WO2023184716A1 - 一种荧光检测芯片、荧光检测系统、荧光检测方法及荧光检测芯片的应用 - Google Patents

一种荧光检测芯片、荧光检测系统、荧光检测方法及荧光检测芯片的应用 Download PDF

Info

Publication number
WO2023184716A1
WO2023184716A1 PCT/CN2022/098877 CN2022098877W WO2023184716A1 WO 2023184716 A1 WO2023184716 A1 WO 2023184716A1 CN 2022098877 W CN2022098877 W CN 2022098877W WO 2023184716 A1 WO2023184716 A1 WO 2023184716A1
Authority
WO
WIPO (PCT)
Prior art keywords
pool
sample
fluorescence detection
reaction
detection
Prior art date
Application number
PCT/CN2022/098877
Other languages
English (en)
French (fr)
Inventor
刘俞超
Original Assignee
合肥诺迈基生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合肥诺迈基生物科技有限公司 filed Critical 合肥诺迈基生物科技有限公司
Priority to EP22821839.2A priority Critical patent/EP4279179A4/en
Publication of WO2023184716A1 publication Critical patent/WO2023184716A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0621Control of the sequence of chambers filled or emptied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0631Purification arrangements, e.g. solid phase extraction [SPE]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/10Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/069Absorbents; Gels to retain a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0816Cards, e.g. flat sample carriers usually with flow in two horizontal directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/0864Configuration of multiple channels and/or chambers in a single devices comprising only one inlet and multiple receiving wells, e.g. for separation, splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/087Multiple sequential chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1805Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/043Moving fluids with specific forces or mechanical means specific forces magnetic forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0487Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N2021/0325Cells for testing reactions, e.g. containing reagents
    • G01N2021/0328Arrangement of two or more cells having different functions for the measurement of reactions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6482Sample cells, cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/0332Cuvette constructions with temperature control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the invention belongs to the field of microfluidic detection technology, and particularly relates to a fluorescence detection chip, a fluorescence detection system including the fluorescence detection chip, a fluorescence detection method based on the fluorescence detection chip, and the application of the fluorescence detection chip.
  • PCR polymerase chain reaction
  • microfluidics is mainly characterized by the manipulation of fluids in micro- and nanoscale spaces, and has the basic functions of biology, chemistry and other laboratories such as sample preparation, reaction, separation and
  • the basic feature and biggest advantage of the ability to shrink detection to a chip of several square centimeters lies in the flexible combination and large-scale integration of multiple unit technologies on an overall controllable micro-platform, involving engineering, physics, chemistry, micro-machining and Interbality in multiple fields such as bioengineering.
  • the microfluidic detection chip is a detection platform based on microfluidic technology. It integrates basic operations such as sample preparation, reaction, and kit detection onto a micron-scale chip to automatically complete the analysis process. Microfluidic detection chips generally have the advantages of low sample consumption, fast detection speed, easy operation, multi-functional integration, small size and portability.
  • the current microfluidic chip technology is still in its infancy, and it still has many shortcomings: 1 It can only sort some sample fluids, extract some required molecular components, and then conduct other experimental verifications; 2 The scheduled detection The reagents are simply mixed in the chip, react in a regular environment to observe the color change, and achieve some simple and conventional detection judgments. It is difficult to achieve the precise quantitative detection that existing large-scale equipment has.
  • the fluorescence detection chip is designed through micro-channels to achieve the reaction effect of fully mixing the reaction solution during the flow process, and evenly distributes it to each reaction detection according to the required amount.
  • the reaction detection pool uses a closed chamber formed by superconducting thermal materials and upper and lower shells to provide a high-intensity heat source for the reaction system to be tested, thereby speeding up the reaction speed, shortening the detection time, and achieving accurate quantitative detection matching large equipment , and has the advantages of portability and ease of use.
  • the invention provides a fluorescence detection chip, which includes an upper housing and a lower housing, and also includes:
  • Sample pool used to collect samples to be tested and lyse the samples to be tested
  • a mixed liquid pool which is connected to the sample pool through a first microfluidic channel and is used to extract target fragments from the lysed sample to be tested;
  • a waste liquid pool which is connected to the mixed liquid pool and is used to collect waste liquid generated during the extraction process of the target fragment
  • reaction detection cells which are connected to the mixed liquid tank through a second microfluidic channel for fluorescence detection of target fragments, and the walls of the reaction detection cells are made of superconducting thermal materials;
  • the sample pool, mixed liquid pool, waste liquid pool and reaction detection pool are all located on the lower housing, and a number of sample adding ports are provided on the upper housing, which are connected to the sample pool, mixed liquid pool respectively.
  • the pool corresponds to the reaction detection pool.
  • the super thermally conductive material is selected from aluminum alloy, copper alloy or silver alloy.
  • the sample pool is provided with a lysis absorption and release piece for absorbing and releasing the sample to be tested and the lysis solution to fully contact and lyse them.
  • the sample adding port of the sample pool is sealed with an antifouling component.
  • the surface of the upper housing is provided with a plurality of first software inserts and second software inserts;
  • the first software insert is used to cut off the connection between the reaction detection tank, the mixed liquid tank and the external environment;
  • the second software insert is disposed between adjacent reaction detection cells and is used to block optical signal crosstalk between reaction detection cells.
  • the materials of the first software insert and the second software insert are independently selected from a combination of TPE, TPR, PU or silicone, and the second software insert is made of black or light-absorbing material.
  • the surface of the second software insert is provided with an exhaust hole, and the exhaust hole is connected to a corresponding reaction detection cell.
  • the invention further provides a fluorescence detection system, which includes fluorescence detection equipment and the fluorescence detection chip as mentioned above.
  • the present invention further provides a fluorescence detection method using the fluorescence detection chip as described above, which is characterized in that it includes the following steps:
  • the extracted target fragments are evenly guided to the corresponding reaction detection pool through the second microfluidic channel, and diagnostic reagents are added into the reaction detection pool at the same time;
  • the sample to be tested in the reaction detection pool is heated and amplified to stimulate the fluorescence reaction, and the fluorescence signal is detected.
  • the present invention also provides the application of the fluorescence detection chip as mentioned above in medical diagnosis, scientific research experiments, import and export inspection and quarantine, forensic detection, animal and plant quarantine detection or disease control detection.
  • the present invention has the following beneficial effects:
  • the fluorescence detection chip in the present invention is equipped with various reaction chambers of large-scale equipment on the chip structure, integrating sampling, reaction, detection and other processes. Through the design of micro-channels, the reaction liquid is fully circulated during the flow process. The mixing effect is achieved, and each reaction solution is distributed to each reaction detection pool according to the required amount, achieving simultaneous detection of multiple items.
  • the reaction detection cell uses superconducting thermal materials and upper and lower shells to form an independent detection space, which can provide a high-intensity heat source for the reaction system to be tested, accelerate the reaction speed, and achieve rapid detection.
