WO2023185064A1 - 空调器、空调器的控制系统及控制方法 - Google Patents

空调器、空调器的控制系统及控制方法 Download PDF

Info

Publication number
WO2023185064A1
WO2023185064A1 PCT/CN2022/136317 CN2022136317W WO2023185064A1 WO 2023185064 A1 WO2023185064 A1 WO 2023185064A1 CN 2022136317 W CN2022136317 W CN 2022136317W WO 2023185064 A1 WO2023185064 A1 WO 2023185064A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
generating device
ion generating
nano water
water ion
Prior art date
Application number
PCT/CN2022/136317
Other languages
English (en)
French (fr)
Inventor
柴方刚
孙铁军
邱倩
赵玉垒
Original Assignee
青岛海信日立空调系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202220716072.6U external-priority patent/CN217082727U/zh
Priority claimed from CN202220725436.7U external-priority patent/CN217004689U/zh
Priority claimed from CN202220731725.8U external-priority patent/CN217464666U/zh
Priority claimed from CN202220733579.2U external-priority patent/CN217464667U/zh
Application filed by 青岛海信日立空调系统有限公司 filed Critical 青岛海信日立空调系统有限公司
Publication of WO2023185064A1 publication Critical patent/WO2023185064A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0071Indoor units, e.g. fan coil units with means for purifying supplied air
    • F24F1/0076Indoor units, e.g. fan coil units with means for purifying supplied air by electric means, e.g. ionisers or electrostatic separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/02Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing
    • F24F1/0328Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing with means for purifying supplied air
    • F24F1/0353Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing with means for purifying supplied air by electric means, e.g. ionisers or electrostatic separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/22Means for preventing condensation or evacuating condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/16Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by purification, e.g. by filtering; by sterilisation; by ozonisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/30Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by ionisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect

