WO2023182173A1 - Carbon dioxide isolator, method for isolating or recovering carbon dioxide, and method for producing carbon dioxide isolator - Google Patents

Carbon dioxide isolator, method for isolating or recovering carbon dioxide, and method for producing carbon dioxide isolator Download PDF

Info

Publication number
WO2023182173A1
WO2023182173A1 PCT/JP2023/010423 JP2023010423W WO2023182173A1 WO 2023182173 A1 WO2023182173 A1 WO 2023182173A1 JP 2023010423 W JP2023010423 W JP 2023010423W WO 2023182173 A1 WO2023182173 A1 WO 2023182173A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
polyamine
group
separation material
dioxide separation
Prior art date
Application number
PCT/JP2023/010423
Other languages
French (fr)
Japanese (ja)
Inventor
ティ クェン ブ
フィローズ アラム チョウドリー
克則 余語
利紀 村岡
Original Assignee
公益財団法人地球環境産業技術研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公益財団法人地球環境産業技術研究機構 filed Critical 公益財団法人地球環境産業技術研究機構
Publication of WO2023182173A1 publication Critical patent/WO2023182173A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/28Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic using special binding agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C215/00Compounds containing amino and hydroxy groups bound to the same carbon skeleton
    • C07C215/02Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C215/04Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated
    • C07C215/06Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated and acyclic
    • C07C215/14Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated and acyclic the nitrogen atom of the amino group being further bound to hydrocarbon groups substituted by amino groups
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to a carbon dioxide separation material, a method for separating or recovering carbon dioxide, and a method for manufacturing a carbon dioxide separation material.
  • Patent Document 1 discloses a carbon dioxide separation material containing a polyamine carrier in which a polyamine having at least two isopropyl groups on a nitrogen atom is supported on a support, and a method for separating or recovering carbon dioxide using the carbon dioxide separation material. is suggesting.
  • Patent Document 2 proposes a method for preparing alkylalkanolamines that involves the reaction of a carbonyl compound and a hydroxyalkylamine in the presence of hydrogen and a catalyst.
  • Patent Document 3 has a porous support on which an amine compound is immobilized as a core, and has an amine layer as a shell that is resistant to inactivation by sulfur dioxide, suppresses oxidative decomposition of the amine, and suppresses oxygen and We have proposed a core-shell type amine-based carbon dioxide adsorbent containing a chelating agent that is resistant to sulfur dioxide.
  • US Pat. No. 5,001,202 proposes a renewable solid sorbent for adsorbing carbon dioxide from gas mixtures containing air, comprising a modified polyamine and a solid support.
  • Modified polyamines are reaction products of amines and epoxides.
  • One aspect of the present invention includes a polyamine, the polyamine having a hydrogen atom or a functional group bonded to a nitrogen atom, and a propyl polyamine component having three or more propyl groups bonded to different nitrogen atoms in the molecule.
  • at least one of the propyl groups is a hydroxypropyl group having a hydroxy group
  • the hydroxypropyl group is bonded to a nitrogen atom constituting a tertiary amine
  • the hydroxy group is bonded to a secondary carbon atom.
  • the two or more propyl groups are unsubstituted isopropyl groups having no hydroxy group.
  • Another aspect of the present invention includes a first step of bringing a gas to be treated into contact with the carbon dioxide separation material to absorb carbon dioxide, and a step of bringing carbon dioxide from the carbon dioxide separation material that has absorbed carbon dioxide in the first step.
  • a method for separating or recovering carbon dioxide, the second step comprising: (A) placing the carbon dioxide separation material under reduced pressure conditions and desorbing carbon dioxide; (pressure swing method), (B) a step of contacting the carbon dioxide separation material with at least one of water vapor and an inert gas (preferably a gas not containing carbon dioxide) and desorbing carbon dioxide, and (C) the step of desorbing the carbon dioxide.
  • the present invention relates to a method for separating or recovering carbon dioxide, which includes any one or more of the steps of heating a carbon separation material and desorbing carbon dioxide (temperature swing method).
  • Yet another aspect of the present invention includes the steps of: preparing a polyamine; and contacting the polyamine with a support to obtain a polyamine carrier comprising the polyamine and the support supporting the polyamine.
  • the polyamine includes a propyl polyamine component having a hydrogen atom or a functional group bonded to a nitrogen atom and three or more propyl groups bonded to different nitrogen atoms in the molecule, and at least one of the propyl
  • the group is a hydroxypropyl group having a hydroxy group, the hydroxypropyl group is bonded to a nitrogen atom constituting a tertiary amine, the hydroxy group is bonded to a secondary carbon atom, and two or more of the
  • the propyl group is an unsubstituted isopropyl group having no hydroxy group, and relates to a method for producing a carbon dioxide separation material.
  • the polyamine according to the present disclosure allows easy control of reactants in the reaction produced, and the carbon dioxide separation material supporting this polyamine has high resistance to oxidative deterioration, suppresses reduction due to volatilization of the polyamine, and absorbs carbon dioxide. Excellent detachability. Therefore, it is possible to provide a carbon dioxide separation material with low cost and high performance. Further, by using the carbon dioxide separation material according to the present disclosure, carbon dioxide can be separated or recovered with high efficiency.
  • FIG. 3 is a diagram showing adsorption/desorption behavior of carbon dioxide by fresh polyamine carriers of Examples 2 and 4 and Comparative Examples 1 and 2.
  • FIG. 3 is a diagram showing adsorption/desorption behavior of carbon dioxide by the polyamine carriers of Examples 2 and 4 and Comparative Examples 1 and 2 after heating in air at 100° C. for 42 hours.
  • FIG. 2 is a diagram comparing and showing adsorption/desorption behavior of carbon dioxide by the polyamine support before and after heating in air at 100° C. for 42 hours in Examples 2 and 4 and Comparative Examples 1 and 2.
  • FIG. 3 is a diagram showing the adsorption/desorption behavior of carbon dioxide by the fresh polyamine carrier of Example 4.
  • FIG. 3 is a diagram showing the adsorption/desorption behavior of carbon dioxide by the polyamine support after heating in air at 100° C. for 42 hours in Example 4.
  • the carbon dioxide separation material is not limited to the following embodiments.
  • specific numerical values and materials may be illustrated, but other numerical values and materials may be applied as long as the effects of the present disclosure can be obtained.
  • the expression "numerical value A to numerical value B" includes numerical value A and numerical value B, and can be read as "more than or equal to numerical value A and less than or equal to numerical value B.”
  • any of the illustrated lower limits and any of the illustrated upper limits can be arbitrarily combined as long as the lower limit is not greater than the upper limit. .
  • one type may be selected from them and used alone, or two or more types may be used in combination.
  • the carbon dioxide separation material contains a polyamine, and the polyamine contains at least a propyl polyamine component.
