WO2023185121A1 - 一种新型冠状病毒mRNA疫苗及其制备方法和用途 - Google Patents

一种新型冠状病毒mRNA疫苗及其制备方法和用途 Download PDF

Info

Publication number
WO2023185121A1
WO2023185121A1 PCT/CN2022/140395 CN2022140395W WO2023185121A1 WO 2023185121 A1 WO2023185121 A1 WO 2023185121A1 CN 2022140395 W CN2022140395 W CN 2022140395W WO 2023185121 A1 WO2023185121 A1 WO 2023185121A1
Authority
WO
WIPO (PCT)
Prior art keywords
mrna
peg
mrna vaccine
protein
lipid
Prior art date
Application number
PCT/CN2022/140395
Other languages
English (en)
French (fr)
Inventor
王浩猛
李荩
严志红
原晋波
史建明
邓捷
隋秀文
刘健
邱东旭
朱涛
Original Assignee
康希诺生物股份公司
康希诺(上海)生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 康希诺生物股份公司, 康希诺(上海)生物科技有限公司 filed Critical 康希诺生物股份公司
Publication of WO2023185121A1 publication Critical patent/WO2023185121A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5123Organic compounds, e.g. fats, sugars
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/53DNA (RNA) vaccination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • A61K2039/575Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 humoral response
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/20011Coronaviridae
    • C12N2770/20022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/20011Coronaviridae
    • C12N2770/20034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein

