WO2022241814A1 - 装配式拉筋矩形钢管混凝土桁架组合梁及其施工方法 - Google Patents

装配式拉筋矩形钢管混凝土桁架组合梁及其施工方法 Download PDF

Info

Publication number
WO2022241814A1
WO2022241814A1 PCT/CN2021/096610 CN2021096610W WO2022241814A1 WO 2022241814 A1 WO2022241814 A1 WO 2022241814A1 CN 2021096610 W CN2021096610 W CN 2021096610W WO 2022241814 A1 WO2022241814 A1 WO 2022241814A1
Authority
WO
WIPO (PCT)
Prior art keywords
rectangular steel
concrete
truss
chord
composite beam
Prior art date
Application number
PCT/CN2021/096610
Other languages
English (en)
French (fr)
Inventor
丁发兴
尹奕翔
吕飞
王莉萍
余玉洁
Original Assignee
中南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中南大学 filed Critical 中南大学
Publication of WO2022241814A1 publication Critical patent/WO2022241814A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/12Grating or flooring for bridges; Fastening railway sleepers or tracks to bridges
    • E01D19/125Grating or flooring for bridges
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D2/00Bridges characterised by the cross-section of their bearing spanning structure
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D21/00Methods or apparatus specially adapted for erecting or assembling bridges