  • the propyl polyamine component has a hydrogen atom or a functional group bonded to a nitrogen atom, and also has three or more propyl groups bonded to different nitrogen atoms in the molecule.
  • the functional group bonded to the nitrogen atom include a hydroxyl group (N-OH) and an alkyl group (NR (R is an alkyl group such as a methyl group and an ethyl group)).
  • At least one propyl group is a hydroxypropyl group having a hydroxy group.
  • the hydroxypropyl group is bonded to the nitrogen atom that constitutes the tertiary amine.
  • the hydroxy group is attached to a secondary carbon atom. That is, the hydroxypropyl group is a 2-hydroxy-n-propyl group (-CH 2 CH(OH)CH 3 ).
  • the two or more propyl groups are unsubstituted isopropyl groups (-CH(CH 3 )CH 3 ) having no hydroxy group.
  • propyl group is used as a general term for both "hydroxypropyl group” having a hydroxy group and "unsubstituted propyl group (especially isopropyl group)" not having a hydroxy group.
  • the PO-IP-polyamine component contains three or more nitrogen atoms within the molecule.
  • the three or more propyl groups N in the molecule at least one is a hydroxypropyl group, and two or more are unsubstituted isopropyl groups.
  • two or more of the three or more nitrogen atoms are each bonded to a hydrogen atom. All but one of the plurality of nitrogen atoms may each be bonded to a hydrogen atom.
  • a nitrogen atom that bonds with a hydrogen atom may form a secondary amino group that bonds with one hydrogen atom, or may form a primary amino group that bonds with two hydrogen atoms.
  • the propyl polyamine component may contain only a single polyamine component, or may contain multiple polyamine components. That is, the propyl polyamine component may be a mixture of a plurality of polyamine components, or may contain only a single purified polyamine component.
  • the propyl polyamine component may contain only the PO-IP-polyamine component, or may contain polyamine components other than the PO-IP-polyamine component.
  • the propyl polyamine component may or may not contain a polyamine component that does not have a hydroxypropyl group and only has an unsubstituted isopropyl group.
  • the polyamine component having no hydroxypropyl groups and only unsubstituted isopropyl groups may be a polyamine in which the hydroxypropyl groups of the PO-IP-polyamine component are replaced with hydrogen atoms.
  • a propyl polyamine component will also be referred to as an "IP-polyamine component.”
  • the PO-IP-polyamine component may have a linear structure, a branched structure, or a ring structure containing a nitrogen atom. Among them, a PO-IP-polyamine component with a linear structure is preferable because it has many CO 2 adsorption sites.
  • a carbon dioxide separation material supporting a propyl polyamine component as a mixture containing a PO-IP-polyamine component and an IP-polyamine component as essential components has particularly excellent stability. Specifically, it has high resistance to oxidative deterioration, suppresses decrease in polyamine due to volatilization, and has high carbon dioxide adsorption/desorption performance.
  • the PO-IP-polyamine component is thought to play a major role in increasing the stability of the carbon dioxide separation material. This is because a polyamine containing a PO-IP-polyamine component and an IP-polyamine component has much higher resistance to oxidative deterioration than a polyamine containing only an IP-polyamine component, has a lower vapor pressure, and suppresses volatilization. Such carbon dioxide separation materials are suitable for long-term use.
  • the content of the PO-IP-polyamine component in the propyl polyamine component is preferably 50 mol% or less, and may be 10 mol% or more and 50 mol% or less.
  • the content of the IP-polyamine component in the propyl polyamine component is preferably 50 mol% or more, and preferably 90 mol% or less.
  • the propyl group N can be bonded to a nitrogen atom constituting a secondary amine or a nitrogen atom constituting a tertiary amine, but an unsubstituted isopropyl group constitutes a secondary amine because it increases the ability to eliminate carbon dioxide. It is desirable that it be bonded to a nitrogen atom.
  • the hydroxypropyl group can be bonded to the nitrogen atom constituting the tertiary amine.
  • the hydroxypropyl group is desirably bonded to a nitrogen atom constituting the tertiary amine that is present at a location other than the terminal end of the polyamine molecule.
  • isopropyl groups may be bonded to two ends.
  • isopropyl groups may be bonded to the ends of all branched chains.
  • the isopropyl group bonded to the nitrogen atom constituting the secondary amine may be formed, for example, by reacting the starting material of the isopropyl group N with a primary amino group.
  • a starting material for the isopropyl group for example, acetone can be used.
  • the hydroxypropyl group bonded to the nitrogen atom constituting the tertiary amine may be formed, for example, by a reaction between a starting material for the hydroxypropyl group and a secondary amino group.
  • a starting material for the hydroxypropyl group for example, propylene oxide can be used.
  • the PO-IP polyamine component is, for example, a polyamine having two or more primary amino groups (-NH 2 groups) and an -NH- group that is commercially available or obtained by a known method. After introducing an isopropyl group, it can be produced by introducing one or more hydroxypropyl groups into the secondary amino group of the polyamine.
  • a method for introducing an isopropyl group includes a method of reacting a -NH 2 group with a starting material for isopropyl group N such as acetone.
  • a method for introducing a hydroxypropyl group includes a method of reacting an -NH group with a starting material for a hydroxypropyl group such as propylene oxide. At this time, by controlling the molar ratio of polyamine and propylene oxide, a mixture of PO-IP-polyamine component and IP-polyamine can be obtained with any composition.
  • a platinum oxide catalyst and anhydrous ethanol are placed in a reaction container such as a flask, and the inside of the reaction container is replaced with hydrogen. Then, hydrogen is added until the pressure reaches 100 kPa to 150 kPa, and the mixture is stirred for a predetermined period of time. Give back.
  • a polyamine having primary amino groups (-NH 2 groups) and -NH- groups, acetone, and anhydrous ethanol are placed in a reaction vessel containing the reduced catalyst, and the inside of the reaction vessel is replaced with hydrogen. After that, hydrogen is added until the pressure becomes about 200 kPa to 350 kPa, and then the mixture is stirred while supplying hydrogen until there is no pressure drop.
  • IP-polyamine component is dissolved in water, propylene oxide is added dropwise and mixed, and the mixture is stirred at room temperature for 12 hours. The mixture is then warmed to 60°C and held for an additional 2 hours.
  • a PO-IP-polyamine component can be obtained by removing water from the obtained liquid under reduced pressure and further vacuum drying. In the reaction between propylene oxide and a secondary amino group (second reaction), a hydroxypropyl group is formed.
  • Acetone reacts preferentially with primary amino groups to generate nitrogen atoms that constitute secondary amines having NH groups. That is, the isopropyl group preferentially bonds to the nitrogen atom constituting the secondary amine. Therefore, it is easy to control the reactants in the first reaction, and more NH groups that adsorb and desorb carbon dioxide can be secured.
  • IP-TEPA IP-TEPA
  • PO-IP-TEPA can be obtained, for example, by the process shown in the scheme below.
