤链路反射得到的光信号,或是第五光信号通过光纤链路和第二光模块反射得到的光信号。
其中,对第一光信号进行调制的方式可以是幅度调制(也可称为光强调制)、相位调制、偏振调制、频率调制等调制方式。第一光探测器201和第二光探测器202是基于对第一光信号进行调制的调制方式确定的。例如,若调制方式为幅度调制,第一光探测器201和第二光探测器202是具备光强检测功能的探测器(如光电二极管);若调制方式为相位调制,第一光探测器201和第二光探测器202是具备光相位检测功能的探测器(如光相干接收机)。
信号处理器203用于根据第五光信号的信息或第六光信号的信息,确定光链路是否存在故障,其中,光链路包括第一光模块、光纤链路和第二光模块。
其中,光链路检测装置确定第五光信号和第六光信号的具体方式可如实施方式1至实施方式3所述。
实施方式1,光链路检测装置还包括波长选通器204、光分插复用器205和光调制器207的情况,如图12所示。图12中,光链路检测装置与第一光模块、第二光模块连接,具体表现为:光调制器207与第一光模块之间通过光纤链路连接,光分插复用器205与第二光模块之间通过光纤链路连接,且连接方式均为耦合方式。
光调制器207对第九光信号进行调制,并将调制后的第九光信号输出至光分插复用器205;其中,第九光信号包括第一光信号。该第九光信号包括光纤链路中传输的承载业务数据的多个波长的光信号。
光分插复用器205从调制后的第九光信号中获取部分光信号作为第七光信号;从调制后的第九光信号在光纤链路反射得到的,或在光纤链路和接收第九光信号的光模块反射得到的光信号中获取部分光信号作为第八光信号;将第七光信号和第八光信号输出至波长选通器204。
波长选通器204根据第一波长从第七光信号中确定第五光信号,并将第五光信号输出至第一光探测器201,其中,第七光信号包括第五光信号;根据第一波长从第八光信号中确定第六光信号,并将第六光信号输出至第二光探测器202,其中,第八光信号包括第六光信号,第八光信号是第七光信号通过光纤链路反射得到的光信号,或是第七光信号通过光纤链路和接收第七光信号的光模块反射得到的光信号。
其中,光分插复用器205获取第七光信号和第八光信号的方式与实施例1中光分插复用器205获取第三光信号和第四光信号的方式类似,波长选通器204确定第五光信号和第六光信号的方式与实施例1中确定第一光信号和第二光信号的方式类似,此处不再赘述。
实施方式2,光链路检测装置还包括微谐振器206和光调制器207的情况。光链路检测装置与第一光模块、第二光模块连接,具体表现为:光调制器207与第一光模块之间通过光纤链路连接,微谐振器206与第二光模块之间通过光纤链路连接,且连接方式均为耦合方式。
该实施方式中,光调制器207具有实施方式1中光调制器207的功能,光调制器207将调制后的第九光信号输出至微谐振器206。微谐振器206具有实施方式1中波长选通器204和光分插复用器205的功能。关于微谐振器206确定第五光信号和第六光信号的具体阐述可参考实施方式1中的相关阐述,此处不再赘述。
实施方式3,光链路检测装置还包括微谐振器206的情况,如图11所示。图11中,光链路检测装置与第一光模块、第二光模块连接,具体表现为:微谐振器206与第一光模块之间通过光纤链路连接,与第二光模块之间通过光纤链路连接,且连接方式均为耦合方式。其中,微谐振器206具有实施方式1中波长选通器204、光分插复用器205和光调制器207的功能。如果调制方式为光强调制,光调制器207的功能可依赖于微谐振器上集成的能够改变 波导折射率的元件(例如金属热电极、p-i-n结)以及波导耦合中的干涉效应实现。
该情况下,确定第五光信号和第六光信号的方式如实施方式3.1和实施方式3.2所述。
实施方式3.1,微谐振器206对第九光信号进行调制;再从调制后的第九光信号中获取部分光信号作为第七光信号;从调制后的第九光信号在光纤链路反射得到的,或在光纤链路和接收第九光信号的光模块反射得到的光信号中获取部分光信号作为第八光信号;根据第一波长从第七光信号中确定第五光信号,并将第五光信号输出至第一光探测器201;根据第一波长从第八光信号中确定第六光信号,并将第六光信号输出至第二光探测器202。
实施方式3.2,微谐振器206根据第一波长从第九光信号中确定具有第一波长的光信号,对具有第一波长的光信号进行调制,得到调制后的光信号;再从该调制后的光信号中获取部分光信号作为第五光信号,从该调制后的光信号在光纤链路反射得到的光信号中获取部分光信号作为第六光信号,或者,从该调制后的光信号在光纤链路和第二光模块反射得到的光信号中获取部分光信号作为第六光信号。
例如,光模块1发送承载业务数据的光信号1,光模块2发送承载业务数据的光信号2,光模块3发送承载业务数据的光信号3,其中,光信号1、光信号2和光信号3的波长不同,且光信号1、光信号2和光信号3基于WDM的方式由合波器汇合后得到第九光信号。第一波长为光信号1的波长。采用实施方式3.1时,微谐振器206对光信号1、光信号2和光信号3进行调制,从调制后的光信号1、光信号2和光信号3中获取部分光信号作为第七光信号,即第七光信号包括:调制后的光信号1的部分光信号、调制后的光信号2的部分光信号和调制后的光信号3的部分光信号;从中确定具有第一波长的光信号作为第五光信号,即第五光信号是调制后的光信号1的部分光信号。采用实施方式3.2时,微谐振器206根据第一波长从第九光信号中确定光信号1,再对光信号1进行调制;从调制后的光信号1中获取部分光信号作为第五光信号。
