WO2023184706A1 - 一种组合箱梁结构及其施工方法 - Google Patents
一种组合箱梁结构及其施工方法 Download PDFInfo
- Publication number
- WO2023184706A1 WO2023184706A1 PCT/CN2022/097537 CN2022097537W WO2023184706A1 WO 2023184706 A1 WO2023184706 A1 WO 2023184706A1 CN 2022097537 W CN2022097537 W CN 2022097537W WO 2023184706 A1 WO2023184706 A1 WO 2023184706A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- box
- thin
- box girder
- shell
- uhpc
- Prior art date
Links
- 238000010276 construction Methods 0.000 title claims abstract description 26
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 106
- 239000010959 steel Substances 0.000 claims abstract description 106
- 238000009415 formwork Methods 0.000 claims abstract description 21
- 238000005192 partition Methods 0.000 claims abstract description 17
- 239000011374 ultra-high-performance concrete Substances 0.000 claims description 95
- 239000002131 composite material Substances 0.000 claims description 34
- 210000002435 tendon Anatomy 0.000 claims description 12
- 239000004567 concrete Substances 0.000 claims description 7
- 238000009434 installation Methods 0.000 claims description 5
- 239000011210 fiber-reinforced concrete Substances 0.000 claims description 2
- 239000000843 powder Substances 0.000 claims description 2
- 238000000638 solvent extraction Methods 0.000 claims description 2
- 229920006253 high performance fiber Polymers 0.000 claims 1
- 230000007547 defect Effects 0.000 abstract description 3
- 238000010008 shearing Methods 0.000 abstract 2
- 238000010586 diagram Methods 0.000 description 7
- 238000009417 prefabrication Methods 0.000 description 7
- 239000011513 prestressed concrete Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 6
- 238000005336 cracking Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01D—CONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
- E01D2/00—Bridges characterised by the cross-section of their bearing spanning structure
- E01D2/04—Bridges characterised by the cross-section of their bearing spanning structure of the box-girder type
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01D—CONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
- E01D21/00—Methods or apparatus specially adapted for erecting or assembling bridges
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01D—CONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
- E01D2101/00—Material constitution of bridges
- E01D2101/20—Concrete, stone or stone-like material
- E01D2101/24—Concrete
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01D—CONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
- E01D2101/00—Material constitution of bridges
- E01D2101/20—Concrete, stone or stone-like material
- E01D2101/24—Concrete
- E01D2101/26—Concrete reinforced
- E01D2101/268—Composite concrete-metal
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01D—CONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
- E01D2101/00—Material constitution of bridges
- E01D2101/20—Concrete, stone or stone-like material
- E01D2101/24—Concrete
- E01D2101/26—Concrete reinforced
- E01D2101/28—Concrete reinforced prestressed
- E01D2101/285—Composite prestressed concrete-metal
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01D—CONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
- E01D2101/00—Material constitution of bridges
- E01D2101/30—Metal
Definitions
- the invention relates to the technical field of bridge engineering, and in particular to a composite box girder structure made of an inner core and a box-shaped outer shell and a construction method thereof.
- Prestressed concrete box girder bridges have the advantages of fast construction and good economic performance, and have been widely used around the world.
- prestressed concrete box girder bridges face technical problems such as main span deflection, beam body cracking, and excessive self-weight.
- Traditional concrete has high self-weight and low strength, and the risk of beam cracking under load is high.
- Most of the structural bearing capacity is used to overcome the self-weight of the bridge structure. Therefore, the span of conventional prestressed concrete box girder bridges is difficult to exceed the 300m level. Due to the large shrinkage and creep of traditional concrete, large-span prestressed concrete box girder bridges are prone to cracking and mid-span deflection.
- the patent (ZL 201110345089.1) proposes a prestressed ultra-high performance concrete continuous box girder structure based on ultra-high performance concrete (UHPC) materials.
- UHPC ultra-high performance concrete
- the continuous box girder structure is equipped with dense ultra-high performance concrete diaphragms and internal formwork of the box girder. Being blocked and disconnected at the diaphragm makes the construction process of the box beams cumbersome, and the ultra-high performance concrete diaphragms are prone to defects during pouring, affecting the overall stress of the structure.
- the lightweight, high-strength new material ultra-high performance concrete is used to carry out structural innovation on the existing prestressed concrete continuous box girder bridge, so as to give full play to the material performance, solve construction problems, and fundamentally break through the structural technical barriers, so as to improve the bridge technology level to achieve rapid bridge construction.
- the invention provides a combined box girder structure and a construction method thereof to solve the technical problems of low effective bearing capacity of the box girder structure in current bridge projects, cumbersome internal formwork erection and removal processes, and limited span capability.
- the present invention adopts the following technical solutions:
- a composite box girder structure includes a box-shaped outer shell and an inner core.
- the inner core includes a thin-walled steel shell and a shear connector.
- the thin-walled steel shell is fitted and fixed inside the box-shaped shell through a shear connector.
- the design idea of the above technical solution is to form a box girder structure through the combination of the box-shaped outer shell and the inner core, so that the two can jointly participate in the stress and improve the effective load-bearing capacity of the structure.
- the inner core has high strength, thereby reducing the need for box-shaped outer shells.
- the thickness can further reduce the weight of the structure, avoid excessive bending moments caused by the weight of the structure, and affect the load-bearing effect of the bridge, so as to increase the span of the box girder bridge; at the same time, the existence of the inner core can serve as the inner mold when the box shell is poured.
- the manufacturing process of the combined box beam structure of the present invention is simplified and the production cost is reduced.
- the inner core further includes a diaphragm, and the diaphragm is fixed on the inside of the thin-walled steel shell along the cross-sectional direction of the inner core.
- the diaphragm on the inside of the thin-walled steel shell forms an integrated structure with the thin-walled steel shell to participate in the force bearing, further improving the stability of the inner core and the overall load-bearing capacity of the box girder structure, which can comprehensively solve the lateral local problems faced by ultra-high-performance concrete thin-walled box girder It solves problems such as excessive stress, overall stability, cross-sectional distortion and web shear bearing capacity, and at the same time achieves the purpose of changing the three-way prestressed force of the traditional prestressed concrete box girder bridge into a longitudinal unidirectional prestressed structure.
- a plurality of said transverse partitions are arranged along the longitudinal bridge direction inside the thin-walled steel shell, with a distance of 2m to 10m between each transverse partitioning plate.
- the plurality of diaphragms are connected by several externally prestressed steel tendons.
- the external prestressed steel beams effectively connect multiple diaphragms of the box girder structure and diaphragms of different box girder structures, so that they can bear force as a whole and play a role in positioning and improving the overall rigidity and load-bearing capacity of the system.