  • TEPA tetraethylenepentamine
  • IP-TEPA is reacted with two molecules of acetone per molecule of TEPA to add two isopropyl groups to TEPA.
  • the isopropylated TEPA obtained at this time is also referred to as "IP-TEPA.”
  • one molecule of propylene oxide or less per molecule of IP-TEPA is reacted to add a hydroxypropyl group.
  • IP-TEPA tetraethylenepentamine
  • IP-TEPA IP-TEPA
  • PO-IP-TEPA and IP- Mixtures with TEPA can be obtained.
  • the PO-IP-polyamine component consists of two isopropyl groups bonded to nitrogen atoms constituting separate secondary amines and a hydroxypropyl group bonded to nitrogen atoms constituting a tertiary amine, respectively. It may have. In the hydroxypropyl group, the hydroxyl group is bonded to a secondary carbon atom.
  • the polyamine component IP produced by reacting 0.25 mol (or 0.5 mol) of propylene oxide per 1 mol of IP-TEPA will be referred to as "0.25PO-IP-TEPA" ("0.50PO-IP-TEPA"). ”).
  • PO-IP-PEHA a polyamine component
  • IP-PEPA 1 mol or less
  • IP-PEPA 1 mol or less
  • PO-IP-polyamine component a polyamine component produced by reacting hexaethyleneheptamine (HEHA), which is a backbone amine, with 2 mol of acetone and 1 mol of propylene oxide per 1 mol of HEHA.
  • HEHA hexaethyleneheptamine
  • PO-IP-HEHA a polyamine component produced by reacting hexaethyleneheptamine (HEHA), which is a backbone amine, with 2 mol of acetone and 1 mol of propylene oxide per 1 mol of HEHA.
  • the structure of the PO-IP polyamine component is preferably a structure having two or more NH groups and one or more alkylene groups interposed between nitrogen atoms.
  • the number of NH groups contained in one polyamine molecule is preferably as large as possible from the viewpoint of increasing carbon dioxide adsorption ability, and the number of NH groups contained in one polyamine molecule is preferably 2 or more and 50 or less, and 3 or more and 30 or less. is more desirable.
  • the number of NH groups contained in one polyamine molecule is preferably 3 or more and 20 or less, more preferably 4 or more and 10 or less, and even more preferably 4 or more and 7 or less.
  • the alkylene group interposed between the nitrogen atoms is preferably an alkylene group having 1 to 6 carbon atoms, and specifically, a methylene group, ethylene group, propylene group, butylene group, etc. are preferable.
  • the number of alkylene groups contained in one molecule of polyamine may be selected depending on the number of NH groups contained in one molecule of polyamine.
  • One molecule of polyamine may contain only one type of alkylene group, or may contain two or more types of alkylene groups.
  • the PO-IP-polyamine component has the general formula (1):
  • R in formula (1) represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkylamino group having 1 to 6 carbon atoms
  • A represents an alkylene group having 2 to 6 carbon atoms
  • m represents an integer of 2 to 50
  • multiple R's may be the same or different
  • at least one R is a hydrogen atom or an alkylamino group having 1 to 6 carbon atoms
  • A may be the same or different.
  • the PO-IP-polyamine component has, for example, general formula (2):
  • R A represents R 6 or a group: -A-NR 6 R 7
  • R B represents R 8 or a group: -A-NR 8 R 9
  • A has a carbon number of 2.
  • n represents an integer of 1 to 5 (for example, 2 or more)
  • p and q each independently represent 0 or 1.
  • a plurality of A's may be the same or different, and when there are a plurality of A's, R5 's may be the same or different.
  • R 1 , R 2 , R 7 and R 9 represent an unsubstituted isopropyl group
  • R 3 , R 4 , R 6 and R 8 represent a hydrogen atom
  • at least one of R 5 (preferably two or less, More preferably, one) represents the hydroxypropyl group
  • the remainder of R 5 represents a hydrogen atom.
  • Examples of the backbone amine of the polyamine include at least one selected from the group consisting of monopolymers of ethyleneimine, propyleneimine, 2-ethylaziridine, 2-propylaziridine, and 2-butylaziridine, and copolymers of at least two of these.
  • the monopolymer and copolymer include oligomers having a polymerized number of molecules of 10 or less (for example, 7 or less).
  • the backbone amine of a polyamine refers to a polyamine having a primary amino group that is reacted with the starting material of the isopropyl group when producing the isopropyl group bonded to the nitrogen atom constituting the secondary amine.
  • IP-polyamine component that is a raw material for the PO-IP-polyamine component
  • diisopropylated tetraethylenepentamine diisopropylated spermine
  • diisopropylated pentaethylenehexamine diisopropylated hexaethyleneheptamine
  • diisopropylated triethylenetetramine etc.
  • diisopropylated polyamines such as tetraisopropylated N,N,N',N'-tetrakis(3-aminopropyl)-1,4-butanediamine; more specifically, 1,11-bis(isopropylamino)-3,6,9-triazaundecane, N,N'-bis(3-(isopropylamino)propyl)-1,4-butanediamine, N,N,N', N'-tetrakis(3-(isopropylamino)propyl)-1,4-butanediamine, 1,14-bis(isopropylamino)-3,6,9,12-tetraazatetradecane, 1,17-bis(isopropyl) Examples include amino)-3,6,9,12,15-pentaazaheptadecane and 1,8-bis(isopropylamino)-3,6-diazao
  • diisopropylated polyamine is a polyamine in which two or more nitrogen atoms of the polyamine are substituted with a total of two isopropyl groups
  • tetraisopropylated polyamine is a polyamine in which two or more nitrogen atoms of the polyamine are substituted with a total of two isopropyl groups. It is a polyamine substituted with four isopropyl groups.
  • the boiling point of polyamine (especially propyl polyamine component) at 760 mmHg is 320°C or higher.
  • the carbon dioxide separation material containing polyamine can be stably used even at high temperatures (for example, about 60° C.). If the polyamine has a boiling point of 320° C. or higher at 760 mmHg, the state in which the polyamine is supported on the support can be maintained even if the boiling point is lowered by reduced pressure (for example, about 0.2 Pa). Therefore, by using these polyamines, the operating temperature can be set higher than room temperature, and carbon dioxide can be efficiently desorbed.
  • the support may be any material as long as it can support a polyamine (particularly a propyl polyamine component) and can withstand the conditions for separating and recovering carbon dioxide.
  • a polyamine particularly a propyl polyamine component
  • ceramics, porous materials, carbon materials, resin materials, etc. can be used.
  • silica, polymethyl methacrylate, alumina, silica alumina, clay minerals, magnesia, zirconia, zeolite, zeolite related compounds, natural minerals, waste solids, activated carbon, carbon molecular sieves, etc. can be mentioned.
  • One type of support may be used alone, or two or more types may be used in combination.
  • a commercially available product may be used as is, or a support synthesized by a known method may be used.