Definitions

  • the invention relates to the technical field of bridges, in particular to an assembled reinforced rectangular steel pipe concrete truss composite beam and a construction method thereof.
  • the truss composite beam gives full play to its structural advantages, has excellent bending performance, and has a high degree of assembly. Due to its own advantages and characteristics, the truss composite beam has been paid more and more attention by people. And more and more used in engineering practice.
  • the prestressed concrete box girder commonly used in engineering has the following technical deficiencies: 1.
  • the beam body is self-heavy and the span is limited; 2.
  • an assembled reinforced rectangular steel pipe concrete truss composite beam including a reinforced rectangular steel pipe truss, and the reinforced rectangular steel pipe truss includes a main chord pipe, a diagonal web pipe, a net Lattice connecting pipes and variable cross-section I-beams.
  • the main chords are equipped with two-way pair of ties and poured with concrete.
  • Four main chords are arranged along the length direction of the bridge deck.
  • the four main chords include two One upper chord and two lower chords, the arrangement of the upper chord and the lower chord makes the cross-section of the rectangular steel pipe truss form an inverted trapezoid, and the two upper chords and the two lower chords are connected by grid
  • the upper chord and the lower chord on the same side are connected to each other through multiple oblique web tubes.
  • the outer surface of the upper chord is welded with variable-section I-beams.
  • the bridge deck support is fixed on the upper chord, grid Type connecting pipe and variable section I-beam.
  • the grid-type connecting pipes are welded between two upper chord pipes and two lower chord pipes. Between the pipes, the longitudinal connecting pipes arranged in the same direction as the main chord pipe are formed, and the connecting pipes and the adjacent longitudinal connecting pipes form an I-shape.
  • the upper surface of the upper chord pipe and the grid-type connecting pipe connected to the upper chord pipe are fixed with opening stiffeners along the pipe length direction, and the bridge deck is connected with the assembled rectangular steel pipe truss through the opening stiffeners for the whole.
  • the adjacent oblique web tubes are disposed close to or connected to the main chord from end to end, and are connected with the main chord to form a triangle.
  • the prefabricated rectangular steel pipe truss is divided into a plurality of segmental rectangular steel pipe trusses along the length direction of the bridge deck, and adjacent segmental rectangular steel pipe trusses are welded to each other.
  • the cross-sectional shape of the main chord pipe is rectangular, and the cross-sectional shapes of the oblique belly pipe, the transverse connecting pipe and the longitudinal connecting pipe are square.
  • the main chord includes U-shaped channel steel, steel plates and two-way paired tie bars, the two-way paired tie bars and the inner wall of the U-shaped channel steel are welded on three sides by a welding robot, and the ordinary steel plate is welded to the channel steel , the opening end of the channel steel is closed, the fourth side of the two-way pair of ties and the common steel plate are welded and assembled by a welding robot to form a main chord, and concrete is poured in the main chord.
  • the two-way pair of ties include mutually welded hoop stirrups and longitudinal positioning reinforcements, the longitudinal positioning reinforcements are respectively welded to the four corners of the hoop stirrups, and the longitudinal positioning reinforcements are along the length direction of the beam. Arranged throughout the length, the two-way pair of ties are evenly arranged along the length direction inside the main chord.
  • the bridge deck is formed by assembling a plurality of prefabricated solid concrete slabs.
  • U-shaped steel bars are reserved on the connecting surfaces of the prefabricated solid concrete slabs.
  • the steel bars and the opening stiffeners are staggered to form a pouring belt, and concrete is poured on the pouring belt to connect adjacent prefabricated solid concrete slabs as a whole.
  • the present invention also includes a construction method for the assembled reinforced rectangular steel pipe concrete truss composite beam, which includes the following steps.
  • Rectangular steel pipe trusses with multi-segment tension bars are processed in the factory, and then transported to the site for hoisting.
  • the invention solves the deficiencies of the prior art and provides a prefabricated reinforced rectangular steel pipe concrete truss composite beam with high bearing capacity and high bending rigidity and its construction method.
  • the invention has reasonable force, high degree of assembly and convenient construction , greatly shortened the construction period, and solved the problems of insufficient restraint effect of steel pipes and poor bonding between steel pipes and concrete.
  • the span of the beams was increased, the self-weight was reduced, and the number of piers was reduced. The engineering cost is saved, and it is suitable for highway and railway bridge structures.
  • the overall bearing capacity and rigidity of the structure are large: due to the advantages of the truss structure itself, compared with the traditional prestressed box girder, the overall structural span is larger, and the bearing capacity and stiffness are greatly improved. Insufficient restraint, the tie bars limit the slippage between the concrete and the steel pipe.
  • the reinforced rectangular steel pipe truss can be prefabricated in the factory in advance, and transported to the site for hoisting and splicing. The high degree of assembly greatly shortens the construction period.
  • the present invention Compared with the traditional prestressed concrete box girder, the present invention has larger bending rigidity and bearing capacity, and avoids loss of prestress and cracking of concrete. Under reasonable design conditions, the span can be increased, the self-weight can be reduced, and the construction progress can be accelerated.
  • the inner filling of concrete and bidirectional tie bars in the invention can prevent local buckling of the steel pipe, and the bidirectional tie bars can reduce the slippage between the steel pipe and the concrete, enhance the bonding between the steel pipe and the concrete, thereby enhancing the stability and ductility of the steel pipe .
  • the superiority of the reinforced rectangular steel tube concrete truss composite beam lies in the high degree of assembly and fast construction progress, and all components can be processed in advance in the factory.
