WO2023184173A1 - 用于电化学装置的隔板、电化学装置及电子装置 - Google Patents
用于电化学装置的隔板、电化学装置及电子装置 Download PDFInfo
- Publication number
- WO2023184173A1 WO2023184173A1 PCT/CN2022/083807 CN2022083807W WO2023184173A1 WO 2023184173 A1 WO2023184173 A1 WO 2023184173A1 CN 2022083807 W CN2022083807 W CN 2022083807W WO 2023184173 A1 WO2023184173 A1 WO 2023184173A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- separator
- polymer layer
- polymer
- layers
- electrochemical device
- Prior art date
Links
- 229920000642 polymer Polymers 0.000 claims abstract description 315
- 238000002844 melting Methods 0.000 claims abstract description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 15
- 230000005540 biological transmission Effects 0.000 claims abstract description 6
- -1 polypropylene Polymers 0.000 claims description 50
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 31
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 31
- 230000004888 barrier function Effects 0.000 claims description 29
- 150000002500 ions Chemical class 0.000 claims description 26
- 230000008018 melting Effects 0.000 claims description 25
- 238000005192 partition Methods 0.000 claims description 23
- 239000004743 Polypropylene Substances 0.000 claims description 16
- 239000004698 Polyethylene Substances 0.000 claims description 13
- 229920001577 copolymer Polymers 0.000 claims description 13
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 claims description 8
- 239000002033 PVDF binder Substances 0.000 claims description 8
- 239000004715 ethylene vinyl alcohol Substances 0.000 claims description 8
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 8
- 229920001155 polypropylene Polymers 0.000 claims description 7
- 238000007789 sealing Methods 0.000 claims description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- 239000004642 Polyimide Substances 0.000 claims description 6
- 238000003475 lamination Methods 0.000 claims description 6
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 claims description 6
- 229920000728 polyester Polymers 0.000 claims description 6
- 229920000573 polyethylene Polymers 0.000 claims description 6
- 239000011112 polyethylene naphthalate Substances 0.000 claims description 6
- 229920001721 polyimide Polymers 0.000 claims description 6
- YWDXODQRCDEZLN-UHFFFAOYSA-N 4-(1,3-dioxoisoindol-2-yl)-2-hydroxybutanoic acid Chemical compound C1=CC=C2C(=O)N(CCC(O)C(O)=O)C(=O)C2=C1 YWDXODQRCDEZLN-UHFFFAOYSA-N 0.000 claims description 5
- GDVKFRBCXAPAQJ-UHFFFAOYSA-A dialuminum;hexamagnesium;carbonate;hexadecahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Al+3].[Al+3].[O-]C([O-])=O GDVKFRBCXAPAQJ-UHFFFAOYSA-A 0.000 claims description 5
- 229910001701 hydrotalcite Inorganic materials 0.000 claims description 5
- 229960001545 hydrotalcite Drugs 0.000 claims description 5
- 239000002135 nanosheet Substances 0.000 claims description 5
- 239000004952 Polyamide Substances 0.000 claims description 4
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 claims description 4
- RZXDTJIXPSCHCI-UHFFFAOYSA-N hexa-1,5-diene-2,5-diol Chemical compound OC(=C)CCC(O)=C RZXDTJIXPSCHCI-UHFFFAOYSA-N 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 4
- 229920002647 polyamide Polymers 0.000 claims description 4
- 239000004417 polycarbonate Substances 0.000 claims description 4
- 229920000515 polycarbonate Polymers 0.000 claims description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 4
- 229920005604 random copolymer Polymers 0.000 claims description 4
- 229920000089 Cyclic olefin copolymer Polymers 0.000 claims description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 3
- 239000004677 Nylon Substances 0.000 claims description 3
- 239000004696 Poly ether ether ketone Substances 0.000 claims description 3
- 239000002202 Polyethylene glycol Substances 0.000 claims description 3
- 239000004734 Polyphenylene sulfide Substances 0.000 claims description 3
- 239000004793 Polystyrene Substances 0.000 claims description 3
- 229920001328 Polyvinylidene chloride Polymers 0.000 claims description 3
- 229920002978 Vinylon Polymers 0.000 claims description 3
- 229910001593 boehmite Inorganic materials 0.000 claims description 3
- 125000004122 cyclic group Chemical group 0.000 claims description 3
- 229910021389 graphene Inorganic materials 0.000 claims description 3
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 229920001778 nylon Polymers 0.000 claims description 3
- 229920002492 poly(sulfone) Polymers 0.000 claims description 3
- 229920002239 polyacrylonitrile Polymers 0.000 claims description 3
- 229920001707 polybutylene terephthalate Polymers 0.000 claims description 3
- 229920002530 polyetherether ketone Polymers 0.000 claims description 3
- 229920001223 polyethylene glycol Polymers 0.000 claims description 3
- 229920000098 polyolefin Polymers 0.000 claims description 3
- 229920001955 polyphenylene ether Polymers 0.000 claims description 3
- 229920000069 polyphenylene sulfide Polymers 0.000 claims description 3
- 229920001296 polysiloxane Polymers 0.000 claims description 3
- 229920002223 polystyrene Polymers 0.000 claims description 3
- 229920002635 polyurethane Polymers 0.000 claims description 3
- 239000004814 polyurethane Substances 0.000 claims description 3
- 229920002689 polyvinyl acetate Polymers 0.000 claims description 3
- 239000011118 polyvinyl acetate Substances 0.000 claims description 3
- 239000005033 polyvinylidene chloride Substances 0.000 claims description 3
- 229920005989 resin Polymers 0.000 claims description 3
- 239000011347 resin Substances 0.000 claims description 3
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 claims description 3
- 239000004711 α-olefin Substances 0.000 claims description 3
- 239000004962 Polyamide-imide Substances 0.000 claims description 2
- 239000011159 matrix material Substances 0.000 claims description 2
- 229920002312 polyamide-imide Polymers 0.000 claims description 2
- 229920000379 polypropylene carbonate Polymers 0.000 claims description 2
- 239000004800 polyvinyl chloride Substances 0.000 claims description 2
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 2
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 claims 1
- 238000004806 packaging method and process Methods 0.000 abstract description 35
- 230000014759 maintenance of location Effects 0.000 abstract description 11
- 230000000903 blocking effect Effects 0.000 abstract description 3
- 230000001351 cycling effect Effects 0.000 abstract 1
- 230000002035 prolonged effect Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 285
- 239000003792 electrolyte Substances 0.000 description 15
- 230000000712 assembly Effects 0.000 description 12
- 238000000429 assembly Methods 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 11
- 239000007773 negative electrode material Substances 0.000 description 9
- 239000012530 fluid Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 239000007774 positive electrode material Substances 0.000 description 6
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 5
- 239000011888 foil Substances 0.000 description 5
- 238000009413 insulation Methods 0.000 description 5
- 229910003002 lithium salt Inorganic materials 0.000 description 5
- 159000000002 lithium salts Chemical class 0.000 description 5
- 229920001684 low density polyethylene Polymers 0.000 description 5
- 239000004702 low-density polyethylene Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 4
- UFRKOOWSQGXVKV-UHFFFAOYSA-N ethene;ethenol Chemical compound C=C.OC=C UFRKOOWSQGXVKV-UHFFFAOYSA-N 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 229910001416 lithium ion Inorganic materials 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 238000002834 transmittance Methods 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- 239000003125 aqueous solvent Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 239000011244 liquid electrolyte Substances 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 2
- BJWMSGRKJIOCNR-UHFFFAOYSA-N 4-ethenyl-1,3-dioxolan-2-one Chemical compound C=CC1COC(=O)O1 BJWMSGRKJIOCNR-UHFFFAOYSA-N 0.000 description 2
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 239000004831 Hot glue Substances 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 150000008065 acid anhydrides Chemical class 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- VUPKGFBOKBGHFZ-UHFFFAOYSA-N dipropyl carbonate Chemical compound CCCOC(=O)OCCC VUPKGFBOKBGHFZ-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- QKBJDEGZZJWPJA-UHFFFAOYSA-N ethyl propyl carbonate Chemical compound [CH2]COC(=O)OCCC QKBJDEGZZJWPJA-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000012943 hotmelt Substances 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 2
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- KKQAVHGECIBFRQ-UHFFFAOYSA-N methyl propyl carbonate Chemical compound CCCOC(=O)OC KKQAVHGECIBFRQ-UHFFFAOYSA-N 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- AFENDNXGAFYKQO-UHFFFAOYSA-N 2-hydroxybutyric acid Chemical compound CCC(O)C(O)=O AFENDNXGAFYKQO-UHFFFAOYSA-N 0.000 description 1
- MXFNFCTYWZJRLG-UHFFFAOYSA-N 4,4,5,5-tetrafluoro-1,3-dioxepan-2-one Chemical compound C1(OCCC(C(F)(F)O1)(F)F)=O MXFNFCTYWZJRLG-UHFFFAOYSA-N 0.000 description 1
- VUZHZBFVQSUQDP-UHFFFAOYSA-N 4,4,5,5-tetrafluoro-1,3-dioxolan-2-one Chemical compound FC1(F)OC(=O)OC1(F)F VUZHZBFVQSUQDP-UHFFFAOYSA-N 0.000 description 1
- CRJXZTRTJWAKMU-UHFFFAOYSA-N 4,4,5-trifluoro-1,3-dioxolan-2-one Chemical compound FC1OC(=O)OC1(F)F CRJXZTRTJWAKMU-UHFFFAOYSA-N 0.000 description 1
- AQJSPWIJMNBRJR-UHFFFAOYSA-N 4,5-difluoro-4-methyl-1,3-dioxolan-2-one Chemical compound CC1(F)OC(=O)OC1F AQJSPWIJMNBRJR-UHFFFAOYSA-N 0.000 description 1
- GKZFQPGIDVGTLZ-UHFFFAOYSA-N 4-(trifluoromethyl)-1,3-dioxolan-2-one Chemical compound FC(F)(F)C1COC(=O)O1 GKZFQPGIDVGTLZ-UHFFFAOYSA-N 0.000 description 1
- PYKQXOJJRYRIHH-UHFFFAOYSA-N 4-fluoro-4-methyl-1,3-dioxolan-2-one Chemical compound CC1(F)COC(=O)O1 PYKQXOJJRYRIHH-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- WCZQBTVUSNIENL-UHFFFAOYSA-N FC1OC(OC1)=O.C1(OCC(C)O1)=O Chemical compound FC1OC(OC1)=O.C1(OCC(C)O1)=O WCZQBTVUSNIENL-UHFFFAOYSA-N 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910015044 LiB Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910013528 LiN(SO2 CF3)2 Inorganic materials 0.000 description 1
- 229910012258 LiPO Inorganic materials 0.000 description 1
- 229910001228 Li[Ni1/3Co1/3Mn1/3]O2 (NCM 111) Inorganic materials 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229920001410 Microfiber Polymers 0.000 description 1
- QOSMNYMQXIVWKY-UHFFFAOYSA-N Propyl levulinate Chemical compound CCCOC(=O)CCC(C)=O QOSMNYMQXIVWKY-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HMDDXIMCDZRSNE-UHFFFAOYSA-N [C].[Si] Chemical compound [C].[Si] HMDDXIMCDZRSNE-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical compound FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 229910021385 hard carbon Inorganic materials 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 1
- DVATZODUVBMYHN-UHFFFAOYSA-K lithium;iron(2+);manganese(2+);phosphate Chemical compound [Li+].[Mn+2].[Fe+2].[O-]P([O-])([O-])=O DVATZODUVBMYHN-UHFFFAOYSA-K 0.000 description 1
- 239000003658 microfiber Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910021384 soft carbon Inorganic materials 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
- H01M50/457—Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/471—Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
- H01M50/474—Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by their position inside the cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/471—Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
- H01M50/48—Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by the material
Definitions
- the present application relates to the field of electrochemistry, and in particular to a separator for an electrochemical device, an electrochemical device and an electronic device.
- Electrochemical devices such as lithium-ion batteries have many advantages such as high volume and mass energy density, long cycle life, high nominal voltage, low self-discharge rate, small size, and light weight, and are widely used in consumer electronics.
- the electrochemical device adopts the internal series connection method of multiple cells to effectively increase the output voltage. It also has many advantages such as reducing the total heat generation of the cells, lowering the temperature rise, and being compatible with winding and lamination structures.
- the ion insulation function of each series cavity of an electrochemical device is realized through separators.
- the separators need to be connected to the outer packaging of the electrochemical device.
- the ion barrier properties of the separators themselves and the connection between the separators and the outer packaging will all be affected. Affects the ion insulation effect of two adjacent cavities in an electrochemical device.
- Embodiments of the present application provide a separator, an electrochemical device and an electronic device for an electrochemical device, which can solve the problem of difficulty in achieving ion insulation between two adjacent cavities in an electrochemical device.
- embodiments of the present application provide a separator for an electrochemical device, characterized in that the separator includes a plurality of first polymer layers arranged in a stack, and any two adjacent first polymer layers A polymer layer is connected on the surface; the thickness of the first polymer layer is h, 0.1 ⁇ m ⁇ h ⁇ 5 ⁇ m, and the number of the first polymer layers is n, n ⁇ 5.