- the diaphragm is made of weather-resistant steel, and the thickness of the diaphragm is 0.008m ⁇ 0.020m.
- the thin-walled steel shell is made of weather-resistant steel, and the thickness of the thin-walled steel shell is 0.008m ⁇ 0.020m.
- the thin-walled steel shell is in a "kou” shape to completely cover and fit on the inner surface of the box-shaped shell, or the thin-walled steel shell is in a " ⁇ " shape to partially cover and fit it. fixed on the inner surface of the box-shaped casing.
- the structural shape of the inner core can also be different.
- the thin-walled steel shell is a square-shaped box structure that performs the inner surface of the box-shaped shell.
- the thin-walled steel shell can only support and cover the upper half of the direct stress area on the inner surface of the box-shaped shell, thereby reducing production costs and avoiding performance overflow. waste.
- the shear connector is a plurality of bolt connectors, the diameter of the bolt connector is 0.01m ⁇ 0.02m, and the height is 0.03m ⁇ 0.15m; adjacent bolt connectors The spacing between them is 0.15m ⁇ 0.40m.
- the box-shaped shell is composed of ultra-high performance concrete panels.
- the box-shaped shell includes UHPC bridge deck, UHPC web and UHPC bottom plate.
- the thickness of the UHPC bridge deck is 0.15m ⁇ 0.30 m; the thickness of the UHPC web is 0.10m ⁇ 0.60m; the thickness of the UHPC base plate is 0.15m ⁇ 1.50m.
- the combined application of inner core and ultra-high performance concrete can significantly reduce the geometric size of components, reduce the weight of the structure, improve the effectiveness of the structure in resisting service loads, and increase the span capacity of the bridge structure.
- the inner core, diaphragm, UHPC bridge deck, UHPC web and UHPC bottom plate are all made of thin plates.
- the ultra-high performance concrete is reactive powder concrete or ultra-high performance fiber-reinforced concrete with a compressive strength of not less than 100 MPa.
- the UHPC bridge deck is a flat plate type or a unidirectional longitudinal rib type.
- the flat plate type can be considered. The larger the span, the more significant the longitudinal stress effect of the main beam.
- the bottom of the one-way longitudinal rib plate is partially hollowed out. 1 It is convenient to arrange the prestressed steel tendons in the body; 2 It has the same cross-sectional area Higher bending moment of inertia can significantly reduce the weight of the bridge deck.
- internal prestressed steel tendons are provided in the box-shaped shell along the longitudinal bridge direction, or no prestressed steel tendons are provided in the box-shaped shell along the longitudinal bridge direction.
- the present invention also provides a construction method for the above-mentioned composite box girder structure, which includes the following steps:
- the inner core serves as its internal template.
- the inner core of the composite box girder structure of the present invention is connected to the box-shaped shell through shear connectors welded to the outer surface.
- the inner core and the box-shaped shell are jointly stressed, which can further reduce the thickness of the box-shaped shell. , reduce the self-weight of the structure, improve the effectiveness of the structure in resisting service loads, improve the stress state of the main girder, and increase the spanning capacity of the continuous box girder bridge;
- the composite box girder structure of the present invention combines the inner core and the box-shaped outer shell to form a whole.
- the inner core can be directly used as the internal template of the box-shaped outer shell.
- Different inner core types can be selected according to the specific bridge stress characteristics, and no erection is required during construction.
- the internal formwork or only part of the internal formwork can be erected, and the internal formwork is not blocked or disconnected at the steel diaphragm, and the erection and dismantling process is convenient, which effectively solves the problem in traditional concrete box girder bridges that the arrangement of diaphragms makes the box Solve the cumbersome process of erecting and dismantling the internal formwork of the beam, improve the construction quality of the box girder structure, and realize rapid assembly and construction of bridge construction;
- the composite box girder structure of the present invention is equipped with steel diaphragms inside, which not only avoids the pouring defects of conventional concrete diaphragms, but also comprehensively solves the problems of excessive transverse local stress, overall stability, and cross-section problems faced by thin-walled box girder. Distortion and UHPC web shear bearing capacity, etc., and at the same time achieve the purpose of changing the three-way prestress set up in traditional prestressed concrete box girder bridges into a longitudinal one-way prestressed structure, making the stress on the structure simpler and clearer, and the scope of application Wide, with broad application prospects;
- Figure 1 is a schematic cross-sectional view of the composite box girder structure of Embodiment 1.
- FIG. 2 is an enlarged view of the UHPC bridge panel of the circled part in Figure 1;
- Figure 3 is a schematic three-dimensional structural diagram of the UHPC bridge deck and UHPC web section of the composite box girder structure in Embodiment 1;
- Figure 4 is a schematic diagram of the box-shaped internal three-dimensional structure of the combined box girder structure of Embodiment 1;
- Figure 5 is a schematic diagram of the three-dimensional structure of the box-shaped housing in Embodiment 1;
- Figure 6 is a schematic cross-sectional view of the composite box girder structure of Embodiment 2;
- Figure 7 is an enlarged view of the UHPC bridge panel of the circled part in Figure 6;
- Figure 8 is a schematic three-dimensional structural diagram of the UHPC bridge deck and UHPC web section of the composite box girder structure in Embodiment 2;
- Figure 9 is a schematic diagram of the three-dimensional structure of the box-shaped housing in Embodiment 2.
- Figure 10 is a schematic cross-sectional view of the composite box girder structure of Embodiment 3.
- Figure 11 is a schematic three-dimensional structural diagram of the UHPC bridge deck and UHPC web section of the composite box girder structure in Embodiment 3;
- Figure 12 is a schematic cross-sectional view of the composite box girder structure of Embodiment 4.
- Figure 13 is a schematic three-dimensional structural diagram of the UHPC bridge deck and UHPC web section of the composite box girder structure in Embodiment 4.
- the combined box girder structure 1 of this embodiment includes a box-shaped outer shell 12 and an inner core 11.
- the inner core 11 includes a thin-walled steel shell 21, a transverse partition 23 and a shear connector 22.
- the plate 23 is fixed on the inside of the thin-walled steel shell 21 along the cross-sectional direction of the inner core 11 , and the thin-walled steel shell 21 is fitted and fixed inside the box-shaped shell 12 through the shear connector 22 .
- the thin-walled steel shell 21 is a box structure with a "mouth" cross-section, which completely covers and is fixed on the inner surface of the box-shaped shell 12; the thin-walled steel shell 21 is made of weather-resistant steel, and the thickness of the thin-walled steel shell 21 is 0.008m ⁇ 0.015 m.
- the transverse partition 23 is a T-shaped steel plate, with a plurality of them arranged along the longitudinal bridge direction, 2m to 10m apart, with a thickness of 0.008m to 0.015m.