Definitions

  • the present invention relates to the technical field of vaccine development, and specifically relates to the application of an mRNA encoding the S protein of the new coronavirus in preventing new coronavirus infection.
  • Novel coronavirus pneumonia is pneumonia caused by infection with a new coronavirus (SARS-CoV-2).
  • SARS-CoV-2 coronavirus disease
  • COVID-19 the pneumonia caused by the new coronavirus was officially named "COVID-19" (Coronavirus Disease); on the same day, the International Committee on Taxonomy of Viruses officially named the virus causing the disease "SARS-CoV” -2"(Severe Acute Respiratory Syndrome Coronavirus 2).
  • COVID-19 could be called a pandemic, becoming the first global pandemic caused by a coronavirus.
  • vaccination with effective preventive vaccines remains one of the fundamental measures to prevent and control novel coronavirus infection.
  • the mRNA coding sequences of commercialized new coronavirus mRNA vaccines are all based on the full-length S protein of the prototype strain, with positions 986 and 987 replaced by proline.
  • the neutralizing activity of the antibodies induced by this designed mRNA vaccine against some popular mutant strains is greatly reduced.
  • the neutralizing antibody titer against the Beta mutant strain is reduced by more than 10 times, and the neutralizing antibody titer against the Omicron mutant strain is reduced to a great extent.
  • the temperature is reduced by 20-50 times.
  • the mRNA coding sequence of the mRNA vaccine of the present invention retains the proline substitutions at positions 986 and 987, and adds K417N, E484K or E484A, and N501Y mutations. These three mutations are Beta mutant strains on the receptor binding domain (RBD). mutation, and appears repeatedly in other important mutant strains; it also contains the D614G mutation, which is present in all important mutant strains; it also contains furin cleavage site deletion/mutation, which can eliminate the S protein and cause cell fusion. disadvantages and enhance the immunogenicity of S protein.
  • the mRNA vaccine of the present invention can induce the production of high-level neutralizing antibodies against a variety of popular mutant strains.
  • neutral phospholipid refers to uncharged, non-phosphoglyceride phospholipid molecules.
  • polyethylene glycol (PEG)-lipid refers to a molecule comprising a lipid moiety and a polyethylene glycol moiety.
  • lipid nanoparticles (LNP) refers to particles with at least one nanometer scale size, which contain at least one lipid.
  • vaccine refers to a composition suitable for application to animals, including humans, which upon administration induces an immune response of sufficient strength to minimally assist in the prevention, amelioration or cure of clinical disease resulting from infection by a microorganism.
  • N/P is the molar ratio of N in the cationic lipid to P in the mRNA single nucleotide.
  • a first aspect of the present invention provides an mRNA encoding the spike (S) protein of the SARS-CoV-2 virus or a derivative protein thereof, and the amino acid sequence of the spike (S) protein is consistent with SEQ. ID NO: 1 has at least 75% homology (e.g., at least 80%, 85%, 90%, 95%, 99% homology to SEQ ID NO: 1), the spike (S)
  • the protein has modifications relative to SEQ ID NO:1, and the modification sites include: position 417 is replaced by asparagine; position 484 is replaced by lysine or alanine; position 501 is replaced by tyrosine ; Position 614 is replaced by glycine; positions 682-685 are partially or completely replaced and/or deleted; and/or positions 986 and 987 are replaced by one, more or all of proline.
  • the modification of the spike (S) protein also includes replacing positions 1-13 of SEQ ID NO:1 with other strong signal peptides, or adding other strong signal peptides at the N-terminus; the other strong signal peptides Including the signal peptide of tissue plasminogen activator (tPA) and the signal peptide of serum immunoglobulin E (lgE).
  • tPA tissue plasminogen activator
  • LgE serum immunoglobulin E
  • the modification of the spike (S) protein also includes adding a fragment for forming multimers at the N-terminus or C-terminus, and the fragment includes an Fc fragment or a trimerization motif of phage T4 fiber protein, preferably , the multimer includes dimers, trimers or more.
  • the spike (S) protein has the following modifications relative to SEQ ID NO:1:
  • the mRNA sequence is natural or modified RNA
  • the modified RNA includes modification of RNA by partially or completely replacing natural uridine with modified uridine.
  • the mRNA sequence is a modified RNA by completely replacing natural uridine with 1-methyl-pseudouridine.
  • the sequence of the mRNA is selected from SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO :13, or, the sequence of the mRNA is a sequence that is at least 75% homologous to any of the above sequences (for example, with SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO :11, SEQ ID NO:12, SEQ ID NO:13 has at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99 % homology), and the mRNA can encode the spike (S) protein of the SARS-CoV-2 virus or its derivative protein.
  • S spike
  • a second aspect of the present invention provides an mRNA vaccine, which includes:
  • the sequence of the spike (S) protein has at least 75% homology with SEQ ID NO:1 (e.g., at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% homology);
  • the spike (S) protein has modifications relative to SEQ ID NO: 1, and the modifications include: position 417 is replaced by asparagine; position 484 is replaced by lysine or alanine; position 501 Replaced by tyrosine; position 614 is replaced by glycine; positions 682-685 are partially or completely replaced and/or deleted; and/or positions 986 and 987 are replaced by one, more or more of proline all.
  • the mRNA vaccine includes 2) lipid nanoparticles (LNP); the mRNA is encapsulated in the lipid nanoparticles (LNP).
  • LNP lipid nanoparticles
  • the antigenic peptide or structural protein also includes envelope protein (E), membrane protein (M) or nucleocapsid protein (N), or immunogenic fragments or immunogenic variants thereof.
  • E envelope protein
  • M membrane protein
  • N nucleocapsid protein
  • the modification of the spike (S) protein encoded by the mRNA includes changes in the signal peptide.
  • positions 1-13 of SEQ ID NO:1 can be replaced with other strong signal peptides, or other strong signal peptides can be added at the N-terminus.
  • Signal peptides, the other strong signal peptides include the signal peptide of tissue plasminogen activator (tPA) and the signal peptide of serum immunoglobulin E (lgE).
  • the antigen peptide or structural protein encoded by the mRNA can be the full length of S protein, or the extracellular region of S protein.
  • the antigen peptide or structural protein encoded by the mRNA can be added to the N-terminus or C-terminus for forming a multimer (such as a dimer, or a trimer, or more polymers), and the fragment Includes the Fc fragment and the trimerization motif of bacteriophage T4 fiber protein.
  • a multimer such as a dimer, or a trimer, or more polymers
  • the mRNA can be natural or modified RNA; preferably, the RNA can be modified by partially or completely replacing natural uridine with modified uridine; more preferably, the RNA can be modified by using 1-methyl-pseudouridine. Glycoside completely replaces natural uridine.
  • the mRNA is composed of several structural elements, that is, in addition to the above-mentioned coding region, the mRNA also includes a 5' cap structure, a 5' non-coding region, a 3' non-coding region and/or polyadenosine. Acid tail mRNA sequence.
  • the length of the mRNA sequence is 200-10,000 nucleotides. Further preferably, the length of the mRNA sequence is 500-8000 nucleotides.
  • the sequence of the mRNA is selected from SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, SEQ ID NO:12, SEQ ID NO :13, or, the sequence of the mRNA is a sequence that is at least 75% homologous to any of the above sequences (for example, with SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO :11, SEQ ID NO:12, SEQ ID NO:13 has at least 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99 % homology), and the mRNA can encode the spike (S) protein of the SARS-CoV-2 virus or its derivative protein.
  • S spike
  • the lipid nanoparticles comprise cationic lipids, neutral phospholipids, steroidal lipids and polyethylene glycol (PEG)-lipids.
  • the cationic lipid has the following structure:
  • G 1 and G 2 are each independently unsubstituted C 6 -C 10 alkylene
  • G 3 is unsubstituted C 1 -C 12 alkylene
  • R 1 and R 2 are each independently C 6 -C 24 alkyl or C 6 -C 24 alkenyl
  • R 4 is C 1 -C 12 hydrocarbyl
  • R 5 is H or C 1 -C 6 hydrocarbon group.
  • Preferred, cationic lipid compound structure Preferred, cationic lipid compound structure:
  • the polyethylene glycol (PEG)-lipid is selected from: 2-[(polyethylene glycol)-2000]-N,N-tetradecyl acetamide (ALC-0159), 1 , 2-dimyristoyl-sn-glycerylmethoxypolyethylene glycol (PEG-DMG), 1,2-distearoyl-sn-glyceryl-3-phosphoethanolamine-N-[amino (polyethylene glycol) Diol)] (PEG-DSPE), PEG-diglycerol (PEG-DSG), PEG-dipalmitoleyl, PEG-dioleyl, PEG-distearyl, PEG-diacylglyceramide (PEG -DAG), PEG-dipalmitoylphosphatidylethanolamine (PEG-DPPE), PEG-1,2-dimyristoyloxypropyl-3-amine (PEG-c-DMA) or one of DMG-PEG2000 One or more
  • the neutral phospholipid is selected from: 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine Base (DPPC), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), 1,2-di Myristoyl-sn-glycero-3-phosphoethanolamine (DMPE), 2-dioleoyl-sn-glycero-3-phosphate-(1'-rac-glycerol) (DOPG), oleoylphosphatidylcholine (POPC) ), one or more combinations of 1-palmitoyl-2-oleoylphosphatidylethanolamine (POPE), preferably DSPC.
  • DSPC 1,2-distearoyl-sn-glycero-3-phosphocholine
  • the steroidal lipid is selected from the group consisting of avenasterol, beta-sitosterol, brassicasterol, ergocalciferol, campesterol, cholestanol, cholesterol, coprosterol, dehydrocholesterol, chain sterol, dihydrocholesterol Ergocalciferol, dihydrocholesterol, dihydroergosterol, acerol, epicholesterol, ergosterol, fucosterol, hexahydrophotosterol, hydroxycholesterol and cholesterol modified with peptides; lanosterol, photosterol, seaweed One or more combinations of sterol, sitosteranol, sitosterol, stigmastanol, stigmasterol, cholic acid, glycocholic acid, taurocholic acid, deoxycholic acid and lithocholic acid, preferably cholesterol.
  • the lipid nanoparticles are characterized in that the molar percentage of the cationic lipid in the lipid component is 20-60%, and the molar percentage of the neutral phospholipid in the lipid component is 20-60%.
  • the molar percentage of steroid lipids in the lipid component is 5% to 25%, and the molar percentage of polyethylene glycol (PEG)-lipid in the lipid component is 25% to 55%.
  • the content is 0.1% to 15%.
  • the lipid nanoparticles are characterized in that the cationic lipid: neutral phospholipid: steroidal lipid: polyethylene glycol (PEG)-lipid molar ratio is 30-60:5-20 :20-50:0.1-10, preferably, the molar ratio of the cationic lipid: neutral phospholipid: steroidal lipid: polyethylene glycol (PEG)-lipid conjugate is 40-60:10-20 :30-50:1-5, more preferably, the cationic lipid: neutral phospholipid: steroidal lipid: polyethylene glycol (PEG)-lipid molar ratio is 45:10:43:2 or 40 :10:48:2.
  • the mass ratio (w/ w) between 10-30:1
  • the mRNA vaccine also contains other auxiliary materials, and the other auxiliary materials are one of sodium acetate, tromethamine, potassium dihydrogen phosphate, sodium chloride, disodium hydrogen phosphate, and sucrose. or multiple combinations.
  • the other auxiliary materials are one of sodium acetate, tromethamine, potassium dihydrogen phosphate, sodium chloride, disodium hydrogen phosphate, and sucrose. or multiple combinations.
  • the mRNA vaccine is characterized in that the average particle size of the lipid nanoparticles is 50-200 nm or the lipid nanoparticles have a net neutral charge at neutral pH or the lipid nanoparticles
  • the particles have a polydispersity of less than 0.4.
  • the mRNA vaccine is a liquid preparation or a freeze-dried powder. More preferably, the mRNA vaccine is an oral preparation, intramuscular injection preparation, intravenous injection preparation or inhalation preparation. Further preferably, the mRNA vaccine is an aerosol inhalation agent or a dry powder inhalation agent.
  • the mRNA vaccine of the present invention may also contain pharmaceutically acceptable excipients.
  • the pharmaceutically acceptable excipients may be carriers, diluents, adjuvants or nucleotide sequences encoding adjuvants, solubilizers, adhesives, lubricants, suspending agents, transfection accelerators, etc.
  • the transfection promoters include, but are not limited to, surfactants such as immunostimulatory complexes, Freunds incomplete adjuvant, LPS analogs (such as monophosphoryl ester A), cell wall peptides, benzoquinone analogs, Squalene, hyaluronic acid, lipids, lipids, calcium ions, viral proteins, cations, polycations (eg poly-L-glutamic acid (LGS)) or nanoparticles or other known transfection promoters.
  • surfactants such as immunostimulatory complexes, Freunds incomplete adjuvant, LPS analogs (such as monophosphoryl ester A), cell wall peptides, benzoquinone analogs, Squalene, hyaluronic acid, lipids, lipids, calcium ions, viral proteins, cations, polycations (eg poly-L-glutamic acid (LGS)) or nanoparticles or other known transfection promoters.
  • the nucleotide sequence encoding the adjuvant is a nucleotide sequence encoding at least one of the following adjuvants: GM-CSF, IL-17, IFNg, IL-15, IL-21, anti-PD1/2, lactoferrin Protein, protamine, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12, INF- ⁇ , INF- ⁇ , Lymphotoxin- ⁇ , hGH, MCP-1, MIP-1a, MIP-1p, IL-8, RANTES, L-selectin, P-selectin, E-selectin, CD34, GlyCAM -1, MadCAM-1, LFA-1, VLA-1, Mac-1, pl50.95, PECAM, ICAM-1, ICAM-2, ICAM-3, CD2, LFA-3, M-CSF,, CD40, CD40L, vascular growth factor, fibro
  • a third aspect of the present invention provides a method for preparing the above-mentioned mRNA vaccine.
  • the preparation method includes dissolving cationic lipids, neutral phospholipids, steroidal lipids, and polyethylene glycol (PEG)-lipids into a solvent. Prepared by mixing with nucleic acids.