  • the fluorescence detection chip also has the advantages of compact appearance, easy portability and easy use.
  • Figure 1 is a schematic three-dimensional structural diagram of a fluorescence detection chip in Embodiment 1 of the present invention.
  • Figure 2 is an exploded schematic diagram of the structure of the fluorescence detection chip in Figure 1;
  • Figure 3 is a schematic structural diagram of the lower housing 2 in Figure 1;
  • Figure 4 is a schematic structural diagram of the upper housing 1 in Figure 1;
  • Figure 5 is a partial enlarged structural diagram of the reaction detection pool 24 in Figure 1;
  • Figure 6 is an exploded schematic diagram of the structure of the fluorescence detection chip in Embodiment 2 of the present invention.
  • 2-Lower shell 21-sample pool, 211-pyrolysis absorption and release cotton, 212-anti-fouling sticker, 22-mixed liquid pool, 23-waste liquid pool, 24-reaction detection pool, 241-superconducting thermal cavity;
  • connection generally refers to the function of fixation, and the fixation here can be any conventional fixation method in this field, such as “threaded connection”, “riveting”, “welding”, etc.
  • Figure 1 and Figure 2 shows a fluorescence detection chip, which includes an upper housing 1 and a lower housing 2.
  • the upper housing 1 and the lower housing 2 are bonded by conventional bonding methods in this field.
  • the specific bonding process includes but is not limited to electrostatic bonding, thermocompression bonding or laser bonding, and is not particularly limited.
  • the materials of the upper housing 1 and the lower housing 2 can be conventional choices in this field, such as highly transparent plastics, metal alloys, non-metals or other mixed materials.
  • the upper housing 1 must be made of a highly transparent material, while the lower housing 2 is not particularly limited.
  • the lower housing 2 is provided with a sample pool 21, a mixed liquid pool 22, a waste liquid pool 23 and a number of reaction detection pools 24.
  • the number of the reaction detection pools 24 is not particularly limited. is limited to at least 1. The specific number can be adjusted according to actual needs and chip size, such as 2, 3, 4, 6, 8, etc.
  • the lower shell 2 is provided with 6 reaction detection pools 24; in addition, combined with Figures 2 and 4, there are multiple sample addition ports on the upper housing 1, corresponding to the sample pool 21, the mixed liquid pool 22, the waste liquid pool 23 and The specific number and position of the reaction detection pool 24 and the sample addition port can be adjusted according to the location and needs of each reaction pool.
  • the sample pool 21 is used to collect the sample to be tested and lyse the sample to be tested.
  • the sample pool 21 is provided with a lysis absorption and release cotton 211.
  • the lysis absorption and release cotton 211 has a hydrophilic effect and is used to absorb the sample to be tested and the lysis solution, so that the sample to be tested and the lysis solution are The liquid is fully contacted and lysed.
  • the lysis absorption and release cotton 211 can also have a lysis effect, thereby allowing the sample to be tested to be more fully lysed.
  • the fixing method of the pyrolysis, absorption and release cotton 211 is not particularly limited.
  • a column is provided in the sample pool 21, and the lysis, absorption and release cotton 211 is inserted on the column. fixed.
  • a sample adding port 101 is provided on the upper housing 1 corresponding to the position of the sample pool 21. The sample to be tested and the lysate can be added to the sample pool 21 through the sample adding port 101 to obtain Sample mixture after lysis.
  • a further preferred change can be made in this embodiment, that is, in addition to the sample adding port 101, the upper housing 1 corresponding to the position of the sample pool 21 is also provided with a lysing solution adding port, so that the sample to be tested and the lysing solution are separately Adding the sample into the sample pool 21 through different sample adding ports can prevent the inlet of the supporting equipment for adding the lysis solution from being contaminated by the sample to be tested.
  • the sample adding port (sample adding port 101 and/or lysate adding port) of the sample pool 21 is sealed with an antifouling sticker 212.
  • the antifouling sticker 212 seals the sample pool.
  • the sealing of the sampling port 21 prevents the pyrolysis absorption and release cotton 211 fixed in the sample pool 21 from being contaminated by the outside world.
  • the sampling port of the sample pool 21 can be sealed again after the sampling is completed to avoid interference from the external environment. , to ensure the accuracy of the response. It should be noted that the sticky side of the antifouling sticker 212 cannot react with the lysis solution, the sample to be tested, etc.
  • the mixing tank 22 is connected to the sample tank 21 through the first microfluidic channel 401.
  • the mixing tank 22 is used to further cleave the mixture of the sample to be tested, and to cleave the sample to be tested.
  • the sample mixture is used to extract target fragments.
  • the number of first microfluidic channels 401 is not particularly limited, and there is at least one.
  • multiple channels can be used, such as 4, 5, etc., by designing multiple first microfluidic channels 401 to connect the sample pool 21 and The mixing tank 22 is connected so that the sample mixture to be tested in the sample tank 21 is continuously lysed while entering the mixing tank 22 through the first microfluidic channel 401 to ensure the adequacy of lysis.
  • the magnetic bead method is used to extract the target fragments of the sample to be tested in the mixing tank 22.
  • the upper housing 1 corresponding to the position of the mixing tank 22 is provided with a washing liquid adding port 102,
  • the eluent adding port 103, the pressurized exhaust port 104 and the magnetic bead liquid adding port 105 are added to the mixing tank 22 through the washing liquid adding port 102, the eluent adding port 103 and the magnetic bead liquid adding port 105.
  • Washing liquid, eluent and magnetic bead liquid, the pressurized exhaust port 104 is used to pressurize the mixing tank 22 to drive the flow of fluid through pressure.
  • the waste liquid tank 23 and the mixed liquid tank 22 are connected through microfluidic channels, and the number of connected microfluidic channels is not particularly limited.
  • the waste liquid pool 23 is used to collect the waste liquid generated during the target fragment extraction process in the mixed liquid pool 22 .
  • the upper housing 1 corresponding to the position of the waste liquid pool 23 is provided with a first exhaust port 106, which is used to discharge the waste liquid generated during the reaction process in the chip and guide it to the waste liquid pool. gas space.
  • reaction detection cells 24 there are six reaction detection cells 24 .
  • the reaction detection pools 24 all have the same structure. Specifically, the reaction detection pools 24 are connected to the mixing pool 22 through the corresponding second microfluidic channels 402, so that the extracted target fragments enter equally through the second microfluidic channels 402.
  • the curvature of the second microchannel 402 is as consistent as possible, and the flow resistance of each channel is the same.
  • the upper housing 1 is provided with a diagnostic reagent addition port 107 corresponding to the reaction detection pool 24.
  • the diagnostic reagent addition port 107 is connected to the corresponding reaction detection pool 24 through a microfluidic channel, and the diagnostic reagent addition port 107 is connected to the corresponding reaction detection pool 24 through a microfluidic channel.
  • the port 107 adds reaction reagents to the corresponding reaction detection pool 24, reacts with the target fragment, and performs fluorescence detection.
  • the wall of the reaction detection cell 24 of this embodiment is a superconducting thermal cavity 241.
  • a groove is provided on the surface of the lower housing 2, and the superconducting thermal cavity 241 Embedding in the groove, the upper shell 1 and the lower shell 2 are bonded, so that the superconducting thermal cavity 241 forms an independent reaction chamber with the upper shell 1 and the lower shell 2 respectively, wherein the superconducting thermal cavity
  • the body 241 is made of super thermal conductive material.
  • the super thermal conductive material is a metal or alloy with a thermal conductivity > 200 W/m ⁇ °C and is inert to the reactants in the reaction detection cell 24.
  • the inertness refers to This material does not react with the reactants in the reaction detection cell 24. This can be achieved by performing inert oxidation treatment on the surface of the material.