Definitions

  • the present disclosure relates to the technical field of air conditioning, and in particular to an air conditioner, a control system and a control method of the air conditioner.
  • Split air conditioners include an indoor unit and an outdoor unit.
  • the indoor unit and the outdoor unit are installed indoors and outdoors respectively, and the two are connected through corresponding pipelines and wires.
  • air conditioners usually, in order to improve indoor air quality, air conditioners also have air purification functions.
  • an air conditioner includes an outdoor unit and an indoor unit.
  • the indoor unit is connected to the outdoor unit.
  • the indoor unit includes: a first housing, a fan, an indoor heat exchanger, a piping box and a nano water ion generating device.
  • the first housing includes a first accommodation space, a return air opening and an air outlet, and the return air opening and the air outlet are respectively connected with the first accommodation space.
  • the fan is disposed in the first accommodation space and is opposite to the return air outlet.
  • the indoor heat exchanger is arranged in the first accommodation space and is located on a side of the fan close to the air outlet.
  • the piping box is disposed on a side of the first accommodation space close to the air outlet.
  • the nano water ion generating device is disposed in the first accommodation space and is located at a position of the first housing close to the air outlet, and the nano water ion generating device is configured to generate electricity with negative charge. and nano water ions generated from hydroxyl radicals generated by ionized water, and includes a nano water ion release port.
  • the nano water ion generating device and the piping box are connected through a vent between the two. Wherein, the air in the piping box enters the nano water ion generating device through the vent, and the air with the nano water ions is sent indoors through the nano water ion release port to avoid the Changes in temperature and humidity of the air at the air outlet affect the water condensation ability of the nano water ion generating device.
  • the air conditioner includes an outdoor unit and an indoor unit, and the indoor unit includes an indoor controller, a fan and a nano water ion generating device.
  • the control system includes: a microcontroller, a fan controller and a purification device controller.
  • the microcontroller is provided on the indoor controller.
  • the fan controller is provided on the indoor controller and is electrically connected to the microcontroller.
  • the fan is electrically connected to the fan controller.
  • the purification device controller is provided on the indoor controller and is electrically connected to the microcontroller.
  • the nano water ion generating device is arranged at the air outlet of the indoor unit and is electrically connected to the purification device controller. Wherein, the nano water ion generating device is controlled by the indoor controller of the indoor unit and is linked with the fan of the indoor unit.
  • a control method of an air conditioner includes an outdoor unit and an indoor unit.
  • the indoor unit includes: a fan and a nano water ion generating device.
  • the method includes: when the purification function is turned on, judging whether the fan is turned on, and judging the turning on time; when the first time the fan is turned on is greater than the first threshold, the nano water ion generating device starts to start, Otherwise, the nano water ion generating device cannot be turned on; when the purification function is turned off, the nano water ion generating device immediately cuts off power and keeps the fan continuing to operate for a second time. When the second time is greater than the second threshold, , and then control the fan to stop.
  • Figure 1A is a schematic diagram of an air conditioner according to some embodiments.
  • Figure 1B is a structural diagram of an indoor unit according to some embodiments.
  • Figure 2 is a structural diagram of the indoor unit after removing the top cover according to some embodiments
  • Figure 3 is a gas flow path diagram in an indoor unit according to some embodiments.
  • Figure 4 is a structural diagram of a nano water ion generating device according to some embodiments.
  • Figure 5 is another structural diagram of a nano water ion generating device according to some embodiments.
  • Figure 6 is an exploded view of the nano water ion generating device in Figure 5;
  • Figure 7 is a structural diagram of a connecting plate according to some embodiments.
  • Figure 8 is an assembly diagram of the connecting plate and the nano water ion generating device in the indoor unit according to some embodiments.
  • Figure 9 is another structural diagram of a connecting plate according to some embodiments.
  • Figure 10 is another assembly diagram of the connecting plate and the nano water ion generating device in the indoor unit according to some embodiments.
  • Figure 11 is an installation diagram of the nano water ion generating device in the indoor unit according to some embodiments.
  • Figure 12 is another installation diagram of the nano water ion generating device in the indoor unit according to some embodiments.
  • Figure 13 is another installation diagram of the nano water ion generating device in the indoor unit according to some embodiments.
  • Figure 14 is a schematic diagram of a nano water ion generating device and an air pretreatment device in an indoor unit according to some embodiments;
  • Figure 15 is a gas flow path diagram of an air pretreatment device arranged in a piping box according to some embodiments
  • Figure 16 is a structural diagram of an air pretreatment device arranged in a piping box according to some embodiments.
  • Figure 17 is an installation structural diagram of an air pretreatment device and a nanowater ion generating device according to some embodiments
  • Figure 18 is a gas flow path diagram of an air pretreatment device arranged in a nanowater ion generating device according to some embodiments
  • Figure 19 is a structural diagram of an air pretreatment device and a nanowater ion generating device according to some embodiments.
  • Figure 20 is an exploded view of the air pretreatment device and nano water ion generating device in Figure 19;
  • Figure 21 is a structural diagram of an air pretreatment device according to some embodiments.
  • Figure 22 is a partial structural diagram of a nanowater ion generating device according to some embodiments.
  • Figure 23 is a cross-sectional view of the nano water ion generating device in Figure 22;
  • Figure 24 is a structural diagram of a conductive part according to some embodiments.
  • Figure 25 is a cross-sectional view of a conductive portion according to some embodiments.
  • Figure 26 is a block diagram of a control system of an indoor unit according to some embodiments.
  • Figure 27 is a flow chart of a control method of an indoor unit according to some embodiments.
  • Figure 28 is a flow chart of the nano water ion generating device and the air pretreatment device in the indoor unit according to some embodiments.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality" means two or more.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection, a detachable connection, or an integrated connection; it can be a direct connection or an indirect connection through an intermediate medium.
  • connection indicates that two or more components are in direct physical or electrical contact.
  • coupled or “communicatively coupled” may also refer to two or more components that are not in direct contact with each other but still cooperate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited by the content herein.
  • At least one of A, B and C has the same meaning as “at least one of A, B or C” and includes the following combinations of A, B and C: A only, B only, C only, A and B The combination of A and C, the combination of B and C, and the combination of A, B and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • the term “if” is optionally interpreted to mean “when” or “in response to” or “in response to determining” or “in response to detecting,” depending on the context.
  • the phrase “if it is determined" or “if [stated condition or event] is detected” is optionally interpreted to mean “when it is determined" or “in response to the determination" or “on detection of [stated condition or event]” or “in response to detection of [stated condition or event]”.
  • parallel includes absolutely parallel and approximately parallel, and the acceptable deviation range of approximately parallel may be, for example, a deviation within 5°;
  • perpendicular includes absolutely vertical and approximately vertical, and the acceptable deviation range of approximately vertical may also be, for example, Deviation within 5°.
  • equal includes absolute equality and approximate equality, wherein the difference between the two that may be equal within the acceptable deviation range of approximately equal is less than or equal to 5% of either one, for example.
  • air conditioner 1000 includes an indoor unit 10 and an outdoor unit 20 .
  • the indoor unit 10 and the outdoor unit 20 are connected through pipelines to transmit refrigerant.
  • the indoor unit 10 includes an indoor heat exchanger 130 .
  • the outdoor unit 20 includes an outdoor heat exchanger 21 , a compressor 22 , a four-way valve 23 and a throttling mechanism 24 .
  • the throttling mechanism 24 may also be provided in the indoor unit 10 .
  • the throttle mechanism 24 may be composed of at least one of a throttle valve, an expansion valve, a pressure reducer, and the like.
  • the throttling mechanism 24 may be composed of only an expansion valve, may be composed of an expansion valve and a throttle valve connected in series, or may be composed of an expansion valve and a pressure reducer connected in series, which is not limited by this disclosure.
  • the compressor 22, outdoor heat exchanger 21, throttling mechanism 24 and indoor heat exchanger 130 connected in sequence form a refrigerant circuit.
  • the refrigerant circulates in the refrigerant circuit and is exchanged with the indoor air through the outdoor heat exchanger 21.
  • the heater 130 exchanges heat with the air respectively to realize cooling or heating of the air conditioner 1000 .
  • the compressor 22 is configured to compress the refrigerant such that the low-temperature and low-pressure refrigerant is compressed to form a high-temperature and high-pressure refrigerant.
  • the outdoor heat exchanger 21 is configured to perform heat exchange between outdoor air and the refrigerant transmitted in the outdoor heat exchanger 21 .
  • the outdoor heat exchanger 21 operates as a condenser in the cooling mode of the air conditioner 1000, so that the refrigerant compressed by the compressor 22 dissipates heat to the outdoor air through the outdoor heat exchanger 21 to be condensed.
  • the outdoor heat exchanger 21 operates as an evaporator in the heating mode of the air conditioner 1000, so that the decompressed refrigerant absorbs heat in the outdoor air through the outdoor heat exchanger 21 and evaporates.
  • the outdoor heat exchanger 21 also includes heat exchange fins to expand the contact area between the outdoor air and the refrigerant transmitted in the outdoor heat exchanger 21, thereby improving the heat exchange efficiency between the outdoor air and the refrigerant.
  • the throttling mechanism 24 is connected between the outdoor heat exchanger 21 and the indoor heat exchanger 130.
  • the opening of the throttling mechanism 24 adjusts the pressure of the refrigerant flowing through the outdoor heat exchanger 21 and the indoor heat exchanger 130.
  • the refrigerant flow rate flowing between the outdoor heat exchanger 21 and the indoor heat exchanger 130 is adjusted.
  • the flow rate and pressure of the refrigerant flowing between the outdoor heat exchanger 21 and the indoor heat exchanger 130 will affect the heat exchange performance of the outdoor heat exchanger 21 and the indoor heat exchanger 130 .
  • the throttling mechanism 24 may be an electronic valve.
  • the opening of the throttling mechanism 24 is adjustable to control the flow rate and pressure of the refrigerant flowing through the throttling mechanism 24 .
  • the throttling mechanism 24 When the air conditioner 1000 operates in the cooling mode, the throttling mechanism 24 is configured to throttle the subcooled liquid refrigerant flowing out of the outdoor heat exchanger 21 into a low-temperature and low-pressure gas-liquid two-phase refrigerant.
  • the flow direction of the refrigerant As shown by the solid arrow in Figure 1A.
  • the throttling mechanism 24 When the air conditioner 1000 operates in the heating mode, the throttling mechanism 24 is configured to throttle the subcooled liquid refrigerant flowing out of the indoor heat exchanger 130 into a low-temperature and low-pressure gas-liquid two-phase refrigerant.
  • the flow direction is indicated by the dashed arrow in Figure 1A.
  • the four-way valve 23 is connected to the refrigerant circuit and is configured to switch the flow direction of the refrigerant in the refrigerant circuit so that the air conditioner 1000 executes the cooling mode or the heating mode.
  • the indoor heat exchanger 130 is configured to heat exchange indoor air with the refrigerant transmitted in the indoor heat exchanger 130 .
  • the indoor heat exchanger 130 operates as an evaporator in the cooling mode of the air conditioner 1000, so that the refrigerant that has dissipated heat through the outdoor heat exchanger 21 absorbs heat in the indoor air through the indoor heat exchanger 130 and evaporates.
  • the indoor heat exchanger 130 operates as a condenser in the heating mode of the air conditioner 1000, so that the refrigerant that has absorbed heat through the outdoor heat exchanger 21 dissipates heat to the indoor air through the indoor heat exchanger 130 to be condensed.
  • the indoor heat exchanger 130 also includes heat exchange fins to expand the contact area between the indoor air and the refrigerant transmitted in the indoor heat exchanger 130, thereby improving the heat exchange efficiency between the indoor air and the refrigerant.
  • the refrigerant when the air conditioner 1000 operates in the cooling mode, the refrigerant is compressed by the compressor 22 and becomes a high-temperature and high-pressure superheated gaseous refrigerant.
  • the superheated gaseous refrigerant is discharged into the outdoor heat exchanger 21 for condensation. .
  • the superheated gas refrigerant In the outdoor heat exchanger 21 , the superheated gas refrigerant is cooled into subcooled liquid refrigerant and enters the throttling mechanism 24 .
  • the throttling mechanism 24 can throttle the subcooled liquid refrigerant into a low-temperature and low-pressure gas-liquid two-phase refrigerant.
  • the low-temperature and low-pressure gas-liquid two-phase refrigerant flows into the indoor heat exchanger 130 to evaporate and absorb heat.
  • the refrigerant is evaporated into a superheated gas and returned to the suction end of the compressor 22 for completion.
  • a cycle As shown in FIG. 1A , when the air conditioner 1000 operates in the heating mode, the high-temperature and high-pressure gaseous refrigerant passes through the four-way valve 23 and is directly discharged into the indoor heat exchanger 130 for heating. After being cooled into a subcooled liquid refrigerant, it flows into the throttling mechanism 24 and is throttled by the throttling mechanism 24 into a low-temperature and low-pressure gas-liquid two-phase refrigerant. The low-temperature and low-pressure gas-liquid two-phase refrigerant enters the outdoor heat exchanger 21 to evaporate and absorb heat.
  • Some indoor units with air purification functions in the related art use nano water ions as the air purification principle.
  • the main purification factor of the nano water ion device is hydroxyl radicals, the sterilization effect is better, but the particulate matter purification Less effective.
  • the overall nano water ion device needs to be installed inside the indoor unit.
  • the nano water ion outlet is connected to the indoor unit air outlet through a pipe.
  • this device itself has no power system and only relies on the trace negative pressure generated by the wind speed at the indoor unit air outlet.
  • the nano water ions are sucked from the nano water ion (Nanoe) device to the air outlet of the indoor unit.
  • Nano water ion technology refers to nano-scale electrostatic atomization water particles. This technology performs high-voltage discharge on the water droplets on the tip electrode, causing them to gradually split into water mist and decompose into highly active nano-scale water ions, which contain a large number of Highly active hydroxyl free radicals, which have extremely high oxidizing properties, can decompose and remove bacteria, microorganisms, formaldehyde, volatile organic compounds (VOC) and other components in the air.
  • VOC volatile organic compounds
  • the nano water ion technology in the related technology is a semiconductor refrigeration technology.
  • the semiconductor refrigeration part is used to cool the emitter electrode.
  • the emitter electrode is hydrophilic and the emitter electrode is cooled. It absorbs moisture from the surrounding air and then uses negative high voltage to generate tip discharge at the emission tip of the emission electrode to generate nano water ions.
  • This water supply method uses the emitter electrode to cool down to generate condensed water. When the air humidity is low, it is difficult for the emitter electrode to generate condensed water, so it is impossible to generate nano water ions.
  • the emitter electrode acts as a ground electrode.
  • the counter electrode uses positive high voltage, so the nano water ions generated do not contain negative ions and lack the functional effect of negative ions.
  • some embodiments of the present disclosure provide an air conditioner.
  • the nano-water ion generating device is located at the air outlet and can diffuse the generated nano-water ions into the room in the direction of the air flow from the air outlet to achieve the purpose of sterilizing and disinfecting the air.
  • the indoor unit 10 of the air conditioner 1000 also includes a nano water ion generating device 200 .
  • the nano water ion generating device 200 can generate nano water ions with negative ions, thereby realizing the air purification function of the air conditioner 1000 .
  • the air conditioner 1000 includes a nano water ion generating device 200 .
  • the air conditioner 1000 may also include multiple nano water ion generating devices 200 used in parallel, which is beneficial to increasing the production of negative ions and nano water ions, thereby further improving the air purification effect.
  • the indoor unit 10 includes a first housing 100 (ie, an indoor unit housing), a fan 140, an indoor heat exchanger 130, a piping box 170 and a Nano water ion generating device 200.
  • the first housing 100 includes a first accommodation space 101, a return air outlet 110 and an air outlet 120.
  • the return air outlet 110 and the air outlet 120 are respectively connected with the first accommodation space 101.
  • the fan 140 is installed in the first accommodation space 101 and faces the return air outlet 110 .
  • the indoor heat exchanger 130 is installed on the side of the fan 140 close to the air outlet 120 .
  • the piping box 170 is installed in the first accommodation space 101 on a side close to the air outlet 120 .
  • the nano water ion generating device 200 is installed on the first housing 100 near the air outlet 120 .
  • the nanowater ion generating device 200 includes an emitting electrode 210 and a nanowater ion release port 244 .
  • the nanowater ion generating device 200 and the piping box 170 are connected through a vent between them.
  • the air in the piping box 170 enters the nano water ion generating device 200 through the vent, and the air containing nano water ions is sent to the room through the nano water ion release port 244.
  • the piping box 170 is used to install a water suction pump, water pipes, float switches, etc.
  • the outer contour of the indoor unit 10 is formed by the first housing 100.
  • the first housing 100 is provided with a return air outlet 110 on one side and an air outlet 120 on the other side.
  • the return air outlet 110 and the air outlet 120 are connected to form an air duct, and the indoor heat exchanger 130 is arranged in the air duct.
  • the indoor air flows into the first accommodation space 101 through the return air outlet 110, and after heat exchange by the indoor heat exchanger 130, flows into the room through the air outlet 120 to achieve cooling or heating of the indoor air.
  • the air flow of the indoor unit 10 is divided into two paths. Refer to Figures 2 and 3.
  • One path is indoor air. It enters the first accommodation space 101 from the return air outlet 110. Driven by the fan 140, it passes through the indoor heat exchanger 130 in turn. , the nano water ion generating device 200 and the air outlet 120 return to the room.
  • the other way is that the air in the piping box 170 enters the interior of the nanowater ion generating device 200 through the vent, and enters the room through the nanowater ion release port 244.
  • the indoor unit 10 effectively avoids the influence of changes in temperature and humidity of the air at the air outlet 120 on the water condensation ability of the nano water ion generating device 200 through a separate gas channel (ie, the other gas channel mentioned above). , so that the nano water ion generating device 200 can smoothly spray nano water ions, so that the air containing nano water ions can be effectively sent indoors, and the air purification function of the indoor unit 10 can be improved.
  • indoor air enters the indoor unit 10 through the return air outlet 110, and the fan 140 provides power for the entire indoor unit system.
  • the nano water ion generating device 200 is arranged adjacent to the air outlet 120.
  • the nano water ion generating device 200 is connected to the piping box 170.
  • the ion wind generated by the negative oxygen water ions emitted from the nano water ion release port 244 is added to the air outlet 120.
  • the negative pressure generated by the flow attracts the air in the piping box 170 to the nano water ion release port 244, ensuring that when the air conditioner 1000 is cooling or heating, different temperature and humidity conditions will not affect the internal refrigeration part of the nano water ion generating device 200.
  • 220 Ability to generate condensation water.
  • the air from the air outlet 120 will not blow directly onto the emitter electrode 210, thereby not affecting the air condensation effect of the refrigeration part 220 (such as the semiconductor refrigeration part) of the emitter electrode 210.
  • the indoor unit 10 further includes a water receiving tray 6A, which is disposed on one side of the indoor heat exchanger 130 and configured to receive condensation.
  • the indoor unit 10 includes a first partition 150 disposed in the first accommodation space 101 , and the first partition 150 is configured to divide the first accommodation space 101 into a first sub-space 161 and a first sub-space 161 .
  • the first subspace 161 is the front cavity of the first accommodation space 101
  • the second subspace 162 is the rear cavity of the first accommodation space 101 .
  • the fan 140 is located in the second subspace 162, and the return air outlet 110 is connected to the second subspace 162.
  • the indoor heat exchanger 130 is located in the first subspace 161, and the air outlet 120 is connected to the first subspace 161.
  • the air conditioner 1000 When the indoor unit 10 is applied to the air conditioner 1000, the air conditioner 1000 is formed with an air outlet 120 on the front panel to discharge the cooled or heated air into the room.
