WO2023185332A1 - 接入方法及相关装置 - Google Patents

接入方法及相关装置 Download PDF

Info

Publication number
WO2023185332A1
WO2023185332A1 PCT/CN2023/077740 CN2023077740W WO2023185332A1 WO 2023185332 A1 WO2023185332 A1 WO 2023185332A1 CN 2023077740 W CN2023077740 W CN 2023077740W WO 2023185332 A1 WO2023185332 A1 WO 2023185332A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
synchronization
mhz
access network
ntn
Prior art date
Application number
PCT/CN2023/077740
Other languages
English (en)
French (fr)
Inventor
张玥
魏璟鑫
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023185332A1 publication Critical patent/WO2023185332A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • the present application relates to the field of communication technology, and in particular, to an access method and related devices.
  • NTN non-terrestrial network
  • the terminal device Under the current NTN architecture, the terminal device obtains the coverage of NTN cells based on preconfigured information, and searches and measures the NTN cells covering the terminal device.
  • the access method of terminal equipment under the NTN architecture relies on a priori information provided by ground base stations. When the terminal equipment is not covered by ground base stations, the terminal equipment cannot obtain a priori information, so it cannot complete the access and is prone to errors. Frequency confusion problem.
  • This application provides an access method and related devices to avoid frequency point confusion.
  • this application provides an access method.
  • the execution subject of the method may be an NTN access network device or a chip applied in the NTN access network device.
  • the following description takes the execution subject being NTN access network equipment as an example.
  • the NTN access network device determines the first resource, and half of the distance between any two synchronization grids in the first resource is greater than the maximum frequency offset range, and the The maximum frequency deviation range is used to indicate the maximum frequency deviation between the downlink transmission and reception frequency points of the terminal equipment and the NTN access network equipment, and the synchronization signal is sent to the terminal equipment on the first resource.
  • the first value is less than 3 gigahertz.
  • the first value may be 1 gigahertz, 2 gigahertz, or 2.4 gigahertz, etc.
  • the NTN access network equipment determines the first resource and sends a synchronization signal to the terminal equipment on the first resource.
  • Half of the distance between any two synchronization grids in the first resource is greater than the maximum frequency offset range.
  • the NTN access network equipment obtains a priori information through the ground base station.
  • the terminal equipment can use the predetermined first resource to directly communicate with the NTN access network equipment, so there is no need to obtain a priori information, so the NTN access network can be realized.
  • Independent networking of network-connected devices There is no need for prior information exchange between the terminal equipment and the NTN access network equipment, so the delay for the terminal equipment to access the NTN access network equipment can be reduced.
  • the problem of confusion of access frequency points can be avoided.
  • the number of synchronization grids included in each 1.2 MHz of the first resource is 0, 1, or 2.
  • this design can clearly notify the terminal device of the grid for access, reducing the need for the terminal device to access the grid.
  • the initial access delay also avoids the frequency confusion problem of terminal equipment during initial access.
  • the number of synchronization grids contained in at least two 1.2 MHz in the first resource different. In this way, the flexibility of setting the synchronization grid in the first resource can be improved.
  • the method further includes: not sending a synchronization signal to the terminal device.
  • the NTN access network equipment only sends synchronization signals to the terminal equipment on the synchronization grid in the first resource.
  • the terminal equipment only receives the synchronization signals sent by the NTN access network equipment on the synchronization grid in the first resource.
  • the NTN access network equipment does not send synchronization signals to the terminal equipment, and the terminal equipment does not attempt initial access, thus saving resources.
  • the value of the synchronization grids contained in every 1.2 MHz is 1 or 3 or 5.
  • the NTN access network device sends a synchronization signal to the terminal device on a synchronization grid with a value of 3 in the first resource of 1.2 MHz.
  • the terminal equipment Since half of the distance between any two synchronization grids in the first resource is is greater than the frequency offset error between the terminal equipment and the NTN access network equipment, so the terminal equipment only receives the synchronization signal sent by the NTN access network equipment on the synchronization grid with a value of 3 in the 1.2 MHz, and will not receive the synchronization signal sent by the NTN access network equipment on other 1.2 MHz.
  • the synchronization grid receives synchronization signals sent by NTN access network equipment, avoiding the problem of frequency confusion.
  • the values of the synchronization grids contained in every 1.2 MHz are 1 and 5 respectively.
  • the NTN access network device sends a synchronization signal to the terminal device on a synchronization grid with values 1 and 5 in the first resource in 1.2 MHz.
  • this application provides an access method.
  • the execution subject of the method may be a terminal device or a chip applied in the terminal device.
  • the following description takes the execution subject being a terminal device as an example.
  • the terminal device determines the first resource, and half of the distance between any two synchronization grids in the first resource is greater than the maximum frequency offset range, and the maximum frequency offset
  • the range is used to indicate the maximum frequency deviation between the downlink transmitting and receiving frequency points of the terminal equipment and the NTN access network equipment; the terminal equipment receives the synchronization signal from the NTN access network equipment in the first resource.
  • the first value is less than 3 gigahertz.
  • the number of synchronization grids included in each 1.2 MHz of the first resource is 0, 1, or 2.
  • At least two 1.2 MHz in the first resource include different numbers of synchronization grids.
  • the method further includes: not receiving synchronization signals from the NTN access network equipment. .
  • the value of the synchronization grids contained in every 1.2 MHz is 1 or 3 or 5.
  • the number of synchronization grids included in every 1.2 MHz of the first resource is 2
  • the synchronization grid values contained in each 1.2 MHz are 1 and 5 respectively.
  • a third aspect provides a communication device.
  • the beneficial effects can be found in the description of the first aspect and will not be described again here.
  • the communication device has the function of implementing the behavior in the method example of the first aspect.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device includes: a processing module configured to determine a first resource, where half the distance between any two synchronization grids in the first resource is greater than a maximum frequency offset range, and the maximum frequency The offset range is used to indicate the maximum frequency deviation between the downlink transmission and reception frequency points of the terminal equipment and the NTN access network equipment; the transceiver module is used to send synchronization signals to the terminal equipment on the first resource.
  • a processing module configured to determine a first resource, where half the distance between any two synchronization grids in the first resource is greater than a maximum frequency offset range, and the maximum frequency The offset range is used to indicate the maximum frequency deviation between the downlink transmission and reception frequency points of the terminal equipment and the NTN access network equipment; the transceiver module is used to send synchronization signals to the terminal equipment on the first resource.
  • a fourth aspect provides a communication device.
  • the beneficial effects can be found in the description of the second aspect and will not be described again here.
  • the communication device has the function of implementing the behavior in the method example of the second aspect.
  • the functions described can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more modules corresponding to the above functions.
  • the communication device includes: a processing module configured to determine a first resource, where half the distance between any two synchronization grids in the first resource is greater than a maximum frequency offset range, and the maximum frequency The offset range is used to indicate the maximum frequency deviation between the downlink transmission and reception frequency points of the terminal equipment and the NTN access network equipment; the transceiver module is used to receive data from the non-terrestrial communication network NTN access network equipment on the first resource. sync signal.
  • These modules can perform the corresponding functions in the above method examples of the second aspect. For details, please refer to the detailed description in the method examples, which will not be described again here.
  • a communication device may be the terminal device in the above method embodiment, or a chip provided in the terminal device.
  • the communication device includes a communication interface and a processor, and optionally, a memory.
  • the memory is used to store computer programs or instructions, and the processor is coupled to the memory and the communication interface.
  • the processor executes the computer program or instructions, the communication device causes the communication device to perform the method performed by the terminal device in the above method embodiment.
  • a communication device may be the network device in the above method embodiment, or a chip provided in the network device.
  • the communication device includes a communication interface and a processor, and optionally, a memory.
  • the memory is used to store computer programs or instructions, and the processor is coupled to the memory and the communication interface.
  • the communication device causes the communication device to perform the method performed by the network device in the above method embodiment.
  • the network equipment may include NTN access network equipment.
  • a computer program product includes: computer program code.
  • the computer program product includes: computer program code.
  • a computer program product includes: computer program code.
  • the methods performed by the network device in the above aspects are executed.
  • the network equipment may include NTN access network equipment.
  • the present application provides a chip system.
  • the chip system includes a processor and is used to implement the functions of the terminal device in the methods of the above aspects.
  • the chip system further includes a memory for storing program instructions and/or data.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the present application provides a chip system.
  • the chip system includes a processor and is used to implement the functions of the network device in the methods of the above aspects.
  • the chip system further includes a memory for storing program instructions and/or data.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the network equipment may include NTN access network equipment.
  • the present application provides a computer-readable storage medium that stores a computer program.
  • the methods executed by the terminal device in the above aspects are implemented.
  • the present application provides a computer-readable storage medium that stores a computer program.
  • the network equipment may include NTN access network equipment.
  • Figure 1 is an architectural schematic diagram of a communication system according to an embodiment of the present application
  • Figure 2 is a schematic flow chart of a communication method provided by an embodiment of the present application.
  • Figure 3 is a schematic diagram of a first resource provided by an embodiment of the present application.
  • Figure 4 is a schematic diagram of another first resource provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of another first resource provided by an embodiment of the present application.
  • Figure 6 is a schematic diagram of another first resource provided by an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • Figure 1 is a schematic architectural diagram of a communication system according to an embodiment of the present application. As shown in Figure 1, a network device 101 and a terminal device 102 are included, and wireless communication can be performed between the network device 101 and the terminal device 102.
  • the network device 101 usually has wireless transceiver functions and mobility characteristics.
  • the network device 101 may be a mobile device.
  • the network device 101 may be a satellite or balloon station.
  • the satellite can be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geosynchronous orbit (geostationary earth orbit, GEO) satellite, a high elliptical orbit (High Elliptical Orbit, HEO) satellite ) satellite, etc.