  • the superconducting thermal material can be selected from aluminum alloy, silver alloy or copper alloy. It should be noted that , the superconducting thermal cavity 241 also needs to be processed with black light absorption to ensure the required reaction environment for fluorescence detection. Further, please refer to Figure 4.
  • a plurality of first software inserts 501 and second software inserts 502 are respectively provided on the upper housing 1. Specifically, the upper housing 1 is provided with a plurality of first software inserts for accommodating the first software inserts. 501 and the holes of the second software insert 502, so that the first software insert 501 and the second software insert 502 are embedded in the upper housing 1. 1 and 5 can be combined.
  • the first software insert 501 corresponds to the position of the second microfluidic channel 402 of the reaction detection cell 24 and the microfluidic channel of the diagnostic reagent adding port 107; while the second software insert 502 is configured Between adjacent reaction detection cells 24, a second exhaust port 108 is provided on the surface of the second software insert 502. The second exhaust port 108 is connected to the corresponding reaction detection cell 24 through a microfluidic channel.
  • the first software insert 501 and the second software insert 502 are made of soft plastic or colloid. Specific examples include but are not limited to TPE, TPR, PU or silicone combinations.
  • the second software insert 502 is also used to isolate light signals to avoid cross-light interference when the adjacent reaction detection cell 24 performs fluorescence detection. Therefore, the second software insert 502 is made of black or light-absorbing material. .
  • the fluorescence detection chip described in this embodiment can detect multiple items simultaneously for one sample.
  • the specific workflow is:
  • the supporting equipment first lyses the sample.
  • the liquid is pressed onto the lysis absorption and release cotton 211 through the sample addition port 101 or the lysis solution addition port to cleave the sample to be tested.
  • the lysed sample mixture flows into the mixing tank 22 through the first microfluidic channel 401. After entering the mixing tank 22 During the process, the sample to be tested is continuously lysed;
  • the magnetic bead liquid adding port 105 can be opened to add the magnetic bead liquid into the mixing tank 22.
  • the supporting equipment provides vibration functions and heating functions to promote The lysis solution fully reacts with the sample to be tested, so that the DNA fragments are fully released and combined with the magnetic beads.
  • the electromagnetic strip of the auxiliary supporting equipment is energized, and the magnetic beads in the mixing tank 22 are adsorbed to the electromagnetic strip. Peripheral; at this time, the pressurized exhaust port 104 provided on the mixing tank 22 is pressurized (at this time, the second exhaust port 108 is in a blocked state, and the first exhaust port 106 is in an open state).
  • the waste liquid is discharged into the waste liquid pool 23 through the microfluidic channel under drive; after the waste liquid is drained, a predetermined amount of eluent is added from the eluent adding port 103 to the mixing pool 22.
  • the electromagnetic strip is turned off.
  • the supporting equipment provides vibration to promote the separation of DNA fragments and magnetic beads; then, the electromagnetic strip is opened again to adsorb the magnetic beads; the pressurized exhaust port 104 provided on the mixing tank 22 works again to remove the DNA sample liquid in the mixing tank 22.
  • each reaction detection cell 24 provided in the lower housing 2 (specifically, the first exhaust port 106 is in a closed state, and the sample addition port 101 and the lysis solution addition port (if any) are also in a closed state. , one of the second exhaust ports 108 is opened, and the other second exhaust ports 108 are blocked, then the pressurized DNA sample liquid in the mixing pool 22 enters the corresponding reaction detection pool 24 with the second exhaust port 108 open, The other reaction detection pools 24 operate similarly).
  • the supporting equipment will also add a predetermined amount of diagnostic reagent into each corresponding reaction detection pool 24 through the diagnostic reagent adding port 107 according to the requirements of the test item.
  • the supporting equipment presses the first software insert 501 to cut off the flow channels of the second microfluidic channel 402 and the diagnostic reagent adding port 107, and blocks all the second exhaust ports 108, so that each reaction detection cell 24 A completely sealed independent reaction chamber is formed; at the same time, the supporting equipment heats the reaction detection pool 24 according to the set procedure.
  • the supporting equipment is installed at the corresponding surface probe of each reaction detection pool 24 to heat the reaction detection pool 24 to be heated.
  • the reaction signal of the test sample during each temperature cycle is clearly and truly recorded and stored, and then the test results are output through the algorithm software system to complete the test.
  • the supporting equipment described in this process is an automated instrument, which can be programmed to cooperate with the fluorescence detection chip to complete the entire detection process, which will not be described in detail here.
  • This embodiment further provides a fluorescence detection system, which at least includes fluorescence detection equipment and the above-mentioned fluorescence detection chip, and may also include some automated operating equipment, control and result analysis modules, etc.
  • the fluorescence detection equipment can be used in conjunction with the fluorescence detection chip. Specific examples that can be mentioned include but are not limited to fluorescence detectors, fluorescence detectors, etc.; the result analysis module includes but is not limited to computers and supporting operations and analysis. Software etc.
  • the present invention further discloses a fluorescence detection method, which includes the following steps:
  • the extracted target fragments are evenly guided to the corresponding reaction detection pool through the second microfluidic channel, and diagnostic reagents are added into the reaction detection pool at the same time;
  • the sample to be tested in the reaction detection pool is heated and amplified to stimulate the fluorescence reaction, and the fluorescence signal is detected.
  • the fluorescence detection chip in the present invention can also be provided with a multi-layer superimposed structure of at least one layer of housing on the upper housing 1 and the lower housing 2 (such as 3 layers, 4 layers, etc.), by setting up a multi-layer superposition structure, each micro-channel or reaction chamber can be arranged in layers, thereby rationally optimizing the internal structure of the chip, so that the micro-channels do not interfere with each other, and can be The specific structure can be adjusted according to the actual situation.
  • Figure 6 shows the optimized chip structure based on Embodiment 1, which also includes a middle housing 3.
  • a number of through holes are provided on the middle housing 3, and the microfluidic channels of each reaction chamber can be reasonably passed through these through holes. Distribution to avoid interference between microfluidic channels.
  • the fluorescence detection chip in the present invention can also detect multiple samples simultaneously.
  • the structure of Embodiment 2 is modified, which includes an upper housing 1, a lower housing 2 and a middle housing 3.
  • the lower housing 2 is provided with 2 sample pools 21 and 2 mixed liquid pools 22 (the sample pools 21 and the mixed liquid pool 22 are in a one-to-one correspondence).
  • one of the mixed liquid pools 22 is connected to 3 through the second microfluidic channel 402.
  • the other reaction detection pool 24 is connected to each other; the other one of the mixing pool 22 is connected to the other three reaction detection pools 24 through the second microfluidic channel 402.
  • the second microfluidic channel 402 is connected through the through hole design on the middle housing 3. Separate to avoid interfering with each other.
  • Other structures and processes are similar to those in Embodiments 1 and 2, and will not be described in detail here.
  • the fluorescence detection chip in this embodiment can perform multi-item detection on two samples at the same time, which is convenient and fast. It can be understood that the sample pool 21 and the mixing pool 22 can also be multiple (such as 3, 4, etc.), and can be adjusted according to actual needs and chip size, which will not be described in detail here.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Clinical Laboratory Science (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Optical Measuring Cells (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

