WO2023185289A1 - 一种无模组电池系统 - Google Patents

一种无模组电池系统 Download PDF

Info

Publication number
WO2023185289A1
WO2023185289A1 PCT/CN2023/075956 CN2023075956W WO2023185289A1 WO 2023185289 A1 WO2023185289 A1 WO 2023185289A1 CN 2023075956 W CN2023075956 W CN 2023075956W WO 2023185289 A1 WO2023185289 A1 WO 2023185289A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery core
bus
moduleless
battery system
Prior art date
Application number
PCT/CN2023/075956
Other languages
English (en)
French (fr)
Inventor
高灵雷
张志远
侯孝琳
刘浩
李世敬
Original Assignee
合肥国轩高科动力能源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥国轩高科动力能源有限公司 filed Critical 合肥国轩高科动力能源有限公司
Publication of WO2023185289A1 publication Critical patent/WO2023185289A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the technical field of power batteries, specifically a moduleless battery system.
  • the invention patent application with publication number CN111276653A discloses a module-less soft-pack battery system.
  • the module-less soft-pack battery system in this application does not have a battery module.
  • the battery module is directly arranged on the first fixed module and the third fixed module. In the groove of the second fixed module, the battery module is squeezed through the baffle to give the battery module a corresponding pre-tightening force.
  • the acquisition module collects the temperature information and voltage information of the battery module and transmits it to the control module to realize the battery module. Directly connected to the system, by reducing the number of parts in the soft package system, the energy density of the battery is increased, thereby improving battery life.
  • the technical problem to be solved by the present invention is to provide a module-less battery system with high energy density.
  • the present invention provides the following technical solutions:
  • a moduleless battery system including a box, a liquid cooling plate, a cell stack unit and a box cover;
  • One end of the box has an opening, and a plurality of mutually parallel system beams are provided in the box.
  • the system beams divide the box into a plurality of chambers for accommodating battery core stack units;
  • the battery core stack unit includes a plurality of battery core fixing units equipped with battery cores. A plurality of battery cores are arranged and installed in the battery core fixing unit along the thickness direction.
  • the battery core fixing units have a plurality of battery core fixing units.
  • the battery core fixing units are arranged and installed in the chamber in the box along the thickness direction;
  • the liquid cooling plate is fixedly installed on the upper surface of the battery core stack unit; the box cover is fixedly installed on the open end of the box.
  • the battery system of the present invention adopts a module-less design, eliminating the need for module end plates, side plates and bottom plates. Compared with conventional battery systems with modules, the system space utilization is improved and the weight is reduced, so the entire battery system The energy density has been significantly improved.
  • the liquid cooling plate includes two independent first liquid cooling plates and a second liquid cooling plate.
  • the battery core stack unit includes an insulating protective cover, an integrated cover assembly, strip foam, a battery core fixing unit, an epoxy board and glue;
  • the strip foam and epoxy board are arranged between two adjacent battery core fixing units;
  • the insulating protective cover and the integrated cover assembly are fixedly connected, and the side of the integrated cover assembly away from the insulating protective cover is fixedly connected to one end of the multiple assembled battery core fixing units;
  • the upper end of the multiple assembled battery core fixing units is fixedly connected to the liquid cooling plate through glue, and the lower end is fixedly connected to the bottom of the box through glue.
  • the glue includes thermally conductive structural glue and structural glue; the upper end of multiple assembled battery core fixing units is fixedly connected to the liquid cooling plate through thermally conductive structural glue, and the lower end is fixedly connected to the bottom of the box through structural glue.
  • the battery core fixing unit includes a U shell, a battery core, a plastic bracket, elastic foam and a paddle bus;
  • a plurality of the battery cores are assembled along the thickness direction and installed in the U shell; elastic foam is installed between two adjacent battery cores;
  • Plastic brackets are installed at both ends of the U shell; a paddle bus is provided on the side of the plastic bracket away from the U shell.
  • the plastic bracket is provided with plastic protrusions
  • the U shell is provided with round holes.
  • the plastic bracket and the U shell are fixed by hot riveting between the plastic protrusions and the round holes.
  • a limiting groove is designed on the side of the plastic bracket away from the U shell, and the paddle bus is arranged in the limiting groove;
  • a through hole is also provided on the side of the plastic bracket.
  • the through hole passes through the limiting slot, and the tabs of the battery core protrude from the through hole and are fixedly connected to the paddle bus.
  • the top of the plastic bracket is provided with a limiting protrusion on one side of the U shell.
  • the U shell is formed using a profile bending machine.
  • the integrated cover assembly includes a temperature sampling line, an integrated cover, a low-voltage interface, a lead-out bus, a series bus and a voltage sampling block;
  • the temperature sampling line is installed on the upper end of the integrated cover plate, and the voltage sampling block is installed on the end of the temperature sampling line;
  • the integrated cover is installed at one end of the battery cell fixing unit
  • the side of the integrated cover plate away from the cell fixing unit is designed with a plurality of limit slots arranged along its length direction, and a plurality of the series bus bars are installed on the limit slots; the series bus bars and Paddle bus connection;
  • the lead-out bus bar is installed on both ends of the side of the integrated cover away from the battery core fixing unit; the lead-out bus bar is connected to the paddle bus bar; the lead-out bus bar is also provided with a direction extending away from the battery core fixing unit.
  • the bending part is a high-voltage connection platform;
  • the low-voltage interface is located in the middle of the side of the integrated cover away from the cell fixing unit.
  • the temperature sampling line has an L-shaped structure
  • the epoxy board is provided with a matching notch
  • the end of the temperature sampling line is installed in the matching notch.
  • a protruding rib is designed in the middle of the side of the integrated cover plate away from the battery core fixing unit, and the series bus bar is also designed with a limiting hole for hot riveting and matching with the protruding rib.
  • the upper end and both sides of the integrated cover are provided with buckles; the upper end of the integrated cover close to the side of the battery cell fixing unit is provided with a connection portion that matches the slot on the plastic bracket of the battery cell fixing unit. .
  • the insulating protective cover includes a snap-in groove, an avoidance gap and an installation groove;
  • a plurality of the snap-in slots are designed at the upper end and both sides of the insulating protective cover; the avoidance gaps are designed at The upper end of the side of the insulating protective cover close to the integrated cover plate; the installation groove is designed at the upper end of the side of the insulating protective cover away from the integrated cover plate.
  • the battery system of the present invention adopts a module-less design, eliminating the need for module end plates, side plates and bottom plates. Compared with conventional battery systems with modules, the system space utilization is improved and the weight is reduced. Therefore, the entire battery The energy density of the system is significantly improved.
  • the system beam of the present invention provides constraints and limits for the cell stack unit, which is particularly significant in dealing with the high expansion problem caused by the next generation of silicon carbon anode batteries recognized in the industry.
  • the battery core stack unit of the present invention stacks the battery core fixing units cumulatively in the thickness direction.
  • the battery core fixing unit can be used as an independent unit to facilitate grouping and installation, improve production efficiency, and reduce development costs.
  • In the U shell unit only foam is designed between the large surface of the battery core and the large surface of the battery core. No foam is designed on the contact surface between the large surface of the battery core and the U shell. This ensures that the temperature of the outer surface of the U shell and the temperature of the large surface of the battery core are as consistent as possible. , to avoid affecting the temperature sampling accuracy due to thermal isolation.
  • the specific number of cumulative stacks of battery cell fixed units is determined based on the system space arrangement, and the number of battery core stack units in the system is determined based on the system energy. This battery cell system makes it easy to adjust the battery cell fixing unit in the system according to actual needs, making the application scenarios more flexible.
  • the temperature sampling in the flexible battery core stack unit of the present invention adopts an L-shaped structural design and is matched with the notch design of the epoxy board.
  • the L-shaped structure design facilitates the temperature sensor collection temperature to be close to the actual operating temperature of the battery core, reducing the risk of BMS misjudgment triggering thermal protection.
  • the incompressible performance of the epoxy board or mica sheet is used to protect the temperature sensor No pressure, ensuring reliable sampling for long-term cycles.
  • the present invention utilizes the development idea of flexible battery core stack units, which has certain advantages in terms of cost, weight, volume and module of the battery pack.
  • Figure 1 is a schematic diagram of the overall structure of an embodiment of the present invention.
  • Figure 2 is a schematic diagram of the internal structure of the box according to the embodiment of the present invention.
  • FIG. 3 is a schematic connection diagram of the battery core stack unit according to the embodiment of the present invention.
  • Figure 4 is an exploded view of the battery core stack unit according to the embodiment of the present invention.
  • Figure 5 is an enlarged view of part A of Figure 4.
  • FIG. 6 is an exploded view of the battery core fixing unit according to the embodiment of the present invention.
  • Figure 7 is a schematic structural diagram of the plastic bracket of the battery core fixing unit according to the embodiment of the present invention.