  • the preparation method of the mRNA vaccine is characterized by dissolving cationic lipids, neutral phospholipids, steroidal lipids, and polyethylene glycol (PEG)-lipids into ethanol and then diluting the diluted mRNA. It is prepared by ultrafiltration, dilution and filtration after liquid mixing; preferably, cationic lipids, neutral phospholipids, steroidal lipids, polyethylene glycol (PEG)-lipids are dissolved in ethanol and then diluted The mRNA diluent is mixed according to a certain flow rate ratio and then subjected to ultrafiltration, dilution and filtration.
  • the ultrafiltration method is tangential flow filtration; more preferably, the mixing method can be turbulent mixing, layer mixing, etc. Flow mixing or microfluidic mixing.
  • the diluent may be acetate buffer, citrate buffer, phosphate buffer or tris buffer.
  • the pH of the buffer is 3-6, and the concentration is 6.25-200mM.
  • the N/P when the lipid nanoparticles encapsulate the mRNA is 2-10, and the preferred N/P is 3-9.
  • the dosage form of the mRNA vaccine is oral preparation, intramuscular injection preparation, intravenous injection preparation, inhalation preparation, liquid preparation, freeze-dried powder, aerosol inhalation or dry powder inhalation.
  • the mRNA vaccine of the present invention may also contain pharmaceutically acceptable excipients.
  • the pharmaceutically acceptable excipients may be carriers, diluents, adjuvants or nucleotide sequences encoding adjuvants, solubilizers, adhesives, lubricants, suspending agents, transfection accelerators, etc.
  • the transfection promoters include, but are not limited to, surfactants such as immunostimulatory complexes, Freunds incomplete adjuvant, LPS analogs (such as monophosphoryl ester A), cell wall peptides, benzoquinone analogs, Squalene, hyaluronic acid, lipids, lipids, calcium ions, viral proteins, cations, polycations (eg poly-L-glutamic acid (LGS)) or nanoparticles or other known transfection promoters.
  • surfactants such as immunostimulatory complexes, Freunds incomplete adjuvant, LPS analogs (such as monophosphoryl ester A), cell wall peptides, benzoquinone analogs, Squalene, hyaluronic acid, lipids, lipids, calcium ions, viral proteins, cations, polycations (eg poly-L-glutamic acid (LGS)) or nanoparticles or other known transfection promoters.
  • the nucleotide sequence encoding the adjuvant is a nucleotide sequence encoding at least one of the following adjuvants: GM-CSF, IL-17, IFNg, IL-15, IL-21, anti-PD1/2, lactoferrin Protein, protamine, IL-1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12, INF- ⁇ , INF- ⁇ , Lymphotoxin- ⁇ , hGH, MCP-1, MIP-1a, MIP-1p, IL-8, RANTES, L-selectin, P-selectin, E-selectin, CD34, GlyCAM -1, MadCAM-1, LFA-1, VLA-1, Mac-1, pl50.95, PECAM, ICAM-1, ICAM-2, ICAM-3, CD2, LFA-3, M-CSF,, CD40, CD40L, vascular growth factor, fibro
  • a fourth aspect of the present invention provides an application of the above-mentioned mRNA or mRNA vaccine in preparing a vaccine for preventing or treating viral infection.
  • the viral infection is the novel coronavirus.
  • the mRNA vaccine preparation according to the present invention has good stability. Immunization can induce the production of high-level neutralizing antibodies against a variety of popular mutant strains, especially the mutant strains that are known to have strong escape effects in existing mRNA vaccines.
  • the mRNA COVID-19 vaccine can induce both humoral immunity and cellular immunity in the human body. It has a dual immune effect.
  • mRNA in vivo avoids contamination from exogenous factors such as viruses and proteins. And by modifying the mRNA sequence and delivery system, the expression and half-life of the mRNA in vivo can be effectively controlled, achieving high immunogenicity and long-term sustainability.
  • Figure 1 Different mRNA sequences and different delivered cationic lipid monoclonal antibody titers.
  • Figure 2 The Western-Blot method of HEK293 cells detects the in vitro expression of mRNA.
  • the mark “1” represents the cell lysate sample, and the mark “negative” represents the negative control.
  • Figure 3 ELISA method to detect S protein-specific IgG titer in BALB/c mouse model.
  • ICS method detects the frequency of CD4+ T cells that specifically secrete TNF ⁇ , IFN ⁇ , IL-2, IL-4 and IL-5 in the BALB/c mouse model;
  • ICS method detects the frequency of CD8+ T cells that specifically secrete TNF ⁇ , IFN ⁇ , IL-2, IL-4 and IL-5 in BALB/c mouse model.
  • Figure 6 ELISA method to detect S protein-specific IgG titer in rhesus monkey model.
  • Figure 7 qPCR method in hACE2 transgenic mouse model to detect the viral load of the turbinates after challenge with the prototype strain and Beta mutant strain true virus.
  • Figure 8 qPCR method in hACE2 transgenic mouse model to detect the viral load in the lungs after challenge with the prototype strain and Beta variant true virus.
  • Figure 9 FRNT method detects the neutralizing antibody titers of true viruses of the prototype strain, Beta variant strain, Delta variant strain and Omicron variant strain in the BALB/c mouse model.
  • Example 1 Matching screening of mRNA sequences and delivery cationic lipids
  • plasmid DNA sequences contain elements related to RNA transcription. Plasmids are transformed into E. coli and amplified. The fermentation-purified plasmid was linearized with restriction endonuclease BspQ1. Transcription was performed using the T7 in vitro transcription kit to obtain uncapped mRNA. The transcription templates were digested with DNaseI, and the mRNA was purified by precipitation. Use the Cap1 capping kit to cap the mRNA, and use the mRNA purification kit to purify the capped mRNA. Dissolve the purified mRNA in acidic sodium citrate buffer and set aside.
  • Each mRNA sequence is encapsulated with a formula containing cationic lipid ALC-0315, SM-102 or DLin-MC3-DMA; combine cationic lipid: neutral phospholipid: steroidal lipid: polyethylene glycol (PEG)-
  • the lipids were dissolved and mixed in ethanol at a molar ratio of 45:10:43:2.
  • Set the total flow rate of the nanomedicine manufacturing equipment to 12ml/min.
  • the tangential flow filtration system performs ultrafiltration replacement to collect the samples, and adds sucrose solution to obtain the mRNA vaccine (mRNA- LNP).
  • mice BALB/c female mice were randomly divided into 5 groups and immunized with 5 ⁇ g/mouse of mRNA-LNP. Blood was collected on the 14th day to detect the S protein-specific antibody titer. The test results are shown in Table 2 and Figure 1. Different Combinations of mRNA and LNP can produce higher antibody titers, including the combination of RBD/614/GSAG/2P and ALC-0315, the combination of RBD/614/A/2P and ALC-0315, and Omicron/GSAG/2P The average antibody titer of the combination with ALC-0315 was significantly higher than that of other lipid combinations.
  • Table 2 Average titers of mAbs with different mRNA sequences and different delivered cationic lipids
  • Example 2 Experiment on monoclonal antibody titer with different mass ratios of total lipids and mRNA
  • ALC-0315 neutral phospholipid: steroidal lipid: polyethylene glycol (PEG)-lipid in ethanol at a molar ratio of 45:10:43:2.
  • Set the total flow rate of the nanomedicine manufacturing equipment to 12ml/min.
  • Total lipids and mRNA solutions encoding RBD/614/GSAG/2P, RBD/614/A/2P, and Omicron/GSAG/2P were mixed according to total lipid/mRNA (w/w) 7:1, 10:1, and 20 respectively. :1, 30:1 encapsulation.
  • the tangential flow filtration system performs ultrafiltration replacement to collect the sample, and adds sucrose solution to obtain the mRNA vaccine (mRNA-LNP).
  • mice BALB/c female mice were randomly divided into groups of 5, and were immunized with 5ug/mouse of mRNA-LNP. Blood was collected on the 14th day to detect the S protein-specific antibody titer. The test results are as shown in the table below. When the total lipid When the mass ratio to mRNA is between 10-30:1, the monoclonal antibody titer is greater than 10 raised to the 5.5 power.
  • Table 3 Summary of monoclonal antibody titers based on the mass ratio of total lipids to mRNA
  • the plasmid containing SEQ ID NO:11 was linearized with restriction endonuclease BspQ1. Transcription was performed using the T7 in vitro transcription kit to obtain uncapped mRNA. The transcription templates were digested with DNaseI, and the mRNA was purified by precipitation. Use the Cap1 capping kit to cap the mRNA, and use the mRNA purification kit to purify the capped mRNA. Dissolve the purified mRNA in acidic sodium citrate buffer and set aside. The mRNA was transfected into HEK293 cells using a transfection reagent. The cells were collected 24 hours later, and the cell lysates were used for Western-Blot detection. The expression of S protein in the cells could be detected with an S protein-specific antibody, as shown in Figure 2.
  • the mRNA of other sequences SEQ ID NO: 8, 9, 10, 12, and 13 can be prepared according to the above steps, and the expression of S protein in cells can be detected.
  • ALC-0315 neutral phospholipid: steroidal lipid: polyethylene glycol (PEG)-lipid in ethanol at a molar ratio of 45:10:43:2.
  • Set the total flow rate of the nanomedicine manufacturing equipment to 12ml/min.
  • the tangential flow filtration system is ultrafiltrated and the liquid is changed to collect the sample, and sucrose is added. solution to obtain mRNA vaccine (mRNA-LNP).
  • the encapsulation rate measured by sampling was 91.49%, the average particle size was 81.99nm, the PDI was 0.07, and the Zeta potential was -8.20mV.
  • Example 5 Mouse immunogenicity detection of mRNA vaccine
  • mice BALB/c female mice were randomly divided into groups of 10 mice each, and were immunized with different immunization doses (10 ⁇ g/mouse in the high-dose group and 5 ⁇ g/mouse in the low-dose group) on days 0 and 28.
  • Example 1 RBD/614/A /2P-mRNA-LNP. Blood was collected on the 28th day (before the second immunization) and the 42nd day; on the 42nd day, the mice were sacrificed, the splenocytes were harvested, and the overlapping peptide library of S protein was used to stimulate and detect the cellular immune response.
  • the antibody titers of the first and second immunizations are shown in Figure 3.
  • the first immunization can induce a higher antibody response, but the second immunization can increase the antibody titer by about an order of magnitude; 5 ⁇ g can induce a sufficiently high antibody response in the mouse model.
  • increasing the dose to 10 ⁇ g did not improve the level of antibody response.
  • the frequency of CD4+T cells and CD8+T cells secreting IL-2, IFN ⁇ , TNF ⁇ , IL-4 and IL-5 after stimulation by the peptide library was detected by intracellular cytokine staining flow cytometry (ICS).
  • the frequency of CD4+T cells that specifically secrete the above-mentioned cytokines is shown in Figure 4.
  • the frequency of CD4+T cells that secrete IL-2, IFN ⁇ , and TNF ⁇ was significantly higher than that of the negative group.
  • the frequency of CD8+T cells that specifically secrete the above-mentioned cytokines is shown in Figure 5.
  • the frequency of CD8+T cells that secrete IL-2, IFN ⁇ , and TNF ⁇ is significantly higher than that of the negative group.
  • the frequency of CD8+T cells that secretes IFN ⁇ and TNF ⁇ is significantly higher than that of the negative group.
  • Rhesus monkeys were randomly divided into groups of 6, half male and female, and were immunized with different immunization doses (150ug/animal in the high-dose group and 50ug/animal in the low-dose group) on days 0 and 21.
  • Example 1 RBD/614/ A/2P-mRNA-LNP. Blood was collected on the 21st day (before the second vaccination) and the 28th day.
  • the antibody titers of the first and second immunizations are shown in Figure 6.
  • the first immunization can induce a higher antibody response, but the second immunization can increase the antibody titer by about an order of magnitude; 50ug can induce sufficient response in the rhesus monkey model.
  • 50ug can induce sufficient response in the rhesus monkey model.
  • increasing the dose to 150ug does not improve the level of antibody response.
  • Example 7 Mouse protective study of mRNA vaccine
  • hACE2 transgenic female C57BL/6 mice were randomly divided into groups of 16, and were immunized with different immunization doses (high-dose group 10ug/mouse, low-dose group 5ug/mouse) on days 0 and 21.
  • Example 1 RBD/614 /A/2P-mRNA-LNP.
  • each group of mice was randomly divided into 2 groups of 8 mice each: one group was infected with 5 ⁇ 105 PFU of the prototype strain of the new coronavirus (2019-nCoV-WIV04) by intranasal instillation; Infection with 5 ⁇ 105 PFU of the Beta variant of the novel coronavirus (NPRC2.062100001).
  • mice On the 5th day after the challenge, the mice were dissected, and the turbinates and lungs of the mice were removed respectively, and the viral load was determined by RT-qPCR.
  • the viral load in mouse turbinates is shown in Figure 7.
  • the mRNA vaccine can completely or partially prevent virus replication in turbinates.
  • the viral load in mouse lungs is shown in Figure 8.
  • the mRNA vaccine can completely or partially prevent virus replication in the lungs. It can be seen that the mRNA vaccine of the present invention has a good protective effect on both the prototype strain and the Beta variant strain.
  • BALB/c female mice were randomly divided into groups of 8, and were immunized with the RBD/614/A/2P-mRNA-LNP in Example 1 on days 0 and 14 at an immunization dose of 5ug/mouse. Blood was collected on day 28, and the spot reduction neutralization test (FRNT) was used to evaluate the neutralizing antibody levels in the serum.
  • Real viruses used for detection include new coronavirus prototype strains, Beta mutant strains, Delta mutant strains and Omicron mutant strains.
  • the neutralizing antibody test results show ( Figure 9) that the mouse serum 14 days after the second immunization has a good cross-neutralizing effect, and the geometric mean neutralizing antibodies against the prototype strain, Beta variant strain, Delta variant strain and Omicron variant strain The titers are all higher than 103.
  • the geometric average neutralizing antibody titer of serum against Omicron mutant strains after two shots of the mRNA vaccine of the present invention is reduced by 3.3 times compared with the prototype strain, and the cross-neutralizing activity against Omicron mutant strains is greatly enhanced compared to the commercial vaccine.