- the transverse partition 23 is provided with externally prestressed steel beam channels, and passes through several externally prestressed steel beams.
- the stress steel tendons 101 are connected.
- the shear connector 22 is a bolt connector, and the diameter of the bolt connector is 0.01m ⁇ 0.02m, and the height is 0.03m ⁇ 0.15m; the spacing between adjacent bolt connectors is 0.15m ⁇ 0.40m.
- the box-shaped shell 12 includes a UHPC bridge plate 61, a UHPC web 62 and a UHPC bottom plate 63.
- the thickness of the UHPC bridge plate 61 is 0.15m ⁇ 0.25m; the thickness of the UHPC web 62 is 0.10m ⁇ 0.50m; the thickness of the UHPC bottom plate 63 0.15m ⁇ 1.20m.
- the UHPC bridge panel 61 is a flat plate type as shown in Figure 2 .
- the inner core 11, the diaphragm 23, the UHPC bridge deck 61, the UHPC web 62 and the UHPC bottom plate 63 are all made of thin plates.
- the construction method of the composite box girder structure 1 of this embodiment includes the following steps:
- S2 Set up the external formwork of the box-shaped shell 12 in the prefabrication factory, lift the inner core 11 into the external formwork of the box-shaped shell 12 and fix it;
- the combined box girder structure 1 of this embodiment includes a box-shaped outer shell 12 and an inner core 11.
- the inner core 11 includes a thin-walled steel shell 21, a transverse partition 23 and a shear connector 22.
- the plate 23 is fixed on the inside of the thin-walled steel shell 21 along the cross-sectional direction of the inner core 11 , and the thin-walled steel shell 21 is fitted and fixed inside the box-shaped shell 12 through the shear connector 22 .
- the thin-walled steel shell 21 is a box structure with a "mouth" cross-section, which completely covers and is fixed on the inner surface of the box-shaped shell 12; the thin-walled steel shell 21 is made of weather-resistant steel, and the thickness of the thin-walled steel shell 21 is 0.008m ⁇ 0.020m m.
- the transverse partition 23 is a T-shaped steel plate, with a plurality of them arranged along the longitudinal bridge direction, 2m to 10m apart, with a thickness of 0.008m to 0.020m.
- the transverse partition 23 is provided with externally prestressed steel beam channels, and passes through several externally prestressed steel beams.
- the stress steel tendons 101 are connected.
- the shear connector 22 is a bolt connector, and the diameter of the bolt connector is 0.01m ⁇ 0.02m, and the height is 0.03m ⁇ 0.15m; the spacing between adjacent bolt connectors is 0.15m ⁇ 0.40m.
- the box-shaped shell 12 includes a UHPC bridge deck 61, a UHPC web 62 and a UHPC bottom plate 63.
- the box-shaped shell 12 is provided with internal prestressed steel beams 102 along the longitudinal bridge direction.
- the thickness of the UHPC bridge deck 61 is 0.15m ⁇ 0.30m;
- the thickness of the UHPC web 62 is 0.10m ⁇ 0.60m;
- the thickness of the UHPC bottom plate 63 is 0.15m ⁇ 1.50m.
- the UHPC bridge deck 61 is a one-way longitudinal rib type as shown in Figures 7 and 9, and the UHPC web 62 and UHPC bottom plate 63 are both flat type.
- the inner core 11, the diaphragm 23, the UHPC bridge deck 61, the UHPC web 62 and the UHPC bottom plate 63 are all made of thin plates.
- the combined box girder structure 1 of this embodiment includes a box-shaped outer shell 12 and an inner core 11.
- the inner core 11 includes a thin-walled steel shell 21, a transverse partition 23 and a shear connector 22.
- the plate 23 is fixed on the inside of the thin-walled steel shell 21 along the cross-sectional direction of the inner core 11 , and the thin-walled steel shell 21 is fitted and fixed inside the box-shaped shell 12 through the shear connector 22 .
- the thin-walled steel shell 21 has a " ⁇ "-shaped structure in cross-section, and is completely covered and fixed on the inner surfaces of the UHPC bridge deck 61 and UHPC web 62; the thin-walled steel shell 21 is made of weather-resistant steel, and the thickness of the thin-walled steel shell 21 is 0.008m. ⁇ 0.015m.
- the transverse partition 23 is a T-shaped steel plate, with a plurality of them arranged along the longitudinal bridge direction, 2m to 10m apart, with a thickness of 0.008m to 0.015m.
- the transverse partition 23 is provided with externally prestressed steel beam channels, and passes through several externally prestressed steel beams.
- the stress steel tendons 101 are connected.
- the shear connector 22 is a bolt connector, and the diameter of the bolt connector is 0.01m ⁇ 0.02m, and the height is 0.03m ⁇ 0.15m; the spacing between adjacent bolt connectors is 0.15m ⁇ 0.40m.
- the box-shaped shell 12 includes a UHPC bridge deck 61, a UHPC web 62 and a UHPC bottom plate 63.
- the box-shaped shell 12 is provided with internal prestressed steel beams 102 along the longitudinal bridge direction.
- the thickness of the UHPC bridge deck 61 is 0.15m to 0.25m;
- the thickness of the UHPC web 62 is 0.10m ⁇ 0.50m;
- the thickness of the UHPC bottom plate 63 is 0.15m ⁇ 1.20m.
- the UHPC bridge panel 61 is a flat plate type.
- the inner core 11, the diaphragm 23, the UHPC bridge deck 61, the UHPC web 62 and the UHPC bottom plate 63 are all made of thin plates.
- the construction method of the composite box girder structure 1 of this embodiment includes the following steps:
- S2 Set up the external formwork of the box-shaped shell 12 in the prefabrication factory, lift the inner core 11 into the external formwork of the box-shaped shell 12 and fix it;
- S3 Use the inner core 11 as the internal formwork of the box-shaped shell 12, and set up the internal formwork of the UHPC base plate 63.
- the box-shaped shell 12 is cast in the precast factory to form the composite box girder structure segment 1 of this embodiment. Perform high-temperature steam curing on one section of the composite box girder structure;
- the combined box girder structure 1 of this embodiment includes a box-shaped outer shell 12 and an inner core 11.
- the inner core 11 includes a thin-walled steel shell 21, a transverse partition 23 and a shear connector 22.
- the plate 23 is fixed on the inside of the thin-walled steel shell 21 along the cross-sectional direction of the inner core 11 , and the thin-walled steel shell 21 is fitted and fixed inside the box-shaped shell 12 through the shear connector 22 .
- the thin-walled steel shell 21 has a " ⁇ "-shaped structure in cross-section, covering and being fixed on the entire inner surface of the UHPC bridge deck 61 and the upper part of the inner surface of the UHPC web 62; the thin-walled steel shell 21 is made of weather-resistant steel. Thickness is 0.008m ⁇ 0.015m.