  • Figure 8 is a schematic structural diagram of the plastic bracket of the battery core fixing unit from another perspective according to the embodiment of the present invention.
  • Figure 9 is an enlarged view of part B of Figure 7;
  • FIG. 10 is a schematic diagram of the battery core of the battery core fixing unit according to the embodiment of the present invention.
  • Figure 11 is a schematic diagram of the connection structure of the integrated cover assembly according to the embodiment of the present invention.
  • Figure 12 is a schematic structural diagram of an integrated cover according to an embodiment of the present invention.
  • Figure 13 is a schematic structural diagram of a lead-out busbar according to an embodiment of the present invention.
  • Figure 14 is a schematic structural diagram of a series bus according to an embodiment of the present invention.
  • Figure 15 is an enlarged view of part C of Figure 11;
  • Figure 16 is a schematic structural diagram of an insulating protective cover according to an embodiment of the present invention.
  • first and second are used for descriptive purposes only and shall not be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of this application, “plurality” means two or more than two, unless otherwise explicitly and specifically limited.
  • this embodiment discloses a module-less battery system, which includes a box 1 , a liquid cooling plate 2 , a cell stack unit 3 and a box cover 4 .
  • a plurality of parallel system beams 101 are provided on the box 1.
  • the two ends of the system beams 101 are respectively arranged on the two long sides of the box 1.
  • the system beams 101 divide the box 1 into a plurality of cells to accommodate battery core stacks. Chamber of unit 3.
  • the box 1 plays an important role in the battery system of this embodiment.
  • the bottom of the cell stack unit 3 is fixed in the box 1 through structural glue.
  • the system beam 101 provides large-area constraints for the cell stack unit 3. and limit, which is of great significance especially in dealing with the high expansion problem caused by the next generation of silicon-carbon anode batteries recognized in the industry.
  • the system beam 101 is provided with installation positioning holes 1011 that match the vehicle chassis, and provide more reliable structural support for the entire battery system by being fixed to the vehicle chassis.
  • the liquid cooling plate 2 is designed with holes that match the system beam 101 and are used for fixing and installation positioning of the liquid cooling plate 2 .
  • the system adopts the design of two independent liquid cooling plates, namely the first liquid cooling plate and the second liquid cooling plate.
  • the first liquid cooling plate and the second liquid cooling plate are arranged in parallel, and the two long sides are joined together to form the entire liquid cooling plate 2.
  • the use of a whole liquid-cooled plate avoids the fixed installation and removal sequence of components in the middle of the system, making system installation more flexible and conducive to local battery maintenance and battery echelon recycling.
  • Two independent liquid cooling plates also avoid the risk of needing to replace an entire liquid cooling plate due to partial damage to the liquid cooling plate, reducing maintenance costs.
  • Thermal conductive structural glue is coated between the liquid cooling plate 2 and the upper surface of the battery core stack unit 3 to improve the thermal conductivity efficiency and thereby improve the thermal management efficiency.
  • the cell stack unit 3 is installed in the cavity of the box 1, and the top is limited by the liquid cooling plate 2, thereby achieving reliable fixation and limiting of the cell stack unit 3 and improving the safety and reliability of the entire battery system.
  • the cell stack unit 3 is the most important unit in the battery system of this embodiment, so it will be introduced emphatically.
  • the cell stack unit 3 includes an insulating protective cover 301, an integrated cover assembly 302, a strip of foam 303, a cell fixing unit 304, an epoxy board 305 and glue 306.
  • the cell stack unit 3 includes a plurality of cell fixing units 304 , and the plurality of cell fixing units 304 are arranged and assembled in the thickness direction.
  • a strip of foam 303 and an epoxy board 305 are designed between two adjacent battery core fixing units 304.
  • the strips of foam 303 and epoxy board 305 are prepared with glue on both sides, and are bonded to the large surface of the battery core fixing unit 304.
  • the strip foam 303 provides sufficient expansion space for the expansion of the battery core 3042, and can be adjusted according to the different battery core 3042 systems to meet the needs of different types of battery cells 3042 from BOL (Beginning of Life) to EOL (End of Life).
  • the epoxy board 305 used is incompressible and is designed with a notch 3051 for placing the temperature sensor 30211 to avoid pressure on the temperature sensor 30211 and provide effective protection for it.
  • the epoxy board 305 can provide thermal blocking when the battery core 3042 is thermally runaway, delaying the occurrence of thermal runaway and improving the thermal safety performance of the system.
  • the thickness of the strip foam 303 used in this embodiment is 0.5 mm to 2 mm.
  • the thickness of the epoxy board 305 used is 1mm ⁇ 3mm.
  • the epoxy plate 305 can also be replaced by a mica sheet.
  • Strip foam 303, epoxy board 305 and mica sheets can be coated with double-sided tape or structural adhesive. They have V0 level flame retardant properties, and the compressive stress-strain curve and space can be adjusted according to the design.
  • the insulating protective cover 301 and the integrated cover assembly 302 are connected through a snap-fit connection through a slot.
  • the side of the integrated cover assembly 302 away from the insulating protection cover 301 and the end of the cell fixing unit 304 are snap-fit through a slot. connect.
  • the temperature sampling line 3021 in the FPC (Flexible Printed Circuit) in the sampling assembly is designed as an L-shaped structure, with a temperature sensor 30211 arranged at its end.
  • the temperature of the battery core 3042 is sampled. Since there is no thermal obstruction between the battery core 3042 and the U shell 3041, it is guaranteed that the temperature collected by the temperature sensor 30211 is basically consistent with the actual temperature of the battery core 3042, and its effectiveness has been verified through simulation.
  • the matching notches 3051 on the epoxy plate 305 between the temperature sensor 30211 and the battery core fixing unit 304 are used to protect the temperature sensor 30211 through the incompressibility of the epoxy plate 305 to ensure its long-term safe and reliable operation.
  • the components of the battery core stack unit 3 are in contact with the bottom of the box 1 and the liquid cooling plate 2 through glue 306, are fixed to the bottom of the box 1 through structural glue, and are fixed to the bottom of the liquid cooling plate 2 through thermally conductive structural glue.
  • the battery core fixing unit 304 includes a U shell 3041 , a battery core 3042 , a plastic bracket 3043 , elastic foam 3044 and a paddle bus 3045 .
  • a plurality of battery cores 3042 are assembled in the thickness direction and installed in a U shell 3041.
  • the U shell 3041 is a shell with a U-shaped cross section.
  • An elastic foam 3044 is provided between two adjacent battery cores 3042.
  • the elastic foam The thickness of 3044 ranges from 0.5mm to 2mm, which can be flexibly adjusted according to the expansion space requirements of different battery cells 3042.
  • Through the flexible arrangement of elastic foam 3044 there is no thermal barrier between the battery core 3042 and the U shell 3041, ensuring that the temperature sensor 30211 collects The temperature is closer to the real temperature of the battery core 3042. Compared with placing the temperature sensor 30211 on the bus, the collected temperature is more accurate, avoiding BMS misjudgments and early thermal runaway warnings and failures caused by excessive bus temperature. Waste of resources caused by necessary protection.
  • symmetrical plastic brackets 3043 are provided at both ends of the U shell 3041, and a paddle bus 3045 is provided on the side of the plastic bracket 3043 away from the U shell 3041.
  • the paddle bus 3045 can be an aluminum bus or a copper bus.
  • the edge of the plastic bracket 3043 is provided with plastic protrusions 30431, and the U shell 3041 is designed with a round hole 30411 that matches the plastic protrusion 30431.
  • the two are fixed by hot riveting, so the plastic bracket 3043 can be effectively fixed on the U shell 3041. both ends.
  • a limit slot 30432 is designed on the side of the plastic bracket 3043 away from the U shell 3041.
  • the paddle bus 3045 is installed in the limit slot 30432.
  • the limit slot 30432 provides a limit for the paddle bus 3045.
  • the side of the plastic bracket 3043 is designed with a through hole 30433, and the through hole 30433 passes through the bottom of the limiting groove 30432.
  • the tabs 30421 of the battery core 3042 extend through the through holes 30433, and the extended tabs 30421 are welded to the paddle bus 3045.
  • the paddle bus 3045 serves as the positive and negative electrode leads of the battery core fixing unit 304.
  • the top of the plastic bracket 3043 is located on one side of the U shell 3041 and is provided with a limiting protrusion 30434 to provide a limit for the installation of the plastic bracket 3043 and to protect the end of the battery core 3042.
  • the side of the plastic bracket 3043 for mounting the paddle bus 3045 is designed with a card slot 30435, which matches the buckle 30222 on the integrated cover 3022.
  • the battery core fixing unit 304 installs a plurality of battery cores 3042 in the U shell 3041, and at the same time, the two sides are fixed and limited by plastic brackets 3043.
  • the limiting protrusions 30434 provided at the upper end of the plastic bracket 3043 limit the upper ends of the battery cores 3042.
  • the pole tabs 30421 of the battery core 3042 extend through the through holes 30433 of the plastic bracket 3043 and are connected to the paddle bus 3045 installed on the plastic bracket 3043.
  • the paddle buss 3045 at both ends serve as the front of the battery core fixing unit 304.
  • Negative lead body the cell fixing unit 304 of this embodiment becomes an independent unit with positive and negative electrodes, which is process-friendly, facilitates system grouping, and improves system grouping efficiency.
  • the U shell 3041 can be formed using a profile bending machine.
  • the battery core 3042 includes a main body 30422 and tabs 30421.
  • the battery core 3042 is grouped along the thickness direction.
  • the battery core stack unit 3 can be flexibly adjusted according to different needs, and its size and energy will also change accordingly.
  • the smallest cell stack unit 3 may only include one cell 3042.