可选的,实施方式1至实施方式3中,光调制器207或微谐振器206对第九光信号进行调制,可具体为:光调制器207或微谐振器206基于接收的来自信号处理器203的调制信号对第九光信号进行调制。其中,信号处理器203产生的调制信号是具备一定规律的波动信号,且该调制信号还具备驱动光调制器207或微谐振器206的能力。
实施例2中,信号处理器203确定光链路是否存在故障的方式,与实施例1中确定光链路是否存在故障的方式不同,下面对信号处理器203根据第五光信号或第六光信号确定光链路是否存在故障进行阐述。
在一种可选的实施方式中,信号处理器203根据第五光信号的信息确定光链路是否存在故障,具体用于:如果第五光信号的脉冲的峰值小于第三值且大于第四值,确定光链路存在故障;第三值是第五光信号中脉冲的幅度阈值;第四值是第五光信号中噪声的幅度阈值。其中,第五光信号的脉冲是指第五光信号经过光电转换(以及可选的模数转换)后的电信号中的脉冲。进一步地,如果第五光信号的脉冲的峰值小于第三值且大于第四值,可确定光链路中第一光模块存在故障,或确定连接第一光模块和光链路检测装置的光纤链路中存在故障。
其中,第三值可以是根据第一光模块发送的具有第一波长的光信号的平均功率确定的,其具体可等于第一光模块发送的具有第一波长的光信号的平均功率减该光信号从第一光模块传输至光链路检测装置的过程中经过的各器件造成的插损得到的值。第四值可以是根据第五光信号的光信噪比(optical signal noise ratio,OSNR)确定的。该第五光信号的OSNR会受到第一光模块、连接第一光模块和光链路检测装置的光纤链路所产生的噪声的影响。本申请实施例中的噪声可以是白噪声、热噪声等噪声,还可以是由光信号的非线性引起的干扰。
在一种可选的实施方式中,信号处理器203根据第六光信号的信息确定光链路是否存在故障,可具体为:如果第六光信号的脉冲的峰值大于第五值,确定光链路存在故障;第五值是第六光信号中噪声的幅度阈值。其中,第六光信号的脉冲是指第六光信号经过光电转换(以及可选的模数转换)后的电信号中的脉冲。进一步地,如果第六光信号的脉冲的峰值大于第五值,可确定光链路中第二光模块存在故障,或确定连接第二光模块和光链路检测装置的光纤链路中存在故障。其中,第五值是根据第六光信号的OSNR确定的,第六光信号的OSNR会受到第一光模块、连接第一光模块和第二光模块的光纤链路所产生的噪声的影响。
可选的,信号处理器203还用于根据第六光信号中峰值大于第五值的每个脉冲相对于第五光信号的脉冲的时延,确定该脉冲在光链路上对应的故障点的故障位置。其中,第六光信号中峰值大于第五值的脉冲是指第六光信号经过光电转换(以及可选的模数转换)后的电信号中峰值大于第五值的脉冲。
其中,第六光信号中峰值大于第五值的每个脉冲相对于第五光信号的脉冲的时延,可等于峰值大于第五值的该脉冲中峰值对应的时刻与第五光信号的脉冲中峰值对应的时刻的绝对差值。例如,峰值大于第五值的某个脉冲中峰值对应的时刻为t1,第五光信号的脉冲中峰值对应的时刻为t2,第六光信号中峰值大于第五值的该脉冲相对于第五光信号的脉冲的时延为t=|t1-t2|。根据确定该脉冲在光链路上对应的故障点的故障位置的方式可参见实施例1中的相关阐述,此处不再赘述。
可选的,信号处理器203还用于根据第六光信号中峰值大于第五值的每个脉冲包括的幅度值和第五光信号的脉冲包括的幅度值,确定该脉冲在光链路上对应的故障点的反射损耗。
具体地, 其单位为dB。其中,A1、A2、…、Ai是构成峰值大于第五值的该脉冲的i个幅度值,且该i个幅度值均大于第五值;B1、B2、…、Bj是构成第五光信号的脉冲的j个幅度值;i和j均为正整数。
综上所述,光链路检测装置基于对承载业务数据的光信号进行调制后的光信号,确定光链路是否存在故障,其中,光链路包括发送该承载业务数据的光信号的光模块、传输该承载业务数据的光信号的光纤链路,以及接收该承载业务数据的光信号进行调制后的光信号的光模块。可见,光链路检测装置检测光链路是基于对承载业务数据的光信号进行调制后的光信号,灵敏度更高,对微小故障(损耗较小的故障)的识别能力更强。另外,该光链路检测装置不包含光源,且光链路检测装置中的第一光探测器、第二光探测器、信号处理器以及可选的波长选通器、光分插复用器、微谐振器均可实现小型化,使得光链路检测装置可实现小型化。
实施例3,光链路检测装置进行光链路检测之前,可由不属于光链路检测装置的光模块配合产生光脉冲信号,使得光链路检测装置可基于该光脉冲信号进行光链路检测。例如,光链路检测装置应用于前传光网络中,光链路检测装置检测光链路时,可由BBU中的光模块配合产生光脉冲信号并向RRU中的光模块发送该光脉冲信号,光链路检测装置可基于该光脉冲信号对光链路(包括BBU中的光模块、连接BBU中的光模块和RRU中的光模块的光纤链路、RRU中的光模块)进行故障检测。图7所示的光链路检测装置中各部分的功能还可如下所示:
第一光探测器201用于对第十光信号进行光电转换,获得第十光信号的信息,并将第十 光信号的信息输出至信号处理器203,其中,第十光信号是来自第三光模块的光脉冲信号;第三光模块不属于光链路检测装置。
第二光探测器202用于对第十一光信号进行光电转换,获得第十一光信号的信息,并将第十一光信号的信息输出至信号处理器203,其中,第十一光信号是第十光信号通过光纤链路反射得到的光信号,或是第十光信号通过光纤链路和第四光模块反射得到的光信号。