- the number of first polymer layers in the separator is greater than 5, as the number of first polymer layers 110 increases, the energy density, cycle capacity retention rate, and drop performance of the separator are gradually improved; and while maintaining the separator, When the plate thickness is constant, the thinner the thickness of the first polymer layer, the better the energy density, cycle capacity retention rate and drop performance of the separator produced.
- the water vapor transmission rate of the separator is M, and M is less than or equal to 10 -3 g/(day ⁇ m 2 ). Controlling the water vapor permeability of the separator to meet the above requirements can prevent the mutual penetration of electrolytes and ions in the spaces on adjacent sides of the separator from affecting the electrical performance of the electrochemical device.
- the molecular chains of the polymer in the first polymer layer have a high degree of orientation, and the molecular chain orientation direction of the highly oriented polymer is perpendicular to the first polymerization layer of the multiple layers.
- the stacking direction of the physical layer; the molecular chain orientation degree of the polymer in the first polymer layer ranges from 50% to 100%. Therefore, after stacking multiple first polymer layers, a separator with high ion barrier properties in the direction in which the multiple first polymer layers are stacked is obtained.
- the orientation degree of the molecular chains of the polymer in each first polymer layer ranges from 62.5% to 100%.
- the thickness of the separator is H, and H ranges from 10 ⁇ m to 500 ⁇ m, preferably from 10 ⁇ m to 100 ⁇ m.
- the separator further includes a second polymer layer stacked with the first polymer layer, the second polymer layer has sealing properties, and the second polymer layer Connected to the surface of the first polymer layer located in the outer layer, and the melting point of the first polymer layer ranges from 100°C to 350°C, and the melting point of the second polymer layer ranges from 100°C to 200°C .
- the melting point of the first polymer layer is higher than the melting point of the second polymer layer, which facilitates control of the stability of the first polymer layer during processing, thereby effectively maintaining the ion barrier properties of the stacked layer of multiple first polymer layers.
- the second polymer layer covers the first polymer layer in a direction perpendicular to the stacking of multiple layers of the first polymer layer; or,
- the first polymer layer includes a middle portion and an edge portion surrounding the middle portion, and the second polymer layer covers the edge in a direction perpendicular to the lamination of multiple layers of the first polymer layer. part of the surface.
- the number of the second polymer layers is at least two layers, and in a direction perpendicular to the stacking direction of the plurality of first polymer layers, at least two layers of the second polymer layers They are arranged on opposite sides of the first polymer layer.
- At least one of the first polymer layer and the second polymer layer includes a barrier medium including graphene, hydrotalcite nanosheets, boehmite flakes Or at least one of the metal bases, by adding a barrier medium, the ion barrier properties of the separator are improved.
- the second polymer layer includes: polypropylene, polyethylene, polyester, ⁇ -phthalimido- ⁇ -hydroxybutyric acid, anhydride-modified polypropylene, ethylene At least one of copolymers, polyimides, polytetrafluoroethylene, polyvinylidene fluoride or derivatives of the above polymers;
- the first polymer layer includes: the first polymer layer includes: poly(alcohol terephthalate), vinylidene chloride-methyl acrylate copolymer, polyethylene, polypropylene, polyethylene terephthalate , ethylene-vinyl alcohol random copolymer, resin, polyacrylonitrile, polyvinylidene chloride, polyamide, polyurethane, polythiourea, polyethylene glycol, polyester, ⁇ -phthalimide- Copolymer of ⁇ -hydroxybutyric acid, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polyether ether ketone, polyimide, polyamide acyl Imine, polycarbonate, cyclic polyolefin, polyphenylene sulfide, polyvinyl acetate, polytetrafluoroethylene, polymethylenenaphthalene, polyvinylidene fluoride, polyethylene naphthalate, polycarbonate Propyl ester, vinyli
- the separator meets at least one of the following conditions:
- an electrochemical device including:
- An outer package the partition is provided in the outer package, and the partition is connected to the outer package to separate the internal space of the outer package into a plurality of first chambers;
- Electrolyte located in each of the first chambers
- a plurality of electrode assemblies are provided in each of the first chambers in contact with the electrolyte.
- embodiments of the present application provide an electronic device, which is characterized by including the electrochemical device as described above.
- the separator Based on the separator, electrochemical device and electrical equipment used in the electrochemical device according to the embodiment of the present application, multiple first polymer layers are superimposed, and the thickness, number of layers, and water vapor transmission rate of the first polymer layer are controlled.
- the separator is formed with equal parameters, and can exert a good ion blocking effect when the separator is used in an electrochemical device.
- the multiple first polymer layers in the separator can be hot-melt connected to the outer packaging of the electrochemical device to form a stable connection structure, making it difficult for the separator to be easily peeled off from the outer packaging, thereby effectively increasing the service life of the electrochemical device.
- the separator of the present application when used in an electrochemical device, it can also enable the electrochemical device to have good cycle capacity retention, energy density, and drop resistance.
- Figure 1 is a cross-sectional view of a separator including a plurality of stacked first polymer layers according to one embodiment of the application;
- Figure 2 is a cross-sectional view of a partition connected to an outer package according to an embodiment of the present application
- Figure 3a is a cross-sectional view of the second polymer layer completely covering the first polymer layer according to an embodiment of the application;
- Figure 3b is a cross-sectional view of the edge portion of the first polymer layer covered by the second polymer layer according to an embodiment of the application;
- Figure 4 is a cross-sectional view of a partition including a barrier medium according to one embodiment of the application.
- Figure 5 is a schematic three-dimensional structural diagram of an electrochemical device according to an embodiment of the application.
- Figure 6 is an exploded view of an electrochemical device according to an embodiment of the application.
- Figure 7 is a partial cross-sectional view of an electrochemical device according to an embodiment of the application.
- Electrode assembly 210. First electrode assembly; 220. Second electrode assembly;
- Positive electrode sheet 311. Positive electrode current collector; 312. Positive electrode active material;
- Negative electrode sheet 321. Negative electrode current collector; 322. Negative electrode active material;
- 700 Outer packaging; 700a. First chamber.
- FIG. 1 A schematic structural diagram of a separator 100 for an electrochemical device 10 according to an embodiment is applied. As shown in FIG. 2 , the separator 100 can be connected to the outer packaging 700 of the electrochemical device 10 to connect the outer packaging 700 of the electrochemical device 10 .
- the internal space is divided into a plurality of mutually independent first chambers 700a.
- the partition 100 has ion barrier properties to block ion migration in each first chamber 700a.
- the separator 100 includes a plurality of first polymer layers 110 arranged in a stack, and any two adjacent first polymer layers 110 are in contact with each other on their surfaces.
- the first polymer layer 110 includes a middle portion 101 , an edge portion 102 connecting the middle portion 101 , and the edge portion 102 surrounding the middle portion 101 .
- the middle part 101 of the first polymer layer 110 is accommodated in the inner space of the outer package 700 for blocking the isolator, and the edge part 102 of the first polymer layer 110 is used for sealing connection with the outer package 700 to seal the first polymer.
- Layer 110 is secured to outer packaging 700 of electrochemical device 10 .
- first polymer layers 110 can be stacked along the thickness direction to form the separator 100.
- the edge portion 102 of each first polymer layer 110 is thermally melted and connected to the outer packaging 700 of the electrochemical device 10 through heat treatment.
- the edge portions 102 of two adjacent first polymer layers 110 are also thermally connected.
- the middle portions 101 of two adjacent first polymer layers 110 are in direct contact, that is, there is a boundary between the middle portions 101 of two adjacent first polymer layers 110. When stacked, adjacent The middle portion 101 of the two first polymer layers 110 does not undergo chemical reaction to generate new substances.
- each first polymer layer 110 When stacking each first polymer layer 110, each first polymer layer 110 can be formed into a film and then stacked layer by layer, so that the surfaces of the middle portions 101 of two adjacent first polymer layers 110 are in contact with each other to form a separator. 100; Alternatively, equipment (such as plasticizing equipment) can also be used to cover the raw materials of the first polymer layer 110 in a flowing state onto the surface of the first polymer layer 110 of the previous layer, and then compound and superpose layer by layer to form. Then you will get 100 partitions.
- equipment such as plasticizing equipment
- each first polymer layer 110 is h, 0.1 ⁇ m ⁇ h ⁇ 5 ⁇ m
- the number of the first polymer layers 110 is n, n ⁇ 5
- the water vapor transmission rate of the separator 100 is M
- M is less than or equal to 10 -3 g/(day ⁇ m 2 ).
- controlling the water vapor transmittance of the separator 100 to meet the above requirements can also prevent water molecules in the chambers on adjacent sides of the separator 100 from crossing each other and cause the water content in the chamber to exceed the standard, effectively improving the stability of the electrochemical device 10 .
- the water vapor transmission rate M of the separator 100 is less than or equal to 10 -4 g/(day ⁇ m 2 ).
- the separator 100 in the embodiment of the present application is made by superposing the first polymer layers 110.
- the molecules in each first polymer layer 110 overlap with each other in the thickness direction of the separator 100 to prevent the separator from passing through. Therefore, the separator is required to be separated.
- the number of first polymer layers 110 in the plate 100 is multiple layers.
- the number of first polymer layers 110 is n ⁇ 50
- the thickness of each first polymer layer 110 is h ⁇ 20 ⁇ m.
- the separator 100 has better ion barrier properties, and at the same time, the separator 100 has good tensile resistance and flexibility, so that the separator 100 will not be easily damaged, especially near the connection between the separator 100 and the outer packaging 700 In the high-frequency bending area, the flexible partition 100 will not be easily bent and damaged.
- the thickness of the separator 100 is H, and the range of H is 10 ⁇ m-500 ⁇ m.
- H is 10 ⁇ m, 100 ⁇ m, 300 ⁇ m or 500 ⁇ m, etc., to prevent the separator 100 from being too thin and difficult to obtain good ion barrier properties and poor structural strength. Damage and preventing the separator 100 from being too thick takes up more space, resulting in an increase in the proportion of inactive materials in the electrochemical device 10 , which in turn results in a lower overall energy density of the electrochemical device 10 .
- Each first polymer layer 110 includes a polymer, and the molecular chain of the polymer in the first polymer layer 110 has a high degree of orientation, and the orientation direction of the main axis of the molecular chain of the highly oriented polymer is perpendicular to the multi-layer first polymerization.
- the stacking direction of the physical layer 110 that is, the thickness direction of the first polymer layer 110
- the isolator can be blocked in the direction in which the multiple first polymer layers 110 are stacked.
- the high degree of orientation of the polymer molecular chains in the first polymer layer 110 can be obtained in the process of preparing the first polymer layer 110.
- the spherulites of the polymer in the first polymer layer 110 can be stretched and deformed, so that The lamellar crystals that make up the spherulite are tilted and the crystal planes slip, until some of the folded molecular chains that are originally at an angle between the main axis and the orientation direction are stretched in the orientation direction into a linear or nearly linear microfiber structure, thus The molecular chains of the raw materials in the first polymer layer 110 are highly oriented.
- each first polymer layer 110 as described above
- the orientation direction of the molecular chains in 110 is the orientation direction of the main axes of most molecular chains in the first polymer layer 110 , that is, the orientation direction of the main axes of most molecular chains in the first polymer layer 110 is perpendicular to the multi-layered first polymer layer. 110° stacking direction.
- the orientation degree of the molecular chains of the polymer in each first polymer layer 110 ranges from 50% to 100%.
- first polymer layers 110 are stacked inside the separator 100.
- the thickness of two adjacent first polymer layers 110 may be the same or different.
- the types of polymers in the first polymer layer 110 may be the same or different.
- the orientation directions of the main axes of the molecular chains of the polymers in the two adjacent first polymer layers 110 may be the same or different.
- the orientation angles of the molecular chains may be the same or different.
- the degree can be the same or different. This application does not specifically limit the thickness of the two adjacent first polymer layers 110, the type of polymer, the orientation direction of the main axis of the molecular chain, the orientation angle of the molecular chain, and the degree of orientation. Choose according to actual needs.
- the separator 100 further includes a second polymer layer 120 stacked with the first polymer layer 110, and the second polymer layer 120 has sealing properties.
- the second polymer layer 120 is connected to the surface of the first polymer layer 110 located on the outer layer, so that the first polymer layer 110 is connected to the outer packaging 700 of the electrochemical device 10 through the second polymer layer 120 .
- the melting point of the first polymer layer 110 is higher than the melting point of the second polymer layer 120 , so that a suitable temperature can be selected for heat treatment, so that the second polymer layer 120 can be better connected to the outer packaging 700 and the first polymer layer 120 .
- the polymer layer 110 also facilitates controlling the melting degree of the first polymer layer 110, thereby effectively maintaining the ion barrier properties after stacking multiple first polymer layers 110.
- the melting point of the first polymer layer 110 ranges from 100°C to 350°C
- the melting point of the second polymer layer 120 ranges from 100°C to 200°C.
- the second polymer layer 120 is used to heat-melt and seal to connect the first polymer layer 110 and the outer packaging 700.
- the coverage area of the second polymer layer 120 can be adjusted to adjust the sealing effect.
