WO2023184782A1 - 一种热锻成型复合淬火组织细化高强度螺栓的制造方法 - Google Patents

一种热锻成型复合淬火组织细化高强度螺栓的制造方法 Download PDF

Info

Publication number
WO2023184782A1
WO2023184782A1 PCT/CN2022/105188 CN2022105188W WO2023184782A1 WO 2023184782 A1 WO2023184782 A1 WO 2023184782A1 CN 2022105188 W CN2022105188 W CN 2022105188W WO 2023184782 A1 WO2023184782 A1 WO 2023184782A1
Authority
WO
WIPO (PCT)
Prior art keywords
bolt
manufacturing
quenching
hot forging
forging
Prior art date
Application number
PCT/CN2022/105188
Other languages
English (en)
French (fr)
Inventor
李海洋
徐晓春
陈兴华
周蕾
吴萌
鲍玉坤
邓伟
Original Assignee
南京钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京钢铁股份有限公司 filed Critical 南京钢铁股份有限公司
Publication of WO2023184782A1 publication Critical patent/WO2023184782A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/42Induction heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0093Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for screws; for bolts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a manufacturing method of high-strength bolts, and in particular to a manufacturing method of hot-forged composite quenching structure-refined high-strength bolts.
  • Bolts with larger specifications (M20 or above) and complex hexagonal head shapes are often formed by hot forging.
  • Large-size bolts made of medium-carbon alloy steels such as 42CrMo and 35CrMo often suffer from insufficient impact toughness during actual production and application, resulting in frequent fractures during service.
  • the present invention aims to provide a method for manufacturing high-strength bolts with hot forging and composite quenching structure refinement that have both high strength and high toughness.
  • the manufacturing method of hot forging forming composite quenching structure refined high-strength bolts includes hot forging forming + complete quenching, critical zone quenching, tempering, thread rolling, surface phosphating and blackening treatment, specifically The steps are as follows: first, induction heating the bolt steel bar to 920°C ⁇ 1000°C, hot forging after heat preservation, and controlling the final forging temperature at 830°C ⁇ 850°C, using the residual heat after forging for immediate quenching, and the cooling method is oil cooling; After the bolt is cooled to room temperature, it is then reheated to 760°C ⁇ 790°C, quenched and cooled after insulation; then the bolt is heated to 350°C ⁇ 500°C for tempering treatment, insulation, and air cooling; finally, thread rolling and surface phosphating are performed in sequence.
  • the raw material of bolt steel does not contain insoluble micro-alloying elements such as V, Ti, and Nb, it can be forged and formed at a lower temperature (60°C to 100°C above Ac3) to obtain a smaller grain size.
  • the quenching temperature in the critical zone is selected between Ac1 and Ac3 (close to Ac3). The purpose is to have a lower heating temperature between the two phase regions, so that part of the undissolved ferrite and a smaller grain size can be obtained. While reducing the strength, it significantly improves the impact toughness of the bolt.
  • a dual-phase structure of tempered sorbite plus 3% to 5% fine ferrite is finally obtained.
  • the bolt material is 35CrMo or 42CrMo carbon alloy steel.
  • the 35CrMo steel includes the following components, in terms of mass percentage, C: 0.32 ⁇ 0.40; Si: 0.17 ⁇ 0.37; Mn: 0.40 ⁇ 0.70; P: ⁇ 0.03; S: ⁇ 0.03; Cr: 0.90 ⁇ 1.10; Ni: ⁇ 0.25; Cu: ⁇ 0.30; Mo: 0.15 ⁇ 0.30; the balance is Fe and inevitable impurities;
  • the 42CrMo steel includes the following components, in mass percentage , C: 0.38 ⁇ 0.45; Si: 0.17 ⁇ 0.37; Mn: 0.50 ⁇ 0.80; P: ⁇ 0.035; S: ⁇ 0.035; Cr: 0.90 ⁇ 1.10; Ni: ⁇ 0.25; Cu: ⁇ 0.30; Mo: 0.15 ⁇ 0.25 ; The balance is Fe and unavoidable impurities.
  • the heat preservation time after induction heating and reheating is both 30 min to 50 min.
  • the heat preservation time after the tempering treatment is 90 minutes to 120 minutes.
  • the present invention has the following significant advantages: the bolts produced by the preparation method of the present invention have both high strength and high toughness properties.
  • the obtained M20 bolt has a tensile strength of ⁇ 1100MPa and an elongation after break. ⁇ 12%, area shrinkage ⁇ 60%, -20°C impact power ⁇ 85J, with the technical effects of high tensile strength and good plastic toughness.
  • a hot forging composite quenching structure refined high-strength bolt and its manufacturing method The manufacturing process mainly includes: hot forging + complete quenching, critical zone quenching, tempering, thread rolling, surface phosphating and blackening treatment.