  • the nano water ion generating device 200 is located in the above-mentioned air outlet 120, and the nano water ions generated by ionization diffuse into the room along the direction of the air flow from the air outlet to achieve the purpose of sterilizing and disinfecting the air.
  • the indoor unit 10 further includes a connecting plate 180 , which is disposed on the side wall of the first housing 100 close to the air outlet 120 and is configured to install the nano water ion generating device 200 .
  • the connecting plate 180 is provided in the first accommodation space 101 and connected to one end of the indoor heat exchanger 130 .
  • the piping box 170 includes a first vent 1701 (see Figure 3), the nanowater ion generating device 200 includes a second vent 280, the connecting plate 180 includes a third vent 184, and the piping box The air in 170 flows through the first vent 1701, the third vent 184, and the second vent 280 and enters the nano water ion generating device 200.
  • vents include a first vent 1701, a second vent 280 and a third vent 184.
  • the connecting plate 180 includes a body 1801 , a first fixing part 185 (such as a body fixing part) and a second fixing part 183 (such as a device fixing part).
  • the first fixing part 185 is arranged around the body, and the connecting plate 180 is connected to the first housing 100 through the first fixing part 185 .
  • the third vent 184 is disposed through the body 1801 along the thickness direction, and the third vent 184 is connected with the second vent 280 .
  • the second fixing part 183 is disposed close to the third vent 184, and the second fixing part 183 is connected to the fixing installation part 504 of the nano water ion generating device 200. In this way, the fixed connection between the nano water ion generating device 200 and the connecting plate 180 can be achieved.
  • Fixed mount 504 is described below.
  • the shape of the third vent 184 can be set according to the shapes of the corresponding vents of the nanowater ion generating device 200 and the piping box 170 .
  • the edge of the body 1801 is bent to form the first fixing portion 185 .
  • one side of the body 1801 extends to one side of the piping box 170 to form a part of the first fixing part 185, and the remaining sides of the body 1801 extend to the other side of the nanowater ion generating device 200 to form a first fixing part.
  • Another part of Department 185 is another part of Department 185.
  • the first fixing part 185 includes through holes and/or openings 1850 to assist in mounting the connecting plate 180 on the first housing 100 .
  • the second fixing part 183 is provided close to the nano water ion generating device 200 .
  • the positional relationship between the second fixing part 183 and the third vent 184 is set according to the positional relationship between the second vent 280 and the fixed installation part 504 of the nanowater ion generating device 200, so as to achieve the function of the nanowater ion generating device 200.
  • the installation is stable and ventilation between the nano water ion generating device 200 and the piping box 170 is ensured.
  • the second fixing part 183 is provided as a mounting through hole provided on both sides of the third vent 184 along the length direction.
  • the nano water ion generating device 200 is disposed through the connecting plate 180 .
  • a part of the nano water ion generating device 200 is located in the piping box 170 , and the other part is located in the piping box 170 outside and close to the air outlet 120.
  • the nanowater ion generating device 200 is configured to generate nanowater ions with negative charges and hydroxyl radicals generated by ionized water.
  • Negative charges can charge the particles in the air and promote the agglomeration of the particles in the air.
  • the particles in the air will increase in volume and weight and then settle to the ground, or the charged particles will be adsorbed to the nearest zero potential (earth), thereby removing the particles from the air.
  • particulate matter such as PM2.5).
  • hydroxyl radicals generated by ionized water in nanowater ions are extremely oxidizing. When they come into contact with bacteria and viruses on the surface of particles or bacteria and viruses in the air, hydroxyl radicals steal hydrogen elements from the bacterial cell walls, thereby destroying the cell walls. structure, inactivating cells, and denaturing proteins due to its strong oxidation effect, thus playing a role in sterilization and disinfection.
  • the nano water ion generating device 200 is arranged at the air outlet 120, and the generated nano water ions are directly blown into the room, which is beneficial to improving the air purification effect.
  • the nanowater ion generating device 200 includes an emitter electrode 210 , a cooling unit 220 and a power supply unit 230 .
  • the refrigeration part 220 is configured to generate condensed water for ionization by the emitter electrode 210.
  • the power supply part 230 is coupled to the emitter electrode 210 and is configured to provide negative high voltage to the emitter electrode 210 to ionize the moisture on the emitter electrode 210 through high voltage. Excitation produces negatively charged nanowater ions.
  • the potential of the voltage provided by the power supply unit 230 is a negative potential, and the absolute value of the voltage ranges from 10 kV to 220 kV, which is a negative high voltage.
  • the emitter electrode 210 is hydrophilic in order to guide the condensed water generated by the refrigeration part 220 to its emitter tip. After the emitter electrode 210 is connected to the negative high voltage, it can be ionized and excited at the emitter tip. Negatively charged nanowater ions.
  • the emitter electrode 210 includes a water-absorbing member, and a bactericidal material (such as silver ions, etc.) is added to the water-absorbing member.
  • the emitter electrode 210 receives the negative high voltage provided by the power supply unit 230 and is charged.
  • the water in the water-absorbing member in the emitter electrode 210 is excited by high-voltage ionization to generate nano-water ions.
  • the nano-water ions carry negative charges and hydroxyl radicals generated by the ionized water. .
  • the refrigeration part 220 is configured to generate condensed water. Referring to Figures 14 and 18, there is a water storage gap 260 between one end of the emitter electrode 210 and the refrigeration part 220. The condensed water generated by the refrigeration part 220 is stored in the water storage gap 260, and the emitter The electrode 210 uses hydrophilicity to guide the condensed water in the water storage gap 260 to its emitting tip.
  • the ability of the refrigeration unit 220 to generate condensed water is related to the temperature difference between the surrounding air. The greater the temperature difference, the stronger the ability to generate condensed water; conversely, the smaller the temperature difference, the weaker the ability to generate condensed water.
  • the nanowater ion generating device 200 further includes a second housing 240 (ie, the device housing).
  • the emitter electrode 210, the cooling unit 220, and the power supply unit 230 are provided in the second housing 240.
  • the second housing 240 may be made of insulating material (such as polypropylene, etc.).
  • the second housing 240 includes a nanowater ion release port 244 for exposing the emission tip of the emission electrode 210 .
  • the nanowater ion release port 244 faces the air outlet 120 .
  • the size of the nanowater ion release port 244 gradually increases in the direction close to the tip of the emission electrode 210. By gradually enlarging the nanowater ion release port 244, static electricity accumulation on the second housing 240 can be effectively avoided, thereby releasing more energy. High concentration of negative oxygen ions.
  • the second housing 240 includes a second accommodation space 202 (as shown in FIG. 18 ), and the second accommodation space 202 is connected to the piping box 170 through a vent.
  • the second vent 280 of the nanowater ion generator 200 is provided on the side of the second housing 240 close to the piping box 170 .
  • the nanowater ion generating device 200 further includes a fixed mounting member 504 .
  • the fixed mounting part 504 is provided on the second housing 240 , and the fixed mounting part 504 is connected to the connecting plate 180 .
  • the nano water ion release port 244 is provided on the side of the second housing 240 away from the indoor heat exchanger 130. The air in the nano water ion generating device 200 enters the room through the nano water ion release port 244.
  • the emission electrode 210 is disposed in the nanowater ion release port 244.
  • the fixed mounting member 504 includes mounting ears 246 located on both sides of the second housing 240 on the same side.
  • the mounting ears include through holes 2461, and screws pass through the through holes 2461 to realize the installation of the nano water ion generating device 200.
  • the second ventilation opening 280 is located on the side of the second housing 240 where the fixed mounting part 504 is provided.
  • a nano-water ion release port 244 is provided on one side of the second housing 240 , and the emission electrode 210 is located in the middle of the nano-water ion release port 244 .
  • the airflow in the nano water ion generating device 200 flows from the second vent 280, through the second accommodation space 202, and then is discharged from the nano water ion release port 244.
  • the air containing nano water ions is ejected by the emitting electrode 210. Send it into the indoor air to achieve the corresponding air purification function.
  • the nanowater ion generating device 200 includes a second partition 243 disposed in the second accommodation space 202 .
  • the second partition 243 is configured to divide the second accommodation space 202 into a third sub-space 241 and a fourth sub-space 242, and includes an opening 2431 for gas circulation.
  • the emitter electrode 210 and the cooling unit 220 are arranged in the third subspace 241 , and the power supply unit 230 is arranged in the fourth subspace 242 .
  • the second vent 280 communicates with the fourth subspace 242.
  • the air outside the nanowater ion generating device 200 flows into the second accommodation space 202 through the second vent 280, flows through the fourth subspace 242 and the third subspace 241 in sequence, reaches the refrigeration part 220, and condenses at the refrigeration part 220.
  • Water is supplied to the emission tip of the emission electrode 210, and the nano water ions excited by high-voltage ionization flow out through the nano water ion release port 244 and flow into the room through the air outlet 120.
  • the flow direction of the air can be directed by the arrows in Figure 18.
  • the second housing 240 includes a bottom case 247 and a cover 248.
  • the bottom case 247 includes a buckle 2471
  • the cover 248 includes a buckle 2481.
  • the buckle 2481 is connected to the buckle 2481.
  • the snap connection between the connecting portions 2471 facilitates the fixed connection between the bottom case 247 and the cover 248 .
  • the second housing 240 includes a wiring opening 245.
  • the wiring opening 245 is provided on the side edge of the bottom shell 247 close to the cover 248 to facilitate wiring.
  • the nano water ion release port 244 is provided on the cover 248 .
  • the nanowater ion generating device 200 further includes an insulated electrode holder 270 , and the electrode holder 270 is disposed in the third subspace 241 .
  • the electrode holder 270 includes an electrode mounting hole 21A, and the emission electrode 210 is inserted into the electrode mounting hole 21A.
  • the nanowater ion generating device 200 further includes a conductive part 250 (such as a conductive plate).
  • the conductive part 250 is disposed on an end of the electrode holder 270 close to the cover 248 .
  • the conductive part 250 includes an elastic clamping arm 22A.
  • the elastic clamping arm 22A extends into the electrode mounting hole 21A and contacts the emission electrode 210.
  • the conductive part 250 is electrically connected to the power supply part 230.
  • the refrigeration unit 220 is disposed at an end of the electrode holder 270 away from the cover 248 and facing the electrode mounting hole 21A.
  • the water storage gap 260 is formed between the cooling part 220 , the electrode mounting hole 21A, and the end of the emitter electrode 210 close to the cooling part 220 .
  • the second housing 240 includes mounting ears 246 , and the mounting ears 246 are fixed on the connecting plate 180 through connectors (such as screws, etc.) to realize the installation of the nano water ion generating device 200 . Fixing of air outlet 120.
  • the nano water ion generating device 200 is connected to the second fixing part 183 through the fixing installation part 504 (such as bolt connection).
  • the main difference is that the second fixing part 183 and the third vent 184 together form an installation opening, and the nano water ion generating device 200 is installed at the installation opening. And a part of the nano water ion generating device 200 is located inside the piping box 170 . In this way, adverse effects on the water condensation effect and working stability of the nanowater ion generating device 200 due to drastic changes in temperature and humidity at the air outlet 120 during cooling and heating of the indoor unit 10 can be reduced.
  • the indoor heat exchanger 130 is installed obliquely in the first housing 100
  • the nanowater ion generating device 200 is installed on a side of the indoor heat exchanger 130 close to the air outlet 120
  • the nanowater ion generator 200 is installed on the side of the indoor heat exchanger 130 close to the air outlet 120 .
  • the emitter electrode 210 of the ion generating device 200 is perpendicular to the plane where the indoor heat exchanger 130 is located.
  • the angle formed by the emitter electrode 210 of the nanowater ion generating device 200 and the horizontal plane passing through the air outlet 120 is any one of 30° to 60° (for example, 30°, 45° or 60°, etc.).
  • One value it can be effectively prevented that the air from the air outlet 120 blows directly onto the emitter electrode 210, causing insufficient water condensation on the emitter electrode 210, thereby affecting the generation of nano water ions.
  • blowing at this angle can increase the concentration of nanowater ions to achieve better purification effects.
  • the nano water ion generating device 200 is installed on the connecting plate 180 of the indoor unit 10, and the emitter electrode 210 of the nano water ion generating device 200 is driven by the ion wind and the negative pressure of the air outlet 120 to actively eject into the air.
  • the nano water ion generating device 200 contains a refrigeration unit 220 to cool the water in the air.
  • the emission electrode 210 of the nano water ion generating device 200 is perpendicular to the plane where the air outlet 120 is located (such as the plane of the front side wall).
  • the emission end of the emission electrode 210 is disposed toward the air outlet 120 .
  • the main difference is that the emission electrode 210 of the nano water ion generating device 200 is parallel to the plane where the air outlet 120 is located (such as the plane where the front side wall is located).
  • the emission end of the emission electrode 210 is disposed toward the bottom wall of the first housing 100 . In this way, the installation method of the nano water ion generating device 200 can be flexibly selected according to needs.
  • the nanowater ion generating device 200 can be integrally installed on the second fixing part 183 .
  • the second fixing part 183 and the third vent 184 together form an installation opening, and the nanowater ion generating device 200 is installed at the installation opening, and part of it is located inside the piping box 170 .
  • the indoor unit 10 includes a first housing 100 that includes a first accommodation space 101, a return air outlet 110, and an air outlet 120.
  • the return air outlet 110 and the air outlet 120 are connected to the first accommodation space 101 respectively.
  • the fan 140 is disposed in the first accommodation space 101 and faces the return air outlet 110 .
  • the indoor heat exchanger 130 is disposed on a side of the fan 140 close to the air outlet 120 .
  • the piping box 170 is provided on a side of the first housing 100 close to the air outlet 120 .
  • the nano water ion generating device 200 is disposed on the side wall of the first housing 100 close to the air outlet 120 .
  • the nano water ion generating device 200 and the piping box 170 are connected through the vents between the two, so that the air in the piping box 170 enters the nano water ion generating device 200 through the vents, and the air with nano water ions passes through the nano water ion generating device 200.
  • the water ion release port 244 is sent indoors.
  • a separate gas channel is designed so that the nano water ion generating device 200 can smoothly spray nano water ions.
  • the air passes from the piping box 170 through the first vent 1701, the third vent 184 and the second vent 280, enters the inside of the nano water ion generating device 200, and then passes through the nano water ion release port 244 to contain the nano water.
  • the ionized air is discharged into the room for indoor air purification.
  • the air inside the piping box 170 is humid, it is not affected by the temperature and humidity conditions of the air outlet 120 of the indoor unit 10. Therefore, it will not affect the water condensation ability of the nanowater ion generating device 200.
  • Some embodiments of the present disclosure propose an air conditioner in which the refrigeration part 220 is no longer used to cool the emitter electrode 210, but is configured to generate condensed water, and then utilize the hydrophilicity of the emitter electrode 210 to guide the condensed water to its emitter tip.
  • the air pretreatment device 300 is used to increase the temperature difference at the refrigeration part 220 and improve the ability of the refrigeration part 220 to generate condensed water, thereby ensuring that the emitter electrode 210 can still obtain enough for use even when the humidity is low.
  • the tip discharges moisture to produce nano water ions to improve the air purification effect of the air conditioner 1000.
  • the indoor unit 10 further includes an air pretreatment device 300 .
  • the air pretreatment device 300 will be described below.
  • the air duct of the indoor unit 10 includes a first air duct and a second air duct that are connected with each other.
  • the first air duct is further away from the air outlet 120 than the second air duct.
  • the first air duct is located on the upstream side of the indoor heat exchanger 130
  • the second air duct is located on the downstream side of the indoor heat exchanger 130.
  • the side of the piping box 170 away from the air outlet 120 (such as the rear side) is connected to the first air duct (such as the upstream air duct), and the side of the piping box 170 close to the air outlet 120 (such as the front side) is closed.
  • part of the air flowing into the air duct from the return air outlet 110 will not pass through the indoor heat exchanger 130, but will flow into the piping box 170.
  • the front side of the piping box 170 is closed, the air in the piping box 170 will not continue to flow into the air duct. It flows out from the outside, so most of the air filled in the piping box 170 is air before heat exchange.
  • some embodiments of the present disclosure make full use of the space in the piping box 170 and open a vent (such as the second vent 280) on the piping box 170 to connect the piping box 170 with the air outlet 120 through the vent.
  • a vent such as the second vent 280
  • part of the air that flows into the air duct from the return air outlet 110 and has not been heat exchanged by the indoor heat exchanger 130 will flow into the piping box 170 and then flow to the nano water ion generating device at the air outlet 120 through the second vent 280 200.
  • the piping box 170 serves as a branch flow guide, that is, part of the unheated air in the first air duct can be directed to the nanowater ion generating device 200 through the piping box 170 .
  • the air pretreatment device 300 is disposed on the air flow path between the piping box 170 and the nanowater ion generating device 200, and is configured to preheat or precool the air flowing through the refrigeration unit 220 to improve
  • the temperature difference of the surrounding air of the refrigeration part 220 increases the ability of the refrigeration part 220 to generate condensed water, thereby ensuring that the emitter electrode 210 can still obtain enough moisture for tip discharge to generate nano-water even when the humidity is low.
  • the air pretreatment device 300 includes a cooling plate 310 , a first heat exchange plate 320 and a second heat exchange plate 330 .
  • the two opposite sides of the cooling plate 310 along the thickness direction are respectively the first side and the second side.
  • the first heat exchange plate 320 is disposed on the first side of the refrigeration fin 310
  • the second heat exchange plate 330 is disposed on the second side of the refrigeration fin 310 .
  • the first heat exchange plate 320 is located in the air flow path between the air inlet 171 of the piping box 170 and the refrigeration unit 220 .
  • the second heat exchange plate 330 is located outside the air flow path between the air inlet 171 of the piping box 170 and the refrigeration unit 220 .
  • the first heat exchange plate 320 is a heat absorption plate and the second heat exchange plate 330 is a heat sink plate.
  • the first heat exchange plate 320 is a heat sink plate and the second heat exchange plate 330 is a heat absorption plate.
  • the air pretreatment device 300 When the air conditioner 1000 executes the cooling operation mode, the temperature at the air outlet 120 is low. At this time, the air pretreatment device 300 turns on the preheating mode to preheat the air flowing from the piping box 170 to the refrigeration unit 220. At this time, The first heat exchange plate 320 is a heat sink plate, and the second heat exchange plate 330 is a heat absorption plate. When the air flows through the air pretreatment device 300, it is heated by the heat emitted by the first heat exchange plate 320, and the temperature rises. The temperature difference at the refrigeration part 220 is increased, and the water condensation capacity of the refrigeration part 220 is improved.
  • the air pretreatment device 300 turns on the precooling mode to precool the air flowing from the piping box 170 toward the refrigeration unit 220.
  • the first heat exchange plate 320 is a heat absorption plate and the second heat exchange plate 330 is a heat sink plate
  • the heat is absorbed by the first heat exchange plate 320, and the temperature is lowered, thus improving the refrigeration.
  • the temperature difference at the refrigeration part 220 improves the water condensation capacity of the refrigeration part 220.
  • the air pretreatment device 300 includes a first ventilation gap 321 and a plurality of first heat exchange plates 320 arranged at intervals, and a first ventilation gap is formed between two adjacent first heat exchange plates 320. The air flows through the first ventilation gap 321 to improve the heat exchange efficiency.
  • the air pretreatment device 300 includes a second ventilation gap 331 and a plurality of second heat exchange plates 330 arranged at intervals.
  • the second ventilation gap 331 is formed between two adjacent second heat exchange plates 330 to improve heat exchange efficiency.
  • the piping box 170 is disposed at one end of the first housing 100 along the extension direction (such as the length direction) and is located in the first subspace 161 .