- the second polymer layer 120 covers the first polymer layer 110, that is, the second polymer
- the layer 120 covers both the middle portion 101 and the edge portion 102 of the first polymer layer 110; or, as shown in Figure 3b, in a direction perpendicular to the stacking of multiple first polymer layers 110, the second polymer layer 120 covers the The surface of the edge portion 102 of the polymer layer 110 is such that the second polymer layer 120 only connects the first polymer layer 110 and the outer packaging 700 at the outer layer.
- the number of the second polymer layer 120 is at least two layers. Along the direction perpendicular to the stacking direction of the multiple first polymer layers 110 , a part of the second polymer layer 120 is stacked on one side of the first polymer layer 110 and the other side of the first polymer layer 110 . A portion of the second polymer layer 120 is laminated on the opposite side of the first polymer layer 110 . As shown in FIG. 3a and FIG. 3b, it is a schematic structural diagram of the second polymer layer 120 being arranged on two opposite sides of the first polymer layer 110 when the number of the second polymer layer 120 is two.
- At least one of the first polymer layer 110 and the second polymer layer 120 includes a barrier medium 103 selected from graphene, hydrotalcite nanosheets, boehmite sheets, or metal matrix. At least one of them to further improve the ion barrier properties of the separator 100 produced.
- the second polymer layer 120 includes: polypropylene, polyethylene, polyester, ⁇ -phthalimido- ⁇ -hydroxybutyric acid, anhydride-modified polypropylene, ethylene copolymer, polyimide, polytetraethylene At least one of vinyl fluoride, polyvinylidene fluoride or derivatives of the above polymers.
- the first polymer layer 110 includes: poly(alcohol terephthalate), vinylidene chloride-methyl acrylate copolymer, polyethylene, polypropylene, polyethylene terephthalate, random copolymer of ethylene-vinyl alcohol.
- the separator is treated at 150° C. for 1 hour, and the thermal shrinkage rate of the separator 100 is less than 2%, so that when the internal heat of the electrochemical device 10 is generated, The partition 100 can maintain its shape stability, thereby effectively maintaining the stability of the connection between the partition 100 and the outer package 700 .
- the thermal shrinkage rate of the separator 100 is 0%.
- the separator meets the requirement that the peeling force between two adjacent first polymer layers 110 is greater than or equal to 15 N/m, and there is a good connection between the two adjacent first polymer layers 110 Stable, it will not peel off easily after being placed in the electrochemical device 10.
- the separator 100 has a tensile strength greater than or equal to 18 MPa, and an elongation rate greater than or equal to 5%, so that the separator 100 will not easily break under repeated bending. , so that the partition can still maintain good barrier properties and divide the internal space of the electrochemical device 10 into a plurality of independent first chambers 700a.
- the tensile strength of the separator 100 is greater than 50 MPa, and the elongation of the separator 100 is greater than or equal to 20%.
- an electrochemical device 10 including an outer package 700, an electrolyte, a plurality of electrode assemblies 200, and the separator 100 as described above.
- the partition 100 is provided in the outer package 700.
- the partition 100 is used for sealing connection with the outer package 700 to separate the internal space of the outer package 700 into multiple independent first chambers 700a.
- Each first chamber 700a is provided with There is electrolyte and an electrode assembly 200, forming an independent electrochemical unit.
- the separator 100 is formed by stacking multiple first polymer layers 110, the edge portion 102 of the first polymer layer 110 located on the surface is connected to the outer packaging 700.
- the separator 100 also includes a second polymer layer At 120 , the edge portion 102 of the first polymer layer 110 located on the surface is connected to the outer packaging 700 through the second polymer layer 120 .
- the electrode assembly 200 includes a positive electrode sheet 310 , a negative electrode sheet 320 and a separator 400 .
- the separator 400 is disposed between the positive electrode sheet 310 and the negative electrode sheet 320 to block the positive electrode sheet 310 and the negative electrode sheet 320 and prevent the positive electrode sheet 310 from being connected to the negative electrode sheet 320 .
- the negative electrode plates 320 are in contact and short-circuited.
- the positive electrode sheet 310 includes a positive electrode current collector 311 and a positive electrode active material 312.
- the positive electrode active material 312 is provided on the surface of the positive electrode current collector 311.
- the negative electrode sheet 320 includes a negative electrode current collector 321 and a negative electrode active material 322.
- the negative electrode active material 322 is provided on the negative electrode current collector 321.
- the positive electrode sheet 310 and the negative electrode sheet 320 may be spaced apart from the separator 400 or attached to the separator 400 .
- the electrolyte is in contact with both the positive electrode sheet 310 and the negative electrode sheet 320 , and the electrolyte liquid penetrates into the separator 400 .
- Each electrode assembly 200 can lead to a positive electrode tab 510 and a negative electrode tab 520.
- the positive electrode tab 510 is electrically connected to the positive electrode current collector 311, and the negative electrode tab 520 is electrically connected to the negative electrode current collector 321.
- the positive electrode tab 510 of the first electrode assembly 210 and the negative electrode tab 520 of the second electrode assembly 220 are connected in series, and the negative electrode tab 520 of the first electrode assembly 210 and the second electrode assembly
- the positive tab 510 of 220 is the output tab, and the output voltage is the sum of the output voltages of the two electrochemical units.
- the positive electrode tab 510 and the negative electrode tab 520 of the electrode assembly 200 can be connected in series inside or outside the outer package 700 through direct welding or wire welding.
- the positive electrode sheet 310, the negative electrode sheet 320 and the separator 400 of the electrode assembly 200 may have a wound structure or a laminated structure.
- the structure of the electrode assembly 200 may be the same or different.
- the two electrochemical cells located on opposite sides of the separator 400 may be symmetrical or asymmetrical.
- the outer packaging 700 of the electrochemical device 10 can be made of hard or flexible material, and the positive electrode sheet 310 , the negative electrode sheet 320 and the separator 400 can be bonded and fixed in the outer packaging 700 .
- the positive electrode sheet 310 of the present application is not particularly limited.
- the positive electrode current collector 311 can be any positive electrode current collector 311 known in the art, such as aluminum foil, aluminum alloy foil or composite current collector, etc.
- the positive electrode active material 312 can be any positive electrode in the prior art. Active material 312.
- the positive active material 312 includes at least one of NCM811, NCM622, NCM523, NCM111, NCA, lithium iron phosphate, lithium cobalt oxide, lithium manganate, lithium iron manganese phosphate or lithium titanate.
- the negative electrode sheet 320 of the present application is not particularly limited.
- the negative electrode current collector 321 can be any negative electrode current collector 321 known in the art, such as copper foil, aluminum foil, aluminum alloy foil or composite current collector.
- the negative electrode active material 322 can be any existing negative electrode current collector. Any negative active material 322 of the technology, the negative active material 322 includes at least one of graphite, hard carbon, soft carbon, silicon, silicon carbon or silicon oxide.
- the electrolyte solution of the present application is not particularly limited, any electrolyte solution known in the art can be used, and the electrolyte solution can be in any of gel state, solid state, and liquid state.
- the electrolyte is a liquid electrolyte
- the liquid electrolyte includes a lithium salt and a non-aqueous solvent.
- the lithium salt is not particularly limited. Any lithium salt known in the art can be used as long as the purpose of the present application can be achieved.
- the lithium salt can include LiPF 6 , LiBF 4 , LiAsF 6 , LiClO 4 , LiB(C 6 H 5 ) 4 , LiCH 3 SO 3 , LiCF 3 SO 3 , LiN(SO2CF 3 ) 2 , LiC(SO 2 CF 3 ) 3 or LiPO 2 F 2 or the like.
- the non-aqueous solvent is not particularly limited as long as it can achieve the purpose of the present application.
- the non-aqueous solvent may include at least one of carbonate compounds, carboxylate compounds, ether compounds, nitrile compounds or other organic solvents, carbonic acid
- the ester compound may include diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl carbonate (DPC), methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC), methylethyl carbonate (MEC) ), ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), vinyl ethylene carbonate (VEC), fluoroethylene carbonate (FEC), 1,2-carbonate Difluoroethylene, 1,1-difluoroethylene carbonate, 1,1,2-trifluoroethylene carbonate, 1,1,2,2-tetrafluoroethylene carbonate, 1-fluoroethylene carbonate 2-Methylethylene carbonate, 1-fluoro-1-methylethylene carbonate, 1,2-difluoro-1-methylethylene carbonate, 1,1,2-trifluoro-2-
- the separator 400 of the present application is not particularly limited.
- the separator 400 may be made of materials that are stable to the electrolyte of the present application.
- the separator 400 should have ion conductivity to allow ions to pass through the separator 400 and move between the positive electrode sheet 310 and the negative electrode sheet 320.
- the separator 400 should also have electronic insulation to prevent the positive electrode sheet 310 and the negative electrode sheet 320 from contacting each other. Prevent the positive electrode piece 310 and the negative electrode piece 320 from being short-circuited.
- the embodiment of the present application also provides an electrical equipment, including the above electrochemical device 10.
- the electrical equipment may include a car, etc.
- Preparation of the negative electrode sheet 320 Mix the negative active material 322 graphite (Graphite), conductive carbon black (Super P), and styrene-butadiene rubber (SBR) in a weight ratio of 96:1.5:2.5, add deionized water as the solvent, and prepare slurry with a solid content of 0.7 and stir evenly.
- the slurry is evenly coated on the copper foil of the negative electrode current collector 321, dried at 110°C, and cut into specifications of (41mm ⁇ 61mm) to obtain a negative electrode sheet 320 coated with the negative electrode active material 322 on one side. Thereafter, the negative active material 322 is also coated on the back side of the negative current collector 321 in the same method, thereby obtaining a double-sided coated negative electrode sheet 320 .
- Preparation of the positive electrode sheet 310 Mix the positive electrode active material 312 lithium cobalt oxide (LiCoO 2 ), conductive carbon black (Super P), and polyvinylidene fluoride (PVDF) in a weight ratio of 97.5:1.0:1.5, and add N-methyl NMP was used as the solvent to prepare a slurry with a solid content of 0.75, and stirred evenly. The slurry is evenly coated on the aluminum foil of the positive electrode current collector 311, dried at 90°C, and cut into specifications of (38 mm ⁇ 58 mm) to obtain the positive electrode sheet 310.
- LiCoO 2 lithium cobalt oxide
- Super P conductive carbon black
- PVDF polyvinylidene fluoride
- Preparation of the electrode assembly 200 The positive electrode sheet 310, the negative electrode sheet 320 and the separator 400 are wound or stacked, and the positive electrode lug 510 is electrically connected to the positive electrode current collector 311 of the positive electrode sheet 310, and the negative electrode lug 520 is connected to the negative electrode current collector 320 of the negative electrode sheet 320.
- the fluids 321 are electrically connected to prepare the electrode assembly 200, and two electrode assemblies 200 (one of which is the first electrode assembly 210 and the other of which is the second electrode assembly 220) are prepared.
- the two electrode assemblies 200 are arranged in the length direction and the width direction. , thickness direction dimensions are the same.
- the positive electrode tab 510 is made of aluminum, and the negative electrode tab 520 is made of nickel.
- the positive electrode tab 510 and the negative electrode tab 520 are arranged toward the same side.
- Preparation of the separator 100 Add ion-insulating PET (polyterephthalic acid) to the plasticizing feeding device. After the PET becomes a uniform PET fluid under the action of the plasticizing feeding device, it is fed by the plasticizing feeding device. Enter the connector, enter the manifold through the connector, and evenly merge into a common flow channel in the manifold.
- the common flow channel of the collector is connected to the m branch channels of the stacker.
- the stacker also includes a main channel connected to the m branch channels.
- the main channel has a length and a width. In the length direction of the main channel, the m branch channels are One part is connected to one end of the main channel, and the other part is connected to the other end of the main channel.
- the entrances connecting the m branch channels to the main channel are arranged side by side, and before the m branch channels are connected to the main channel, Any two branch channels are independent of each other, and the PET fluid in each branch channel enters the main channel independently and flows to the flat main channel to form a multi-layer fluid. Then, the steps of cutting, flattening, and compounding are performed through a laminator, and then the above cutting, flattening, and compounding steps are repeated to obtain a plurality of laminated first polymer layers 110 of a specific thickness. By controlling the flow rate of PET fluid into the branch channel, the thickness of each PET layer can be controlled.
- each PET layer unfolds and tiles the main channel By controlling the direction of the PET fluid entering the main channel from the branch channel, the direction in which each PET layer unfolds and tiles the main channel can be controlled.
- the spherulites of the polymer in each first polymer layer 110 are stretched and deformed, so that the PET molecular chains of each first polymer layer 110 have a high degree of orientation.
- a second polymer layer 120 is respectively provided on the outer surface of the two first polymer layers 110 located on the surface layer.
- the second polymer layer 120 includes PP (polypropylene).
- the second polymer layer 120 can be prepared by using a laminator on the outside based on the above-mentioned plurality of stacked first polymer layers 110. That is, adding PP to the plasticizing feeding device to form a PP fluid, the outermost layer is PP fluid is superimposed on the surface of the PET layer to form the second polymer layer 120. After each first polymer layer 110 and each second polymer layer 120 are uniformly formed, the stacked first polymer layer 110 and second polymer layer 120 are formed.
- the layer 120 is simultaneously stretched and taken out along the length direction of the main channel, and the separator 100 can be obtained.
- the second polymer layer 120 is compounded on the surface of the first polymer layer 110 by casting to prepare the separator 100.