  • the specific steps are as follows: First, induction heating the bolt steel bar to 930°C, holding it for 35 minutes and then hot forging, and controlling the final forging temperature at 840°C. Use the residual heat after forging for immediate quenching.
  • the cooling method is: oil cooling. After the bolt is cooled to room temperature, it is reheated to 780°C, kept warm for 40 minutes, and then quenched and cooled.
  • the bolt material is 35CrMo, whose chemical composition mass percentage is: C: 0.36; Si: 0.22; Mn: 0.68; P: 0.008; S: 0.003; Cr: 1.05; Ni: 0.04; Cu: 0.04; Mo: 0.23; remainder is Fe and unavoidable impurities.
  • the tensile strength of M22 bolt is 1126MPa, the elongation after break is 13.5%, the area shrinkage is 64%, and the impact energy at -20°C is 94J.
  • a hot forging composite quenching structure refined high-strength bolt and its manufacturing method The manufacturing process mainly includes: hot forging + complete quenching, critical zone quenching, tempering, thread rolling, surface phosphating and blackening treatment.
  • the specific steps are as follows: First, induction heating the bolt steel bar to 950°C, holding it for 40 minutes and then hot forging, and controlling the final forging temperature at 830°C. Use the residual heat after forging to quench immediately.
  • the cooling method is: oil cooling. After the bolt is cooled to room temperature, it is reheated to 790°C, kept warm for 43 minutes, and then quenched and cooled.
  • the bolt material is 42CrMo, whose chemical composition mass percentage is: C: 0.4; Si: 0.24; Mn: 0.64; P: 0.012; S: 0.002; Cr: 0.95; Ni: 0.04; Cu: 0.07; Mo: 0.17; remainder is Fe and unavoidable impurities.
  • the tensile strength of M22 bolt is 1170MPa, the elongation after break is 13.2%, the area shrinkage is 62%, and the impact energy at -20°C is 86J.
  • a hot forging composite quenching structure refined high-strength bolt and its manufacturing method mainly includes: hot forging + complete quenching, critical zone quenching, tempering, thread rolling, surface phosphating and blackening treatment.
  • the specific steps are as follows: First, induction heating the bolt steel bar to 1000°C, holding it for 30 minutes and then hot forging. Control the final forging temperature at 840°C, and use the residual heat after forging to quench immediately.
  • the cooling method is: oil cooling. After the bolt is cooled to room temperature, it is reheated to 760°C, kept warm for 50 minutes, and then quenched and cooled. Afterwards, the bolts were heated to 500°C for tempering treatment, with a holding time of 90 minutes and air cooling.
  • the bolt material is 42CrMo, whose chemical composition mass percentage is: C: 0.4; Si: 0.24; Mn: 0.64; P: 0.012; S: 0.002; Cr: 0.95; Ni: 0.04; Cu: 0.07; Mo: 0.17; remainder is Fe and unavoidable impurities.
  • the tensile strength of M22 bolt is 1165MPa, the elongation after break is 13.4%, the area shrinkage is 62%, and the impact energy at -20°C is 92J.
  • a hot forging composite quenching structure refined high-strength bolt and its manufacturing method The manufacturing process mainly includes: hot forging + complete quenching, critical zone quenching, tempering, thread rolling, surface phosphating and blackening treatment.
  • the specific steps are as follows: First, induction heating the bolt steel bar to 920°C, holding it for 50 minutes and then hot forging. Control the final forging temperature at 850°C, and use the residual heat after forging to quench immediately.
  • the cooling method is: oil cooling. After the bolt is cooled to room temperature, it is reheated to 760°C, kept warm for 30 minutes, and then quenched and cooled. The bolts were then heated to 500°C for tempering, with a holding time of 120 min and air cooling.
  • the bolt material is 42CrMo, whose chemical composition mass percentage is: C: 0.4; Si: 0.24; Mn: 0.64; P: 0.012; S: 0.002; Cr: 0.95; Ni: 0.04; Cu: 0.07; Mo: 0.17; remainder is Fe and unavoidable impurities.
  • the tensile strength of M22 bolt is 1159MPa, the elongation after break is 13.3%, the area shrinkage is 63%, and the impact energy at -20°C is 90J.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明公开了一种热锻成型复合淬火组织细化高强度螺栓的制造方法,包括热锻成型+完全淬火、临界区淬火、回火、滚丝、表面磷化和发黑处理,具体包括:首先将螺栓钢棒材感应加热至920℃~1000℃,保温后热锻成型,并控制终锻温度在830℃~850℃,利用锻后余热立即进行淬火,而后冷却;待螺栓冷至室温后再重新加热至760℃~790℃,保温后淬油冷却;之后将螺栓加热至350℃~500℃进行回火处理,保温,空冷;最后进行后处理步骤。通过本发明制备方法制得的螺栓具有高强度和高韧性,得到的螺栓抗拉强度≥1100MPa,断后伸长率≥12%,断面收缩率≥60%,-20℃冲击功≥85J。