Abstract

提供了新型冠状病毒mRNA疫苗及其制备方法和用途。该新型冠状病毒mRNA 疫苗可以诱导强烈的新型冠状病毒特异性的体液和/或T细胞免疫应答,并可以诱导产生可广泛中和多种变异毒株的中和抗体。新型冠状病毒mRNA 疫苗递送载体具有良好的稳定性、递送效率高、安全有效质量可控。

Description

一种新型冠状病毒mRNA疫苗及其制备方法和用途 技术领域
本发明涉及疫苗研制技术领域,具体涉及一种编码新型冠状病毒S蛋白的mRNA在预防新型冠状病毒感染方面的应用。
背景技术
新型冠状病毒肺炎(COVID-19)是新型冠状病毒(SARS-CoV-2)感染导致的肺炎。2020年2月11日世界卫生组织宣布,将新型冠状病毒感染的肺炎正式命名为“COVID-19”(Coronavirus Disease);同日,国际病毒分类委员会将引起该疾病的病毒正式命名为“SARS-CoV-2”(Severe Acute Respiratory Syndrome Coronavirus 2)。2020年3月11日世界卫生组织宣布,根据评估COVID-19可被称为全球大流行病(pandemic),成为第一个由冠状病毒引起的全球大流行病。鉴于此,接种有效的预防性疫苗仍是防控新型冠状病毒感染的根本措施之一。
已商品化的新型冠状病毒mRNA疫苗的mRNA编码序列都是基于原型株的全长S蛋白,位置986和987处由脯氨酸替代。但是此设计的mRNA疫苗诱导产生的抗体对于一些流行变异株的中和活性有较大程度降低,如对Beta变异株的中和抗体滴度降低10倍以上,对Omicron变异株的中和抗体滴度降低20-50倍。
发明内容
本发明的mRNA疫苗的mRNA编码序列保留了位置986和987处的脯氨酸替代,增加了K417N、E484K或E484A、N501Y突变,这3个突变是Beta变异株在受体结合区(RBD)上的突变,并在其他的重要变异株中反复出现;并含有D614G突变,该突变在目前所有重要变异株中存在;此外还含有弗林酶切位点删除/突变,可以消除S蛋白引起细胞融合的不利,并增强S蛋白的免疫原性。本发明的mRNA疫苗可以诱导产生针对多种流行变异株的高水平的中和抗体。
本发明术语“中性磷脂”术语是指不带电荷的、非磷酸甘油酯的磷脂分子。
本发明术语“聚乙二醇(PEG)-脂质”是指包含脂质部分和聚乙二醇部分的分子。
本发明术语“脂质纳米颗粒”(Lipid nanoparticles,LNP)是指具有至少一个纳米量级尺寸的颗粒,其包含至少一种脂质。
本发明术语“疫苗”是指适合于应用于动物(包括人)的组合物,在施用后诱导免疫应答,其强度足以最低限度地帮助预防、改善或治愈起因于由微生物感染的临床疾病。
本发明术语,“N/P”为阳离子脂质中N与mRNA单核苷酸中P的摩尔比。
本发明的第一方面,提供了一种mRNA,所述的mRNA编码SARS-CoV-2病毒的刺突(S)蛋白或其衍生蛋白,所述的刺突(S)蛋白的氨基酸序列与SEQ ID NO:1具有至少75%的同源性(例如,与SEQ ID NO:1具有至少80%、85%、90%、95%、99%的同源性),所述刺突(S)蛋白具有相对于SEQ ID NO:1的修饰,所述的修饰位点包括:第417位由天冬酰胺替代;第484位由赖氨酸或丙氨酸替代;第501位由酪氨酸替代;第614位由甘氨酸替代;第682-685位发生氨基酸部分或全部替换和/或缺失;和/或,第986和987位由脯氨酸替代中的一个、多个或全部。
优选的,所述刺突(S)蛋白的修饰还包括将SEQ ID NO:1的第1-13位替换为其他强信号肽,或在N端增加其他强信号肽;所述其他强信号肽包括组织型纤溶酶原激活剂(tPA)的信号肽和血清免疫球蛋白E(lgE)的信号肽。
优选的,所述刺突(S)蛋白的修饰还包括在N端或C端增加用于形成多聚体的片段,所述片段包括Fc片段或噬菌体T4纤维蛋白的三聚化基序,优选的,所述多聚体包括二聚体,或三聚体或更多聚体。
具体的,所述刺突(S)蛋白具有相对于SEQ ID NO:1如下的修饰:
(1)K986P、V987P;或者,
(2)K417N、E484K、N501Y、K986P、V987P;或者,
(3)K417N、E484K、N501Y、R682G、R683S、R685G、K986P、V987P;或者,
(4)K417N、E484K、N501Y、D614G、R682G、R683S、R685G、K986P、V987P; 或者,
(5)K417N、E484K、N501Y、D614G、ΔR682(删除第682位)、ΔR683(删除第683位)、ΔR685(删除第685位)、K986P、V987P;或者,
(6)A67V、ΔH69(删除第69位)、ΔV70(删除第70位)、T95I、G142D、ΔV143(删除第143位)、ΔY144(删除第144位)、ΔY145(删除第145位)、N211I、ΔL212(删除第212位)、+214EPE(第214位增加EPE三个氨基酸)、G339D、S371L、S373P、S375F、K417N、N440K、G446S、S477N、T478K、E484A、Q493R、G496S、Q498R、N501Y、Y505H、T547K、D614G、H655Y、N679K、P681H、N764K、D796Y、N856K、N954K、N969K、L981F、R682G、R683S、R685G、K986P、V987P。
优选的,所述mRNA序列是天然或修饰的RNA,所述修饰的RNA包括通过用修饰的尿苷部分或全部取代天然尿苷对RNA进行修饰。
更优选的,所述mRNA序列是修饰的RNA,所述修饰的RNA为通过用1-甲基-假尿苷对天然尿苷进行全部替换。
在本发明的具体实施方式中,所述的mRNA的序列选自SEQ ID NO:8、SEQ ID NO:9、SEQ ID NO:10、SEQ ID NO:11、SEQ ID NO:12、SEQ ID NO:13,或者,所述的mRNA的序列为与上述任意序列至少75%的同源性的序列(例如,与SEQ ID NO:8、SEQ ID NO:9、SEQ ID NO:10、SEQ ID NO:11、SEQ ID NO:12、SEQ ID NO:13具有至少80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%的同源性),并且所述的mRNA能够编码SARS-CoV-2病毒的刺突(S)蛋白或其衍生蛋白。
本发明的第二方面,提供一种mRNA疫苗,所述mRNA疫苗包含:
1)至少一个信使核糖核酸mRNA,所述mRNA编码至少一种抗原肽或结构蛋白,所述抗原肽或结构蛋白包括SARS-CoV-2冠状病毒的刺突(S)蛋白或衍生蛋白,其中刺突(S)蛋白的序列与SEQ ID NO:1具有至少75%的同源性(例如,与 SEQ ID NO:1具有至少80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%的同源性);
所述刺突(S)蛋白具有相对于SEQ ID NO:1的修饰,所述的修饰包括:第417位由天冬酰胺替代;第484位由赖氨酸或丙氨酸替代;第501位由酪氨酸替代;第614位由甘氨酸替代;第682-685位发生氨基酸部分或全部替换和/或缺失;和/或,第986和987位由脯氨酸替代中的一个、多个或全部。
优选的,所述mRNA疫苗包括2)脂质纳米颗粒(LNP);所述mRNA包封于所述脂质纳米颗粒(LNP)中。
优选的,所述抗原肽或结构蛋白还包括包膜蛋白(E),膜蛋白(M)或核衣壳蛋白(N),或其免疫原性片段或免疫原性变体。
优选的,所述mRNA编码的刺突(S)蛋白的修饰包括信号肽变化,例如,可将SEQ ID NO:1的第1-13位替换为其他强信号肽,或在N端增加其他强信号肽,所述其他强信号肽包括组织型纤溶酶原激活剂(tPA)的信号肽和血清免疫球蛋白E(lgE)的信号肽。
优选的,所述mRNA编码的抗原肽或结构蛋白可以是S蛋白全长,或者S蛋白胞外区。
优选的,所述mRNA编码的抗原肽或结构蛋白可以在N端或C端增加用于形成多聚体(例如二聚体,或三聚体,或更多聚体)的片段,所述片段包括Fc片段和噬菌体T4纤维蛋白的三聚化基序。
优选的,所述mRNA可以是天然或修饰的RNA;优选的,可以通过用修饰的尿苷部分或全部取代天然尿苷对RNA进行修饰;更优选的,可以通过用1-甲基-假尿苷对天然尿苷进行全部替换。
优选的,所述的mRNA由若干个结构元件组成,即所述的mRNA除包含上述编码区外还包括5’帽子结构,5’非编码区,3’非编码区和/或多聚腺苷酸尾的mRNA序列。
优选的,所述的mRNA序列的长度为200-10000个核苷酸。进一步优选的,所述的mRNA序列的长度为500-8000个核苷酸。
在本发明的具体实施方式中,所述的mRNA的序列选自SEQ ID NO:8、SEQ ID NO:9、SEQ ID NO:10、SEQ ID NO:11、SEQ ID NO:12、SEQ ID NO:13,或者,所述的mRNA的序列为与上述任意序列至少75%的同源性的序列(例如,与SEQ ID NO:8、SEQ ID NO:9、SEQ ID NO:10、SEQ ID NO:11、SEQ ID NO:12、SEQ ID NO:13具有至少80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%的同源性),并且所述的mRNA能够编码SARS-CoV-2病毒的刺突(S)蛋白或其衍生蛋白。
优选的,所述脂质纳米颗粒包含阳离子脂质、中性磷脂、甾族脂质和聚乙二醇(PEG)-脂质。
优选的,所述的阳离子脂质具有以下结构:
Figure PCTCN2022140395-appb-000001
或其药物可接受的盐或立体异构体,其中:
G 1和G 2各自独立地为未取代的C 6-C 10亚烷基;