- Two outer packages 700 are provided.
- the outer packages 700 are stamped from an aluminum plastic film with a thickness of 150 ⁇ m to form a structure with pits.
- the first electrode assembly 210 is placed in the pit of one of the outer packages 700.
- the separator 100 covers the first electrode assembly 210. Pressure is applied to preliminarily press the separator 100 and the outer package 700 into shape, so that one side of the separator 100
- the second polymer layer 120 is connected to the outer packaging 700 . Then place the second electrode assembly 220 on the separator 100, cover the second electrode assembly 220 with another outer package 700 pitted downward, place the separator 100 between the two outer packages 700, and apply pressure on both sides.
- the partition 100 divides the spaces inside the two outer packages 700 into two independent first chambers 700a.
- the positive electrode tabs 510 and the negative electrode tabs 520 of the two electrode assemblies 200 both extend out of the outer packaging 700 to obtain a preformed product.
- Liquid injection and sealing separately inject electrolyte into each first chamber 700a through the opening on each outer package 700, and after the liquid injection is completed, seal the opening of the outer package 700.
- Series connection Fit the positive electrode tab 510 of one electrode assembly 200 to the negative electrode tab 520 of the other electrode assembly 200 and fix it by welding to connect the two electrode assemblies 200 in series to obtain an electrochemical device with two electrochemical units. 10.
- the electrochemical device 10 can be charged and discharged by connecting the unsoldered positive electrode tab 510 and the negative electrode tab 520 in the electrochemical device 10 . By connecting the two tabs welded together, the voltage within the electrochemical device 10 can be monitored.
- the separator 100 uses PET in the first polymer layer 110 to achieve ion isolation, and the PP in the second polymer layer 120 is sealed with the outer packaging 700.
- the corresponding packaging temperature of the second polymer layer 120 is 120°C
- the melting point of the first polymer layer 110 is 260°C
- the number of the first polymer layers 110 in the separator 100 is 8
- the thickness of each first polymer layer 110 is 1 ⁇ m
- the thickness of the separator 100 is 1 ⁇ m
- the total thickness of the separator 100 is 10 ⁇ m.
- the average orientation angle of the PET molecular chains of the first polymer layer 110 in the separator 100 is 15°, and the orientation degree is 0.9.
- the thermal shrinkage rate of the separator 100 is 0%, the peeling force between two adjacent first polymer layers 110 is 20 N/m, the tensile strength of the separator 100 is 18 MPa, and the elongation rate of the separator 100 is 5%.
- Example 1 The difference from Example 1 is that the number of first polymer layers 110 in the separator 100 is 48, the total thickness of the separator 100 is 50 ⁇ m, the tensile strength of the separator 100 is 30 MPa, and the elongation of the separator 100 is 10%.
- Example 1 The difference from Example 1 is that the number of first polymer layers 110 in the separator 100 is 98 layers, the total thickness of the separator 100 is 100 ⁇ m, the tensile strength of the separator 100 is 50 MPa, and the elongation of the separator 100 is 20%.
- Embodiment 1 The difference from Embodiment 1 is that the number of first polymer layers 110 in the separator 100 is 498, the total thickness of the separator 100 is 500 ⁇ m, the tensile strength of the separator 100 is 80 MPa, and the elongation of the separator 100 is 35%.
- each first polymer layer 110 in the separator 100 is 0.1 ⁇ m
- the number of the first polymer layers 110 is 980 layers
- the thickness of each second polymer layer 120 is 1 ⁇ m.
- the total thickness of the plate 100 is 100 ⁇ m
- the average orientation angle of the PET molecular chains of the first polymer layer 110 in the separator 100 is 5°
- the orientation degree is 0.99
- the tensile strength of the separator 100 is 100MPa
- the elongation rate of the separator 100 is 60 %.
- each first polymer layer 110 in the separator 100 is 5 ⁇ m
- the number of the first polymer layers 110 is 20 layers
- the thickness of the second polymer layer 120 is 1 ⁇ m
- the separator 100 The total thickness is 102 ⁇ m
- the average orientation angle of the PET molecular chains of the first polymer layer 110 in the separator 100 is 20°
- the orientation degree is 0.82
- the tensile strength of the separator 100 is 35MPa
- the elongation of the separator 100 is 15%.
- each first polymer layer 110 in the separator 100 is 20 ⁇ m
- the number of the first polymer layers 110 is 5 layers
- the thickness of the second polymer layer 120 is 1 ⁇ m
- the separator 100 The total thickness is 102 ⁇ m
- the average orientation angle of the PET molecular chains of the first polymer layer 110 in the separator 100 is 29°
- the orientation degree is 0.65
- the tensile strength of the separator 100 is 23MPa
- the elongation of the separator 100 is 10%.
- Example 3 The difference from Example 3 is that the thermal shrinkage rate of the separator 100 is 1%.
- Example 3 The difference from Example 3 is that the peeling force between two adjacent first polymer layers 110 is 15 N/m, and the elongation of the separator 100 is 17%.
- Example 3 The difference from Example 3 is that the peeling force between two adjacent first polymer layers 110 is 25 N/m, and the elongation of the separator 100 is 22%.
- the first polymer layer 110 in the separator 100 includes PE, and PE realizes ion barrier.
- the melting point of the first polymer layer 110 is 260°C.
- the two adjacent first polymer layers 110 The peeling force between them is 25N/m, the tensile strength of the separator 100 is 45MPa, and the elongation of the separator 100 is 24%.
- the first polymer layer 110 in the separator 100 includes PET, PE and EVOH (random copolymer of ethylene-vinyl alcohol), and the ion barrier is realized by PET, PE and EVOH.
- the first polymerization The melting point of the polymer layer 110 is 260° C., the peeling force between two adjacent first polymer layers 110 is 25 N/m, the tensile strength of the separator 100 is 52 MPa, and the elongation of the separator 100 is 23%.
- the second polymer layer 120 in the separator 100 includes PE, which is sealingly connected to the outer packaging 700.
- the melting point of the second polymer layer 120 is 150°C, and the tensile strength of the separator 100 is 54MPa, the separator 100 elongation is 23%.
- the first polymer layer 110 in the separator 100 also includes a barrier medium 103.
- the barrier medium 103 includes hydrotalcite nanosheets with a mass fraction of 20%, consisting of PET, PE, EVOH and hydrotalcite nanosheets achieve ion barrier, the tensile strength of the separator 100 is 54MPa, and the elongation of the separator 100 is 22%.
- Embodiment 12 The difference from Embodiment 12 is:
- Three electrode assemblies 200 and two separators 100 are prepared.
- the electrochemical device 10 When the electrochemical device 10 is assembled, two outer packages 700 are provided, the first electrode assembly 210 is placed in the pit of one of the outer packages 700, the first separator 100 covers the first electrode assembly 210, and pressure is applied to separate the separator 100 Preliminarily press-forming with the outer package 700 to connect the second polymer layer 120 on one side of the separator 100 to the outer package 700 .
- the two outer packages 700 are butted together so that the above three electrode assemblies 200 are placed in the internal spaces of the two outer packages 700 and the above two partitions 100 are placed between the two outer packages 700 During the period, pressure is applied to the two outer packages 700, and the second polymer layer 120 of each separator 100 is hot-pressed at 120°C until it is sealingly connected to the two outer packages 700, and the two separators 100 are sealedly connected. .
- the above-mentioned two partitions 100 divide the space inside the two outer packages 700 into three independent first chambers 700a.
- the positive electrode tabs 510 and the negative electrode tabs 520 of the two electrode assemblies 200 both extend out of the outer packaging 700 .
- Liquid injection Inject electrolyte into each first chamber 700a through the opening on each outer package 700. After the liquid injection is completed, the opening of the outer package 700 is sealed.
- the separator 100 uses PET in the first polymer layer 110 to achieve ion isolation, and the PP in the second polymer layer 120 is sealed with the outer packaging 700.
- the corresponding packaging temperature of the second polymer layer 120 is 120°C
- the melting point of the first polymer layer 110 is 260°C
- the number of the first polymer layers 110 in the separator 100 is 10 layers
- the thickness of each first polymer layer 110 is 1 ⁇ m
- the total thickness of the separator 100 is 10 ⁇ m.
- the average orientation angle of the PET molecular chains of the first polymer layer 110 in the separator 100 is 15°
- the orientation degree is 0.9.
- the thermal shrinkage rate of the separator 100 is 0%, the peeling force between two adjacent first polymer layers 110 is 20 N/m, the tensile strength of the separator 100 is 18 MPa, and the elongation rate of the separator 100 is 5%.
- the thickness of the first polymer layer 110 in the separator 100 includes two types: 1 ⁇ m and 0.5 ⁇ m, the number of the first polymer layers 110 is 150 layers, and the total thickness of the separator 100 is 100 ⁇ m.
- the average orientation angle of the PET molecular chains of the first polymer layer 110 in the separator 100 is 12°, the orientation degree is 0.94, the tensile strength of the separator 100 is 53MPa, and the elongation of the separator 100 is 22%.
- the separator 100 does not include the second polymer layer 120, and a hot melt adhesive is provided on the surface of the first polymer layer 110, and is connected to the outer packaging 700 through a hot melt seal, where the hot melt adhesive
- the melting point of the glue is lower than the melting point of the first polymer layer 110 .
- the separator 100 only includes a first polymer layer 110 , and the first polymer layer 110 is directly adhesively and sealingly connected to the outer packaging 700 .
- the thickness of the first polymer layer 110 is 100 ⁇ m, that is, the total thickness of the separator 100 is 100 ⁇ m.
- the average orientation angle of the PET molecular chains of the first polymer layer 110 in the separator 100 is 50° and the orientation degree is 0.12.
- the separator 100 The thermal shrinkage rate is 2%, the tensile strength of the separator 100 is 10 MPa, and the elongation rate of the separator 100 is 4%.
- the difference from Embodiment 3 is that the number of first polymer layers 110 in the separator 100 is three, the thickness of each first polymer layer 110 is 100 ⁇ m, and the total thickness of the separator 100 is 300 ⁇ m.
- the average orientation angle of the PET molecular chains of the first polymer layer 110 in the separator 100 is 50°, and the orientation degree is 0.12.
- the thermal shrinkage rate of the separator 100 is 1%, the peeling force between two adjacent first polymer layers 110 is 2N/m, the tensile strength of the separator 100 is 20MPa, and the elongation rate of the separator 100 is 10%.
- the first polymer layer 110 includes low-density polyethylene, the low-density polyethylene in the first polymer layer 110 achieves ion barrier, and the PP in the second polymer layer 120 and the outer packaging 700 sealed connection.
- the melting point of the first polymer layer 110 in the separator 100 is lower than the melting point of the second polymer layer 120.
- the melting point of the first polymer layer 110 is 110°C
- the melting point of the second polymer layer 120 that is, the packaging temperature
- the number of first polymer layers 110 in the separator 100 is 100
- the thickness of each first polymer layer 110 is 1 ⁇ m
- the total thickness of the separator 100 is 100 ⁇ m.
- the average orientation angle of the PET molecular chains of the first polymer layer 110 in the separator 100 is 15°
- the orientation degree is 0.9.
- the thermal shrinkage rate of the separator 100 is 5%
- the peeling force between two adjacent first polymer layers 110 is 20 N/m
- the tensile strength of the separator 100 is 30 MPa
- the elongation rate of the separator 100 is 15%.
- Water vapor transmittance test Put the prepared separator 100 into a water vapor transmittance tester, and detect the water vapor transmittance of the separator 100 at 38°C and 90% RH.
- 100 cycle capacity retention rate The number of internal series electrode components is n.
- the electrochemical device 10 is charged from 3.0 ⁇ nV to 4.4 ⁇ nV at a charging rate of 2C in an environment of 25°C, and then discharged at a discharge rate of 0.2C. to 3.0 ⁇ nV, determine this discharge capacity as the first discharge capacity, repeat the above charge and discharge cycle 100 times, and measure the discharge capacity of the 100th discharge.
- the 100th cycle capacity retention rate 100th discharge capacity/first discharge capacity.
- ⁇ is the orientation degree of the polymer chain in the polymer sample along the tensile direction of the sample
- H° is the half-height width of the Debye ring intensity distribution curve on the equatorial line.
- the number of internal series-connected electrode components is n.
- the electrochemical device 10 is left at 25°C for 30 minutes, charged with a constant current at a charging rate of 0.05C to a voltage of 4.45 ⁇ nV, and then the electrochemical device is charged at a rate of 0.05C.
- the device 10 is discharged to 3.00 ⁇ n, and the above charging/discharging steps are repeated for 3 cycles to complete the formation of the electrochemical device 10 to be tested.
- Comparative Example 2 when three layers of the first polymer layer 110 are stacked, although compared with Comparative Example 1, when the separator 100 is applied to an electrochemical device, the energy density, cycle capacity retention rate, and drop performance are somewhat different. However, the thickness of each first polymer layer 110 is relatively large, and the peeling force between two adjacent first polymer layers 110 is small, making it easy to peel off between two adjacent first polymer layers 110 and difficult to The stability of the partition 100 is maintained. In Examples 1-17, the separator 100 prepared by laminating multiple first polymer layers 110 has excellent peeling force, and the separator 100 has good stability.