  • LEO low earth orbit
  • MEO medium earth orbit
  • GEO geosynchronous orbit
  • GEO geosynchronous orbit
  • HEO high elliptical orbit
  • the orbital altitude range of LEO satellites is usually 500km to 1500km
  • the orbital period (the period of rotation around the earth) is about 1.5 hours to 2 hours.
  • the signal propagation delay of single-hop communication between users is about 20 ms.
  • the single-hop communication delay between users refers to the transmission delay between the terminal device and the network device 101, or the delay between the network device 101 and the transmission device.
  • the maximum satellite visible time is about 20 minutes.
  • the maximum visible time refers to the longest time that the satellite's beam covers a certain area on the ground.
  • the LEO satellite moves relative to the ground. As the satellite moves, the ground area it covers also moves. changing.
  • the signal propagation distance of LEO satellites is short, the link loss is small, and the transmission power requirements of the terminal equipment are not high.
  • the orbital altitude of GEO satellites is usually 35786km, and the orbital period is 24 hours.
  • the signal propagation delay for single-hop communication between users is approximately 250ms.
  • the network device 101 can also be a base station installed on land, water, etc., for example, the network device 101 can be a next generation base station (next generation NodeB, gNB) or a next generation evolved base station (next generation-evolved NodeB, ng- eNB).
  • gNB provides UE with the user plane function and control plane function of new radio (NR)
  • ng-eNB provides UE with the user plane of evolved universal terrestrial radio access (E-UTRA).
  • NR new radio
  • E-UTRA evolved universal terrestrial radio access
  • the network device 101 can also be a base transceiver station (BTS) in the GSM system or CDMA system, a base station (nodeB, NB) in the WCDMA system, or an evolutionary base station (evolutional node B) in the LTE system. , eNB or eNodeB).
  • BTS base transceiver station
  • nodeB, NB base station
  • evolutional node B evolutional node B
  • the network device 101 may also be a relay station, an access point, a vehicle-mounted device, a wearable device, a network-side device in a network after 5G or a network device or road site unit in a future evolved PLMN network. RSU) etc.
  • gNB may include centralized units (CUs) and DUs. gNB can also pack Includes active antenna unit (AAU).
  • CU implements some functions of gNB
  • DU implements some functions of gNB.
  • the CU is responsible for processing non-real-time protocols and services, and implementing radio resource control (RRC) and packet data convergence protocol (PDCP) layer functions.
  • RRC radio resource control
  • PDCP packet data convergence protocol
  • DU is responsible for processing physical layer protocols and real-time services, and implementing the functions of the radio link control (RLC) layer, media access control (MAC) layer and physical (physical, PHY) layer.
  • RLC radio link control
  • MAC media access control
  • PHY physical layer
  • the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network equipment in the access network (radio access network, RAN), or the CU can be divided into network equipment in the core network (core network, CN), which is not limited in this application.
  • the network formed between the network device 101 and the terminal device 102 may be called NTN.
  • the satellite may have the function of a base station, and the satellite and the terminal device 102 may communicate directly.
  • the terminal device 102 may be any terminal.
  • the terminal device 102 may be a user device for machine type communication.
  • the terminal device 102 may also be called user equipment (UE), mobile station (MS), mobile terminal (mobile terminal), terminal, etc.
  • the terminal device 102 can communicate with one or more core networks via the RAN. Therefore, the terminal device 102 can also be called a wireless terminal.
  • the wireless terminal can be a device that provides voice and/or data connectivity to users, and has a wireless connection function. Handheld device, or other processing device connected to a wireless modem.
  • the terminal device 102 may be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a mobile phone with Handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices or wearable devices, virtual reality (VR) terminal devices, augmented reality (AR) terminal devices, industrial control Wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, and transportation safety wireless terminals, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • a mobile phone with Handheld devices with wireless communication functions computing devices or other processing devices connected to wireless modems, vehicle-mounted devices or wearable devices, virtual reality (VR) terminal devices, augmented reality (AR) terminal devices, industrial control Wireless terminals in industrial control, wireless terminals in self-driving, wireless
  • the terminal device 102 includes, but is not limited to, connection via a wired line, connection via a wireless interface, connection via a device of another terminal device configured to receive/send communication signals, connection via an Internet of Things (IoT) device.
  • connection via wired lines may include connection via public switched telephone networks (PSTN), digital subscriber line (DSL), digital cable, direct cable
  • connection via wireless interface may include connection via cellular network, Wireless local area network (WLAN), digital television networks such as DVB-H networks, satellite networks, AM-FM broadcast transmitter connections.
  • a terminal device configured to communicate via a wireless interface may be referred to as a "wireless communication terminal", “wireless terminal” or "mobile terminal".
  • Examples of mobile terminals include, but are not limited to, satellite or cellular telephones; personal communications system (PCS) terminals that may combine cellular radiotelephones with data processing, fax, and data communications capabilities; and may also include radiotelephones, pagers, Internet/ PDAs with intranet access, Web browsers, planners, calendars, and Global Positioning System (GPS) receivers; and conventional laptop and/or handheld receivers or other electronic devices including radiotelephone transceivers device.
  • PCS personal communications system
  • GPS Global Positioning System
  • the terminal device 102 can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; it can also be deployed On the water; can also be deployed on aircraft, balloons and satellites in the sky.
  • the embodiments of the present application do not limit the application scenarios of the terminal device 102.
  • the 3rd generation partnership project (3GPP) new radio (NR) protocol specifies the position of the synchronization signal in the frequency domain, represented by SS REF ; the protocol constrains frequency range 1 (FR1 ) is below 3 gigahertz (GHz), there are three synchronization signal positions spaced 100 kilohertz (KHz) every 1.2 megahertz (MHz), and in the frequency band above 3GHz, there is one every 1.44MHz. Synchronization signal position; in the FR2 frequency band, there is a synchronization signal position every 17.28MHz.
  • the global synchronization channel number (GSCN) parameters of the global frequency grating are as shown in Table 1 and Table 2.
  • the terminal equipment needs to detect all possible frequency point locations within the configured frequency band and try to camp in the NR system cell at these frequency points.
  • cell search The purpose of cell search is to search for a cell at a certain frequency point and determine the cell identifier (identity document, ID), timing and frequency offset of the cell; after successfully searching for the cell, the terminal device will decode the master information block (master information) according to certain criteria. block (MIB) and system information block (SIB), and initiate random access.
  • MIB master information block
  • SIB system information block
  • the initial cell search due to the relative motion between the terminal equipment and the network equipment, the crystal oscillator deviation of the network equipment, and the crystal oscillator deviation of the terminal equipment, the initial cell search may need to traverse a large frequency offset range.
  • the network equipment is a ground base station
  • the relative motion speed between the terminal equipment and the ground base station is low
  • the crystal oscillator deviation of the ground base station and the crystal oscillator deviation of the terminal equipment are small.
  • the frequency deviation range caused by these unideal factors is very small. In the search of terminal equipment Within the capability range, it will not cause frequency confusion.
  • the network device when the network device is a satellite, the satellite moves around the earth at high speed. Assuming that the terminal device is stationary, the maximum absolute speed of the satellite is about 7.7 kilometers per second (km/s), and the maximum projection speed between the satellite and the terminal device is about 7.38km/s, converted to parts per million (ppm), the maximum frequency deviation caused solely by the relative motion between the terminal equipment and the satellite is 24.6ppm.
  • the frequency offset is 24ppm, for different frequency point intervals, the minimum frequency point interval and the maximum frequency offset range are as shown in Table 3:
  • NTN access network equipment for introduction below.
  • the synchronization signal sent upstream causes misalignment between upstream and downstream.
  • a frequency point error (100KHz) may occur between the frequency point searched by the terminal device and the real frequency point, and the physical broadcast channel (PBCH) is decoded in the downlink reception.
  • PBCH physical broadcast channel
  • the frequency confusion problem may not be discovered in the SIB stage. Until the terminal device sends the first uplink random access channel (RACH) signal, network access will fail due to RACH failure. Frequency confusion will still exist in the next cell search, which seriously affects terminal equipment network access and user experience.
  • RACH uplink random access channel
  • this application provides an access method and access device, which realizes independent networking of NTN access network equipment, reduces the delay of terminal equipment accessing NTN access network equipment, and avoids frequency point confusion. The problem.
  • the embodiment of the present application provides a schematic flow chart of a communication method.
  • the method can be executed by the terminal device and the NTN access network device, or can also be performed by a chip in the terminal device and a chip in the NTN access network device. implement.
  • the method shown in Figure 2 may include the following operations.
  • the NTN access network device determines the first resource. Half of the distance between any two synchronization grids in the first resource is greater than the maximum frequency offset range.
  • the maximum frequency The offset range is used to indicate the maximum frequency deviation between the downlink transmitting and receiving frequency points of the terminal equipment and the NTN access network equipment.
  • the first value is less than 3 gigahertz.
  • the first value may be 1 GHz, 2 GHz, or 2.4 GHz, etc.
  • this is only an example cited in this application, and the value of the first value includes but is not limited to this example.
  • FIG. 3 is a schematic diagram of a first resource provided by an embodiment of the present application.
  • the number of synchronization grids included in every 1.2 MHz of the first resource is 0, 1, or 2.
  • FIG. 4 is a schematic diagram of another first resource provided by an embodiment of the present application. As shown in Figure 4, the number of synchronization grids included in every 1.2 MHz of the first resource is 1, and it shows that every 1.2 MHz Schematic diagram when the values of the synchronization grid are 1, 3 and 5 respectively.
  • the filled synchronization grid indicates the selected synchronization grid, which can transmit synchronization signals; the unfilled synchronization grid indicates that the synchronization grid has not been selected. The selected synchronization grid cannot transmit synchronization signals.
  • the position of the synchronization grid with a value of 5 in the first 1.2 MHz is 1.45MHz
  • the position of the synchronization grid with a value of 1 in the second 1.2 MHz is 2.45MHz.
  • the spacing between the two closest synchronization grids is 1MHz, and half of the minimum frequency point spacing is 500KHz. Comparing the data in Table 3, we can see that when fc ⁇ 3GHz, the maximum frequency deviation range is 72KHz, which is smaller than this example Half of the minimum frequency interval in 500KHz, so frequency confusion will not occur.
  • a plurality of synchronization grids in each 1.2 MHz frequency band include a synchronization grid number of 1. Values can be different.
  • Figure 5 is a schematic diagram of yet another first resource provided by an embodiment of the present application.
  • the number of synchronization grids in the first 1.2 MHz of the first resource is 1, and The value of the sync grid is 1, the number of sync grids in the second 1.2 MHz is 1, and the value of the sync grid is 3, the number of sync grids in the third 1.2 MHz is 1, and the value of the sync grid is 1
  • the value of the grid is 5.