  • the length of the cell stack unit 3 is not less than 100 mm and the width is not less than 30 mm.
  • an appropriate number of cell fixing units 304 are selected, and the assembly of the cell stack unit 3 is completed by cooperating with other components in the cell stack unit 3 . After this process, the battery core stack unit 3 with complete structural performance and complete electrical performance is achieved.
  • the number of battery core fixing units 304 in this embodiment can be flexibly adjusted according to system requirements, avoiding the use of module end plates, side plates, and bottom plates, and improving volume grouping efficiency.
  • the more compact structure also improves the space utilization of the battery system, reduces the system volume, and improves the adaptability of the system.
  • the flexible adjustability of the battery core stack unit 3 including the adjustment of quantity and installation direction, it is convenient for the electrical connection of the system and the layout of the low-voltage collection wire harness, and the distributed wiring of high and low voltages to avoid adverse effects such as electromagnetic interference, making the overall system more tidy and safe. Process installation and grouping efficiency are also more user-friendly.
  • the integrated cover assembly 302 includes a temperature sampling line 3021 , an integrated cover 3022 , a low-voltage interface 3023 , a lead-out bus 3024 , a series bus 3025 and a voltage sampling block 3026 .
  • the series bus bar 3025 and the lead bus bar 3024 can be aluminum bars or copper bars.
  • the temperature sampling line 3021 extends through the L-shaped structural design of the temperature sampling line 3021 to the matching notch 3051 designed on the epoxy board 305 to ensure that the sampling temperature point is close to the actual working temperature of the battery core 3042, through the epoxy board 305
  • the incompressibility prevents the temperature sensor 30211 from being compressed and ensures the long-term stable operation of the temperature sensor 30211.
  • the integrated cover 3022 is installed at one end of the cell fixing unit 304.
  • the integrated cover 3022 provides insulation protection for the two adjacent cells 3042 of the cell fixing unit 304, effectively insulating and preventing leakage and short circuit.
  • the side of the integrated cover 3022 away from the cell fixing unit 304 is designed with a plurality of limit slots arranged along its length direction.
  • a plurality of series bus bars 3025 are installed on the limit slots.
  • the limit slots are series bus bars.
  • the row 3025 provides a limit;
  • the integrated cover 3022 is designed with a raised rib 30221 in the middle of the side close to the cell fixing unit 304, and the series bus bar 3025 is also designed with a limit hole 30251 that is hot-riveted and matched with the raised rib 30221. .
  • the above-mentioned limiting slots and protruding ribs 30221 jointly provide a reliable connection for the series bus 3025.
  • the upper and lower ends of the series bus 3025 adopt a concave structure, that is, the middle of the side of the series bus 3025 close to the battery cell fixing unit 304 protrudes, and the series bus 3025 is far away from the battery cell fixing unit. 304 is dented on one side. This structure is convenient for welding with the paddle bus 3045 on the cell fixing unit 304.
  • the lead-out bus bars 3024 are provided at both ends of the integrated cover 3022 on the side away from the cell fixing unit 304 .
  • the lead bus 3024 adopts a tree fork structure design, that is, the upper and lower ends of the lead bus 3024 adopt concave structures, which can improve the welding with the paddle bus 3045; at the same time, the lead bus 3024 is also set in a direction away from the cell fixing unit 304
  • the extended bending portion 30241 serves as a high-voltage connection platform between the battery core stack units 3 and can complete high-voltage connections within the battery system with the help of high-voltage copper bars or high-voltage wire harnesses.
  • the low-voltage interface 3023 is provided in the middle of the side of the integrated cover 3022 away from the cell fixing unit 304, and leads out the low-voltage signal as a BMS signal input.
  • the voltage sampling block 3026 is welded and fixedly connected to the lead-out bus 3024 and the series bus 3025.
  • buckles 30222 are provided on the upper end and both sides of the integrated cover 3022.
  • the upper end of the integrated cover 3022 close to the cell fixing unit 304 is provided with a connecting portion 30223 that matches the slot 30435 on the plastic bracket 3043 of the cell fixing unit 304.
  • multiple series bus bars 3025 are installed on the integrated cover plate 3022.
  • the concave structure of the series return bar can ensure the connection with the paddle bus bar 3045 of the cell fixing unit 304.
  • the tree-fork structure of the lead-out bus 3024 facilitates the connection with the paddle bus 3045, and on the other hand, it serves as a high-voltage connection platform.
  • the connection portion 30223 on the integrated cover 3022 is used for connection with the cell fixing unit 304 .
  • the L-shaped temperature sampling line 3021 can effectively measure the temperature of the battery core 3042 of the battery core fixing unit 304.
  • the integrated cover assembly 302 of this embodiment integrates modules such as the busbar and the temperature sensor 30211 on the integrated cover 3022 .
  • the PET film integrates the busbar, temperature sensor 30211, and collection module by hot pressing. Or use injection molding or blister parts to assemble the busbar, temperature sensor 30211, and acquisition module into one.
  • the integrated cover 3022 can provide a better limiting structure for the busbar and reduce the risk of busbar vibration involving solder spots under working conditions such as vibration and impact. Moreover, the limiting structure is more conducive to the welding of the tab 30421 and the welding of the sampling point.
  • the integrated cover 3022 uses insulating parts to The flow drain, temperature sensor 30211, and collection module are integrated into one.
  • the notches on the protruding ribs 30221 on both sides of the busbar limit groove 30432 on the upper surface of the integrated cover plate 3022 provide positioning and guiding functions when the pole tab 30421 is welded, and facilitate the welding of the pole tab 30421 and the sampling piece.
  • the integrated cover 3022 is provided on the front and rear sides along the length of the module to provide support and limiting structures for the high and low voltage interfaces through structural design.
  • the insulation protection cover 301 includes a snap slot 3011 , an avoidance gap 3012 and an installation slot 3013 .
  • the upper end and both sides of the insulating protective cover 301 are provided with a plurality of snap-in slots 3011.
  • the snap-in slots 3011 on the insulating protection cover 301 and the snap-on buckles 30222 on the integrated cover 3022 are engaged with each other one by one to achieve the desired interaction between the two. room installation.
  • An avoidance gap 3012 is designed on the upper end of the side of the insulating protective cover 301 close to the integrated cover 3022, which can provide space for the plastic bracket 3043 and provide positioning for the installation of the insulating protective cover 301.
  • the upper end of the insulating protective cover 301 away from the integrated cover 3022 is provided with an installation slot 3013.
  • the installation slot 3013 cooperates with the low-voltage interface 3023 of the integrated cover assembly 302. On the one hand, it provides protection for the low-voltage connector, and on the other hand, it can avoid interference. .
  • the insulating protective cover 301 of this embodiment cooperates with the integrated cover plate 3022 entirely through mechanical connection to obtain reliable structural support and avoid the use of fasteners. While reducing the number of system components and simplifying installation, it avoids short circuits caused by loose fasteners falling into the system.
  • the insulating protective cover 301 effectively avoids the lead-out bus 3024, the series bus 3025 and the system beam 101 in the integrated cover assembly 302, and the design considers the creepage distance to avoid the occurrence of leakage.
  • this embodiment has the following advantages:
  • the battery system of this embodiment adopts a module-less design, eliminating the need for module end plates, side plates and bottom plates. Compared with conventional battery systems with modules, the system space utilization is improved and the weight is reduced. Therefore, the entire The energy density of the battery system has been significantly improved.
  • the battery core stack unit 3 of this embodiment is cumulatively stacked in the thickness direction of the battery core fixing unit 304.
  • the battery core fixing unit 304 can be used as an independent unit to facilitate grouping and installation and improve production. efficiency and reduce development costs.
  • the U shell unit only foam is designed between the large surface of the battery core 3042 and the large surface of the battery core 3042. No foam is designed on the contact surface between the large surface of the battery core 3042 and the U shell. This ensures that the outer surface temperature of the U shell is consistent with the large surface of the battery core 3042. The temperature should be as consistent as possible to avoid affecting the temperature sampling accuracy due to thermal isolation.
  • the specific number of cumulative stacks of battery core fixing units 304 is determined based on the spatial arrangement of the system, and the number of battery core stack units 3 in the system is determined based on the system energy. This battery cell system facilitates adjustment of the battery cell fixing unit 304 in the system according to actual needs, and the application scenarios are more flexible.
  • the temperature sampling line 3021 in the cell stack unit 3 of this embodiment adopts an L-shaped structure design and is designed to match the notch 3051 of the epoxy plate 305.
  • the L-shaped structural design facilitates the temperature sensor 30211 to collect temperatures close to the actual operating temperature of the battery core 3042, reducing the risk of BMS misjudgment triggering thermal protection.
  • it borrows the incompressible performance of the epoxy board 305 (or mica sheet). Protect the temperature sensor 30211 from pressure to ensure reliable sampling for long-term cycles.
  • This embodiment uses the development idea of flexible battery core stack units, which has certain advantages in terms of cost, weight, volume and module of the battery pack.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本发明公开了一种无模组电池系统,包括箱体、液冷板、电芯堆单元和箱盖;所述箱体的一端具有开口,所述箱体内设置有多个相互平行的系统梁,所述系统梁将箱体分隔成多个容纳电芯堆单元的腔室;所述电芯堆单元包括多个装有电芯的电芯固定单元,多个电芯沿其厚度方向上排列安装在电芯固定单元,多个电芯固定单元沿其厚度方向排列安装在箱体内的腔室内;所述液冷板固定安装在电芯堆单元的上表面上;所述箱盖固定安装在箱体的开口端。本发明的电池系统采用无模组设计方案,省去了模组端板、侧板及底板,与常规有模组电池系统相比,系统空间利用率提升,重量降低,因此整个电池系统的能量密度得到显著地提升。