- the first polymer layer 110 includes low-density polyethylene
- the second polymer layer 120 includes PP.
- the melting point of low-density polyethylene is lower than the melting point of PP.
- a multi-layer low-density polyethylene first polymer is used.
- Comparative Example 3 in which 110 separators are stacked. When the separators are used in electrochemical devices, the energy density, cycle capacity retention rate, and drop performance are all improved compared to Comparative Example 1; but compared with the first polymer It can be seen from Example 3 that the melting point of the first polymer layer is higher than that of the second polymer layer, and the reliability of the electrochemical device will be affected to a certain extent.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Cell Separators (AREA)
- Secondary Cells (AREA)
Abstract
本申请公开了一种用于电化学装置的隔板、电化学装置及用电设备。隔板包括多层叠加的第一聚合物层,控制第一聚合物层的厚度、层数、水汽透过率等参数,在隔板应用于电化学装置内时能够发挥良好的离子阻隔效果。隔板内的多层第一聚合物层可与电化学装置的外包装热熔连接,形成稳定的连接结构,使隔板不易轻易与外包装剥离,从而有效提高电化学装置的使用寿命。本申请的隔板应用于电化学装置,还可使电化学装置具有良好的循环容量保持率、能量密度、抗跌落性能。
Description
本申请涉及电化学领域,尤其涉及一种用于电化学装置的隔板、电化学装置及电子装置。
电化学装置例如锂离子电池具有体积和质量能量密度大、循环寿命长、标称电压高、自放电率低、体积小、重量轻等许多优点,在消费电子领域具有广泛的应用。电化学装置采用多电芯内部串联的方法可有效提高输出电压,同时还具有减小电芯总产热,降低温升,并兼容卷绕和叠片结构等诸多优点。
在对多个电芯做串联组装时,需要实现各串联腔体间的离子绝缘功能,避免填充电解液后不同腔体内的阴阳极发生短路,同时规避液态电解液在高电压下分解失效后对相邻腔体的干扰。相关技术中,通过隔板实现电化学装置各串联腔体的离子绝缘功能,隔板需与电化学装置的外包装连接,隔板自身以及隔板与外包装连接处的离子阻隔性,都将影响电化学装置内相邻两个腔体的离子绝缘效果。
发明内容
本申请实施例提供一种电化学装置的隔板、电化学装置及电子装置,能够解决电化学装置内难以实现相邻两个腔体离子绝缘的问题。
第一方面,本申请实施例提供了一种用于电化学装置的隔板,其特征在于,所述隔板包括多个层叠设置的第一聚合物层,任意相邻的两个所述第一聚合物层表面连接;所述第一聚合物层的厚度为h,0.1μm≤h≤5μm,所述第一聚合物层的数量为n,n≥5。其中,隔板内第一聚合物层数量大于5时,随着第一聚合物层110的数量增加,制得的隔板能量密度、循环容量保持率、跌落性能均逐步提升;以及在维持隔板厚度一定的情况下,第一聚合物层厚度越薄,制得的隔板能量密度、循环容量保持率、跌落性能则越好。
在一些示例性的实施例中,所述隔板的水汽透过率为M,且M小于或等于10
-3g/(day·m
2)。控制隔板的水汽透过率满足上述要求,可以防止隔板相邻两侧空间内电解液及离子的相互渗透对电化学装置电性能的影响。
在一些示例性的实施例中,所述第一聚合物层内聚合物的分子链具有高度取向性,具有高 度取向性的所述聚合物的分子链取向方向垂直于多层所述第一聚合物层的层叠方向;所述第一聚合物层内聚合物的分子链取向度范围为50%至100%。从而在叠加多层第一聚合物层后,得到在多层第一聚合物层层叠的方向具有高离子阻隔性的隔板。
在一些示例性的实施例中,各所述第一聚合物层内聚合物的分子链的,取向度范围为62.5%至100%。
在一些示例性的实施例中,所述隔板的厚度为H,H的范围为10μm-500μm,优选10μm-100μm。
在一些示例性的实施例中,所述隔板还包括与所述第一聚合物层层叠设置的第二聚合物层,所述第二聚合物层具有密封性,所述第二聚合物层连接于位于外层的所述第一聚合物层的表面,且所述第一聚合物层的熔点范围为100℃至350℃,所述第二聚合物层的熔点范围为100℃至200℃。第一聚合物层的熔点高于第二聚合物层的熔点,便于控制第一聚合物层在加工过程中过的稳定性,从而有效维持多个第一聚合物层的叠加层的离子阻隔性。
在一些示例性的实施例中,在垂直于多层所述第一聚合物层层叠的方向,所述第二聚合物层覆盖所述第一聚合物层;或,
所述第一聚合物层包括中间部分、围设于所述中间部分外围的边缘部分,在垂直于多层所述第一聚合物层层叠的方向,所述第二聚合物层覆盖所述边缘部分的表面。
在一些示例性的实施例中,所述第二聚合物层的数量为至少两层,沿垂直于多层所述第一聚合物层层叠的方向,至少两层的所述第二聚合物层分设于所述第一聚合物层相对的两侧。
在一些示例性的实施例中,所述第一聚合物层和所述第二聚合物层中的至少一种包括阻隔介质,所述阻隔介质包括石墨烯、水滑石纳米片、勃姆石片或金属基中的至少一种,通过添加阻隔介质,提高隔板的离子阻隔性。
在一些示例性的实施例中,所述第二聚合物层包括:聚丙烯、聚乙烯、聚酯、γ-邻苯二甲酰亚氨基-α-羟基丁酸、酸酐改性聚丙烯、乙烯共聚物、聚酰亚胺、聚四氟乙烯、聚偏二氟乙烯或上述聚合物的衍生物中的至少一种;
所述第一聚合物层包括:所述第一聚合物层包括:聚对苯甲酸醇酯、偏氯乙烯-丙烯酸甲酯共聚物、聚乙烯、聚丙烯、聚对苯二甲酸乙二醇酯、乙烯-乙烯醇的无规共聚物、树脂、聚丙烯腈、聚偏二氯乙烯、聚酰胺、聚氨酯、聚硫脲、聚乙二醇、聚酯、γ-邻苯二甲酰亚氨基-α-羟基丁酸的共聚物、聚对苯二甲酸亚乙酯、聚对苯二甲酸丁二醇酯、聚萘二甲酸乙二醇酯、聚醚醚酮、聚酰亚胺、聚酰胺酰亚胺、聚碳酸酯、环状聚烯烃、聚苯硫醚、聚乙酸乙烯酯、聚四氟乙烯、聚亚甲基萘、聚偏二氟乙烯、聚萘二甲酸亚乙酯、聚碳酸亚丙酯、偏二氟乙烯-六氟丙烯的共聚物、偏二氟乙烯-共-三氟氯乙烯的共聚物、有机硅、维尼纶、尼龙、酸酐改性聚 丙烯、乙烯共聚物、聚氯乙烯、聚苯乙烯、类聚烯烃、聚醚腈、聚苯醚、聚砜、非晶态α-烯烃共聚物或上述聚合物的衍生物中的至少一种。
在一些示例性的实施例中,所述隔板满足如下条件中的至少一种:
(a)150℃条件下处理1h,所述隔板的热收缩率小于2%;
(b)相邻两层所述第一聚合物层的剥离力大于或等于15N/m;
(c)所述隔板的拉伸强度大于或等于18Mpa;
(d)所述隔板的延伸率大于或等于5%。
第二方面,本申请实施例提供了一种电化学装置,包括:
如上所述的隔板;
外包装,所述隔板设于所述外包装内,且所述隔板连接于所述外包装,以将所述外包装的内部空间分隔出多个第一腔室;
电解液,设于各所述第一腔室;
多个电极组件,对应设于各所述第一腔室与所述电解液相接触。
第三方面,本申请实施例提供了一种电子装置,其特征在于,包括如上所述的电化学装置。
基于本申请实施例的用于电化学装置的隔板、电化学装置及用电设备,采用多层第一聚合物层叠加,并控制第一聚合物层的厚度、层数、水汽透过率等参数形成隔板,在隔板应用于电化学装置内时能够发挥良好的离子阻隔效果。隔板内的多层第一聚合物层可与电化学装置的外包装热熔连接,形成稳定的连接结构,使隔板不易轻易与外包装剥离,从而有效提高电化学装置的使用寿命。本申请的隔板应用于电化学装置,还可使电化学装置具有良好的循环容量保持率、能量密度、抗跌落性能。
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为申请一种实施例的隔板包括多个层叠的第一聚合物层的剖视图;
图2为本申请一种实施例的隔板连接于外包装的剖视图;
图3a为申请一种实施例的第二聚合物层全部覆盖第一聚合物层的剖视图;
图3b为申请一种实施例的第二聚合物层覆盖第一聚合物层的边缘部分的剖视图;
图4为申请一种实施例的隔板包括阻隔介质的剖视图;
图5为申请一种实施例的电化学装置的立体结构示意图;
图6为申请一种实施例的电化学装置的爆炸图;
图7为申请一种实施例的电化学装置的局部剖视图。
附图标记:
10、电化学装置;
100、隔板;110、第一聚合物层;120、第二聚合物层;
101、中间部分;102、边缘部分;103、阻隔介质
200、电极组件;210、第一电极组件;220、第二电极组件;
310、正极片;311、正极集流体;312、正极活性材料;
320、负极片;321、负极集流体;322、负极活性材料;
400、隔膜;
510、正极耳;520、负极耳;
700、外包装;700a、第一腔室。
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
发明人发现,电化学装置中,单独采用聚合物层作为隔板时,聚合物本身的阻隔性能有限,难以发挥有效的阻隔效果。同时还需注意隔板内部、隔板与外包装等多处的粘接强度,防止粘接力有限存在老化剥离的风险,进而导致电解液渗透至剥离后的两层结构之间,甚至渗透到外部,存在安全隐患,影响电化学装置的使用寿命。为解决上述问题,本申请实施例提供了一种用于电化学装置的隔板、电化学装置及用电设备。
需要说明的是,本申请的具体实施方式中,以锂离子电池作为电化学装置的例子来解释本申请,但是本申请的电化学装置并不仅限于锂离子电池,如图1所示,为本申请一种实施例的用于电化学装置10的隔板100的结构示意图,如图2所示,隔板100能够与电化学装置10的外包装700连接,将电化学装置10外包装700的内部空间分隔成多个相互独立的第一腔室700a。隔板100具有离子阻隔性,以阻隔各第一腔室700a内的离子迁移。
隔板100包括多个层叠设置的第一聚合物层110,任一相邻两个第一聚合物层110表面相接。第一聚合物层110包括中间部分101、连接中间部分101的边缘部分102,且边缘部分102围绕中间部分101。第一聚合物层110的中间部分101容置于外包装700的内部空间,用于阻 隔离子,第一聚合物层110的边缘部分102用于与外包装700密封连接,以将第一聚合物层110固定于电化学装置10的外包装700。
组装时,可将多层第一聚合物层110沿厚度方向层叠,形成隔板100,热处理将各第一聚合物层110的边缘部分102热熔后与电化学装置10的外包装700连接,同时,相邻两层第一聚合物层110的边缘部分102也热熔连接。需要说明的是,其中,相邻两层第一聚合物层110的中间部分101直接接触,也即相邻两层第一聚合物层110的中间部分101之间存在界限,层叠时,相邻两层第一聚合物层110的中间部分101未进行化学反应生成新的物质。层叠各第一聚合物层110时,可将各第一聚合物层110成膜后逐层叠加,以使相邻两层第一聚合物层110的中间部分101表面贴合,以形成隔板100;或者,也可采用设备(例如塑化设备),将各呈流动状态的第一聚合物层110的原料覆盖至上一层的第一聚合物层110的表面,在逐层复合叠加,成型后即获得隔板100。
其中,各第一聚合物层110的厚度为h,0.1μm≤h≤5μm,且第一聚合物层110的数量为n,n≥5,以及隔板100的水汽透过率为M,且M小于或等于10
-3g/(day·m
2),在满足上述条件的情况下,隔板100具有良好的离子阻隔性,隔板100与电化学装置10的外包装700连接能够形成稳定的连接结构,并使隔板100不会轻易与外包装700剥离。另外,控制隔板100的水汽透过率满足上述要求,还可防止隔板100相邻两侧腔室内的水分子互串导致的腔室内水含量超标,有效提高电化学装置10使用的稳定性。优选地,隔板100的水汽透过率M小于或等于10
-4g/(day·m
2)。
本申请实施例的隔板100通过第一聚合物层110叠加制得,各层第一聚合物层110内的分子在隔板100厚度方向上相互交叠,以阻隔离子穿过,因此要求隔板100内第一聚合物层110的数量为多层,优选地,第一聚合物层110的数量n≥50,各第一聚合物层110的厚度h≤20μm,如此,可使制得的隔板100具有更为良好的离子阻隔性,同时使制得的隔板100具有良好的抗拉伸和柔性,使隔板100不会轻易破损,尤其隔板100与外包装700连接处附近的高频率弯折区域,具有柔性的隔板100不会轻易弯折破损。
进一步地,隔板100的厚度为H,H的范围为10μm-500μm,例如H为10μm、100μm、300μm或500μm等,防止隔板100过薄难以获得较好的离子阻隔性以及结构强度差容易破损,以及防止隔板100过厚占用较多的空间,导致电化学装置10内的非活性物质占比增大,进而导致电化学装置10整体能量密度较低。