  • the prefabricated multi-segment rectangular steel pipe trusses are welded and assembled into a complete rectangular steel pipe truss, pouring concrete in the main chord, and then welding open-hole stiffeners on the upper surface of the steel pipe truss , and finally a complete bridge deck is formed by assembling prefabricated solid concrete slabs.
  • the whole process has a high degree of assembly, and the two-way pair of ties make up for the lack of restraint of the rectangular steel pipe on the concrete, and strengthen the bond between the steel pipe and the concrete.
  • the rectangular steel tube concrete truss composite beam has significantly increased bearing capacity and stiffness, increased span, reduced dead weight, and further optimized structural performance.
  • the present invention has high bearing capacity, high bending rigidity, large span, light weight, good ductility, strong overall stability, reasonable stress, and convenient construction. Bonding with concrete solves the situation that the prestressed concrete box girder is self-heavy and unsuitable for large spans, and the invention is applicable to road and railway bridges.
  • Fig. 1 is a schematic structural view of the present invention applied to highway and railway bridges.
  • Fig. 2 is a schematic diagram of the multi-segment laced rectangular steel pipe truss structure of the present invention.
  • Fig. 3(a) is the first detailed view of the rectangular steel pipe truss structure with multi-segment reinforcement of the present invention.
  • Fig. 3(b) is the second detailed drawing of the rectangular steel pipe truss structure with multi-segment reinforcement of the present invention.
  • Fig. 3(c) is the third detailed drawing of the multi-section rectangular steel pipe truss structure of the present invention.
  • Fig. 4 is a schematic cross-sectional structure diagram of a reinforced rectangular concrete-filled steel tube truss composite beam of the present invention.
  • Fig. 5 is a schematic diagram of the cross-sectional structure of the main chord of the present invention.
  • Fig. 6 is a plan view of a common steel plate of the present invention.
  • Fig. 7 is a schematic diagram of the structure of the two-way paired ties of the present invention.
  • Fig. 8 is a schematic diagram of the planar structure of the bridge deck of the present invention.
  • Fig. 9 is a schematic cross-sectional structure diagram of a prefabricated solid concrete slab of the present invention.
  • a prefabricated reinforced rectangular steel pipe concrete truss composite beam includes a reinforced rectangular steel pipe truss 1, and the reinforced rectangular steel pipe truss 1 includes a main chord pipe 5, a diagonal web pipe 6, and a grid Type connecting pipe 7, variable cross-section I-beam 8 and two-way pair of tie bars 9, said two-way pair of tie bars 9 include mutually welded hoop stirrups 17 and longitudinal positioning steel bars 18, said two-way pair of tie bars 9 are on the main chord
  • the inside of the tube 5 is evenly arranged along the length direction.
  • the main chord 5 includes a U-shaped channel steel 15, a common steel plate 16 and a two-way pair of tie bars 9, and the two-way pair of tie bars 9 and the inner wall of the U-shaped channel steel 15 are welded on three sides by a welding robot.
  • the U-shaped channel steel 15 is welded, and the open end of the U-shaped channel steel 15 is closed, and the fourth side of the two-way pair of tie bars 9 and the common steel plate 16 are assembled into the main chord 5 by welding robots, and the main chord 5 is assembled. Concrete 2 is poured inside.
  • the four main chords 5 are arranged along the length direction of the bridge deck 3.
  • the four main chords 5 include two upper chords 10 and two lower chords 11.
  • the cross-section of the steel pipe truss 1 forms an inverted trapezoid, and the two upper chords 10 and the two lower chords 11 are connected by grid-type connecting pipes 7, and the upper chord 10 and the lower chord 11 on the same side are connected by multiple
  • the root oblique tubes 6 are connected to each other, and the adjacent oblique tubes 6 are close to or connected with the main chord 5 to form a triangle.
  • Open-hole stiffeners 14 are fixed on the upper surface of the grid-type connecting pipe 7 connected with the upper chord 10, and the bridge deck 3 is supported on the upper chord 10, the grid-type connecting pipe 7 and the variable-section I-beam 8.
  • the bridge deck 3 is formed by assembling a plurality of prefabricated solid concrete slabs 19, U-shaped steel bars 20 are reserved on the connecting surfaces of the prefabricated solid concrete slabs 19, and adjacent prefabricated solid concrete slabs 19 are constructed by U-shaped steel bars 20
  • the steel bars 21 and the opening stiffeners 14 are arranged in a staggered manner to form a pouring belt, on which concrete is poured to connect adjacent prefabricated solid concrete slabs 19 as a whole.
  • the grid type connecting pipe 7 is composed of a plurality of horizontal connecting pipes 12 arranged vertically with the main chord pipes 5 welded between each group of main chord pipes 5 and welded between two adjacent horizontal connecting pipes 12
  • the longitudinal connecting pipe 13 arranged in the same direction as the main chord pipe 5 constitutes between the connecting pipe and the adjacent longitudinal connecting pipe 13 to form an I-shape.
  • the prefabricated rectangular steel pipe truss 1 is divided into a plurality of segmental rectangular steel pipe trusses 4 along the length direction of the bridge deck 3 to facilitate transportation, and the adjacent segmental rectangular steel pipe trusses are welded to each other.
  • the sectional shape of the main chord 5 is rectangular, and the cross-sectional shape of the oblique web 6 , the transverse connecting pipe 12 and the longitudinal connecting pipe 13 is square.
  • the steel grades used for the main chord 5, the oblique-web pipe 6, the variable-section I-beam, the transverse connecting pipe 12 and the longitudinal connecting pipe 13 shall not be lower than Q345, and the clamping of the oblique-web pipe and the main chord
  • the angle is 60°
  • the model HRB400 of steel bar is used to make two-way pair of tie bars 9, U-shaped steel bar 20 and structural steel bar 21, the diameter is not less than 10mm
  • the strength of the concrete 2 is not lower than C40.
  • the grade of steel used for the opening stiffener 14 must not be lower than Q345.
  • the strength of the prefabricated solid concrete slab 19 is not lower than C40.
  • the construction method of the prefabricated reinforced rectangular steel pipe concrete truss composite beam of the present invention is as follows, including the following steps.
  • Rectangular steel pipe trusses with multi-segment ties should be processed in the factory, and then transported to the site for hoisting.
  • the opening stiffeners are welded on the upper surface of the rectangular steel pipe truss with reinforcement along the length direction of the main chord, transverse connecting pipe and longitudinal connecting pipe.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