  • the end of the piping box 170 away from the air outlet 120 is formed There is an opening, which is provided toward the air duct, and the opening, together with the indoor heat exchanger 130 and the first partition 150, defines the air inlet 171 of the piping box 170 (refer to FIG. 16).
  • connection plate 180 is provided on the side of the indoor heat exchanger 130 close to the air outlet 120 (such as the front side).
  • the connection plates 180 are respectively connected to the inner bottom wall 190 (such as the front side) of the first shell 100.
  • the water tray 6A) and the front side wall of the first housing 100 are used to separate the piping box 170 from the second air duct (such as the downstream air duct), and the nano water ion generating device 200 is arranged on the connecting plate 180 .
  • the portion (such as the top) of the indoor heat exchanger 130 away from the inner bottom wall 190 is inclined in a direction close to the air outlet 120 .
  • the connecting plate 180 is disposed in the space formed between the indoor heat exchanger 130 , the inner bottom wall 190 of the first housing 100 , and the front side wall of the first housing 100 .
  • the inner bottom wall 190 is connected to the bottom wall of the first housing 100 , and the inner bottom wall 190 of the first housing 100 is closer to the first accommodation space 101 than the bottom wall.
  • the air pretreatment device 300 can be installed in the piping box 170 or in the nano water ion generating device 200 .
  • the air pretreatment device 300 is disposed within the piping box 170 .
  • the connecting plate 180 includes a body 1801 , a third vent 184 and a mounting portion 182 (such as mounting holes, etc.).
  • the third vent 184 is disposed through the body 1801 along the thickness direction.
  • the mounting portion 182 is inserted into the third vent 184 .
  • a part of the installation part 182 is located in the piping box 170 , and another part of the installation part 182 is opposite to and communicates with the second ventilation opening 280 . In this way, the inner cavity of the piping box 170 and the second accommodation part of the second housing 240 can be connected. Space 202 connected.
  • the cooling fins 310 are disposed on a portion of the mounting portion 182 located within the piping box 170 , the first heat exchange plate 320 is located in the inner cavity of the mounting portion 182 , and the second heat exchange plate 330 is located outside the mounting portion 182 .
  • the air in the piping box 170 flows into the second accommodation space 202 of the second housing 240 through the inner cavity of the installation part 182. When flowing through the inner cavity of the installation part 182, it contacts the first heat exchange plate 320 and flows through the first heat exchange plate 320. Ventilation gap 321 to achieve air preheating or precooling.
  • the difference from FIGS. 15 to 17 mainly lies in the different placement positions of the air pretreatment device 300 .
  • the air pretreatment device 300 is installed in the nano water ion generating device 200 .
  • the cooling fins 310 are arranged on the cover 248 of the second housing 240.
  • the first heat exchange plate 320 is located in the second accommodation space 202 (such as the fourth subspace 242) of the second housing 240.
  • the second heat exchange plate 330 Located outside the second housing 240 .
  • the air in the piping box 170 flows into the fourth subspace 242 of the second housing 240 through the inner cavity of the second vent 280, and then continues to flow to the third subspace 241, and in the process comes into contact with the first heat exchange plate 320. , flows through the first ventilation gap 321 to achieve preheating or precooling of the air.
  • control method includes steps S101 to S105.
  • Step S101 Control the nano water ion generating device 200 to turn on.
  • Step S102 Calculate the difference ⁇ T between the first temperature T11 of the air in the air outlet and the second temperature T12 of the air in the guide channel.
  • the flow guide channel refers to the inner cavity of the piping box 170 .
  • Step S103 Determine whether ⁇ T is positive or negative. If ⁇ T is greater than 0, step S104 is executed; if ⁇ T is less than 0, step S105 is executed.
  • Step S104 When it is determined that ⁇ T is greater than 0, the air pretreatment device 300 turns on the precooling mode to cool the air flowing to the refrigeration unit 220 in the nanowater ion generating device 200 to increase the temperature difference.
  • Step S105 When it is determined that ⁇ T is less than 0, the air pretreatment device 300 turns on the preheating mode to heat the air flowing to the refrigeration part 220 of the nanowater ion generating device 200 to increase the temperature difference.
  • the air conditioner 1000 when the difference ⁇ T between the first temperature T11 of the air in the air outlet 120 and the second temperature T12 of the air in the piping box 170 is greater than 0, it means that the air conditioner 1000 is in the heating operation mode and the air is pretreated.
  • the device 300 pre-cools the air flowing through the refrigeration unit 220 .
  • the air conditioner 1000 When the difference ⁇ T between the first temperature T11 of the air in the air outlet 120 and the second temperature T12 of the air in the piping box 170 is less than 0, it means that the air conditioner 1000 is in the cooling operation mode, and the air pretreatment device 300 has a cooling effect on the air flowing through the refrigeration system.
  • the air in part 220 is preheated.
  • control system (or controller) of the air conditioner 1000 can also directly read the cooling or heating control command of the air conditioner 1000 to directly determine whether the air conditioner 1000 is in the cooling or heating operating mode, thereby further
  • the air pretreatment device 300 is controlled to precool or preheat the air flowing through the refrigeration unit 220 .
  • the air conditioner 1000 further includes a humidity sensor configured to detect the relative humidity of the air at the air outlet 120 .
  • the controller is coupled to the humidity sensor and the air pretreatment device 300 respectively, and the controller is configured to control the air pretreatment device 300 to precool or preheat the air flowing through according to the relative humidity fed back by the humidity sensor.
  • the controller obtains the relative humidity Rh of the air at the air outlet 120 and adjusts the switch of the air pretreatment device 300 according to the relative humidity.
  • the difference ⁇ T between the second temperature T12 controls the air pretreatment device 300 to switch between precooling and preheating modes, and adjusts the cooling capacity by adjusting the operating power of the air pretreatment device 300 in the precooling or preheating mode.
  • the heating capacity is used to precool or preheat the air flowing through, so as to increase the temperature difference at the refrigeration part 220 and improve the water condensation capacity of the refrigeration part 220.
  • the working mode of the air pretreatment device 300 (such as precooling or preheating the air flowing through) is also different. In this way, by adjusting the working mode of the air pretreatment device 300, the temperature difference at the refrigeration part 220 can be adjusted, thereby improving the water condensation capacity of the refrigeration part 220.
  • the air pretreatment device 300 when the relative humidity is greater than or equal to the preset relative humidity (i.e., Rh ⁇ Rh1), it indicates that the humidity is high, the air pretreatment device 300 is closed, and the moisture can be condensed from the air only by the cooling capacity of the refrigeration unit 220.
  • the preset relative humidity i.e., Rh ⁇ Rh1
  • the air pretreatment device 300 When the relative humidity is less than the preset relative humidity (i.e. Rh ⁇ Rh1), it indicates that the humidity is small. If the air conditioner is in the cooling mode, the air pretreatment device 300 turns on the preheating mode; if the air conditioner is in the heating mode, then The air pretreatment device 300 turns on the precooling mode.
  • Rh ⁇ Rh1 the preset relative humidity
  • the heating or cooling capacity of the air pretreatment device 300 is inversely proportional to the relative humidity Rh.
  • the difference ⁇ T between the first temperature T11 of the air in the air outlet 120 and the second temperature T12 of the air in the piping box 170 is less than the first preset threshold T10, it indicates that the temperature difference is small. At this time, the air When the pretreatment device 300 is turned on, the air flowing from the piping box 170 to the refrigeration unit 220 needs to be pretreated.
  • the difference ⁇ T between the first temperature T11 of the air in the air outlet 120 and the second temperature T12 of the air in the piping box 170 is greater than the second preset threshold T20, the temperature difference is large. At this time, the air pretreatment device 300 is closed, and only The cooling capacity of the refrigeration unit 220 can condense moisture from the air.
  • the heating or cooling capacity of the air pretreatment device 300 is inversely proportional to the difference ⁇ T between the first temperature T11 of the air in the air outlet 120 and the second temperature T12 of the air in the piping box 170 .
  • the air pretreatment device 300 can not only prevent excessive water condensation in the refrigeration unit 220, but also improve the water condensation capacity of the refrigeration unit 220 under dry conditions.
  • the nanowater ion generating device 200 in addition to the emission electrode 210 , the conductive part 250 (such as the metal clamping part) and the electrode holder 270 , the nanowater ion generating device 200 also includes the wiring bolt 3 .
  • the third housing 4 includes a first connection hole 41 and a second connection hole 42 .
  • the conductive part 250 includes a clamping part body, an electrode mounting hole 21A, an elastic clamping arm 22A, and a fixed mounting arm 24A.
  • the electrode mounting hole 21A penetrates the clamping part body in the thickness direction, and the emitter electrode 210 is installed in the electrode mounting hole 21A.
  • the elastic clamping arm 22A is disposed close to the electrode mounting hole 21A and is connected to the clamping part body.
  • the emission electrode 210 is located inside the elastic clamping arm 22A, and a part of it is in contact with the elastic clamping arm 22A.
  • the elastic clamping arm 22A is located in the first connection hole 41 .
  • the fixed mounting arm 24A is connected to the clamping part body and extends in a direction away from the clamping part body (or the electrode mounting hole 21A).
  • the fixed mounting arm 24A is connected to the second connecting hole 42 through the wiring bolt 3 .
  • the elastic clamping arm 22A extends generally in a direction parallel to the center line of the electrode mounting hole 21A, and the fixed mounting arm 24A extends in a radial direction of the electrode mounting hole 21A.
  • the conductive portion 250 further includes a mounting chamfer 23A located between the clamping portion body and the elastic clamping arm 22A.
  • the installation chamfer 23A can not only guide the assembly of the emitter electrode 210, but also protect the emitter electrode 210.
  • the emitter electrode 210 has the ability to absorb and conduct water, and is a porous columnar electrode mainly formed by solidifying conductive fiber bundles through a curing agent and carbonizing under high temperature conditions. In an environment with high air humidity, the emitter electrode 210 can directly absorb moisture in the air.
  • the nano water ion generating device 200 can achieve air purification, disinfection and sterilization effects.
  • the air conditioner 1000 having the nano water ion generating device 200 also has a better air purification effect.
  • conductive portion 250 includes two, three, or more resilient clamping arms 22A. In this way, the reliability of the conductive part 250 can be improved.
  • the elastic clamping arm 22A includes a connected first section 221 and a second section 222.
  • the second section 222 is further away from the clamping part body than the first section 221.
  • a portion of the second section 222 is configured to contract toward the center line of the electrode fixing hole 21A.
  • the first section 221 is a straight section
  • the second section 222 is a curved section
  • the first section 221 forms an inner diameter D2 around the electrode fixing hole 21A
  • the second section 222 forms an inner diameter D3 (such as the minimum inner diameter) around the electrode fixing hole 21A, satisfying In the relationship D2>D1>D3
  • the bottom end of the emission electrode 210 is inserted into the electrode fixing hole 21A from the first section 221, and the outer side wall of the emission electrode 210 is in contact with the part of the second section 222.
  • the bottom end of the emitter electrode 210 is inserted into the conductive part 250 from the electrode mounting hole 21A, and is elastically fixed by contacting the elastic clamping arm 22A.
  • the installation chamfer 23A can prevent the emitter electrode 210 from causing damage to the electrode material during the insertion of the conductive part 250. In the event of collision or fiber damage, this method of electrode fixation can make the emitter electrode 210 plug-and-play, which is convenient and fast. It can realize rapid assembly and replacement of the emitter electrode 210, and solves the current problem of poor conductive connection of water-absorbing electrode materials.
  • the elastic clamping arm 22A on the conductive part 250 extends into the first connection hole 41
  • the fixed installation arm 24A includes a fixing hole 25
  • the wiring bolt 3 is passed through the fixing hole 25 .
  • the connection bolt 3 plays a role in fixing the conductive part 250.
  • the high-voltage wire 31 (refer to FIG. 22) is also fixed to the electrode holder 270 through the connection bolt 3.
  • one end of the emitter electrode 210 is coupled to the power supply unit 230 through the high-voltage line 31 , thus facilitating the electrical connection between the power supply unit 230 and the emitter electrode 210 .
  • the electrode holder 270 further includes a first boss portion 43 , the first boss portion 43 is located at the bottom of the first connection hole 41 , and the bottom end of the emission electrode 210 is in contact with the first boss portion 43 .
  • the first boss portion 43 is configured to control the height of the water-absorbing portion of the emitter electrode 210, and plays a role in positioning the emitter electrode 210.
  • the distance between the first boss portion 43 and the fixed mounting arm 24A is H1
  • the height of the emitter electrode 210 is H2, satisfying the relationship H1 ⁇ H2.
  • the generation process of nano water ions in the nano water ion generating device 200 includes: the wiring bolt 3 is connected to the power supply part 230, the electrode holder 270 is made of insulating material (such as polypropylene, etc.), and the negative high voltage electricity output by the power supply part 230 is connected through the wiring
  • the bolt 3 is directly transmitted to the conductive part 250, and then transmitted to the emitter electrode 210 by the elastic clamping arm 22A of the conductive part 250.
  • negative high voltage is applied to the emitter electrode 210, there are countless micropores on the surface of the water-absorbing material, and countless nano water ion release points are formed under the action of the high-voltage electric field.
  • the negative high voltage provided by the power supply unit 230 generates corona discharge, thereby ionizing the water. Negatively charged nano water ions are produced and sprayed into the air.
  • the nano-water ion generating device 200 in some embodiments of the present disclosure directly uses the earth or surrounding grounded objects as the counter electrode of the emitter electrode 210. There is no need to set up an additional counter electrode. Therefore, the generated negatively charged nano-water ions will not be counter-electrode. absorb.
  • the nanowater ion generating device 200 does not include the refrigeration part 220 .
  • the nanowater ion generating device 200 includes a refrigeration part 220 .
  • the nano water ion generating device 200 including the refrigeration part 220 can be selected; when it is not necessary to provide condensed water for the emitter electrode 210, the nano water ion generating device 200 which does not include the refrigeration part 220 can be selected.
  • Device 200. The nano water ion generating device 200 including the refrigeration unit 220 is introduced below.
  • the electrode holder 270 also includes a second boss portion 44 and an accommodation cavity 43A connected to the first connection hole 41.
  • the refrigeration unit 220 is located at the bottom of the electrode holder 270.
  • a part of the second boss portion 44 abuts.
  • the cooling part 220 includes a ceramic insulating sheet 51 , a PN junction 52 , a metal conductor sheet 53 and a heat sink 54 .
  • the ceramic insulating sheet 51 is connected to the cold end of the PN junction 52, so condensed water will be generated in the water storage gap between the emitter electrode 210 and the cooling part 220.
  • the ceramic insulating sheet 51 is located on the surface (such as the upper surface) of the PN junction 52 close to the first boss portion 43 to insulate the emitter electrode 210 from the PN junction 52 and avoid negative high voltage pairs transmitted to the emitter electrode 210 Semiconductor refrigeration has an impact.
  • the surface (the lower surface) of the PN junction 52 away from the first boss portion 43 is connected to the metal conductor piece 53 , and the metal conductor piece 53 is connected to a power source to form an electrical circuit with the PN junction 52 .
  • the heat sink 54 is located on the side (eg, the bottom) of the metal conductor sheet 53 away from the PN junction 52 .
  • the metal conductor piece 53 can be in contact with the second boss portion 44 .
  • thermocouple pair formed by the N-type semiconductor material and the P-type semiconductor material in the refrigeration part 220
  • heat transfer will occur between the two ends of the PN junction 52, and the heat will be transferred from one end to the other.
  • One end resulting in a temperature difference to form a hot and cold end.
  • condensation is produced.
  • the nanowater ion generating device 200 in some embodiments of the present disclosure controls the distance between the emitter electrode 210 and the emitter electrode 210 by controlling the distance between the first boss portion 43 and the second boss portion 44 (such as the distance in the height direction of the emitter electrode 210).
  • the distance between the ceramic insulating sheets 51 is such that there is a water storage gap of 0.2mm to 0.8mm (such as 0.2mm, 0.4mm, 0.6mm, 0.8mm) between the emitter electrode 210 and the ceramic insulating sheet 51, and the ceramic insulating sheet 51 is located at PN
  • the upper surface of junction 52 is on the cooling surface.
  • the emitter electrode 210 can not only absorb moisture directly from the air, but also provide condensed water to the emitter electrode 210 through the refrigeration unit 220, fully ensuring the water supply to the emitter electrode 210. , so that the nano water ion generating device 200 can stably generate nano water ions with negative oxygen ions.
  • the electrode holder 270 includes a fourth vent connected with the accommodation cavity 43A.
  • the fourth vent can circulate the air between the refrigeration part 220 and the electrode holder 270 so that the refrigeration part 220 condenses water in the air.
  • the emitter electrode 210 in an environment with high air humidity, directly absorbs moisture in the air to provide water for the emitter electrode 210 .
  • the emitter electrode 210 uses the surrounding earth or grounded objects as the counter electrode, and directly uses negative high-voltage ionized water.
  • the generated nano water ions contain negative oxygen ions, which improves the air purification ability.
  • control system 2000 includes a microcontroller (Microcontroller Unit, MCU) 2001, a fan controller 2002, a fan 140, and a purification device controller. 2003 and nano water ion generating device 200.
  • MCU Microcontroller Unit
  • the MCU 2001 is set on the indoor controller of the indoor unit 10.
  • the fan controller 2002 is also provided on the indoor controller and is electrically connected to the MCU.
  • the fan 140 is disposed inside the first housing 100 of the indoor unit 10 (that is, in the first accommodation space 101), and is electrically connected to the fan controller 2002.
  • the purification device controller 2003 is provided on the indoor controller and is electrically connected to the MCU.
  • the nano water ion generating device 200 is installed at the air outlet 120 of the indoor unit 10 and is electrically connected to the purification device controller 2003.
  • the nano water ion generating device 200 can realize the same emission electrode 210 to simultaneously release nano water ions and negative oxygen ions.
  • the nano water ion generating device 200 is later than the first start time t11 of the fan 140.
  • the fan 140 does not start, and the nano water ion generating device 200 cannot be turned on.
  • the nano water ion generating device 200 cannot be started.
  • 200 is earlier than the second time t12 when the fan 140 is turned off.
  • the fan 140 can be turned off only after the nano water ion generating device 200 is turned off to avoid negative ions generated by the nano water ion generating device 200 from accumulating in the first housing 100 to generate static electricity.
  • first time t11 and the second time t12 may be equal or unequal.
  • the nano water ion generating device 200 is controlled by the indoor controller of the indoor unit 10 and is linked with the fan 140 of the indoor unit 10 .
  • the control method of the indoor unit control system includes: steps S201 to S205.
  • Step S201 Turn on the purification function.
  • Step S202 Determine whether the fan 140 is turned on. If yes, step S203 is executed. If not, step S202 is executed.
  • Step S203 When it is determined that the fan 140 is on, it is determined whether the on time of the fan 140 is greater than a threshold (such as t) time. If yes, step S204 is executed. If not, step S204 is executed after step S205.
  • a threshold such as t
  • Step S204 The nano water ion generating device 200 is turned on.
  • Step S205 After the waiting time exceeds the threshold time, S204 is executed.
  • the controller first determines whether the fan 140 is turned on, and determines the turning on time of the fan 140.
  • the fan 140 is turned on (that is, running) for the first time, it is greater than the first threshold (such as t11>5s).
  • the nano water ion generating device 200 starts to start, otherwise the nano water ion generating device 200 cannot be started.
  • the nano water ion generating device 200 When the user chooses to turn off the purification function, the nano water ion generating device 200 immediately cuts off power and keeps the fan 140 running for a second time. When the second time is greater than the second threshold (such as t12>5s), the fan 140 is controlled to stop. This prevents negative ions generated by the nanowater ion generator 200 from accumulating in the first housing 100 of the indoor unit 10 to generate static electricity, thereby causing adverse effects on the indoor unit 10 .
  • the second threshold such as t12>5s
  • first time threshold and the second time threshold may be equal or unequal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Filters, Heat-Exchange Apparatuses, And Housings Of Air-Conditioning Units (AREA)