Description

一种热锻成型复合淬火组织细化高强度螺栓的制造方法 技术领域
本发明涉及一种高强度螺栓的制造方法,尤其涉及一种热锻成型复合淬火组织细化高强度螺栓的制造方法。
背景技术
规格较大(M20以上)及六角头部形状复杂的螺栓常采用热锻成型的方式加工成形。对于采用42CrMo、35CrMo等中碳合金钢制造的大规格螺栓在实际生产应用过程中经常会出现冲击韧性不足的现象,从而导致在服役过程中经常发生断裂。
发明内容
发明目的:本发明旨在提供一种同时具有高强度和高韧性的热锻成型复合淬火组织细化高强度螺栓的制造方法。
技术方案:本发明所述的热锻成型复合淬火组织细化高强度螺栓的制造方法,包括热锻成型+完全淬火、临界区淬火、回火、滚丝、表面磷化和发黑处理,具体步骤如下:首先将螺栓钢棒材感应加热至920℃~1000℃,保温后热锻成型,并控制终锻温度在830℃~850℃,利用锻后余热立即进行淬火,冷却方式采用油冷;待螺栓冷至室温后再重新加热至760℃~790℃,保温后淬油冷却;之后将螺栓加热至350℃~500℃进行回火处理,保温,空冷;最后依次进行滚丝、表面磷化和发黑处理步骤。由于螺栓钢原材料中不含V、Ti、Nb等难溶的微合金元素,因而可以在较低的温度(Ac3以上60℃~100℃)下进行锻造成型,从而获得较小的晶粒尺寸。临界区淬火温度选择在Ac1~Ac3(接近Ac3)之间,其目的在于加热温度较低,介于两相区之间,能够获得部分未溶铁素体以及更加细小的晶粒尺寸,在不降低强度的同时,显著提高螺栓的冲击韧性。
优选地,经过回火后,最终得到回火索氏体加上3%~5%细小铁素体的双相组织。
优选地,螺栓材料为35CrMo或42CrMo碳合金钢,所述35CrMo钢包括以下组分,以质量百分比计,C:0.32~0.40;Si:0.17~0.37;Mn:0.40~0.70;P:≤0.03;S:≤0.03;Cr:0.90~1.10;Ni:≤0.25;Cu:≤0.30;Mo:0.15~0.30;余量为Fe和不可避免的杂质;所述42CrMo钢包括以下组分,以质量百分比计,C:0.38~0.45;Si:0.17~0.37;Mn:0.50~0.80;P:≤0.035;S:≤0.035;Cr:0.90~1.10;Ni:≤0.25;Cu:≤0.30;Mo:0.15~0.25;余量为Fe和不可避免的杂质。
优选地,所述感应加热后和重新加热后的保温时间均为30min~50min。
优选地,所述回火处理后的保温时间为90min~120min。
有益效果:与现有技术相比,本发明具有如下显著优点:通过本发明制备方法制得的螺栓同时具有高强度和高韧性的性能,得到的M20螺栓抗拉强度≥1100MPa,断后伸长率≥12%,断面收缩率≥60%,-20℃冲击功≥85J,具有抗拉强度高,塑韧性好的技术效果。
具体实施方式
下面结合具体实施例对本发明的技术方案作进一步说明。
实施例1