可选的,第一光探测器201和第二光探测器202是基于光脉冲信号的调制格式确定的,例如,若光脉冲信号的调制格式为光强调制,第一光探测器201和第二光探测器202是具有光强检测功能的探测器;若光脉冲信号的调制格式为相位调制,第一光探测器201和第二光探测器202是具有光相位检测功能的探测器。
信号处理器203用于根据第十光信号的信息或第十一光信号的信息,确定光链路是否存在故障,其中,光链路包括第三光模块、光纤链路和第四光模块。
该实施例中,光链路检测装置确定第十光信号的方式,与实施例1中光链路检测装置确定第一光信号的方式类似,不同之处在于:实施例1中光纤链路传输的是承载业务数据的光信号,光链路检测装置是从承载业务数据的一个或多个光信号中确定的第一光信号;实施例3中光纤链路传输的是光脉冲信号,光链路检测装置是从一个或多个光脉冲信号中确定的第十光信号。
另外,该实施例中,信号处理器203根据第十光信号的信息或第十一光信号的信息确定光链路是否存在故障的方式,与实施例2中信号处理器203根据第五光信号的信息或第六光信号的信息确定光链路是否存在故障的方式类似,此处不再赘述。
该实施例中,光链路检测装置基于不属于该光链路检测装置的光模块产生的光脉冲信号,进行光链路检测,其中,光链路包括该不属于该光链路检测装置的光模块、光纤链路以及接收该光脉冲信号的光模块。该光链路检测装置的灵敏度更高,对微小故障(损耗较小的故障)的识别能力更强。另外,该光链路检测装置不包含光源,且光链路检测装置中的第一光探测器、第二光探测器、信号处理器以及可选的波长选通器、光分插复用器、微谐振器均可实现小型化,使得光链路检测装置可实现小型化。另外,与实施例2所述的光链路检测装置相比,实施例3所述的光链路检测装置无需执行调制操作,可减少光链路检测装置的复杂度。
可以理解的是,本申请实施例示意的结构并不构成对光链路检测装置的具体限定。在本申请另一些实施例中,光链路检测装置可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
图13是本申请实施例提供的一种光链路检测方法100的流程示意图,该光链路检测方法100可由实施例1所述的光链路检测装置执行。该光链路检测方法100可包括以下步骤:
S101、光链路检测装置对第一光信号进行光电转换,获得第一光信号的信息,其中,第一光信号是来自第一光模块的承载业务数据的光信号。
S102、光链路检测装置对第二光信号进行光电转换,获得第二光信号的信息,其中,第二光信号是第一光信号通过光纤链路反射得到的光信号,或是第一光信号通过光纤链路和第二光模块反射得到的光信号。
在一种可选的实施方式中,光链路检测方法100还包括:光链路检测装置根据第一波长从第三光信号中确定第一光信号,以及根据第一波长从第四光信号中确定第二光信号,其中,第三光信号包括第一光信号;第四光信号包括第二光信号,第四光信号是第三光信号通过光 纤链路反射的光信号,或是第三光信号通过光纤链路和接收第三光信号的光模块反射的光信号。可选的,光链路检测装置根据第一波长从第三光信号中确定第一光信号以及根据第一波长从第四光信号中确定第二光信号之前,该光链路检测方法100还可包括:基于分插复用结构获取第三光信号和第四光信号。
S103、光链路检测装置根据第一光信号的信息,或根据第一光信号的信息以及第二光信号的信息,确定光链路是否存在故障,其中,光链路包括第一光模块、光纤链路和第二光模块。
在一种可选的实施方式中,光链路检测装置根据第一光信号的信息,确定光链路是否存在故障,包括:当第一光信号的信息对应的平均功率小于第一值时,确定光链路存在故障,其中,第一值是第一光信号的功率阈值。可选地,当第一光信号的信息对应的平均功率小于第一值时,可确定第一光模块存在故障,或确定连接第一光模块和光链路检测装置的光纤链路存在故障。
在一种可选的实施方式中,光链路检测装置根据第一光信号的信息以及第二光信号的信息,确定光链路是否存在故障,包括:计算第一光信号经过光电转换后的幅度信息与第二光信号经过光电转换后的幅度信息的互相关函数,得到一个或多个互相关系数;如果一个或多个互相关系数中存在大于第二值的互相关系数,确定光链路存在故障,其中,第一值是基于第一光信号中噪声和第二光信号中噪声确定的幅度阈值。可选的,如果一个或多个互相关系数中存在大于第二值的互相关系数,可确定第二光模块存在故障,或确定连接第二光模块和光链路检测装置的光纤链路存在故障。
可选的,光链路检测方法100还包括:光链路检测装置根据一个或多个互相关系数中大于第二值的每个互相关系数对应的时刻,确定光链路上故障点的位置。
可选的,光链路检测方法100还包括:光链路检测装置根据一个或多个互相关系数中大于第二值的每个互相关系数的值,确定光链路上故障点的反射损耗。
另外,光链路检测装置还可周期性地执行光链路检测方法100,基于每次执行光链路检测方法100得到的第一光信号的信息对应的平均功率和一个或多个互相关系数,可获得光链路上任意位置的故障趋势。例如,光链路检测装置多次执行光链路检测方法100的过程中,连接第二光模块和光链路检测装置的光纤链路中某位置对应的互相关系数逐次增大,说明该位置存在出现故障的趋势。该方式有利于及时排除故障,以保证第一光模块和第二光模块之间正常的业务通信。
光链路检测方法100还可包括实施例1所述的光链路检测装置可执行的任意实施方式,此处不再赘述。