G 3为未取代的C 1-C 12亚烷基;
R 1和R 2各自独立地为C 6-C 24烷基或C 6-C 24烯基;
R 3为OR 5、CN、-C(=O)OR 4、-OC(=O)R 4或–NR 5C(=O)R 4
R 4为C 1-C 12烃基;并且
R 5为H或C 1-C 6烃基。
优选的,阳离子脂质化合物结构:
DLin-MC3-DMA:
Figure PCTCN2022140395-appb-000002
ALC-0315:
Figure PCTCN2022140395-appb-000003
SM-102:
Figure PCTCN2022140395-appb-000004
优选的,所述的聚乙二醇(PEG)-脂质选自:2-[(聚乙二醇)-2000]-N,N-二十四烷基乙酰胺(ALC-0159)、1,2-二肉豆蔻酰基-sn-甘油甲氧基聚乙二醇(PEG-DMG)、1,2-二硬脂酰基-sn-甘油基-3-磷酸乙醇胺-N-[氨基(聚乙二醇)](PEG-DSPE)、PEG-二甾醇基甘油(PEG-DSG)、PEG-二棕榈油基、PEG-二油基、PEG-二硬脂基、PEG-二酰基甘油酰胺(PEG-DAG)、PEG-二棕榈酰基磷脂酰乙醇胺(PEG-DPPE)、PEG-1,2-二肉豆蔻酰基氧基丙基-3-胺(PEG-c-DMA)或DMG-PEG2000中的一种或多种组合,优选的为DMG-PEG2000。
优选的,所述的中性磷脂选自:1,2-二硬脂酰-sn-甘油-3-磷酸胆碱(DSPC)、1,2-二棕榈酰-sn-甘油-3-磷酸胆碱(DPPC)、1,2-二油酰-sn-甘油-3-磷酸乙醇胺(DOPE)、1,2-二棕榈酰-sn-甘油-3-磷酸乙醇胺(DPPE)、1,2-二肉豆蔻酰-sn-甘油-3-磷酸乙醇胺(DMPE)、 2-二油酰基-sn-甘油-3-磷酸-(1'-rac-甘油)(DOPG)、油酰磷脂酰胆碱(POPC)、1-棕榈酰基-2-油酰基磷脂酰乙醇胺(POPE)中的一种或多种组合,优选的为DSPC。
优选的,所述的甾族脂质选自燕麦甾醇、β-谷甾醇、菜子甾醇、麦角骨化醇、菜油甾醇、胆甾烷醇、胆固醇、粪甾醇、脱氢胆固醇、链甾醇、二氢麦角骨化醇、二氢胆固醇、二氢麦角甾醇、黑海甾醇、表胆甾醇、麦角甾醇、岩藻甾醇、六氢光甾醇、羟基胆固醇以及经多肽修饰后的胆固醇;羊毛甾醇、光甾醇、海藻甾醇、谷甾烷醇、谷甾醇、豆甾烷醇、豆甾醇、胆酸、甘氨胆酸、牛磺胆酸、脱氧胆酸和石胆酸中的一种或多种组合,优选的为胆固醇。
优选的,所述的脂质纳米颗粒,其特征在于,所述的阳离子脂质在脂质组分中的摩尔百分含量为20~60%、中性磷脂在脂质组分中的摩尔百分含量为5%~25%、甾族脂质在脂质组分中的摩尔百分含量为25%~55%;聚乙二醇(PEG)-脂质在脂质组分中的摩尔百分含量为0.1%~15%。
优选的,所述的脂质纳米颗粒,其特征在于,所述阳离子脂质:中性磷脂:甾族脂质:聚乙二醇(PEG)-脂质摩尔比为30-60:5-20:20-50:0.1-10,优选的,所述阳离子脂质:中性磷脂:甾族脂质:聚乙二醇(PEG)-脂质缀合物摩尔比为40-60:10-20:30-50:1-5,更优选的,所述阳离子脂质:中性磷脂:甾族脂质:聚乙二醇(PEG)-脂质摩尔比为45:10:43:2或40:10:48:2。
优选的,所述脂质纳米颗粒(LNP)中总脂质(即阳离子脂质、中性磷脂、甾族脂质和聚乙二醇(PEG)-脂质)与mRNA的质量比(w/w)在10-30:1之间
优选的,所述的mRNA疫苗,所述疫苗中还包含其他辅料,所述其他辅料为醋酸钠、氨丁三醇、磷酸二氢钾、氯化钠、磷酸氢二钠、蔗糖中的一种或多种组合。
优选的,所述的mRNA疫苗,其特征在于,所述脂质纳米颗粒的平均粒径为50~200nm或所述脂质纳米颗粒在中性pH下具有净中性电荷或所述脂质纳米颗粒具有小于0.4的多分散性。
优选的,所述mRNA疫苗为液体制剂或冻干粉剂。更优选的,所述mRNA疫苗为口服制剂、肌肉注射制剂、静脉注射制剂或吸入制剂。进一步优选的,所述mRNA疫苗为雾化吸入剂或干粉吸入剂。
本发明所述的mRNA疫苗还可以包含药学上可接受的赋形剂。所述药学上可接受的赋形剂可以是载体、稀释剂、佐剂或编码佐剂核苷酸序列、增溶剂、粘合剂、润滑剂、助悬剂、转染促进剂等。所述转染促进剂包括但不限于表面活性剂如免疫刺激复合物、费氏(Freunds)不完全佐剂、LPS类似物(例如单磷酰酯A)、胞壁肽、苯醌类似物、角鲨烯、透明质酸、脂质、脂质、钙离子、病毒蛋白质、阳离子、聚阳离子(例如聚-L-谷氨酸(LGS))或纳米粒子或其他已知的转染促进剂。所述的编码佐剂的核苷酸序列为编码如下至少一种佐剂的核苷酸序列:GM-CSF、IL-17、IFNg、IL-15、IL-21、抗PD1/2、乳铁蛋白、鱼精蛋白、IL-1、IL-2、IL-3、IL-4、IL-5、IL-6、IL-7、IL-8、IL-9、IL-10、IL-12、INF-α、INF-γ、Lymphotoxin-α、hGH、MCP-1、MIP-1a、MIP-1p、IL-8、RANTES、L-选择蛋白、P-选择蛋白、E-选择蛋白、CD34、GlyCAM-1、MadCAM-1、LFA-1、VLA-1、Mac-1、pl50.95、PECAM、ICAM-1、ICAM-2、ICAM-3、CD2、LFA-3、M-CSF、、CD40、CD40L、血管生长因子、成纤维细胞生长因子、神经生长因子、血管内皮生长因子、Apo-1、p55、WSL-1、DR3、TRAMP、Apo-3、AIR、LARD、NGRF、DR4、DR5、KILLER、TRAIL-R2、TRICK2、DR6、半胱天冬酶ICE、Fos、c-jun、Sp-1、Ap-1、Ap-2、p38、p65Rel、MyD88、IRAK、TRAF6、IkB、无活性的NIK、SAP K、SAP-1、JNK、NFkB、Bax、TRAIL、TRAILrec、TRAILrecDRC5、TRAIL-R3、TRAIL-R4、RANK、RANK LIGAND、Ox40、Ox40LIGAND、NKG2D、MICA、MICB、NKG2A、NKG2B、NKG2C、NKG2E、NKG2F、TAP1、TAP2以及其功能性片段。
本发明的第三方面,提供一种上述mRNA疫苗的制备方法,所述制备方法包括将阳离子脂质、中性磷脂、甾族脂质、聚乙二醇(PEG)-脂质溶解至溶剂后与核酸混合后制得。
优选的,所述mRNA疫苗的制备方法,其特征在于,将阳离子脂质、中性磷脂、甾族脂质、聚乙二醇(PEG)-脂质溶解至乙醇后与经稀释后的mRNA稀释液混合后经超滤、稀释、过滤后制得;优选的,将阳离子脂质、中性磷脂、甾族脂质、聚乙二醇(PEG)-脂质溶解至乙醇后与经稀释后的mRNA稀释液按一定流速比混合后经超滤、稀释、过滤后制得;优选的,所述的超滤方式为切向流过滤;更优选的,所述的混合方式可为湍流混合、层流混合或微流体混合。
更优选的,所述稀释液可为乙酸盐缓冲液、柠檬酸盐缓冲液、磷酸盐缓冲液或tris缓冲液。进一步优选的,所述缓冲液pH为3~6,浓度为6.25~200mM。
优选的,所述的mRNA疫苗的制备方法中,脂质纳米颗粒包封mRNA时的N/P为2-10,优选的N/P为3-9。
优选的,mRNA疫苗的剂型为口服制剂、肌肉注射制剂、静脉注射制剂、吸入制剂、液体制剂、冻干粉剂、雾化吸入剂或干粉吸入剂。
本发明所述的mRNA疫苗还可以包含药学上可接受的赋形剂。所述药学上可接受的赋形剂可以是载体、稀释剂、佐剂或编码佐剂核苷酸序列、增溶剂、粘合剂、润滑剂、助悬剂、转染促进剂等。所述转染促进剂包括但不限于表面活性剂如免疫刺激复合物、费氏(Freunds)不完全佐剂、LPS类似物(例如单磷酰酯A)、胞壁肽、苯醌类似物、角鲨烯、透明质酸、脂质、脂质、钙离子、病毒蛋白质、阳离子、聚阳离子(例如聚-L-谷氨酸(LGS))或纳米粒子或其他已知的转染促进剂。所述的编码佐剂的核苷酸序列为编码如下至少一种佐剂的核苷酸序列:GM-CSF、IL-17、IFNg、IL-15、IL-21、抗PD1/2、乳铁蛋白、鱼精蛋白、IL-1、IL-2、IL-3、IL-4、IL-5、IL-6、IL-7、IL-8、IL-9、IL-10、IL-12、INF-α、INF-γ、Lymphotoxin-α、hGH、MCP-1、MIP-1a、MIP-1p、IL-8、RANTES、L-选择蛋白、 P-选择蛋白、E-选择蛋白、CD34、GlyCAM-1、MadCAM-1、LFA-1、VLA-1、Mac-1、pl50.95、PECAM、ICAM-1、ICAM-2、ICAM-3、CD2、LFA-3、M-CSF、、CD40、CD40L、血管生长因子、成纤维细胞生长因子、神经生长因子、血管内皮生长因子、Apo-1、p55、WSL-1、DR3、TRAMP、Apo-3、AIR、LARD、NGRF、DR4、DR5、KILLER、TRAIL-R2、TRICK2、DR6、半胱天冬酶ICE、Fos、c-jun、Sp-1、Ap-1、Ap-2、p38、p65Rel、MyD88、IRAK、TRAF6、IkB、无活性的NIK、SAP K、SAP-1、JNK、NFkB、Bax、TRAIL、TRAILrec、TRAILrecDRC5、TRAIL-R3、TRAIL-R4、RANK、RANK LIGAND、Ox40、Ox40LIGAND、NKG2D、MICA、MICB、NKG2A、NKG2B、NKG2C、NKG2E、NKG2F、TAP1、TAP2以及其功能性片段。
本发明的第四方面,提供一种上述mRNA或者mRNA疫苗在制备用于预防或治疗病毒感染的疫苗中的应用。
具体地,其中的病毒感染为新型冠状病毒。
本发明相比现有技术的有益效果为:
采用本发明所述的mRNA疫苗制剂稳定性良好。免疫可以诱导产生针对多种流行变异株的高水平的中和抗体,尤其是对现有mRNA疫苗已知有较强逃逸效果的变异株有较好中和效果。