  • Commercially available products include mesostructured silica MSU-F manufactured by Sigma-Aldrich, SIPERNAT (registered trademark) 50S manufactured by Evonik, and CARiACT (registered trademark) Q10, Q30, Q50 manufactured by Fuji Silysia Chemical Co., Ltd.
  • the support is preferably a porous material with a large specific surface area and pore volume in order to support a large amount of polyamine.
  • the specific surface area (BET) is preferably 50 m 2 /g or more and 2000 m 2 /g or less, more preferably 100 m 2 /g or more and 1000 m 2 /g or less.
  • the pore volume is preferably 0.1 cm 3 /g or more and 2.3 cm 3 /g or less, more preferably 0.7 cm 3 /g or more and 2.3 cm 3 /g or less.
  • the specific surface area and pore volume can be measured, for example, using a constant volume method using a specific surface area/pore size distribution measuring device (ASAP2420: manufactured by Shimadzu Corporation).
  • a specific surface area/pore size distribution measuring device for example, a sample is pretreated by heating and evacuation, and approximately 0.1 g of the measurement sample is weighed into a sample tube. Thereafter, the sample was heated to 40° C., evacuated for 6 hours, cooled to room temperature, and the mass of the sample was measured. For measurements, set the liquid nitrogen temperature and specify the pressure range.
  • the specific surface area, pore volume, and pore diameter can be calculated by analyzing the obtained nitrogen adsorption isotherm.
  • a polyamine carrier is a support in which a polyamine is supported.
  • the polyamine carrier includes a polyamine (particularly a propyl polyamine component) and a support supporting the polyamine.
  • the polyamine support can be produced by a manufacturing method that includes a step of preparing a polyamine and a step of obtaining the polyamine support.
  • a polyamine may be brought into contact with a support to produce a support supporting the polyamine.
  • the polyamine carrier can be produced, for example, by mixing a support into a solution of a polyamine (particularly a propyl polyamine component), stirring at room temperature, and then distilling off the solvent (for example, water, alcohol).
  • a polyamine particularly a propyl polyamine component
  • the solvent for example, water, alcohol.
  • Examples of the method for distilling off the solvent include a method of reducing the pressure while heating with an evaporator or the like.
  • the pressure swing method includes a step of placing a carbon dioxide separation material under reduced pressure conditions and desorbing carbon dioxide.
  • the temperature swing method includes a step of heating a carbon dioxide separation material to desorb carbon dioxide.
  • the carbon dioxide separation material includes, for example, a polyamine carrier and a binder that granulates the polyamine carrier. That is, the carbon dioxide separation material may include a polyamine support in the form of granules using a binder. By granulating the polyamine carrier using a binder, vibration resistance and abrasion resistance can be imparted, and further, stability in water can be improved.
  • the binder at least one selected from the group consisting of silica, alumina, silica alumina, clay minerals, fluororesins, cellulose derivatives, and epoxy resins may be used.
  • fluororesin include polytetrafluoroethylene and the like.
  • cellulose derivatives include hydroxypropylmethylcellulose, methylcellulose, hydroxypropylcellulose, carboxymethylcellulose, hydroxyethylcellulose, and hydroxyethylated starch.
  • the epoxy resin include diglycerol polyglycidyl ether, sorbitol polyglycidyl ether, etc., and may be used as a mixture with an epoxy resin curing agent (modified polyamide resin, etc.).
  • polymers polyvinyl alcohol, polyethylene oxide, sodium polyacrylate, polyacrylamide, etc.
  • binder may be used alone, or two or more types may be used in combination.
  • binders include Snowtech 30 and AS-200 manufactured by Nissan Chemical Co., Ltd., Polyflon PTFE D-210C manufactured by Daikin Industries, Ltd., NEOVISCO MC RM4000 manufactured by Sansho Co., Ltd., and AQ manufactured by Toray Industries, Inc. Nylon P-70, Denacol EX-421 manufactured by Nagase ChemteX Corporation, etc. can be used.
  • the content of the binder in the carbon dioxide separation material is not particularly limited as long as it can be granulated, but it is preferably a small amount in order to prevent a decrease in the polyamine content.
  • the average particle diameter of the granules when granulated using a binder is preferably 0.1 mm to 2.0 mm from the viewpoint of reducing pressure loss when gas is supplied to the adsorbent packed bed.
  • the content of polyamine (especially propyl polyamine component) contained in the carbon dioxide separation material is not particularly limited, but from the viewpoint of efficiently separating and recovering carbon dioxide, it is preferably 15% by mass or more, and 20% by mass or more. Particularly preferred.
  • the content of polyamine may be, for example, 70% by mass or less.
  • the target of the carbon dioxide separation (recovery) method is gas containing carbon dioxide.
  • Gases containing carbon dioxide are used, for example, in thermal power plants that use coal, heavy oil, natural gas, etc. as fuel, blast furnaces in steel plants that reduce iron oxide with coke, and steel plants that burn carbon in pig iron to make steel. Converters, boilers in various manufacturing plants, kilns in cement factories, etc., and even exhaust gas emitted from transportation equipment such as automobiles, ships, and aircraft that use gasoline, heavy oil, light oil, etc. as fuel may be used.
  • Gas containing carbon dioxide may be emitted from human breathing or energy conversion of equipment in closed spaces such as indoor spaces such as submarine research vessels, space stations, buildings, and offices. good. Alternatively, carbon dioxide in the atmosphere may be used.
  • the carbon dioxide separation or recovery method according to the present disclosure is characterized by using a carbon dioxide separation material.
  • the carbon dioxide separation (recovery) method includes a first step in which the gas to be treated is brought into contact with a carbon dioxide separation material to absorb carbon dioxide, and a second step in which carbon dioxide is removed from the carbon dioxide separation material that has absorbed carbon dioxide in the first step. A second step of desorption is included.
  • the carbon dioxide content and temperature in the gas to be treated in the first step are not particularly limited as long as the carbon dioxide separation material can withstand them.
  • the carbon dioxide partial pressure may be 100 kPa or less, and the temperature may be 10°C to 60°C.
  • the operating conditions assumed at thermal power plants, etc. carbon dioxide partial pressure: 7 to 100 kPa, temperature: 40 to 60°C
  • the operating conditions assumed at space stations, etc. carbon dioxide partial pressure: 0 ⁇ 1kPa, temperature: 20 ⁇ 25°C
  • the gas to be treated may be at atmospheric pressure or may be pressurized.
  • the gas to be treated in the first step may contain water vapor. Since the carbon dioxide separation material has excellent adsorption properties for carbon dioxide even if the gas to be treated contains water vapor, the dehumidification operation can be omitted.