Description

一种无模组电池系统 技术领域
本发明涉及动力电池技术领域,具体为一种无模组电池系统。
背景技术
随着社会的发展,在全球性的石油资源紧缺与气候环境不断恶化使现代人类社会的发展面临着严峻挑战,发展节约能源与无废物排放的新能源汽车已受到各个国家的高度重视,新能源汽车市场发展迅速,动力电池系统作为新能源汽车的动力来源,其安全可靠对整个系统至关重要。随着政策对能量密度越来越高的要求,提高电池系统的能量密度成为电池系统的发展趋势。
公开号为CN111276653A的发明专利申请公开了一种无模组的软包电池系统,该申请的无模组的软包电池系统没有电池模组,直接将电芯模块设置在第一固定模块和第二固定模块的凹槽内,通过挡板挤压电芯模块,给电芯模块相应的预紧力,采集模块采集电芯模块的温度信息和电压信息,并传送给控制模块,实现电芯模块直接与系统相连,通过减小软包系统中零件的数量,提高电池的能量密度,进而提升电池续航能力。
发明内容
本发明所要解决的技术问题在于:提供一种能量密度高的无模组电池系统。
为解决上述技术问题,本发明提供如下技术方案:
一种无模组电池系统,包括箱体、液冷板、电芯堆单元和箱盖;
所述箱体的一端具有开口,所述箱体内设置有多个相互平行的系统梁,所述系统梁将箱体分隔成多个容纳电芯堆单元的腔室;
所述电芯堆单元包括多个装有电芯的电芯固定单元电芯固定单元,多个电芯沿其厚度方向上排列安装在电芯固定单元电芯固定单元,多个电芯固定单元电芯固定单元沿其厚度方向排列安装在箱体内的腔室内;
所述液冷板固定安装在电芯堆单元的上表面上;所述箱盖固定安装在箱体的开口端。
优点:本发明的电池系统采用无模组设计方案,省去了模组端板、侧板及底板,与常规有模组电池系统相比,系统空间利用率提升,重量降低,因此整个电池系统的能量密度得到显著地提升。
优选地,所述液冷板包括两块独立的第一液冷板和第二液冷板。
优选地,所述电芯堆单元包括绝缘防护盖、集成盖板组件、条状泡棉、电芯固定单元电芯固定单元、环氧板和胶水;
所述条状泡棉和环氧板设置在相邻两个电芯固定单元电芯固定单元之间;
所述绝缘防护盖和集成盖板组件之间固定连接,集成盖板组件远离绝缘防护盖的一侧与多个组装的电芯固定单元电芯固定单元的一端固定连接;
多个组装的电芯固定单元上端通过胶水与液冷板固定连接,下端通过胶水与箱体的底部固定连接。
优选地,胶水包括导热结构胶和结构胶;多个组装的电芯固定单元上端通过导热结构胶与液冷板固定连接,下端通过结构胶与箱体的底部固定连接。
优选地,所述电芯固定单元包括U壳、电芯、塑料支架、弹性泡棉和桨式汇流排;
多个所述电芯沿其厚度方向上组装后安装在U壳内;弹性泡棉安装在相邻两个电芯之间;
所述U壳的两端均安装有塑料支架;所述塑料支架远离U壳的一侧设置有桨式汇流排。
优选地,所述塑料支架上设置有塑料凸起,所述U壳上开设有圆孔,塑料支架与U壳之间通过塑料凸起与圆孔的热铆进行固定。
优选地,所述塑料支架远离U壳的一侧设计有限位槽,桨式汇流排设置在限位槽内;
所述塑料支架的侧面还设置有通孔,所述通孔经过限位槽,电芯的极耳从通孔伸出,与桨式汇流排固定连接。
优选地,所述塑料支架的顶部位于U壳的一侧设置有限位凸出。
优选地,所述U壳采用型材折弯机加工成型。
优选地,所述集成盖板组件包括温度采样线、集成盖板、低压接口、引出汇流排、串联汇流排和电压采样块;
所述温度采样线安装在集成盖板的上端,所述电压采样块安装在温度采样线的端部;
所述集成盖板安装在电芯固定单元的一端;
所述集成盖板远离电芯固定单元的一侧设计有多个沿其长度方向上排列的限位卡槽,多个所述串联汇流排安装在限位卡槽上;所述串联汇流排与桨式汇流排连接;
所述引出汇流排安装在集成盖板远离电芯固定单元的一侧两端;所述引出汇流排与桨式汇流排连接;所述引出汇流排还设置有向着远离电芯固定单元的方向延伸的折弯部,所述折弯部为高压连接平台;
低压接口设置在集成盖板远离电芯固定单元的一侧中部。
优选地,所述温度采样线为L型结构,环氧板开设有配合槽口,温度采样线的端部安装在配合槽口中。
优选地,所述集成盖板远离电芯固定单元的一侧中部设计有凸起筋,所述串联汇流排上还设计有与凸起筋进行热铆固定配合的限位孔。
优选地,所述集成盖板的上端及两侧均设置有卡扣;集成盖板靠近电芯固定单元一侧的上端设置有与电芯固定单元的塑料支架上的卡槽相配合的连接部。
优选地,所述绝缘防护盖包括卡接槽、避让缺口和安装槽;
多个所述卡接槽设计在绝缘防护盖的上端及两侧;所述避让缺口设计在 绝缘防护盖靠近集成盖板的一侧上端;所述安装槽设计在绝缘防护盖远离集成盖板的一侧上端。
与现有技术相比,本发明的有益效果是:
(1)本发明的电池系统采用无模组设计方案,省去了模组端板、侧板及底板,与常规有模组电池系统相比,系统空间利用率提升,重量降低,因此整个电池系统的能量密度得到显著地提升。
(2)本发明的系统梁为电芯堆单元提供约束和限位,尤其在应对行业内公认的下一代硅碳负极电池所带来的高膨胀问题上具有重大意义。
(3)本发明的电芯堆单元是电芯固定单元厚度方向进行累加堆叠,电芯固定单元可作为一个独立的单元,方便成组和安装,提高生产效率,降低开发成本。U壳单元中仅电芯大面与电芯大面之间设计有泡棉,电芯大面与U壳接触面未设计泡棉,保证U壳外表面温度与电芯大面温度尽可能一致,避免因为热阻隔影响温度采样精度。此外,电芯固定单元累加堆叠的具体数量依据系统空间排布而确定,系统内电芯堆单元数量依据系统能量而确定。本电芯系统方便根据实际需求对系统内的电芯固定单元进行调整,应用场景更加灵活。
(4)本发明的柔性电芯堆单元中的温度采样采用L型结构设计,同时配合环氧板的槽口设计。一方面L型结构设计,方便温感采集温度接近电芯实际工况温度,降低BMS误判触发热防护的风险,另一方面借用环氧板(或云母片)的不可压缩性能,保护温感不受压,保证长期循环的可靠采样。
(5)本发明利用柔性电芯堆单元的开发思路,在电池包的成本、重量和体积与模组等方面均具有一定的优势。
(6)本发明的绝缘防护盖的结构设计中,完全通过机械连接与集成盖板配合从而获得可靠结构支撑,避免了紧固件的使用。在降低系统部件简化安装的同时规避了紧固件因为松动落入系统内部导致短路的发生。
附图说明
图1为本发明的实施例的整体结构示意图;
图2为本发明的实施例的箱体的内部结构示意图;
图3为本发明的实施例的电芯堆单元的连接示意图;
图4为本发明的实施例的电芯堆单元的爆炸图;
图5为图4的A局部放大图;
图6为本发明的实施例的电芯固定单元的爆炸图;
图7为本发明的实施例的电芯固定单元的塑料支架结构示意图;
图8为本发明的实施例的电芯固定单元的塑料支架另一视角的结构示意图;
图9为图7的B局部放大图;
图10为本发明的实施例的电芯固定单元的电芯示意图;
图11为本发明的实施例的集成盖板组件的连接结构示意图;
图12为本发明的实施例的集成盖板的结构示意图;
图13为本发明的实施例的引出汇流排的结构示意图;
图14为本发明的实施例的串联汇流排的结构示意图;
图15为图11的C局部放大图;
图16为本发明的实施例的绝缘防护盖的结构示意图。
具体实施方式
为便于本领域技术人员理解本发明技术方案,现结合说明书附图对本发明技术方案做进一步的说明。
术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
参阅图1,本实施例公开了一种无模组电池系统,包括箱体1、液冷板2、电芯堆单元3和箱盖4。