一种荧光检测芯片、荧光检测系统、荧光检测方法及荧光检测芯片的应用,荧光检测芯片包括上壳体(1)和下壳体(2),还包括样本池(21)、混液池(22)、废液池(23)以及若干独立的反应检测池(24),反应检测池(24)的池壁为超导热材料;样本池(21)、混液池(22)、废液池(23)和反应检测池(24)均设于下壳体(2)上,且在上壳体(1)上设有若干加样口,加样口分别与样本池(21)、混液池(22)和反应检测池(24)对应。该荧光检测芯片通过微流道设计,使反应液在流动过程中充分混匀,并均匀分配至各个反应检测池(24)中;反应检测池(24)为由超导热材料和上下壳体形成的密闭腔室。

Description

荧光检测芯片、荧光检测系统、荧光检测方法及其应用 技术领域
本发明属于微流控检测技术领域,特别涉及一种荧光检测芯片,包括该荧光检测芯片的荧光检测系统,以及基于该荧光检测芯片进行的荧光检测方法,还涉及该荧光检测芯片的应用。
背景技术
目前,在医学分子诊断领域,聚合酶链式反应作(PCR)为一种新兴技术,异军突起,成为诊断领域的主要模式,在当下,各种大型多功能PCR检测设备到处可见,为全球抗击疫情做出突出贡献;然而,作为一只强劲的检测手段方式,如何实现便民检测,走进千家万户,是对当代科研工作者的挑战,而作为一种精确控制和操控微尺度流体的技术,即微流控芯片技术运用而生:微流控(microfluidics)以在微纳米尺度空间中对流体进行操控为主要特征,具有将生物、化学等实验室的基本功能诸如样品制备、反应、分离和检测等缩微到一个几平方厘米芯片上的能力,其基本特征和最大优势在于多种单元技术在整体可控的微小平台上灵活组合、规模集成,涉及工程学、物理学、化学、微加工和生物工程等多个领域的学科交叉。
微流控检测芯片是基于微流控技术实现的检测平台,其将样品的制备、反应、试剂盒检测等基本操作集成到一块微米尺度的芯片上,自动完成分析过程。微流控检测芯片一般具有样品消耗少、检测速度快、操作简便、多功能集成、体小和便于携带等优点。
但目前微流控芯片的技术还处于起步阶段,其仍然存在诸多不足:①只能实现对一些样本流体进行分选,提取一些需求的分子成分,再进行其它实验的验证;②将预定的检测试剂在芯片中进行简单的混合,在常规的环境中发生反应来观看其颜色的变化,实现一些简单常规的检测判断,很难实现现有大型设备所具备的精准定量检测。
发明内容
有鉴于此,本发明有必要提供一种荧光检测芯片,该荧光检测芯片通过微流道设计,实现反应液在流动过程中充分混匀的反应效果,并按量所需均匀分配至各个反应检测池中;同时反应检测池采用由超导热材料和上下壳体形成的密闭腔室,为待测反应体系提供高强度热源,从而加快反应速度,缩短检测时间,实现匹配大型设备的精准定量检测,且具有携带便利,使用方便的优势。
为了实现上述目的,本发明采用以下技术方案:
本发明提供了一种荧光检测芯片,包括上壳体和下壳体,还包括:
样本池,用于收集待测样本并对待测样本进行裂解;
混液池,其通过第一微流道与所述样本池连接,用于对裂解后的待测样本进行目标片段的提取;
废液池,其与所述混液池连接,用于收集目标片段提取过程中产生的废液;
以及若干独立的反应检测池,其通过第二微流道与所述混液池连接,用于对目标片段进行荧光检测,所述反应检测池的池壁为超导热材料;
其中,所述样本池、混液池、废液池和反应检测池均设于所述下壳体上,且在所述上壳体上设有若干加样口,分别与所述样本池、混液池和反应检测池对应。
进一步方案,所述超导热材料选自铝合金、铜合金或银合金。
进一步方案,所述样本池内设有裂解吸释件,用于吸释待测样本和裂解液,使之充分接触裂解。
进一步方案,所述样本池的加样口密封有防污件。
进一步方案,所述上壳体表面设有若干第一软体嵌件和第二软体嵌件;
其中,所述第一软体嵌件用于截断所述反应检测池与混液池、外部环境的连接;
所述第二软体嵌件设于相邻的反应检测池之间,用于隔断反应检测池之间的光信号串扰。
进一步方案,所述第一软体嵌件、第二软体嵌件的材质分别独立的选自TPE、TPR、PU或硅胶组合,且所述第二软体嵌件为黑色或吸光材质。
进一步方案,所述第二软体嵌件的表面设有排气孔,所述排气孔与对应的反应检测池连接。
本发明进一步提供了一种荧光检测系统,包括荧光检测设备,还包括如前所述的荧光检测芯片。
本发明进一步提供了一种采用如前所述的荧光检测芯片进行的荧光检测方法,其特征在于,包括以下步骤:
向样本池中加入待测样本和裂解液,对待测样本进行裂解;
将裂解后的待测样本混合物通过第一微流道引导至混液池内,采用磁珠法对待测样本进行目标片段的提取;
将提取后的目标片段通过第二微流道均分引导至对应的反应检测池中,同时向反应检测池内加入诊断试剂;
对反应检测池中的待测样本进行加热扩增激发荧光反应,进行荧光信号检测。
本发明还提供了如前所述的荧光检测芯片在医疗诊断、科研实验、进出口检验检疫、法医检测领域、动植物检疫检测或疾控检测中的应用。
与现有技术相比,本发明具有以下有益效果:
本发明中的荧光检测芯片在芯片结构上设置了大型设备所具有的各种反应腔室,将取样、反应、检测等流程一体化,通过微流道设计,实现了反应液在流动过程中充分混匀的效果,并实现了对各反应液按量所需的分配到各反应检测池中,实现多项目同时检测。反应检测池采用超导热材料与上下壳体组成独立的检测空间,能够为待测反应体系提供高强度热源,加快反应速度,实现快速检测。
该荧光检测芯片同时具有外观小巧、携带便利、使用方便的优点。
附图说明