  • the method for desorbing carbon dioxide in the second step includes (A) placing the carbon dioxide separation material under reduced pressure conditions and desorbing carbon dioxide (pressure swing method), (B) applying water vapor to the carbon dioxide separation material. and a step of contacting at least one of an inert gas (preferably a gas not containing carbon dioxide (or a gas with a low carbon dioxide content)) to desorb carbon dioxide, and (C) heating the carbon dioxide separation material. , a method including a step of desorbing carbon dioxide (temperature swing method), and the like.
  • the pressure it is preferable to lower the pressure to about 0.2 Pa in terms of the amount of carbon dioxide desorbed and the stability of the carbon dioxide separation material.
  • the carbon dioxide separation material or the container containing it may be heated during the pressure reduction. When heating, the temperature is desirably up to about 60° C., and in this case, it is preferable to lower the pressure to about 0.5 Pa.
  • the method including step (A) is suitable when the gas to be treated has a temperature of 20 to 60° C. and a carbon dioxide partial pressure of 100 kPa or less.
  • step (B) for example, by bringing an inert gas, water vapor, a gas not containing carbon dioxide, etc. into contact with the carbon dioxide separation material, the partial pressure of carbon dioxide can be lowered and carbon dioxide can be desorbed.
  • the gas to be brought into contact with the carbon dioxide separation material may be any gas as long as the carbon dioxide separation material is stable in the gas, preferably an inert gas such as argon, nitrogen, water vapor, etc., and more preferably reduced pressure water vapor.
  • carbon dioxide can be desorbed by increasing the temperature above that during carbon dioxide absorption.
  • the temperature during carbon dioxide absorption may be, for example, 10 to 40°C
  • the temperature during carbon dioxide desorption may be, for example, about 60°C.
  • the supported amount of polyamine (mass%) is expressed as a percentage of the mass of polyamine relative to the mass of carbon dioxide separation material (polyamine carrier) excluding carbon dioxide (here, the total amount of polyamine and support percentage of polyamine).
  • LC-MS Liquid chromatograph mass spectrometer
  • xPO such as “xPO-IP-TEPA”
  • xPO-IP-TEPA the number of moles of propylene oxide reacted with 1 mol of the skeleton amine (TEPA in this example) is x mol.
  • 0.25PO such as “0.25PO-IP-TEPA” indicates that the number of moles of propylene oxide reacted with 1 mol of the skeleton amine is 0.25 mol.
  • IP such as "0.25PO-IP-TEPA” means that the two primary amino groups of the backbone amine are isopropylated to form diisopropylamine (in other words, the reaction per molecule and The number of moles of acetone produced is 2 mol).
  • IP-polyamine component Synthesis of diisopropylated tetraethylenepentamine (also known as 1,11-diisopropylamino-3,6,9-triazaundecane) (IP-TEPA)
  • a separately weighed predetermined amount of support Q30 (CARiACT Q30 manufactured by Fuji Silysia Chemical Co., Ltd.; specific surface area 100 m 2 /g, average pore diameter 30 nm, pore volume 0.9 mL/g) was placed in an eggplant flask, and the mixture was heated at room temperature. After stirring for 2 hours, the methanol solvent was removed by heating it to 40°C with a rotary evaporator (manufactured by EYELA; N-1000) and reducing the pressure in the system until the pressure became 0.03 MPa.
  • a polyamine carrier 0.5PO-IP-TEPA(25)/Q30) containing 25% by mass of 0.5PO-IP-TEPA was obtained.
  • Removal of the methanol solvent was determined by weighing the total weight of the flask and reagents in advance, and was considered complete when a mass loss of 20 g, which corresponds to the methanol solvent, was confirmed.
  • the prepared polyamine carrier was stored in an eggplant flask with a stopper in a desiccator until it was used for evaluation tests.
  • Example 2 A polyamine carrier (0.5PO-IP-TEPA (29)/Q30) was obtained in the same manner as in Example 1, except that the content of 0.5PO-IP-TEPA was changed to 29% by mass.
  • Example 3 ⁇ Synthesis of PO-IP-polyamine component> 0.25PO-IP-TEPA was obtained in the same manner as in Example 1, except that the amount of propylene oxide reacted with 1 mole of IP-TEPA was changed to 0.25 mol (yield 95%). Further, in the same manner as in Example 1, a polyamine carrier (0.25PO-IP-TEPA(25)/Q30) containing 25% by mass of 0.25PO-IP-TEPA was obtained.
  • Example 4 A polyamine carrier (0.25PO-IP-TEPA(29)/Q30) was obtained in the same manner as in Example 3 except that the content of 0.25PO-IP-TEPA was changed to 29% by mass.
  • IP-polyamine Synthesis of 1,10-diisopropylamino-4,7-diazadecane (IP-DEDP)
  • Example 6 ⁇ Synthesis of IP-polyamine> Same as Example 1, except that 1.0 mol of pentaethylenehexamine (PEHA) was added as the backbone amine and 2.1 mol of acetone was added as the starting material for the isopropyl group to the flask containing the reduced catalyst. IP-PEHA was obtained (yield 95%).
  • PEHA pentaethylenehexamine
  • Example 7 ⁇ Synthesis of IP-polyamine> Same as Example 1, except that 1.0 mol of hexaethyleneheptamine (HEHA) was added as the backbone amine and 2.1 mol of acetone was added as the starting material for the isopropyl group into the flask containing the reduced catalyst. , IP-HEHA was obtained (yield 95%).
  • HEHA hexaethyleneheptamine
  • IP-TEPA was directly supported on Q30 at a content of 29% by mass to obtain a polyamine support (IP-TEPA(29)/Q30).
  • IP-DEDP was directly supported on Q30 at a content of 29% by mass to obtain a polyamine support (IP-DEDP(29)/Q30).
  • IP-PEHA was directly supported on Q30 at a content of 29% by mass to obtain a polyamine support (IP-PEHA(29)/Q30).
  • IP-HEHA was directly supported on Q30 at a content of 29% by mass to obtain a polyamine support (IP-HEHA(29)/Q30).
  • Table 1 summarizes the composition of the polyamine carrier of each Example and Comparative Example.
  • the amount of carbon dioxide desorbed (recovered) was determined from the integration of the time from switching the flowing gas to argon until no carbon dioxide was detected in the exit gas and the exit gas concentration.
  • the unit of carbon dioxide absorption amount in the table is the absorption amount (mol) per 1 kg of polyamine carrier.
  • the amount of absorption (mol/kg) shown in (A) indicates the amount of absorption at 60°C and 13 kPa of a fresh sample
  • the amount of desorption (recovery) shown in (B) is the amount of absorption by flowing argon gas. This is the amount of desorption (recovery) at 60°C.
  • Oxidative degradation of the polyamine support was performed using a packed bed reactor. 1.0 g of the polyamine carrier was packed in a quartz tube, pretreated by flowing nitrogen at 100°C for 3 hours, and then subjected to deterioration treatment by flowing simulated air (21% O 2 - N 2 balance) at 100°C for 42 hours. did. Thereafter, carbon dioxide was introduced at 40° C. by the same method as above, and an isotherm was obtained. The amount of carbon dioxide absorbed was measured as the equilibrium absorption amount at 13 kPa.