参阅图2,箱体1上设置多个相互平行的系统梁101,系统梁101的两端分别设置在箱体1两长侧面上,系统梁101将箱体1分隔成多个容纳电芯堆单元3的腔室。箱体1在本实施例的电池系统中发挥了重要作用,电芯堆单元3的底部通过结构胶限位固定在箱体1内,系统梁101为电芯堆单元3提供大面上的约束和限位,尤其在应对行业内公认的下一代硅碳负极电池所带来的高膨胀问题上具有重大意义。
同时系统梁101上开设有与车辆底盘配合的安装定位孔1011,通过与车辆底盘的固定为整个电池系统提供更可靠的结构支撑。
液冷板2上设计有与系统梁101配合的孔,用于液冷板2的固定和安装定位。系统采用两块独立液冷板设计,即第一液冷板和第二液冷板,第一液冷板和第二液冷板平行布置,两长侧面贴合形成整个液冷板2,不采用一整块液冷板,避免了系统中部零部件固定的安装和拆卸顺序,使得系统安装更加灵活,有利于局部电池维修和电池梯次回收利用。两块独立的液冷板也避免了因液冷板局部受损需要替换一整块液冷板的风险,降低维修成本。
液冷板2与电芯堆单元3的上表面之间涂敷有导热结构胶,提高导热效率进而提高热管理效率。电芯堆单元3安装在箱体1的腔室内,顶部通过液冷板2进行限位,从而实现电芯堆单元3的可靠固定和限位,提高整个电池系统的安全可靠性。
在上述的电芯堆单元3和液冷板2安装固定好并与电气元件配合后,在液冷板2的上方安装箱盖4,最终组装成功能完整的无模组电池系统。同时基于电芯堆单元3的柔性可调整性,通过调整电芯3042数量和系统配合将电芯堆单元3正负极调整到系统安装需要的同侧或异侧,可以使得系统布局更有利于高低压走线,系统整体布局简单整齐,同时避免高低压距离较近引发的 高电磁干扰隐患,如图2所示。
电芯堆单元3是本实施例的电池系统中最重要的单元,故着重进行介绍。
参阅图3和图4,电芯堆单元3包括绝缘防护盖301、集成盖板组件302、条状泡棉303、电芯固定单元304、环氧板305和胶水306。
参阅图4,电芯堆单元3包括多个电芯固定单元304,多个电芯固定单元304在其厚度方向上进行排列组装。相邻两个电芯固定单元304之间设计有条状泡棉303和环氧板305,条状泡棉303和环氧板305均两面备胶,与电芯固定单元304大面粘接配合,条状泡棉303一方面为电芯3042膨胀提供足够膨胀空间,并可根据电芯3042体系不同而进行调整,满足不同种类电芯3042从BOL(Beginning of Life电池寿命初期)至EOL(End Of Life电池寿命结束)整个生命周期的膨胀需求,有效改善电芯3042因为膨胀力激增引发的容量快速衰减,为电芯3042更长的循环寿命提供助力。另一方面条状设计降低材料用量,降低成本和重量。采用的环氧板305不可压缩,同时设计有槽口3051,用于放置温感30211,避免温感30211受压,为其提供有效防护。环氧板305能够在电芯3042热失控时提供热阻断,延缓热失控的发生,提高系统热安全性能。
其中,本实施例采用的条状泡棉303的厚度为0.5mm~2mm。采用的环氧板305的厚度为1mm~3mm。在本实施例的具体实施过程中,环氧板305还可以采用云母片替代。条状泡棉303、环氧板305和云母片可以本身覆合双面胶也可以涂覆结构胶,本身具备V0等级的阻燃性能,压缩应力应变曲线和空间可根据设计进行调节。
绝缘防护盖301与集成盖板组件302之间通过卡槽卡扣配合连接,集成盖板组件302远离绝缘防护盖301的一侧与电芯固定单元304的端部之间通过卡槽卡扣配合连接。参阅图5采样组件中的FPC(Flexible Printed Circuit柔性电路板)中的温度采样线3021设计为L型结构,其端部布置有温感30211, 对电芯3042进行温度采样,由于电芯3042与U壳3041之间没有热阻碍,保证了该温感30211采集温度与电芯3042实际温度基本一致,并已经过仿真验证其有效性。其次温感30211与电芯固定单元304之间环氧板305上的配合槽口3051配合,通过环氧板305的不可压缩性,对温感30211进行防护,保证其长期安全可靠运行。
电芯堆单元3的部件通过胶水306与箱体1和液冷板2的底部进行接触,与箱体1底部通过结构胶固定,与液冷板2的底部通过导热结构胶固定。
参阅图6,电芯固定单元304包括U壳3041、电芯3042、塑料支架3043、弹性泡棉3044和桨式汇流排3045。
多个电芯3042在其厚度方向上组装后安装在U壳3041内,U壳3041为截面呈U型的壳体,相邻两个电芯3042之间设置有弹性泡棉3044,弹性泡棉3044的厚度范围为0.5mm~2mm,可根据不同电芯3042膨胀空间需求灵活调整,通过弹性泡棉3044的灵活布置,电芯3042与U壳3041之间没有热阻隔,保证温感30211采集的温度更接近与电芯3042的真实温度,与将温感30211置于汇流排上相比,采集的温度更加准确,避免因为汇流排温度过高导致的BMS误判和提前的热失控预警和不必要的防护造成的资源浪费。
参阅图7至9,U壳3041两端均设置有对称的塑料支架3043,塑料支架3043远离U壳3041的一侧设置有桨式汇流排3045。其中,桨式汇流排3045可以为铝排或铜排。
塑料支架3043的边缘设置有塑料凸起30431,U壳3041上设计有与塑料凸起30431相配合的圆孔30411,两者之间通过热铆固定,因此塑料支架3043能够有效固定在U壳3041两端。
塑料支架3043远离U壳3041的一侧设计有限位槽30432,桨式汇流排3045安装在限位槽30432内,限位槽30432为桨式汇流排3045提供限位。塑料支架3043的侧面设计有通孔30433,通孔30433经过限位槽30432的底部。 电芯3042的极耳30421通过通孔30433伸出,伸出的极耳30421与桨式汇流排3045进行焊接,桨式汇流排3045作为电芯固定单元304的正负极引出体。
同时塑料支架3043的顶部位于U壳3041的一侧设置有限位凸出30434,为塑料支架3043安装提供限位,同时对电芯3042的端部进行防护。塑料支架3043安装桨式汇流排3045的一侧设计有卡槽30435,和集成盖板3022上卡扣30222配合。
电芯固定单元304通过将多个电芯3042安装在U壳3041中,同时两侧通过塑料支架3043进行固定和限位,塑料支架3043的上端设置的限位凸出30434对电芯3042上端进行限位,电芯3042的极耳30421通过塑料支架3043的通孔30433伸出与安装在塑料支架3043上的桨式汇流排3045连接,两端的桨式汇流排3045作为电芯固定单元304的正负极引出体。最终,本实施例的电芯固定单元304成为一个带有正负极的独立单元,对工艺友好,方便系统成组,提高系统成组效率。
在本实施例的具体实现过程中,U壳3041的成型方式可以采用型材折弯机加工成型。
进一步的,本实施例的无模组电池系统中,采用本行业常见的软包电芯。
参阅图10,电芯3042包括主体30422和极耳30421,电芯3042沿着厚度方向成组。电芯堆单元3可按照不同的需求进行柔性调整,其尺寸和能量也会发生相应的变动。最小的电芯堆单元3可仅包含一个电芯3042,电芯堆单元3长度不小于100mm,宽度不小于30mm。
根据本实施例的电池系统的能量和空间布局,选用合适数量的电芯固定单元304,通过与电芯堆单元3内的其他部件的配合完成电芯堆单元3的组装。经过此工序,实现结构性能完成,电气性能完成的电芯堆单元3。