图1为本发明实施例1中荧光检测芯片的立体结构示意图;
图2为图1中荧光检测芯片结构分解示意图;
图3为图1中下壳体2的结构示意图;
图4为图1中上壳体1的结构示意图;
图5为图1中反应检测池24的局部放大结构示意图;
图6为本发明实施例2中荧光检测芯片的结构分解示意图。
图中:1-上壳体、101-样本加入口、102-洗涤液加入口、103-洗脱液加入口、104-加压排气口、105-磁珠液加入口、106-第一排气口、107-诊断试剂加入口、108-第二排气口;
2-下壳体、21-样本池、211-裂解吸释棉、212-防污贴纸、22-混液池、23-废液池、24-反应检测池、241-超导热腔体;
3-中壳体;
401-第一微流道、402-第二微流道;
501-第一软体嵌件、502-第二软体嵌件。
具体实施方式
下面将结合说明书附图,对本发明中的荧光检测芯片进行进一步的详细说明。
需要说明的是,当元件被称为“固定于”、“设置于”、“安装于”另一个元件,它可以是直接在另一个元件上或者间接在所述另一个元件上。但一个元件被称为“连接于”、“相连”另一个元件,它可以是直接连接到另一个元件或间接连接至所述另一个元件上。另外,连接一般指的是用于固定作用,这里的固定可以是本领域常规的任何一种固定方式,如“螺纹连接”、“铆接”、“焊接”等。
需要理解的是,术语“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于说明书附图所示的方位或位置关系,仅是为了便于描述本发明实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位,以特定的方位构造或操作,因此不能理解为对本发明的限制。
实施例 1
请参阅图1和图2,示出了一种荧光检测芯片,其包括上壳体1和下壳体2,上壳体1和下壳体2通过本领域中常规的键合方式键合形成芯片整体,具体的键合工艺包括但不限于静电键合、热压键合或激光键合,没有特别的限定。其中,上壳体1和下壳体2的材质可以采用本领域中常规的选择,如高透光塑料、金属合金、非金属或其他混合材料等,需要特别说明的是,为了实现荧光检测的目的,上壳体1须采用高透光材质,而下壳体2则没有特别的限定,只要满足材料的生物兼容性好的材质均可用于下壳体2。进一步的,请结合图3,本实施例中,在下壳体2上设有样本池21、混液池22、废液池23和若干反应检测池24,其中,反应检测池24的数量没有特别的限定,至少为1个,具体的数量可根据实际需要以及芯片尺寸进行调整,如2个、3个、4个、6个、8个等,在本实施例中的芯片结构中,在下壳体2上设有6个反应检测池24;此外,结合图2和图4,在上壳体1上设有多个加样口,分别对应于样本池21、混液池22、废液池23和反应检测池24,加样口具体的数量和位置可根据各反应池的位置和需要进行调整。
请继续参阅图3,具体的说,样本池21用于收集待测样本并对待测样本进行裂解。如图1和图2中所示的,样本池21内设有裂解吸释棉211,该裂解吸释棉211具有亲水作用,用于吸收待测样本和裂解液,使得待测样本与裂解液充分接触裂解,优选的,该裂解吸释棉211还可以具有裂解的作用,从而使得待测样本更充分的裂解。该裂解吸释棉211的固定方式没有特别的限定,具体的说,如图2中所示的本实施例中在样本池21内设有立柱,将裂解吸释棉211插设于立柱上实现固定。进一步的,结合图2和图4,在与样本池21位置对应的上壳体1上设有样本加入口101,可通过样本加入口101向样本池21中加入待测样本和裂解液,获得裂解后的样本混合物。
本实施例中可以做出进一步优选变化,即在与样本池21位置对应的上壳体1上除了设有样本加入口101,还设有裂解液加入口,从而将待测样本和裂解液分别通过不同的加样口加入样本池21中,可避免配套设备的添加裂解液的入口被待测样本污染。
进一步的,如图1和图2中所示的,在样本池21的加样口(样本加入口101和/或裂解液加入口)密封有防污贴纸212,该防污贴纸212将样本池21的加样口密封,一方面避免固定在样本池21中的裂解吸释棉211被外界污染,另一方面可在取样完成后再次将样本池21的加样口密封,避免外界环境的干扰,确保反应的精准性。需要注意的是,防污贴纸212具有粘性的一面不能够与裂解液、待测样本等反应。
进一步的,请继续参阅图3,本实施例中,混液池22通过第一微流道401与样本池21相连,混液池22用于对待测样本的混合物进一步裂解,并对裂解后的待测样本混合物进行目标片段的提取。其中,第一微流道401的数量没有特别的限定,至少具有一条,优选的,可采用多条,如4条、5条等,通过设计多条第一微流道401将样本池21和混液池22连接,使得样本池21内的待测样本混合物,在通过第一微流道401进入混液池22的过程中持续不断进行裂解,确保裂解的充分性。在本实施例中,在混液池22中采用磁珠法对待测样本进行目标片段的提取,结合图4,在与混液池22位置对应的上壳体1上分别设有洗涤液加入口102、洗脱液加入口103、加压排气口104和磁珠液加入口105,通过洗涤液加入口102、洗脱液加入口103和磁珠液加入口105向混液池22中加入所需的洗涤液、洗脱液和磁珠液,加压排气口104则用于对混液池22内加压通过压力驱动流体的流动。
进一步的,请继续参阅图3,废液池23与混液池22通过微流道连通,连通的微流道数量没有特别的限定。废液池23用于收集混液池22中目标片段提取过程中产生的废液。具体的,结合图4,与废液池23位置对应的上壳体1上设有第一排气口106,用于排出芯片中反应过程中产生的废液引导至废液池过程中排除的气体空间。