综上所述,光链路检测方法100中,光链路检测装置基于承载业务数据的光信号确定光链路是否存在故障,该光链路包括发送该承载业务数据的光信号的第一光模块、传输该承载业务数据的光信号的光纤链路以及接收该承载业务数据的光信号的第二光模块。可见,该光链路检测方法100能够实现在第一光模块和第二光模块之间进行业务通信的过程中检测光链路,且不会对第一光模块和第二光模块之间的业务通信造成干扰,从而可实现在线通信。
图14为本申请实施例提供的一种光链路检测方法200的流程示意图,该光链路检测方法200可由实施例2所述的光链路检测装置执行。该光链路检测方法200可包括以下步骤:
S201、光链路检测装置对第五光信号进行光电转换,获得第五光信号的信息,其中,第五光信号是对第一光信号进行调制得到的,第一光信号是来自第一光模块的承载业务数据的 光信号。
S202、光链路检测装置对第六光信号进行光电转换,获得第六光信号的信息,其中,第六光信号是第五光信号通过光纤链路反射得到的光信号,或是第五光信号通过光纤链路和第二光模块反射得到的光信号。
S203、光链路检测装置根据第五光信号的信息或第六光信号的信息,确定光链路是否存在故障,其中,光链路包括第一光模块、光纤链路和第二光模块。
在一种可选的实施方式中,光链路检测方法200还包括:光链路检测装置根据第一波长从第七光信号中确定第五光信号,以及根据第一波长从第八光信号中确定第六光信号,其中,第七光信号包括第五光信号;第八光信号包括第六光信号,第八光信号是第七光信号通过光纤链路反射的光信号,或是第七光信号通过光纤链路和接收第七光信号的光模块反射的光信号。可选的,光链路检测装置根据第一波长从第七光信号中确定第五光信号以及根据第一波长从第八光信号中确定第六光信号之前,该光链路检测方法100还可包括:基于分插复用结构获取第七光信号和第八光信号。
可选的,光链路检测方法200还包括:光链路检测装置对第九光信号进行调制,得到调制后的第九光信号,其中,第九光信号包括第一光信号,调制后的第九光信号包括第七光信号。光链路检测装置基于分插复用结构获取第七光信号和第八光信号,可包括:基于分插复用结构从调制后的第九光信号中获取部分光信号作为第七光信号;从调制后的第九光信号在光纤链路反射得到的光信号中获取部分光信号作为第八光信号,或者,从调制后的第九光信号在光纤链路和接收调制后的第九光信号的光模块反射得到的光信号中获取部分光信号作为第八光信号。
在一种可选的实施方式中,光链路检测装置根据第五光信号的信息,确定光链路是否存在故障,可包括:如果第五光信号的脉冲的峰值小于第三值且大于第四值,确定光链路存在故障;第三值是第五光信号中脉冲的幅度阈值;第四值是第五光信号中噪声的幅度阈值。进一步地,如果第五光信号的脉冲的峰值小于第三值且大于第四值,可确定第一光模块存在故障,或确定连接第一光模块和光链路检测装置的光纤链路存在故障。
在一种可选的实施方式中,光链路检测装置根据第六光信号的信息,确定光链路是否存在故障,可包括:如果第六光信号的脉冲的峰值大于第五值,确定光链路存在故障;第五值是第六光信号中噪声的幅度阈值。进一步地,如果第六光信号的脉冲的峰值大于第五值,可确定第二光模块存在故障,或确定连接第二光模块和光链路检测装置的光纤链路存在故障。
可选的,光链路检测方法200还包括:光链路检测装置根据第六光信号中峰值大于第五值的每个脉冲相对于第五光信号的脉冲的时延,确定该脉冲在光链路上对应的故障点的故障位置。
可选的,光链路检测方法200还包括:光链路检测装置根据第六光信号中峰值大于第五值的每个脉冲包括的幅度值和第五光信号的脉冲包括的幅度值,确定该脉冲在光链路上对应的故障点的反射损耗。
另外,光链路检测装置还可周期性地执行光链路检测方法200,基于每次执行光链路检测方法200得到的第五光信号的信息和第六光信号的信息,可获得光链路上任意位置的故障趋势,有利于及时排除故障以保证第一光模块和第二光模块之间正常的业务通信。
光链路检测方法200还可包括实施例2所述的光链路检测装置可执行的任意实施方式,此处不再赘述。
综上所述,光链路检测方法200中,光链路检测装置基于对承载业务数据的光信号进行 调制后的光信号,确定光链路是否存在故障,其中,光链路包括发送该承载业务数据的光信号的光模块、传输该承载业务数据的光信号的光纤链路,以及接收该承载业务数据的光信号进行调制后的光信号的光模块。可见,光链路检测装置检测光链路是基于对承载业务数据的光信号进行调制后的光信号确定的,灵敏度高,对微小故障(损耗较小的故障)的识别能力强。
图15为本申请实施例提供的一种光链路检测方法300的流程示意图,该光链路检测方法300可由实施例3所述的光链路检测装置执行。该光链路检测方法300可包括以下步骤:
S301,光链路检测装置对第十光信号进行光电转换,获得第十光信号的信息,其中,第十光信号是来自第三光模块的光脉冲信号;第三光模块不属于光链路检测装置。
S302,光链路检测装置对第十一光信号进行光电转换,获得第十一光信号的信息,其中,第十一光信号是第十光信号通过光纤链路反射得到的光信号,或是第十光信号通过光纤链路和第四光模块反射得到的光信号。
S303,光链路检测装置根据第十光信号的信息或第十一光信号的信息,确定光链路是否存在故障,其中,光链路包括第三光模块、光纤链路和第四光模块。