根据系统的能量和空间布局,选用合适数量的电芯堆单元3,确定电芯堆单元3的合适尺寸,通过在实施方式中介绍的配合方式完成电池系统的组装。 经过此工序,实现结构性能完整,电气性能完成的无模组电池系统。
因此本实施例的电芯固定单元304的数量可以根据系统需求进行灵活调整,避免了模组端板、侧板、底板的使用,提高了体积成组效率。同时,较紧凑的结构也提高了对电池系统的空间利用率,减小系统体积,提高系统的适配性。另外基于电芯堆单元3的灵活可调性,包括数量和安装方向调整,便于系统的电连接和低压采集线束布局,高低压分散布线,避免电磁干扰等不良影响发生,总体更加整齐安全,对工艺安装和成组效率也有更加友好。
参阅图11至15,集成盖板组件302包括温度采样线3021、集成盖板3022、低压接口3023、引出汇流排3024、串联汇流排3025和电压采样块3026。其中,串联汇流排3025和引出汇流排3024可以为铝排也可以是铜排。
温度采样线3021通过温度采样线3021的L型结构设计,延伸至环氧板305上设计的配合槽口3051,保证采样温度点贴近电芯3042实际工况温度的基础上,通过环氧板305的不可压缩性,避免温感30211受压,保证温感30211长期稳定工作。
集成盖板3022安装在电芯固定单元304的一端,集成盖板3022为电芯固定单元304的相邻两个电芯3042提供绝缘防护,起到有效绝缘作用,避免漏电和短路的发生。
集成盖板3022远离电芯固定单元304的一侧设计有多个沿其长度方向上排列的限位卡槽,多个串联汇流排3025安装在限位卡槽上,限位卡槽为串联汇流排3025提供限位;集成盖板3022靠近电芯固定单元304的一侧中部设计有凸起筋30221,串联汇流排3025上还设计有与凸起筋30221进行热铆固定配合的限位孔30251。通过上述的限位卡槽和凸起筋30221共同为串联汇流排3025提供可靠连接。
同时,串联汇流排3025的上下两端采用凹面结构,即串联汇流排3025靠近电芯固定单元304的一侧中部凸出,串联汇流排3025远离电芯固定单元 304的一侧凹陷。该结构便于与电芯固定单元304上的桨式汇流排3045焊接。
引出汇流排3024设置在集成盖板3022远离电芯固定单元304的一侧两端。引出汇流排3024采用树叉结构设计,即引出汇流排3024上下两端采用凹面结构,能够提高与桨式汇流排3045的焊接;同时引出汇流排3024还设置有向着远离电芯固定单元304的方向延伸的折弯部30241,折弯部30241作为电芯堆单元3之间的高压连接平台,能够借助高压铜排或高压线束完成电池系统内部高压连接。
低压接口3023设置在集成盖板3022远离电芯固定单元304的一侧中部,将低压信号引出,作为BMS信号输入。
电压采样块3026与引出汇流排3024和串联汇流排3025焊接固定连接。
此外,集成盖板3022的上端及两侧均设置有卡扣30222。集成盖板3022靠近电芯固定单元304一侧的上端设置有与电芯固定单元304的塑料支架3043上的卡槽30435相配合的连接部30223。
在本实施例的集成盖板组件302的组装中,将多个串联汇流排3025安装在集成盖板3022上,串联回流排的凹面结构能够保证与电芯固定单元304的桨式汇流排3045的连接,引出汇流排3024的树叉结构一方面便于与桨式汇流排3045的连接,另一方面便于作为高压连接平台。集成盖板3022上的连接部30223用于与电芯固定单元304的连接。最后L型结构的温度采样线3021能够有效测量电芯固定单元304的电芯3042的温度。
本实施例的集成盖板组件302将汇流排、温感30211等模块集成在集成盖板3022上。集成一体式采集板的主要工艺有两种,PET膜将汇流排、温感30211、采集模组热压形成一体。或利用注塑或吸塑件将汇流排、温感30211、采集模块组装形成一体。集成盖板3022可以为汇流排提供较好的限位结构,降低在诸如振动、冲击等工况下汇流排振动牵扯焊斑的风险。而且,限位结构更有利于极耳30421焊接以及采样点焊接。集成盖板3022利用绝缘件将汇 流排、温感30211、采集模块集成一体。集成盖板3022上表面汇流排限位槽30432两侧凸起筋30221上的缺口,在极耳30421焊接时提供定位和导向作用,方便极耳30421和采样件焊接。集成盖板3022沿着模组长度方向前后两侧,通过结构设计分别为高低压接口提供支撑限位结构。
参阅图16,绝缘防护盖301包括卡接槽3011、避让缺口3012和安装槽3013。
绝缘防护盖301的上端及两侧均设有多个卡接槽3011,绝缘防护盖301上的卡接槽3011与集成盖板3022上的卡扣30222相互一一对应扣合,实现两者之间的安装。
绝缘防护盖301靠近集成盖板3022的一侧上端设计有避让缺口3012,可以为塑料支架3043进行避让,同时可以为绝缘防护盖301的安装提供定位。
绝缘防护盖301远离集成盖板3022的一侧上端开设有安装槽3013,安装槽3013与集成盖板组件302的低压接口3023相配合,一方面为低压接插件提供保护,另一方面可以避让干涉。
本实施例的绝缘防护盖301通过结构设计,完全通过机械连接与集成盖板3022配合从而获得可靠结构支撑,避免了紧固件的使用。在降低系统部件简化安装的同时规避了紧固件因为松动落入系统内部导致短路的发生。此外,绝缘防护盖301有效将集成盖板组件302中的引出汇流排3024、串联汇流排3025与系统梁101避开,设计考虑爬电距离,避免漏电的发生。
因此,本实施例具有以下优点:
(1)本实施例的电池系统采用无模组设计方案,省去了模组端板、侧板及底板,与常规有模组电池系统相比,系统空间利用率提升,重量降低,因此整个电池系统的能量密度得到显著地提升。
(2)本实施例的电芯堆单元3是电芯固定单元304厚度方向进行累加堆叠,电芯固定单元304可作为一个独立的单元,方便成组和安装,提高生产 效率,降低开发成本。
U壳单元中仅电芯3042大面与电芯3042大面之间设计有泡棉,电芯3042大面与U壳接触面未设计泡棉,保证U壳外表面温度与电芯3042大面温度尽可能一致,避免因为热阻隔影响温度采样精度。此外,电芯固定单元304累加堆叠的具体数量依据系统空间排布而确定,系统内电芯堆单元3数量依据系统能量而确定。本电芯系统方便根据实际需求对系统内的电芯固定单元304进行调整,应用场景更加灵活。
(3)本实施例的电芯堆单元3中的温度采样线3021采用L型结构设计,同时配合环氧板305的槽口3051设计。一方面L型结构设计,方便温感30211采集温度接近电芯3042实际工况温度,降低BMS误判触发热防护的风险,另一方面借用环氧板305(或云母片)的不可压缩性能,保护温感30211不受压,保证长期循环的可靠采样。
(4)本实施例利用柔性电芯堆单元的开发思路,在电池包的成本、重量和体积与模组等方面均具有一定的优势。
(5)本实施例的深化设计思路适用于软包、方壳电芯。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内,不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
以上所述实施例仅表示发明的实施方式,本发明的保护范围不仅局限于上述实施例,对于本领域的技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明保护范围。