进一步的,如图3所示的,本实施例中,反应检测池24具有6个。反应检测池24的结构均相同,具体的说,反应检测池24均通过对应的第二微流道402分别与混液池22连接,使得提取后的目标片段通过第二微流道402均分进入对应的反应检测池24中,为了保证精准的将目标片段均分至各个反应检测池24中,第二微流道402的弯曲程度尽量一致,且各流道的流阻相同。进一步的,结合图4,上壳体1上设有与反应检测池24相对应的诊断试剂加入口107,诊断试剂加入口107通过微流道与对应的反应检测池24连接,通过诊断试剂加入口107向对应的反应检测池24中加入反应试剂,与目标片段反应,进行荧光检测。进一步的,如图3所示的,本实施例的反应检测池24的池壁为超导热腔体241,具体的说,在下壳体2的表面设有凹槽,超导热腔体241嵌入凹槽内,通过上壳体1和下壳体2键合,从而使得超导热腔体241分别与上壳体1、下壳体2形成独立的反应腔室,其中,超导热腔体241为超导热材料制成,所述的超导热材料为导热系数>200W/m·℃且对反应检测池24内的反应物呈惰性的金属或合金,所述的惰性指的是该材料不与反应检测池24内的反应物发生任何反应,具体的可通过对材料表面进行惰性氧化处理实现,该超导热材料可以选自铝合金、银合金或铜合金,需要说明的是,超导热腔体241同时需要进行黑色吸光处理,保证荧光检测的所需反应环境。进一步的,请参阅图4,在上壳体1上分别设有若干第一软体嵌件501和第二软体嵌件502,具体的说,在上壳体1上设有收容第一软体嵌件501和第二软体嵌件502的孔洞,使得第一软体嵌件501和第二软体嵌件502嵌入上壳体1中。其中,可结合图1和图5,第一软体嵌件501与反应检测池24的第二微流道402以及诊断试剂加入口107的微流道位置对应;而第二软体嵌件502则设于相邻的反应检测池24之间,在第二软体嵌件502的表面设有第二排气口108,第二排气口108通过微流道与对应的反应检测池24连通。通过外部配套设备的配合,对第一软体嵌件501施压,使得第一软体嵌件501下压,从而对第二微流道402和诊断试剂加入口107的微流道实现截流,同时通过外部配套设备封堵第二软体嵌件502上的第二排气口108,使得对应的反应检测池24成为密闭的独立空间,从而切断反应检测池24与外部、混液池22的通道,可避免反应检测过程中产生的气溶胶污染。本实施例中,所述的第一软体嵌件501和第二软体嵌件502采用的为软质塑料或胶体,具体可提及的实例包括但不限于自TPE、TPR、PU或硅胶组合,采用这些软质材质能够很好的实现对反应检测池24的密闭。此外,本实施例中,第二软体嵌件502还用于隔绝光信号,避免相邻的反应检测池24进行荧光检测时发生串光干扰,故,第二软体嵌件502采用黑色或吸光材质。
本实施例中所述的荧光检测芯片可以针对一份样本进行多项目的同时检测,其具体工作流程为:
将待测样本原液从样本加入口101滴入样本池21的裂解吸释棉211上,再将该荧光检测芯片插入配套的设备上,设定好运行程序后开启运行,配套设备首先将样本裂解液通过样本加入口101或裂解液加入口压入到裂解吸释棉211上,对待测样本进行裂解,裂解的样本混合物通过第一微流道401流入混液池22中,在进入混液池22的过程中,待测样本持续不断的进行裂解;
在样本混合液刚流入混液池22时,磁珠液加入口105即可开启向混液池22中加入磁珠液,待两种液体规定量完成加入后,配套设备提供振动功能和加热功能,促使裂解液与待测样本充分反应,使DNA片段释放充分,并与磁珠结合,待此程序结束后,对辅助配套设备的电磁条进行通电,将混液池22中的磁珠吸附在电磁条的周边;此时对设置在混液池22上的加压排气口104进行加压(此时的第二排气口108均处于封堵状态,第一排气口106处于开启状态),在压力驱动下将废液通过微流道排入废液池23;待废液排尽后,从洗脱液加入口103向混液池22中加入预定量的洗脱液,此时,关闭电磁条,配套设备提供振动,促使DNA片段与磁珠分离;随后,电磁条再次打开,将磁珠吸附;设置在混液池22上的加压排气口104再次工作将混液池22中的DNA样本液,均分加入设在下壳体2中的各个反应检测池24中(具体的说,第一排气口106处于关闭状态,样本加入口101及裂解液加入口(如有的话)也处于封闭状态,将其中一个第二排气口108打开,其余第二排气口108封堵,则加压后混液池22内的DNA样本液进入第二排气口108打开的对应反应检测池24中,其余反应检测池24同样操作),同时,配套设备也将根据检测项目的要求将预定量的诊断试剂通过诊断试剂加入口107加入各个对应的反应检测池24中。
待上述流程结束后,配套设备按压第一软体嵌件501,将第二微流道402和诊断试剂加入口107流道切断,且封堵全部第二排气口108,使各个反应检测池24形成一个完全密闭的独立反应室;同时,配套设备按设定好的程序给反应检测池24加热,此外,配套设备设在各个反应检测池24对应的表面探头,将反应检测池24中的待测样本在每个温度循环的过程中的反应信号清晰而真实的记录并储存下来,再通过算法软件系统输出检测结果,完成检测。可以理解的是,该过程中所述的配套设备为自动化仪器,可通过程序设计配合该荧光检测芯片完成整套检测流程,这里不再具体阐述。