在一种可选的实施方式中,该光链路检测方法300还包括:光链路检测装置根据第二波长从第十二光信号中确定第十光信号,以及根据第二波长从第十三光信号中确定第十一光信号,其中,第十二光信号包括第十光信号;第十三光信号包括第十一光信号,第十三光信号是第十二光信号通过光纤链路反射得到的光信号,或是第十二光信号通过光纤链路和接收第十二光信号的光模块反射得到的光信号。
可选的,光链路检测装置根据第二波长从第十二光信号中确定第十光信号以及根据第二波长从第十三光信号中确定第十一光信号之前,该光链路检测方法100还可包括:基于分插复用结构获取第十二光信号和第十三光信号。
在一种可选的实施方式中,光链路检测装置根据第十光信号的信息确定光链路是否存在故障,包括:如果第十光信号的脉冲的峰值小于第六值且大于第七值,确定光链路存在故障;第五值是第十光信号中脉冲的幅度阈值;第六值是第十光信号中噪声的幅度阈值。可选的,如果第十光信号的脉冲的峰值小于第六值且大于第七值,可确定第三光模块存在故障,或确定连接第三光模块和光链路检测装置的光纤链路存在故障。
在一种可选的实施方式中,光链路检测装置根据第十一光信号的信息确定光链路是否存在故障,包括:如果第十一光信号的脉冲的峰值大于第八值,确定光链路存在故障;第八值是第十一光信号中噪声的幅度阈值。可选的,如果第十一光信号的脉冲的峰值大于第八值,可确定第四光模块存在故障,或确定连接第四光模块和光链路检测装置的光纤链路存在故障。
可选的,该光链路检测方法300还包括:光链路检测装置根据第十一光信号中峰值大于第八值的每个脉冲相对于第十光信号的脉冲的时延,确定该脉冲在光链路上对应的故障点的故障位置。
可选的,该光链路检测方法300还包括:光链路检测装置根据第十一光信号中峰值大于第八值的每个脉冲包括的幅度值和第十光信号的脉冲包括的幅度值,确定该脉冲在光链路上对应的故障点的反射损耗。
另外,光链路检测装置还可周期性地执行光链路检测方法300,基于每次执行光链路检测方法300得到的第十光信号的信息和第十一光信号的信息,可获得光链路上任意位置的故障趋势,有利于及时排除故障,以保证第一光模块和第二光模块之间正常的业务通信。
光链路检测方法300还可包括实施例3所述的光链路检测装置可执行的任意实施方式,此处不再赘述。
综上所述,光链路检测方法300中,光链路检测装置进行光链路检测时,可由不属于该光链路检测装置的光模块配合产生的光脉冲信号,光链路检测装置基于该光脉冲信号进行光链路检测,其中,光链路包括该不属于该光链路检测装置的光模块、光纤链路以及接收该光脉冲信号的光模块。基于光脉冲信号的光链路检测方法灵敏度高,对微小故障(损耗较小的故障)的识别能力强。并且,与光链路检测方法200相比,光链路检测方法300中光链路检测装置还无需执行调制的操作,降低了光链路检测装置的复杂度。
可以理解的是,为了实现上述方法中功能,光链路检测装置包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
除了图7、图8、图11和图12所示的光链路检测装置的结构,光链路检测装置的可能的结构还可如图16和图17所示。图16和图17所示的光链路检测装置可以用于实现上述方法实施例中光链路检测装置的功能,因此也能实现上述方法实施例所具备的有益效果。
如图16所示,光链路检测装置1600包括光电转换单元1601和确定单元1602。该光链路检测装置1600用于实现上述图13、图14或图15中所示的方法实施例中光链路检测装置的功能。
当光链路检测装置1600用于实现图13所示的方法实施例中光链路检测装置的功能时:光电转换单元1601用于对第一光信号进行光电转换,获得第一光信号的信息,其中,第一光信号是来自第一光模块的承载业务数据的光信号;对第二光信号进行光电转换,获得第二光信号的信息,其中,第二光信号是第一光信号通过光纤链路反射得到的光信号,或是第一光信号通过光纤链路和第二光模块反射得到的光信号。确定单元1602用于根据第一光信号的信息,或根据第一光信号的信息以及第二光信号的信息,确定光链路是否存在故障,其中,光链路包括所述第一光模块、光纤链路和第二光模块。
当光链路检测装置1600用于实现图14所示的方法实施例中光链路检测装置的功能时:光电转换单元1601用于对第五光信号进行光电转换,获得第五光信号的信息,其中,第五光信号是对第一光信号进行调制得到的,第一光信号是来自第一光模块的承载业务数据的光信号;对第六光信号进行光电转换,获得第六光信号的信息,其中,第六光信号是第五光信号通过光纤链路反射得到的光信号,或是第五光信号通过光纤链路和第二光模块反射得到的光信号。确定单元1602用于根据第五光信号的信息或第六光信号的信息,确定光链路是否存在故障,其中,光链路包括第一光模块、光纤链路和第二光模块。
当光链路检测装置1600用于实现图15所示的方法实施例中光链路检测装置的功能时:光电转换单元1601用于对第十光信号进行光电转换,获得第十光信号的信息,其中,第十光信号是来自第三光模块的光脉冲信号;第三光模块不属于光链路检测装置;对第十一光信号进行光电转换,获得第十一光信号的信息,其中,第十一光信号是第十光信号通过光纤链路反射得到的光信号,或是第十光信号通过光纤链路和第四光模块反射得到的光信号。确定单元1602用于根据第十光信号的信息或第十一光信号的信息,确定光链路是否存在故障,其中,光链路包括第三光模块、光纤链路和第四光模块。
有关上述光电转换单元1601和确定单元1602更详细的描述可以参考方法实施例中相关描述。
