WO2023184572A1 - 背光模组及显示装置 - Google Patents

背光模组及显示装置 Download PDF

Info

Publication number
WO2023184572A1
WO2023184572A1 PCT/CN2022/086501 CN2022086501W WO2023184572A1 WO 2023184572 A1 WO2023184572 A1 WO 2023184572A1 CN 2022086501 W CN2022086501 W CN 2022086501W WO 2023184572 A1 WO2023184572 A1 WO 2023184572A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
level
comparator
adjustment
chip
Prior art date
Application number
PCT/CN2022/086501
Other languages
English (en)
French (fr)
Inventor
郭小颖
樊俊瑶
Original Assignee
Tcl华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl华星光电技术有限公司 filed Critical Tcl华星光电技术有限公司
Priority to US17/772,645 priority Critical patent/US11763760B1/en
Publication of WO2023184572A1 publication Critical patent/WO2023184572A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/342Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines
    • G09G3/3426Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines the different display panel areas being distributed in two dimensions, e.g. matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2330/00Aspects of power supply; Aspects of display protection and defect management
    • G09G2330/02Details of power systems and of start or stop of display operation
    • G09G2330/021Power management, e.g. power saving

Definitions

  • the present application relates to the field of display technology, and specifically to a backlight module and a display device.
  • MLED Micro/Mini Light-Emitting Diode (micro-light-emitting diode) backlight technology appears in the public eye.
  • LED Light-Emitting Diode, light-emitting diode
  • MLED backlight has Local dimming (local backlight adjustment) function, which can achieve high contrast and high brightness, and the display effect is close to OLED (Organic Light-Emitting Diode, organic light-emitting diode). diode).
  • OLED Organic Light-Emitting Diode, organic light-emitting diode. diode
  • MLED Organic Light-Emitting Diode, organic light-emitting diode. diode
  • MLED has more cost advantages. Therefore, MLED backlight drivers have huge development potential.
  • the positive electrodes of multiple LED partitions are connected together.
  • the voltage required for each partition lamp bead is There are differences.
  • the initial driving voltage output by the power board is often high, which causes the control terminal voltage of the driver chip (LED Driver IC) connected to the negative pole of multiple LED partitions to exceed High, causing the power consumption and temperature of the driver chip to increase.
  • This application provides a backlight module and a display device to solve the technical problem in the prior art that the control terminal voltage of the driver chip is too high, causing the power consumption and temperature of the driver chip to rise.
  • This application provides a backlight module, which includes:
  • each of the light-emitting units has a positive electrode and a negative electrode, and the positive electrodes of at least some of the light-emitting units are connected to the same initial driving voltage;
  • the driving chip includes a control terminal, the control terminal is connected to the negative electrode of the corresponding light-emitting unit, and the light-emitting units connected to the control terminal of the same driving chip are connected to the same initial driving voltage;
  • each driving chip corresponds to at least one voltage comparator, each voltage comparator has a first input terminal, a second input terminal and an output terminal; the Nth The second input terminal of the first-level voltage comparator is connected to the N-th level voltage to be detected, and the N-th level voltage to be detected is the voltage of the control end of the driving chip corresponding to the N-th level voltage comparator, so The output terminal of the N-th level voltage comparator outputs the N-th level adjustment voltage; wherein, the first input end of the first-level voltage comparator is connected to a preset voltage, and the first-level adjustment voltage is the preset voltage and the Nth level adjustment voltage.
  • the smaller voltage value among the 1-level voltages to be detected; the first input end of the N-level voltage comparator is connected to the N-1 level adjustment voltage, and the N-level adjustment voltage is the N-th level to be detected voltage and The one with the smaller voltage value among the N-1th level adjustment voltages, N is an integer greater than 1;
  • a voltage adjustment module the voltage adjustment module is connected to the Nth level adjustment voltage, and the voltage adjustment module is used to adjust the initial driving voltage according to the Nth level adjustment voltage.
  • the voltage comparator and the driving chip are arranged in one-to-one correspondence.
  • the driving chip includes a plurality of control terminals, and each control terminal is connected to the negative electrode of the corresponding light-emitting unit. Connection, the N-th level voltage to be detected is the one with the smallest voltage among the plurality of control terminals of the driving chip corresponding to the N-th level voltage comparator.
  • each voltage comparator includes a comparator and an inverter
  • the inverter includes a third A transistor and a second transistor.
  • the gate of the first transistor and the gate of the second transistor are both connected to the output of the comparator.
  • the source of the first transistor is connected to the second input. Connection, the source of the second transistor is connected to the first input terminal, and the drain of the first transistor and the drain of the second transistor are both connected to the output terminal;
  • the first transistor is an N-type transistor and the second transistor is a P-type transistor;
  • the first transistor is a P-type transistor and the second transistor is an N-type transistor.
  • the voltage value of the initial driving voltage is less than or equal to the voltage difference between the positive electrode and the negative electrode when the light-emitting unit normally emits light
  • the voltage adjustment module increases the initial driving voltage.
  • the voltage adjustment module includes a control unit and a power board
  • the control unit is connected to the output end of the N-th level voltage comparator and is used to output a feedback voltage to the power board according to the N-th level adjustment voltage; the power board is used to adjust the feedback voltage when The initial drive voltage is adjusted under control.
  • control unit includes a micro control unit and a timing controller
  • the micro-control unit is connected to the output end of the N-th level voltage comparator and is used to process the N-th level adjustment voltage.
  • the timing controller is connected to the micro-control unit.
  • the timing controller It includes a power management integrated chip.
  • the timing controller outputs a voltage compensation instruction to the power management integrated chip according to the processed Nth level adjusted voltage.
  • the power management integrated chip outputs the voltage compensation instruction according to the voltage compensation instruction. feedback voltage.
  • the power board includes a control chip, an inductor, a first resistor and a second resistor;
  • the control chip has an input pin, a switch pin and a feedback pin.
  • the input pin is connected to an initial voltage.
  • One end of the inductor is connected to the switch pin, and the other end of the inductor is connected to the switch pin.
  • One end of the first resistor is connected to the initial driving voltage output end, the other end of the first resistor and one end of the second resistor are both connected to a feedback node, and the feedback node is electrically connected to the feedback pin and connected The other end of the second resistor is grounded as the feedback voltage.
  • the light-emitting unit includes one or more light-emitting diodes.
  • the voltage comparator is integrated inside the corresponding driver chip.
  • each driver chip includes a data transmission pin, and adjacent driver chips are connected through the data transmission pin;
  • Each of the driver chips is configured to output or receive a corresponding adjustment voltage through the data transmission pin according to a signal transmission protocol.
  • each driver chip includes an adjustment voltage transmission pin
  • the driver chip provided with the N-th level voltage comparator also includes a feedback pin
  • the driver chip The chips are connected through the adjustment voltage transmission pin, and the driver chip provided with the N-th level voltage comparator is connected to the voltage adjustment module through the feedback pin.
  • this application also provides a display device, which includes a display panel and a backlight module.
  • the backlight module includes:
  • each of the light-emitting units has a positive electrode and a negative electrode, and the positive electrodes of at least some of the light-emitting units are connected to the same initial driving voltage;
  • the drive chip includes a control end, the control end is connected to the negative electrode of the corresponding light-emitting unit, and the light-emitting units connected to the control end of the same drive chip are connected to the same initial drive Voltage;
  • each driving chip corresponds to at least one voltage comparator, each voltage comparator has a first input terminal, a second input terminal and an output terminal; the Nth The second input terminal of the first-level voltage comparator is connected to the N-th level voltage to be detected, and the N-th level voltage to be detected is the voltage of the control end of the driving chip corresponding to the N-th level voltage comparator, so The output terminal of the N-th level voltage comparator outputs the N-th level adjustment voltage; wherein, the first input end of the first-level voltage comparator is connected to a preset voltage, and the first-level adjustment voltage is the preset voltage and the Nth level adjustment voltage.
  • the smaller voltage value among the 1-level voltages to be detected; the first input end of the N-level voltage comparator is connected to the N-1 level adjustment voltage, and the N-level adjustment voltage is the N-th level to be detected voltage and The one with the smaller voltage value among the N-1th level adjustment voltages, N is an integer greater than 1;
  • a voltage adjustment module the voltage adjustment module is connected to the Nth level adjustment voltage, and the voltage adjustment module is used to adjust the initial driving voltage according to the Nth level adjustment voltage.
  • the voltage comparator and the driving chip are arranged in one-to-one correspondence.
  • the driving chip includes a plurality of control terminals, and each control terminal is connected to the negative electrode of the corresponding light-emitting unit. Connection, the N-th level voltage to be detected is the one with the smallest voltage among the plurality of control terminals of the driving chip corresponding to the N-th level voltage comparator.
  • the voltage value of the initial driving voltage is less than or equal to the voltage difference between the positive electrode and the negative electrode when the light-emitting unit normally emits light
  • the voltage adjustment module increases the initial driving voltage.
  • the voltage adjustment module includes a control unit and a power board
  • the control unit is connected to the output end of the N-th level voltage comparator and is used to output a feedback voltage to the power board according to the N-th level adjustment voltage; the power board is used to adjust the feedback voltage when The initial drive voltage is adjusted under control.
  • the power board includes at least one voltage adjustment circuit, and each voltage adjustment circuit includes a control chip, an inductor, a first resistor and a second resistor;
  • the control chip has an input pin, a switch pin and a feedback pin.
  • the input pin is connected to an initial voltage.
  • One end of the inductor is connected to the switch pin, and the other end of the inductor is connected to the switch pin.
  • One end of the first resistor is connected to the initial driving voltage output end, the other end of the first resistor and one end of the second resistor are both connected to a feedback node, and the feedback node is electrically connected to the feedback pin and connected The other end of the second resistor is grounded as the feedback voltage.
  • the light-emitting unit includes one or more light-emitting diodes.
  • the voltage comparator is integrated inside the corresponding driver chip.
  • each driver chip includes a data transmission pin, and adjacent driver chips are connected through the data transmission pin, and the Nth level voltage is provided.
  • the driver chip of the comparator is connected to the voltage adjustment module through the data transmission pin;
  • Each of the driver chips is configured to output or receive a corresponding adjustment voltage through the data transmission pin according to a signal transmission protocol.
  • each driver chip includes an adjustment voltage transmission pin
  • the driver chip provided with the N-th level voltage comparator also includes a feedback pin
  • the driver chip The chips are connected through the adjustment voltage transmission pin, and the driver chip provided with the N-th level voltage comparator is connected to the voltage adjustment module through the feedback pin.
  • the backlight module includes multiple light-emitting units, multiple driver chips, multiple voltage comparators arranged in cascade, and a voltage adjustment module.
  • the control terminal of the driver chip is connected to the negative electrode of the corresponding light-emitting unit.
  • the first input end of the first-level voltage comparator is connected to a preset voltage
  • the second input end of the N-th level voltage comparator is connected to the N-level voltage to be detected, where N is an integer greater than 1. Since the Nth level voltage to be detected is the voltage of a control terminal in the driver chip corresponding to the Nth stage voltage comparator, multiple cascaded voltage comparators can detect the voltage of at least one control terminal in each driver chip.
  • multiple cascaded voltage comparators can output the Nth level adjustment voltage according to the preset voltage and multiple voltages to be detected, and then the voltage adjustment module is used to adjust the initial driving voltage according to the Nth level adjustment voltage. This can prevent the voltage at the control end of the driver chip from being too high, thereby reducing the power consumption of the driver chip and reducing the risk of overheating of the driver chip.
  • Figure 1 is a first structural schematic diagram of the backlight module provided by this application.
  • Figure 2 is a schematic structural diagram of multiple voltage comparators arranged in cascade provided by this application;