- the transverse partition 23 is a T-shaped steel plate, with a plurality of them arranged along the longitudinal bridge direction, 2m to 10m apart, with a thickness of 0.008m to 0.015m.
- the transverse partition 23 is provided with externally prestressed steel beam channels, and passes through several externally prestressed steel beams.
- the stress steel tendons 101 are connected.
- the shear connector 22 is a bolt connector, and the diameter of the bolt connector is 0.01m ⁇ 0.02m, and the height is 0.03m ⁇ 0.15m; the spacing between adjacent bolt connectors is 0.15m ⁇ 0.40m.
- the box-shaped shell 12 includes a UHPC bridge deck 61, a UHPC web 62 and a UHPC bottom plate 63.
- the box-shaped shell 12 is provided with internal prestressed steel beams 102 along the longitudinal bridge direction.
- the thickness of the UHPC bridge deck 61 is 0.15m to 0.25m;
- the thickness of the UHPC web 62 is 0.10m ⁇ 0.50m;
- the thickness of the UHPC bottom plate 63 is 0.15m ⁇ 1.20m.
- the UHPC bridge panel 61 is a flat plate type.
- the inner core 11, the diaphragm 23, the UHPC bridge deck 61, the UHPC web 62 and the UHPC bottom plate 63 are all made of thin plates.
- the construction method of the composite box girder structure 1 of this embodiment includes the following steps:
- S2 Set up the external formwork of the box-shaped shell 12 in the prefabrication factory, lift the inner core 11 into the external formwork of the box-shaped shell 12 and fix it;
- S3 Use the inner core 11 as the internal formwork part of the box-shaped shell 12, and set up the internal formwork of the UHPC web 62 and UHPCUHPC base plate 63.
- the box-shaped shell 12 is cast in the precast factory to form the composite box girder of this embodiment. Segment 1 of the structure, perform high-temperature steam curing on segment 1 of the composite box girder structure;
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Bridges Or Land Bridges (AREA)
Abstract
一种组合箱梁结构(1)及其施工方法,组合箱梁结构(1)包括箱型外壳(12)和内芯(11),内芯(11)包括薄壁钢壳(21)、剪力连接件(22)和横隔板(23),薄壁钢壳(21)通过剪力连接件(22)贴合固定在箱型外壳(12)的内部。组合箱梁结构(1)的内芯(11)与箱型外壳(12)共同受力,可进一步降低板件厚度,减轻结构自重,提高结构抵抗使用荷载的有效性,增大箱梁桥的跨越能力,且内芯(11)直接作为箱形外壳(12)的内部模板,实现桥梁建设的快速化施工,既避免了常规浇筑缺陷,又可解决横向局部应力过大、整体稳定性、截面畸变和腹板抗剪承载力等问题,具有良好的耐久性和广阔的应用前景。
Description
本发明涉及桥梁工程技术领域,具体涉及一种由内芯和箱型外壳做成的组合箱梁结构及其施工方法。
预应力混凝土箱梁桥具有施工快捷、经济性能好的优点,在世界各地得到了广泛的应用。但随着桥梁跨度的不断增长,预应力混凝土箱梁桥面临着主跨下挠、梁体开裂、自重过大等技术难题。传统混凝土自重大、强度低,荷载作用下梁体开裂风险高,结构承载能力绝大部分用于克服桥梁结构自重,因此,常规预应力混凝土箱梁桥的跨径难以突破300m级。由于传统混凝土较大的收缩徐变,导致大跨径预应力混凝土箱梁桥易产生开裂及跨中下挠病害,国内外专家学者通过设置预拱度、适当增加预应力来控制主跨过度下挠,通过施加竖向预应力防止腹板开裂,以及采用轻质混凝土或者钢结构减轻结构自重,从而改善结构受力,但这些方法难以从根本上解决上述技术难题。因此,基于超高性能混凝土研发的组合箱梁结构有望解决上述技术难题,并提升箱梁桥的跨越能力至500m级。
专利(ZL 201110345089.1)基于超高性能混凝土(UHPC)材料提出一种预应力超高性能混凝土连续箱梁结构,但该连续箱梁结构内部设置密集的超高性能混凝土横隔板,箱梁内部模板在横隔板处被阻隔断开,使得箱梁施工过程繁琐,且超高性能混凝土横隔板在浇筑时容易产生缺陷,影响结构整体受力。因此,利用质轻、高强的新材料超高性能混凝土对现有预应力混凝土连续箱梁桥进行结构创新,以充分发挥材料性能,解决施工难题,从根本上突破结构技术壁垒,方能提高桥梁工艺水平,实现桥梁施工快速化。
发明内容
本发明提供了一种组合箱梁结构及其施工方法,用以解决目前桥梁工程中的箱梁结构有效承载力过低、内部模板搭设和拆除工艺繁琐、跨越能力受限的技术问题。
为解决上述技术问题,本发明采用以下技术方案:
一种组合箱梁结构,包括箱型外壳和内芯,所述内芯包括薄壁钢壳和剪力连接件,所述薄壁钢壳通过剪力连接件贴合固定在箱型外壳的内部。