  • the filled synchronization grid represents the selected synchronization grid, which can transmit synchronization signals;
  • the unfilled synchronization grid represents the unselected synchronization grid, which cannot transmit synchronization signals.
  • the values of the synchronization grids included in every 1.2 MHz are 1 and 5 respectively.
  • the SS REF corresponding to the frequency range 0-3000MHz satisfies Formula 1.
  • the synchronization grating with a value of 1 in the first 1.2 MHz is the same as the first 1.2 MHz.
  • the synchronization grid with a value of 5 in Hz is the two closest synchronization grids.
  • the number of synchronization grids on each 1.2 MHz frequency band of the first resource may be different.
  • the number of synchronization grids on a 1.2 MHz frequency band in the first resource is 0, the number of synchronization grids on another 1.2 MHz frequency band is 1, and the number of synchronization grids on another 1.2 MHz frequency band is 1.
  • the number of cells is 2.
  • the maximum frequency offset range satisfies the following relationship: f d ⁇ (ppm1,ppm2,v,f)
  • f d represents the maximum frequency deviation range between NTN access network equipment and terminal equipment
  • ppm1 represents the crystal oscillator deviation of NTN access network equipment
  • ppm2 represents the crystal oscillator deviation of terminal equipment
  • v represents the NTN access network equipment and terminal equipment The relative speed between them
  • f represents the access frequency point of the terminal device.
  • the NTN access network device sends a synchronization signal to the terminal device on the first resource.
  • the NTN access network device sends a synchronization signal to the terminal device on the synchronization grid in the determined first resource.
  • the NTN access network device when the number of synchronization grids included in every 1.2 MHz of the first resource is 1, the NTN access network device has a synchronization value of 1, 3, or 5 in every 1.2 MHz. Send synchronization signals on the grid.
  • the NTN access network device includes in the first resource a synchronization grid value of a plurality of 1.2 MHz frequency bands with a synchronization grid number of 1, and each 1.2 MHz frequency band transmits the synchronization signal may have different values.
  • the NTN access network device sends a synchronization signal on the synchronization grid with a value of 1 in the first 1.2 MHz.
  • the sync signal is sent on the second 1.2 MHz sync grid with a median value of 3.
  • the sync signal is sent on the sync grid with a value of 5 in the third 1.2 MHz.
  • the value of the synchronization grids included in each 1.2 MHz of the NTN access network equipment is 1 respectively. and 5 synchronization grids to send synchronization signals.
  • the NTN access network device when the number of synchronization grids included in every 1.2 MHz of the first resource is 0, the NTN access network device does not send a synchronization signal to the terminal device.
  • the NTN access network device sends simultaneous signals in each 1.2 MHz frequency band in the first resource.
  • the synchronization grid values of the step signal are different.
  • Figure 6 is a schematic diagram of another first resource according to the embodiment of the present application.
  • the number of synchronization grids in the first 1.2 MHz is 1, and the value of the synchronization grid is 1; the number of synchronization grids in the second 1.2MHz is 1, and the value of this synchronization grid is 3; the number of synchronization grids in the third 1.2MHz is 2, and the values of these two synchronization grids are respectively are 1 and 5, and the number of sync rasters in the fourth 1.2MHz is 0.
  • the filled synchronization grid represents the selected synchronization grid, which can transmit synchronization signals;
  • the unfilled synchronization grid represents the unselected synchronization grid, which cannot transmit synchronization signals.
  • the NTN access network equipment sends the synchronization signal on the synchronization grid with a value of 1 in the first 1.2 MHz frequency band in the first resource shown in Figure 6, and the value in the second 1.2 MHz frequency band
  • a sync signal is sent on the sync grid with a value of 3
  • a sync signal is sent on the sync grid with values 1 and 5 in the third 1.2 MHz
  • no sync signal is sent in the fourth 1.2 MHz.
  • S203 may refer to S201, which will not be described again here.
  • the terminal device may determine the first resource before the NTN access network device determines the first resource, that is, S203 may be executed before S201; the terminal device may also determine the first resource on the NTN access network after the NTN access network device determines the first resource.
  • the device determines the first resource before sending the synchronization signal, that is, S203 can also be executed after S201 and before S202. This application does not limit the execution order of S203.
  • the terminal device receives the synchronization signal from the NTN access network device on the first resource.
  • the terminal device receives the synchronization signal from the NTN access network device on the synchronization grid in the determined first resource.
  • the terminal device when the number of synchronization grids included in every 1.2 MHz in the first resource is 1, the terminal device operates on the synchronization grid with a value of 1, 3, or 5 in every 1.2 MHz.
  • the first resource includes a plurality of 1.2 MHz frequency bands in which the number of synchronization grids is 1.
  • the value of the synchronization grid in each 1.2 MHz frequency band is different.
  • the terminal device receives the synchronization signal sent by the NTN access network device on the synchronization grid with a value of 1 in the first 1.2 MHz in the first resource shown in Figure 5, and in the second 1.2 MHz
  • the synchronization signal sent by the NTN access network equipment is received on the synchronization grid with a value of 3 in Hertz
  • the synchronization signal sent by the NTN access network equipment is received on the synchronization grid with a value of 5 in the third 1.2 MHz.
  • the values of the synchronization grids included in each 1.2 MHz of the terminal device are 1 and 5 respectively.
  • the synchronization grid receives synchronization signals from NTN access network equipment.
  • the terminal device when the number of synchronization grids included in every 1.2 MHz of the first resource is 0, the terminal device does not receive synchronization signals from the NTN access network device.
  • the value of the synchronization grid of each 1.2 MHz frequency band in the first resource may be different.
  • the terminal device receives the synchronization signal sent by the NTN access network device in the synchronization grid with a value of 1 in the first 1.2 MHz in the first resource shown in Figure 6, and in the second 1.2 MHz
  • the synchronization grid with a value of 3 in receives the synchronization signal sent by the NTN access network equipment
  • the synchronization grid with a value of 1 and 5 in the third 1.2 MHz receives the synchronization signal sent by the NTN access network equipment.
  • No sync signals are received in the fourth 1.2 MHz band.
  • the NTN access network device determines the first resource and sends a synchronization signal to the terminal device on the first resource. Any two of the first resources Half of the spacing between synchronization grids is greater than the maximum frequency offset range, effectively avoiding the problem of frequency point confusion.
  • network equipment and terminal equipment may include hardware structures and/or software modules to implement the above functions in the form of hardware structures, software modules, or hardware structures plus software modules. . Whether one of the above functions is performed as a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • Figures 7 and 8 are schematic structural diagrams of possible communication devices provided by embodiments of the present application. These communication devices can realize the functions of the terminal equipment or network equipment in the above method embodiments, and therefore can also achieve the beneficial effects of the above method embodiments.
  • the communication device may be a terminal device 102 as shown in Figure 1, a network device 101 as shown in Figure 1, or a module (such as a chip) applied to the terminal device or network device. ).
  • the communication device 700 includes a processing module 701 and a transceiver module 702 .
  • the communication device 700 may be used to implement the functions of the terminal device or the NTN access network device in the method embodiment shown in FIG. 2 .
  • the processing module 701 is used to determine the first resource.
  • the transceiver module 702 is configured to receive synchronization signals from NTN access network equipment on the first resource.
  • the processing module 701 is used to determine the first resource; the transceiver module 702 is used to send synchronization to the terminal device on the first resource. Signal.
  • the communication device 800 includes a processor 810 and an interface circuit 820 .
  • the processor 810 and the interface circuit 820 are coupled to each other.
  • the interface circuit 820 may be a transceiver or an input-output interface.
  • the communication device 800 may also include a memory 830 for storing instructions executed by the processor 810 or input data required for the processor 810 to run the instructions or data generated after the processor 810 executes the instructions.
  • the processor 810 is used to execute the function of the above processing module 701
  • the interface circuit 820 is used to execute the function of the above transceiver module 702.
  • the terminal device chip implements the functions of the terminal device in the above method embodiment.
  • the terminal equipment chip receives information from other modules (such as radio frequency modules or antennas) in the terminal equipment, and the information is sent by the network equipment to the terminal equipment; or, the terminal equipment chip sends information to other modules (such as radio frequency modules or antennas) in the terminal equipment.
  • Antenna sends information, which is sent by the terminal device to the network device.
  • the network device chip When the above communication device is a chip applied to a network device, the network device chip implements the functions of the network device in the above method embodiment.
  • the network device chip receives information from other modules in the network device (such as a radio frequency module or antenna), and the information is sent by the terminal device to the network device; or, the network device chip sends information to other modules in the network device (such as a radio frequency module or antenna).
  • Antenna sends information, which is sent by the network device to the terminal device.
  • processor in the embodiment of the present application can be a central processing unit (CPU), or other general-purpose processor, digital signal processor (DSP), or application-specific integrated circuit (application specific integrated circuit, ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • CPU central processing unit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor can be a microprocessor or any conventional processor.
  • the method steps in the embodiments of the present application can be implemented by hardware or by a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules, and software modules can be stored in random access memory (random access memory, RAM), flash memory, read-only memory (Read-Only Memory, ROM), programmable read-only memory (programmable ROM) , PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically erasable programmable read-only memory (electrically EPROM, EEPROM), register, hard disk, mobile hard disk, CD-ROM or other well-known in the art any other form of storage media.
  • the storage medium can also be an integral part of the processor.
  • the processor and storage media may be located in an ASIC.
  • the ASIC can be located in the access network equipment or terminal equipment.
  • the processor and the storage medium may also exist as discrete components in the access network device or terminal device.
  • the computer program product includes one or more computer programs or instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer program or instructions may be stored in or transmitted over a computer-readable storage medium.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server that integrates one or more available media.
  • the available media may be magnetic media, such as floppy disks, hard disks, and magnetic tapes; they may also be optical media, such as DVDs; or they may be semiconductor media, such as solid state disks (SSD).
  • “at least one” refers to one or more, and “plurality” refers to two or more.
  • “And/or” describes the relationship between associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the related objects before and after are an “or” relationship; in the formula of this application, the character “/” indicates that the related objects before and after are a kind of "division” Relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种接入方法及相关装置,适用在接入频点的频率小于第一值的情况下,该方法包括:NTN接入网设备确定第一资源,第一资源中任意两个同步栅格之间间距的一半大于最大频偏范围,最大频偏范围用于指示终端设备与NTN接入网设备的下行发、收频点间的最大频率偏差,该NTN接入网设备在第一资源向终端设备发送同步信号,相应的,终端设备在第一资源接收来自NTN接入网设备的同步信号。采用本申请提供的技术方案,可以实现NTN接入网设备的独立组网,降低了终端设备接入NTN接入网设备的时延,避免了接入频点混淆问题。