  • Figure 3 is a schematic diagram of the connection between the light-emitting unit and the driver chip provided by this application;
  • FIG. 4 is a second structural schematic diagram of the backlight module provided by this application.
  • Figure 5 is a first circuit schematic diagram of multiple voltage comparators arranged in cascade provided by this application.
  • Figure 6 is a second circuit schematic diagram of multiple voltage comparators arranged in cascade provided by this application.
  • FIG. 7 is a schematic structural diagram of the voltage adjustment module provided by this application.
  • FIG. 8 is a schematic structural diagram of the circuit board provided by this application.
  • Figure 9 is a third structural schematic diagram of the backlight module provided by this application.
  • Figure 10 is a schematic structural diagram of a display device provided by this application.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, features defined as “first”, “second”, etc. may explicitly or implicitly include one or more of the described features, and therefore cannot be construed as a limitation of the present application.
  • This application provides a backlight module and a display device, which are described in detail below. It should be noted that the description order of the following embodiments does not limit the preferred order of the embodiments of the present application.
  • Figure 1 is a first structural schematic diagram of the backlight module provided by this application.
  • FIG. 2 is a schematic structural diagram of multiple voltage comparators 21 arranged in cascade provided by this application.
  • the backlight module 100 includes a plurality of light-emitting units 10 , a plurality of driver chips 20 , a plurality of voltage comparators 21 arranged in cascade, and a voltage adjustment module 30 .
  • Each light-emitting unit 10 has a positive electrode 10a and a negative electrode 10b. At least some of the positive electrodes 10a of the light-emitting units 10 are connected to the same initial driving voltage VLED.
  • Each driver chip 20 includes a control terminal M.
  • the control terminal M is connected to the negative electrode 10b of the corresponding light-emitting unit 10.
  • Each driver chip 20 is provided with at least one voltage comparator 21 .
  • Each voltage comparator 21 has a first input terminal a, a second input terminal b and an output terminal c.
  • the second input terminal b of the N-th stage voltage comparator 21(N) is connected to the N-th stage voltage to be detected Vt(N).
  • the N-th level voltage to be detected Vt(N) is the voltage of the control terminal M of the driver chip 20 corresponding to the N-th level voltage comparator 21(N).
  • the output terminal c of the N-th stage voltage comparator 21(N) outputs the N-th stage adjustment voltage Va(N).
  • the first input terminal a of the first-stage voltage comparator 21(1) is connected to a preset voltage V0.
  • the first-level adjustment voltage Va(1) is the smaller one of the preset voltage V0 and the first-level voltage to be detected Vt(1).
  • the first input terminal a of the N-th stage voltage comparator 21(N) is connected to the N-1-th stage adjustment voltage Va(N-1).
  • the Nth level adjustment voltage Va(N) is the smaller one of the Nth level to-be-detected voltage Vt(N) and the N-1th level adjustment voltage Va(N-1).
  • N is an integer greater than 1.
  • the voltage adjustment module 30 is connected to the Nth level adjustment voltage Va(N).
  • the voltage adjustment module 30 is used to adjust the initial driving voltage VLED according to the Nth level adjustment voltage Va(N).
  • the Nth stage voltage comparator 21 (N) can be understood as the last stage voltage comparator in the multi-stage cascaded voltage comparator 21 .
  • the plurality of voltage comparators 21 may be cascaded in sequence from right to left as shown in FIG. 1 , or may be cascaded in sequence from left to right, which is not limited in this application.
  • Each light-emitting unit 10 includes one or more light-emitting diodes D.
  • the light-emitting diode D can be a Micro LED or a Mini LED.
  • each light-emitting unit 10 includes four light-emitting diodes D. Among them, every two light-emitting diodes D are connected in series and then in parallel.
  • the structure of the light-emitting unit 10 in the embodiment of the present application is not limited to this, and will not be described in detail here.
  • the driver chip 20 may include one or more control terminals M. Because the control terminal M of the driver chip 20 is connected to the negative electrode 10b of the light-emitting unit 10 in a one-to-one correspondence. Therefore, the N-th level voltage to be detected Vt(N) is the voltage of a control terminal M in the driver chip 20 corresponding to the N-th level voltage comparator 21(N), that is, the N-th level voltage to be detected Vt(N) is The corresponding voltage of the negative electrode 10b of the light-emitting unit 10.
  • the adjusted voltage output by the N-th level voltage comparator 21 is the preset voltage V0.
  • the voltage of at least one control terminal M in one of the driving chips 20 is less than the preset voltage V0, and the voltage of the control terminal M is the voltage to be detected Vt input to the corresponding voltage comparator 21, the N-th level voltage comparator 21
  • the output Nth level adjustment voltage Va(N) is the voltage to be detected Vt. Therefore, the embodiment of the present application can determine whether the voltage of the control terminal M of the driver chip 20 is too high by determining the relationship between the voltage of the control terminal M of the driver chip 20 and the preset voltage V0.
  • multiple cascaded voltage comparators 21 are provided in the backlight module 100 .
  • the first input terminal a of the first-stage voltage comparator 21(1) is connected to a preset voltage V0.
  • the second terminal b of the N-th stage voltage comparator 21(N) is connected to the N-th stage voltage to be detected Vt(N). Since the N-th level voltage to be detected Vt(N) is the voltage of a control terminal M in the driving chip 20 corresponding to the N-th level voltage comparator 21(N), multiple cascaded voltage comparators 21 can detect each driving voltage. The voltage of at least one control terminal M in the chip 20 is detected.
  • the multiple cascaded voltage comparators 21 can output the Nth level adjustment voltage Va(N) according to the preset voltage V0 and the plurality of voltages to be detected, and then the voltage adjustment module 30 adjusts the voltage Va(N) according to the Nth level. Adjust the initial driving voltage VLED. This prevents the voltage of the control terminal M of the driver chip 20 from being too high, thereby reducing the power consumption of the driver chip 20 and reducing the risk of overheating of the driver chip 20 .
  • the backlight module 100 in the embodiment of the present application has the function of local dimming. If the negative electrode 10b of the light-emitting unit 10 is directly connected to the ground, once the positive electrode 10a has voltage, all the multiple light-emitting units 10 will light up, and there is no local dimming at this time.
  • the anodes 10a of all light-emitting units 10 can be connected to the same initial driving voltage VLED.
  • the number of output ports and corresponding connection lines for outputting the initial driving voltage VLED is reduced, and the complexity of the signal generation circuit of the backlight module 100 is reduced.
  • the dimming function can divide multiple light-emitting units 10 into multiple areas.
  • the positive electrodes 10a of the plurality of light-emitting units 10 in each area are connected to an initial driving voltage VLED. That is, there are multiple independently controllable initial driving voltages VLED in the backlight module 100 .
  • the voltage values of the multiple initial driving voltages VLED may be equal or different, and may be set according to the lighting brightness requirements of the backlight module 100 .
  • the voltage values of the multiple initial driving voltages VLED can also be adjusted individually according to the solutions of the embodiments of the present application.
  • Figure 3 is a schematic diagram of the connection between the light-emitting unit and the driver chip provided by this application.
  • the negative electrode 10b of the light-emitting unit 10 is connected to the control terminal M of the driver chip 20, and further connected to the ground terminal.
  • the driving chip 20 is provided with a switching transistor T0.
  • the switching transistor T0 controls the connection between the negative electrode 10b of the light-emitting unit 10 and the ground terminal. In this way, the local dimming function can be realized through the control terminal M of the driver chip 20 .
  • the voltage value of the initial driving voltage VLED is less than or equal to the voltage difference between the positive electrode 10a and the negative electrode 10b when the light-emitting unit 10 emits light normally.
  • the voltage adjustment module 30 increases the initial driving voltage VLED.
  • the voltage value of the preset voltage V0 is usually determined by the working performance of the driver chip 20 .
  • the voltage range of the preset voltage V0 is 0.2V-0.5V.
  • the preset voltage V0 can be 0.2V, 0.3V, 0.4V, 0.5V, etc.
  • each light-emitting unit 10 includes four light-emitting diodes D.
  • Each light-emitting diode D has deviations in the manufacturing process, and the actual light-emitting voltage drop may be between 2.8V-3.3V. Then the voltage required for each light-emitting unit 10 to emit light normally is about 6V.
  • the initial driving voltage VLED is usually set to a relatively large value, such as 7.5V.
  • the embodiment of the present application sets the voltage value of the initial driving voltage VLED to be less than or equal to the voltage difference between the positive electrode 10a and the negative electrode 10b when the light-emitting unit 10 normally emits light.
  • the voltage of the control terminal M will be less than the preset voltage V0.
  • the N-th level adjustment voltage Va(N) output by the N-th level voltage comparator 21 will be smaller than the preset voltage V0.
  • the voltage adjustment module 30 can increase the initial driving voltage VLED according to the Nth level adjustment voltage Va(N). The cycle is repeated until the Nth level adjustment voltage Va(N) is equal to the preset voltage V0.
  • the embodiment of the present application can prevent the voltage of the control terminal M of the driver chip 20 from being too high, thereby reducing the power consumption and temperature of the driver chip 20 .
  • the adjustment function of the voltage adjustment module 30 can ensure that the driver chip 20 works normally and the first-level light-emitting unit 10 emits light normally.
  • the voltage value of the initial driving voltage VLED can also be set to be greater than the voltage difference between the positive electrode 10a and the negative electrode 10b when the light-emitting unit 10 emits light normally.
  • the value of the preset voltage V0 can be set to be slightly larger than the voltage of the control terminal M when the driver chip 20 is operating normally. At this time, the voltage of the control terminal M of the driver chip 20 will be greater than the preset voltage V0. Then the N-th level adjustment voltage Va(N) output by the N-th level voltage comparator 21 is the preset voltage V0.
  • the voltage adjustment module 30 can reduce the initial driving voltage VLED according to the Nth level adjustment voltage Va(N). The cycle is repeated until the Nth level adjustment voltage Va is less than the preset voltage V0.
  • At least one voltage comparator 21 may be provided corresponding to each driver chip 20 .
  • one voltage comparator 21, five voltage comparators 21, twenty voltage comparators 21, etc. can be provided corresponding to each driver chip.
  • the N-th level voltage to be detected Vt(N) may be the voltage of any control terminal M of the driving chip 20 corresponding to the N-th level voltage comparator 21(N). Voltage. That is, multiple cascaded voltage comparators 21 detect the voltage of any control terminal M in each driver chip 20 . Therefore, the overall working status of the driver chip 20 is reflected by randomly detecting the voltage of the control terminal M of the driver chip 20 .
  • the N-th level voltage to be detected Vt(N) may be the voltage of the driving chip 20 corresponding to the N-th level voltage comparator 21(N).
  • the one with the smallest voltage among the multiple control terminals M That is, the driver chip 20 can detect the voltages of multiple control terminals M therein, and then output the one with the smallest voltage among the multiple control terminals M to the corresponding voltage comparator 21 . Therefore, the working status of the driver chip 20 can be reflected more accurately.
  • each light-emitting unit 10 can be ensured to emit light normally.
  • a voltage comparator 21 can be provided corresponding to each control terminal M to detect the voltage of each control terminal M to improve detection accuracy.
  • the voltage comparator 21 is integrated and arranged inside the corresponding driver chip 20 . Therefore, the integration level of the driver chip 20 can be improved. At the same time, the wiring in the backlight module 100 is reduced, the wiring density is reduced, and signal crosstalk or wiring short circuit is avoided. Similarly, if the size of the driver chip 20 is limited, only one voltage comparator 21 can be provided in each driver chip 20 .
  • each driver chip 20 includes a data transmission pin 20a. Adjacent driver chips 20 are connected through data transmission pins 20a.
  • the driver chip 20 provided with the N-th level voltage comparator 21(N) is connected to the voltage adjustment module 30 through the data transmission pin 20a.
  • Each driver chip 20 is used to output or receive a corresponding adjustment voltage through the data transmission pin 20a according to a signal transmission protocol.
  • the data transmission pin 20a is an original pin of the driver chip 20 and is used for transmitting backlight control signals and the like.
  • the transmission protocol is controlled by the internal code of the driver chip 20 .
  • the transmission data bits of the data transmission pin 20a can be changed through the transmission protocol, and the corresponding adjustment voltage can be transmitted while transmitting the backlight control signal.
  • the voltage comparator 21 Since the voltage comparator 21 is integrated and arranged inside the corresponding driving chip 20, for the N-1th level voltage comparator 21(N), it can be driven by the N-1th level voltage comparator 21(N-1).
  • the existing data transmission pin 20a of the chip 20 outputs the N-1th level adjustment voltage Va(N) to the Nth level voltage comparator 21(N). Therefore, there is no need to add additional pins of the driver chip 20 , thereby reducing the size of the driver chip 20 .
  • each driver chip 20 includes an adjustment voltage transmission pin 20b.