  • FIGS. 1 to 3 show the results of fresh samples and samples after deterioration treatment of Examples 2 and 4 and Comparative Examples 1 and 2.
  • the horizontal axis corresponds to the absolute pressure or partial pressure of CO 2
  • the vertical axis indicates the amount of CO 2 absorbed.
  • FIG. 3 is a bar graph showing the results of FIGS. 1 and 2 together.
  • the isotherm of the polyamine support that was degraded in the same manner as in Evaluation Test 2 was obtained in the same manner as in Evaluation Test 2.
  • the amount of carbon dioxide absorbed was measured at 100 kPa.
  • FIGS. 4 and 5 show the results of fresh samples and samples after deterioration treatment.
  • the horizontal axis corresponds to the absolute pressure or partial pressure of CO 2
  • the vertical axis indicates the amount of CO 2 absorbed. Table 5 shows the results.
  • Example 4 and Example 7 Approximately 1 g of the fresh polyamine support of Example 4 and Example 7 was weighed into a sample tube, and after pretreatment for drying and degassing by flowing argon at 80°C for 6 hours, the sample temperature was maintained at 60°C. did. Next, a H 2 O/Ar mixed gas was flowed to cause the polyamine support to absorb water.
  • argon was flowed and the outlet gas composition was measured using a gas chromatograph. In this measurement, instead of depressurizing with a vacuum pump, argon gas was flowed to lower the partial pressure of carbon dioxide in the system and remove carbon dioxide.
  • the amount of absorption was determined from the integration of the time from the start of absorption until reaching saturation and the outlet concentration.
  • the amount of desorption was determined from the integration of the time from the time of switching to argon gas until no carbon dioxide was detected in the outlet gas and the outlet concentration. Table 6 shows the results. For evaluation under dry conditions, the amount of carbon dioxide absorbed was measured at 60°C and 13 kPa, and the amount desorbed was measured at 60°C.
  • the carbon dioxide separation material according to the present disclosure increases the amount of carbon dioxide absorbed and can separate and recover a large amount of carbon dioxide in a short time under reduced pressure, so it is efficient, practical, and suitable for reuse.
  • the carbon dioxide separation material according to the present disclosure can separate and recover carbon dioxide using either the pressure swing method or the temperature swing method in the carbon dioxide absorption and desorption process, and can be used in various usage environments. It is possible to select appropriate carbon dioxide absorption and desorption steps.
  • the carbon dioxide separation material according to the present disclosure has high resistance to oxidative deterioration and is less likely to be reduced due to volatilization of polyamine.

Abstract

This carbon dioxide isolator includes polyamine. The polyamine includes a propyl polyamine component having a hydrogen atom or a functional group that bonds to a nitrogen atom and having three or more propyl groups which bond to respective nitrogen atoms within a molecule. At least one of the propyl groups is a hydroxypropyl group having a hydroxy group, and the hydroxypropyl group bonds to a nitrogen atom that constitutes a tertiary amine. The hydroxy group bonds to a secondary carbon atom. At least two of the propyl groups are unsubstituted isopropyl groups which do not have a hydroxy group.

Description

二酸化炭素分離材、二酸化炭素を分離又は回収する方法、および、二酸化炭素分離材の製造方法Carbon dioxide separation material, method for separating or recovering carbon dioxide, and method for manufacturing carbon dioxide separation material
 本発明は、二酸化炭素分離材、二酸化炭素を分離又は回収する方法、および、二酸化炭素分離材の製造方法に関する。 The present invention relates to a carbon dioxide separation material, a method for separating or recovering carbon dioxide, and a method for manufacturing a carbon dioxide separation material.
 特許文献1は、窒素原子上に少なくとも2つイソプロピル基を有するポリアミンを支持体に担持したポリアミン担持体を含有する二酸化炭素分離材及び当該二酸化炭素分離材を用いた二酸化炭素の分離又は回収方法を提案している。 Patent Document 1 discloses a carbon dioxide separation material containing a polyamine carrier in which a polyamine having at least two isopropyl groups on a nitrogen atom is supported on a support, and a method for separating or recovering carbon dioxide using the carbon dioxide separation material. is suggesting.
 特許文献2は、水素および触媒の存在下でのカルボニル系化合物とヒドロキシルアルキルアミンとの反応を含む、アルキルアルカノールアミン類の調製方法を提案している。 Patent Document 2 proposes a method for preparing alkylalkanolamines that involves the reaction of a carbonyl compound and a hydroxyalkylamine in the presence of hydrogen and a catalyst.
 特許文献3は、アミン化合物が固定化された多孔質支持体をコアとして有し、二酸化硫黄による不活性化に耐性を有するアミン層をシェルとして有し、アミンの酸化分解を抑制し、酸素及び二酸化硫黄に耐性のあるキレート剤を含むコアシェル型アミン系二酸化炭素吸着剤を提案している。 Patent Document 3 has a porous support on which an amine compound is immobilized as a core, and has an amine layer as a shell that is resistant to inactivation by sulfur dioxide, suppresses oxidative decomposition of the amine, and suppresses oxygen and We have proposed a core-shell type amine-based carbon dioxide adsorbent containing a chelating agent that is resistant to sulfur dioxide.
 特許文献4は、変性ポリアミンおよび固体支持体を含み、空気を含むガス混合物から二酸化炭素を吸着するための再生可能な固体収着剤を提案している。変性ポリアミンは、アミンとエポキシドとの反応生成物である。 US Pat. No. 5,001,202 proposes a renewable solid sorbent for adsorbing carbon dioxide from gas mixtures containing air, comprising a modified polyamine and a solid support. Modified polyamines are reaction products of amines and epoxides.
国際公開第2014/208712号International Publication No. 2014/208712 特表2012-530771号公報(特許第5678050号)Special Publication No. 2012-530771 (Patent No. 5678050) 米国特許第10654025号明細書US Patent No. 10654025 米国公開特許2019/0168185号公報US Published Patent No. 2019/0168185
 上述のように二酸化炭素を吸着するための複数の材料が開発されているが、製造コストの低減と性能の更なる向上が求められている。例えば、支持体にポリアミンを担持した二酸化炭素分離材の酸化劣化に対する耐性を高めるとともに、ポリアミンの揮散による減少を抑制することが望まれている。二酸化炭素分離材は、酸素を含む雰囲気(特に空気)中で、例えば60℃程度の温度での使用が想定されるためである。 As mentioned above, multiple materials for adsorbing carbon dioxide have been developed, but there is a need to reduce manufacturing costs and further improve performance. For example, it is desired to increase the resistance to oxidative deterioration of a carbon dioxide separation material in which a polyamine is supported on a support, and to suppress the decrease due to volatilization of the polyamine. This is because the carbon dioxide separation material is expected to be used in an oxygen-containing atmosphere (particularly air) at a temperature of, for example, about 60°C.