Description

接入方法及相关装置
本申请要求于2022年03月31日提交中国专利局、申请号为202210336364.1、申请名称为“接入方法及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种接入方法及相关装置。
背景技术
为了实现全球无线接入覆盖,业界提出了非陆地通信网络(non-terrestrial network,NTN)架构,其实现主要是以卫星作为通信基站,或者以卫星转发地面基站的无线通信信号,为该卫星下方的广大区域提供无线接入服务。
在当前NTN架构下,终端设备基于预配置信息获取NTN小区的覆盖情况,对覆盖该终端设备的NTN小区进行搜索及测量。但是,NTN架构下终端设备的接入方法依赖于地面基站提供的先验信息,在终端设备处于无地面基站覆盖的情况下,终端设备无法获取先验信息,因此无法完成接入,并且容易出现频点混淆问题。
发明内容
本申请提供了一种接入方法及相关装置,用于避免频点混淆问题。
第一方面,本申请提供一种接入方法,该方法的执行主体可以是NTN接入网设备,也可以是应用于NTN接入网设备中的芯片。下面以执行主体是NTN接入网设备为例进行描述。在接入频点的频率小于第一值的情况下,NTN接入网设备确定第一资源,所述第一资源中任意两个同步栅格之间间距的一半大于最大频偏范围,所述最大频偏范围用于指示终端设备与所述NTN接入网设备的下行发、收频点间的最大频率偏差,在所述第一资源向所述终端设备发送同步信号。所述第一值小于3吉赫兹。例如,第一值可以为1吉赫兹、2吉赫兹或2.4吉赫兹等。
采用此设计,NTN接入网设备确定第一资源,并在第一资源向终端设备发送同步信号,第一资源中任意两个同步栅格之间间距的一半大于最大频偏范围,相比于NTN接入网设备通过地面基站获取先验信息的方案,终端设备可以采用预先规定的第一资源直接与NTN接入网设备进行通信,从而不需要去获取先验信息,因此可以实现了NTN接入网设备的独立组网。终端设备与NTN接入网设备之间不需要进行先验信息的交互,因此可以降低终端设备接入NTN接入网设备的时延。此外,由于规定第一资源中任意两个同步栅格之间间距的一半大于最大频偏范围,从而可以避免接入频点混淆的问题。
在一种可能的实现方式中,所述第一资源中每1.2兆赫兹包含的同步栅格的数量为0或1或2。相比直接向终端设备通知3个可用同步栅格、终端设备遍历该3个同步栅格进行初始接入的方案,采用此设计,能够明确通知终端设备进行接入的栅格,减少终端设备进行初始接入的时延,也避免终端设备在初始接入时的频点混淆问题。
在一种可能的实现方式中,所述第一资源中至少两个1.2兆赫兹包含的同步栅格的数量 不同。采用这种方式,可以提高第一资源中设置同步栅格的灵活性。
在一种可能的实现方式中,在所述第一资源中每1.2兆赫兹包含的同步栅格的数量为0时,所述方法还包括:不向所述终端设备发送同步信号。NTN接入网设备只在第一资源中的同步栅格上向终端设备发送同步信号,同时终端设备也只在第一资源中的同步栅格上接收NTN接入网设备发送同步信号,在第一资源中每1.2兆赫兹包含的同步栅格的数量为0时,NTN接入网设备不向终端设备发送同步信号,终端设备也不尝试初始接入,节约了资源。
在一种可能的实现方式中,在所述第一资源中每1.2兆赫兹包含的同步栅格的数量为1时,所述每1.2兆赫兹包含的同步栅格的值为1或3或5。
该实现方式中,在第一资源中每1.2兆赫兹包含的同步栅格的数量为1时,限制每1.2兆赫兹包含的同步栅格的值为1或3或5,使得第一资源中同步栅格之间的最小距离的一半大于终端设备和NTN接入网设备之间的频偏误差,有效避免了频点混淆的问题。例如,NTN接入网设备在第一资源的一个1.2兆赫兹中的值为3的同步栅格上向终端设备发送同步信号,由于第一资源中任意两个同步栅格之间距离的一半都大于终端设备和NTN接入网设备之间的频偏误差,故终端设备只在该1.2兆赫兹中的值为3的同步栅格上接收NTN接入网设备发送的同步信号,不会在其它同步栅格上接收NTN接入网设备发送的同步信号,避免了频点混淆的问题。
在一种可能的实现方式中,在所述第一资源中每1.2兆赫兹包含的同步栅格的数量为2时,所述每1.2兆赫兹包含的同步栅格的值分别为1和5。
该实现方式中,在第一资源中每1.2兆赫兹包含的同步栅格的数量为2时,每1.2兆赫兹包含的同步栅格的值分别为1和5,使得第一资源中同步栅格之间的最小距离的一半大于终端设备和NTN接入网设备之间的频偏误差,有效避免了频点混淆的问题。例如,NTN接入网设备在第一资源的一个1.2兆赫兹中的值为1和5的同步栅格上向终端设备发送同步信号,由于第一资源中任意两个同步栅格之间距离的一半都大于终端设备和NTN接入网设备之间的频偏误差,故终端设备只在该1.2兆赫兹中的值为1和5的同步栅格上接收NTN接入网设备发送的同步信号,不会在其它同步栅格上接收NTN接入网设备发送的同步信号,避免了频点混淆的问题。
第二方面,本申请提供一种接入方法,该方法的执行主体可以是终端设备,也可以是应用于终端设备中的芯片。下面以执行主体是终端设备为例进行描述。在接入频点的频率小于第一值的情况下,终端设备确定第一资源,所述第一资源中任意两个同步栅格之间间距的一半大于最大频偏范围,所述最大频偏范围用于指示终端设备与所述NTN接入网设备的下行发、收频点间的最大频率偏差;终端设备在所述第一资源接收来自NTN接入网设备的同步信号。
在一种可能的实现方式中,所述第一值小于3吉赫兹。
在一种可能的实现方式中,所述第一资源中每1.2兆赫兹包含的同步栅格的数量为0或1或2。
在一种可能的实现方式中,所述第一资源中至少两个1.2兆赫兹包含的同步栅格的数量不同。
在一种可能的实现方式中,在所述第一资源中每1.2兆赫兹包含的同步栅格的数量为0时,所述方法还包括:不接收来自所述NTN接入网设备的同步信号。
在一种可能的实现方式中,在所述第一资源中每1.2兆赫兹包含的同步栅格的数量为1时,所述每1.2兆赫兹包含的同步栅格的值为1或3或5。
在一种可能的实现方式中,在所述第一资源中每1.2兆赫兹包含的同步栅格的数量为2 时,所述每1.2兆赫兹包含的同步栅格的值分别为1和5。
第三方面,提供一种通信装置,有益效果可以参见第一方面的描述此处不再赘述。所述通信装置具有实现上述第一方面的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,所述通信装置包括:处理模块,用于确定第一资源,所述第一资源中任意两个同步栅格之间间距的一半大于最大频偏范围,所述最大频偏范围用于指示终端设备与所述NTN接入网设备的下行发、收频点间的最大频率偏差;收发模块,用于在所述第一资源向所述终端设备发送同步信号。这些模块可以执行上述第一方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第四方面,提供一种通信装置,有益效果可以参见第二方面的描述此处不再赘述。所述通信装置具有实现上述第二方面的方法实例中行为的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。在一个可能的设计中,所述通信装置包括:处理模块,用于确定第一资源,所述第一资源中任意两个同步栅格之间间距的一半大于最大频偏范围,所述最大频偏范围用于指示终端设备与所述NTN接入网设备的下行发、收频点间的最大频率偏差;收发模块,用于在所述第一资源接收来自非陆地通信网络NTN接入网设备的同步信号。这些模块可以执行上述第二方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第五方面,提供了一种通信装置,该通信装置可以为上述方法实施例中的终端设备,或者为设置在终端设备中的芯片。该通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序或指令,处理器与存储器、通信接口耦合,当处理器执行所述计算机程序或指令时,使通信装置执行上述方法实施例中由终端设备所执行的方法。
第六方面,提供了一种通信装置,该通信装置可以为上述方法实施例中的网络设备,或者为设置在网络设备中的芯片。该通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序或指令,处理器与存储器、通信接口耦合,当处理器执行所述计算机程序或指令时,使通信装置执行上述方法实施例中由网络设备所执行的方法。例如,网络设备可以包括NTN接入网设备。
第七方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码并运行时,使得上述各方面中由终端设备执行的方法被执行。
第八方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被运行时,使得上述各方面中由网络设备执行的方法被执行。例如,网络设备可以包括NTN接入网设备。
第九方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于实现上述各方面的方法中终端设备的功能。在一种可能的设计中,所述芯片系统还包括存储器,用于保存程序指令和/或数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
第十方面,本申请提供了一种芯片系统,该芯片系统包括处理器,用于实现上述各方面的方法中网络设备的功能。在一种可能的设计中,所述芯片系统还包括存储器,用于保存程序指令和/或数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。例如,网络设备可以包括NTN接入网设备。
第十一方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序被运行时,实现上述各方面中由终端设备执行的方法。
第十二方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序被运行时,实现上述各方面中由网络设备执行的方法。例如,网络设备可以包括NTN接入网设备。
附图说明
图1为本申请的实施例的一种通信系统的架构示意图;
图2为本申请实施例提供的一通信方法的流程示意图;
图3为本申请实施例提供的一种第一资源的示意图;
图4为本申请实施例提供的另一种第一资源的示意图;
图5为本申请实施例提供的又一种第一资源的示意图;
图6为本申请实施例提供的又一种第一资源的示意图;
图7为本申请的实施例提供的一通信装置的结构示意图;
图8为本申请的实施例提供的另一通信装置的结构示意图。
具体实施方式
图1为本申请的实施例的一种通信系统的架构示意图。如图1所示,包括网络设备101和终端设备102,网络设备101和终端设备102之间可以进行无线通信。