  • the driver chip 20 provided with the N-th level voltage comparator 21(N) also includes a feedback pin 20c.
  • the driver chips 20 are connected through adjusting voltage transmission pins 20b.
  • the driver chip 20 provided with the N-th level voltage comparator 21(N) is connected to the voltage adjustment module 30 through the feedback pin 20c.
  • each driver chip 20 may include a feedback pin 20c.
  • each driver chip 20 still includes a data transmission pin 20a.
  • the adjustment voltage transmission pin 20b is an additional pin, and the corresponding adjustment voltage is directly transmitted through the adjustment voltage transmission pin 20b.
  • each voltage comparator 21 includes a comparator 211 and an inverter 212 .
  • the first pole of the comparator 211 is connected to the first input terminal a.
  • the second pole of the comparator 211 is connected to the second input terminal b.
  • the inverter 212 includes a first transistor T1 and a second transistor T2.
  • the gate electrode of the first transistor T1 and the gate electrode of the second transistor T2 are both connected to the output electrode of the comparator 211 .
  • the source of the first transistor T1 is connected to the second input terminal b.
  • the source of the second transistor T2 is connected to the first input terminal a.
  • the drain of the first transistor T1 and the drain of the second transistor T2 are both connected to the output terminal c.
  • the transistors used in all embodiments of this application can be thin film transistors, field effect transistors, or other devices with the same characteristics. Since the sources and drains of the transistors used here are symmetrical, their sources and drains are interchangeable. of. In the embodiment of the present application, in order to distinguish the two electrodes of the transistor except the gate electrode, one electrode is called the source electrode and the other electrode is called the drain electrode. According to the shape in the attached figure, the middle terminal of the switching transistor is the gate, the signal input terminal is the source, and the output terminal is the drain.
  • the transistors used in the embodiments of the present application may include P-type transistors and/or N-type transistors.
  • the P-type transistor is turned on when the gate is at a low level and is turned off when the gate is at a high level.
  • the N-type transistor is when the gate is at a high level. It is turned on when the gate is high and turned off when the gate is low.
  • the first transistor T1 is an N-type transistor and the second transistor T2 is a P-type transistor.
  • the positive input terminal of the comparator 211 is connected to the preset voltage V0.
  • the negative input terminal of the comparator 211 is connected to the first-stage signal to be detected Vt(1).
  • the comparator 211 outputs a high-level signal.
  • the first transistor T1 is turned on and the second transistor T2 is turned off.
  • the first-stage adjusted voltage Va(1) output by the inverter 212 is the first-stage signal to be detected Vt(1).
  • the comparator 211 When the voltage value of the preset voltage V0 is less than the voltage value of the first-level signal to be detected Vt(1), the comparator 211 outputs a low-level signal. At this time, the first transistor T1 is turned off and the second transistor T2 is turned on. The first-stage adjustment voltage Va(1) output by the inverter 212 is the preset voltage V0.
  • the positive input terminal of the comparator 211 is connected to the first-stage adjustment voltage Va(1).
  • the negative input terminal of the comparator 211 is connected to the second-stage signal to be detected Vt(2).
  • the comparator 211 When the voltage value of the first-stage adjustment voltage Va(1) is greater than the voltage value of the second-stage signal to be detected Vt(2), the comparator 211 outputs a high-level signal. At this time, the first transistor T1 is turned on and the second transistor T2 is turned off.
  • the inverter 212 outputs the second-stage signal to be detected Vt(2).
  • the comparator 211 When the voltage value of the first-stage adjustment voltage Va(1) is smaller than the voltage value of the second-stage signal to be detected Vt(2), the comparator 211 outputs a low-level signal. At this time, the first transistor T1 is turned off and the second transistor T2 is turned on.
  • the inverter 212 outputs the voltage value of the first-stage adjustment voltage Va(1).
  • the embodiment of the present application takes the first-stage voltage comparator 21(1) and the second-stage voltage comparator 21(2) as an example for description, but this should not be understood as limiting the present application.
  • FIG. 6 is a second circuit schematic diagram of multiple voltage comparators arranged in cascade provided by this application.
  • the difference from the multiple voltage comparators 21 arranged in cascade shown in FIG. 4 is that in the embodiment of the present application, when the first pole of the comparator 211 is a negative input terminal, the second pole of the comparator 211 is a positive input terminal.
  • the first transistor T1 is a P-type transistor
  • the second transistor T2 is an N-type transistor.
  • the positive input terminal of the comparator 211 is connected to the first-stage signal to be detected Vt(1).
  • the negative input terminal of the comparator 211 is connected to the preset voltage V0.
  • the comparator 211 outputs a low-level signal.
  • the first transistor T1 is turned on and the second transistor T2 is turned off.
  • the first-stage adjusted voltage Va(1) output by the inverter 212 is the first-stage signal to be detected Vt(1).
  • the comparator 211 When the voltage value of the preset voltage V0 is less than the voltage value of the first-level signal to be detected Vt(1), the comparator 211 outputs a low-level signal. At this time, the first transistor T1 is turned off and the second transistor T2 is turned on. The first-stage adjustment voltage Va(1) output by the inverter 212 is the preset voltage V0.
  • the positive input terminal of the comparator 211 is connected to the second-stage signal to be detected Vt(2).
  • the negative input terminal of the comparator 211 is connected to the first-stage adjustment voltage Va(1).
  • the comparator 211 When the voltage value of the first-stage adjustment voltage Va(1) is greater than the voltage value of the second-stage signal to be detected Vt(2), the comparator 211 outputs a high-level signal. At this time, the first transistor T1 is turned on and the second transistor T2 is turned off.
  • the inverter 212 outputs the second-stage signal to be detected Vt(2).
  • the comparator 211 When the voltage value of the first-stage adjustment voltage Va(1) is smaller than the voltage value of the second-stage signal to be detected Vt(2), the comparator 211 outputs a low-level signal. At this time, the first transistor T1 is turned off and the second transistor T2 is turned on.
  • the inverter 212 outputs the voltage value of the first-stage adjustment voltage Va(1).
  • Figure 7 is a schematic structural diagram of the voltage adjustment module provided by this application.
  • the voltage adjustment module 30 includes a control unit 31 and a power board 32 .
  • control unit 31 is connected to the output terminal c of the N-th level voltage comparator 21 to access the N-th level adjustment voltage Va(N).
  • the control unit 31 is configured to output a feedback voltage Vf to the power board 32 according to the Nth level adjustment voltage Va(N).
  • the power board 32 is used to adjust the initial driving voltage VLED under the control of the feedback voltage Vf.
  • control unit 31 includes a microcontroller unit (Microcontroller Unit, MCU) 311 and a timing controller 312 .
  • the micro control unit 311 is connected to the output terminal c of the N-th stage voltage comparator 21 .
  • the micro control unit 311 is used to process the Nth level adjustment voltage Va(N). For example, analog-to-digital conversion, noise reduction processing, etc.
  • the timing controller 312 is connected with the micro control unit 311 .
  • the timing controller 312 includes a power management integrated chip 3120.
  • the timing controller 312 outputs a voltage compensation command to the power management integrated chip 3120 according to the processed N-th level adjusted voltage Va(N).
  • the power management integrated chip 3120 outputs the feedback voltage Vf according to the voltage compensation instruction.
  • the micro control unit 31 also known as a single-chip microcomputer or single-chip microcomputer, appropriately reduces the frequency and specifications of the central processor, and integrates peripheral interfaces such as memory, counters, analog-to-digital converters, memories, and even panel drive circuits. Together on a single chip.
  • the timing controller 312 may compare the voltage value of the N-th level adjustment voltage Va(N) with the voltage of the preset voltage V0 to determine whether the initial driving voltage VLED needs to be adjusted. If adjustment is required, the voltage compensation command is output to the power management integrated chip 3120.
  • the power management integrated chip 3120 outputs the feedback voltage Vf according to the voltage compensation instruction.
  • the voltage compensation instruction may be an instruction that instructs the power management integrated chip 3120 to output a voltage value of the feedback voltage Vf.
  • control unit 31 may only include the timing controller 312.
  • the timing controller 312 directly receives the Nth level adjustment voltage Va(N).
  • the design can be carried out according to the logic function of the timing controller 312, which is not limited in this application.
  • the power board 32 includes at least one voltage adjustment circuit 32A.
  • Each voltage adjustment circuit 32A includes a control chip 320, an inductor L, a first resistor R1 and a second resistor R2.
  • the control chip 320 has an input pin VIN, a switch pin SW, and a feedback pin FB.
  • the input pin VIN is connected to an initial voltage Vin.
  • One end of the inductor L is connected to the switch pin SW.
  • the other end of the inductor L and one end of the first resistor R1 are connected to the initial driving voltage output end.
  • the other end of the first resistor R1 and one end of the second resistor R2 are connected to the feedback node K.
  • the feedback node K is connected to the feedback pin FB and connected to the feedback voltage Vf.
  • the other end of the second resistor R2 is connected to ground.
  • the control chip 320 is a voltage conversion chip, usually a buck chip.
  • the initial voltage Vin is converted into a voltage by the internal logic circuit of the control chip 320 and is output by the switch pin SW.
  • the switch pin SW is filtered by the external inductor L, and the feedback loop (first resistor R1 and second resistor R2) detects the output voltage to achieve the voltage stabilization function.
  • the potential of the feedback pin FB is fixed and determined by the control chip 320 .
  • the timing controller 312 when the timing controller 312 recognizes that the initial driving voltage VLED needs to be increased, it will send a voltage compensation instruction to the power management integrated chip 3120.
  • Initial driving voltage VLED 0.8+(I R2 +Vf/R2)*R1. Among them, R2 and R1 are both fixed values, so when the feedback voltage increases, the initial driving voltage VLED increases accordingly.
  • the voltage adjustment circuit 32A also includes a first capacitor C1 and a second capacitor C2.
  • One end of the first capacitor C1 is connected to the input pin VIN, and one end of the second capacitor C2 is connected to the initial driving voltage output end.
  • the other ends of the first capacitor C1 and the other ends of the second capacitor C2 are both connected to the ground terminal.
  • the first capacitor C1 and the second capacitor C2 play the role of voltage stabilization.
  • the power board 32 also needs to connect a Schottky diode D1 between the external switch pin SW and the ground. This can be set according to the internal logic circuit of the control chip 320 and will not be discussed here. Repeat.
  • the power board 32 may also include other circuit structures, as long as the initial driving voltage VLED can be adjusted according to the feedback voltage Vf.
  • the power board 32 may include a plurality of voltage adjustment circuits 32A to output a plurality of independent initial driving voltages VLED.
  • the number of power boards 32 may correspond to the number of initial driving voltages VLED.
  • FIG. 9 is a second structural schematic diagram of the backlight module provided by the present application.
  • the difference from the backlight module 100 shown in FIG. 1 is that in the embodiment of the present application, a plurality of voltage comparators 21 arranged in cascade are arranged outside the driving chip 20 .
  • the embodiment of the present application can further reduce the power consumption of the driver chip 20 and avoid malfunction caused by excessive temperature of the driver chip 20 .
  • this application also provides a display device, which includes a display panel and a backlight module.
  • the backlight module is the backlight module 100 of any of the above embodiments, which will not be described again here.
  • the display device may be a smartphone, a tablet computer, an e-book reader, a smart watch, a video camera, a game console, etc., which is not limited in this application.
  • FIG. 10 is a schematic structural diagram of a display device provided by the present application.
  • the display device includes a backlight module 100 and a display panel 200 arranged oppositely.
  • the backlight module 100 is used to provide the light source required for normal display of the display panel 200 .
  • the backlight module includes multiple light-emitting units, multiple driver chips, multiple voltage comparators and voltage adjustment modules arranged in cascade.
  • the control terminal of the driving chip is connected in a one-to-one correspondence with the negative electrode of the light-emitting unit connected to the same initial driving voltage.
  • the first input end of the first-level voltage comparator is connected to a preset voltage, and the second input end of the N-th level voltage comparator is connected to the N-level voltage to be detected, where N is an integer greater than or equal to 1.
  • multiple cascaded voltage comparators can detect the voltage of at least one control terminal in each driver chip. That is, multiple cascaded voltage comparators can output the Nth level adjustment voltage according to the preset voltage and multiple voltages to be detected, and then the voltage adjustment module is used to adjust the initial driving voltage according to the Nth level adjustment voltage. This can prevent the voltage at the control terminal of the driver chip from being too high, thereby reducing the power consumption and temperature of the driver chip and improving the quality of the display device 1000 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Led Devices (AREA)