如图17所示,光链路检测装置1700包括处理器1701和接口电路1702。处理器1701和接口电路1702之间相互耦合。可以理解的是,接口电路1702可以为收发器或输入输出接口。可选的,光链路检测装置1700还可以包括存储器1703,用于存储处理器1701执行的指令或存储处理器1701运行指令所需要的输入数据或存储处理器1701运行指令后产生的数据。
当光链路检测装置1700用于实现图13、图14或图15所示的方法时,处理器1701用于实现上述光电转换单元1601和确定单元1602的功能。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(central processing unit,CPU),还可以是其它通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以在硬件中实现,也可以在可由处理器执行的软件指令中实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于基站或终端中。处理器和存储介质也可以作为分立组件存在于基站或终端中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。该计算机可读存储介质可以是易失性或非易失性存储介质,或可包括易失性和非易失性两种类型的存储介质。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示 前后关联对象是一种“相除”的关系。“包括A,B和C中的至少一个”可以表示:包括A;包括B;包括C;包括A和B;包括A和C;包括B和C;包括A、B和C。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (18)

  1. 一种光链路检测方法,其特征在于,所述方法包括:
    对第一光信号进行光电转换,获得所述第一光信号的信息,其中,所述第一光信号是来自第一光模块的承载业务数据的光信号;
    对第二光信号进行光电转换,获得所述第二光信号的信息,其中,所述第二光信号是所述第一光信号通过光纤链路反射得到的光信号,或是所述第一光信号通过光纤链路和第二光模块反射得到的光信号;
    根据所述第一光信号的信息,或根据所述第一光信号的信息以及所述第二光信号的信息,确定光链路是否存在故障,其中,所述光链路包括所述第一光模块、所述光纤链路和所述第二光模块。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    根据第一波长从第三光信号中确定所述第一光信号,其中,所述第三光信号包括所述第一光信号;
    根据所述第一波长从第四光信号中确定所述第二光信号,其中,所述第四光信号包括所述第二光信号,所述第四光信号是所述第三光信号通过所述光纤链路反射得到的光信号,或是所述第三光信号通过所述光纤链路和接收所述第三光信号的光模块反射得到的光信号。
  3. 根据权利要求2所述的方法,其特征在于,所述第三光信号和所述第四光信号是基于分插复用结构获取的。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,根据所述第一光信号的信息,确定光链路是否存在故障,包括:
    当所述第一光信号的信息对应的平均功率小于第一值时,确定所述光链路存在故障,其中,所述第一值是所述第一光信号的功率阈值。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述根据所述第一光信号的信息以及所述第二光信号的信息,确定光链路是否存在故障,包括:
    计算所述第一光信号经过光电转换后的幅度信息与所述第二光信号经过光电转换后的幅度信息的互相关函数,得到一个或多个互相关系数;
    如果所述一个或多个互相关系数中存在大于第二值的互相关系数,确定所述光链路存在故障,其中,所述第二值是基于所述第一光信号中噪声和所述第二光信号中噪声确定的幅度阈值。
  6. 根据权利要求5所述的方法,其特征在于,所述方法还包括:
    根据所述一个或多个互相关系数中大于第二值的每个互相关系数对应的时刻,确定所述光链路上故障点的位置。
  7. 根据权利要求5或6所述的方法,其特征在于,所述方法还包括:
    根据所述一个或多个互相关系数中大于第二值的每个互相关系数的值,确定所述光链路上故障点的反射损耗。
  8. 一种光链路检测装置,其特征在于,所述装置包括:
    第一光探测器,用于对第一光信号进行光电转换,获得所述第一光信号的信息,并将所述第一光信号的信息输出至信号处理器,其中,所述第一光信号是来自第一光模块的承载业务数据的光信号;
    第二光探测器,用于对第二光信号进行光电转换,获得所述第二光信号的信息,并将所述第二光信号的信息输出至所述信号处理器,其中,所述第二光信号是所述第一光信号通过光纤链路反射得到的光信号,或是所述第一光信号通过光纤链路和第二光模块反射得到的光信号;
    所述信号处理器,用于根据所述第一光信号的信息,或根据所述第一光信号的信息以及所述第二光信号的信息,确定光链路是否存在故障,其中,所述光链路包括所述第一光模块、所述光纤链路和所述第二光模块。
  9. 根据权利要求8所述的装置,其特征在于,所述装置还包括波长选通器,用于根据第一波长从第三光信号中确定所述第一光信号,并将所述第一光信号输出至所述第一光探测器,其中,所述第三光信号包括所述第一光信号;