网络设备101通常具有无线收发功能和移动特性,例如,网络设备101可以为移动的设备。可选的,网络设备101可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(High Elliptical Orbit,HEO)卫星等。例如,LEO卫星的轨道高度范围通常为500km~1500km,轨道周期(围绕地球旋转的周期)约为1.5小时~2小时。用户间单跳通信的信号传播延迟约为20ms,用户间单跳通信时延是指终端设备到网络设备101之间的传输时延,或者网络设备101到传输设备之间的时延。最大卫星可视时间约为20分钟,最大可视时间是指卫星的波束覆盖地面某一片区域的最长时间,LEO卫星相对地面是移动的,随着卫星的移动,其覆盖到的地面区域也是变化的。LEO卫星的信号传播距离短,链路损耗少,对终端设备的发射功率要求不高。GEO卫星的轨道高度通常为35786km,轨道周期为24小时。用户间单跳通信的信号传播延迟约为250ms。为了保证卫星的覆盖以及提升通信网络的系统容量,卫星可以采用多波束覆盖地面,例如,一颗卫星可以形成几十或者几百个波束来覆盖地面,一个波束可以覆盖直径几十至几百公里的地面区域。当然,网络设备101还可以为设置在陆地、水域等位置的基站,例如,网络设备101可以是下一代基站(next generation NodeB,gNB)或者下一代演进型基站(next generation-evolved NodeB,ng-eNB)。其中,gNB为UE提供新空口(new radio,NR)的用户面功能和控制面功能,ng-eNB为UE提供演进型通用陆地无线接入(evolved universal terrestrial radio access,E-UTRA)的用户面功能和控制面功能,需要说明的是,gNB和ng-eNB仅是一种名称,用于表示支持5G网络系统的基站,并不具有限制意义。网络设备101还可以为GSM系统或CDMA系统中的基站(base transceiver station,BTS),也可以是WCDMA系统中的基站(nodeB,NB),还可以是LTE系统中的演进型基站(evolutional node B,eNB或eNodeB)。或者,网络设备101还可以为中继站、接入点、车载设备、可穿戴设备以及5G之后的网络中的网络侧设备或未来演进的PLMN网络中的网络设备、路边站点单元(road site unit,RSU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。gNB还可以包 括有源天线单元(active antenna unit,AAU)。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
其中,当网络设备101为卫星时,网络设备101和终端设备102之间所形成的网络可以称为NTN。在图1所示的通信系统的架构中,卫星可以具有基站的功能,卫星和终端设备102之间可以直接通信。
终端设备102可以是任意的终端,比如,终端设备102可以是机器类通信的用户设备。该终端设备102也可称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal)、终端(terminal)等。
终端设备102可以经RAN与一个或多个核心网进行通信,因此,终端设备102还可以称为无线终端,无线终端可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其它处理设备。
例如,终端设备102可以为蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备或可穿戴设备,虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。本申请实施例中不做具体限定。
又如,终端设备102包括但不限于经由有线线路连接、经由无线接口连接、经由另一终端设备的被设置成接收/发送通信信号的装置连接、经由物联网(internet of things,IoT)设备连接。例如,经由有线线路连接可以包括经由公共交换电话网络(public switched telephone networks,PSTN)、数字用户线路(digital subscriber line,DSL)、数字电缆、直接电缆连接;经由无线接口连接可以包括经由蜂窝网络、无线局域网(wireless local area network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器连接。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(personal communications system,PCS)终端;还可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。
可选的,终端设备102可以部署在陆地上,包括室内或室外、手持或车载;也可以部署 在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对终端设备102的应用场景不做限定。
第三代合作伙伴计划(3rd generation partnership project,3GPP)新无线(new radio,NR)协议规定了同步信号在频域上的位置,用SSREF来表示;协议约束频率范围1(frequency range1,FR1)为3吉赫兹(GHz)以下时,每隔1.2兆赫兹(MHz)会有间隔100千赫兹(KHz)的3个同步信号位置,在3GHz以上的频段中,每隔1.44MHz会有1个同步信号位置;在FR2频段中,每隔17.28MHz会有1个同步信号位置。其中,全球频率光栅的全局同步信道号(global synchronization channel number,GSCN)参数如表1和表2所示。
表1
表2
频段搜索时,对于要搜索的频段,终端设备需要检测所配置频段内的所有可能频点位置,在这些频点尝试驻留到NR系统的小区。
小区搜索的目的是在某频点搜索到小区,确定小区的小区标识符(identity document,ID)、定时和频偏;成功搜索到小区后,终端设备会按照一定准则解主信息块(master information block,MIB)和系统信息块(system information block,SIB),并发起随机接入。
初始小区搜索时,由于终端设备和网络设备间的相对运动、网络设备晶振偏差、终端设备晶振偏差的存在,初始小区搜索可能需要遍历较大的频偏范围。
当网络设备为地面基站时,终端设备和地面基站间的相对运动速度较低、地面基站晶振偏差和终端设备晶振偏差较小,这些不理想因素引起的频偏范围很小,在终端设备的搜索能力范围内,不会引起频点混淆问题。
但在NTN场景下,网络设备为卫星时,卫星绕地球高速运动,假设终端设备静止,卫星的绝对速度最大约为7.7千米每秒(km/s),卫星和终端设备间投影速度最大约7.38km/s,折算到每百万单位(parts per million,ppm)得到单纯由终端设备和卫星间的相对运动造成的频偏最大为24.6ppm。当频偏为24ppm时,对于不同的频点区间,最小频点间隔及最大频偏范围如表3所示:
表3
为了方便描述,下面将NTN场景下的网络设备记为NTN接入网设备进行介绍。
从表3可以看出,仅考虑NTN接入网设备和终端设备相对运动的情况下,当fc<3GHz时,最大频偏范围72KHz大于最小频点间隔/2,此时终端设备搜索时会出现频点混淆问题,终端设备运动、NTN接入网设备晶振偏差和终端设备晶振偏差会加大频偏范围,使得频点混淆更严重。例如,频点混淆可以理解为:假设在fc<3GHz的情况下,NTN接入网设备在M=3的同步栅格上向终端设备发送了同步信号,而终端设备认为NTN接入网设备是在M=5的同步栅格上发送的同步信号,并在M=5的同步栅格上进行初始接入,此时终端设备无法接收到NTN接入网设备在M=3的同步栅格上发送的同步信号,造成了上下行对不齐的情况。
在3GHz以下频段发生频点混淆后,终端设备搜索到的频点与真实频点间可能会发生一个频点的误差(100KHz),而在下行接收解物理广播信道(physical broadcast channel,PBCH)和解SIB阶段可能不会发现频点混淆问题,直到终端设备发送第一条上行随机接入信道(random access channel,RACH)信号,才会因为RACH失败,造成入网失败。下次小区搜索仍然存在频点混淆,该频点混淆严重影响终端设备入网及用户体验。
基于上述问题,本申请提供一种接入方法和接入装置,实现了NTN接入网设备的独立组网,降低了终端设备接入NTN接入网设备的时延,同时避免了频点混淆的问题。
如图2所示,本申请实施例提供一通信方法的流程示意图,该方法可以由终端设备和NTN接入网设备执行,或者也可以由终端设备中的芯片和NTN接入网设备中的芯片执行。图2所示的方法可包括以下操作。
S201,在接入频点的频率小于第一值的情况下,NTN接入网设备确定第一资源,第一资源中任意两个同步栅格之间间距的一半大于最大频偏范围,最大频偏范围用于指示终端设备与NTN接入网设备的下行发、收频点间的最大频率偏差。
示例性的,第一值小于3吉赫兹。例如,第一值可以为1吉赫兹、2吉赫兹或2.4吉赫兹等,当然,这仅是本申请所举的例子,第一值的取值包括并不限于此举例。
示例性的,图3为本申请实施例提供的一种第一资源的示意图,如图3所示,第一资源中每1.2兆赫兹包含的同步栅格的数量为0或1或2。
例如,在第一资源中每1.2兆赫兹包含的同步栅格的数量为1时,每1.2兆赫兹包含的同步栅格的值可以为1、3或5。图4为本申请实施例提供的另一种第一资源的示意图,如图4所示,第一资源中每1.2兆赫兹包含的同步栅格的数量为1,且展示了每1.2兆赫兹中的同步栅格的值分别为1、为3和为5时的示意图,其中,有填充的同步栅格表示被选择的同步栅格,能够进行同步信号传输;无填充的同步栅格表示未被选择的同步栅格,不能进行同步信号传输。
根据表1所示的全球频率光栅的GSCN参数中频率范围为0-3000MHz对应的SSREF需要满足:
N*1200kHz+M*50kHz,N=1:2499,M∈{1,3,5},(公式1)
在该种示例下,第一个1.2兆赫兹中的值为5的同步栅格与第二个1.2兆赫兹中值为1的同步栅格是两个距离最近的同步栅格,其中,第一个1.2兆赫兹中的值为5的同步栅格对应的N=1,M=5;第二个1.2兆赫兹中值为1的同步栅格对应的N=2,M=1,带入到SSREF的计算公式可以得到,第一个1.2兆赫兹中的值为5的同步栅格的位置为1.45MHz,第二个1.2兆赫兹中的值为1的同步栅格的位置为2.45MHz,则这两个距离最近的同步栅格之间的间距为1MHz,最小频点间隔的一半为500KHz,对比表3中的数据可知,当fc<3GHz时,最大频偏范围为72KHz,小于本示例中的最小频点间隔的一半500KHz,故不会发生频点混淆。