上述技术方案的设计思路在于,通过箱型外壳和内芯的组合形成箱梁结构,可使二者共同参与受力,提升结构的有效承载能力,且内芯强度高,从而可减少箱型外壳的厚度,进一步减轻结构自重,避免结构自重产生的弯矩过大,影响到桥梁的承载效果,以提高箱梁桥的跨度;同时内芯的存在可以充当箱型外壳浇筑时的内层模具,简化了本发明组合箱梁结构的制作流程,降低了生产成本。
作为上述技术方案的进一步优选,所述内芯还包括横隔板,所述横隔板沿内芯的横截面方向固定在薄壁钢壳的内侧。薄壁钢壳内侧的横隔板与薄壁钢壳形成一体化结构,参与受力,进一步提高内芯的稳定性以及箱梁结构整体的承载能力,可综合解决超高性能混凝土薄壁箱梁面临的横向局部应力过大、整体稳定性、截面畸变和腹板抗剪承载力等问题,同时达到将传统预应力混凝土箱梁桥设置的三向预应力变为纵向单向预应力结构的目的。
作为上述技术方案的进一步优选,所述横隔板在薄壁钢壳内侧沿纵桥向设置有多个,每个横隔板之间相距2m~10m。
作为上述技术方案的进一步优选,所述多个横隔板之间通过若干根体外预应力钢束相连接。体外预应力钢束将箱梁结构的多个横隔板以及不同箱梁结构的横隔板进行有效连接,使其作为整体受力,起到定位和提高系统的整体刚性和承载能力的作用。
作为上述技术方案的进一步优选,所述横隔板采用耐候钢材制成,横隔板的厚度为0.008m~0.020m。
作为上述技术方案的进一步优选,所述薄壁钢壳采用耐候钢材制成,薄壁钢壳的厚度为0.008m~0.020m。
作为上述技术方案的进一步优选,所述薄壁钢壳呈“口”字型完全覆盖并贴合固定在所述箱型外壳的内表面,或所述薄壁钢壳呈“冂”字型部分覆盖并贴合固定在所述箱型外壳内表面。基于桥梁设计跨度和受力形式的不同,内芯的结构形状也可以有所区别,当桥梁跨度大、承载能力要求高时,薄壁钢壳呈口字型的箱体结构对箱型外壳内表面进行全部的覆盖和支撑;当桥梁跨度较小,承载能力要求较低时,薄壁钢壳可仅对箱型外壳内表面的上半直接受力区域进行支撑和覆盖,从而降低生产成本、避免性能的溢出浪费。
作为上述技术方案的进一步优选,所述剪力连接件为若干栓钉连接件,所述栓钉连接件的直径为0.01m~0.02m,高度为0.03m~0.15m;相邻栓钉连接件之间的间距为0.15m~0.40m。
作为上述技术方案的进一步优选,所述箱型外壳由超高性能混凝土板构成,所述箱型外壳包括UHPC桥面板、UHPC腹板和UHPC底板,所述UHPC桥面板的厚度为0.15m~0.30m;所述UHPC腹板的厚度为0.10m~0.60m;所述UHPC底板的厚度为0.15m~1.50m。内芯和超高性能混凝土的联合应用能显著减小构件的几何尺寸、减轻结构自重、提高结构抵抗使用荷载的有效性和增大桥梁结构的跨越能力。
作为上述技术方案的进一步优选,所述内芯、横隔板、UHPC桥面板、UHPC腹板和UHPC底板均采用薄型板件。
作为上述技术方案的进一步优选,所述超高性能混凝土为抗压强度不低于100MPa的活性粉末混凝土或超高性能纤维增强混凝土。
作为上述技术方案的进一步优选,所述UHPC桥面板为平板型或单向纵肋板型。中小跨径桥梁中,可考虑采用平板型。跨径越大,主梁纵向受力效应越为显著,与矩形平板相比,单向纵肋板底部被部分挖空,①可方便布置体内预应力钢束;②在同等横截面面积下具有更高的抗弯惯性矩,可显著降低桥面板自重。
作为上述技术方案的进一步优选,所述箱型外壳内沿纵桥向设置有体内预应力钢束,或所述箱型外壳内沿纵桥向不设置预应力钢束。
基于同一技术构思,本发明还提供一种上述组合箱梁结构的施工方法,包括以下步骤:
S1、焊接薄壁钢板形成所述薄壁钢壳,并在所述薄壁钢壳外表面按照一定间距焊接剪力连接件,并在所述薄壁钢壳内表面按照一定间距焊接横隔板,形成所述内芯;
S2、搭设所述箱型外壳的外部模板,将所述内芯吊入所述箱型外壳的外部模板内并固定;
S3、浇筑所述箱型外壳,形成所述组合箱梁结构,对所述组合箱梁结构进行高温蒸汽养护;
S4、将所述组合箱梁结构运送至安装位置,利用吊梁设备对其进行架设和现场拼装,并形成箱梁桥体结构;
S5、完成所述箱梁桥体结构的桥面铺装及附属工程,即完成施工。
作为上述技术方案的进一步优选,S3中浇筑所述箱型外壳时,内芯作为其内部模板。
与现有技术相比,本发明的优点在于:
(1)本发明的组合箱梁结构其内芯通过焊接在其外表面的剪力连接件与箱型外壳连接,内芯与箱型外壳共同受力,可进一步降低箱型外壳的板件厚度,减轻结构自重,提高结构抵抗使用荷载的有效性,改善主梁受力状态,增大连续箱梁桥的跨越能力;
(2)本发明的组合箱梁结构将内芯与箱型外壳组合形成整体,内芯可直接作为箱型外壳的内部模板,根据具体桥梁受力特点可选用不同内芯型式,施工时无需搭设内部模板或仅需搭设部分内部模板既可,且内部模板在钢横隔板处无阻隔、断开,搭设和拆除工艺便捷,有效解决了传统混凝土箱梁桥中,横隔板的布置使箱梁内部模板搭设和拆除工艺繁琐的难题,提高箱梁结构的施工质量,实现桥梁建设的快速化装配施工;
(3)本发明的组合箱梁结构内部设置钢横隔板,既避免了常规混凝土横隔板的浇筑缺陷,又可综合解决薄壁箱梁面临的横向局部应力过大、整体稳定性、截面畸变和UHPC腹板抗剪承载力等问题,同时达到将传统预应力混凝土箱梁桥设置的三向预应力变为纵向单向预应力结构的目的,使得结构受力更加简单、明确,适用范围广,具有广阔的应用前景;
(4)本发明的组合箱梁结构经高温蒸养后,后期收缩基本为零,后期徐变大幅度减小,可有效解决主跨过度下挠、主梁开裂风险高的技术难题;超高性能混凝土材料结合耐大气腐 蚀的耐候钢材,可保证箱梁桥具有良好的耐久性。
图1为实施例1的组合箱梁结构的截面示意图。
图2为图1圆圈部分UHPC桥面板的放大图;
图3为实施例1的组合箱梁结构的UHPC桥面板和UHPC腹板剖面下的三维结构示意图;
图4为实施例1的组合箱梁结构的箱型内部三维结构示意图;
图5为实施例1的箱型外壳三维结构示意图;
图6为实施例2的组合箱梁结构的截面示意图;
图7为图6圆圈部分UHPC桥面板的放大图;
图8为实施例2的组合箱梁结构的UHPC桥面板和UHPC腹板剖面下的三维结构示意图;
图9为实施例2的箱型外壳三维结构示意图;
图10为实施例3的组合箱梁结构的截面示意图。
图11为实施例3的组合箱梁结构的UHPC桥面板和UHPC腹板剖面下的三维结构示意图;
图12为实施例4的组合箱梁结构的截面示意图;
图13为实施例4的组合箱梁结构的UHPC桥面板和UHPC腹板剖面下的三维结构示意图。
图例说明:
1、组合箱梁结构;11、内芯;12、箱型外壳;21、薄壁钢壳;22、剪力连接件;23、横隔板;61、UHPC桥面板;62、UHPC腹板;63、UHPC底板;101、体外预应力钢束;102、体内预应力钢束。
以下结合具体实施例对本发明作进一步详细说明。
实施例1:
如图1-图5所示,本实施例的组合箱梁结构1,包括箱型外壳12和内芯11,内芯11包括薄壁钢壳21、横隔板23和剪力连接件22,横隔板23沿内芯11的横截面方向固定在薄壁钢壳21的内侧,薄壁钢壳21通过剪力连接件22贴合固定在箱型外壳12的内部。
薄壁钢壳21为截面呈“口”字型的箱体结构,完全覆盖并贴合固定在箱型外壳12的内表面;薄壁钢壳21采用耐候钢材制成,薄壁钢壳21的厚度为0.008m~0.015m。