一种装配式拉筋矩形钢管混凝土桁架组合梁,包括拉筋矩形钢管桁架(1),灌注在主弦管(5)的混凝土以及桥面板(3)。拉筋矩形钢管桁架(1)由三节段拉筋矩形钢管桁架(4)焊接而成,节段拉筋矩形钢管桁架(4)由主弦管(5)、斜腹管(6)、网格型联系管(7)以及变截面工字钢(8)焊接组成,桥面板(3)为预制实心混凝土板(19)装配而成,桥面板(3)与装配式拉筋矩形钢管桁架(1)通过开孔加劲肋(14)连接为整体。该组合梁与传统的预应力箱梁相比,刚度大、延性好、受力合理、装配化程度高、施工方便,弥补了钢管约束效果不足,增强了钢管与混凝土之间粘结,增加了梁的跨度,减少了桥墩的数量,提高了经济效益。

Description

装配式拉筋矩形钢管混凝土桁架组合梁及其施工方法 技术领域
本发明涉及桥梁技术领域,具体为一种装配式拉筋矩形钢管混凝土桁架组合梁及其施工方法。
背景技术
近十多年来,随着国家经济与城市交通的发展,跨江跨海桥梁日益增多,组合梁在桥梁工程中所占比重越来越大,桥梁建设向“更长、更高、更轻”的趋势发展,跨度日益增大,体形越来越复杂,新材料的应用日益增多,结构体系越来越新颖,施工技术越来越先进。桁架组合梁可以充分利用桁架刚度大,跨度大,装配化程度高的优势,降低截面尺寸,减轻自重。
桁架组合梁作为承受竖向荷载的抗弯构件,充分发挥了结构优势,具有优异的抗弯性能,装配化程度高,桁架组合梁由于其自身的优点及特点,已越来越被人们重视,并越来越多地应用于工程实际。
技术问题
目前工程中普遍采用的预应力混凝土箱梁有如下技术不足之处:1。 梁体自重大,跨度受限;2。 预应力损失多,降低了梁的刚度以及使用寿命;3。 梁体会出现裂缝,影响正常使用。因此,研发一种经济实用,施工方便的装配式拉筋矩形钢管混凝土桁架组合梁结构形式具有十分重要的实践意义和社会经济价值。
技术解决方案
为了解决上述技术问题,本发明采用如下技术方案:一种装配式拉筋矩形钢管混凝土桁架组合梁,包括拉筋矩形钢管桁架,所述拉筋矩形钢管桁架包括主弦管、斜腹管、网格型联系管以及变截面工字钢,所述主弦管内布设有双向对拉筋、并且灌注有混凝土,所述主弦管沿桥面板长度方向布设有四根,四根主弦管包括两根上弦管和两根下弦管,上弦管和下弦管布设的位置使得拉筋矩形钢管桁架的横截面形成一个倒梯形,两根上弦管之间以及两根下弦管之间均通过网格型联系管连接,同侧的上弦管和下弦管之间通过多根斜腹管相互连接,所述上弦管的外侧面上焊接有变截面工字钢,所述桥面板支撑固定在上弦管、网格型联系管和变截面工字钢上。
本实施方式中,所述网格型联系管由焊接在两根上弦管之间以及两根下弦管之间的多根与主弦管垂直布设的横向联系管和焊接在相邻两根横向联系管之间的、与主弦管同向布设的纵向联系管构成,所述连接管和相邻纵向联系管组成工字型。
本实施方式中,所述上弦管和与上弦管连接的网格型联系管上表面沿管长方向固定开孔加劲肋,所述桥面板通过开孔加劲肋与装配式拉筋矩形钢管桁架连接为整体。
本实施方式中,相邻斜腹管首尾靠近或连接设置在主弦管、并且与主弦管连接形成三角形。
本实施方式中,所述装配式拉筋矩形钢管桁架沿桥面板长度方向分隔为多个节段拉筋矩形钢管桁架,相邻节段拉筋矩形钢管桁架相互焊接。
本实施方式中,所述主弦管截面形状为矩形,所述斜腹管、横向联系管和纵向联系管的截面形状为方形。
本实施方式中,所述主弦管包括U型槽钢、钢板和双向对拉筋,所述双向对拉筋与U型槽钢内壁通过焊接机器人三边焊接,所述普通钢板与槽钢焊接,将所述槽钢开口端封闭,所述双向对拉筋第四边与普通钢板通过焊接机器人焊接拼装成主弦管,所述主弦管内浇筑有混凝土。