Abstract

提供一种空调器(1000)。空调器(1000)包括相连的室外机(20)和室内机(10)。且室内机(10)包括第一壳体(100)、风机(140)、室内换热器(130)、配管盒(170)和纳米水离子发生装置(200)。第一壳体(100)包括第一容纳空间(101)、回风口(110)和出风口(120)。风机(140)与回风口(110)相对。室内换热器(130)位于风机(140)的靠近出风口(120)的一侧。配管盒(170)设置在第一容纳空间(101)中靠近出风口(120)的一侧。纳米水离子发生装置(200)位于第一壳体(100)的靠近出风口(120)的位置处,纳米水离子发生装置(200)包括纳米水离子释放口(244),纳米水离子发生装置(200)与配管盒(170)通过两者之间的通风口连通。配管盒(170)内的空气经过通风口进入纳米水离子发生装置(200),并将带有纳米水离子的空气通过纳米水离子释放口(244)送至室内。

Description

空调器、空调器的控制系统及控制方法
本申请要求于2022年03月30日提交的、申请号为202220725436.7的中国专利申请的优先权;于2022年03月30日提交的、申请号为202220716072.6的中国专利申请的优先权;于2022年03月31日提交的、申请号为202220733579.2的中国专利申请的优先权;于2022年03月31日提交的、申请号为202220731725.8的中国专利申请的优先权;其全部内容通过引用结合在本申请中。
技术领域
本公开涉及空气调节技术领域,尤其涉及一种空调器、空调器的控制系统及控制方法。
背景技术
随着科技的进步与人们生活水平的提高,空调器逐渐走进了人们的生活中,成为了人们工作和生活中不可或缺的用品。
分体式空调器包括室内机和室外机,室内机和室外机分别安装在室内和室外,两者通过对应的管路和电线连接。通常,为了改善室内的空气质量,空调器还具有空气净化功能。
发明内容
一方面,提供一种空调器。所述空调器包括室外机和室内机。所述室内机与所述室外机相连。且所述室内机包括:第一壳体、风机、室内换热器、配管盒和纳米水离子发生装置。所述第一壳体包括第一容纳空间、回风口和出风口,所述回风口和所述出风口分别与所述第一容纳空间连通。所述风机设置在所述第一容纳空间中,且与所述回风口相对。所述室内换热器设置在所述第一容纳空间中,且位于所述风机的靠近所述出风口的一侧。所述配管盒设置在所述第一容纳空间中靠近所述出风口的一侧。所述纳米水离子发生装置设置在所述第一容纳空间中,且位于所述第一壳体的靠近所述出风口的位置处,所述纳米水离子发生装置被配置为产生带有负电荷和电离水产生的羟基自由基的纳米水离子,且包括纳米水离子释放口,所述纳米水离子发生装置与所述配管盒通过两者之间的通风口连通。其中,所述配管盒内的空气经过所述通风口进入所述纳米水离子发生装置,并将带有所述纳米水离子的空气通过所述纳米水离子释放口送至室内,以避免所述出风口处空气的温湿度变化影响所述纳米水离子发生装置的凝水能力。
另一方面,提供一种空调器的控制系统。所述空调器包括室外机和室内机,所述室内机包括:室内控制器、风机和纳米水离子发生装置。所述控制系统包括:微控制器、风机控制器以及净化装置控制器。所述微控制器设置在所述室内控制器上。所述风机控制器设置在所述室内控制器上,且与所述微控制器电连接。所述风机与所述风机控制器电连接。所述净化装置控制器设置在所述室内控制器上,且与所述微控制器电连接。所述纳米水离子发生装置设置在所述室内机的出风口处,且与所述净化装置控制器电连接。其中,所述纳米水离子发生装置受所述室内机的所述室内控制器控制,并与所述室内机的所述风机联动。
又一方面,提供一种空调器的控制方法。所述空调器包括室外机和室内机。所述室内机包括:风机和纳米水离子发生装置。所述方法包括:当打开净化功能时,判断所述风机是否开启,并对开启时间进行判断;当所述风机开启的第一时间大于第一阈值后,所述纳米水离子发生装置开始启动,否则所述纳米水离子发生装置无法开启;当关闭净化功能时,所述纳米水离子发生装置立即断电,并维持所述风机继续运转第二时间,当所述第二时间大于第二阈值后,再控制所述风机停机。
附图说明
图1A为根据一些实施例的空调器的示意图;
图1B为根据一些实施例的室内机的结构图;
图2为根据一些实施例的室内机移除顶部盖板后的结构图;
图3为根据一些实施例的室内机中气体流动路径图;
图4为根据一些实施例的纳米水离子发生装置的一种结构图;
图5为根据一些实施例的纳米水离子发生装置的另一种结构图;
图6为图5中的纳米水离子发生装置的爆炸图;
图7为根据一些实施例的连接板的一种结构图;
图8为根据一些实施例的室内机中连接板和纳米水离子发生装置的一种装配图;
图9为根据一些实施例的连接板的另一种结构图;
图10为根据一些实施例的室内机中连接板和纳米水离子发生装置的另一种装配图;
图11为根据一些实施例的室内机中纳米水离子发生装置的一种安装图;
图12为根据一些实施例的室内机中纳米水离子发生装置的另一种安装图;
图13为根据一些实施例的室内机中纳米水离子发生装置的又一种安装图;
图14为根据一些实施例的室内机中纳米水离子发生装置和空气预处理装置的原理图;
图15为根据一些实施例的空气预处理装置设置在配管盒内的气体流动路径图;
图16为根据一些实施例的空气预处理装置设置在配管盒内的结构图;
图17为根据一些实施例的空气预处理装置和纳米水离子发生装置的安装结构图;
图18为根据一些实施例的空气预处理装置设置在纳米水离子发生装置内的气体流动路径图;
图19为根据一些实施例的空气预处理装置和纳米水离子发生装置的结构图;
图20为图19中的空气预处理装置和纳米水离子发生装置的爆炸图;
图21为根据一些实施例的空气预处理装置的结构图;
图22为根据一些实施例的纳米水离子发生装置的部分结构图;
图23为图22中的纳米水离子发生装置的剖视图;
图24为根据一些实施例的导电部的结构图;
图25为根据一些实施例的导电部的剖视图;
图26为根据一些实施例的室内机的控制系统的框图;
图27为根据一些实施例的室内机的控制方法的一个流程图;
图28为根据一些实施例的室内机中纳米水离子发生装置和空气预处理装置的流程图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。术语“连接”应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连。术语“耦接”表明两个或两个以上部件有直接物理接触或电接触。然而,术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、 B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
如本文中所使用,根据上下文,术语“如果”任选地被解释为意思是“当……时”或“在……时”或“响应于确定”或“响应于检测到”。类似地,根据上下文,短语“如果确定……”或“如果检测到[所陈述的条件或事件]”任选地被解释为是指“在确定……时”或“响应于确定……”或“在检测到[所陈述的条件或事件]时”或“响应于检测到[所陈述的条件或事件]”。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
如本文所使用的那样,“约”、“大致”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
如本文所使用的那样,“平行”、“垂直”、“相等”包括所阐述的情况以及与所阐述的情况相近似的情况,该相近似的情况的范围处于可接受偏差范围内,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。例如,“平行”包括绝对平行和近似平行,其中近似平行的可接受偏差范围例如可以是5°以内偏差;“垂直”包括绝对垂直和近似垂直,其中近似垂直的可接受偏差范围例如也可以是5°以内偏差。“相等”包括绝对相等和近似相等,其中近似相等的可接受偏差范围内例如可以是相等的两者之间的差值小于或等于其中任一者的5%。
[空调器基本运行原理]
本公开一些实施例提供一种空调器。如图1A所示,空调器1000包括室内机10和室外机20。室内机10和室外机20通过管路相连以传输制冷剂。
室内机10包括:室内换热器130。室外机20包括:室外换热器21、压缩机22、四通阀23和节流机构24。在一些实施例中,节流机构24还可以设置在室内机10中。节流机构24可以由节流阀、膨胀阀和减压器等中的至少一个构成。例如,节流机构24可以仅由膨胀阀构成,也可以由膨胀阀和节流阀串联构成,还可以由膨胀阀和减压器串联构成,本公开对此不作限制。
依序连接的压缩机22、室外换热器21、节流机构24和室内换热器130形成制冷剂回路,制冷剂在所述制冷剂回路中循环流动,通过室外换热器21与室内换热器130分别与空气进行换热,以实现空调器1000的制冷或制热。
压缩机22被配置为压缩制冷剂以使得低温低压的制冷剂受压缩形成高温高压的制冷剂。
室外换热器21被配置为将室外空气与在室外换热器21中传输的制冷剂进行热交换。例如,室外换热器21在空调器1000的制冷模式下作为冷凝器进行工作,使得由压缩机22压缩的制冷剂通过室外换热器21将热量散发至室外空气中而冷凝。室外换热器21在空调器1000的制热模式下作为蒸发器进行工作,使得减压后的制冷剂通过室外换热器21吸收室外空气中的热量而蒸发。
通常,室外换热器21还包括换热翅片,以扩大室外空气与室外换热器21中传输的制冷剂的接触面积,从而提高室外空气与制冷剂的热交换效率。
节流机构24连接于室外换热器21与室内换热器130之间,由节流机构24的开度大小调节流经室外换热器21和室内换热器130的制冷剂的压力,以调节流通于室外换热器21和室内换热器130之间的制冷剂流量。流通于室外换热器21和室内换热器130之间的制冷剂的流量和压力将影响室外换热器21和室内换热器130的换热性能。节流机构24可以是电子阀。节流机构24的开度是可调节的,以控制流经节流机构24的制冷剂的流量和压力。当空调器1000以制冷模式运行时,节流机构24被配置为将从室外换热器21流出的过冷的液态制冷剂节流成低温低压的气液两相态制冷剂,制冷剂的流向如图1A中的实 线箭头所示。当空调器1000以制热模式运行时,节流机构24被配置为将从室内换热器130流出的过冷的液态制冷剂节流成低温低压的气液两相态制冷剂,制冷剂的流向如图1A中的虚线箭头所示。
四通阀23连接于所述制冷剂回路中,并被配置为切换制冷剂在所述制冷剂回路中的流向以使空调器1000执行制冷模式或制热模式。
室内换热器130被配置为将室内空气与在室内换热器130中传输的制冷剂进行热交换。例如,室内换热器130在空调器1000的制冷模式下作为蒸发器进行工作,使得经由室外换热器21散热后的制冷剂通过室内换热器130吸收室内空气中的热量而蒸发。室内换热器130在空调器1000的制热模式下作为冷凝器进行工作,使得经由室外换热器21吸热后的制冷剂通过室内换热器130将热量散发至室内空气中而冷凝。
通常,室内换热器130还包括换热翅片,以扩大室内空气与室内换热器130中传输的制冷剂的接触面积,从而提高室内空气与制冷剂的热交换效率。
下面主要结合图1A对空调器1000的制冷模式和制热模式的运行方式进行说明。
如图1A所示,当空调器1000以制冷模式运行时,制冷剂经过压缩机22的压缩,变成高温高压的过热气态制冷剂,该过热气态制冷剂被排入室外换热器21进行冷凝。在室外换热器21中,过热气态制冷剂被冷却成过冷液态制冷剂,并进入节流机构24。节流机构24可以将过冷液态制冷剂节流成低温低压的气液两相态制冷剂。该低温低压的气液两相态制冷剂流入室内换热器130进行蒸发吸热,在室内换热器130内,制冷剂又被蒸发为过热态气体,并返回到压缩机22的吸入端完成一个循环。如图1A所示,当空调器1000以制热模式运行时,高温高压的气态制冷剂通过四通阀23后直接被排入室内换热器130进行制热,在室内换热器130内被冷却成过冷液态制冷剂后,流入节流机构24,并被节流机构24节流成低温低压的气液两相态制冷剂。该低温低压的气液两相态制冷剂进入室外换热器21进行蒸发吸热。
相关技术中的带有空气净化功能的室内机,有的以纳米水离子作为空气净化原理,然而,一方面由于纳米水离子装置的主要净化因子是羟基自由基,杀菌效果较好,但是颗粒物净化效果较差。另一方面,纳米水离子整体装置需要安装到室内机内部,纳米水离子出口通过管道连接到室内机出风口,但此装置本身没有动力系统,仅依靠室内机出风口风速产生的微量负压,将纳米水离子从纳米水离子(即Nanoe)装置中吸到室内机出风口。这种结构方式产生的纳米水离子、在从Nanoe装置传输到室内机出风口的位置时,由于羟基自由基的不稳定性,在传输过程中已经有较多的分解,而没有到达室内空气中起到净化空气的作用。
纳米水离子技术是指纳米级静电雾化水粒子,该技术是对尖端电极上的水滴进行高压放电,使其逐步分裂成水雾,分解成具有高活性的纳米级水离子,其中包含大量的高活性的羟基自由基,羟基自由基具有极高的氧化性,可以将空气中的细菌、微生物、甲醛、挥发性有机化合物(volatile organic compounds,VOC)等成分进行分解去除。
纳米水离子的产生过程中会逐渐消耗水分,相关技术中的纳米水离子技术是一种使用半导体制冷技术,利用半导体制冷部为发射电极降温,发射电极具有亲水性,被降温后的发射电极从周围空气中吸收水分,然后利用负高压在发射电极的发射尖端产生尖端放电,生成纳米水离子。这种利用发射电极降温产生冷凝水的供水方式,在空气湿度较低的情况下,发射电极难以产生冷凝水,也就无法产生纳米水离子,并且受半导体制冷的影响,发射极作为接地极进行发射,对极使用正高压,因此造成产生的纳米水离子不含负离子成分,缺乏了负离子的功能效果。
为此,本公开的一些实施例提供一种空调器,纳米水离子发生装置位于出风口处,可以将产生的纳米水离子随出风口气流的方向扩散到室内,达到杀菌消毒空气的目的。
参见图1B和图2,空调器1000的室内机10还包括纳米水离子发生装置200,纳米水离子发生装置200能够产生带有负离子的纳米水离子,从而实现空调器1000的空气净化功能。
在一些实施例中,空调器1000包括一个纳米水离子发生装置200。或者,空调器1000 也可以包括多个并联使用的纳米水离子发生装置200,有利于提高负离子和纳米水离子的产生量,从而进一步提升空气净化效果。
[室内机]
本公开的一些实施例提供一种室内机10,参照图1B至图3,该室内机10包括第一壳体100(即室内机壳)、风机140、室内换热器130、配管盒170和纳米水离子发生装置200。
第一壳体100包括第一容纳空间101、回风口110和出风口120,回风口110和出风口120分别与第一容纳空间101连通。风机140安装于第一容纳空间101中,且与回风口110相对。
室内换热器130安装在风机140的靠近出风口120的一侧。配管盒170安装在第一容纳空间101中、靠近出风口120的一侧。纳米水离子发生装置200安装在第一壳体100的靠近出风口120的位置处上。
参照图4至图6,纳米水离子发生装置200包括发射电极210和纳米水离子释放口244,纳米水离子发生装置200与配管盒170通过两者之间的一通风口连通。
配管盒170内的空气经过通风口进入纳米水离子发生装置200,带有纳米水离子的空气经过纳米水离子释放口244送至室内。配管盒170用于安装吸水泵、水管、浮子开关等。
室内机10的外部轮廓由第一壳体100形成,参照图1B至图3,第一壳体100的一侧设有回风口110,另一侧设有出风口120,回风口110与出风口120连通,以形成风道,室内换热器130设置在该风道中。
室内空气经回风口110流入第一容纳空间101中,经室内换热器130换热后,再经出风口120流入室内,实现对室内空气的制冷或制热。
室内机10的空气流动分为两路,参照图2和图3,一路为室内的空气,从回风口110进入第一容纳空间101中,在风机140的带动下,依次经过室内换热器130、纳米水离子发生装置200、出风口120重新回到室内。另一路为配管盒170内的空气经过通风口进入纳米水离子发生装置200的内部,通过纳米水离子释放口244进入室内。
根据本公开一些实施例的室内机10,通过单独的气体通道(即上述另一路气体通道),有效的避免了出风口120空气的温湿度变化对纳米水离子发生装置200的凝水能力的影响,使得纳米水离子发生装置200能够顺利喷射纳米水离子,从而可以将带有纳米水离子的空气有效的送至室内,提高室内机10的空气净化功能。
需要说明的是,室内空气通过回风口110进入室内机10,风机140为整个室内机系统提供动力。
将纳米水离子发生装置200邻近出风口120设置,纳米水离子发生装置200与配管盒170相连通,在纳米水离子释放口244发射的负氧水离子产生的离子风,加上出风口120空气流动产生的负压,将配管盒170内的空气吸引到纳米水离子释放口244,确保空调器1000在进行制冷或制热时,防止不同的温湿度条件影响纳米水离子发生装置200内部制冷部220产生冷凝水的能力。另外,出风口120的空气不会直吹发射电极210,从而不会影响发射电极210的制冷部220(如半导体制冷部)对空气的冷凝作用。
在一些实施例中,参照图11,室内机10还包括接水盘6A,接水盘6A设置在室内换热器130的一侧,且被配置为承接冷凝。
参照图2,室内机10包括第一隔板150,第一隔板150设置在第一容纳空间101中,第一隔板150被配置为将第一容纳空间101分隔成第一子空间161和第二子空间162。例如,第一子空间161为第一容纳空间101的前腔,第二子空间162为第一容纳空间101的后腔。