mRNA新冠疫苗既可诱导人体产生体液免疫,又可引发人体产生细胞免疫,它具有双重免疫作用。
在体内表达mRNA可避免来自病毒和蛋白质等外源因子的污染。且通过修饰mRNA序列和递送系统,可以有效调控mRNA的表达性和体内半衰期,达到高效免疫原性的同时具有长效持续性。
附图说明
图1:不同mRNA序列及不同递送阳离子脂质单免抗体滴度。
图2:HEK293细胞Western-Blot法检测mRNA的体外表达情况,其中标记“1”代 表的细胞裂解物样品,标记“阴”代表阴性对照。
图3:BALB/c小鼠模型上ELISA法检测S蛋白特异性IgG滴度。
图4:BALB/c小鼠模型上ICS法检测特异性分泌TNFα、IFNγ、IL-2、IL-4和IL-5的CD4+T细胞频数;
图5:BALB/c小鼠模型上ICS法检测特异性分泌TNFα、IFNγ、IL-2、IL-4和IL-5的CD8+T细胞频数。
图6:恒河猴模型上ELISA法检测S蛋白特异性IgG滴度。
图7:hACE2转基因小鼠模型上qPCR法检测原型株和Beta变异株真病毒攻毒后鼻甲的病毒载量。
图8:hACE2转基因小鼠模型上qPCR法检测原型株和Beta变异株真病毒攻毒后肺部的病毒载量。
图9:BALB/c小鼠模型上FRNT法检测原型株、Beta变异株、Delta变异株和Omicron变异株真病毒中和抗体滴度。
具体实施方式
下面将结合本发明的附图,对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的部分实施例,而不是全部。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:mRNA序列及递送阳离子脂质匹配筛选
根据下表所示的蛋白序列设计质粒DNA序列。
表1:蛋白序列信息汇总
Figure PCTCN2022140395-appb-000005
Figure PCTCN2022140395-appb-000006
Figure PCTCN2022140395-appb-000007
注:Δ代表删除突变
人工合成质粒DNA序列,DNA序列含RNA转录相关的元件。质粒转化如大肠杆菌中进行扩增。发酵纯化后的质粒用限制性核酸内切酶BspQ1线性化。用T7体外转录试剂盒进行转录,获得的未加帽的mRNA。分别用DNaseI消化转录模板,并用沉淀法纯化mRNA。用Cap1加帽试剂盒给mRNA加帽,并分别用mRNA纯化试剂盒对加帽后的mRNA进行纯化。将纯化后的mRNA溶解于酸性柠檬酸钠缓冲液中,待用。每条mRNA序列分别用含阳离子脂质ALC-0315、SM-102或DLin-MC3-DMA的配方包封;将阳离子脂质:中性磷脂:甾族脂质:聚乙二醇(PEG)-脂质按摩尔比为45:10:43:2在乙醇中溶解、混合。设定纳米药物制造设备总流速12ml/min。将表1中的mRNA溶液与脂质混合溶液分别按流速比3:1包封,包封完成后,切向流过滤系统超滤换液收集样品,并加入蔗糖溶液,得到mRNA疫苗(mRNA-LNP)。BALB/c雌性小鼠按5只组进行随机分组,按5μg/只单免mRNA-LNP,在第14天采血检测S蛋白特异性抗体滴度,检测结果如表2、图1所示,不同mRNA和LNP的组合均可产生较高的抗体滴度,其中RBD/614/GSAG/2P和ALC-0315的组合、RBD/614/A/2P和ALC-0315的组合,以及Omicron/GSAG/2P和ALC-0315的组合的平均抗体滴度明显高于其他种类脂质组合。
表2:不同mRNA序列及不同递送阳离子脂质单免抗体平均滴度
Figure PCTCN2022140395-appb-000008
Figure PCTCN2022140395-appb-000009
实施例2:不同总脂质与mRNA的质量比单免抗体滴度实验
将ALC-0315:中性磷脂:甾族脂质:聚乙二醇(PEG)-脂质按摩尔比为45:10:43:2在乙醇中溶解、混合。设定纳米药物制造设备总流速12ml/min。总脂质与编码RBD/614/GSAG/2P,RBD/614/A/2P,Omicron/GSAG/2P的mRNA溶液分别按照总脂质/mRNA(w/w)7:1、10:1、20:1、30:1包封,包封完成后,切向流过滤系统超滤换液收集样品,并加入蔗糖溶液,得到mRNA疫苗(mRNA-LNP)。BALB/c雌性小鼠按5只每组进行随机分组,按5ug/只单免mRNA-LNP,在第14天采血检测S蛋白特异性抗体滴度,检测结果如下表所示,当总脂质与mRNA的质量比在10-30:1之间时,单免抗体滴度大于10的5.5次方。
表3:总脂质与mRNA的质量比单免抗体滴度汇总
Figure PCTCN2022140395-appb-000010
Figure PCTCN2022140395-appb-000011
实施例3:mRNA的制备与检测
包含SEQ ID NO:11的质粒用限制性核酸内切酶BspQ1线性化。用T7体外转录试剂盒进行转录,获得的未加帽的mRNA。分别用DNaseI消化转录模板,并用沉淀法纯化mRNA。用Cap1加帽试剂盒给mRNA加帽,并分别用mRNA纯化试剂盒对加帽后的mRNA进行纯化。将纯化后的mRNA溶解于酸性柠檬酸钠缓冲液中,待用。将mRNA用转染试剂转染进入HEK293细胞,24h后收集细胞,用细胞裂解物做Western-Blot检测,可用S蛋白特异性抗体检测到S蛋白在细胞中的表达,如图2所示。
其他序列SEQ ID NO:8、9、10、12、13的mRNA参照上述步骤进行制备,并可检测到S蛋白在细胞中的表达。
实施例4:mRNA疫苗的制备与检测
将ALC-0315:中性磷脂:甾族脂质:聚乙二醇(PEG)-脂质按摩尔比为45:10:43:2在乙醇中溶解、混合。设定纳米药物制造设备总流速12ml/min。将实施例1中的RBD/614/A/2P-mRNA溶液与脂质混合溶液按流速比3:1包封,包封完成后,切向流过滤系统超滤换液收集样品,并加入蔗糖溶液,得到mRNA疫苗(mRNA-LNP)。取样测得包封率为91.49%,平均粒径为81.99nm,PDI为0.07,Zeta电位为-8.20mV。
实施例5:mRNA疫苗的小鼠免疫原性检测
BALB/c雌性小鼠按10只每组进行随机分组,在第0天和28天按不同免疫剂量(高剂量组10μg/只、低剂量组5μg/只)免疫实施例1 RBD/614/A/2P-mRNA-LNP。在第28天(二免前)和第42天采血;第42天,处死小鼠、收获脾细胞并使用S蛋白的重叠肽库进行刺激检测细胞免疫应答。
一免和二免的抗体滴度如图3所示,一免即可以引起较高的抗体应答,但二免可以使抗体滴度增加约一个数量级;5μg即可在小鼠模型上引起足够高的抗体滴度,增加剂量到10μg并不能提高抗体应答水平。
通过细胞内细胞因子染色流式细胞术(ICS)方法检测受到肽库刺激后分泌IL-2、IFNγ、TNFα、IL-4和IL-5的CD4+T细胞和CD8+T细胞的频数。特异性分泌上述细胞因子的CD4+T细胞频数如图4所示,分泌IL-2、IFNγ和TNFα的CD4+T细胞频数相比阴性组有明显升高。特异性分泌上述细胞因子的CD8+T细胞频数如图5所示,分泌IL-2、IFNγ和TNFα的CD8+T细胞频数相比阴性组有明显升高,分泌IFNγ和TNFα的CD8+T细胞占比达到了5%-10%,展现出很高的细胞应答水平。
实施例6:mRNA疫苗的恒河猴免疫原性检测
恒河猴按6只每组、雌雄各半进行随机分组,在第0天和21天按不同免疫剂量(高剂量组150ug/只、低剂量组50ug/只)免疫实施例1 RBD/614/A/2P-mRNA-LNP。在第21天(二免前)和第28天采血。
一免和二免的抗体滴度如图6所示,一免即可以引起较高的抗体应答,但二免可以使抗体滴度增加约一个数量级;50ug即可在恒河猴模型上引起足够高的抗体滴度,增加剂量到150ug并不能提高抗体应答水平。
实施例7:mRNA疫苗的小鼠保护性研究
hACE2转基因雌性C57BL/6小鼠按16只每组进行随机分组,在第0天和21天按不同免疫剂量(高剂量组10ug/只、低剂量组5ug/只)免疫实施例1 RBD/614/A/2P-mRNA-LNP。二免后第21天,每组小鼠再按8只每组随机分为2组:一组滴鼻感染5×105PFU的原型 株的新型冠状病毒(2019-nCoV-WIV04);一组滴鼻感染5×105PFU的Beta变异株的新型冠状病毒(NPRC2.062100001)。攻毒后第5天,解剖小鼠,分别取小鼠鼻甲和肺,通过RT-qPCR测定病毒载量。小鼠鼻甲的病毒载量如图7所示,mRNA疫苗可以完全或部分阻止病毒在鼻甲的复制。小鼠肺部的病毒载量如图8所示,mRNA疫苗可以完全或部分阻止病毒在肺部的复制。可见本发明的mRNA疫苗对原型株和Beta变异株都有很好的保护效果。
实施例8:mRNA疫苗的交叉保护性研究
BALB/c雌性小鼠按8只每组进行随机分组,在第0天和14天按5ug/只的免疫剂量免疫实施例1 RBD/614/A/2P-mRNA-LNP。在第28天采血,采用斑点减少中和试验(FRNT)评价血清中的中和抗体水平。检测用真病毒包括新型冠状病毒原型株、Beta变异株、Delta变异株及Omicron变异株。中和抗体检测结果表明(图9),二免后14天的小鼠血清具有较好的交叉中和效果,对原型株、Beta变异株、Delta变异株和Omicron变异株的几何平均中和抗体滴度均高于103。本发明的mRNA疫苗两针免疫后血清对Omicron变异株的几何平均中和抗体滴度相比于原型株降低了3.3倍,相对于商品化疫苗对Omicron变异株的交叉中和活性大幅增强。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。