各第一聚合物层110包括聚合物,且第一聚合物层110内聚合物的分子链具有高度取向性,具有高度取向性的聚合物的分子链主轴的取向方向垂直于多层第一聚合物层110的层叠方向(也即第一聚合物层110的厚度方向),从而在多层第一聚合物层110相互叠加后,能够在多 层第一聚合物层110层叠的方向阻隔离子。第一聚合物层110内聚合物分子链的高度取向性可在制备第一聚合物层110的过程中获得,例如,可将第一聚合物层110内聚合物的球晶拉伸形变,使组成球晶的片晶之间发生倾斜,晶面滑移,直到部分原来主轴与取向方向呈夹角的折叠分子链在取向方向被拉伸成为直链或趋近直链的微纤结构,从而使第一聚合物层110内原料的分子链具有高度取向性。
可以理解的是,各层第一聚合物层110内聚合物分子数量庞大,难以将第一聚合物层110内全部分子的分子链定向拉伸,因此,如上所述的各第一聚合物层110内分子链的取向方向为第一聚合物层110内大部分分子链主轴的取向方向,也即第一聚合物层110内大部分分子链主轴的取向方向垂直于多层第一聚合物层110的层叠方向。在一些示例性的实施例中,各第一聚合物层110内聚合物的分子链的取向度范围为50%至100%。
隔板100内叠加多层第一聚合物层110,在一些示例性的实施例中,相邻两层第一聚合物层110的厚度可相同也可不同,相邻两层第一聚合物层110内聚合物的种类可相同也可不同,相邻两层第一聚合物层110内聚合物的分子链主轴的取向方向可相同也可不同、分子链的取向角可相同也可不同、取向度可相同也可不同,本申请对相邻两层第一聚合物层110的厚度、聚合物的种类、分子链主轴的取向方向、分子链的取向角、取向度均不作具体限定,具体可根据实际需求进行选择。
如图3a和图3b所示,在一些示例性的实施例中,隔板100还包括与第一聚合物层110层叠设置的第二聚合物层120,第二聚合物层120具有密封性,第二聚合物层120连接于位于外层的第一聚合物层110的表面,以使第一聚合物层110通过第二聚合物层120与电化学装置10的外包装700连接。进一步地,第一聚合物层110的熔点高于第二聚合物层120的熔点,以便于选择合适的温度进行热处理,使第二聚合物层120可以更好连接于与外包装700和第一聚合物层110,也便于控制第一聚合物层110的熔融程度,从而有效维持多层第一聚合物层110叠加后的离子阻隔性。可选地,第一聚合物层110的熔点范围为100℃-350℃,第二聚合物层120的熔点范围为100℃-200℃。
第二聚合物层120用于热熔密封连接第一聚合物层110和外包装700,可调节第二聚合物层120的覆盖面积以调控密封效果。在一些示例性的实施例中,在垂直于多层第一聚合物层110层叠的方向,如图3a所示,第二聚合物层120覆盖第一聚合物层110,也即第二聚合物层120同时覆盖第一聚合物层110的中间部分101和边缘部分102;或者,如图3b所示,在垂直于多层第一聚合物层110层叠的方向,第二聚合物层120覆盖第一聚合物层110的边缘部分102的表面,以使第二聚合物层120仅于外层连接第一聚合物层110和外包装700。
第二聚合物层120的数量为至少两层,沿垂直于多层第一聚合物层110层叠的方向,其中 一部分的第二聚合物层120层叠于第一聚合物层110其中一侧、另一层部分的第二聚合物层120层叠于第一聚合物层110相对的另一侧。如图3a和图3b所示,为第二聚合物层120的数量为两层时,分设于第一聚合物层110相对两侧的结构示意图。
如图4所示,第一聚合物层110和第二聚合物层120中的至少一种包括阻隔介质103,阻隔介质103选自石墨烯、水滑石纳米片、勃姆石片或金属基中的至少一种,以进一步提高制得的隔板100的离子阻隔性。
第二聚合物层120包括:聚丙烯、聚乙烯、聚酯、γ-邻苯二甲酰亚氨基-α-羟基丁酸、酸酐改性聚丙烯、乙烯共聚物、聚酰亚胺、聚四氟乙烯、聚偏二氟乙烯或上述聚合物的衍生物中的至少一种。
第一聚合物层110包括:聚对苯甲酸醇酯、偏氯乙烯-丙烯酸甲酯共聚物、聚乙烯、聚丙烯、聚对苯二甲酸乙二醇酯、乙烯-乙烯醇的无规共聚物、树脂、聚丙烯腈、聚偏二氯乙烯、聚酰胺、聚氨酯、聚硫脲、聚乙二醇、聚酯、γ-邻苯二甲酰亚氨基-α-羟基丁酸的共聚物、聚对苯二甲酸亚乙酯、聚对苯二甲酸丁二醇酯、聚萘二甲酸乙二醇酯、聚醚醚酮、聚酰亚胺、聚酰胺酰亚胺、聚碳酸酯、环状聚烯烃、聚苯硫醚、聚乙酸乙烯酯、聚四氟乙烯、聚亚甲基萘、聚偏二氟乙烯、聚萘二甲酸亚乙酯、聚碳酸亚丙酯、偏二氟乙烯-六氟丙烯的共聚物、偏二氟乙烯-共-三氟氯乙烯的共聚物、有机硅、维尼纶、尼龙、酸酐改性聚丙烯、乙烯共聚物、聚氯乙烯、聚苯乙烯、类聚烯烃、聚醚腈、聚苯醚、聚砜、非晶态α-烯烃共聚物或上述聚合物的衍生物中的至少一种。
在一些示例性的实施例中,隔板满足150℃条件下处理1h,隔板100的热收缩率小于2%,以在电化学装置10内部发热的情况下,设于电化学装置10内的隔板100能够维持其形状稳定性,从而有效维持隔板100与外包装700连接的稳定性。优选地,150℃条件下处理1h,隔板100的热收缩率为0%。
在一些示例性的实施例中,隔板满足相邻两层第一聚合物层110之间的剥离力大于或等于15N/m,相邻两层第一聚合物层110之间具有良好的连接稳定性,设于电化学装置10内后不会轻易剥离。
在一些示例性的实施例中,隔板100满足的拉伸强度大于或等于18Mpa,以及隔板满足延伸率大于或等于5%,使隔板100不会轻易破裂,以在反复弯折的情况下,使隔板依然能够维持良好的阻隔性,将电化学装置10内部空间分隔为多个独立的第一腔室700a。优选地,隔板100的拉伸强度大于50Mpa,隔板100的延伸率大于或等于20%。
如图5和图6所示,本申请实施例还提供了一种电化学装置10,包括外包装700、电解液、多个电极组件200以及如上所述的隔板100。隔板100设于外包装700内,隔板100用于与外 包装700密封连接,以将外包装700的内部空间分隔出多个独立的第一腔室700a,各第一腔室700a中设有电解液和一个电极组件200,形成独立的电化学单元。其中,当隔板100由多层第一聚合物层110叠加形成时,由位于表层的第一聚合物层110的边缘部分102与外包装700连接,当隔板100还包括第二聚合物层120时,位于表层的第一聚合物层110边缘部分102通过第二聚合物层120与外包装700连接。
如图7所示,电极组件200包括正极片310、负极片320和隔膜400,隔膜400设于正极片310和负极片320之间,以阻隔正极片310和负极片320,防止正极片310和负极片320相接触而短接。正极片310包括正极集流体311和正极活性材料312,正极活性材料312设于正极集流体311表面,负极片320包括负极集流体321和负极活性材料322,负极活性材料322设于负极集流体321表面,正极片310和负极片320可与隔膜400间隔设置或与隔膜400贴合。电解液与正极片310、负极片320均相接触,且电解液渗透至隔膜400内。各电极组件200可引出一个正极耳510和一个负极耳520,正极耳510与正极集流体311电连接,负极耳520与负极集流体321电连接。
示例性地,相邻两个电极组件200中,第一电极组件210的正极耳510与第二电极组件220的负极耳520串联在一起,第一电极组件210的负极耳520和第二电极组件220的正极耳510为输出极耳,输出电压为两个电化学单元输出电压之和。电极组件200的正极耳510和负极耳520可以通过直接焊接或者导线焊接的方式,在外包装700内部或者外部实现串联。
电极组件200的正极片310、负极片320和隔膜400可呈绕卷式结构或叠片式结构,各第一腔室700a内,电极组件200的结构可相同或不同。位于隔膜400相对两侧的两个电化学单元可对称或不对称。电化学装置10的外包装700可由硬质或具有柔性的材质制得,正极片310、负极片320和隔膜400可粘接固定于外包装700内。
本申请的正极片310没有特别限制,正极集流体311可以为本领域公知的任何正极集流体311,如铝箔、铝合金箔或复合集流体等,正极活性材料312可以为现有技术的任何正极活性材料312,正极活性材料312包括NCM811、NCM622、NCM523、NCM111、NCA、磷酸铁锂、钴酸锂、锰酸锂、磷酸锰铁锂或钛酸锂中的至少一种。
本申请的负极片320也没有特别限制,负极集流体321可以为本领域公知的任何负极集流体321,如铜箔、铝箔、铝合金箔或复合集流体等,负极活性材料322可以为现有技术的任何负极活性材料322,负极活性材料322包括石墨、硬碳、软碳、硅、硅碳或硅氧化物等中的至少一种。
本申请的电解液也没有特别限制,可以使用本领域公知的任何电解液,电解液可以是凝胶态、固态和液态中的任一种。当电解液为液态电解液时,液态电解液包括锂盐和非水溶剂。锂 盐没有特别限制,可以使用本领域公知的任何锂盐,只要能实现本申请的目的即可,例如,锂盐可以包括LiPF
6、LiBF
4、LiAsF
6、LiClO
4、LiB(C
6H
5)
4、LiCH
3SO
3、LiCF
3SO
3、LiN(SO2CF
3)
2、LiC(SO
2CF
3)
3或LiPO
2F
2等中的至少一种。非水溶剂没有特别限定,只要能实现本申请的目的即可,例如,非水溶剂可以包括碳酸酯化合物、羧酸酯化合物、醚化合物、腈化合物或其它有机溶剂等中的至少一种,碳酸酯化合物可以包括碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸二丙酯(DPC)、碳酸甲丙酯(MPC)、碳酸乙丙酯(EPC)、碳酸甲乙酯(MEC)、碳酸亚乙酯(EC)、碳酸亚丙酯(PC)、碳酸亚丁酯(BC)、碳酸乙烯基亚乙酯(VEC)、碳酸氟代亚乙酯(FEC)、碳酸1,2-二氟亚乙酯、碳酸1,1-二氟亚乙酯、碳酸1,1,2-三氟亚乙酯、碳酸1,1,2,2-四氟亚乙酯、碳酸1-氟-2-甲基亚乙酯、碳酸1-氟-1-甲基亚乙酯、碳酸1,2-二氟-1-甲基亚乙酯、碳酸1,1,2-三氟-2-甲基亚乙酯或碳酸三氟甲基亚乙酯等中的至少一种。
本申请的隔膜400没有特别限制,例如,隔膜400可包括由对本申请的电解液稳定的材料制得。隔膜400应当具有离子传导性,使离子从隔膜400穿过在正极片310和负极片320之间活动,同时,隔膜400还应当具有电子绝缘性,以阻隔正极片310和负极片320相接触,防止正极片310和负极片320短接。
本申请实施例还提供了本申请实施例提供了一种用电设备,包括如上的电化学装置10,例如,用电设备可包括汽车等。
以下将以电化学装置10为锂离子电池为例,结合具体实施例对本申请作进一步详细的说明。
负极片320的制备:将负极活性材料322石墨(Graphite)、导电炭黑(Super P)、丁苯橡胶(SBR)按照重量比96:1.5:2.5进行混合,加入去离子水作为溶剂,调配成为固含量为0.7的浆料,并搅拌均匀。将浆料均匀涂覆在负极集流体321铜箔上,110℃条件下烘干,并裁切成(41mm×61mm)的规格,获得单面涂布负极活性材料322的负极片320。之后,以相同的方法,在负极集流体321背面也涂布负极活性材料322,即得到双面涂布的负极片320。
正极片310的制备:将正极活性材料312钴酸锂(LiCoO
2)、导电炭黑(Super P)、聚偏二氟乙烯(PVDF)按照重量比97.5:1.0:1.5进行混合,加入N-甲基吡咯烷酮(NMP)作为溶剂,调配成为固含量为0.75的浆料,并搅拌均匀。将浆料均匀涂覆在正极集流体311铝箔上,90℃条件下烘干,并裁切成(38mm×58mm)的规格,获得正极片310。
电解液的制备:在干燥氩气气氛中,将有机溶剂碳酸乙烯酯(EC)、碳酸甲乙酯(EMC)和碳酸二乙酯(DEC)以质量比EC:EMC:DEC=30:50:20混合,然后向有机溶剂中加入锂盐六氟磷酸锂(LiPF
6)溶解并混合均匀,得到锂盐的浓度为1.15M的电解液。
实施例1
电极组件200制备:将正极片310、负极片320和隔膜400卷绕或者叠片设置,并设置正极耳510与正极片310的正极集流体311电连接,负极耳520与负极片320的负极集流体321电连接,以制得电极组件200,并制备两个电极组件200(其中一个为第一电极组件210、另一个为第二电极组件220),两个电极组件200在长度方向、宽度方向、厚度方向尺寸均相同。正极耳510由铝制得,负极耳520由镍制得,正极耳510和负极耳520朝向同侧设置。
隔板100制备:将具有离子绝缘性的PET(聚对苯二甲酸)加入塑化供料装置,PET在塑化供料装置的作用下成为均匀的PET流体之后,被塑化供料装置送入连接器,经由连接器进入汇流器,在汇流器中均匀汇入一个公共流道。汇流器的公共流道与层叠器的m个支流道连通,层叠器还包括与m个支流道均连通的主流道,主流道具有长度和宽度,在主流道的长度方向,m个支流道中的一部分与主流道其中一端连通、另一部分与主流道的另一端连通,在主流道的宽度方向,m个支流道与主流道连通的入口并排设置,且在m个支流道与主流道连通前,任一两个支流道相互独立,各支流道的PET流体独立地进入主流道内,并流动至平铺主流道,形成多层流体。然后通过层叠器,进行分割-展平-复合步骤,然后重复上述割-展平-复合步骤,即可得到特定厚度的层叠状的多个第一聚合物层110。通过控制PET流体进入支流道的流量,可控制各PET层的厚度,通过控制PET流体从支流道进入主流道的方向,可控制各PET层的展开平铺主流道的方向。相邻两层第一聚合物层110叠加过程中,各第一聚合物层110内聚合物的球晶拉伸形变,从而使各第一聚合物层110的PET分子链具有高度取向性。