一种热锻成型复合淬火组织细化高强度螺栓及其制造方法,制造工艺流程主要包括:热锻成型+完全淬火、临界区淬火、回火、滚丝、表面磷化和发黑处理。具体步骤如下:首先将螺栓钢棒材感应加热至930℃,保温35min后热锻成型,并控制终锻温度在840℃,利用锻后余热立即进行淬火,冷却方式:油冷。待螺栓冷至室温后在重新加热至780℃,保温40min后淬油冷却。之后将螺栓加热至400℃进行回火处理,保温时间为100min,空冷。最后依次进行滚丝、表面处理等步骤。螺栓材料选用35CrMo,其化学成分质量百分比为:C:0.36;Si:0.22;Mn:0.68;P:0.008;S:0.003;Cr:1.05;Ni:0.04;Cu:0.04;Mo:0.23;余量为Fe和不可避免的杂质。M22螺栓抗拉强度1126MPa,断后伸长率13.5%,断面收缩率64%,-20℃冲击功为94J。
实施例2
一种热锻成型复合淬火组织细化高强度螺栓及其制造方法,制造工艺流程主要包括:热锻成型+完全淬火、临界区淬火、回火、滚丝、表面磷化和发黑处理。具体步骤如下:首先将螺栓钢棒材感应加热至950℃,保温40min后热锻成型,并控制终锻温度在830℃,利用锻后余热立即进行淬火,冷却方式:油冷。待螺栓冷至室温后在重新加热至790℃,保温43min后淬油冷却。之后将螺栓加热至350℃进行回火处理,保温时间为100min,空冷。最后依次进行滚丝、表面处理等步骤。螺栓材料选用42CrMo,其化学成分质量百分比为:C:0.4;Si:0.24;Mn:0.64;P:0.012;S:0.002;Cr:0.95;Ni:0.04;Cu:0.07;Mo:0.17;余量为Fe和不可避免的杂质。M22螺栓抗拉强度1170MPa,断后伸长率13.2%,断面收缩率62%,-20℃冲击功为86J。
实施例3
一种热锻成型复合淬火组织细化高强度螺栓及其制造方法,制造工艺流程主要包括:热锻成型+完全淬火、临界区淬火、回火、滚丝、表面磷化和发黑处理。具体步骤如下:首先将螺栓钢棒材感应加热至1000℃,保温30min后热锻成型,并控制终锻温度在840℃,利用锻后余热立即进行淬火,冷却方式:油冷。待螺栓冷至室温后在重新加热至760℃,保温50min后淬油冷却。之后将螺栓加热至500℃进行回火处理,保温时间为90min,空冷。最后依次 进行滚丝、表面处理等步骤。螺栓材料选用42CrMo,其化学成分质量百分比为:C:0.4;Si:0.24;Mn:0.64;P:0.012;S:0.002;Cr:0.95;Ni:0.04;Cu:0.07;Mo:0.17;余量为Fe和不可避免的杂质。M22螺栓抗拉强度1165MPa,断后伸长率13.4%,断面收缩率62%,-20℃冲击功为92J。
实施例4
一种热锻成型复合淬火组织细化高强度螺栓及其制造方法,制造工艺流程主要包括:热锻成型+完全淬火、临界区淬火、回火、滚丝、表面磷化和发黑处理。具体步骤如下:首先将螺栓钢棒材感应加热至920℃,保温50min后热锻成型,并控制终锻温度在850℃,利用锻后余热立即进行淬火,冷却方式:油冷。待螺栓冷至室温后在重新加热至760℃,保温30min后淬油冷却。之后将螺栓加热至500℃进行回火处理,保温时间为120min,空冷。最后依次进行滚丝、表面处理等步骤。螺栓材料选用42CrMo,其化学成分质量百分比为:C:0.4;Si:0.24;Mn:0.64;P:0.012;S:0.002;Cr:0.95;Ni:0.04;Cu:0.07;Mo:0.17;余量为Fe和不可避免的杂质。M22螺栓抗拉强度1159MPa,断后伸长率13.3%,断面收缩率63%,-20℃冲击功为90J。

Claims (7)