风机140位于第二子空间162中,回风口110与第二子空间162连通。室内换热器130位于第一子空间161中,出风口120与第一子空间161连通。
当室内机10应用在空调器1000上时,空调器1000在前面板上形成有出风口120,将制冷或制热后的空气排向室内。纳米水离子发生装置200位于上述的出风口120内,电离产生的纳米水离子随出风口气流的方向扩散到室内,达到杀菌消毒空气的目的。
【连接板】
在一些实施例中,室内机10还包括连接板180,连接板180设置在第一壳体100的靠近出风口120的侧壁上,且被配置为安装纳米水离子发生装置200。例如,连接板180设置在第一容纳空间101中,且与室内换热器130的一端连接。
参照图2、图5和图7,配管盒170包括第一通风口1701(见图3),纳米水离子发生装置200包括第二通风口280,连接板180包括第三通风口184,配管盒170内的空气流过第一通风口1701、第三通风口184、第二通风口280进入纳米水离子发生装置200。
需要说明的是,前述的通风口包括第一通风口1701、第二通风口280和第三通风口184。
在一些实施例中,参照图7,连接板180包括本体1801、第一固定部185(如本体固定部)以及第二固定部183(如装置固定部)。
第一固定部185设置在本体的周围,连接板180通过第一固定部185与第一壳体100连接。第三通风口184沿厚度方向贯穿本体1801设置,且第三通风口184与第二通风口280连通。第二固定部183靠近第三通风口184设置,第二固定部183与纳米水离子发生装置200的固定安装件504连接,这样,可以实现纳米水离子发生装置200与连接板180的固定连接。固定安装件504将在下文介绍。
这里,第三通风口184的形状可以根据纳米水离子发生装置200和配管盒170二者对应的通风口的形状设置。
在一些实施例中,本体1801的边沿弯折形成第一固定部185。例如,本体1801的一条侧边向配管盒170一侧延伸,以形成第一固定部185的一部分,本体1801的其余的侧边向纳米水离子发生装置200另一侧延伸,以形成第一固定部185的另一部分。
第一固定部185包括通孔和/或开口1850,以辅助将连接板180安装在第一壳体100上。
第二固定部183靠近纳米水离子发生装置200设置。例如,第二固定部183和第三通风口184之间的位置关系依据纳米水离子发生装置200的第二通风口280和固定安装件504的位置关系设置,以实现纳米水离子发生装置200的稳定安装,且保证纳米水离子发生装置200和配管盒170之间的通风。例如,第二固定部183设置为安装通孔,该安装通孔设置在第三通风口184的沿着长度方向的两侧。
在另一些实施例中,参照图9和图10,纳米水离子发生装置200穿设于连接板180,例如,纳米水离子发生装置200的一部分位于配管盒170中,且另一部分位于配管盒170外,且靠近出风口120设置。
[纳米水离子发生装置]
参照图1B至图3,纳米水离子发生装置200被配置为产生带有负电荷和电离水产生的羟基自由基的纳米水离子。
负电荷可以使空气中的颗粒物荷电,并促使空气中的颗粒物进行团聚,体积和重量增加后沉降到地面,或荷电后的颗粒物吸附到就近的零电位(大地)上,从而去除空气中的颗粒物(如PM2.5)。
纳米水离子中电离水产生的羟基自由基具有极强的氧化性,当其与颗粒物表面的细菌病毒或者空气中的细菌病毒接触时,羟基自由基从细菌的细胞壁中夺取氢元素,从而破坏细胞壁结构,使细胞失活,并因其强氧化作用使蛋白质变性,从而起到杀菌消毒的作用。
纳米水离子发生装置200设置在出风口120处,产生的纳米水离子直接被吹入室内,有利于提高空气净化效果。
参照图14,纳米水离子发生装置200包括发射电极210、制冷部220以及电源部230。制冷部220被配置为产生供发射电极210电离使用的冷凝水,电源部230与发射电极210耦接,且被配置为向发射电极210提供负高压,以将发射电极210上的水分通过高压电离激发,产生带负电的纳米水离子。电源部230所提供电压的电位为负电位,电压的绝对值的数值范围为10kV~220kV,为负高压。
在一些实施例中,发射电极210具有亲水性,以便将制冷部220所产生的冷凝水引至 其发射尖端处,发射电极210接通负高压电后,便可以在发射尖端处电离激发出带负电的纳米水离子。
在一些实施例中,发射电极210包括吸水件,吸水件中添加有杀菌材料(如银离子等)。发射电极210接收到电源部230提供的负高压而带电,发射电极210中的吸水件中的水分被高压电离激发,产生纳米水离子,纳米水离子带有负电荷和电离水产生的羟基自由基。
制冷部220被配置为产生冷凝水,参照图14和图18,发射电极210的一端与制冷部220之间具有储水间隙260,制冷部220产生的冷凝水存储于储水间隙260内,发射电极210利用亲水性将储水间隙260内的冷凝水引至其发射尖端。
制冷部220产生冷凝水的能力与其周围空气的温度差有关,温度差越大,产生冷凝水的能力越强;相反,温度差越小,产生冷凝水的能力越弱。
在一些实施例中,参照图5、图6和图18,纳米水离子发生装置200还包括第二壳体240(即装置壳体)。发射电极210、制冷部220以及电源部230设置在第二壳体240内。
第二壳体240可以使用绝缘材料(如聚丙烯等)制成。第二壳体240包括供发射电极210的发射尖端露出的纳米水离子释放口244。在一些实施例中,纳米水离子释放口244朝向出风口120。
纳米水离子释放口244的尺寸在靠近发射电极210的尖端的方向上逐渐增大,通过渐变式放大纳米水离子释放口244,可以有效避免第二壳体240上的静电累积,进而可以释放更高浓度的负氧离子。
风道内的空气在经出风口120流出时,不会直吹发射电极210,以避免影响出风温度,进而影响制冷部220对空气的冷凝作用。第二壳体240包括第二容纳空间202(如图18所示),第二容纳空间202与配管盒170通过通风口连通。纳米水离子发生装置200的第二通风口280设置在第二壳体240的靠近配管盒170的一侧。
参照图5,纳米水离子发生装置200还包括固定安装件504。固定安装件504设置在第二壳体240上,固定安装件504与连接板180连接。纳米水离子释放口244设置在第二壳体240远离室内换热器130的一侧,纳米水离子发生装置200内的空气经过纳米水离子释放口244进入室内。发射电极210设置在纳米水离子释放口244内。
参照图5和图11,固定安装件504包括位于第二壳体240同侧两边的安装耳246,安装耳包括通孔2461,螺钉穿设通孔2461,以实现纳米水离子发生装置200的安装。第二通风口280位于第二壳体240的设置有固定安装件504的一侧。第二壳体240的一侧设置有纳米水离子释放口244,发射电极210位于该纳米水离子释放口244的中部。纳米水离子发生装置200中的气流从第二通风口280,流经第二容纳空间202,再从纳米水离子释放口244排出,在发射电极210的喷射作用下将带有纳米水离子的空气送入室内空气中,以实现相应的空气净化功能。
在一些实施例中,如图18所示,纳米水离子发生装置200包括第二隔板243,第二隔板243设置在第二容纳空间202中。第二隔板243被配置为将第二容纳空间202分隔成第三子空间241和第四子空间242,第二隔板243包括供气体流通的开口部2431。
发射电极210和制冷部220设置在第三子空间241内,电源部230设置在第四子空间242内。第二通风口280与第四子空间242连通。
纳米水离子发生装置200外部的空气经第二通风口280流入第二容纳空间202中,依次流经第四子空间242和第三子空间241到达制冷部220处,在制冷部220处产生冷凝水,并供向发射电极210的发射尖端,高压电离激发出的纳米水离子经纳米水离子释放口244流出,通过出风口120流入室内。空气的流动方向可以参照图18中的箭头指向。
在一些实施例中,参照图5和图6,第二壳体240包括底壳247和盖体248,底壳247包括卡接部2471,盖体248包括卡扣2481,通过卡扣2481与卡接部2471之间的卡接,便于实现底壳247与盖体248之间的固定连接。
第二壳体240包括走线口245,走线口245设置在底壳247的靠近盖体248的侧边缘,便于布线。纳米水离子释放口244设置在盖体248上。
在一些实施例中,参照图18,纳米水离子发生装置200还包括绝缘的电极固定座270, 电极固定座270设置在第三子空间241中。电极固定座270包括电极安装孔21A,发射电极210插设在该电极安装孔21A内。
纳米水离子发生装置200还包括导电部250(如导电板),导电部250设置在电极固定座270的靠近盖体248的一端。导电部250包括弹性夹持臂22A,弹性夹持臂22A伸入电极安装孔21A内,且与发射电极210接触,导电部250与电源部230电连接。
制冷部220设置在电极固定座270的远离盖体248的一端,且正对电极安装孔21A。储水间隙260形成于制冷部220、电极安装孔21A、以及发射电极210的靠近制冷部220的一端之间。
在一些实施例中,参照图7至图9,第二壳体240包括安装耳246,安装耳246通过连接件(如螺钉等)固定于连接板180上,以实现纳米水离子发生装置200在出风口120处的固定。
[纳米水离子发生装置的安装]
参照图5、图7和图8,纳米水离子发生装置200通过固定安装件504和第二固定部183相连(如螺栓连接)。
参照图9和图10,与图7和图8相比,区别主要在于:将第二固定部183和第三通风口184共同组成安装开口,纳米水离子发生装置200安装在该安装开口处,且纳米水离子发生装置200的一部分位于配管盒170的内部。这样,可以降低室内机10制冷制热时、因出风口120处温湿度剧烈变化、对纳米水离子发生装置200凝水效果、及工作稳定性产生不良影响。
在一些实施例中,参照图11,室内换热器130倾斜安装在第一壳体100内,纳米水离子发生装置200安装在室内换热器130的靠近出风口120的一侧,且纳米水离子发生装置200的发射电极210垂直于室内换热器130所在的平面。
在一些实施例中,纳米水离子发生装置200的发射电极210、与过出风口120的水平面形成的夹角为30°至60°(例如,30°、45°或60°等)中的任一值。这样,一方面可以有效避免出风口120的空气直吹发射电极210,造成发射电极210凝水不足,进而影响产生纳米水离子。另一方面,此种角度的吹风可以提高纳米水离子浓度,以达到更好的净化效果。
在一些实施例中,纳米水离子发生装置200安装到室内机10的连接板180上,纳米水离子发生装置200的发射电极210在离子风和出风口120负压的带动下、主动向空气中释放纳米水离子,在纳米水离子发生装置200内部含有制冷部220,以冷却空气中的水。
为了达到较好的空气净化效果,在另一些实施例中,参照图12,与图11相比,区别主要在于:纳米水离子发生装置200的发射电极210垂直于出风口120所在的平面(如前侧壁所在的平面)。例如,发射电极210的发射端朝向出风口120设置。
在又一些实施例中,参照图13,与图11相比,区别主要在于:纳米水离子发生装置200的发射电极210平行于出风口120所在的平面(如前侧壁所在的平面)。例如,发射电极210的发射端朝向第一壳体100的底壁设置。这样,可以根据需要灵活地选择纳米水离子发生装置200的安装方式。
在图12和图13所示的情况下,纳米水离子发生装置200可以整体安装在第二固定部183上。或者,将第二固定部183和第三通风口184共同组成安装开口,纳米水离子发生装置200安装在该安装开口处,且一部分位于配管盒170的内部。
根据本公开一些实施例的室内机10,包括第一壳体100,第一壳体100包括第一容纳空间101、回风口110和出风口120。回风口110和出风口120分别连通第一容纳空间101。风机140设置在第一容纳空间101中,且与回风口110相对。室内换热器130设置在风机140的靠近出风口120的一侧。配管盒170设置在第一壳体100的靠近出风口120的一侧。纳米水离子发生装置200设置在第一壳体100的靠近出风口120的侧壁上。纳米水离子发生装置200与配管盒170通过两者之间的通风口连通,使配管盒170内的空气经过该通风口进入纳米水离子发生装置200,并将带有纳米水离子的空气经过纳米水离子释放口244送至室内。
这样,通过将配管盒170内的空气导入纳米水离子发生装置200中,并通过纳米水离子释放口244将混有纳米水离子的空气排入室内,为纳米水离子发生装置200设置了单独的气体通道,从而可以防止出风口120处空气的温湿度对纳米水离子发生装置200的影响,有利于提高纳米水离子发生装置200的凝水能力,提高室内机10的空气净化能力。
为了避免因室内机10在进行制冷和制热时,出风口120处空气的温湿度条件的变化超过预设阈值,进而对纳米水离子发生装置200的凝水能力产生不良影响。
根据本公开一些实施例的室内机10,通过设计单独的气体通道,以使纳米水离子发生装置200能够顺利喷射纳米水离子。例如,空气从配管盒170,经过第一通风口1701、第三通风口184和第二通风口280,进入纳米水离子发生装置200的内部,再经过纳米水离子释放口244将带有纳米水离子的空气排入室内,以进行室内空气净化。
需要说明的是,虽然配管盒170内部的空气潮湿,但不受室内机10的出风口120的温湿度条件影响,因此,不会对纳米水离子发生装置200的凝水能力产生影响。
[空气预处理装置、配管盒]
本公开一些实施例提出一种空调器,制冷部220不再用于为发射电极210降温,而是被配置为产生冷凝水,然后利用发射电极210的亲水性将冷凝水引至其发射尖端处,通过空气预处理装置300来提高制冷部220处的温度差,提高制冷部220产生冷凝水的能力,进而保证发射电极210即使在湿度较低的情况下、仍能够获取到足够的用于为尖端放电的水分,以产生纳米水离子,提高空调器1000的空气净化效果。
由于纳米水离子发生装置200设置在出风口120处,其周围空气的温度受出风口120的出风温度影响较大,有可能会影响制冷部220的凝水能力,为了解决上述问题,在本公开的一些实施例中,参照图19,室内机10还包括空气预处理装置300。空气预处理装置300将在下文介绍。
室内机10的风道包括相互连通的第一风道和第二风道,第一风道比第二风道更远离出风口120。例如,第一风道位于室内换热器130的上游侧,第二风道位于室内换热器130的下游侧。
相关技术中,配管盒170的远离出风口120的一侧(如后侧)与第一风道(如上游风道)连通,配管盒170的靠近出风口120的一侧(如前侧)封闭,从回风口110流入风道内的空气中会有一部分不经过室内换热器130,而是流入配管盒170内,由于配管盒170的前侧封闭,所以配管盒170内的空气不会继续向外侧流出,因此,配管盒170内填充的空气大部分都为换热前的空气。
为此,本公开的一些实施例充分利用配管盒170中的空间,在配管盒170上开设通风口(如第二通风口280),以将配管盒170通过该通风口与出风口120连通,这样,从回风口110流入风道的、未经室内换热器130换热的空气中会有一部分流入配管盒170内,再经第二通风口280流向出风口120处的纳米水离子发生装置200。
由此,配管盒170起到了分支导流的作用,即通过配管盒170可以将第一风道内的部分未经换热的空气导向纳米水离子发生装置200。
在一些实施例中,空气预处理装置300设置在配管盒170与纳米水离子发生装置200之间的空气流路上,且被配置为对流经制冷部220的空气进行预热或预冷,以提高制冷部220的周围空气的温度差,提高制冷部220产生冷凝水的能力,从而保证发射电极210即使在湿度较低的情况下仍能够获取到足够的用于尖端放电的水分,以产生纳米水离子,提高空调器1000的空气净化效果。
从回风口110流入风道内的空气,一部分经室内换热器130换热后,从出风口120流出;另一部分不经过室内换热器130,而是流入配管盒170内,再经第二通风口280流入第二壳体240的第二容纳空间202中,空气在由配管盒170向制冷部220流动的过程中,会流经空气预处理装置300,得到预热或预冷,以此来提高制冷部220处的空气温度差,提高制冷部220产生冷凝水的能力。
在一些实施例中,参照图15和图21,空气预处理装置300包括制冷片310、第一换热板320以及第二换热板板330。制冷片310沿厚度方向相对的两侧分别为第一侧和第二 侧。第一换热板320设置在制冷片310的第一侧,第二换热板330设置在制冷片310的第二侧。
参照图16和图18,第一换热板320位于配管盒170的入风口171和制冷部220之间的空气流道之中。第二换热板板330位于配管盒170的入风口171和制冷部220之间的空气流道之外。
当制冷片310的第一侧制冷、第二侧制热时,第一换热板320为吸热板,第二换热板330为散热板。当制冷片310的第一侧制热、第二侧制冷时,第一换热板320为散热板,第二换热板330为吸热板。
在空调器1000执行制冷工作模式时,出风口120处的温度较低,此时空气预处理装置300开启预热模式,对由配管盒170向制冷部220方向流动的空气进行预热,此时第一换热板320为散热板,第二换热板330为吸热板,空气在流经空气预处理装置300时,被第一换热板320所散发的热量加热,温度升高,进而提高制冷部220处的温度差,提高制冷部220的凝水能力。