Abstract

本申请公开一种背光模组及显示装置。背光模组包括多个发光单元、多个驱动芯片、多个级联设置的电压比较器以及电压调整模块。其中,连接于同一驱动芯片的控制端的发光单元接入相同初始驱动电压。多个级联的电压比较器根据预设电压和多个待检测电压输出第N级调整电压,电压调整模块用于根据第N级调整电压调整初始驱动电压。

Description

背光模组及显示装置 技术领域
本申请涉及显示技术领域,具体涉及一种背光模组及显示装置。
背景技术
随着显示技术与面板行业的不断发展,MLED(Micro/Mini Light-Emitting Diode,微发光二极管)背光技术出现在大众的视野。MLED背光相比于传统的LED(Light-Emitting Diode,发光二极管)背光,具备Local dimming(局部背光调节)功能,能够实现高对比度和高亮度,显示效果接近OLED(Organic Light-Emitting Diode,有机发光二极管)。而相比较于OLED,MLED在成本上更具优势。因此,MLED背光驱动具有巨大的发展潜力。
技术问题
然而,在MLED背光中,多个LED分区的正极是连在一起的,当LED灯珠分区需要达到某一亮度时,由于LED灯珠的工艺制成误差,每分区灯珠所需要的电压是有差异的,为了保证所有灯区达到同一亮度,电源板输出的初始驱动电压往往会偏高,这就造成了与多个LED分区的负极连接的驱动芯片(LED Driver IC)的控制端电压过高,使得驱动芯片的功耗和温度上升。
技术解决方案
本申请提供一种背光模组及显示装置,以解决现有技术中驱动芯片的控制端电压过高,使得驱动芯片的功耗和温度上升的技术问题。
本申请提供一种背光模组,其包括:
多个发光单元,每一所述发光单元均具有正极和负极,至少部分所述发光单元的所述正极均接入同一初始驱动电压;
多个驱动芯片,所述驱动芯片包括控制端,所述控制端与对应的所述发光单元的所述负极对应连接,连接于同一驱动芯片的控制端的所述发光单元接入相同初始驱动电压;
多个级联设置的电压比较器,每一所述驱动芯片至少对应一所述电压比较器设置,每一所述电压比较器均具有第一输入端、第二输入端以及输出端;第N级电压比较器的第二输入端接入第N级待检测电压,所述第N级待检测电压为与所述第N级电压比较器对应的所述驱动芯片的所述控制端的电压,所述第N级电压比较器的输出端输出第N级调整电压;其中,第1级电压比较器的第一输入端接入一预设电压,第1级调整电压为所述预设电压和第1级待检测电压中电压值较小的一者;第N级电压比较器的第一输入端接入第N-1级调整电压,第N级调整电压为所述第N级待检测电压与所述第N-1级调整电压中电压值较小的一者,N为大于1的整数;以及
电压调整模块,所述电压调整模块接入第N级调整电压,所述电压调整模块用于根据所述第N级调整电压调整所述初始驱动电压。
可选的,在本申请一些实施例中,所述电压比较器与所述驱动芯片一一对应设置,所述驱动芯片包括多个控制端,每一所述控制端与对应的发光单元的负极连接,所述第N级待检测电压为与所述第N级电压比较器对应的所述驱动芯片的多个所述控制端中电压最小的一者。
可选的,在本申请一些实施例中,每一所述电压比较器均包括比较器和反相器;
在同一所述电压比较器中,所述比较器的第一极与所述第一输入端连接,所述比较器的第二极与所述第二输入端连接;所述反相器包括第一晶体管和第二晶体管,所述第一晶体管的栅极和所述第二晶体管的栅极均与所述比较器的输出极连接,所述第一晶体管的源极与所述第二输入端连接,所述第二晶体管的源极与所述第一输入端连接,所述第一晶体管的漏极和所述第二晶体管的漏极均与所述输出端连接;
当所述比较器的第一极为正极性输入端,所述比较器的第二极为负极性输入端时,所述第一晶体管为N型晶体管,所述第二晶体管为P型晶体管;
当所述比较器的第一极为负极性输入端,所述比较器的第二极为正极性输入端时,所述第一晶体管为P型晶体管,所述第二晶体管为N型晶体管。
可选的,在本申请一些实施例中,所述初始驱动电压的电压值小于或等于所述发光单元正常发光时所述正极和所述负极之间的压差;
当所述第N级调整电压小于所述预设电压时,所述电压调整模块增大所述初始驱动电压。
可选的,在本申请一些实施例中,所述电压调整模块包括控制单元和电源板;
所述控制单元与所述第N级电压比较器的输出端连接,用于根据所述第N级调整电压输出一反馈电压至所述电源板;所述电源板用于在所述反馈电压的控制下调整所述初始驱动电压。
可选的,在本申请一些实施例中,所述控制单元包括微控制单元和时序控制器;
所述微控制单元与所述第N级电压比较器的输出端连接,用于对所述第N级调整电压进行处理,所述时序控制器与所述微控制单元连接,所述时序控制器包括电源管理集成芯片,所述时序控制器根据处理后的所述第N级调整电压输出一电压补偿指令至所述电源管理集成芯片,所述电源管理集成芯片根据所述电压补偿指令输出所述反馈电压。
可选的,在本申请一些实施例中,所述电源板包括控制芯片、电感、第一电阻以及第二电阻;
所述控制芯片具有输入引脚、开关引脚以及反馈引脚,所述输入引脚接入一初始电压,所述电感的一端连接至所述开关引脚,所述电感的另一端和所述第一电阻的一端连接于初始驱动电压输出端,所述第一电阻的另一端和所述第二电阻的一端均连接于反馈节点,所述反馈节点电连接至所述反馈引脚并接入所述反馈电压,所述第二电阻的另一端接地。
可选的,在本申请一些实施例中,所述发光单元包括一个或多个发光二极管。
可选的,在本申请一些实施例中,所述电压比较器集成设置在相应的所述驱动芯片内部。
可选的,在本申请一些实施例中,每一所述驱动芯片均包括数据传输引脚,相邻所述驱动芯片之间通过所述数据传输引脚连接;
其中,每一所述驱动芯片用于根据一信号传输协议并通过所述数据传输引脚输出或接收相应的调整电压。
可选的,在本申请一些实施例中,每一所述驱动芯片均包括调整电压传输引脚,设有所述第N级电压比较器的所述驱动芯片还包括反馈引脚,所述驱动芯片之间通过所述调整电压传输引脚连接,设有所述第N级电压比较器的所述驱动芯片通过所述反馈引脚连接于所述电压调整模块。
相应的,本申请还提供一种显示装置,其包括显示面板和背光模组,所述背光模组包括:
多个发光单元,每一所述发光单元均具有正极和负极,至少部分所述发光单元的所述正极均接入同一初始驱动电压;
多个驱动芯片,所述驱动芯片包括控制端,所述控制端与对应的所述发光单元的所述负极连接,连接于同一驱动芯片的控制端的所述发光单元接入相同的所述初始驱动电压;
多个级联设置的电压比较器,每一所述驱动芯片至少对应一所述电压比较器设置,每一所述电压比较器均具有第一输入端、第二输入端以及输出端;第N级电压比较器的第二输入端接入第N级待检测电压,所述第N级待检测电压为与所述第N级电压比较器对应的所述驱动芯片的所述控制端的电压,所述第N级电压比较器的输出端输出第N级调整电压;其中,第1级电压比较器的第一输入端接入一预设电压,第1级调整电压为所述预设电压和第1级待检测电压中电压值较小的一者;第N级电压比较器的第一输入端接入第N-1级调整电压,第N级调整电压为所述第N级待检测电压与所述第N-1级调整电压中电压值较小的一者,N为大于1的整数;以及
电压调整模块,所述电压调整模块接入所述第N级调整电压,所述电压调整模块用于根据所述第N级调整电压调整所述初始驱动电压。
可选的,在本申请一些实施例中,所述电压比较器与所述驱动芯片一一对应设置,所述驱动芯片包括多个控制端,每一所述控制端与对应的发光单元的负极连接,所述第N级待检测电压为与所述第N级电压比较器对应的所述驱动芯片的多个所述控制端中电压最小的一者。
可选的,在本申请一些实施例中,所述初始驱动电压的电压值小于或等于所述发光单元正常发光时所述正极和所述负极之间的压差;
当所述第N级调整电压小于所述预设电压时,所述电压调整模块增大所述初始驱动电压。
可选的,在本申请一些实施例中,所述电压调整模块包括控制单元和电源板;
所述控制单元与所述第N级电压比较器的输出端连接,用于根据所述第N级调整电压输出一反馈电压至所述电源板;所述电源板用于在所述反馈电压的控制下调整所述初始驱动电压。
可选的,在本申请一些实施例中,所述电源板包括至少一电压调整电路,每一所述电压调整电路包括控制芯片、电感、第一电阻以及第二电阻;
所述控制芯片具有输入引脚、开关引脚以及反馈引脚,所述输入引脚接入一初始电压,所述电感的一端连接至所述开关引脚,所述电感的另一端和所述第一电阻的一端连接于初始驱动电压输出端,所述第一电阻的另一端和所述第二电阻的一端均连接于反馈节点,所述反馈节点电连接至所述反馈引脚并接入所述反馈电压,所述第二电阻的另一端接地。
可选的,在本申请一些实施例中,所述发光单元包括一个或多个发光二极管。
可选的,在本申请一些实施例中,所述电压比较器集成设置在相应的所述驱动芯片内部。
可选的,在本申请一些实施例中,每一所述驱动芯片均包括数据传输引脚,相邻所述驱动芯片之间通过所述数据传输引脚连接,设有所述第N级电压比较器的所述驱动芯片通过所述数据传输引脚连接于所述电压调整模块;
其中,每一所述驱动芯片用于根据一信号传输协议并通过所述数据传输引脚输出或接收相应的调整电压。
可选的,在本申请一些实施例中,每一所述驱动芯片均包括调整电压传输引脚,设有所述第N级电压比较器的所述驱动芯片还包括反馈引脚,所述驱动芯片之间通过所述调整电压传输引脚连接,设有所述第N级电压比较器的所述驱动芯片通过所述反馈引脚连接于所述电压调整模块。
有益效果
本申请公开一种背光模组和显示装置。背光模组包括多个发光单元、多个驱动芯片、多个级联设置的电压比较器以及电压调整模块。其中,驱动芯片的控制端与相应的发光单元的负极连接。第1级电压比较器的第一输入端接入一预设电压,第N级电压比较器的第二输入端接入第N级待检测电压,N为大于1的整数。由于第N级待检测电压为与第N级电压比较器对应的驱动芯片中一控制端的电压,多个级联的电压比较器可以对每一驱动芯片中的至少一控制端的电压进行检测。也即,多个级联的电压比较器可根据预设电压和多个待检测电压输出第N级调整电压,然后电压调整模块用于根据第N级调整电压调整初始驱动电压。由此可避免驱动芯片的控制端的电压过高,从而降低驱动芯片的功耗,同时减少驱动芯片过热的风险。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获取其他的附图。
图1是本申请提供的背光模组的第一结构示意图;
图2是本申请提供的多个级联设置的电压比较器的结构示意图;
图3是本申请提供的发光单元和驱动芯片的连接示意图;
图4是本申请提供的背光模组的第二结构示意图;