Claims (34)

  1. 一种mRNA疫苗,其特征在于,所述mRNA疫苗包含:
    至少一个信使核糖核酸mRNA,所述mRNA编码至少一种抗原肽或结构蛋白,所述抗原肽或结构蛋白包括SARS-CoV-2冠状病毒的刺突(S)蛋白或衍生蛋白,所述刺突(S)蛋白的序列与SEQ ID NO:1具有至少75%的同源性,所述刺突(S)蛋白具有相对于SEQ ID NO:1的修饰,所述的修饰包括:
    第417位由天冬酰胺替代;第484位由赖氨酸或丙氨酸替代;第501位由酪氨酸替代;第614位由甘氨酸替代;第682-685位发生氨基酸部分或全部替换和/或缺失;和/或,第986和987位由脯氨酸替代。
  2. 根据权利要求1所述的mRNA疫苗,其特征在于,所述mRNA疫苗还包含脂质纳米颗粒(LNP),所述mRNA包封于所述脂质纳米颗粒(LNP)中。
  3. 根据权利要求2所述的mRNA疫苗,其特征在于,所述脂质纳米颗粒包含阳离子脂质、中性磷脂、甾族脂质和聚乙二醇(PEG)-脂质。
  4. 根据权利要求3所述的mRNA疫苗,其特征在于,所述阳离子脂质具有以下结构:
    Figure PCTCN2022140395-appb-100001
    或其药物可接受的盐或立体异构体,其中:
    G 1和G 2各自独立地为未取代的C 6-C 10亚烷基;
    G 3为未取代的C 1-C 12亚烷基;
    R 1和R 2各自独立地为C 6-C 24烷基或C 6-C 24烯基;
    R 3为OR 5、CN、-C(=O)OR 4、-OC(=O)R 4或–NR 5C(=O)R 4
    R 4为C 1-C 12烃基;并且
    R 5为H或C 1-C 6烃基。
  5. 根据权利要求3所述的mRNA疫苗,其特征在于,所述阳离子脂质的结构为:
    Figure PCTCN2022140395-appb-100002
  6. 根据权利要求1所述的mRNA疫苗,其特征在于,所述刺突(S)蛋白的修饰还包括将SEQ ID NO:1的第1-13位替换为其他强信号肽,或在N端增加其他强信号肽;
    所述其他强信号肽包括组织型纤溶酶原激活剂(tPA)的信号肽和血清免疫球蛋白E(lgE)的信号肽。
  7. 根据权利要求1所述的mRNA疫苗,其特征在于,所述刺突(S)蛋白的修饰还包括在N端或C端增加用于形成多聚体的片段,所述片段包括Fc片段或噬菌体T4纤维蛋白的三聚化基序。
  8. 根据权利要求1所述的mRNA疫苗,其特征在于,所述mRNA序列是天然或修饰的RNA,所述修饰的RNA包括通过用修饰的尿苷部分或全部取代天然尿苷对RNA进行修饰。
  9. 根据权利要求8所述的mRNA疫苗,其特征在于,所述mRNA序列是修饰的RNA,所述修饰的RNA为通过用1-甲基-假尿苷对天然尿苷进行全部替换。
  10. 根据权利要求3所述的mRNA疫苗,其特征在于,所述聚乙二醇(PEG)-脂质选自:2-[(聚乙二醇)-2000]-N,N-二十四烷基乙酰胺(ALC-0159)、1,2-二肉豆蔻酰基-sn-甘油甲氧基聚乙二醇(PEG-DMG)、1,2-二硬脂酰基-sn-甘油基-3-磷酸乙醇胺-N-[氨基(聚乙二醇)](PEG-DSPE)、PEG-二甾醇基甘油(PEG-DSG)、PEG-二棕榈油基、PEG-二油基、PEG-二硬脂基、PEG-二酰基甘油酰胺(PEG-DAG)、PEG-二棕 榈酰基磷脂酰乙醇胺(PEG-DPPE)、PEG-1,2-二肉豆蔻酰基氧基丙基-3-胺(PEG-c-DMA)或DMG-PEG2000中的一种或多种组合。
  11. 根据权利要求3所述的mRNA疫苗,其特征在于,所述的中性磷脂选自:1,2-二硬脂酰-sn-甘油-3-磷酸胆碱(DSPC)、1,2-二棕榈酰-sn-甘油-3-磷酸胆碱(DPPC)、1,2-二油酰-sn-甘油-3-磷酸乙醇胺(DOPE)、1,2-二棕榈酰-sn-甘油-3-磷酸乙醇胺(DPPE)、1,2-二肉豆蔻酰-sn-甘油-3-磷酸乙醇胺(DMPE)、2-二油酰基-sn-甘油-3-磷酸-(1'-rac-甘油)(DOPG)、油酰磷脂酰胆碱(POPC)、1-棕榈酰基-2-油酰基磷脂酰乙醇胺(POPE)中的一种或多种组合。
  12. 根据权利要求3所述的mRNA疫苗,其特征在于,所述的甾族脂质选自燕麦甾醇、β-谷甾醇、菜子甾醇、麦角骨化醇、菜油甾醇、胆甾烷醇、胆固醇、粪甾醇、脱氢胆固醇、链甾醇、二氢麦角骨化醇、二氢胆固醇、二氢麦角甾醇、黑海甾醇、表胆甾醇、麦角甾醇、岩藻甾醇、六氢光甾醇、羟基胆固醇以及经多肽修饰后的胆固醇;羊毛甾醇、光甾醇、海藻甾醇、谷甾烷醇、谷甾醇、豆甾烷醇、豆甾醇、胆酸、甘氨胆酸、牛磺胆酸、脱氧胆酸和石胆酸中的一种或多种组合。
  13. 根据权利要求3所述的mRNA疫苗,其特征在于,所述聚乙二醇(PEG)-脂质为DMG-PEG2000;所述中性磷脂为DSPC;所述的甾族脂质为胆固醇。
  14. 根据权利要求3所述的mRNA疫苗,其特征在于,所述的阳离子脂质在脂质组分中的摩尔百分含量为20~60%、中性磷脂在脂质组分中的摩尔百分含量为5%~25%、甾族脂质在脂质组分中的摩尔百分含量为25%~55%;聚乙二醇(PEG)-脂质在脂质组分中的摩尔百分含量为0.1%~15%。
  15. 根据权利要求13-14任一项所述的mRNA疫苗,其特征在于,脂质纳米颗粒(LNP)中总脂质与mRNA的质量比(w/w)在10-30:1之间。
  16. 根据权利要求14所述的mRNA疫苗,其特征在于,所述阳离子脂质:中性磷脂:甾族脂质:聚乙二醇(PEG)-脂质摩尔比为30-60:5-20:20-50:0.1-10。
  17. 根据权利要求2所述的mRNA疫苗,其特征在于,所述mRNA疫苗中还包含其他辅料,所述其他辅料包括醋酸钠、氨丁三醇、磷酸二氢钾、氯化钠、磷酸氢二钠、蔗糖中的一种或多种组合。
  18. 根据权利要求2所述的mRNA疫苗,其特征在于,所述脂质纳米颗粒的平均粒径为50~200nm;或所述脂质纳米颗粒在中性pH下具有净中性电荷;或所述脂质纳米颗粒具有小于0.4的多分散性。
  19. 根据权利要求1所述的mRNA疫苗,其特征在于,所述抗原肽或结构蛋白还包括包膜蛋白(E),膜蛋白(M)或核衣壳蛋白(N),或其免疫原性片段或免疫原性变体。
  20. 根据权利要求1所述的mRNA疫苗,其特征在于,所述mRNA疫苗为液体制剂或冻干粉剂。
  21. 根据权利要求20所述的mRNA疫苗,其特征在于,所述mRNA疫苗为口服制剂、肌肉注射制剂、静脉注射制剂或吸入制剂。
  22. 根据权利要求21所述的mRNA疫苗,其特征在于,所述mRNA疫苗为雾化吸入剂或干粉吸入剂。
  23. 一种权利要求1所述的mRNA疫苗的制备方法,其特征在于,将阳离子脂质、中性磷脂、甾族脂质、聚乙二醇(PEG)-脂质溶解至溶剂后与mRNA混合后制得。
  24. 根据权利要求23所述的mRNA疫苗的制备方法,其特征在于,脂质纳米颗粒包封mRNA时的N/P为2-10。
  25. 根据权利要求23所述的mRNA疫苗的制备方法,其特征在于,将阳离子脂质、中性磷脂、甾族脂质、聚乙二醇(PEG)-脂质溶解至乙醇后与经稀释后的mRNA稀释液混合后经超滤、稀释、过滤后制得。
  26. 根据权利要求25所述的mRNA疫苗的制备方法,其特征在于,稀释液可为乙酸盐缓冲液、柠檬酸盐缓冲液、磷酸盐缓冲液或tris缓冲液。
  27. 根据权利要求26所述的mRNA疫苗的制备方法,其特征在于,所述缓冲液pH为3~6,浓度为6.25~200mM。
  28. 一种mRNA,其特征在于,所述mRNA编码至少一种抗原肽或结构蛋白,所述抗原肽或结构蛋白包括SARS-CoV-2冠状病毒的刺突(S)蛋白或衍生蛋白,所述刺突(S)蛋白的序列与SEQ ID NO:1具有至少75%的同源性,所述刺突(S)蛋白具有相对于SEQ ID NO:1的修饰,所述的修饰包括:
    第417位由天冬酰胺替代;第484位由赖氨酸或丙氨酸替代;第501位由酪氨酸替代;第614位由甘氨酸替代;第682-685位发生氨基酸部分或全部替换和/或缺失;和/或,第986和987位由脯氨酸替代。
  29. 根据权利要求28所述的mRNA,其特征在于,所述刺突(S)蛋白的修饰还包括将SEQ ID NO:1的第1-13位替换为其他强信号肽,或在N端增加其他强信号肽;所述其他强信号肽包括组织型纤溶酶原激活剂(tPA)的信号肽和血清免疫球蛋白E(lgE)的信号肽。
  30. 根据权利要求28所述的mRNA,其特征在于,所述刺突(S)蛋白的修饰还包括在N端或C端增加用于形成多聚体的片段,所述片段包括Fc片段或噬菌体T4纤维蛋白的三聚化基序。
  31. 根据权利要求28所述的mRNA,其特征在于,所述mRNA序列是天然或修饰的RNA,所述修饰的RNA包括通过用修饰的尿苷部分或全部取代天然尿苷对RNA进行修饰。
  32. 根据权利要求31所述的mRNA,其特征在于,所述mRNA序列是修饰的RNA,所述修饰的RNA为通过用1-甲基-假尿苷对天然尿苷进行全部替换。
  33. 一种权利要求1-22任一项所述的mRNA疫苗或者权利要求28-32任一项所述的mRNA在制备用于预防或者治疗新型冠状病毒感染的药物中的应用。
  34. 根据权利要求33所述的应用,其特征在于,所述的新型冠状病毒为原型株、Beta变异株、Delta变异株或Omicron变异株。
PCT/CN2022/140395 2022-04-01 2022-12-20 一种新型冠状病毒mRNA疫苗及其制备方法和用途 WO2023185121A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210336875.3 2022-04-01
CN202210336875.3A CN114404584B (zh) 2022-04-01 2022-04-01 一种新型冠状病毒mRNA疫苗及其制备方法和用途