在空调器1000执行制热工作模式时,出风口120处的温度较高,此时空气预处理装置300开启预冷模式,对由配管盒170向制冷部220方向流动的空气进行预冷,此时第一换热板320为吸热板,第二换热板330为散热板,空气在流经空气预处理装置300时,热量被第一换热板320所吸收,温度降低,进而提高制冷部220处的温度差,提高制冷部220凝水能力。
在一些实施例中,参照图21,空气预处理装置300包括第一通风间隙321和多个间隔布置的第一换热板320,相邻两个第一换热板320之间形成第一通风间隙321,空气流经第一通风间隙321,提高换热效率。
空气预处理装置300包括第二通风间隙331和多个间隔布置的第二换热板330,相邻两个第二换热板330之间形成第二通风间隙331,提高换热效率。
参照图2和图3,配管盒170设置在第一壳体100的沿延伸方向(如长度方向)上的一端,且位于第一子空间161中,配管盒170的远离出风口120的一端形成有开口,该开口朝向风道设置,该开口与室内换热器130、第一隔板150共同限定有配管盒170的入风口171(参照图16)。
参照图11和图16,室内换热器130的靠近出风口120的一侧(如前侧)设有连接板180,连接板180分别连接于第一壳体100的内底壁190(如接水盘6A)和第一壳体100的前侧壁,以将配管盒170和第二风道(如下游风道)隔开,纳米水离子发生装置200设置在连接板180上。
在一些实施例中,参照图16,室内换热器130的远离内底壁190的部分(如顶部)朝靠近出风口120的方向倾斜。连接板180设置在室内换热器130、第一壳体100的内底壁190以及第一壳体100的前侧壁之间所形成的空间内。
需要说明的是,内底壁190与第一壳体100的底壁相连,且第一壳体100的内底壁190比底壁更靠近第一容纳空间101。
[空气预处理装置的安装位置]
空气预处理装置300可以设置在配管盒170内,或者纳米水离子发生装置200内。
在一些实施例中,参照图15,空气预处理装置300设置在配管盒170内。
参照图9,连接板180包括本体1801、第三通风口184以及安装部182(如安装孔等)。第三通风口184沿厚度方向贯穿本体1801设置。安装部182穿设于第三通风口184中。例如,安装部182的一部分位于配管盒170内,且安装部182的另一部分与第二通风口280相对且连通,这样,可以将配管盒170的内腔和第二壳体240的第二容纳空间202连通。
参照图17,制冷片310设置在安装部182的位于配管盒170内的一部分上,第一换热板320位于安装部182的内腔中,第二换热板330位于安装部182的外部。
配管盒170内的空气经安装部182的内腔流入第二壳体240的第二容纳空间202中,在流经安装部182的内腔时与第一换热板320接触,流经第一通风间隙321,以实现空气的预热或预冷。
在另一些实施例中,参照图18至图20,与图15至图17的区别主要在于,空气预处理装置300的设置位置不同。空气预处理装置300设置在纳米水离子发生装置200内。
制冷片310设置在第二壳体240的盖体248上,第一换热板320位于第二壳体240的第二容纳空间202(如第四子空间242)中,第二换热板330位于第二壳体240的外部。
配管盒170内的空气经第二通风口280的内腔流入第二壳体240的第四子空间242,再继续向第三子空间241流动,在此过程中与第一换热板320接触,流经第一通风间隙321,以实现空气的预热或预冷。
[空气预处理装置的控制方法]
在一些实施例中,参照图28,该控制方法包括步骤S101~S105。
步骤S101、控制纳米水离子发生装置200开启。
步骤S102、计算出风口的空气的第一温度T11与导流通道内的空气的第二温度T12的差值△T。这里,导流通道指的是配管盒170的内腔。
步骤S103、判断△T的正负。若△T大于0,则执行步骤S104;若△T小于0,则执行步骤S105。
步骤S104、在确定△T大于0的情况下,空气预处理装置300开启预冷模式,对流向纳米水离子发生装置200中制冷部220的空气进行降温,以提高温度差。
步骤S105、在确定△T小于0的情况下,空气预处理装置300开启预热模式,对流向纳米水离子发生装置200中制冷部220的空气进行升温,以提高温度差。
也就是说,在出风口120的空气的第一温度T11与配管盒170内的空气的第二温度T12之差△T大于0的情况下,说明空调器1000处于制热工作模式,空气预处理装置300对流经制冷部220的空气进行预冷。
在出风口120的空气的第一温度T11与配管盒170内的空气的第二温度T12之差△T小于0的情况下,说明空调器1000处于制冷工作模式,空气预处理装置300对流经制冷部220的空气进行预热。
在另一些实施例中,空调器1000的控制系统(或控制器)也可以直接读取空调器1000的制冷或制热控制命令,来直接判断空调器1000处于制冷还是制热工作模式,从而进一步控制空气预处理装置300对流经制冷部220的空气进行预冷或预热。
在一些实施例中,空调器1000还包括湿度传感器,湿度传感器被配置为检测出风口120处的空气的相对湿度。控制器分别与湿度传感器以及空气预处理装置300耦接,且控制器被配置为根据湿度传感器反馈的相对湿度、控制空气预处理装置300对流经的空气进行预冷或预热。
在一些实施例中,控制器获取出风口120处空气的相对湿度Rh,根据相对湿度调节空气预处理装置300的开关,根据出风口120的空气的第一温度T11与配管盒170内的空气的第二温度T12之差△T,来控制空气预处理装置300在预冷和预热模式间进行切换,并通过调节空气预处理装置300的预冷或预热模式的工作功率来调节制冷量或制热量,对流经的空气进行预冷或预热,以提高制冷部220处的温度差,提高制冷部220凝水能力。
当湿度传感器反馈的相对湿度不同时,在控制器的控制下,空气预处理装置300所处的工作模式(如对流经的空气进行预冷或预热)也不同。这样,通过调节空气预处理装置300的工作模式,可以调节制冷部220处的温度差,进而提高制冷部220的凝水能力。
例如,当相对湿度大于或等于预设相对湿度(即Rh≥Rh1)时,表明湿度较大,空气预处理装置300关闭,仅靠制冷部220的制冷量即可从空气中冷凝水分。
当相对湿度小于预设相对湿度(即Rh<Rh1)时,表明湿度较小,若空调器处于制冷工作模式,则空气预处理装置300开启预热模式;若空调器处于制热工作模式,则空气预处理装置300开启预冷模式。
在一些实施例中,空气预处理装置300的制热量或制冷量与相对湿度Rh成反比。
在一些实施例中,在出风口120的空气的第一温度T11与配管盒170内的空气的第二温度T12之差△T小于第一预设阈值T10时,表明温差较小,此时空气预处理装置300开启,需要对从配管盒170流向制冷部220处的空气进行预处理。
在出风口120的空气的第一温度T11与配管盒170内的空气的第二温度T12之差△T大于第二预设阈值T20时,温差较大,此时空气预处理装置300关闭,仅靠制冷部220的制冷量即可从空气中冷凝水分。
在一些实施例中,空气预处理装置300的制热量或制冷量、与出风口120的空气的第一温度T11与配管盒170内的空气的第二温度T12之差△T成反比。
空气预处理装置300既可以防止制冷部220凝水过量,又可以提高制冷部220在干燥条件下的凝水能力。
[发射电极]
在一些实施例中,参照图22,纳米水离子发生装置200除了包括发射电极210、导电部250(如金属夹持部)以及电极固定座270之外,还包括接线螺栓3。
参照图23至图25,第三壳体4包括第一连接孔41和第二连接孔42。导电部250包括夹持部本体、电极安装孔21A、弹性夹持臂22A以及固定安装臂24A。电极安装孔21A沿厚度方向贯穿夹持部本体,发射电极210安装于电极安装孔21A内。弹性夹持臂22A靠近电极安装孔21A设置,且与夹持部本体相连,发射电极210位于弹性夹持臂22A的内侧,且一部分与弹性夹持臂22A抵接。弹性夹持臂22A位于第一连接孔41内。固定安装臂24A与夹持部本体相连,且朝远离夹持部本体(或电极安装孔21A)的方向延伸,固定安装臂24A与第二连接孔42通过接线螺栓3连接。
弹性夹持臂22A大致沿平行于电极安装孔21A的中心线的方向延伸,固定安装臂24A沿电极安装孔21A径向方向延伸。
在一些实施例中,导电部250还包括安装倒角23A,安装倒角23A位于夹持部本体和弹性夹持臂22A之间。安装倒角23A不仅能够对发射电极210的装配进行导向,还可以实现对发射电极210的保护。
发射电极210具有吸水和导水能力,为主要由导电纤维束通过固化剂固化、并在高温条件下碳化形成的多孔柱状电极。在空气湿度较大的环境中,发射电极210可以直接吸收空气中的水分。
由此,纳米水离子发生装置200能够实现净化空气,消毒杀菌的效果,相应地,具有纳米水离子发生装置200的空调器1000也具有较好的空气净化效果。
在一些实施例中,导电部250包括两个、三个或更多个弹性夹持臂22A。这样,有利于提高导电部250的使用可靠性。
参照图23至图25,发射电极210的外径为D1,弹性夹持臂22A包括相连的第一段221和第二段222,第二段222比第一段221更远离夹持部本体,第二段222的一部分被配置为朝靠近电极固定孔21A的中心线的方向收缩。例如,第一段221为直段,第二段222为弯曲段,第一段221围绕电极固定孔21A形成内径D2,第二段222围绕电极固定孔21A形成内径D3(如最小内径),满足关系D2>D1>D3,发射电极210的底端从第一段221插入到电极固定孔21A中,且发射电极210的外侧壁与第二段222的所述一部分抵接。
发射电极210的底端从电极安装孔21A插入到导电部250中,与弹性夹持臂22A抵接弹性固定,安装倒角23A可以防止发射电极210在插入导电部250的过程中造成电极材料的磕碰及纤维破损,此种电极固定方式可以使发射电极210即插即用,方便快捷,可实现发射电极210的快速装配和更换,解决了目前吸水电极材料导电连接不良的问题。
在一些实施例中,导电部250上的弹性夹持臂22A伸入到第一连接孔41中,固定安装臂24A包括固定孔25,接线螺栓3穿设于固定孔25中。接线螺栓3一方面起到固定导电部250的作用,另一方面高压线31(参照图22)也通过接线螺栓3固定到电极固定座270上。
例如,参照图22和图23,发射电极210的一端通过高压线31与电源部230耦接,这样,便于实现电源部230与发射电极210之间的电连接。
在一些实施例中,电极固定座270还包括第一凸台部43,第一凸台部43位于第一连接孔41的底部,发射电极210的底端与第一凸台部43抵接。第一凸台部43被配置为控 制发射电极210吸水部分的高度,起到定位发射电极210的作用。
参照图23,第一凸台部43与固定安装臂24A之间的距离为H1,发射电极210的高度为H2,满足关系H1<H2,这样,通过使发射电极210的顶部高于电极固定座270的上表面,裸露在空气中的发射电极210可以直接吸收空气中的水分。
纳米水离子发生装置200中纳米水离子的发生过程包括:接线螺栓3连接电源部230,电极固定座270使用绝缘材料(如聚丙烯等)制成,电源部230输出的负高压电通过接线螺栓3直接传递到导电部250上,再由导电部250的弹性夹持臂22A传导至发射电极210上。发射电极210被施加负高压后,吸水材料表面有无数微孔,在高压电场的作用下形成无数个纳米水离子释放点,通过电源部230提供的负高压,产生电晕放电,从而将水电离产生带负电的纳米水离子,喷射到空气中。
本公开一些实施例中的纳米水离子发生装置200,直接使用大地或者周围的接地物体作为发射电极210的对极,无需额外设置对极,因此产生的带负电的纳米水离子不会被对极吸收。
在一些实施例中,纳米水离子发生装置200不包括制冷部220。在另一些实施例中,纳米水离子发生装置200包括制冷部220。例如,当需要为发射电极210提供冷凝水时,可以选择包括制冷部220的纳米水离子发生装置200;当无需为发射电极210提供冷凝水时,可以选择不包括制冷部220的纳米水离子发生装置200。下面介绍包括制冷部220的纳米水离子发生装置200。
电极固定座270还包括第二凸台部44以及连通第一连接孔41的容置腔43A,在纳米水离子发生装置200包括制冷部220的情况下,制冷部220位于电极固定座270底部的容置腔43A中,且一部分与第二凸台部44抵接。发射电极210与制冷部220之间存在间隙(如储水间隙)。
制冷部220包括陶瓷绝缘片51、PN结52、金属导体片53以及散热片54。陶瓷绝缘片51连接PN结52的冷端,因此在发射电极210与制冷部220之间的储水间隙中会产生冷凝水。
在一些实施例中,陶瓷绝缘片51位于PN结52的靠近第一凸台部43的表面(如上表面)上,使发射电极210与PN结52绝缘,避免传输到发射电极210的负高压对半导体制冷产生影响。PN结52的远离第一凸台部43的表面(如下表面)连接于金属导体片53,金属导体片53连接电源,以与PN结52形成电回路。散热片54位于金属导体片53的远离PN结52的一侧(如底部)。金属导体片53可以与第二凸台部44抵接。
这里,制冷部220中的N型半导体材料和P型半导体材料联结成的热电偶对中有电流通过时,PN结52的两端之间就会产生热量转移,热量就会从一端转移到另一端,从而产生温差形成冷热端。当空气遇到冷端时,会产生冷凝水。
本公开一些实施例中的纳米水离子发生装置200,通过控制第一凸台部43和第二凸台部44的距离(如在发射电极210的高度方向上的距离),控制发射电极210与陶瓷绝缘片51之间的距离,使发射电极210与陶瓷绝缘片51之间存在0.2mm~0.8mm(如0.2mm、0.4mm、0.6mm、0.8mm)储水间隙,陶瓷绝缘片51位于PN结52的上表面的制冷面上。当制冷部220上产生冷凝水6后,冷凝水6与发射电极210接触,被发射电极210吸收,从而源源不断的为发射电极210提供水分。
本公开一些实施例中的纳米水离子发生装置200,发射电极210不仅可以直接从空气中吸收水分,并且,通过制冷部220还可以为发射电极210提供冷凝水,充分保证了发射电极210的供水,使纳米水离子发生装置200可以稳定的产生带负氧离子的纳米水离子。
电极固定座270包括第四通风口,与容置腔43A连通,第四通风口能够使制冷部220与电极固定座270之间的空气流通,以使制冷部220冷凝空气中的水。
本公开一些实施例中的纳米水离子发生装置200,在空气湿度较大的环境中,发射电极210直接吸收空气中的水分,为发射电极210供水。发射电极210以周围的大地或接地物体作为对极,直接使用负高压电离水,产生的纳米水离子中含有负氧离子,提高空气净化能力。
[室内机的控制系统]
本公开的一些实施例还提出了一种室内机的控制系统2000,参照图26,该控制系统2000包括微控制器(Microcontroller Unit,MCU)2001、风机控制器2002、风机140、净化装置控制器2003以及纳米水离子发生装置200。
MCU 2001设置在室内机10的室内控制器上。风机控制器2002也设置在室内控制器上,且与MCU电连接。风机140设置在室内机10的第一壳体100的内部(即第一容纳空间101中),且与风机控制器2002电连接。净化装置控制器2003设置在室内控制器上,且与MCU电连接。纳米水离子发生装置200设置在室内机10的出风口120处,且与净化装置控制器2003电连接。
需要说明的是,纳米水离子发生装置200可以实现同一发射电极210同时释放纳米水离子和负氧离子。
通过使纳米水离子发生装置200与风机140联动,纳米水离子发生装置200晚于风机140启动第一时间t11,风机140不启动,纳米水离子发生装置200无法开启,同样,纳米水离子发生装置200早于风机140关闭第二时间t12,纳米水离子发生装置200关闭后,风机140才能关闭,避免纳米水离子发生装置200产生的负离子在第一壳体100积聚产生静电。
需要说明的是,第一时间t11和第二时间t12可以相等或不相等。
[室内机的控制方法]
在一些实施例中,纳米水离子发生装置200受室内机10的室内控制器控制,并与室内机10的风机140联动。
参照图27,室内机的控制系统的控制方法包括:步骤S201至步骤S205。
步骤S201、开启净化功能。
步骤S202、判断风机140是否开启,若是,则执行步骤S203,若否,则执行步骤S202。
步骤S203、在确定风机140开启的情况下,判断风机140的开启时间是否大于阈值(如t)时间,若是,则执行步骤S204,若否,则在执行步骤S205后执行步骤S204。
步骤S204、纳米水离子发生装置200开启。
步骤S205、等待时间超过所述阈值时间后执行S204。
例如,用户选择开启净化功能后,控制器首先判断风机140是否开启,并对风机140的开启时间进行判断,当风机140开启(即运行)第一时间大于第一阈值(如t11>5s)后,纳米水离子发生装置200开始启动,否则纳米水离子发生装置200无法开启。
当用户选择关闭净化功能时,纳米水离子发生装置200立即断电,并维持风机140继续运行第二时间,当第二时间大于第二阈值(如t12>5s)后,再控制风机140停机,防止纳米水离子发生装置200产生的负离子在室内机10的第一壳体100积聚产生静电,进而对室内机10产生不良影响。
需要说明的是,第一时间阈值和第二时间阈值可以相等或不相等。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。
本领域的技术人员将会理解,本发明的公开范围不限于上述具体实施例,并且可以在不脱离本申请的精神的情况下对实施例的某些要素进行修改和替换。本申请的范围受所附权利要求的限制。