本申请实施例中,隔板100内,位于表层的两个第一聚合物层110外表面还分别设有一层第二聚合物层120,第二聚合物层120包括PP(聚丙烯)。可在上述层叠状多个第一聚合物层110的基础上在外侧采用层叠器制备第二聚合物层120,即,将PP加入塑化供料装置,形成PP流体后,在最外层的PET层表面叠加PP流体,以形成第二聚合物层120,待各第一聚合物层110、各第二聚合物层120均成型后,将层叠的第一聚合物层110、第二聚合物层120同时沿主流道长度方向拉伸取出,即可获得隔板100。或者,也采用层叠完多层第一聚合物层110后,流延将第二聚合物层120复合于第一聚合物层110表面,制得隔板100。
电化学装置10组装:提供两个外包装700,外包装700由厚度为150μm的铝塑膜冲压形成具有凹坑的结构。将第一电极组件210置于其中一个外包装700的凹坑内,隔板100覆盖第一电极组件210,施加压力将隔板100与外包装700初步压制成型,使隔板100的其中一侧的第二聚合物层120与外包装700连接。再将第二电极组件220置于隔板100上,将另一个外包装700凹坑朝下覆盖第二电极组件220,使隔板100置于两个外包装700之间,施加压力作用于两个外包装700,将隔板100位于表层的两层第二聚合物层120在120℃热压至密封连接于两个外包装700。隔板100将两个外包装700内部的空间分隔为两个独立的第一腔室700a。两 个电极组件200的正极耳510和负极耳520均伸出外包装700,获得预成型产品。
注液封装:通过各外包装700上的开口向各第一腔室700a内分别独注入电解液,待注液结束后,封装外包装700的开口。
串接:将其中一个电极组件200的正极耳510与另一个电极组件200的负极耳520贴合且焊接固定,以将两个电极组件200串接,获得具有两个电化学单元的电化学装置10。连接电化学装置10内未焊接的正极耳510和负极耳520,可对电化学装置10充放电。连接焊接在一起的两个极耳,可监测电化学装置10内的电压。
本实施例中,隔板100中由第一聚合物层110内的PET实现离子阻隔、由第二聚合物层120内的PP与外包装700密封连接,第二聚合物层120对应封装温度为120℃,第一聚合物层110的熔点为260℃,隔板100中第一聚合物层110的数量为8层,各第一聚合物层110的厚度为1μm,各第二聚合物层120的厚度为1μm,隔板100总厚度为10μm。隔板100中第一聚合物层110的PET分子链的平均取向角为15°、取向度为0.9。隔板100热收缩率为0%,相邻两层第一聚合物层110之间的剥离力为20N/m,隔板100拉伸强度为18MPa,隔板100延伸率为5%。
实施例2
与实施例1的区别在于:隔板100中第一聚合物层110的数量为48层,隔板100总厚度为50μm,隔板100拉伸强度为30MPa,隔板100延伸率为10%。
实施例3
与实施例1的区别在于:隔板100中第一聚合物层110的数量为98层,隔板100总厚度为100μm,隔板100拉伸强度为50MPa,隔板100延伸率为20%。
实施例4
与实施例1的区别在于:隔板100中第一聚合物层110的数量为498层,隔板100总厚度为500μm,隔板100拉伸强度为80MPa,隔板100延伸率为35%。
实施例5
与实施例1的区别在于:隔板100中各第一聚合物层110的厚度为0.1μm,第一聚合物层110的数量为980层,各第二聚合物层120的厚度为1μm,隔板100总厚度为100μm,隔板100中第一聚合物层110的PET分子链的平均取向角为5°、取向度为0.99,隔板100拉伸强度为100MPa,隔板100延伸率为60%。
实施例6
与实施例1的区别在于:隔板100中各第一聚合物层110的厚度为5μm,第一聚合物层110的数量为20层,第二聚合物层120的厚度为1μm,隔板100总厚度为102μm,隔板100 中第一聚合物层110的PET分子链的平均取向角为20°、取向度为0.82,隔板100拉伸强度为35MPa,隔板100延伸率为15%。
实施例7
与实施例1的区别在于:隔板100中各第一聚合物层110的厚度为20μm,第一聚合物层110的数量为5层,第二聚合物层120的厚度为1μm,隔板100总厚度为102μm,隔板100中第一聚合物层110的PET分子链的平均取向角为29°、取向度为0.65,隔板100拉伸强度为23MPa,隔板100延伸率为10%。
实施例8
与实施例3的区别在于:隔板100热收缩率为1%。
实施例9
与实施例3的区别在于:相邻两层第一聚合物层110之间的剥离力为15N/m,隔板100延伸率为17%。
实施例10
与实施例3的区别在于:相邻两层第一聚合物层110之间的剥离力为25N/m,隔板100延伸率为22%。
实施例11
与实施例3的区别在于:隔板100中的第一聚合物层110包括PE,由PE实现离子阻隔,第一聚合物层110的熔点为260℃,相邻两层第一聚合物层110之间的剥离力为25N/m,隔板100拉伸强度为45MPa,隔板100延伸率为24%。
实施例12
与实施例3的区别在于:隔板100中的第一聚合物层110包括PET、PE和EVOH(乙烯-乙烯醇的无规共聚物),由PET、PE和EVOH实现离子阻隔,第一聚合物层110的熔点为260℃,相邻两层第一聚合物层110之间的剥离力为25N/m,隔板100拉伸强度为52MPa,隔板100延伸率为23%。
实施例13
与实施例12的区别在于:隔板100中的第二聚合物层120包括PE,由PE与外包装700密封连接,第二聚合物层120的熔点为150℃,隔板100拉伸强度为54MPa,隔板100延伸率为23%。
实施例14
与实施例12的区别在于:隔板100中的第一聚合物层110除包括PET、PE、EVOH外,还包括阻隔介质103,阻隔介质103包括质量分数为20%的水滑石纳米片,由PET、PE、EVOH 和水滑石纳米片实现离子阻隔,隔板100拉伸强度为54MPa,隔板100延伸率为22%。
实施例15
与实施例12的区别在于:
制备三个电极组件200、两个隔板100。
电化学装置10组装时,提供两个外包装700,将第一电极组件210置于其中一个外包装700的凹坑内,第一个隔板100覆盖第一电极组件210,施加压力将隔板100与外包装700初步压制成型,使隔板100的其中一侧的第二聚合物层120与外包装700连接。再在远离第一电极组件210的方向,将第二电极组件220、第二个隔板100、第三电极组件(图中未示出)依次叠加至第一个隔板100后,将另一个外包装700凹坑朝下,将两个外包装700对接,使上述三个电极组件200置于两个外包装700的内部空间,并使上述两个隔板100置于两个外包装700之间,施加压力作用于两个外包装700,将各隔板100的第二聚合物层120在120℃热压至密封连接于两个外包装700,以及使两个隔板100之间密封连接。上述两个隔板100将两个外包装700内部的空间分隔为三个独立的第一腔室700a。两个电极组件200的正极耳510和负极耳520均伸出外包装700。
注液:通过各外包装700上的开口向各第一腔室700a内分别独注入电解液,待注液结束后,封装外包装700的开口。
串接:将相邻两个电极组件200的正极耳510与负极耳520贴合且焊接固定,以将三个电极组件200串接,同时预留其中一个电极组件200的正极耳510和另一个电极组件200的负极耳520悬空(即未进行内部焊接),获得具有三个电化学单元的电化学装置10。连接电化学装置10内未进行内部焊接的正极耳510和负极耳520,可与外部电路电连接对电化学装置10充放电。连接焊接在一起的两个极耳,可监测电化学装置10内的电压。
本实施例中,隔板100中由第一聚合物层110内的PET实现离子阻隔、由第二聚合物层120内的PP与外包装700密封连接,第二聚合物层120对应封装温度为120℃,第一聚合物层110的熔点为260℃,隔板100中第一聚合物层110的数量为10层,各第一聚合物层110的厚度为1μm,隔板100总厚度为10μm。隔板100中第一聚合物层110的PET分子链的平均取向角为15°、取向度为0.9。隔板100热收缩率为0%,相邻两层第一聚合物层110之间的剥离力为20N/m,隔板100拉伸强度为18MPa,隔板100延伸率为5%。
实施例16
与实施例12的区别在于:隔板100中第一聚合物层110的厚度包括1μm和0.5μm两种,第一聚合物层110的数量为150层,隔板100总厚度为100μm,隔板100中第一聚合物层110的PET分子链的平均取向角为12°、取向度为0.94,隔板100拉伸强度为53MPa,隔板100 延伸率为22%。
实施例17
与实施例12的区别在于:隔板100不包括第二聚合物层120,在第一聚合物层110表面设置热熔胶,通过热熔胶与外包装700热熔密封连接,其中,热熔胶的熔点(封装温度)低于第一聚合物层110的熔点。
对比例1
与实施例3的区别在于:隔板100仅包括一层第一聚合物层110,并由第一聚合物层110直接与外包装700粘粘密封连接。第一聚合物层110的厚度为100μm,即隔板100总厚度为100μm,隔板100中第一聚合物层110的PET分子链的平均取向角为50°、取向度为0.12,隔板100热收缩率为2%,隔板100拉伸强度为10MPa,隔板100延伸率为4%。
对比例2
与实施例3的区别在于:隔板100中由第一聚合物层110的数量为3层,各第一聚合物层110的厚度为100μm,隔板100总厚度为300μm。隔板100中第一聚合物层110的PET分子链的平均取向角为50°、取向度为0.12。隔板100热收缩率为1%,相邻两层第一聚合物层110之间的剥离力为2N/m,隔板100拉伸强度为20MPa,隔板100延伸率为10%。
对比例3
与实施例3的区别在于:第一聚合物层110包括低密度聚乙烯,由第一聚合物层110内的低密度聚乙烯实现离子阻隔、由第二聚合物层120内的PP与外包装700密封连接。
其中,隔板100中第一聚合物层110的熔点小于第二聚合物层120的熔点,第一聚合物层110的熔点为110℃,第二聚合物层120的熔点(也即封装温度)为120℃,隔板100中第一聚合物层110的数量为100层,各第一聚合物层110的厚度为1μm,隔板100总厚度为100μm。隔板100中第一聚合物层110的PET分子链的平均取向角为15°、取向度为0.9。隔板100热收缩率为5%,相邻两层第一聚合物层110之间的剥离力为20N/m,隔板100拉伸强度为30MPa,隔板100延伸率为15%。
使用下述方法对各实施例即对比例中的用于电化学装置10的隔板100、电化学装置10进行测试:
水汽透过率测试:将制得的隔板100放入水汽透过率测试仪,于38℃、90%RH湿度下检测隔板100的水汽透过率。
100圈循环容量保持率:内部串联电极组件的数量为n,将电化学装置10在25℃环境下,以2C的充电速率从3.0×nV充电至4.4×nV,再以0.2C的放电速率放电至3.0×nV,确定此次的放电容量为首次放电容量,重复上述充放电循环100次,测定第100次放电的放电容量,100圈 循环容量保持率=第100次放电容量/首次放电容量。
取向度测试:选取取向单元,选择拉伸方向作为取向度方向,用广角X射线衍射仪获取样品的衍射图,取赤道线上Debye环(常用最强环)的强度分布曲线的半高宽(单位是“度”),计算聚合物样品中高分子链的取向度:π=(180°-H°)/180°×100%
式中,π为聚合物样品中高分子链沿样品拉伸方向的取向度,H°为赤道线上Debye环强度分布曲线的半高宽度。
能量密度测试:内部串联电极组件的数量为n,将电化学装置10在25℃下静置30分钟,以0.05C充电速率恒流充电至电压4.45×nV,随后再以0.05C倍率将电化学装置10放电至3.00×n,重复上述充/放电步骤3个循环以完成待测的电化学装置10的化成。完成电化学装置10的化成后,以0.1C充电速率恒流充电至电压至4.45×nV,随后以0.1C放电倍率将电化学装置10放电至3.00×n,记录其放电容量,随后计算其0.1C放电时的能量密度:能量密度(Wh/L)=放电容量(Wh)/电化学装置10体积尺寸(L)。
跌落测试:
将电化学装置10的6面4角分别从高度1.5m处跌落,6面4角各一次为一轮,共五轮,即50次,视无发热、无漏液、无鼓胀、无着火电芯为通过电芯,其他属未通过电芯,从而确定通过电芯的比例。
上述各实施例和对比例的参数设置请见表1,测试结果请见表2。
表1
表2
由表1可知,在隔板100厚度相同的情况下,相较于对比例1中单独采用一层第一聚合物层110制得隔板100,实施例3、5-17中,层叠隔板的加工过程使高分子链充分打开,伸展,得到分子链具有高取向度的隔板,提高分子链的致密度,从而延长水分子渗透路径,极大提高阻隔性能;同时,层叠使得隔板的拉伸性能等得到优化,具有一定柔性和机械性能,因此在跌落等安全性能测试中,可以缓解跌落的应力冲击,从而提升安全性能。因此,采用多层第一聚合物层110层叠制得的隔板100应用于电化学装置时,能量密度、循环容量保持率、跌落性能均得到明显提升。
根据实施例1-4中的结果可以看出,在对应的层数范围内,且第一聚合物层110厚度相同的情况下,随着第一聚合物层110的数量增加,在层叠设备中的拉伸取向力显著提高了各第一聚合物层内的分子链取向度,因此阻隔性能和机械性能大幅提升,制得的隔板100应用于电化学装置时,能量密度、循环容量保持率、跌落性能均逐步提升。