Publications (1)

Publication Number Publication Date
WO2023185121A1 true WO2023185121A1 (zh) 2023-10-05

Family

ID=81263355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140395 WO2023185121A1 (zh) 2022-04-01 2022-12-20 一种新型冠状病毒mRNA疫苗及其制备方法和用途

Country Status (2)

Country Link
CN (1) CN114404584B (zh)
WO (1) WO2023185121A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117482240A (zh) * 2024-01-03 2024-02-02 深圳大学总医院 一种rna疫苗递送制剂及其制备方法
CN117482240B (zh) * 2024-01-03 2024-04-26 深圳大学总医院 一种rna疫苗递送制剂及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023143600A1 (zh) * 2022-01-30 2023-08-03 康希诺生物股份公司 一种用于核酸递送的新型可电离脂质及其lnp组合物和疫苗
CN114404584B (zh) * 2022-04-01 2022-07-26 康希诺生物股份公司 一种新型冠状病毒mRNA疫苗及其制备方法和用途

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113151312A (zh) * 2020-03-02 2021-07-23 中国科学院微生物研究所 新型冠状病毒SARS-CoV-2 mRNA疫苗及其制备方法和应用
WO2021154763A1 (en) * 2020-01-28 2021-08-05 Modernatx, Inc. Coronavirus rna vaccines
WO2021226436A1 (en) * 2020-05-07 2021-11-11 Translate Bio, Inc. Optimized nucleotide sequences encoding sars-cov-2 antigens
CN113684219A (zh) * 2020-05-18 2021-11-23 康希诺生物股份公司 mRNA或mRNA组合物及其制备方法和应用
US20210379181A1 (en) * 2020-02-04 2021-12-09 Curevac Ag Coronavirus vaccine
CN114404584A (zh) * 2022-04-01 2022-04-29 康希诺生物股份公司 一种新型冠状病毒mRNA疫苗及其制备方法和用途

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114181962B (zh) * 2022-01-17 2022-06-07 北京翊博普惠生物科技发展有限公司 一种新型冠状病毒mRNA疫苗及其制备方法与应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021154763A1 (en) * 2020-01-28 2021-08-05 Modernatx, Inc. Coronavirus rna vaccines
US20210379181A1 (en) * 2020-02-04 2021-12-09 Curevac Ag Coronavirus vaccine
CN113151312A (zh) * 2020-03-02 2021-07-23 中国科学院微生物研究所 新型冠状病毒SARS-CoV-2 mRNA疫苗及其制备方法和应用
WO2021226436A1 (en) * 2020-05-07 2021-11-11 Translate Bio, Inc. Optimized nucleotide sequences encoding sars-cov-2 antigens
CN113684219A (zh) * 2020-05-18 2021-11-23 康希诺生物股份公司 mRNA或mRNA组合物及其制备方法和应用
CN114404584A (zh) * 2022-04-01 2022-04-29 康希诺生物股份公司 一种新型冠状病毒mRNA疫苗及其制备方法和用途

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117482240A (zh) * 2024-01-03 2024-02-02 深圳大学总医院 一种rna疫苗递送制剂及其制备方法
CN117482240B (zh) * 2024-01-03 2024-04-26 深圳大学总医院 一种rna疫苗递送制剂及其制备方法

Also Published As

Publication number Publication date
CN114404584A (zh) 2022-04-29
CN114404584B (zh) 2022-07-26

Similar Documents

Publication Publication Date Title
DE112021000012B4 (de) Coronavirus-Vakzine
WO2023185121A1 (zh) 一种新型冠状病毒mRNA疫苗及其制备方法和用途
WO2021155760A1 (zh) 用于2019-nCoV型冠状病毒mRNA疫苗、制备方法及其应用
WO2021233213A1 (zh) mRNA或mRNA组合物及其制备方法和应用
JP7317715B2 (ja) ジカウイルスに対する免疫応答を誘導するためのヌクレオシド改変rna
JP2023522249A (ja) コロナウイルスワクチン
EP2701734B1 (en) Liposomal formulations
JP4535211B2 (ja) コクリエート送達ビヒクル
EP1037662A1 (en) Method to enhance an immune response of nucleic acid vaccination
JP2023526422A (ja) コロナウイルス抗原組成物及びそれらの使用
TW201938793A (zh) 一種新型疫苗佐劑
CN115916254A (zh) 疫苗、佐剂和产生免疫应答的方法
CN116670267A (zh) 流感病毒的四价mRNA疫苗
TWI239848B (en) Adjuvant combination formulations
WO2024041612A1 (zh) 一种正痘病毒属mRNA疫苗及其制备方法和用途
WO2021081499A1 (en) Chikungunya virus-like particle vaccine and methods of using the same
WO2024017250A1 (zh) 一种新型冠状病毒变异株的mRNA疫苗及其应用
US20240000921A1 (en) Coronavirus vaccine
US20230302112A1 (en) Respiratory synctial virus rna vaccine
WO2024044108A1 (en) Vaccines against coronaviruses
CN117106809A (zh) 一种呼吸道合胞病毒的mRNA、其制备方法与应用
WO2023111262A1 (en) Lyme disease rna vaccine
CN117618547A (zh) 一种rsv疫苗组合物及其制备方法和应用
TW202114732A (zh) 遞送b型肝炎病毒(hbv)疫苗之脂質奈米顆粒或脂質體

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22934937

Country of ref document: EP

Kind code of ref document: A1