Claims (20)

  1. 一种空调器,包括:
    室外机;和
    室内机,所述室内机与所述室外机相连,且所述室内机包括:
    第一壳体,所述第一壳体包括第一容纳空间、回风口和出风口,所述回风口和所述出风口分别与所述第一容纳空间连通;
    风机,设置在所述第一容纳空间中,且与所述回风口相对;
    室内换热器,设置在所述第一容纳空间中,且位于所述风机的靠近所述出风口的一侧;
    配管盒,设置在所述第一容纳空间中靠近所述出风口的一侧;和
    纳米水离子发生装置,设置在所述第一容纳空间中,且位于所述第一壳体的靠近所述出风口的位置处,所述纳米水离子发生装置被配置为产生带有负电荷和电离水产生的羟基自由基的纳米水离子,且包括纳米水离子释放口,所述纳米水离子发生装置与所述配管盒通过两者之间的通风口连通;其中,
    所述配管盒内的空气经过所述通风口进入所述纳米水离子发生装置,并将带有所述纳米水离子的空气通过所述纳米水离子释放口送至室内,以避免所述出风口处空气的温湿度变化影响所述纳米水离子发生装置的凝水能力。
  2. 根据权利要求1所述的空调器,还包括连接板,所述连接板设置在所述第一壳体的设置有所述出风口的一侧壁上,且被配置为安装所述纳米水离子发生装置;其中,
    所述配管盒包括第一通风口,所述纳米水离子发生装置包括第二通风口,所述连接板包括第三通风口,所述配管盒内的空气通过所述第一通风口、所述第三通风口、所述第二通风口进入所述纳米水离子发生装置;其中,
    所述通风口至少包括所述第一通风口和所述第二通风口。
  3. 根据权利要求1或2所述的空调器,其中,所述室内换热器倾斜安装在所述第一容纳空间中,且被配置为朝靠近所述出风口的方向倾斜;所述纳米水离子发生装置位于所述室内换热器的靠近所述出风口的一侧,所述纳米水离子发生装置包括发射电极,所述发射电极被配置为从空气中吸收水分。
  4. 根据权利要求3所述的空调器,其中,所述发射电极垂直于所述室内换热器所在的平面设置。
  5. 根据权利要求3所述的空调器,其中,所述发射电极垂直于所述出风口所在的平面设置;或者,所述发射电极平行于所述出风口所在的平面设置。
  6. 根据权利要求2所述的空调器,其中,所述纳米水离子发生装置包括:
    第二壳体,所述第二壳体包括第二容纳空间,所述第二通风口设置在所述第二壳体的靠近所述配管盒的一侧;所述纳米水离子释放口设置在所述第二壳体的远离所述室内换热器的一侧,所述纳米水离子发生装置内的空气通过所述纳米水离子释放口进入室内;
    固定安装件,设置在所述第二壳体上,所述固定安装件与所述连接板连接,以实现所述纳米水离子发生装置的固定;和
    发射电极,所述发射电极的至少一部分位于所述纳米水离子释放口中。
  7. 根据权利要求6所述的空调器,其中,所述连接板包括:
    本体,所述第三通风口沿厚度方向贯穿所述本体设置;
    第一固定部,设置在所述本体的周围,所述第一固定部与所述第二壳体连接;和
    第二固定部,所述第二固定部靠近所述第三通风口设置,且所述第二固定部与所述固定安装件连接。
  8. 根据权利要求7所述的空调器,其中,所述第二固定部包括固定孔,所述固定孔和所述第三通风口共同组成安装开口,所述纳米水离子发生装置安装在所述安装开口处,且一部分位于所述配管盒的内部。
  9. 根据权利要求1-8中的任一项所述的空调器,其中,
    所述纳米水离子发生装置设置在所述出风口处;
    所述回风口和所述出风口连通以形成风道,所述室内换热器设置在所述风道中,所述 风道包括相互连通的第一风道和第二风道,所述第一风道比所述第二风道更远离所述出风口;
    所述纳米水离子发生装置还包括发射电极和制冷部,所述制冷部被配置为产生供所述发射电极电离使用的冷凝水;
    所述第一风道中的空气中的一部分经所述配管盒流向所述纳米水离子发生装置;
    空气预处理装置,设置在所述配管盒与所述纳米水离子发生装置之间的空气流路中,且所述空气预处理装置被配置为对空气进行预热或预冷,以提高所述制冷部的周围空气的温度差。
  10. 根据权利要求9所述的空调器,其中,
    所述配管盒包括第一通风口;所述纳米水离子发生装置包括第二壳体,所述第二壳体包括第二容纳空间,所述发射电极和所述制冷部设置在所述第二容纳空间中,所述第二壳体包括第二通风口和所述纳米水离子释放口,所述纳米水离子释放口供所述发射电极的发射尖端露出;其中,
    从所述回风口流入所述第一容纳空间中的空气的所述一部分不经过所述室内换热器进行换热,直接经所述配管盒的内腔、所述第一通风口和所述第二通风口流入所述第二容纳空间中,再经所述纳米水离子释放口流出。
  11. 根据权利要求10所述的空调器,其中,
    所述空气预处理装置设置在所述配管盒内;或者,
    所述空气预处理装置设置在所述纳米水离子发生装置的所述第二容纳空间中。
  12. 根据权利要求10所述的空调器,其中,所述空气预处理装置包括:
    第一换热板,所述第一换热板位于所述配管盒和所述制冷部之间的空气流道之内;
    第二换热板,所述第二换热板板位于所述配管盒和所述制冷部之间的空气流道之外;和
    制冷片,所述制冷片的一侧设有所述第一换热板,且所述制冷片的另一侧设有所述第二换热板。
  13. 根据权利要求12所述的空调器,还包括连接板和安装部,所述连接板包括第三通风口,所述安装部穿设于所述第三通风口中,且所述安装部设置在所述配管盒与所述第二通风口连通的位置处,所述安装部将所述配管盒和所述第二容纳空间连通;其中,
    所述制冷片设置在所述安装部的位于所述配管盒内的部分上,所述第一换热板位于所述安装部的内腔中,所述第二换热板位于所述安装部的外部。
  14. 根据权利要求12所述的空调器,其中,
    所述制冷片设置在所述第二壳体上,所述第一换热板位于所述第二容纳空间中,所述第二换热板位于所述第二容纳空间的外部。
  15. 根据权利要求14所述的空调器,其中,
    所述室内机包括第一隔板,所述第一隔板被配置为将所述第一容纳空间分隔成第一子空间和第二子空间;所述室内换热器位于所述第一子空间中,所述风机位于所述第二子空间中;
    所述纳米水离子发生装置还包括第二隔板,所述第二隔板设置在所述第二容纳空间中,所述第二隔板被配置为将所述第二容纳空间分隔成第三子空间和第四子空间,所述第二隔板包括供气体流通的开口;所述发射电极和所述制冷部设置在所述第三子空间中;所述第一换热板位于所述第四子空间中;
    所述纳米水离子发生装置还包括电源部,所述电源部设置在所述第四子空间中,所述电源部与所述发射电极耦接,且被配置为向所述发射电极提供负高压,以将所述发射电极吸收的水分电离成带有负离子的纳米水离子。
  16. 根据权利要求12所述的空调器,其中,
    所述空气预处理装置包括第一通风间隙和多个间隔布置的所述第一换热板,相邻两个所述第一换热板之间形成所述第一通风间隙;
    所述空气预处理装置包括第二通风间隙和多个间隔布置的所述第二换热板,相邻两个 所述第二换热板之间形成所述第二通风间隙。
  17. 根据权利要求9至16中任一项所述的空调器,其中,
    所述配管盒的远离所述出风口的一侧在朝向所述风道的位置处形成有入风口,以使所述第一风道中的空气中的所述一部分经所述入风口流向所述配管盒;
    所述空调器还包括连接板,所述连接板设置在所述室内换热器的靠近所述出风口的一侧,所述第一壳体包括内底壁和前侧壁,所述前侧壁为所述第一壳体的设置有所述出风口的侧壁,所述连接板分别连接于所述内底壁和所述前侧壁,以将所述配管盒和所述第二风道隔开,所述纳米水离子发生装置设置在所述连接板上,所述连接板包括第三通风口,以将所述配管盒内的空气导向所述纳米水离子发生装置。
  18. 根据权利要求9至16中任一项所述的空调器,其中,
    所述纳米水离子发生装置还包括储水间隙,所述储水间隙形成在所述发射电极的一端与所述制冷部之间,所述发射电极具有亲水性,所述制冷部产生的冷凝水存储于所述储水间隙内,所述发射电极将所述储水间隙内的冷凝水引导至所述发射电极的发射尖端。
  19. 一种空调器的控制系统,其中,所述空调器包括室外机和室内机,所述室内机包括:室内控制器、风机和纳米水离子发生装置,所述控制系统包括:
    微控制器,设置在所述室内控制器上;
    风机控制器,设置在所述室内控制器上,且与所述微控制器电连接;
    所述风机与所述风机控制器电连接;
    净化装置控制器,设置在所述室内控制器上,且与所述微控制器电连接;
    所述纳米水离子发生装置,设置在所述室内机的出风口处,且与所述净化装置控制器电连接;其中,
    所述纳米水离子发生装置受所述室内机的所述室内控制器控制,并与所述室内机的所述风机联动。
  20. 一种空调器的控制方法,其中,所述空调器包括室外机和室内机,且具有净化功能,所述室内机包括:风机和纳米水离子发生装置;所述方法包括:
    当打开所述净化功能时,判断所述风机是否开启,并对开启时间进行判断;
    当所述风机开启的第一时间大于第一阈值后,所述纳米水离子发生装置开始启动,否则所述纳米水离子发生装置无法开启;
    当关闭所述净化功能时,所述纳米水离子发生装置立即断电,并维持所述风机继续运转第二时间,当所述第二时间大于第二阈值后,再控制所述风机停机。
PCT/CN2022/136317 2022-03-30 2022-12-02 空调器、空调器的控制系统及控制方法 WO2023185064A1 (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202220716072.6U CN217082727U (zh) 2022-03-30 2022-03-30 一种空调器
CN202220725436.7 2022-03-30
CN202220716072.6 2022-03-30
CN202220725436.7U CN217004689U (zh) 2022-03-30 2022-03-30 空调室内机及空调室内机控制系统
CN202220733579.2 2022-03-31
CN202220731725.8U CN217464666U (zh) 2022-03-31 2022-03-31 一种负氧水离子发生装置和空调器
CN202220733579.2U CN217464667U (zh) 2022-03-31 2022-03-31 一种负氧水离子发生装置和空调器
CN202220731725.8 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023185064A1 true WO2023185064A1 (zh) 2023-10-05

Family

ID=88198933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/136317 WO2023185064A1 (zh) 2022-03-30 2022-12-02 空调器、空调器的控制系统及控制方法

Country Status (1)

Country Link
WO (1) WO2023185064A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010029716A1 (ja) * 2008-09-12 2010-03-18 パナソニック株式会社 空気調和機
CN203404884U (zh) * 2013-08-02 2014-01-22 广东美的制冷设备有限公司 空调
CN107894028A (zh) * 2017-11-14 2018-04-10 青岛海信日立空调系统有限公司 空调器及其控制方法、多联机空调系统
CN214536497U (zh) * 2021-03-17 2021-10-29 海信(山东)空调有限公司 空调室内机
CN113719906A (zh) * 2021-09-26 2021-11-30 青岛海信日立空调系统有限公司 一种空调器
WO2022052538A1 (zh) * 2020-09-11 2022-03-17 青岛海尔空调电子有限公司 空调器
CN217004689U (zh) * 2022-03-30 2022-07-19 青岛海信日立空调系统有限公司 空调室内机及空调室内机控制系统
CN217082726U (zh) * 2022-03-30 2022-07-29 青岛海信日立空调系统有限公司 一种空调器
CN217082727U (zh) * 2022-03-30 2022-07-29 青岛海信日立空调系统有限公司 一种空调器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010029716A1 (ja) * 2008-09-12 2010-03-18 パナソニック株式会社 空気調和機
CN203404884U (zh) * 2013-08-02 2014-01-22 广东美的制冷设备有限公司 空调
CN107894028A (zh) * 2017-11-14 2018-04-10 青岛海信日立空调系统有限公司 空调器及其控制方法、多联机空调系统
WO2022052538A1 (zh) * 2020-09-11 2022-03-17 青岛海尔空调电子有限公司 空调器
CN214536497U (zh) * 2021-03-17 2021-10-29 海信(山东)空调有限公司 空调室内机
CN113719906A (zh) * 2021-09-26 2021-11-30 青岛海信日立空调系统有限公司 一种空调器
CN217004689U (zh) * 2022-03-30 2022-07-19 青岛海信日立空调系统有限公司 空调室内机及空调室内机控制系统
CN217082726U (zh) * 2022-03-30 2022-07-29 青岛海信日立空调系统有限公司 一种空调器
CN217082727U (zh) * 2022-03-30 2022-07-29 青岛海信日立空调系统有限公司 一种空调器

Similar Documents

Publication Publication Date Title
EP1852659B1 (en) Air conditioner
CN113719906A (zh) 一种空调器
CN217082726U (zh) 一种空调器
CN112018599A (zh) 纳米水离子发生装置和空调器
CN113432217B (zh) 一种空气净化装置及空调器
WO2023185064A1 (zh) 空调器、空调器的控制系统及控制方法
KR20090031227A (ko) 크린룸내 직접분무식 기화가습장치 및 습도제어방법
CN114893828B (zh) 一种空调器
CN217082727U (zh) 一种空调器
WO2023185063A1 (zh) 空调器
CN217031371U (zh) 一种空调室内机
JP4716927B2 (ja) 冷蔵庫
CN216346688U (zh) 一种空调器
CN114001431B (zh) 一种用于室内环境消杀的活性雾离子发生器
JP5216518B2 (ja) 空気調和機
WO2023045471A1 (zh) 空调器及控制方法
CN102650454B (zh) 空调机
CN210128466U (zh) 等离子体发生装置、等离子体装置及空调器
CN218902260U (zh) 一种高效静电雾化装置
CN217057742U (zh) 空气净化装置及空调器
CN114719387B (zh) 空气处理系统
CN220728456U (zh) 一种空气处理设备
CN111371000A (zh) 一种富含水分的负离子产生装置
CN218583335U (zh) 室内机及空调器
CN114543190B (zh) 一种空调室内机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22934882

Country of ref document: EP

Kind code of ref document: A1