横隔板23为T型钢板,沿纵桥向设置有多个,相距2m~10m,厚度为0.008m~0.015m,横隔板23内设置体外预应力钢束孔道,并通过若干根体外预应力钢束101相连接。
剪力连接件22为栓钉连接件,栓钉连接件的直径为0.01m~0.02m,高度为0.03m~0.15m;相邻栓钉连接件之间的间距为0.15m~0.40m。
箱型外壳12包括UHPC桥面板61、UHPC腹板62和UHPC底板63,UHPC桥面板61的厚度为0.15m~0.25m;UHPC腹板62的厚度为0.10m~0.50m;UHPC底板63的厚度为0.15m~1.20m。其中,UHPC桥面板61如图2所示,为平板型。
本实施例中,内芯11、横隔板23、UHPC桥面板61、UHPC腹板62和UHPC底板63均采用薄型板件。
本实施例的组合箱梁结构1的施工方法,包括以下步骤:
S1:在预制厂焊接薄壁钢板形成薄壁钢壳21,并在薄壁钢壳21外表面按照一定间距焊接剪力连接件22,形成内芯11;
S2:在预制厂搭设箱型外壳12的外部模板,将内芯11吊入箱型外壳12的外部模板内并固定;
S3:将内芯11作为箱型外壳12的内部模板,在预制厂浇筑箱型外壳12,形成本实施例的组合箱梁结构1节段,将组合箱梁结构1节段进行高温蒸汽养护;
S4:利用运梁车将组合箱梁结构1节段运送至安装位置,利用吊梁设备对其进行架设,将组合箱梁结构1各节段进行现场拼装,并按照顺序依次张拉预应力钢束;
S5:完成箱梁桥的桥面铺装及附属工程,即完成施工。
实施例2:
如图6-图9所示,本实施例的组合箱梁结构1,包括箱型外壳12和内芯11,内芯11包括薄壁钢壳21、横隔板23和剪力连接件22,横隔板23沿内芯11的横截面方向固定在薄壁钢壳21的内侧,薄壁钢壳21通过剪力连接件22贴合固定在箱型外壳12的内部。
薄壁钢壳21为截面呈“口”字型的箱体结构,完全覆盖并贴合固定在箱型外壳12的内表面;薄壁钢壳21采用耐候钢材制成,薄壁钢壳21的厚度为0.008m~0.020m。
横隔板23为T型钢板,沿纵桥向设置有多个,相距2m~10m,厚度为0.008m~0.020m,横隔板23内设置体外预应力钢束孔道,并通过若干根体外预应力钢束101相连接。
剪力连接件22为栓钉连接件,栓钉连接件的直径为0.01m~0.02m,高度为0.03m~0.15m;相邻栓钉连接件之间的间距为0.15m~0.40m。
箱型外壳12包括UHPC桥面板61、UHPC腹板62和UHPC底板63,箱型外壳12内沿纵桥向设置有体内预应力钢束102,UHPC桥面板61的厚度为0.15m~0.30m;UHPC腹板62的厚度为0.10m~0.60m;UHPC底板63的厚度为0.15m~1.50m。其中,UHPC桥面板61如图7和图9所示,为单向纵肋型,UHPC腹板62和UHPC底板63均为平板型。
本实施例中,内芯11、横隔板23、UHPC桥面板61、UHPC腹板62和UHPC底板63均采用薄型板件。
本实施例的组合箱梁结构1的施工方法与实施例1一致。
实施例3:
如图10和图11所示,本实施例的组合箱梁结构1,包括箱型外壳12和内芯11,内芯11包括薄壁钢壳21、横隔板23和剪力连接件22,横隔板23沿内芯11的横截面方向固定在薄壁钢壳21的内侧,薄壁钢壳21通过剪力连接件22贴合固定在箱型外壳12的内部。
薄壁钢壳21为截面呈“冂”字型结构,完全覆盖并贴合固定在UHPC桥面板61和UHPC腹板62的内表面;薄壁钢壳21采用耐候钢材制成,薄壁钢壳21的厚度为0.008m~0.015m。
横隔板23为T型钢板,沿纵桥向设置有多个,相距2m~10m,厚度为0.008m~0.015m,横隔板23内设置体外预应力钢束孔道,并通过若干根体外预应力钢束101相连接。
剪力连接件22为栓钉连接件,栓钉连接件的直径为0.01m~0.02m,高度为0.03m~0.15m;相邻栓钉连接件之间的间距为0.15m~0.40m。
箱型外壳12包括UHPC桥面板61、UHPC腹板62和UHPC底板63,箱型外壳12内沿纵桥向设置有体内预应力钢束102,UHPC桥面板61的厚度为0.15m~0.25m;UHPC腹板62的厚度为0.10m~0.50m;UHPC底板63的厚度为0.15m~1.20m。其中,UHPC桥面板61为平板型。
本实施例中,内芯11、横隔板23、UHPC桥面板61、UHPC腹板62和UHPC底板63均采用薄型板件。
本实施例的组合箱梁结构1的施工方法,包括以下步骤:
S1:在预制厂焊接薄壁钢板形成薄壁钢壳21,并在薄壁钢壳21外表面按照一定间距焊接剪力连接件22,形成内芯11;
S2:在预制厂搭设箱型外壳12的外部模板,将内芯11吊入箱型外壳12的外部模板内并固定;
S3:将内芯11作为箱型外壳12的内部模板部分内部模板,并搭设的UHPC底板63的内部模板,在预制厂浇筑箱型外壳12,形成本实施例的组合箱梁结构1节段,将组合箱梁结构1节段进行高温蒸汽养护;
S4:利用运梁车将组合箱梁结构1节段运送至安装位置,利用吊梁设备对其进行架设,将组合箱梁结构1各节段进行现场拼装,并按照顺序依次张拉预应力钢束;
S5:完成箱梁桥的桥面铺装及附属工程,即完成施工。
实施例4:
如图12和图13所示,本实施例的组合箱梁结构1,包括箱型外壳12和内芯11,内芯11包括薄壁钢壳21、横隔板23和剪力连接件22,横隔板23沿内芯11的横截面方向固定在薄壁钢壳21的内侧,薄壁钢壳21通过剪力连接件22贴合固定在箱型外壳12的内部。
薄壁钢壳21为截面呈“冂”字型结构,覆盖并贴合固定在UHPC桥面板61的全部内表面和UHPC腹板62的内表面上部;薄壁钢壳21采用耐候钢材制成,薄壁钢壳21的厚度为0.008m~0.015m。
横隔板23为T型钢板,沿纵桥向设置有多个,相距2m~10m,厚度为0.008m~0.015m,横隔板23内设置体外预应力钢束孔道,并通过若干根体外预应力钢束101相连接。
剪力连接件22为栓钉连接件,栓钉连接件的直径为0.01m~0.02m,高度为0.03m~0.15m;相邻栓钉连接件之间的间距为0.15m~0.40m。
箱型外壳12包括UHPC桥面板61、UHPC腹板62和UHPC底板63,箱型外壳12内沿纵桥向设置有体内预应力钢束102,UHPC桥面板61的厚度为0.15m~0.25m;UHPC腹板62的厚度为0.10m~0.50m;UHPC底板63的厚度为0.15m~1.20m。其中,UHPC桥面板61为平板型。
本实施例中,内芯11、横隔板23、UHPC桥面板61、UHPC腹板62和UHPC底板63均采用薄型板件。
本实施例的组合箱梁结构1的施工方法,包括以下步骤:
S1:在预制厂焊接薄壁钢板形成薄壁钢壳21,并在薄壁钢壳21外表面按照一定间距焊接剪力连接件22,形成内芯11;
S2:在预制厂搭设箱型外壳12的外部模板,将内芯11吊入箱型外壳12的外部模板内并固定;
S3:将内芯11作为箱型外壳12的内部模板部分内部模板,并搭设的UHPC腹板62和UHPCUHPC底板63的内部模板,在预制厂浇筑箱型外壳12,形成本实施例的组合箱梁结构1节段,将组合箱梁结构1节段进行高温蒸汽养护;