 本発明の一側面は、ポリアミンを含み、前記ポリアミンは、窒素原子に結合する水素原子または官能基を有するとともに分子内のそれぞれ別の窒素原子に結合する3つ以上のプロピル基を有するプロピルポリアミン成分を含み、少なくとも1つの前記プロピル基は、ヒドロキシ基を有するヒドロキシプロピル基であり、前記ヒドロキシプロピル基は、3級アミンを構成する窒素原子に結合し、前記ヒドロキシ基は2級炭素原子に結合しており、2つ以上の前記プロピル基は、ヒドロキシ基を有さない非置換イソプロピル基である、二酸化炭素分離材に関する。 One aspect of the present invention includes a polyamine, the polyamine having a hydrogen atom or a functional group bonded to a nitrogen atom, and a propyl polyamine component having three or more propyl groups bonded to different nitrogen atoms in the molecule. at least one of the propyl groups is a hydroxypropyl group having a hydroxy group, the hydroxypropyl group is bonded to a nitrogen atom constituting a tertiary amine, and the hydroxy group is bonded to a secondary carbon atom. and the two or more propyl groups are unsubstituted isopropyl groups having no hydroxy group.
 本発明の別の側面は、処理対象のガスを上記二酸化炭素分離材に接触させ、二酸化炭素を吸収する第1工程、および前記第1工程において二酸化炭素を吸収した前記二酸化炭素分離材から二酸化炭素を脱離させる第2工程、を含む二酸化炭素を分離又は回収する方法であって、前記第2工程が(A)前記二酸化炭素分離材を減圧条件下におき、二酸化炭素を脱離させる工程(圧力スィング法)、(B)前記二酸化炭素分離材に水蒸気および不活性ガスの少なくとも一方(好ましくは二酸化炭素を含まないガス)を接触させ、二酸化炭素を脱離させる工程、及び(C)前記二酸化炭素分離材を加熱し、二酸化炭素を脱離させる工程(温度スィング法)のいずれか一つ以上を含む、二酸化炭素を分離又は回収する方法に関する。 Another aspect of the present invention includes a first step of bringing a gas to be treated into contact with the carbon dioxide separation material to absorb carbon dioxide, and a step of bringing carbon dioxide from the carbon dioxide separation material that has absorbed carbon dioxide in the first step. A method for separating or recovering carbon dioxide, the second step comprising: (A) placing the carbon dioxide separation material under reduced pressure conditions and desorbing carbon dioxide; (pressure swing method), (B) a step of contacting the carbon dioxide separation material with at least one of water vapor and an inert gas (preferably a gas not containing carbon dioxide) and desorbing carbon dioxide, and (C) the step of desorbing the carbon dioxide. The present invention relates to a method for separating or recovering carbon dioxide, which includes any one or more of the steps of heating a carbon separation material and desorbing carbon dioxide (temperature swing method).
 本発明の更に別の側面は、ポリアミンを準備する工程と、前記ポリアミンを支持体と接触させ、前記ポリアミンと、前記ポリアミンを担持する前記支持体と、を含むポリアミン担持体を得る工程と、を具備し、前記ポリアミンは、窒素原子に結合する水素原子または官能基を有するとともに分子内のそれぞれ別の窒素原子に結合する3つ以上のプロピル基を有するプロピルポリアミン成分を含み、少なくとも1つの前記プロピル基は、ヒドロキシ基を有するヒドロキシプロピル基であり、前記ヒドロキシプロピル基は、3級アミンを構成する窒素原子に結合し、前記ヒドロキシ基は2級炭素原子に結合しており、2つ以上の前記プロピル基は、ヒドロキシ基を有さない非置換イソプロピル基である、二酸化炭素分離材の製造方法に関する。 Yet another aspect of the present invention includes the steps of: preparing a polyamine; and contacting the polyamine with a support to obtain a polyamine carrier comprising the polyamine and the support supporting the polyamine. The polyamine includes a propyl polyamine component having a hydrogen atom or a functional group bonded to a nitrogen atom and three or more propyl groups bonded to different nitrogen atoms in the molecule, and at least one of the propyl The group is a hydroxypropyl group having a hydroxy group, the hydroxypropyl group is bonded to a nitrogen atom constituting a tertiary amine, the hydroxy group is bonded to a secondary carbon atom, and two or more of the The propyl group is an unsubstituted isopropyl group having no hydroxy group, and relates to a method for producing a carbon dioxide separation material.
 本開示に係るポリアミンは、生成反応における反応物の制御が容易であり、このポリアミンを担持した二酸化炭素分離材は酸化劣化に対する耐性が高く、ポリアミンの揮散による減少が抑制され、かつ二酸化炭素の吸脱着性能に優れている。よって、低コストで高性能な二酸化炭素分離材を提供することができる。また、本開示に係る二酸化炭素分離材を用いることで、高効率で二酸化炭素を分離又は回収することができる。 The polyamine according to the present disclosure allows easy control of reactants in the reaction produced, and the carbon dioxide separation material supporting this polyamine has high resistance to oxidative deterioration, suppresses reduction due to volatilization of the polyamine, and absorbs carbon dioxide. Excellent detachability. Therefore, it is possible to provide a carbon dioxide separation material with low cost and high performance. Further, by using the carbon dioxide separation material according to the present disclosure, carbon dioxide can be separated or recovered with high efficiency.
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本発明の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。 While the novel features of the invention are set forth in the appended claims, the invention is further understood by the following detailed description, taken together with the drawings, both as to structure and content, as well as other objects and features of the invention. It will be well understood.
実施例2、4および比較例1、2のフレッシュなポリアミン担持体による二酸化炭素の吸脱着挙動を示す図である。FIG. 3 is a diagram showing adsorption/desorption behavior of carbon dioxide by fresh polyamine carriers of Examples 2 and 4 and Comparative Examples 1 and 2. 実施例2、4および比較例1、2の100℃の空気中で42時間加熱後のポリアミン担持体による二酸化炭素の吸脱着挙動を示す図である。FIG. 3 is a diagram showing adsorption/desorption behavior of carbon dioxide by the polyamine carriers of Examples 2 and 4 and Comparative Examples 1 and 2 after heating in air at 100° C. for 42 hours. 実施例2、4および比較例1、2の100℃の空気中で42時間加熱する前後のポリアミン担持体による二酸化炭素の吸脱着挙動を対比して示す図である。FIG. 2 is a diagram comparing and showing adsorption/desorption behavior of carbon dioxide by the polyamine support before and after heating in air at 100° C. for 42 hours in Examples 2 and 4 and Comparative Examples 1 and 2. 実施例4のフレッシュなポリアミン担持体による二酸化炭素の吸脱着挙動を示す図である。FIG. 3 is a diagram showing the adsorption/desorption behavior of carbon dioxide by the fresh polyamine carrier of Example 4. 実施例4の100℃の空気中で42時間加熱後のポリアミン担持体による二酸化炭素の吸脱着挙動を示す図である。FIG. 3 is a diagram showing the adsorption/desorption behavior of carbon dioxide by the polyamine support after heating in air at 100° C. for 42 hours in Example 4.