例如,在第一资源中多个包含同步栅格数量为1的每个1.2兆赫兹频段中的同步栅格的 值可以不同。
示例性的,图5为本申请实施例提供的又一种第一资源的示意图,如图5所示,第一资源中的第一个1.2兆赫兹中的同步栅格的数量为1,且同步栅格的值为1,第二个1.2兆赫兹中同步栅格的数量为1,且同步栅格的值为3,第三个1.2兆赫兹中同步栅格的数量为1,且同步栅格的值为5。其中,有填充的同步栅格表示被选择的同步栅格,能够进行同步信号传输;无填充的同步栅格表示未被选择的同步栅格,不能进行同步信号传输。
例如,在第一资源中每1.2兆赫兹包含的同步栅格的数量为2时,每1.2兆赫兹包含的同步栅格的值分别为1和5。
根据表1所示的全球频率光栅的GSCN参数中频率范围为0-3000MHz对应的SSREF满足公式1,例如,第一个1.2兆赫兹中的值为1的同步栅格与第一个1.2兆赫兹中值为5的同步栅格是两个距离最近的同步栅格,其中,第一个1.2兆赫兹中的值为1的同步栅格对应的N=1,M=1;第一个1.2兆赫兹中值为5的同步栅格对应的N=1,M=5,带入到SSREF的计算公式可以得到,第一个1.2兆赫兹中的值为5的同步栅格的位置为1.25MHz,第一个1.2兆赫兹中值为5的同步栅格的位置为1.45MHz,则这两个最近的同步栅格之间间距的最小值为200KHz,最小频点间隔的一半的最小值为100KHz,对比表3中的数据可知,当fc<3GHz时,最大频偏范围为72KHz,小于本示例中的最小频点间隔的一半100KHz,故不会发生频点混淆。
示例性的,第一资源的多个1.2兆赫兹频段中的每个1.2兆赫兹频段上的同步栅格的数量可以不同。
示例性的,第一资源中的一个1.2兆赫兹频段上的同步栅格的数量为0,另一个1.2兆赫兹频段上的同步栅格的数量为1,又一个1.2兆赫兹频段上的同步栅格的数量为2。
在一种可能的实现方式中,最大频偏范围满足下列关系:
fd∝(ppm1,ppm2,v,f)
其中,fd表示NTN接入网设备与终端设备之间的最大频偏范围,ppm1表示NTN接入网设备的晶振偏差,ppm2表示终端设备的晶振偏差,v表示NTN接入网设备与终端设备之间的相对速度,f表示终端设备的接入频点。
S202,NTN接入网设备在第一资源向终端设备发送同步信号。
NTN接入网设备在确定的第一资源中的同步栅格上向终端设备发送同步信号。
在一种可能的实现方式中,在第一资源中每1.2兆赫兹包含的同步栅格的数量为1时,NTN接入网设备在每1.2兆赫兹中的值为1或3或5的同步栅格上发送同步信号。
作为一种示例,NTN接入网设备在第一资源中包含同步栅格数量为1的多个1.2兆赫兹频段中的每个1.2兆赫兹频段发送同步信号的同步栅格的值可以不同。
示例性的,如图5所示的第一资源中,NTN接入网设备在第一个1.2兆赫兹中的值为1的同步栅格上发送同步信号。在第二个1.2兆赫兹中值为3的同步栅格上发送同步信号。在第三个1.2兆赫兹中的值为5的同步栅格上发送同步信号。
在另一种可能的实现方式中,在第一资源中每1.2兆赫兹包含的同步栅格的数量为2时,NTN接入网设备在每1.2兆赫兹包含的同步栅格的值分别为1和5的同步栅格上发送同步信号。
在又一种可能的实现方式中,在第一资源中每1.2兆赫兹包含的同步栅格的数量为0时,NTN接入网设备不向终端设备发送同步信号。
在一种可能的实现方式中,NTN接入网设备在第一资源中的每个1.2兆赫兹频段发送同 步信号的同步栅格的值不同。
示例性的,图6为本申请的实施例的又一种第一资源的示意图,如图6所示,第一个1.2MHz中同步栅格的数量为1,且该同步栅格的值为1;第二个1.2MHz中同步栅格的数量为1,且该同步栅格的值为3;第三个1.2MHz中同步栅格的数量为2,且这两个同步栅格的值分别为1和5,第四个1.2MHz中同步栅格的数量为0。其中,有填充的同步栅格表示被选择的同步栅格,能够进行同步信号传输;无填充的同步栅格表示未被选择的同步栅格,不能进行同步信号传输。相应地,NTN接入网设备在图6所示的第一资源中的第一个1.2兆赫兹中的值为1的同步栅格上发送同步信号,在第二个1.2兆赫兹频段中的值为3的同步栅格上发送同步信号,在第三个1.2兆赫兹中的值为1和5的同步栅格上发送同步信号,在第四个1.2兆赫兹中不发送同步信号。
S203,在接入频点的频率小于第一值的情况下,终端设备确定第一资源。
需要说明的是,终端设备确定第一资源的方法与NTN接入网设备相同,S203可以参考S201,此处不再进行赘述。
另外,终端设备可以在NTN接入网设备确定第一资源之前确定第一资源,即S203可以在S201之前执行;终端设备还可以在NTN接入网设备确定第一资源之后,在NTN接入网设备发送同步信号之前确定第一资源,即S203还可以在S201之后,S202之前执行,本申请对S203的执行顺序不作限定。
S204,终端设备在第一资源接收来自NTN接入网设备的同步信号。
终端设备在确定的第一资源中的同步栅格上接收来自NTN接入网设备的同步信号。
在一种可能的实现方式中,在第一资源中每1.2兆赫兹包含的同步栅格的数量为1时,终端设备在每1.2兆赫兹中的值为1或3或5的同步栅格上接收来自NTN接入网设备的同步信号。
作为一种示例,第一资源中包含同步栅格数量为1的多个1.2兆赫兹频段中的每个1.2兆赫兹频段中同步栅格的值不同。
示例性的,终端设备在图5所示的第一资源中的第一个1.2兆赫兹中的值为1的同步栅格上接收NTN接入网设备发送的同步信号,在第二个1.2兆赫兹中的值为3的同步栅格上接收NTN接入网设备发送的同步信号,在第三个1.2兆赫兹中的值为5的同步栅格上接收NTN接入网设备发送的同步信号。
在另一种可能的实现方式中,在第一资源中每1.2兆赫兹包含的同步栅格的数量为2时,终端设备在每1.2兆赫兹包含的同步栅格的值分别为1和5的同步栅格上接收来自NTN接入网设备的同步信号。
在又一种可能的实现方式中,在第一资源中每1.2兆赫兹包含的同步栅格的数量为0时,终端设备不接收来自NTN接入网设备的同步信号。
在一种可能的实现方式中,第一资源中的每个1.2兆赫兹频段的同步栅格的值可以不同。
示例性的,终端设备在图6所示的第一资源中的第一个1.2兆赫兹中的值为1的同步栅格接收NTN接入网设备发送的同步信号,在第二个1.2兆赫兹中的值为3的同步栅格接收NTN接入网设备发送的同步信号,在第三个1.2兆赫兹中的值为1和5的同步栅格接收NTN接入网设备发送的同步信号,在第四个1.2兆赫兹频段中不接收同步信号。
本申请提供的技术方法,在接入频点的频率小于第一值的情况下,NTN接入网设备确定第一资源,并在第一资源向终端设备发送同步信号,第一资源中任意两个同步栅格之间间距的一半大于最大频偏范围,有效避免了频点混淆的问题。
上述本申请提供的实施例中,分别从网络设备、终端设备、以及网络设备和终端设备之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,网络设备和终端设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
图7和图8为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以实现上述方法实施例中终端设备或网络设备的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请实施例中,该通信装置可以是如图1所示的终端设备102,也可以是如图1所示的网络设备101,还可以是应用于终端设备或网络设备的模块(如芯片)。
如图7所示,通信装置700包括处理模块701和收发模块702。通信装置700可用于实现上述图2所示的方法实施例中终端设备或NTN接入网设备的功能。
当通信装置700用于实现图2所述方法实施例中终端设备的功能时:处理模块701,用于确定第一资源。收发模块702,用于在第一资源接收来自NTN接入网设备的同步信号。
当通信装置700用于实现图2所述方法实施例中NTN接入网设备的功能时:处理模块701,用于确定第一资源;收发模块702,用于在第一资源向终端设备发送同步信号。
如图8所示,通信装置800包括处理器810和接口电路820。处理器810和接口电路820之间相互耦合。可以理解的是,接口电路820可以为收发器或输入输出接口。可选的,通信装置800还可以包括存储器830,用于存储处理器810执行的指令或存储处理器810运行指令所需要的输入数据或存储处理器810运行指令后产生的数据。
当通信装置800用于实现上述方法实施例中的方法时,处理器810用于执行上述处理模块701的功能,接口电路820用于执行上述收发模块702的功能。
当上述通信装置为应用于终端设备的芯片时,该终端设备芯片实现上述方法实施例中终端设备的功能。该终端设备芯片从终端设备中的其它模块(如射频模块或天线)接收信息,该信息是网络设备发送给终端设备的;或者,该终端设备芯片向终端设备中的其它模块(如射频模块或天线)发送信息,该信息是终端设备发送给网络设备的。
当上述通信装置为应用于网络设备的芯片时,该网络设备芯片实现上述方法实施例中网络设备的功能。该网络设备芯片从网络设备中的其它模块(如射频模块或天线)接收信息,该信息是终端设备发送给网络设备的;或者,该网络设备芯片向网络设备中的其它模块(如射频模块或天线)发送信息,该信息是网络设备发送给终端设备的。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(central processing unit,CPU),还可以是其它通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(random access memory,RAM)、闪存、只读存储器(Read-Only Memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦 合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于接入网设备或终端设备中。当然,处理器和存储介质也可以作为分立组件存在于接入网设备或终端设备中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,DVD;还可以是半导体介质,例如,固态硬盘(solid state disk,SSD)。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (20)