S4:利用运梁车将组合箱梁结构1节段运送至安装位置,利用吊梁设备对其进行架设,将组合箱梁结构1各节段进行现场拼装,并按照顺序依次张拉预应力钢束;
S5:完成箱梁桥的桥面铺装及附属工程,即完成施工。
以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例。对于本技术领域的技术人员来说,在不脱离本发明技术构思前提下所得到的改进和变换也应视为本发明的保护范围。
Claims (10)
- 一种组合箱梁结构,其特征在于,包括箱型外壳(12)和内芯(11),所述内芯(11)包括薄壁钢壳(21)和剪力连接件(22),所述薄壁钢壳(21)通过剪力连接件(22)贴合固定在箱型外壳(12)的内部。
- 根据权利要求1所述的组合箱梁结构,其特征在于,所述内芯(11)还包括横隔板(23),所述横隔板(23)沿内芯(11)的横截面方向固定在薄壁钢壳(21)的内侧,所述横隔板(23)在薄壁钢壳(21)内侧沿纵桥向设置有多个,每个横隔板(23)之间相距2m~10m。
- 根据权利要求2所述的组合箱梁结构,其特征在于,所述横隔板(23)采用耐候钢材制成,所述横隔板(23)的厚度为0.008m~0.020m,所述多个横隔板(23)之间通过若干根体外预应力钢束(102)相连接。
- 根据权利要求1所述的组合箱梁结构,其特征在于,所述薄壁钢壳(21)采用耐候钢材制成,所述薄壁钢壳(21)的厚度为0.008m~0.020m。
- 根据权利要求1-4任一项所述的组合箱梁结构,其特征在于,所述薄壁钢壳(21)呈“口”字型完全覆盖并贴合固定在所述超高性能混凝土箱型外壳(12)的内表面,或所述薄壁钢壳(21)呈“冂”字型部分覆盖并贴合固定在所述超高性能混凝土箱型外壳(12)内表面。
- 根据权利要求1-4任一项所述的组合箱梁结构,其特征在于,所述箱型外壳(12)由超高性能混凝土板构成,所述超高性能混凝土为抗压强度不低于100MPa的活性粉末混凝土或超高性能纤维增强混凝土;所述箱型外壳(12)包括UHPC桥面板(61)、UHPC腹板(62)和UHPC底板(63),所述UHPC桥面板(61)的厚度为0.15m~0.30m;所述UHPC腹板(62)的厚度为0.10m~0.60m;所述UHPC底板(63)的厚度为0.15m~1.50m。
- 根据权利要求6所述的组合箱梁结构,其特征在于,所述UHPC桥面板(61)为平板型或单向纵肋板型。
- 根据权利要求1-4任一项所述的组合箱梁结构,其特征在于,所述箱型外壳(12)内沿纵桥向设置有体内预应力钢束(101)。
- 一种权利要求2-8任一项所述的组合箱梁结构的施工方法,其特征在于,包括以下步骤:S1、焊接薄壁钢板形成所述薄壁钢壳(21),在所述薄壁钢壳(21)外表面按照一定间距焊接剪力连接件(22),并在所述薄壁钢壳(21)内表面按照一定间距焊接横隔板(23),形成所述内芯(11);S2、搭设所述箱型外壳(12)的外部模板,将所述内芯(11)吊入所述箱型外壳(12)的外部模板内并固定;S3、浇筑所述箱型外壳(12),形成所述组合箱梁结构(1),对所述组合箱梁结构(1) 进行高温蒸汽养护;S4、将所述组合箱梁结构(1)运送至安装位置,利用吊梁设备对其进行架设和现场拼装,形成箱梁桥体结构;S5、完成所述箱梁桥体结构的桥面铺装及附属工程,即完成施工。
- 根据权利要求9所述的组合箱梁结构的施工方法,其特征在于,S3中浇筑所述箱型外壳(12)时,所述内芯(11)作为内部模板。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/346,284 US20230349113A1 (en) | 2022-03-30 | 2023-07-03 | Composite box girder structure and construction method therefor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210331861.2 | 2022-03-30 | ||
CN202210331861.2A CN114737462A (zh) | 2022-03-30 | 2022-03-30 | 一种组合箱梁结构及其施工方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/346,284 Continuation US20230349113A1 (en) | 2022-03-30 | 2023-07-03 | Composite box girder structure and construction method therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023184706A1 true WO2023184706A1 (zh) | 2023-10-05 |
Family
ID=82278171
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/097537 WO2023184706A1 (zh) | 2022-03-30 | 2022-06-08 | 一种组合箱梁结构及其施工方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20230349113A1 (zh) |
CN (1) | CN114737462A (zh) |
WO (1) | WO2023184706A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115928558B (zh) * | 2023-02-21 | 2023-06-02 | 湖南大学 | 一种uhpc组合箱梁横向接缝构造及其施工方法 |
CN117947689B (zh) * | 2024-03-22 | 2024-05-28 | 福建省高速公路科技创新研究院有限公司 | 一种便于安装的uhpc桥梁横隔板壳膜及施工方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7475446B1 (en) * | 2004-10-16 | 2009-01-13 | Yidong He | Bridge system using prefabricated deck units with external tensioned structural elements |
CN102352597A (zh) * | 2011-11-04 | 2012-02-15 | 湖南大学 | 预应力超高性能混凝土连续箱梁桥及其施工方法 |
CN109024221A (zh) * | 2018-07-31 | 2018-12-18 | 中国十七冶集团有限公司 | 一种新型钢组合箱梁及其使用方法 |
CN109958049A (zh) * | 2019-02-26 | 2019-07-02 | 浙江大学 | 一种模块化钢-混组合小箱梁简支连续桥及其施工方法 |
CN111305040A (zh) * | 2020-02-28 | 2020-06-19 | 广东省交通规划设计研究院股份有限公司 | 一种采用波形钢板作为横隔板的斜拉桥组合箱梁 |