本实施例进一步提供了一种荧光检测系统,该荧光检测系统至少包括荧光检测设备和上述的荧光检测芯片,还可以包括一些自动化的操作设备以及控制及结果分析模块等。所述的荧光检测设备能够与荧光检测芯片配套使用,具体可提及的实例包括但不限于荧光检测仪、荧光检测器等;所述的结果分析模块包括但不限于计算机以及配套的操作、分析软件等。
基于本实施例中提供的荧光检测芯片,本发明进一步公开了一种荧光检测方法,包括以下步骤:
向样本池中加入待测样本和裂解液,对待测样本进行裂解;
将裂解后的待测样本混合物通过第一微流道引导至混液池内,采用磁珠法对待测样本进行目标片段的提取;
将提取后的目标片段通过第二微流道均分引导至对应的反应检测池中,同时向反应检测池内加入诊断试剂;
对反应检测池中的待测样本进行加热扩增激发荧光反应,进行荧光信号检测。
实施例 2
本发明中的荧光检测芯片,除了可以为上壳体1和下壳体2形成的芯片结构,还可以在上壳体1和下壳体2设置至少一层壳体的多层叠加结构(如3层、4层等),通过设置多层叠加结构能够对各微流道或反应腔室分层设置,从而合理优化芯片内部结构,使得微流道之间相互不干涉,且在需要时能够相通,具体的结构可根据实际情况进行调整。
图6示出了在实施例1基础上优化的芯片结构,其还包括中壳体3,在中壳体3上设有若干通孔,将各反应腔室的微流道通过这些通孔合理分布,避免微流道相互干扰。
实施例 3
本发明中的荧光检测芯片还可以针对多份样本同时检测,具体的说,在实施例2的结构上进行变换,其包括上壳体1、下壳体2和中壳体3,在下壳体2上设有2个样本池21和2个混液池22(样本池21和混液池22为一一对应的关系),其中,混液池22的其中一个,通过第二微流道402分别与3个反应检测池24连接;混液池22的另一个,通过第二微流道402分别与另外3个反应检测池24连接,通过中壳体3上的通孔设计,将第二微流道402分隔开,避免相互干扰。其他结构及流程均同实施例1和2类似,这里不再具体阐述。
本实施例中的荧光检测芯片可同时对两份样本进行多项目检测,方便快捷。可以理解的是,样本池21和混液池22还可以为多个(如3个、4个等),具体可根据实际需要以及芯片尺寸进行调整,这里不再具体阐述。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种荧光检测芯片,包括上壳体和下壳体,其特征在于,还包括:
    样本池,用于收集待测样本并对待测样本进行裂解;
    混液池,其通过第一微流道与所述样本池连接,用于对裂解后的待测样本进行目标片段的提取;
    废液池,其与所述混液池连接,用于收集目标片段提取过程中产生的废液;
    以及若干独立的反应检测池,其通过第二微流道与所述混液池连接,用于对目标片段进行荧光检测,所述反应检测池的池壁为超导热材料;
    其中,所述样本池、混液池、废液池和反应检测池均设于所述下壳体上,且在所述上壳体上设有若干加样口,其分别与所述样本池、混液池和反应检测池对应。
  2. 如权利要求1所述的荧光检测芯片,其特征在于,所述超导热材料选自铝合金、铜合金或银合金。
  3. 如权利要求1所述的荧光检测芯片,其特征在于,所述样本池内设有裂解吸释件,用于吸释待测样本和裂解液,使之充分接触裂解。
  4. 如权利要求1所述的荧光检测芯片,其特征在于,所述样本池的加样口密封有防污件。
  5. 如权利要求1所述的荧光检测芯片,其特征在于,所述上壳体表面设有若干第一软体嵌件和第二软体嵌件;
    其中,所述第一软体嵌件用于截断所述反应检测池与混液池、外部环境的连接;
    所述第二软体嵌件设于相邻的反应检测池之间,用于隔断反应检测池之间的光信号串扰。
  6. 如权利要求5所述的荧光检测芯片,其特征在于,所述第一软体嵌件、第二软体嵌件的材质分别独立的选自TPE、TPR、PU或硅胶组合,且所述第二软体嵌件为黑色或吸光材质。
  7. 如权利要求5或6所述的的荧光检测芯片,其特征在于,所述第二软体嵌件的表面设有排气口,所述排气口与对应的反应检测池连接。
  8. 一种荧光检测系统,包括荧光检测设备,其特征在于,还包括如权利要求1-7所述的荧光检测芯片。
  9. 一种采用如权利要求1-7任一项所述的荧光检测芯片进行的荧光检测方法,其特征在于,包括以下步骤:
    向样本池中加入待测样本和裂解液,对待测样本进行裂解;
    将裂解后的待测样本混合物通过第一微流道引导至混液池内,采用磁珠法对待测样本进行目标片段的提取;
    将提取后的目标片段通过第二微流道均分引导至对应的反应检测池中,同时向反应检测池内加入诊断试剂;
    对反应检测池中的待测样本进行加热扩增激发荧光反应,进行荧光信号检测。
  10. 如权利要求1-7任一项所述的荧光检测芯片在医疗诊断、科研实验、进出口检验检疫、法医检测、动植物检疫检测或疾控检测中的应用。
PCT/CN2022/098877 2022-04-01 2022-06-15 一种荧光检测芯片、荧光检测系统、荧光检测方法及荧光检测芯片的应用 WO2023184716A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22821839.2A EP4279179A4 (en) 2022-04-01 2022-06-15 FLUORESCENCE DETECTION CHIP, FLUORESCENCE DETECTION SYSTEM, FLUORESCENCE DETECTION METHOD AND APPLICATION OF A FLUORESCENCE DETECTION CHIP