本实施方式中,所述双向对拉筋包括相互焊接的环向箍筋和纵向定位钢筋,所述纵向定位钢筋分别焊接在环形箍筋的四个角点,所述纵向定位钢筋沿梁长方向通长布置,所述双向对拉筋在主弦管内部沿长度方向均匀布置。
本实施方式中,所述桥面板由多块预制实心混凝土板相互装配形成,所述预制实心混凝土板的连接面上预留有U型钢筋,相邻的预制实心混凝土板通过U型钢筋、构造钢筋和开孔加劲肋交错布置形成浇筑带,所述浇筑带上浇筑有混凝土将相邻的预制实心混凝土板连接为整体。
本发明还包括一种装配式拉筋矩形钢管混凝土桁架组合梁的施工方法,包括如下步骤。
a、多个节段拉筋矩形钢管桁架在工厂加工完成,然后运至现场进行吊装。
b、将多个节段的拉筋矩形钢管桁架在施工现场吊装到位,然后进行焊接拼装连接,在主弦管内浇筑混凝土。
c、将开孔加劲肋沿主弦管、横向联系管和纵向联系管管长方向焊接在拉筋矩形钢管桁架上表面。
d、将预制实心混凝土板布置在拉筋矩形钢管桁架上进行拼装,所述预制实心混凝土板端U型钢筋与开孔加劲肋、构造钢筋交错布置形成浇筑带,在浇筑带上浇筑混凝土,形成完整的桥面板。
有益效果
本发明解决现有技术的不足而提供了一种承载力高、抗弯刚度大的装配式拉筋矩形钢管混凝土桁架组合梁及其施工方法,本发明受力合理,装配化程度高,施工方便,大大缩短了工期,解决了钢管约束效果不足、钢管与混凝土之间粘结不良的问题,与传统预应力混凝土箱梁相比,提高了梁的跨度,降低了自重,减少了桥墩的数量,节约了工程造价,适用于公路以及铁路桥梁结构。
具体而言,本发明。
1、结构整体承载力与刚度大:由于桁架结构自身的优势,与传统的预应力箱梁相比,整体结构跨度更大,承载力与刚度大大提高,双向对拉筋弥补了矩形钢管对混凝土约束的不足,拉筋限制了混凝土与钢管之间的滑移了。
2、装配化程度高:拉筋矩形钢管桁架可以在工厂提前预制好,运送到现场进行吊装拼接,装配化程度高,大大缩短了施工周期。
本发明与传统预应力混凝土箱梁相比,其抗弯刚度和承载力比较大,避免了预应力损失以及混凝土的开裂。在合理的设计情况下,可以增加跨度,降低自重,加快施工进度。
本发明内填混凝土和双向对拉筋可以防止钢管局部屈曲,双向对拉筋可以减少钢管与混凝土之间的滑移,增强钢管与混凝土之间的粘结,从而增强了钢管的稳定性和延性。拉筋矩形钢管混凝土桁架组合梁的优越性还在于装配化程度高,施工进度快,所有构件均可在工厂提前加工完成。
采用上述方案,将工厂预制好的多个节段的拉筋矩形钢管桁架通过焊接连接拼装成完整的拉筋矩形钢管桁架,在主弦管内浇筑混凝土,然后在钢管桁架上表面焊接开孔加劲肋,最后通过装配预制实心混凝土板,形成完整的桥面板。整个过程装配化程度高,双向对拉筋弥补了矩形钢管对于混凝土的约束不足,增强了钢管与混凝土之间的粘结,内填混凝土与双向对拉筋可以防止钢管局部屈曲,装配式拉筋矩形钢管混凝土桁架组合梁与传统预应力混凝土箱梁相比,承载力与刚度明显增加,增加了跨度,降低了自重,使结构性能得到进一步优化。
综上所述,本发明承载力高、抗弯刚度大、跨度大、自重轻、延性好、整体稳定性强、受力合理、施工方便,既弥补了钢管约束效果不足的缺陷,增强了钢管与混凝土之间的粘结,又解决了预应力混凝土箱梁自重大、不适用于跨度较大的情况,本发现适用于公路及铁路桥梁。
附图说明
图1是本发明应用在公路及铁路桥梁的结构示意图。
图2是本发明的多节段拉筋矩形钢管桁架结构示意图。
图3(a)是本发明多个节段拉筋矩形钢管桁架结构详图一。
图3(b)是本发明多个节段拉筋矩形钢管桁架结构详图二。
图3(c)是本发明多个节段拉筋矩形钢管桁架结构详图三。
图4是本发明拉筋矩形钢管混凝土桁架组合梁剖面结构示意图。
图5是本发明主弦管剖面结构示意图。
图6是本发明普通钢板平面图。
图7是本发明双向对拉筋结构示意图。