CN113215949A (zh) * | 2021-03-05 | 2021-08-06 | 湖南科技大学 | 预制拼装式uhpc-波形钢腹板组合箱梁桥及施工方法 |
CN113605246A (zh) * | 2021-08-24 | 2021-11-05 | 湖南大学 | 预应力uhpc外壳-混凝土内芯组合盖梁结构及其施工方法 |
CN215857217U (zh) * | 2021-07-14 | 2022-02-18 | 湖南大学 | 可用于钢-uhpc组合梁桥的桥面板、钢槽梁、梁桥 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005180005A (ja) * | 2003-12-19 | 2005-07-07 | Noboru Abe | コンクリート製箱桁橋のプレキャストプレストレストコンクリート製ウェブとそれを用いたコンクリート箱桁橋。 |
CN106638274B (zh) * | 2016-12-15 | 2018-04-17 | 湖南大学 | 一种单向预应力超高性能混凝土薄壁箱梁标准节段 |
CN206553910U (zh) * | 2017-02-23 | 2017-10-13 | 中铁第四勘察设计院集团有限公司 | 一种钢壳混凝土结合梁 |
CN212834947U (zh) * | 2020-05-06 | 2021-03-30 | 长沙市规划勘测设计研究院 | 密集横隔板uhpc简支薄壁箱梁桥 |
-
2022
- 2022-03-30 CN CN202210331861.2A patent/CN114737462A/zh active Pending
- 2022-06-08 WO PCT/CN2022/097537 patent/WO2023184706A1/zh unknown
-
2023
- 2023-07-03 US US18/346,284 patent/US20230349113A1/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7475446B1 (en) * | 2004-10-16 | 2009-01-13 | Yidong He | Bridge system using prefabricated deck units with external tensioned structural elements |
CN102352597A (zh) * | 2011-11-04 | 2012-02-15 | 湖南大学 | 预应力超高性能混凝土连续箱梁桥及其施工方法 |
CN109024221A (zh) * | 2018-07-31 | 2018-12-18 | 中国十七冶集团有限公司 | 一种新型钢组合箱梁及其使用方法 |
CN109958049A (zh) * | 2019-02-26 | 2019-07-02 | 浙江大学 | 一种模块化钢-混组合小箱梁简支连续桥及其施工方法 |
CN111305040A (zh) * | 2020-02-28 | 2020-06-19 | 广东省交通规划设计研究院股份有限公司 | 一种采用波形钢板作为横隔板的斜拉桥组合箱梁 |
CN113215949A (zh) * | 2021-03-05 | 2021-08-06 | 湖南科技大学 | 预制拼装式uhpc-波形钢腹板组合箱梁桥及施工方法 |
CN215857217U (zh) * | 2021-07-14 | 2022-02-18 | 湖南大学 | 可用于钢-uhpc组合梁桥的桥面板、钢槽梁、梁桥 |
CN113605246A (zh) * | 2021-08-24 | 2021-11-05 | 湖南大学 | 预应力uhpc外壳-混凝土内芯组合盖梁结构及其施工方法 |
Also Published As
Publication number | Publication date |
---|---|
CN114737462A (zh) | 2022-07-12 |
US20230349113A1 (en) | 2023-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023184706A1 (zh) | 一种组合箱梁结构及其施工方法 | |
CN109958049B (zh) | 一种模块化钢-混组合小箱梁简支连续桥及其施工方法 | |
CN111206489A (zh) | 一种装配式波形腹板钢箱-uhpc组合梁桥及施工方法 | |
CN110029569B (zh) | 一种波形钢腹板-桁式弦杆uhpc组合箱梁及其施工方法 | |
CN113107127A (zh) | 一种加强叠合楼板 | |
CN103031926B (zh) | 带有预应力钢管混凝土芯棒的双t形组合梁及其制备方法 | |
CN111979891A (zh) | 一种半穿式矩形钢管混凝土组合桁梁桥及施工方法 | |
CN112982139A (zh) | 一种宽幅大跨混合梁矮塔斜拉桥体系及其施工方法 | |
CN112376408A (zh) | 一种uhpc空心柱墩及其施工方法 | |
CN111139746A (zh) | 正交异性钢桥面板与超高性能混凝土组合桥及其施工方法 | |
WO2024174476A1 (zh) | 一种uhpc组合箱梁横向接缝构造及其施工方法 | |
CN114319103A (zh) | 钢壳混凝土组合索塔结构 | |
CN113123504A (zh) | 一种带有可拆卸附加刚度装置的叠合楼板 | |
WO2022241814A1 (zh) | 装配式拉筋矩形钢管混凝土桁架组合梁及其施工方法 | |
CN211815522U (zh) | 一种体外预应力转向构造 | |
CN109577169B (zh) | 一种基于钢结构横向联结系的装配式混凝土箱形梁结构与施工方法 | |
CN217630848U (zh) | 一种预制钢管接头混凝土柱构件 | |
CN215290896U (zh) | 带有可拆卸附加刚度装置的叠合楼板 | |
WO2023123321A1 (zh) | 一种大跨度预制装配式结构 | |
CN202990244U (zh) | 一种带有预应力钢管混凝土芯棒的双t形组合梁 | |
CN212077623U (zh) | 一种用于组合结构桥梁的可拆卸式预制桥面板 | |
CN216893067U (zh) | 一种装配式组合楼盖系统 | |
CN212077586U (zh) | 一种可拆卸的钢混凝土组合结构桥梁 | |
CN211762332U (zh) | 混凝土箱模 | |
CN113818614A (zh) | 一种叠合楼板及其连接节点结构 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22934531 Country of ref document: EP Kind code of ref document: A1 |