    所述波长选通器还用于根据第一波长从第四光信号中确定所述第二光信号,并将所述第二光信号输出至所述第二光探测器,其中,所述第四光信号包括所述第二光信号,所述第四光信号是所述第三光信号通过所述光纤链路反射得到的光信号,或是所述第三光信号通过所述光纤链路和接收所述第三光信号的光模块反射得到的光信号。
  10. 根据权利要求9所述的装置,其特征在于,所述装置还包括具有分插复用结构的光分插复用器;
    所述光分插复用器,用于获取所述第三光信号和所述第四光信号,并将所述第三光信号和所述第四光信号输出至所述波长选通器。
  11. 根据权利要求8所述的装置,其特征在于,所述装置还包括微谐振器,用于根据第一波长从第三光信号中确定所述第一光信号,并将所述第一光信号输出至所述第一光探测器,其中,所述第三光信号包括所述第一光信号;
    所述微谐振器还用于根据所述第一波长从第四光信号中确定所述第二光信号,并将所述第二光信号输出至所述第二光探测器,其中,所述第四光信号包括所述第二光信号,所述第四光信号是所述第三光信号通过所述光纤链路反射得到的光信号,或是所述第三光信号通过所述光纤链路和接收所述第三光信号的光模块反射得到的光信号。
  12. 根据权利要求11所述的装置,其特征在于,所述微谐振器具有分插复用结构,所述微谐振器还用于获取所述第三光信号和所述第四光信号。
  13. 根据权利要求8至12任一项所述的装置,其特征在于,所述信号处理器根据所述第一光信号的信息确定光链路是否存在故障,具体用于:当所述第一光信号的信息对应的平均功率小于第一值时,确定所述光链路存在故障,其中,所述第一值是所述第一光信号的功率阈值。
  14. 根据权利要求8至13任一项所述的装置,其特征在于,所述信号处理器根据所述第一光信号的信息以及所述第二光信号的信息,确定光链路是否存在故障,具体用于:
    计算所述第一光信号经过光电转换后的幅度信息与所述第二光信号经过光电转换后的幅度信息的互相关函数,得到一个或多个互相关系数;
    如果所述一个或多个互相关系数中存在大于第二值的互相关系数,确定所述光链路存在故障,其中,所述第二值是基于所述第一光信号中噪声和所述第二光信号中噪声确定的幅度阈值。
  15. 根据权利要求14所述的装置,其特征在于,
    所述信号处理器,还用于根据所述一个或多个互相关系数中大于第二值的每个互相关系数对应的时刻,确定所述光链路上故障点的位置。
  16. 根据权利要求14或15所述的装置,其特征在于,
    所述信号处理器,还用于根据所述一个或多个互相关系数中大于第二值的每个互相关系数的值,确定所述光链路上故障点的反射损耗。
  17. 一种光链路检测装置,其特征在于,包括存储器和处理器;
    所述存储器,用于存储指令或计算机程序;
    所述处理器,用于执行所述存储器所存储的计算机程序或指令,以使所述光链路检测装置执行权利要求1至7任一项所述的方法。
  18. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,当所述计算机程序在光链路检测装置上运行时,使得所述光链路检测装置执行权利要求1至7任一项所述的方法。
PCT/CN2023/081369 2022-03-28 2023-03-14 光链路检测方法及装置 WO2023185453A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210313746.2A CN116865848A (zh) 2022-03-28 2022-03-28 光链路检测方法及装置
CN202210313746.2 2022-03-28

Publications (1)

Publication Number Publication Date
WO2023185453A1 true WO2023185453A1 (zh) 2023-10-05

Family

ID=88199070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/081369 WO2023185453A1 (zh) 2022-03-28 2023-03-14 光链路检测方法及装置

Country Status (2)

Country Link
CN (1) CN116865848A (zh)
WO (1) WO2023185453A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102142893A (zh) * 2011-01-24 2011-08-03 华为技术有限公司 光分配网络的反射异常检测方法、系统及装置
US20170279523A1 (en) * 2014-09-03 2017-09-28 British Telecommunications Public Limited Company Optical network fault identification
CN111669221A (zh) * 2020-04-29 2020-09-15 华为技术有限公司 故障定位的方法、装置和系统
CN112929079A (zh) * 2019-12-05 2021-06-08 华为技术有限公司 光纤链路的故障检测装置、方法及光通信系统