图5是本申请提供的多个级联设置的电压比较器的第一电路示意图;
图6是本申请提供的多个级联设置的电压比较器的第二电路示意图;
图7是本申请提供的电压调整模块的一种结构示意图;
图8是本申请提供的电路板的一种结构示意图;
图9是本申请提供的背光模组的第三结构示意图;
图10是本申请提供的显示装置的一种结构示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获取的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“第一”和“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”和“第二”等的特征可以明示或者隐含地包括一个或者更多个所述特征,因此不能理解为对本申请的限制。
本申请提供一种背光模组及显示装置,以下进行详细说明。需要说明的是,以下实施例的描述顺序不作为对本申请实施例优选顺序的限定。
请参阅图1和图2,图1是本申请提供的背光模组的第一结构示意图。图2是本申请提供的多个级联设置的电压比较器21的结构示意图。在本申请实施例中,背光模组100包括多个发光单元10、多个驱动芯片20、多个级联设置的电压比较器21以及电压调整模块30。
其中,每一发光单元10均具有正极10a和负极10b。至少部分发光单元10的正极10a均接入同一初始驱动电压VLED。
其中,每一驱动芯片20包括控制端M。控制端M与相应的发光单元10的负极10b连接。其中,每一驱动芯片20至少对应一电压比较器21设置。每一电压比较器21均具有第一输入端a、第二输入端b以及输出端c。第N级电压比较器21(N)的第二输入端b接入第N级待检测电压Vt(N)。第N级待检测电压Vt(N)为与第N级电压比较器21(N)对应的驱动芯片20的控制端M的电压。第N级电压比较器21(N)的输出端c输出第N级调整电压Va(N)。其中,第1级电压比较器21(1)的第一输入端a接入一预设电压V0。第1级调整电压Va(1)为预设电压V0和第1级待检测电压Vt(1)中电压值较小的一者。第N级电压比较器21(N)的第一输入端a接入第N-1级调整电压Va(N-1)。第N级调整电压Va(N)为第N级待检测电压Vt(N)与第N-1级调整电压Va(N-1)中电压值较小的一者。N为大于1的整数。
其中,电压调整模块30接入第N级调整电压Va(N)。电压调整模块30用于根据第N级调整电压Va(N)调整初始驱动电压VLED。第N级电压比较器21(N)可以理解为多级级联的电压比较器21中的最后一级电压比较器。
其中,多个电压比较器21可以按照图1中所示右向左依次级联,也可以从左向右依次级联,本申请对此不作限定。
其中,每一发光单元10包括一个或多个发光二极管D。发光二极管D可以是Micro LED也可以是Mini LED。比如,在本申请实施例中,每一发光单元10包括四个发光二极管D。其中,每两个发光二极管D串联在一起,然后再并联。当然,本申请实施例中的发光单元10的结构并不限于此,在此不一一赘述。
可以理解的是,驱动芯片20可以包括一个或多个控制端M。由于驱动芯片20的控制端M与发光单元10的负极10b一一对应连接。因此,第N级待检测电压Vt(N)为与第N级电压比较器21(N)对应的驱动芯片20中一控制端M的电压,也即第N级待检测电压Vt(N)为相应的发光单元10的负极10b的电压。
根据上述多个电压比较器21的级联关系可知,当驱动芯片20的多个控制端M的电压均大于预设电压V0时,第N级电压比较器21输出的调整电压为预设电压V0。当其中一驱动芯片20中至少一个控制端M的电压小于预设电压V0,且该控制端M的电压即为输入至相应电压比较器21的待检测电压Vt时,第N级电压比较器21输出的第N级调整电压Va(N)为该待检测电压Vt。由此,本申请实施例可通过判断驱动芯片20的控制端M的电压与预设电压V0的关系,进而判断驱动芯片20的控制端M的电压是否偏高。
本申请实施例在背光模组100中设置多个级联的电压比较器21。其中,第1级电压比较器21(1)的第一输入端a接入一预设电压V0。第N级电压比较器21(N)的第二端b接入第N级待检测电压Vt(N)。由于第N级待检测电压Vt(N)为与第N级电压比较器21(N)对应的驱动芯片20中一控制端M的电压,多个级联的电压比较器21可以对每一驱动芯片20中的至少一控制端M的电压进行检测。也即,多个级联的电压比较器21可根据预设电压V0和多个待检测电压输出第N级调整电压Va(N),然后电压调整模块30根据第N级调整电压Va(N)调整初始驱动电压VLED。从而避免驱动芯片20的控制端M的电压过高,进而降低驱动芯片20的功耗,同时减少驱动芯片20过热的风险。
需要说明的是,在本申请实施例中,“多个”指的是至少两个。
本申请实施例中的背光模组100具有local dimming的功能。若发光单元10的负极10b直接接地,正极10a一旦有电压,多个发光单元10就会全部亮,此时就不具备local dimming。
在本申请实施例中,当发光单元10的数量比较少时,所有的发光单元10的正极10a均可以接入同一初始驱动电压VLED。从而减少输出初始驱动电压VLED的输出端口的数量及相应连接线路,降低背光模组100的信号产生线路的复杂性。
当然,在本申请其它实施例中,当背光模组100的尺寸较大,发光单元10的数量较多时。为了更好的实现local dimming的功能,可以将多个发光单元10划分为多个区域。每一区域的多个发光单元10的正极10a接入一个初始驱动电压VLED。也即,背光模组100中存在多个可独立控制的初始驱动电压VLED。多个初始驱动电压VLED的电压值可以相等也可以不等,具体可根据背光模组100的发光亮度需求设定。多个初始驱动电压VLED的电压值也可根据本申请实施例的方案单独调整。
具体的,请同时参阅图3,图3是本申请提供的发光单元和驱动芯片的连接示意图。将发光单元10的负极10b与驱动芯片20的控制端M相连接,进一步再与接地端连接。驱动芯片20内设有开关晶体管T0。开关晶体管T0控制发光单元10的负极10b与接地端之间的连通。如此,就可以通过驱动芯片20的控制端M实现local dimming的功能。
在本申请实施例中,初始驱动电压VLED的电压值小于或等于发光单元10正常发光时正极10a和负极10b之间的压差。当第N级调整电压Va(N)小于预设电压V0时,电压调整模块30增大初始驱动电压VLED。
可以理解的是,预设电压V0的电压值通常由驱动芯片20的工作性能决定。比如,当驱动芯片20在控制端M的电压低于0.2V的时候,会出现工作异常的情况。所以要保证驱动芯片20的控制端M的电压不低于0.2V。在本申请实施例中,预设电压V0的电压范围为0.2V-0.5V。比如,预设电压V0可以是0.2V、0.3V、0.4V、0.5V等。
此外,如图1所示,假设发光单元10在发光时的压降为3V,每个发光单元10包括4个发光二极管D。而每一发光二极管D在制程中存在偏差,实际发光压降可能在2.8V-3.3V之间。则每个发光单元10正常发光需要的电压为6V左右。相关背光模组中,为了保证所有发光二极管D都可以亮,通常会把初始驱动电压VLED设置的比较大,比如设为7.5V。如果某一发光单元10内的发光二极管D的发光压降恰好均为2.8V,那该发光单元10正常发光只需要5.6V的电压。此时,多余的电压会落在驱动芯片20的控制端M。多余的电压约为7.5-5.6=1.9V。这样就可能会造成驱动芯片20过热以及功耗增加,存在损坏的风险。
因此,本申请实施例设置初始驱动电压VLED的电压值小于或等于发光单元10正常发光时正极10a和负极10b之间的压差。此时,控制端M的电压会小于预设电压V0。第N级电压比较器21输出的第N级调整电压Va(N)会小于预设电压V0。电压调整模块30即可根据第N级调整电压Va(N)增大初始驱动电压VLED。依次循环,直至第N级调整电压Va(N)等于预设电压V0。
本申请实施例可避免驱动芯片20的控制端M的电压过高,从而降低驱动芯片20的功耗和温度。同时,通过电压调整模块30的调整功能可以保证驱动芯片20正常工作一级发光单元10正常发光。
当然,在本申请实施例中,也可以设置初始驱动电压VLED的电压值大于发光单元10正常发光时正极10a和负极10b之间的压差。如此,可以设定预设电压V0的值稍大于驱动芯片20正常工作时控制端M的电压。此时,驱动芯片20的控制端M的电压会大于预设电压V0。则第N级电压比较器21输出的第N级调整电压Va(N)为预设电压V0。此时,说明初始驱动电压VLED的电压值较大,则电压调整模块30可根据第N级调整电压Va(N)减小初始驱动电压VLED。依次循环,直至第N级调整电压Va小于预设电压V0。
在本申请实施例中,对应每一驱动芯片20可以设置至少一个电压比较器21。比如,对应每一驱动芯片可以设置一个电压比较器21、五个电压比较器21、二十个电压比较器21等。
当对应每一驱动芯片20设置一个电压比较器21时,第N级待检测电压Vt(N)可以是与第N级电压比较器21(N)对应的驱动芯片20中任一控制端M的电压。也即,多个级联的电压比较器21对每一驱动芯片20中的任意一个控制端M的电压进行检测。从而通过随机检测驱动芯片20的控制端M的电压,反应驱动芯片20的整体工作状态。
在其它实施例中,当对应每一驱动芯片20设置一个电压比较器21时,第N级待检测电压Vt(N)可以是与第N级电压比较器21(N)对应的驱动芯片20的多个控制端M中电压最小的一者。也即驱动芯片20可以对其内的多个控制端M的电压进行侦测,然后将多个控制端M中电压最小的一者输出至对应的电压比较器21。从而可以更精确的反映出驱动芯片20的工作状态,经电压调整模块30的调整后,能够保证每一发光单元10均能正常发光。
当然,在另一些实施例中,可以对应每一控制端M设置一电压比较器21,以对每一控制端M的电压进行检测,提高检测的精确度。
请继续参阅图1,在本申请实施例中,电压比较器21集成设置在相应的驱动芯片20内部。由此,可以提高驱动芯片20的集成度。同时减小背光模组100中的走线,降低走线密集度,避免出现信号串扰或走线短路。同理,若考虑到驱动芯片20的尺寸有限,可以在每一驱动芯片20内仅设置一个电压比较器21。
此外,在本申请实施例中,每一驱动芯片20均包括数据传输引脚20a。相邻驱动芯片20之间通过数据传输引脚20a连接。设有第N级电压比较器21(N)的驱动芯片20通过数据传输引脚20a连接于电压调整模块30。其中,每一驱动芯片20用于根据一信号传输协议并通过数据传输引脚20a输出或接收相应的调整电压。