根据实施例3、5-7中的结果可以看出,在维持隔板100厚度一定的情况下,第一聚合物层110厚度越薄,在层叠设备中的拉伸取向力显著提高了各第一聚合物层内的分子链取向度,因 此阻隔性能得到提升,制得的隔板100应用于电化学装置时,能量密度、循环容量保持率、跌落性能则越好。
对比例2中,在叠加3层第一聚合物层110的情况下,虽然相较于对比例1中,隔板100应用于电化学装置时,能量密度、循环容量保持率、跌落性能有所提升,但各层第一聚合物层110厚度较大,相邻两层第一聚合物层110之间的剥离力较小,使相邻两层第一聚合物层110之间容易剥离,难以维持隔板100的稳定性。实施例1-17中采用多层第一聚合物层110层叠制得的隔板100剥离力均较优,隔板100具有良好的稳定性。
对比例3中,第一聚合物层110中包括低密度聚乙烯,第二聚合物层120中包括PP,低密度聚乙烯的熔点小于PP的熔点,采用多层低密度聚乙烯第一聚合物110隔板进行叠加的对比例3,将隔板应用于电化学装置时,在能量密度、循环容量保持率、跌落性能相较于对比例1均有所提升;但相较于第一聚合物层高于第二聚合物层的实施例3可知,不满足第一聚合物层的熔点高于第二聚合物层时,电化学装置的可靠性受到一定程度的影响。
本实施例的附图中相同或相似的标号对应相同或相似的部件;在本申请的描述中,需要理解的是,若有术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此附图中描述位置关系的用语仅用于示例性说明,不能理解为对本专利的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。
Claims (10)
- 一种用于电化学装置的隔板,具有离子阻隔性,其特征在于,所述隔板包括多个层叠设置的第一聚合物层,任意相邻的两个所述第一聚合物层表面连接;所述第一聚合物层的厚度为h,0.1μm≤h≤5μm,所述第一聚合物层的数量为n,n≥5。
- 根据权利要求1所述的用于电化学装置的隔板,其特征在于,所述隔板满足如下条件中的至少一种:(a)150℃条件下处理1h,所述隔板的热收缩率小于2%;(b)相邻两层所述第一聚合物层的剥离力大于或等于15N/m;(c)所述隔板的拉伸强度大于或等于18Mpa;(d)所述隔板的延伸率大于或等于5%;(e)所述隔板的水汽透过率为M,且M小于或等于10 -3g/(day·m 2)。
- 根据权利要求1所述的用于电化学装置的隔板,其特征在于,所述隔板的厚度为H,H的范围为10μm至500μm。
- 根据权利要求1所述的用于电化学装置的隔板,其特征在于,所述隔板还包括与所述第一聚合物层层叠设置的第二聚合物层,所述第二聚合物层具有密封性,所述第二聚合物层连接于位于外层的所述第一聚合物层的表面,且所述第一聚合物层的熔点范围为100℃至350℃,所述第二聚合物层的熔点范围为100℃至200℃。
- 根据权利要求4所述的用于电化学装置的隔板,其特征在于,在垂直于多层所述第一聚合物层层叠的方向,所述第二聚合物层覆盖所述第一聚合物层;或,所述第一聚合物层包括中间部分、围设于所述中间部分外围的边缘部分,在垂直于多层所述第一聚合物层层叠的方向,所述第二聚合物层覆盖所述边缘部分的表面。
- 根据权利要求4所述的用于电化学装置的隔板,其特征在于,所述第二聚合物层的数量为至少两层,沿垂直于多层所述第一聚合物层层叠的方向,至少两层的所述第二聚合物层分设于所述第一聚合物层相对的两侧;所述第一聚合物层和所述第二聚合物层中的至少一种包括阻隔介质,所述阻隔介质包括石墨烯、水滑石纳米片、勃姆石片或金属基中的至少一种。
- 根据权利要求4所述的用于电化学装置的隔板,其特征在于,所述第二聚合物层包括:聚丙烯、聚乙烯、聚酯、γ-邻苯二甲酰亚氨基-α-羟基丁酸、酸酐改性聚丙烯、乙烯共聚物、聚酰亚胺、聚四氟乙烯、聚偏二氟乙烯或上述聚合物的衍生物中的 至少一种;所述第一聚合物层包括:聚对苯甲酸醇酯、偏氯乙烯-丙烯酸甲酯共聚物、聚乙烯、聚丙烯、聚对苯二甲酸乙二醇酯、乙烯-乙烯醇的无规共聚物、树脂、聚丙烯腈、聚偏二氯乙烯、聚酰胺、聚氨酯、聚硫脲、聚乙二醇、聚酯、γ-邻苯二甲酰亚氨基-α-羟基丁酸的共聚物、聚对苯二甲酸亚乙酯、聚对苯二甲酸丁二醇酯、聚萘二甲酸乙二醇酯、聚醚醚酮、聚酰亚胺、聚酰胺酰亚胺、聚碳酸酯、环状聚烯烃、聚苯硫醚、聚乙酸乙烯酯、聚四氟乙烯、聚亚甲基萘、聚偏二氟乙烯、聚萘二甲酸亚乙酯、聚碳酸亚丙酯、偏二氟乙烯-六氟丙烯的共聚物、偏二氟乙烯-共-三氟氯乙烯的共聚物、有机硅、维尼纶、尼龙、酸酐改性聚丙烯、乙烯共聚物、聚氯乙烯、聚苯乙烯、类聚烯烃、聚醚腈、聚苯醚、聚砜、非晶态α-烯烃共聚物或上述聚合物的衍生物中的至少一种。
- 根据权利要求1所述的用于电化学装置的隔板,其特征在于,所述第一聚合物层内聚合物的分子链具有高度取向性,具有高度取向性的所述聚合物的分子链取向方向垂直于多层所述第一聚合物层的层叠方向;所述第一聚合物层内聚合物的分子链取向度范围为50%至100%。
- 一种电化学装置,其特征在于,包括:如上述权利要求1-8中任一项所述的隔板;外包装,所述隔板设于所述外包装内,且所述隔板连接于所述外包装,以将所述外包装的内部空间分隔出多个腔室。
- 一种电子装置,其特征在于,包括:如上述权利要求9中所述的电化学装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/083807 WO2023184173A1 (zh) | 2022-03-29 | 2022-03-29 | 用于电化学装置的隔板、电化学装置及电子装置 |
CN202280091306.5A CN118679637A (zh) | 2022-03-29 | 2022-03-29 | 用于电化学装置的隔板、电化学装置及电子装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/083807 WO2023184173A1 (zh) | 2022-03-29 | 2022-03-29 | 用于电化学装置的隔板、电化学装置及电子装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023184173A1 true WO2023184173A1 (zh) | 2023-10-05 |
Family
ID=88198454
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/083807 WO2023184173A1 (zh) | 2022-03-29 | 2022-03-29 | 用于电化学装置的隔板、电化学装置及电子装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN118679637A (zh) |
WO (1) | WO2023184173A1 (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013042612A1 (ja) * | 2011-09-21 | 2013-03-28 | Necエナジーデバイス株式会社 | フィルム外装電池および組電池 |
KR20130133585A (ko) * | 2012-05-29 | 2013-12-09 | 삼성에스디아이 주식회사 | 파우치형 이차전지 |
CN113261151A (zh) * | 2020-06-30 | 2021-08-13 | 宁德新能源科技有限公司 | 一种电化学装置用隔板、电化学装置及电子装置 |
CN113921993A (zh) * | 2021-09-30 | 2022-01-11 | 宁德新能源科技有限公司 | 一种电化学装置及包含该电化学装置的电子装置 |
WO2022041247A1 (zh) * | 2020-08-31 | 2022-03-03 | 宁德新能源科技有限公司 | 一种电化学装置及包含该电化学装置的电子装置 |
-
2022
- 2022-03-29 CN CN202280091306.5A patent/CN118679637A/zh active Pending
- 2022-03-29 WO PCT/CN2022/083807 patent/WO2023184173A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013042612A1 (ja) * | 2011-09-21 | 2013-03-28 | Necエナジーデバイス株式会社 | フィルム外装電池および組電池 |
KR20130133585A (ko) * | 2012-05-29 | 2013-12-09 | 삼성에스디아이 주식회사 | 파우치형 이차전지 |
CN113261151A (zh) * | 2020-06-30 | 2021-08-13 | 宁德新能源科技有限公司 | 一种电化学装置用隔板、电化学装置及电子装置 |
WO2022041247A1 (zh) * | 2020-08-31 | 2022-03-03 | 宁德新能源科技有限公司 | 一种电化学装置及包含该电化学装置的电子装置 |
CN113921993A (zh) * | 2021-09-30 | 2022-01-11 | 宁德新能源科技有限公司 | 一种电化学装置及包含该电化学装置的电子装置 |
Also Published As
Publication number | Publication date |
---|---|
CN118679637A (zh) | 2024-09-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109088091B (zh) | 锂离子二次电池元件及锂离子二次电池 | |
CN106104901B (zh) | 片叠层型锂离子二次电池及片叠层型锂离子二次电池的制造方法 | |
KR101419572B1 (ko) | 바이폴라 전극쌍/분리막 어셈블리, 이를 포함하는 바이폴라 전지, 및 이들의 제조방법 | |
JP4155054B2 (ja) | バイポーラ電池 | |
JP7288063B2 (ja) | 電気化学装置用隔離板、電気化学装置及び電子装置 | |
US8247100B2 (en) | Electrochemical device | |
US10270069B2 (en) | Pouch-type secondary battery | |
WO2012014780A1 (ja) | 双極型電極およびそれを用いた双極型二次電池並びに双極型電極の製造方法 | |
CN102349181A (zh) | 双极型电池用集电体和双极型电池 | |
JP4100188B2 (ja) | バイポーラ電池 | |
WO2022000328A1 (zh) | 一种电化学装置及电子装置 | |
US11764405B2 (en) | Lithium ion secondary battery element including negative electrode with negative electrode active material layer tapered part having smaller density than negative electrode active material layer flat part | |
US20220223968A1 (en) | Partition plate for use in electrochemical device, electrochemical device, and electronic device | |
JP4595302B2 (ja) | バイポーラ電池 | |
WO2022000307A1 (zh) | 一种电化学装置及包含该电化学装置的电子装置 | |
WO2022030279A1 (ja) | 蓄電装置 | |
US11508993B2 (en) | Electrode assembly having an electrode subassembly, and battery including the electrode assembly | |
WO2017169417A1 (ja) | リチウムイオン二次電池 | |
WO2023184173A1 (zh) | 用于电化学装置的隔板、电化学装置及电子装置 | |
CN111213277B (zh) | 非水电解液二次电池 | |
CN111868996B (zh) | 非水电解液二次电池 | |
WO2023159610A1 (zh) | 用于电化学装置的隔板、电化学装置及用电设备 | |
WO2019009121A1 (ja) | リチウムイオン二次電池素子およびリチウムイオン二次電池 | |
WO2022061810A1 (zh) | 一种电化学装置及包含该电化学装置的电子装置 | |
WO2023120171A1 (ja) | 蓄電装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22934029 Country of ref document: EP Kind code of ref document: A1 |