  1. 一种接入方法,其特征在于,在接入频点的频率小于第一值的情况下,所述方法包括:
    非陆地通信网络NTN接入网设备确定第一资源,所述第一资源中任意两个同步栅格之间间距的一半大于最大频偏范围,所述最大频偏范围用于指示终端设备与所述NTN接入网设备的下行发、收频点间的最大频率偏差;
    所述NTN接入网设备在所述第一资源向所述终端设备发送同步信号。
  2. 根据权利要求1所述的方法,其特征在于,所述第一值小于3吉赫兹。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一资源中每1.2兆赫兹包含的同步栅格的数量为0或1或2。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述第一资源中至少两个1.2兆赫兹包含的同步栅格的数量不同。
  5. 根据权利要求1或2所述的方法,其特征在于,在所述第一资源中每1.2兆赫兹包含的同步栅格的数量为0时,所述方法还包括:
    不向所述终端设备发送同步信号。
  6. 根据权利要求3或4所述的方法,其特征在于,在所述第一资源中每1.2兆赫兹包含的同步栅格的数量为1时,所述每1.2兆赫兹包含的同步栅格的值为1或3或5。
  7. 根据权利要求3或4所述的方法,其特征在于,在所述第一资源中每1.2兆赫兹包含的同步栅格的数量为2时,所述每1.2兆赫兹包含的同步栅格的值分别为1和5。
  8. 一种接入方法,其特征在于,在接入频点的频率小于第一值的情况下,所述方法包括:
    终端设备确定第一资源,所述第一资源中任意两个同步栅格之间间距的一半大于最大频偏范围,所述最大频偏范围用于指示终端设备与非陆地通信网络NTN接入网设备的下行发、收频点间的最大频率偏差;
    所述终端设备在所述第一资源接收来自所述NTN接入网设备的同步信号。
  9. 根据权利要求8所述的方法,其特征在于,所述第一值小于3吉赫兹。
  10. 根据权利要求8或9所述的方法,其特征在于,所述第一资源中每1.2兆赫兹包含的同步栅格的数量为0或1或2。
  11. 根据权利要求8至10任一项所述的方法,其特征在于,所述第一资源中至少两个1.2兆赫兹包含的同步栅格的数量不同。
  12. 根据权利要求8或9所述的方法,其特征在于,在所述第一资源中每1.2兆赫兹包含的同步栅格的数量为0时,所述方法还包括:
    不接收来自所述NTN接入网设备的同步信号。
  13. 根据权利要求10或11所述的方法,其特征在于,在所述第一资源中每1.2兆赫兹包含的同步栅格的数量为1时,所述每1.2兆赫兹包含的同步栅格的值为1或3或5。
  14. 根据权利要求10或11所述的方法,其特征在于,在所述第一资源中每1.2兆赫兹包含的同步栅格的数量为2时,所述每1.2兆赫兹包含的同步栅格的值分别为1和5。
  15. 一种接入装置,其特征在于,包括用于实现权利要求1至7中任一项所述的方法的各个功能模块。
  16. 一种接入装置,其特征在于,包括用于实现权利要求8至14中任一项所述的方法的各个功能模块。
  17. 一种接入装置,其特征在于,包括:存储器和处理器;
    所述存储器用于存储程序指令;
    所述处理器用于调用所述存储器中的程序指令执行如权利要求1至7或8至14中任一项所述的方法。
  18. 一种芯片,其特征在于,包括至少一个处理器和通信接口,所述通信接口和所述至少一个处理器通过线路互联,所述至少一个处理器用于运行计算机程序或指令,以执行如权利要求1至7或8至14中任一项所述的方法。
  19. 一种计算机可读介质,其特征在于,所述计算机可读介质存储用于计算机执行的程序代码,该程序代码包括用于执行如权利要求1至7或8至14中任一项所述的方法的指令。
  20. 一种计算机程序产品,其特征在于,所述计算机程序产品包括指令,当所述指令被执行时,使得计算机执行权利要求1至7或8至14中任一项所述的方法。
PCT/CN2023/077740 2022-03-31 2023-02-22 接入方法及相关装置 WO2023185332A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210336364.1A CN116939766A (zh) 2022-03-31 2022-03-31 接入方法及相关装置
CN202210336364.1 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023185332A1 true WO2023185332A1 (zh) 2023-10-05