其中,数据传输引脚20a为驱动芯片20原有的引脚,用于传输背光控制信号等。传输协议由驱动芯片20的内部代码控制。比如,可通过传输协议改变数据传输引脚20a的传输数据位,在传输背光控制信号的同时传输相应的的调整电压。
由于电压比较器21集成设置在相应的驱动芯片20内部,对于第N-1级电压比较器21(N)而言,可以通过第N-1级电压比较器21(N-1)所在的驱动芯片20已有的数据传输引脚20a将第N-1级调整电压Va(N)输出至第N级电压比较器21(N)。由此,不需要额外增加驱动芯片20的引脚,从而减小驱动芯片20的尺寸。
当然,在本申请其它实施例中,请参阅图4,图4是本申请提供的背光模组的第二结构示意图。与图1所述的背光模组100的不同之处在于,在本申请实施例中,每一驱动芯片20均包括调整电压传输引脚20b。设有第N级电压比较器21(N)的驱动芯片20还包括反馈引脚20c。驱动芯片20之间通过调整电压传输引脚20b连接。设有第N级电压比较器21(N)的驱动芯片20通过反馈引脚20c连接于电压调整模块30。
当然,在本申请实施例中,在批量生产驱动芯片20的基础上,每一驱动芯片20均可以包括反馈引脚20c。
在本申请实施例中,每一驱动芯片20仍包括数据传输引脚20a。调整电压传输引脚20b是额外设置的引脚,直接通过调整电压传输引脚20b单独传输相应的调整电压。
请参阅图5,图5是本申请提供的多个级联设置的电压比较器的第一电路示意图。在本申请实施例中,每一电压比较器21均包括比较器211和反相器212。
在同一电压比较器21中,比较器211的第一极与第一输入端a连接。比较器211的第二极与第二输入端b连接。反相器212包括第一晶体管T1和第二晶体管T2。第一晶体管T1的栅极和第二晶体管T2的栅极均与比较器211的输出极连接。第一晶体管T1的源极与第二输入端b连接。第二晶体管T2的源极与第一输入端a连接。第一晶体管T1的漏极和第二晶体管T2的漏极均与输出端c连接。
本申请所有实施例中采用的晶体管可以为薄膜晶体管或场效应管或其他特性相同的器件,由于这里采用的晶体管的源极、漏极是对称的,所以其源极、漏极是可以互换的。在本申请实施例中,为区分晶体管除栅极之外的两极,将其中一极称为源极,另一极称为漏极。按附图中的形态规定开关晶体管的中间端为栅极、信号输入端为源极、输出端为漏极。此外本申请实施例所采用的晶体管可以包括P型晶体管和/或N型晶体管两种,其中,P型晶体管在栅极为低电平时导通,在栅极为高电平时截止,N型晶体管为在栅极为高电平时导通,在栅极为低电平时截止。
在本申请实施例中,当比较器211的第一极为正极性输入端,比较器211的第二极为负极性输入端时,第一晶体管T1为N型晶体管,第二晶体管T2为P型晶体管。
具体的,在第1级电压比较器21(1)中,比较器211的正极性输入端接入预设电压V0。比较器211的负极性输入端接入第1级待检测信号Vt(1)。当预设电压V0的电压值大于第1级待检测信号Vt(1)的电压值时,比较器211输出高电平信号。此时,第一晶体管T1打开,第二晶体管T2关闭。反相器212输出的第1级调整电压Va(1)为第1级待检测信号Vt(1)。当预设电压V0的电压值小于第1级待检测信号Vt(1)的电压值时,比较器211输出低电平信号。此时,第一晶体管T1关闭,第二晶体管T2打开。反相器212输出的第1级调整电压Va(1)为预设电压V0。
在第二级电压比较器21(2)中,比较器211的正极性输入端接入第1级调整电压Va(1)。比较器211的负极性输入端接入第二级待检测信号Vt(2)。当第1级调整电压Va(1)的电压值大于第二级待检测信号Vt(2)的电压值时,比较器211输出高电平信号。此时,第一晶体管T1打开,第二晶体管T2关闭。反相器212输出第二级待检测信号Vt(2)。当第1级调整电压Va(1)的电压值小于第二级待检测信号Vt(2)的电压值时,比较器211输出低电平信号。此时,第一晶体管T1关闭,第二晶体管T2打开。反相器212输出第1级调整电压Va(1)的电压值。
需要说明的是,本申请实施例以第1级电压比较器21(1)和第二级电压比较器21(2)为例进行说明,但不能理解为对本申请的限定。
请参阅图6,图6是本申请提供的多个级联设置的电压比较器的第二电路示意图。与图4所示的多个级联设置的电压比较器21的不同之处在于,在本申请实施例中,当比较器211的第一极为负极性输入端,比较器211的第二极为正极性输入端时,第一晶体管T1为P型晶体管,第二晶体管T2为N型晶体管。
具体的,在第1级电压比较器21(1)中,比较器211的正极性输入端接入第1级待检测信号Vt(1)。比较器211的负极性输入端接入预设电压V0。当预设电压V0的电压值大于第1级待检测信号Vt(1)的电压值时,比较器211输出低电平信号。此时,第一晶体管T1打开,第二晶体管T2关闭。反相器212输出的第1级调整电压Va(1)为第1级待检测信号Vt(1)。当预设电压V0的电压值小于第1级待检测信号Vt(1)的电压值时,比较器211输出低电平信号。此时,第一晶体管T1关闭,第二晶体管T2打开。反相器212输出的第1级调整电压Va(1)为预设电压V0。
在第二级电压比较器21(2)中,比较器211的正极性输入端接入第二级待检测信号Vt(2)。比较器211的负极性输入端接入第1级调整电压Va(1)。当第1级调整电压Va(1)的电压值大于第二级待检测信号Vt(2)的电压值时,比较器211输出高电平信号。此时,第一晶体管T1打开,第二晶体管T2关闭。反相器212输出第二级待检测信号Vt(2)。当第1级调整电压Va(1)的电压值小于第二级待检测信号Vt(2)的电压值时,比较器211输出低电平信号。此时,第一晶体管T1关闭,第二晶体管T2打开。反相器212输出第1级调整电压Va(1)的电压值。
请同时参阅图1和图7,图7是本申请提供的电压调整模块的结构示意图。在本申请实施例中,电压调整模块30包括控制单元31和电源板32。
其中,控制单元31与第N级电压比较器21的输出端c连接,以接入第N级调整电压Va(N)。控制单元31用于根据第N级调整电压Va(N)输出一反馈电压Vf至电源板32。电源板32用于在反馈电压Vf的控制下调整初始驱动电压VLED。
进一步的,控制单元31包括微控制单元(Microcontroller Unit, MCU)311和时序控制器312。微控制单元311与第N级电压比较器21的输出端c连接。微控制单元311用于对第N级调整电压Va(N)进行处理。比如进行模数转换、降噪处理等。时序控制器312与微控制单元311连接。时序控制器312包括电源管理集成芯片3120。时序控制器312根据处理后的第N级调整电压Va(N)输出一电压补偿指令至电源管理集成芯片3120。电源管理集成芯片3120根据电压补偿指令输出反馈电压Vf。
其中,微控制单元311又称单片微型计算机或者单片机,是把中央处理器的频率与规格做适当缩减,并将内存、计数器、模数转换器、存储器等周边接口,甚至面板驱动电路都整合在一起的单一芯片。
其中,时序控制器312可将第N级调整电压Va(N)的电压值与预设电压V0的电压进行比较,判断是否需要调整初始驱动电压VLED。若需要调整,则输出电压补偿指令至电源管理集成芯片3120。电源管理集成芯片3120根据电压补偿指令输出反馈电压Vf。电压补偿指令可以是指示电源管理集成芯片3120输出反馈电压Vf的电压值大小的指令。
当然,在本申请一些实施例中,控制单元31可以仅包括时序控制器312。时序控制器312直接接收第N级调整电压Va(N)。具体可根据时序控制器312的逻辑功能进行设计,本申请对此不作限定。
请参阅图8,图8是本申请提供的电源板的一种结构示意图。在本申请实施例中,电源板32包括至少一电压调整电路32A。每一电压调整电路32A包括控制芯片320、电感L、第一电阻R1以及第二电阻R2。
具体的,控制芯片320具有输入引脚VIN、开关引脚SW以及反馈引脚FB。输入引脚VIN接入一初始电压Vin。电感L的一端连接至开关引脚SW。电感L的另一端和第一电阻R1的一端连接于初始驱动电压输出端。第一电阻R1的另一端和第二电阻R2的一端连接于反馈节点K。反馈节点K连接至反馈引脚FB并接入反馈电压Vf。第二电阻R2的另一端接地。
其中,控制芯片320为电压转换芯片,通常为降压芯片。初始电压Vin通过控制芯片320的内部逻辑电路转换为一电压由开关引脚SW输出。开关引脚SW通过外部电感L过滤,以及反馈回路(第一电阻R1和第二电阻R2)检测输出电压,从而达到稳压功能。
其中,反馈引脚FB的电位固定,由控制芯片320决定。比如,反馈引脚FB的电位为0.8V,故流过第二电阻R2的电流I R2=0.8/R2,为一定值。
在本申请实施例中,当时序控制器312识别到需要提高初始驱动电压VLED时,会发送电压补偿指令至电源管理集成芯片3120。电源管理集成芯片3120通过输出反馈电压Vf至反馈引脚FB,增加流经第一电阻R1的电流。此时,流经第一电阻R1的电流I R1=I R2+Vf/R2,当反馈电压Vf增加时,流经第一电阻R1的电流I R1电流也增大。初始驱动电压VLED=0.8+(I R2+Vf/R2)*R1。其中,R2、R1均为定值,故当反馈电压增加时,初始驱动电压VLED相应增加。
进一步的,电压调整电路32A还包括第一电容C1和第二电容C2。第一电容C1的一端连接至输入引脚VIN,第二电容C2的一端连接初始驱动电压输出端。第一电容C1的另一端和第二电容C2的另一端均连接至接地端。第一电容明C1和第二电容C2起到稳压的作用。
进一步的,在一些实施例中,电源板32还需要在外部开关引脚SW与接地端之间连接一个肖特基二极管D1,此可根据控制芯片320的内部逻辑电路进行设置,在此不再赘述。
当然,在本申请实施例中,电源板32还可以包括其它电路结构,只要能够根据反馈电压Vf实现对初始驱动电压VLED的调整即可。
此外由有上述实施例可知,背光模组100中可以存在多个独立的初始驱动电压VLED,以分区驱动多个发光单元10发光。对此,电源板32可以包括多个电压调整电路32A,以输出多个独立的初始驱动电压VLED。电源板32的数量可以与初始驱动电压VLED的个数一一对应。
请参阅图9,图9是本申请提供的背光模组的第二结构示意图。与图1所示的背光模组100的不同之处在于,在本申请实施例中,多个级联设置的电压比较器21设置在驱动芯片20的外部。
由此,本申请实施例可进一步降低驱动芯片20的功耗,避免驱动芯片20的温度过高引起工作不良。