Claims (14)

  1. 一种无模组电池系统,其特征在于:包括箱体(1)、液冷板(2)、电芯堆单元(3)和箱盖(4);
    所述箱体(1)的一端具有开口,所述箱体(1)内设置有多个相互平行的系统梁(101),所述系统梁(101)将箱体(1)分隔成多个容纳电芯堆单元(3)的腔室;
    所述电芯堆单元(3)包括多个装有电芯(3042)的电芯固定单元(304),多个电芯(3042)沿其厚度方向上排列安装在电芯固定单元(304),多个电芯固定单元(304)沿其厚度方向排列安装在箱体(1)内的腔室内;
    所述液冷板(2)固定安装在电芯堆单元(3)的上表面上;所述箱盖(4)固定安装在箱体(1)的开口端。
  2. 根据权利要求1所述的无模组电池系统,其特征在于:所述液冷板(2)包括两块独立的第一液冷板(2)和第二液冷板(2)。
  3. 根据权利要求1所述的无模组电池系统,其特征在于:所述电芯堆单元(3)包括绝缘防护盖(301)、集成盖板组件(302)、条状泡棉(303)、电芯固定单元(304)、环氧板(305)和胶水(306);
    所述条状泡棉(303)和环氧板(305)设置在相邻两个电芯固定单元(304)之间;
    所述绝缘防护盖(301)和集成盖板组件(302)之间固定连接,集成盖板组件(302)远离绝缘防护盖(301)的一侧与多个组装的电芯固定单元(304)的一端固定连接;
    多个组装的电芯固定单元(304)上端通过胶水(306)与液冷板(2)固定连接,下端通过胶水(306)与箱体(1)的底部固定连接。
  4. 根据权利要求3所述的无模组电池系统,其特征在于:胶水(306)包括导热结构胶和结构胶;多个组装的电芯固定单元(304)上端通过导热结构胶与液冷板(2)固定连接,下端通过结构胶与箱体(1)的底部固定连接。
  5. 根据权利要求3所述的无模组电池系统,其特征在于:所述电芯固定单元(304)包括U壳(3041)、电芯(3042)、塑料支架(3043)、弹性泡棉(3044)和桨式汇流排(3045);
    多个所述电芯(3042)沿其厚度方向上组装后安装在U壳(3041)内;弹性泡棉(3044)安装在相邻两个电芯(3042)之间;
    所述U壳(3041)的两端均安装有塑料支架(3043);所述塑料支架(3043)远离U壳(3041)的一侧设置有桨式汇流排(3045)。
  6. 根据权利要求5所述的无模组电池系统,其特征在于:所述塑料支架(3043)上设置有塑料凸起(30431),所述U壳(3041)上开设有圆孔(30411),塑料支架(3043)与U壳(3041)之间通过塑料凸起(30431)与圆孔(30411)的热铆进行固定。
  7. 根据权利要求5所述的无模组电池系统,其特征在于:所述塑料支架(3043)远离U壳(3041)的一侧设计有限位槽(30432),桨式汇流排(3045)设置在限位槽(30432)内;
    所述塑料支架(3043)的侧面还设置有通孔(30433),所述通孔(30433)经过限位槽(30432),电芯(3042)的极耳(30421)从通孔(30433)伸出,与桨式汇流排(3045)固定连接。
  8. 根据权利要求5所述的无模组电池系统,其特征在于:所述塑料支架(3043)的顶部位于U壳(3041)的一侧设置有限位凸出(30434)。
  9. 根据权利要求5所述的无模组电池系统,其特征在于:所述U壳(3041)采用型材折弯机加工成型。
  10. 根据权利要求5所述的无模组电池系统,其特征在于:所述集成盖板组件(302)包括温度采样线(3021)、集成盖板(3022)、低压接口(3023)、引出汇流排(3024)、串联汇流排(3025)和电压采样块(3026);
    所述温度采样线(3021)安装在集成盖板(3022)的上端,所述温度采 样线(3021)的端部安装有温感(30211);
    所述集成盖板(3022)安装在电芯固定单元(304)的一端;
    所述集成盖板(3022)靠近电芯固定单元(304)的一侧设计有多个沿其长度方向上排列的限位卡槽,多个所述串联汇流排(3025)安装在限位卡槽上;所述串联汇流排(3025)与桨式汇流排(3045)连接;
    所述引出汇流排(3024)安装在集成盖板(3022)远离电芯固定单元(304)的一侧两端;所述引出汇流排(3024)与桨式汇流排(3045)连接;所述引出汇流排(3024)还设置有向着远离电芯固定单元(304)的方向延伸的折弯部(30241);
    所述低压接口(3023)设置在集成盖板(3022)远离电芯固定单元(304)的一侧中部;
    所述电压采样块(3026)与引出汇流排(3024)和串联汇流排(3025)固定连接。
  11. 根据权利要求10所述的无模组电池系统,其特征在于:所述温度采样线(3021)为L型结构,环氧板(305)开设有配合槽口(3051),温度采样线(3021)的端部安装在配合槽口(3051)中。
  12. 根据权利要求10所述的无模组电池系统,其特征在于:所述集成盖板(3022)远离电芯固定单元(304)的一侧中部设计有凸起筋(30221),所述串联汇流排(3025)上还设计有与凸起筋(30221)进行热铆固定配合的限位孔(30251)。
  13. 根据权利要求10所述的无模组电池系统,其特征在于:所述集成盖板(3022)的上端及两侧均设置有卡扣(30222);集成盖板(3022)靠近电芯固定单元(304)一侧的上端设置有与电芯固定单元(304)的塑料支架(3043)上的卡槽(30435)相配合的连接部(30223)。
  14. 根据权利要求1所述的无模组电池系统,其特征在于:所述绝缘防护 盖(301)包括卡接槽(3011)、避让缺口(3012)和安装槽(3013);
    多个所述卡接槽(3011)设计在绝缘防护盖(301)的上端及两侧;所述避让缺口(3012)设计在绝缘防护盖(301)靠近集成盖板(3022)的一侧上端;所述安装槽(3013)设计在绝缘防护盖(301)远离集成盖板(3022)的一侧上端。
PCT/CN2023/075956 2022-04-02 2023-02-14 一种无模组电池系统 WO2023185289A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210341644.1 2022-04-02
CN202210341644.1A CN114665177A (zh) 2022-04-02 2022-04-02 一种无模组电池系统