Family

ID=88199116

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/077740 WO2023185332A1 (zh) 2022-03-31 2023-02-22 接入方法及相关装置

Country Status (2)

Country Link
CN (1) CN116939766A (zh)
WO (1) WO2023185332A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110710151A (zh) * 2018-01-12 2020-01-17 Oppo广东移动通信有限公司 确定同步信号块的频域位置的方法、终端设备和网络设备
CN110784844A (zh) * 2018-07-31 2020-02-11 维沃移动通信有限公司 信号传输方法和通信设备
CN111465022A (zh) * 2019-01-18 2020-07-28 华为技术有限公司 一种信号发送、接收方法及设备
CN111565448A (zh) * 2019-02-14 2020-08-21 电信科学技术研究院有限公司 一种进行随机接入的方法及设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110710151A (zh) * 2018-01-12 2020-01-17 Oppo广东移动通信有限公司 确定同步信号块的频域位置的方法、终端设备和网络设备
CN110784844A (zh) * 2018-07-31 2020-02-11 维沃移动通信有限公司 信号传输方法和通信设备
CN111465022A (zh) * 2019-01-18 2020-07-28 华为技术有限公司 一种信号发送、接收方法及设备
CN111565448A (zh) * 2019-02-14 2020-08-21 电信科学技术研究院有限公司 一种进行随机接入的方法及设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Discussion on UL time and frequency synchronization enhancement for NTN", 3GPP TSG RAN WG1 MEETING #107-E, E-MEETING R1-2110805, 6 November 2021 (2021-11-06), XP052074586 *

Also Published As

Publication number Publication date
CN116939766A (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
US20220353714A1 (en) Cell measurement method, terminal device, and network device
EP4057523A1 (en) Communication method and device
CN114614875B (zh) 重复传输次数确定方法与装置、终端和网络设备
CN116235548A (zh) 一种小区测量方法、电子设备及存储介质
CN116056166A (zh) 一种小区切换方法、电子设备及存储介质
WO2022135052A1 (zh) 无线通信方法与装置、终端和网络设备
EP4167639A1 (en) Wireless communication method and device
EP4075869A1 (en) Information configuration method and apparatus, and communication device
US20230116565A1 (en) Bwp configuration method and apparatus, terminal device, and network device
WO2023185332A1 (zh) 接入方法及相关装置
WO2022135051A1 (zh) 跨载波数据传输方法与装置、终端和网络设备
WO2022127806A1 (zh) 一种无线通信的方法及装置
US20240040527A1 (en) Method for window offset determination and terminal
US11917464B2 (en) 5G NR efficient FR1/FR2 operation
US20230156804A1 (en) Rach procedures for non-terrestrial networks for user equipment
RU2736782C1 (ru) Способ и устройство для передачи информации и сетевое устройство
WO2021035730A1 (zh) 一种通信方法及装置
WO2023020367A1 (zh) 一种数据传输方法及相关装置
US20230370922A1 (en) Method for entering connected mode, and terminal device
WO2022135053A1 (zh) 载波切换方法与装置、终端和网络设备
CN114788362B (zh) 媒体接入控制层控制单元生效时间的确定方法及相关产品
WO2023130252A1 (en) Communication coordination and power saving techniques in non-terrestrial networks
WO2023004532A1 (zh) 接入控制方法、终端及网络设备
WO2021249133A1 (zh) 接入方法、装置、电子设备和可读存储介质
WO2024008022A1 (zh) 一种非地面网络的通信方法、装置及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23777710

Country of ref document: EP

Kind code of ref document: A1