相应的,本申请还提供一种显示装置,其包括显示面板和背光模组。背光模组为上述任一实施例的背光模组100,在此不再赘述。此外,显示装置可以是智能手机、平板电脑、电子书阅读器、智能手表、摄像机、游戏机等,本申请对此不作限定。
具体的,请参阅图10,图10是本申请提供的显示装置的一种结构示意图。
显示装置包括相对设置的背光模组100和显示面板200。背光模组100用于提供显示面板200正常显示所需的光源。
在本申请提供的显示装置1000中,背光模组包括多个发光单元、多个驱动芯片、多个级联设置的电压比较器以及电压调整模块。其中,驱动芯片的控制端与接入同一初始驱动电压的发光单元的负极一一对应连接。第1级电压比较器的第一输入端接入一预设电压,第N级电压比较器的第二输入端接入第N级待检测电压,N为大于等于1的整数。由于第N级待检测电压为与第N级电压比较器对应的驱动芯片中一控制端的电压,多个级联的电压比较器可以对每一驱动芯片中的至少一控制端的电压进行检测。也即,多个级联的电压比较器可根据预设电压和多个待检测电压输出第N级调整电压,然后电压调整模块用于根据第N级调整电压调整初始驱动电压。由此可避免驱动芯片的控制端的电压过高,从而降低驱动芯片的功耗和温度,提高显示装置1000的品质。
以上对本申请提供的背光模组及显示装置进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种背光模组,其包括:
    多个发光单元,每一所述发光单元均具有正极和负极,至少部分所述发光单元的所述正极均接入同一初始驱动电压;
    多个驱动芯片,所述驱动芯片包括控制端,所述控制端与对应的所述发光单元的所述负极连接,连接于同一驱动芯片的控制端的所述发光单元接入相同的所述初始驱动电压;
    多个级联设置的电压比较器,每一所述驱动芯片至少对应一所述电压比较器设置,每一所述电压比较器均具有第一输入端、第二输入端以及输出端;第N级电压比较器的第二输入端接入第N级待检测电压,所述第N级待检测电压为与所述第N级电压比较器对应的所述驱动芯片的所述控制端的电压,所述第N级电压比较器的输出端输出第N级调整电压;其中,第1级电压比较器的第一输入端接入一预设电压,第1级调整电压为所述预设电压和第1级待检测电压中电压值较小的一者;第N级电压比较器的第一输入端接入第N-1级调整电压,第N级调整电压为所述第N级待检测电压与所述第N-1级调整电压中电压值较小的一者,N为大于1的整数;以及
    电压调整模块,所述电压调整模块接入所述第N级调整电压,所述电压调整模块用于根据所述第N级调整电压调整所述初始驱动电压。
  2. 根据权利要求1所述的背光模组,其中,所述电压比较器与所述驱动芯片一一对应设置,所述驱动芯片包括多个控制端,每一所述控制端与对应的发光单元的负极连接,所述第N级待检测电压为与所述第N级电压比较器对应的所述驱动芯片的多个所述控制端中电压最小的一者。
  3. 根据权利要求1所述的背光模组,其中,每一所述电压比较器均包括比较器和反相器;
    在同一所述电压比较器中,所述比较器的第一极与所述第一输入端连接,所述比较器的第二极与所述第二输入端连接;所述反相器包括第一晶体管和第二晶体管,所述第一晶体管的栅极和所述第二晶体管的栅极均与所述比较器的输出极连接,所述第一晶体管的源极与所述第二输入端连接,所述第二晶体管的源极与所述第一输入端连接,所述第一晶体管的漏极和所述第二晶体管的漏极均与所述输出端连接;
    当所述比较器的第一极为正极性输入端,所述比较器的第二极为负极性输入端时,所述第一晶体管为N型晶体管,所述第二晶体管为P型晶体管;
    当所述比较器的第一极为负极性输入端,所述比较器的第二极为正极性输入端时,所述第一晶体管为P型晶体管,所述第二晶体管为N型晶体管。
  4. 根据权利要求1所述的背光模组,其中,所述初始驱动电压的电压值小于或等于所述发光单元正常发光时所述正极和所述负极之间的压差;
    当所述第N级调整电压小于所述预设电压时,所述电压调整模块增大所述初始驱动电压。
  5. 根据权利要求1所述的背光模组,其中,所述电压调整模块包括控制单元和电源板;
    所述控制单元与所述第N级电压比较器的输出端连接,用于根据所述第N级调整电压输出一反馈电压至所述电源板;所述电源板用于在所述反馈电压的控制下调整所述初始驱动电压。
  6. 根据权利要求5所述的背光模组,其中,所述控制单元包括微控制单元和时序控制器;
    所述微控制单元与所述第N级电压比较器的输出端连接,用于对所述第N级调整电压进行处理,所述时序控制器与所述微控制单元连接,所述时序控制器包括电源管理集成芯片,所述时序控制器根据处理后的所述第N级调整电压输出一电压补偿指令至所述电源管理集成芯片,所述电源管理集成芯片根据所述电压补偿指令输出所述反馈电压。
  7. 根据权利要求5所述的背光模组,其中,所述电源板包括至少一电压调整电路,每一所述电压调整电路包括控制芯片、电感、第一电阻以及第二电阻;
    所述控制芯片具有输入引脚、开关引脚以及反馈引脚,所述输入引脚接入一初始电压,所述电感的一端连接至所述开关引脚,所述电感的另一端和所述第一电阻的一端连接于初始驱动电压输出端,所述第一电阻的另一端和所述第二电阻的一端均连接于反馈节点,所述反馈节点电连接至所述反馈引脚并接入所述反馈电压,所述第二电阻的另一端接地。
  8. 根据权利要求1所述的背光模组,其中,所述发光单元包括一个或多个发光二极管。
  9. 根据权利要求1所述的背光模组,其中,所述电压比较器集成设置在相应的所述驱动芯片内部。
  10. 根据权利要求9所述的背光模组,其中,每一所述驱动芯片均包括数据传输引脚,相邻所述驱动芯片之间通过所述数据传输引脚连接,设有所述第N级电压比较器的所述驱动芯片通过所述数据传输引脚连接于所述电压调整模块;
    其中,每一所述驱动芯片用于根据一信号传输协议并通过所述数据传输引脚输出或接收相应的调整电压。
  11. 根据权利要求9所述的背光模组,其中,每一所述驱动芯片均包括调整电压传输引脚,设有所述第N级电压比较器的所述驱动芯片还包括反馈引脚,所述驱动芯片之间通过所述调整电压传输引脚连接,设有所述第N级电压比较器的所述驱动芯片通过所述反馈引脚连接于所述电压调整模块。
  12. 一种显示装置,其包括显示面板和背光模组,所述背光模组包括:
    多个发光单元,每一所述发光单元均具有正极和负极,至少部分所述发光单元的所述正极均接入同一初始驱动电压;
    多个驱动芯片,所述驱动芯片包括控制端,所述控制端与对应的所述发光单元的所述负极连接,连接于同一驱动芯片的控制端的所述发光单元接入相同的所述初始驱动电压;
    多个级联设置的电压比较器,每一所述驱动芯片至少对应一所述电压比较器设置,每一所述电压比较器均具有第一输入端、第二输入端以及输出端;第N级电压比较器的第二输入端接入第N级待检测电压,所述第N级待检测电压为与所述第N级电压比较器对应的所述驱动芯片的所述控制端的电压,所述第N级电压比较器的输出端输出第N级调整电压;其中,第1级电压比较器的第一输入端接入一预设电压,第1级调整电压为所述预设电压和第1级待检测电压中电压值较小的一者;第N级电压比较器的第一输入端接入第N-1级调整电压,第N级调整电压为所述第N级待检测电压与所述第N-1级调整电压中电压值较小的一者,N为大于1的整数;以及
    电压调整模块,所述电压调整模块接入所述第N级调整电压,所述电压调整模块用于根据所述第N级调整电压调整所述初始驱动电压。
  13. 根据权利要求12所述的显示装置,其中,所述电压比较器与所述驱动芯片一一对应设置,所述驱动芯片包括多个控制端,每一所述控制端与对应的发光单元的负极连接,所述第N级待检测电压为与所述第N级电压比较器对应的所述驱动芯片的多个所述控制端中电压最小的一者。
  14. 根据权利要求12所述的显示装置,其中,所述初始驱动电压的电压值小于或等于所述发光单元正常发光时所述正极和所述负极之间的压差;
    当所述第N级调整电压小于所述预设电压时,所述电压调整模块增大所述初始驱动电压。
  15. 根据权利要求12所述的显示装置,其中,所述电压调整模块包括控制单元和电源板;
    所述控制单元与所述第N级电压比较器的输出端连接,用于根据所述第N级调整电压输出一反馈电压至所述电源板;所述电源板用于在所述反馈电压的控制下调整所述初始驱动电压。
  16. 根据权利要求15所述的显示装置,其中,所述电源板包括至少一电压调整电路,每一所述电压调整电路包括控制芯片、电感、第一电阻以及第二电阻;
    所述控制芯片具有输入引脚、开关引脚以及反馈引脚,所述输入引脚接入一初始电压,所述电感的一端连接至所述开关引脚,所述电感的另一端和所述第一电阻的一端连接于初始驱动电压输出端,所述第一电阻的另一端和所述第二电阻的一端均连接于反馈节点,所述反馈节点电连接至所述反馈引脚并接入所述反馈电压,所述第二电阻的另一端接地。
  17. 根据权利要求12所述的显示装置,其中,所述发光单元包括一个或多个发光二极管。
  18. 根据权利要求12所述的显示装置,其中,所述电压比较器集成设置在相应的所述驱动芯片内部。
  19. 根据权利要求18所述的显示装置,其中,每一所述驱动芯片均包括数据传输引脚,相邻所述驱动芯片之间通过所述数据传输引脚连接,设有所述第N级电压比较器的所述驱动芯片通过所述数据传输引脚连接于所述电压调整模块;
    其中,每一所述驱动芯片用于根据一信号传输协议并通过所述数据传输引脚输出或接收相应的调整电压。
  20. 根据权利要求18所述的显示装置,其中,每一所述驱动芯片均包括调整电压传输引脚,设有所述第N级电压比较器的所述驱动芯片还包括反馈引脚,所述驱动芯片之间通过所述调整电压传输引脚连接,设有所述第N级电压比较器的所述驱动芯片通过所述反馈引脚连接于所述电压调整模块。
PCT/CN2022/086501 2022-04-02 2022-04-13 背光模组及显示装置 WO2023184572A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/772,645 US11763760B1 (en) 2022-04-02 2022-04-13 Backlight module and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210350992.5 2022-04-02
CN202210350992.5A CN114708839B (zh) 2022-04-02 2022-04-02 背光模组及显示装置