  1. 一种热锻成型复合淬火组织细化高强度螺栓的制造方法,其特征在于,包括热锻成型+完全淬火、临界区淬火、回火、滚丝、表面磷化和发黑处理,具体步骤如下:
    首先将螺栓钢棒材感应加热至920℃~1000℃,保温后热锻成型,并控制终锻温度在830℃~850℃,利用锻后余热立即进行淬火,冷却方式采用油冷;待螺栓冷至室温后再重新加热至760℃~790℃,保温后淬油冷却;之后将螺栓加热至350℃~500℃进行回火处理,保温,空冷;最后依次进行滚丝、表面磷化和发黑处理步骤。
  2. 根据权利要求1所述的热锻成型复合淬火组织细化高强度螺栓的制造方法,其特征在于,经过所述回火步骤后,最终得到回火索氏体加上3%~5%细小铁素体的双相组织。
  3. 根据权利要求1所述的热锻成型复合淬火组织细化高强度螺栓的制造方法,其特征在于,螺栓材料为35CrMo或42CrMo碳合金钢。
  4. 根据权利要求3所述的热锻成型复合淬火组织细化高强度螺栓的制造方法,其特征在于,所述35CrMo碳合金钢包括以下组分,以质量百分比计,C:0.32~0.40;Si:0.17~0.37;Mn:0.40~0.70;P:≤0.03;S:≤0.03;Cr:0.90~1.10;Ni:≤0.25;Cu:≤0.30;Mo:0.15~0.30;余量为Fe和不可避免的杂质。
  5. 根据权利要求3所述的热锻成型复合淬火组织细化高强度螺栓的制造方法,其特征在于,所述42CrMo碳合金钢包括以下组分,以质量百分比计,C:0.38~0.45;Si:0.17~0.37;Mn:0.50~0.80;P:≤0.035;S:≤0.035;Cr:0.90~1.10;Ni:≤0.25;Cu:≤0.30;Mo:0.15~0.25;余量为Fe和不可避免的杂质。
  6. 根据权利要求1所述的热锻成型复合淬火组织细化高强度螺栓的制造方法,其特征在于,所述感应加热后和重新加热后的保温时间均为30min~50min。
  7. 根据权利要求1所述的热锻成型复合淬火组织细化高强度螺栓的制造方法,其特征在于,所述回火处理后的保温时间为90min~120min。
PCT/CN2022/105188 2022-04-01 2022-07-12 一种热锻成型复合淬火组织细化高强度螺栓的制造方法 WO2023184782A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210338466.7A CN114908226A (zh) 2022-04-01 2022-04-01 一种热锻成型复合淬火组织细化高强度螺栓的制造方法
CN202210338466.7 2022-04-01

Publications (1)

Publication Number Publication Date
WO2023184782A1 true WO2023184782A1 (zh) 2023-10-05

Family

ID=82762824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/105188 WO2023184782A1 (zh) 2022-04-01 2022-07-12 一种热锻成型复合淬火组织细化高强度螺栓的制造方法

Country Status (2)

Country Link
CN (1) CN114908226A (zh)
WO (1) WO2023184782A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102152078A (zh) * 2011-03-30 2011-08-17 浙江迪特高强度螺栓有限公司 推土机或挖掘机履带用的高强度螺栓加工工艺
CN102851479A (zh) * 2011-06-29 2013-01-02 徐州市瑞达高强度紧固件厂 一种高强度螺栓的热处理工艺
CN102943207A (zh) * 2012-11-09 2013-02-27 谢亚平 一种高强度紧固件及其处理方法
CN106167881A (zh) * 2015-05-28 2016-11-30 东风商用车有限公司 一种锻造余热淬火用微合金化钢
CN108018503A (zh) * 2017-11-28 2018-05-11 西安交通大学 一种层状超细晶双相铁素体/马氏体钢及其制备方法
CN110257595A (zh) * 2019-07-16 2019-09-20 上海马桥金星五金厂有限公司 一种中碳铬钼高强钢的热处理方法
CN111155031A (zh) * 2020-01-15 2020-05-15 南京福贝尔五金制品有限公司 一种耐大气腐蚀高强度螺栓及其制造方法
JP2020084276A (ja) * 2018-11-27 2020-06-04 大同特殊鋼株式会社 高強度ボルト用鋼及びその製造方法
CN111394661A (zh) * 2020-04-30 2020-07-10 西京学院 一种低合金高强韧性马贝复相钢的制备工艺