图8是本发明桥面板平面结构示意图。
图9是本发明预制实心混凝土板剖面结构示意图。
图中:1、拉筋矩形钢管桁架;2、混凝土;3、桥面板;4、节段拉筋矩形钢管桁架;5、主弦管;6、斜腹管;7、网格型联系管;8、变截面工字钢;9、双向对拉筋;10、上弦管;11、下弦管;12、横向联系管;13、纵向联系管;14、开孔加劲肋;15、U型槽钢;16、普通钢板;17、环向箍筋;18、纵向定位钢筋;19、预制实心混凝土板;20、U型钢筋;21、构造钢筋。
本发明的实施方式
如附图1至图8,一种装配式拉筋矩形钢管混凝土桁架组合梁,包括拉筋矩形钢管桁架1,所述拉筋矩形钢管桁架1包括主弦管5、斜腹管6、网格型联系管7、变截面工字钢8以及双向对拉筋9,所述双向对拉筋9包括相互焊接的环向箍筋17和纵向定位钢筋18,所述双向对拉筋9在主弦管5内部沿长度方向均匀布置。所述主弦管5包括U型槽钢15、普通钢板16和双向对拉筋9,所述双向对拉筋9与U型槽钢15内壁通过焊接机器人三边焊接,所述普通钢板16与U型槽钢15焊接,将所述U型槽钢15开口端封闭,所述双向对拉筋9第四边与普通钢板16通过焊接机器人焊接拼装成主弦管5,所述主弦管5内浇筑有混凝土2。
所述主弦管5沿桥面板3长度方向布设有四根,四根主弦管5包括两根上弦管10和两根下弦管11,上弦管10和下弦管11布设的位置使得拉筋矩形钢管桁架1的横截面形成一个倒梯形,两根上弦管10之间以及两根下弦管11之间均通过网格型联系管7连接,同侧的上弦管10和下弦管11之间通过多根斜腹管6相互连接,相邻斜腹管6首尾靠近或连接与主弦管5连接形成三角形,所述上弦管10的外侧面上焊接有变截面工字钢8,所述上弦管10和与上弦管10连接的网格型联系管7上表面固定有开孔加劲肋14,所述桥面板3支撑在上弦管10、网格型联系管7和变截面工字钢8上,所述桥面板3由多块预制实心混凝土板19相互装配形成,所述预制实心混凝土板19的连接面上预留有U型钢筋20,相邻的预制实心混凝土板19通过U型钢筋20、构造钢筋21和开孔加劲肋14交错布置形成浇筑带,所述浇筑带上浇筑有混凝土将相邻的预制实心混凝土板19连接为整体。
本实施例中,所述网格型联系管7由焊接在每组主弦管5之间的多根与主弦管5垂直布设的横向联系管12和焊接在相邻两根横向联系管12之间的、与主弦管5同向布设的纵向联系管13构成,所述连接管和相邻纵向联系管13组成工字型。所述装配式拉筋矩形钢管桁架1沿桥面板3长度方向分隔为多个节段拉筋矩形钢管桁架4,从而方便运输,相邻节段拉筋矩形钢管桁架相互焊接。所述主弦管5截面形状为矩形,所述斜腹管6、横向联系管12和纵向联系管13的截面形状为方形。
本实施例中,所述主弦管5、斜腹管6、变截面工字钢、横向联系管12和纵向联系管13采用的钢材等级不得低于Q345,斜腹管与主弦管的夹角为60°,制作双向对拉筋9、U型钢筋20和构造钢筋21采用钢筋的型号HRB400,直径不小于10mm,所述混凝土2的强度不低于C40。所述开孔加劲肋14采用得钢材等级不得低于Q345。所述预制实心混凝土板19强度不低于C40。
本发明的装配式拉筋矩形钢管混凝土桁架组合梁的施工方法如下,包括以下步骤。
1)多个节段拉筋矩形钢管桁架应在工厂加工完成,然后运至现场进行吊装。
2)多个节段的拉筋矩形钢管桁架在施工现场吊装到位,然后进行焊接连接,形成完整的拉筋矩形钢管桁架,最后在主弦管内浇筑混凝土。
3)开孔加劲肋沿主弦管、横向联系管和纵向联系管管长方向焊接在拉筋矩形钢管桁架上表面。
4)将预制实心混凝土板布置在拉筋矩形钢管桁架上表面进行拼装,所述预制实心混凝土板端U型钢筋与开孔加劲肋及构造钢筋交错布置形成的浇筑带上浇筑混凝土,形成完整的桥面板。