Publications (1)

Publication Number Publication Date
WO2023184572A1 true WO2023184572A1 (zh) 2023-10-05

Family

ID=82172189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/086501 WO2023184572A1 (zh) 2022-04-02 2022-04-13 背光模组及显示装置

Country Status (2)

Country Link
CN (1) CN114708839B (zh)
WO (1) WO2023184572A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11763760B1 (en) * 2022-04-02 2023-09-19 Tcl China Star Optoelectronics Technology Co., Ltd. Backlight module and display device
CN117037729B (zh) * 2023-10-08 2024-01-16 中科(深圳)无线半导体有限公司 一种自适应调节的mini LED背光驱动方法及其驱动芯片

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102325401A (zh) * 2011-06-17 2012-01-18 深圳Tcl新技术有限公司 Led驱动装置、灯条和背光装置
CN202188381U (zh) * 2011-07-05 2012-04-11 姚乐 一种智能led光纤灯
CN103021346A (zh) * 2012-12-25 2013-04-03 深圳市华星光电技术有限公司 一种led背光驱动电路、驱动方法及液晶显示装置
US20140192102A1 (en) * 2013-01-08 2014-07-10 Samsung Display Co., Ltd. Backlight unit and display device having the same
CN110392463A (zh) * 2018-04-18 2019-10-29 联咏科技股份有限公司 发光二极管驱动系统及发光二极管驱动装置
CN211181607U (zh) * 2020-02-27 2020-08-04 昆山龙腾光电股份有限公司 电压调节电路及背光驱动电路
CN112419961A (zh) * 2019-08-20 2021-02-26 深圳市洲明科技股份有限公司 调压节能电路以及led显示模块
CN114141203A (zh) * 2021-12-03 2022-03-04 Tcl华星光电技术有限公司 背光驱动电路及显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100449918C (zh) * 2006-08-11 2009-01-07 友达光电股份有限公司 可调输出电压的直流对直流转换电路
CN102968965A (zh) * 2012-12-14 2013-03-13 深圳市华星光电技术有限公司 直下式led背光源
KR102115429B1 (ko) * 2013-11-28 2020-05-26 엘지디스플레이 주식회사 액정표시장치용 백라이트 유닛
TWI578843B (zh) * 2015-05-04 2017-04-11 金寶電子工業股份有限公司 發光二極體驅動電路
KR102298224B1 (ko) * 2015-07-16 2021-09-08 삼성디스플레이 주식회사 백라이트 유닛 및 백라이트 유닛을 포함하는 표시 장치
CN110996457B (zh) * 2019-12-31 2023-05-23 惠州视维新技术有限公司 Led驱动电路、装置、led控制保护方法及存储介质
CN112233625B (zh) * 2020-10-16 2024-02-09 Tcl华星光电技术有限公司 一种背光恒流控制电路和背光结构
CN112233610A (zh) * 2020-10-16 2021-01-15 Tcl华星光电技术有限公司 一种背光恒流控制电路和背光结构

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102325401A (zh) * 2011-06-17 2012-01-18 深圳Tcl新技术有限公司 Led驱动装置、灯条和背光装置
CN202188381U (zh) * 2011-07-05 2012-04-11 姚乐 一种智能led光纤灯
CN103021346A (zh) * 2012-12-25 2013-04-03 深圳市华星光电技术有限公司 一种led背光驱动电路、驱动方法及液晶显示装置
US20140192102A1 (en) * 2013-01-08 2014-07-10 Samsung Display Co., Ltd. Backlight unit and display device having the same
CN110392463A (zh) * 2018-04-18 2019-10-29 联咏科技股份有限公司 发光二极管驱动系统及发光二极管驱动装置
CN112419961A (zh) * 2019-08-20 2021-02-26 深圳市洲明科技股份有限公司 调压节能电路以及led显示模块
CN211181607U (zh) * 2020-02-27 2020-08-04 昆山龙腾光电股份有限公司 电压调节电路及背光驱动电路
CN114141203A (zh) * 2021-12-03 2022-03-04 Tcl华星光电技术有限公司 背光驱动电路及显示装置

Also Published As

Publication number Publication date
CN114708839B (zh) 2023-08-22
CN114708839A (zh) 2022-07-05

Similar Documents

Publication Publication Date Title
WO2023184572A1 (zh) 背光模组及显示装置
TWI404310B (zh) 電源管理與控制模組以及液晶顯示器
CN105632404B (zh) 一种有机发光显示电路及其驱动方法
TWI477788B (zh) 偵測發光二極體短路的方法及其裝置
US9429965B2 (en) Multiple chip voltage feedback technique for driving LED's
US8305005B2 (en) Integrated circuit for driving high-voltage LED lamp
JP4644315B2 (ja) 発光素子駆動装置、面状照明装置および液晶表示装置
US9185763B2 (en) Light emitting diode string driving method
TWI701648B (zh) Led顯示驅動電路、led驅動電流調製方法、及led顯示器
TWI683114B (zh) 顯示面板
US20130241739A1 (en) Indicator light control device
TW201944849A (zh) 發光二極體驅動系統及發光二極體驅動裝置
US20200355358A1 (en) Carry-signal controlled led light with low power consumption and led light string having the same
CN213880333U (zh) 显示驱动芯片和led灯板
CN114495807B (zh) 一种驱动系统、电子板、显示屏及电子设备
TWI701971B (zh) 低耗電之級聯式發光二極體燈串
US11763760B1 (en) Backlight module and display device
CN114449699B (zh) 显示驱动芯片和led灯板
TWI429322B (zh) 發光二極體驅動電路及系統
WO2021082346A1 (en) A colorful light apparatus based on signal edges from power supply line
US10791604B2 (en) Cascading LED lights with low power consumption
WO2024016370A1 (zh) 背光模组及显示装置
KR102533747B1 (ko) 최적 공급 전압을 위한 led 드라이버, 발광 시스템 및 디스플레이 장치
CN112669767B (zh) 一种Mini LED驱动系统及其驱动方法
TWI823652B (zh) 發光二極體燈串控制系統、發光二極體模組及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22934398

Country of ref document: EP

Kind code of ref document: A1