Publications (1)

Publication Number Publication Date
WO2023185289A1 true WO2023185289A1 (zh) 2023-10-05

Family

ID=82032507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/075956 WO2023185289A1 (zh) 2022-04-02 2023-02-14 一种无模组电池系统

Country Status (2)

Country Link
CN (1) CN114665177A (zh)
WO (1) WO2023185289A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117650323A (zh) * 2024-01-30 2024-03-05 孚能科技(赣州)股份有限公司 电池
CN118367307A (zh) * 2024-06-20 2024-07-19 蜂巢能源科技股份有限公司 不等间隙电池组件及电池包

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114665177A (zh) * 2022-04-02 2022-06-24 合肥国轩高科动力能源有限公司 一种无模组电池系统
CN117374448A (zh) * 2022-07-01 2024-01-09 比亚迪股份有限公司 储能装置和具有其的储能装置控制系统
CN115312937B (zh) * 2022-08-31 2023-07-07 天津市捷威动力工业有限公司 一种电池包及包括其的电动装置
CN115411463A (zh) * 2022-09-14 2022-11-29 合肥国轩高科动力能源有限公司 电芯模块和电池包
CN115207519B (zh) * 2022-09-15 2022-11-22 上海汽车集团股份有限公司 车辆动力电池以及车辆动力电池组

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020021705A (ja) * 2018-08-03 2020-02-06 トヨタ自動車株式会社 電池モジュール
CN212907899U (zh) * 2020-09-25 2021-04-06 的卢技术有限公司 一种应用于软包电池无模组系统的Pack箱体结构
CN113140852A (zh) * 2021-04-22 2021-07-20 远景动力技术(江苏)有限公司 一种电池包
CN214957119U (zh) * 2021-07-05 2021-11-30 天津市捷威动力工业有限公司 一种软包电芯单元
CN215299386U (zh) * 2021-07-05 2021-12-24 远景动力技术(江苏)有限公司 一种电池包及电动汽车
CN114221072A (zh) * 2019-01-09 2022-03-22 比亚迪股份有限公司 无模组框架的电池包、车辆和储能装置
CN114665177A (zh) * 2022-04-02 2022-06-24 合肥国轩高科动力能源有限公司 一种无模组电池系统
CN217182331U (zh) * 2022-04-02 2022-08-12 合肥国轩高科动力能源有限公司 一种电芯固定单元和包括该电芯固定单元的电芯堆叠模块

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020021705A (ja) * 2018-08-03 2020-02-06 トヨタ自動車株式会社 電池モジュール
CN114221072A (zh) * 2019-01-09 2022-03-22 比亚迪股份有限公司 无模组框架的电池包、车辆和储能装置
CN212907899U (zh) * 2020-09-25 2021-04-06 的卢技术有限公司 一种应用于软包电池无模组系统的Pack箱体结构
CN113140852A (zh) * 2021-04-22 2021-07-20 远景动力技术(江苏)有限公司 一种电池包
CN214957119U (zh) * 2021-07-05 2021-11-30 天津市捷威动力工业有限公司 一种软包电芯单元
CN215299386U (zh) * 2021-07-05 2021-12-24 远景动力技术(江苏)有限公司 一种电池包及电动汽车
CN114665177A (zh) * 2022-04-02 2022-06-24 合肥国轩高科动力能源有限公司 一种无模组电池系统
CN217182331U (zh) * 2022-04-02 2022-08-12 合肥国轩高科动力能源有限公司 一种电芯固定单元和包括该电芯固定单元的电芯堆叠模块

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117650323A (zh) * 2024-01-30 2024-03-05 孚能科技(赣州)股份有限公司 电池
CN117650323B (zh) * 2024-01-30 2024-05-07 孚能科技(赣州)股份有限公司 电池
CN118367307A (zh) * 2024-06-20 2024-07-19 蜂巢能源科技股份有限公司 不等间隙电池组件及电池包

Also Published As

Publication number Publication date
CN114665177A (zh) 2022-06-24

Similar Documents

Publication Publication Date Title
WO2023185289A1 (zh) 一种无模组电池系统
CN103026437B (zh) 蓄电模块
WO2013183945A1 (ko) 안정성이 향상된 구조 및 높은 냉각 효율성을 갖는 전지모듈
EP3035061B1 (en) Voltage sensing assembly and battery module including same
US11502365B2 (en) Pouch battery module
BR112014002635B1 (pt) Conjunto de bateria secundária e método de fabricar um conjunto de bateria secundária
CN112470335B (zh) 电池模块和包括该电池模块的电池组
CN210136984U (zh) 电池模组
CN214505695U (zh) 一种热安全电池模组
WO2024103581A1 (zh) 一种电芯转接件、电芯堆及无模组电池包
EP3952005A1 (en) Battery module and battery pack including same
WO2024031996A1 (zh) 一种电芯堆极耳串联模组
CN209822826U (zh) 一种电池模组的采样装置及电池模组
KR20210112650A (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2021107319A1 (ko) 배터리 모듈, 이를 포함하는 배터리 팩 및 자동차
CN211017176U (zh) 电池模组
WO2023197768A1 (zh) 供电装置以及用电装置
EP4270592A1 (en) Battery module having sensing module assembly
CN217507584U (zh) Lecu组件、电池组件和电动交通工具
EP4366027A1 (en) Battery pack
CN221176474U (zh) 配电箱、电池包及用电系统
RU2794728C1 (ru) Устройство контроля модуля аккумуляторной батареи и модуль аккумуляторной батареи для электромобиля
CN214200413U (zh) 电池模组温度采集装置和电池模组
CN218334214U (zh) 一种基于ccs组件的电池包装置及电动车辆
CN217468609U (zh) 一种电池模组装置及电动车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23777668

Country of ref document: EP

Kind code of ref document: A1