Claims (10)

  1. 一种装配式拉筋矩形钢管混凝土桁架组合梁,其特征在于:包括拉筋矩形钢管桁架(1),所述拉筋矩形钢管桁架(1)包括主弦管(5)、斜腹管(6)、网格型联系管(7)以及变截面工字钢(8),所述主弦管(5)内布设有双向对拉筋(9)、并且灌注有混凝土(2),所述主弦管(5)沿桥面板(3)长度方向布设有四根,四根主弦管(5)包括两根上弦管(10)和两根下弦管(11),上弦管(10)和下弦管(11)布设的位置使得拉筋矩形钢管桁架(1)的横截面形成一个倒梯形,两根上弦管(10)之间以及两根下弦管(11)之间均通过网格型联系管(7)连接,同侧的上弦管(10)和下弦管(11)之间通过多根斜腹管(6)相互连接,所述上弦管(10)的外侧面上焊接有变截面工字钢(8),所述桥面板(3)支撑固定在上弦管(10)、网格型联系管(7)和变截面工字钢(8)上。
  2. 根据权利要求1所述的装配式拉筋矩形钢管混凝土桁架组合梁,其特征在于:所述网格型联系管(7)由焊接在两根上弦管(10)之间以及两根下弦管(11)之间的多根与主弦管(5)垂直布设的横向联系管(12)和焊接在相邻两根横向联系管(12)之间的、与主弦管(5)同向布设的纵向联系管(13)构成,所述横向联系管(12)管和相邻纵向联系管(13)组成工字型。
  3. 根据权利要求1所述的装配式拉筋矩形钢管混凝土桁架组合梁,其特征在于:所述上弦管(10)以及与上弦管(10)连接的网格型联系管(7)上表面沿管长方向固定有开孔加劲肋(14),所述桥面板(3)通过开孔加劲肋(14)与装配式拉筋矩形钢管桁架(1)连接为整体。
  4. 根据权利要求1所述的装配式拉筋矩形钢管混凝土桁架组合梁,其特征在于:相邻斜腹管(6)首尾靠近或连接设置在主弦管(5)、并且与主弦管(5)连接形成三角形。
  5. 根据权利要求1所述的装配式拉筋矩形钢管混凝土桁架组合梁,其特征在于:所述装配式拉筋矩形钢管桁架(1)沿桥面板(3)长度方向分隔为多个节段拉筋矩形钢管桁架(4),相邻节段拉筋矩形钢管桁架相互焊接。
  6. 根据权利要求1所述的装配式拉筋矩形钢管混凝土桁架组合梁,其特征在于:所述主弦管(5)截面形状为矩形,所述斜腹管(6)、横向联系管(12)和纵向联系管(13)的截面形状为方形。
  7. 根据权利要求1至6任意一项所述的装配式拉筋矩形钢管混凝土桁架组合梁,其特征在于:所述主弦管(5)包括U型槽钢(15)、普通钢板(16)和双向对拉筋(9),所述双向对拉筋(9)与U型槽钢(15)内壁通过焊接机器人三边焊接,所述普通钢板(16)与槽钢(15)焊接,将所述槽钢(15)开口端封闭,所述双向对拉筋(9)第四边与普通钢板(16)通过焊接机器人焊接拼装成主弦管(5),所述主弦管(5)内浇筑有混凝土(2)。
  8. 根据权利要求7所述的装配式拉筋矩形钢管混凝土桁架组合梁,其特征在于:所述双向对拉筋(9)包括相互焊接的环向箍筋(17)和纵向定位钢筋(18),所述纵向定位钢筋(18)分别焊接在环形箍筋(17)的四个角点,所述纵向定位钢筋(18)沿梁长方向通长布置,所述双向对拉筋(9)在主弦管(5)内部沿长度方向均匀布置。
  9. 根据权利要求7所述的装配式拉筋矩形钢管混凝土桁架组合梁,其特征在于:所述桥面板(3)由多块预制实心混凝土板(19)相互装配形成,所述预制实心混凝土板(19)的连接面上预留有U型钢筋(20),相邻的预制实心混凝土板(19)通过U型钢筋(20)、构造钢筋(21)和开孔加劲肋(14)交错布置形成浇筑带,所述浇筑带上浇筑有混凝土将相邻的预制实心混凝土板(19)连接为整体。
  10. 一种装配式拉筋矩形钢管混凝土桁架组合梁的施工方法,其特征在于:包括如下步骤:
    a、多个节段拉筋矩形钢管桁架(4)在工厂加工完成,然后运至现场进行吊装;
    b、将多个节段的拉筋矩形钢管桁架(4)在施工现场吊装到位,然后进行焊接拼装连接,在主弦管(5)内浇筑混凝土(2);
    c、将开孔加劲肋(14)沿主弦管(5)、横向联系管(12)和纵向联系管(13)管长方向焊接在拉筋矩形钢管桁架(1)上表面;
    d、将预制实心混凝土板(19)布置在拉筋矩形钢管桁架(1)上进行拼装,所述预制实心混凝土板(19)端U型钢筋(20)与开孔加劲肋(14)、构造钢筋(21)交错布置形成浇筑带,在浇筑带上浇筑混凝土,形成完整的桥面板(3)。
PCT/CN2021/096610 2021-05-20 2021-05-28 装配式拉筋矩形钢管混凝土桁架组合梁及其施工方法 WO2022241814A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110551610.0A CN113106845A (zh) 2021-05-20 2021-05-20 装配式拉筋矩形钢管混凝土桁架组合梁及其施工方法
CN202110551610.0 2021-05-20

Publications (1)

Publication Number Publication Date
WO2022241814A1 true WO2022241814A1 (zh) 2022-11-24

Family

ID=76722721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/096610 WO2022241814A1 (zh) 2021-05-20 2021-05-28 装配式拉筋矩形钢管混凝土桁架组合梁及其施工方法

Country Status (2)

Country Link
CN (1) CN113106845A (zh)
WO (1) WO2022241814A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115949167A (zh) * 2022-12-27 2023-04-11 北京工业大学 一种装配式轻钢强化型带空腹钢筋桁架混凝土条带叠合双向楼板及作法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113605587B (zh) * 2021-08-16 2023-06-16 上海城建建设实业集团新型建筑材料丽水有限公司 人字架肋板装配式双t板施工方法
CN113622282A (zh) * 2021-09-02 2021-11-09 福州大学 一种波形钢腹板—横哑铃形底板组合梁及施工方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011005009A2 (ko) * 2009-07-07 2011-01-13 주식회사 삼현피에프 부모멘트를 효율적으로 지지하면서 시공성이 향상된 연속화 교량의 상부구조및 그 시공방법
CN201972237U (zh) * 2011-03-03 2011-09-14 长安大学 一种节段预制矩形钢管混凝土桁架
CN110725193A (zh) * 2019-06-29 2020-01-24 天津大学 全预制钢管混凝土空间桁架-uhpc华夫板组合梁及施工方法
CN110725405A (zh) * 2019-09-03 2020-01-24 中南大学 一种带拉筋钢管混凝土柱h型钢梁刚接节点构造及施工方法
CN111979891A (zh) * 2020-08-26 2020-11-24 长安大学 一种半穿式矩形钢管混凝土组合桁梁桥及施工方法
CN214783221U (zh) * 2021-05-20 2021-11-19 中南大学 装配式拉筋矩形钢管混凝土桁架组合梁