CN113285750A (zh) * 2021-03-24 2021-08-20 国网江苏省电力有限公司徐州供电分公司 光纤通信设备及电力通信网故障诊断方法
CN114039660A (zh) * 2021-10-27 2022-02-11 公诚管理咨询有限公司 一种短距离光纤传输系统及其信号检测和故障定位方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102142893A (zh) * 2011-01-24 2011-08-03 华为技术有限公司 光分配网络的反射异常检测方法、系统及装置
US20170279523A1 (en) * 2014-09-03 2017-09-28 British Telecommunications Public Limited Company Optical network fault identification
CN112929079A (zh) * 2019-12-05 2021-06-08 华为技术有限公司 光纤链路的故障检测装置、方法及光通信系统
CN111669221A (zh) * 2020-04-29 2020-09-15 华为技术有限公司 故障定位的方法、装置和系统
CN113285750A (zh) * 2021-03-24 2021-08-20 国网江苏省电力有限公司徐州供电分公司 光纤通信设备及电力通信网故障诊断方法
CN114039660A (zh) * 2021-10-27 2022-02-11 公诚管理咨询有限公司 一种短距离光纤传输系统及其信号检测和故障定位方法

Also Published As

Publication number Publication date
CN116865848A (zh) 2023-10-10

Similar Documents

Publication Publication Date Title
US11888525B2 (en) Systems and methods for full duplex coherent optics
EP2652890B1 (en) Optical network communication system with optical line terminal transceiver and method of operation thereof
CN112532325B (zh) 一种多维复用的光子太赫兹通信系统
US8509624B2 (en) Transceiver module sleep mode
US7421206B2 (en) Optical transceiver for transmitting light source control information and optical network using the same
CN101188460B (zh) 无源光网和城域网的全光网络互联系统
TWI493899B (zh) 動態波長分配光路由及應用此光路由的終端裝置
JP3293565B2 (ja) 光増幅中継器
RU2563801C2 (ru) Способ и устройство для приема оптического входного сигнала и передачи оптического выходного сигнала
WO2023185453A1 (zh) 光链路检测方法及装置
US20230007370A1 (en) Optical module, data center system, and data transmission method
CN105577285A (zh) 光模块
WO2014022971A1 (zh) 外调制激光器、无源光通信设备及系统
CN112383358B (zh) 一种集成光收发器
WO2020244302A1 (zh) 光源切换方法和装置
CN205407829U (zh) 光模块
KR101230590B1 (ko) 파장 가변 광송수신기
CN106209243B (zh) 中继光模块
US20240080104A1 (en) Information processing apparatus, information processing method, program, and optical communication system
US20230006758A1 (en) Bidirectional single-fiber coherent transmission system
WO2023030463A1 (zh) 光模块及光处理方法
WO2024065174A1 (zh) 光发射机、光发射方法、光模块、设备及系统
Xiang et al. Research and design of 800Gbit/s PAM4 LR8 10km optical module
WO2021244289A1 (zh) 一种光功率值的传输方法、系统以及相关设备
WO2022001229A1 (zh) 分光器、光分布网络及确定光滤波结构对应波长方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23777829

Country of ref document: EP

Kind code of ref document: A1