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105112624A (zh) * 2015-09-24 2015-12-02 无锡宝露重工有限公司 一种钢锻件的热处理工艺
CN106244782B (zh) * 2016-09-30 2018-12-11 西安长峰机电研究所 一种45钢危险尺寸零件的热处理方法
CN106755864B (zh) * 2016-11-16 2019-06-04 南京钢铁股份有限公司 一种提高特厚超高强度海工钢表面低温冲击韧性的方法
CN107723418A (zh) * 2017-11-06 2018-02-23 贵州航天新力铸锻有限责任公司 一种45#材料棒材锻件综合力学性能的热处理方法
CN108774672A (zh) * 2018-07-27 2018-11-09 庆铃汽车(集团)有限公司 一种利用锻造部分余热快速加热淬火的方法
CN110760763A (zh) * 2019-11-06 2020-02-07 江阴市恒润环锻有限公司 一种核电设备用钢制环锻件的锻造方法
CN111621623B (zh) * 2020-05-27 2021-09-10 东风商用车有限公司 一种薄壁环形类渗碳直淬零件的热处理方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102152078A (zh) * 2011-03-30 2011-08-17 浙江迪特高强度螺栓有限公司 推土机或挖掘机履带用的高强度螺栓加工工艺
CN102851479A (zh) * 2011-06-29 2013-01-02 徐州市瑞达高强度紧固件厂 一种高强度螺栓的热处理工艺
CN102943207A (zh) * 2012-11-09 2013-02-27 谢亚平 一种高强度紧固件及其处理方法
CN106167881A (zh) * 2015-05-28 2016-11-30 东风商用车有限公司 一种锻造余热淬火用微合金化钢
CN108018503A (zh) * 2017-11-28 2018-05-11 西安交通大学 一种层状超细晶双相铁素体/马氏体钢及其制备方法
JP2020084276A (ja) * 2018-11-27 2020-06-04 大同特殊鋼株式会社 高強度ボルト用鋼及びその製造方法
CN110257595A (zh) * 2019-07-16 2019-09-20 上海马桥金星五金厂有限公司 一种中碳铬钼高强钢的热处理方法
CN111155031A (zh) * 2020-01-15 2020-05-15 南京福贝尔五金制品有限公司 一种耐大气腐蚀高强度螺栓及其制造方法
CN111394661A (zh) * 2020-04-30 2020-07-10 西京学院 一种低合金高强韧性马贝复相钢的制备工艺

Also Published As

Publication number Publication date
CN114908226A (zh) 2022-08-16

Similar Documents

Publication Publication Date Title
JP7269588B2 (ja) ホットスタンピングに使用される鋼、ホットスタンピング方法および成形された構成要素
US11293072B2 (en) Process for on-line quenching of seamless steel tube using residual heat and manufacturing method
JP2022160585A5 (zh)
CN102796967B (zh) 一种800MPa经济型耐腐蚀高强度钢板
CN102943169A (zh) 一种汽车用超高强薄钢板的淬火退火制备方法
US5213634A (en) Multiphase microalloyed steel and method thereof
CN101698900A (zh) 一种低合金超高硬度耐磨钢板生产工艺方法
CN104846293A (zh) 高强韧性钢板及其制备方法
CN113846266A (zh) 一种高塑韧性屈服强度1300MPa级调质钢板的生产方法
CN115198200A (zh) 一种船用储罐用高强度钢板及其制造方法
CN107267859B (zh) 一种超高强防弹钢板及其制备方法
JPH04268016A (ja) 圧壊特性に優れたドアガードバー用高張力鋼板の製造方法
CN112280957B (zh) 一种析出强化型非调质低温厚板钢及其轧制方法
CN103882335B (zh) 一种屈服强度800MPa级热轧高强度钢及其生产方法
WO2023184782A1 (zh) 一种热锻成型复合淬火组织细化高强度螺栓的制造方法
KR20210108002A (ko) 냉간압조용 선재 및 그 제조방법에 있어 열처리생략
CN106222525B (zh) 一种减小34CrNi3Mo白点敏感性的方法
CN109797275A (zh) 锻造高锰钢辙叉锰叉心水韧热处理生产方法
CN110735020B (zh) 一种低碳钢结构件的热处理方法
CN109518092B (zh) 高强塑积铌微合金化低硅含铝热轧trip钢及制备方法
CN107227425B (zh) 冷镦用高碳钢线材、利用此的加工品及它们的制造方法
CN110964985A (zh) 一种无钼低合金耐磨钢板及其生产方法
CN110695097A (zh) 一种非调质凸轮轴及用钢的制法和其细晶锻件的制法
JPH04276018A (ja) 圧壊特性に優れたドアガードバーの製造方法
CN115627423B (zh) 一种1600MPa级的热轧卷板及其生产方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22934604

Country of ref document: EP

Kind code of ref document: A1