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100423757B1 (ko) * 2001-05-04 2004-03-22 원대연 프리스트레스트 합성 트러스 보 및 그의 제조 방법
CN209637112U (zh) * 2018-12-27 2019-11-15 中南大学 一种带拉筋钢管混凝土浇筑体
CN109487686A (zh) * 2018-12-29 2019-03-19 武汉理工大学 一种采用uhpc灌浆料的装配式桥面板横向接缝

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011005009A2 (ko) * 2009-07-07 2011-01-13 주식회사 삼현피에프 부모멘트를 효율적으로 지지하면서 시공성이 향상된 연속화 교량의 상부구조및 그 시공방법
CN201972237U (zh) * 2011-03-03 2011-09-14 长安大学 一种节段预制矩形钢管混凝土桁架
CN110725193A (zh) * 2019-06-29 2020-01-24 天津大学 全预制钢管混凝土空间桁架-uhpc华夫板组合梁及施工方法
CN110725405A (zh) * 2019-09-03 2020-01-24 中南大学 一种带拉筋钢管混凝土柱h型钢梁刚接节点构造及施工方法
CN111979891A (zh) * 2020-08-26 2020-11-24 长安大学 一种半穿式矩形钢管混凝土组合桁梁桥及施工方法
CN214783221U (zh) * 2021-05-20 2021-11-19 中南大学 装配式拉筋矩形钢管混凝土桁架组合梁

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115949167A (zh) * 2022-12-27 2023-04-11 北京工业大学 一种装配式轻钢强化型带空腹钢筋桁架混凝土条带叠合双向楼板及作法

Also Published As

Publication number Publication date
CN113106845A (zh) 2021-07-13

Similar Documents

Publication Publication Date Title
CN109958049B (zh) 一种模块化钢-混组合小箱梁简支连续桥及其施工方法
CN100482892C (zh) 下弦开敞桁式波纹钢腹板组合梁
CN105002816B (zh) 预制拼装的鱼腹工字型预应力钢混组合连续梁桥及施工方法
WO2022241814A1 (zh) 装配式拉筋矩形钢管混凝土桁架组合梁及其施工方法
CN108677685A (zh) 一种超高性能混凝土-部分钢梁组合盖梁及其施工方法
CN111364350A (zh) 一种大挑臂快速安装的轻型钢-砼组合盖梁
CN109024225A (zh) 超高性能混凝土桁架拱片单元、桁架拱片桥梁及施工方法
CN105064200B (zh) 预制拼装的鱼腹桁架预应力钢混组合简支梁桥及其施工方法
CN207878254U (zh) 一种装配式轻型组合梁简支变结构连续构造
CN210031457U (zh) 一种波形钢腹板-桁式弦杆uhpc组合箱梁
CN110029569B (zh) 一种波形钢腹板-桁式弦杆uhpc组合箱梁及其施工方法
CN110863417A (zh) 一种快速化安装的钢-混凝土组合梁桥及其施工方法
CN111139746A (zh) 正交异性钢桥面板与超高性能混凝土组合桥及其施工方法
CN105064195B (zh) 预制拼装的鱼腹波形钢腹板体内预应力钢混组合简支梁桥及其施工方法
CN212773147U (zh) 一种预制装配部分外包蜂窝钢-混凝土组合梁
CN205188793U (zh) 预制拼装的鱼腹工字型预应力钢混组合连续梁桥
CN216919967U (zh) 一种nc-uhpc组合装配式混凝土箱梁及其桥梁
CN209619850U (zh) 一种型钢-uhpc组合板纵肋交错布置构造
WO2023184706A1 (zh) 一种组合箱梁结构及其施工方法
CN214783221U (zh) 装配式拉筋矩形钢管混凝土桁架组合梁
CN108978432A (zh) 一种中等跨度装配式钢空腹夹层板桥及制作方法
CN210104528U (zh) 一种轻型钢网架-uhpc组合桥梁结构
CN108517759B (zh) 波形钢腹板组合梁形式的索塔横梁连接系统及施工方法
CN219671054U (zh) 一种整体吊装预制的钢混组合小箱梁
CN115679794B (zh) 大悬臂超宽uhpc箱梁单元、大悬臂超宽uhpc箱梁桥及其施工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21940267

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21940267

Country of ref document: EP

Kind code of ref document: A1