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210339877.8A CN114733587B (zh) 2022-04-01 2022-04-01 荧光检测芯片、荧光检测系统、荧光检测方法及其应用
CN202210339877.8 2022-04-01

Publications (1)

Publication Number Publication Date
WO2023184716A1 true WO2023184716A1 (zh) 2023-10-05

Family

ID=82278560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/098877 WO2023184716A1 (zh) 2022-04-01 2022-06-15 一种荧光检测芯片、荧光检测系统、荧光检测方法及荧光检测芯片的应用

Country Status (3)

Country Link
EP (1) EP4279179A4 (zh)
CN (1) CN114733587B (zh)
WO (1) WO2023184716A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102933968A (zh) * 2010-04-29 2013-02-13 三星电子株式会社 离心微流体装置和用于免疫测定的方法
CN107893020A (zh) * 2017-11-27 2018-04-10 深圳华炎微测医疗科技有限公司 分子诊断微流控芯片和分子诊断微流控芯片体系以及它们的应用
CN110283940A (zh) * 2019-06-27 2019-09-27 深圳市刚竹医疗科技有限公司 核酸组合物、流感病毒的检测试剂盒和微流控芯片
CN110885749A (zh) * 2019-12-09 2020-03-17 西人马联合测控(泉州)科技有限公司 病毒检测系统及其微流控芯片
CN111592971A (zh) * 2020-07-07 2020-08-28 江苏汇先医药技术有限公司 一种用于核酸检测的微流控芯片及方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1249476A (en) * 1968-10-10 1971-10-13 Ceskoslovenska Akademie Ved Through-flow reactor
US7892493B2 (en) * 2006-05-01 2011-02-22 Koninklijke Philips Electronics N.V. Fluid sample transport device with reduced dead volume for processing, controlling and/or detecting a fluid sample
WO2008101196A1 (en) * 2007-02-15 2008-08-21 Osmetech Molecular Diagnostics Fluidics devices
TWI390041B (zh) * 2008-01-30 2013-03-21 Univ Nat Cheng Kung Biological wafer
EP2143491A1 (en) * 2008-07-10 2010-01-13 Carpegen GmbH Device for analysing a chemical or biological sample
KR20140098334A (ko) * 2013-01-31 2014-08-08 연세대학교 산학협력단 자성비드와 광열효과를 이용한 순환종양세포의 포획 및 바이오마커의 추출을 위한 장치 및 방법
WO2015172255A1 (en) * 2014-05-16 2015-11-19 Qvella Corporation Apparatus, system and method for performing automated centrifugal separation
CN107739706B (zh) * 2017-09-26 2020-04-14 南京岚煜生物科技有限公司 主动控制流路的多通量微流控核酸检测芯片及其使用方法
KR101997837B1 (ko) * 2017-10-27 2019-07-08 울산과학기술원 미세 유동 장치 및 미세 유동 장치의 제어설비
AT520605B1 (de) * 2017-11-10 2020-03-15 Erba Tech Austria Gmbh Sensorkassette
AU2019344001B2 (en) * 2018-09-20 2023-11-16 Cepheid System, device and methods of sample processing using semiconductor detection chips
CN109529959A (zh) * 2018-12-19 2019-03-29 苏州汶颢微流控技术股份有限公司 Atp荧光检测微流控芯片,荧光检测系统,荧光检测方法及其应用
CN111607506B (zh) * 2020-06-11 2023-07-25 上海前瞻创新研究院有限公司 一种薄膜式核酸扩增微流控芯片及其制备和应用方法
CN214599106U (zh) * 2020-10-27 2021-11-05 京东方科技集团股份有限公司 检测芯片及检测装置
CN113322175B (zh) * 2021-07-01 2024-01-26 清华大学深圳国际研究生院 一种实时荧光恒温核酸扩增检测装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102933968A (zh) * 2010-04-29 2013-02-13 三星电子株式会社 离心微流体装置和用于免疫测定的方法
CN107893020A (zh) * 2017-11-27 2018-04-10 深圳华炎微测医疗科技有限公司 分子诊断微流控芯片和分子诊断微流控芯片体系以及它们的应用
CN110283940A (zh) * 2019-06-27 2019-09-27 深圳市刚竹医疗科技有限公司 核酸组合物、流感病毒的检测试剂盒和微流控芯片
CN110885749A (zh) * 2019-12-09 2020-03-17 西人马联合测控(泉州)科技有限公司 病毒检测系统及其微流控芯片
CN111592971A (zh) * 2020-07-07 2020-08-28 江苏汇先医药技术有限公司 一种用于核酸检测的微流控芯片及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4279179A4 *

Also Published As

Publication number Publication date
EP4279179A1 (en) 2023-11-22
CN114733587A (zh) 2022-07-12
CN114733587B (zh) 2024-02-20
EP4279179A4 (en) 2024-04-03

Similar Documents

Publication Publication Date Title
JP6838127B2 (ja) 統合された移送モジュールを有する試験カートリッジ
JP6698786B2 (ja) 試料導入から結果出力までのプロセス化を提供する単一構造バイオチップおよび製造方法
CN111607506B (zh) 一种薄膜式核酸扩增微流控芯片及其制备和应用方法
EP2002895B1 (en) Microfluidic device for simultaneously conducting multiple analyses
CN101990516B (zh) 多用试样准备系统及其在集成分析系统中的使用
RU2559541C2 (ru) Универсальная система подготовки образцов и применение в интегрированной системе анализа
US10906043B2 (en) Microfluidic based integrated sample analysis system
US9482602B2 (en) Integrated modular unit including an analyte concentrator-microreactor device connected to a cartridge-cassette
CN207933420U (zh) 一种基因检测用的微流控芯片
CA2664449A1 (en) Cartridge system
CN206375901U (zh) 一种集成封闭式微流核酸检测装置
CN103191792B (zh) 一种用于微球多元生物检测的微流控芯片
WO2022174471A1 (zh) 一种全集成病原体核酸检测微流控芯片
WO2023184716A1 (zh) 一种荧光检测芯片、荧光检测系统、荧光检测方法及荧光检测芯片的应用
CN113717827B (zh) 一种全集成核酸检测微流控芯片及使用方法
KR20210083710A (ko) 모듈형 미세 유체 장치 및 이를 이용한 유체 분석 방법
CN112041073A (zh) 高速聚合酶链式反应分析板
WO2023216361A1 (zh) Poct微流控芯片、检测系统、检测方法以及应用
CN219603584U (zh) 恒温室pcr快速反应结构
CN116836792B (zh) 一种圆盘式核酸检测微流控芯片
CN218755777U (zh) 一种简便快捷的高通量检测装置
CN214694097U (zh) 一种核酸提取扩增检测一体化的微流控芯片
Jahromi et al. Development of an efficient centrifugal microfluidic platform for automated chemical cell lysis
Feng New technology and application of microfluidic technology in biological sample analysis

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18016676

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022821839

Country of ref document: EP

Effective date: 20221220