 以下、本発明の実施形態に係る二酸化炭素分離材について説明するが、二酸化炭素分離材は、以下の実施形態に限定されるものではない。以下の説明では、具体的な数値や材料を例示する場合があるが、本開示の効果が得られる限り、他の数値や材料を適用してもよい。この明細書において、「数値A~数値B」という記載は、数値Aおよび数値Bを含み、「数値A以上で数値B以下」と読み替えることが可能である。以下の説明において、特定の物性や条件などに関する数値の下限と上限とを例示した場合、下限が上限以上とならない限り、例示した下限のいずれかと例示した上限のいずれかを任意に組み合わせることができる。複数の材料が例示される場合、その中から1種を選択して単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Hereinafter, a carbon dioxide separation material according to an embodiment of the present invention will be described, but the carbon dioxide separation material is not limited to the following embodiments. In the following description, specific numerical values and materials may be illustrated, but other numerical values and materials may be applied as long as the effects of the present disclosure can be obtained. In this specification, the expression "numerical value A to numerical value B" includes numerical value A and numerical value B, and can be read as "more than or equal to numerical value A and less than or equal to numerical value B." In the following explanation, when lower and upper limits of numerical values related to specific physical properties or conditions are illustrated, any of the illustrated lower limits and any of the illustrated upper limits can be arbitrarily combined as long as the lower limit is not greater than the upper limit. . When a plurality of materials are exemplified, one type may be selected from them and used alone, or two or more types may be used in combination.
 二酸化炭素分離材は、ポリアミンを含み、ポリアミンは、少なくともプロピルポリアミン成分を含む。 The carbon dioxide separation material contains a polyamine, and the polyamine contains at least a propyl polyamine component.
 ここで、プロピルポリアミン成分は、窒素原子に結合する水素原子または官能基を有するとともに分子内のそれぞれ別の窒素原子に結合する3つ以上のプロピル基を有する。窒素原子に結合する官能基としては、水酸基(N-OH)、アルキル基(N-R(Rはメチル基、エチル基等のアルキル基))等が例示できる。 Here, the propyl polyamine component has a hydrogen atom or a functional group bonded to a nitrogen atom, and also has three or more propyl groups bonded to different nitrogen atoms in the molecule. Examples of the functional group bonded to the nitrogen atom include a hydroxyl group (N-OH) and an alkyl group (NR (R is an alkyl group such as a methyl group and an ethyl group)).
 ただし、少なくとも1つのプロピル基は、ヒドロキシ基を有するヒドロキシプロピル基である。ヒドロキシプロピル基は、3級アミンを構成する窒素原子に結合している。ヒドロキシプロピル基において、ヒドロキシ基は2級炭素原子に結合している。すなわち、ヒドロキシプロピル基は、2-ヒドロキシ-n-プロピル基(-CHCH(OH)CH)である。また、2つ以上のプロピル基は、ヒドロキシ基を有さない非置換イソプロピル基(-CH(CH)CH)である。非置換イソプロピル基の導入により、NとCO2との化学的結合が緩やかになり、少ないエネルギー(例えば低温)でCO2が脱離できるようになる。以下、このようなプロピルポリアミン成分を、「PO-IP-ポリアミン成分」とも称する。 However, at least one propyl group is a hydroxypropyl group having a hydroxy group. The hydroxypropyl group is bonded to the nitrogen atom that constitutes the tertiary amine. In hydroxypropyl groups, the hydroxy group is attached to a secondary carbon atom. That is, the hydroxypropyl group is a 2-hydroxy-n-propyl group (-CH 2 CH(OH)CH 3 ). Furthermore, the two or more propyl groups are unsubstituted isopropyl groups (-CH(CH 3 )CH 3 ) having no hydroxy group. By introducing the unsubstituted isopropyl group, the chemical bond between N and CO 2 becomes loose, and CO 2 can be eliminated with less energy (for example, at low temperature). Hereinafter, such a propyl polyamine component will also be referred to as a "PO-IP-polyamine component."
 ここで、単に「プロピル基」と称する場合、ヒドロキシ基を有する「ヒドロキシプロピル基」およびヒドロキシ基を有さない「非置換プロピル基(特にイソプロピル基)」の両方の総称として「プロピル基」を用いる。 Here, when simply referring to "propyl group", "propyl group" is used as a general term for both "hydroxypropyl group" having a hydroxy group and "unsubstituted propyl group (especially isopropyl group)" not having a hydroxy group. .
 以下、窒素原子に結合するプロピル基を「プロピル基N」とも称する。PO-IP-ポリアミン成分は、分子内に3つ以上の窒素原子を含む。PO-IP-ポリアミン成分において、分子内に有する3つ以上のプロピル基Nのうち、少なくとも1つはヒドロキシプロピル基であり、2つ以上が非置換イソプロピル基である。 Hereinafter, the propyl group bonded to the nitrogen atom is also referred to as "propyl group N." The PO-IP-polyamine component contains three or more nitrogen atoms within the molecule. In the PO-IP-polyamine component, among the three or more propyl groups N in the molecule, at least one is a hydroxypropyl group, and two or more are unsubstituted isopropyl groups.
 PO-IP-ポリアミン成分において、3つ以上の窒素原子の2つ以上がそれぞれ水素原子と結合している。複数の窒素原子の1つを除く全てがそれぞれ水素原子と結合していてもよい。 In the PO-IP-polyamine component, two or more of the three or more nitrogen atoms are each bonded to a hydrogen atom. All but one of the plurality of nitrogen atoms may each be bonded to a hydrogen atom.
 水素原子と結合する窒素原子は、1つの水素原子と結合する2級アミノ基を形成していてもよく、2つの水素原子と結合する1級アミノ基を形成していてもよい。 A nitrogen atom that bonds with a hydrogen atom may form a secondary amino group that bonds with one hydrogen atom, or may form a primary amino group that bonds with two hydrogen atoms.
 プロピルポリアミン成分は、単一のポリアミン成分のみを含んでもよく、複数のポリアミン成分を含んでもよい。すなわち、プロピルポリアミン成分は、複数のポリアミン成分の混合物でもよく、精製された単一のポリアミン成分のみを含んでもよい。プロピルポリアミン成分は、PO-IP-ポリアミン成分だけを含んでもよく、PO-IP-ポリアミン成分以外のポリアミン成分を含んでもよい。プロピルポリアミン成分は、ヒドロキシプロピル基を有さず、非置換イソプロピル基のみを有するポリアミン成分を含んでもよいし、含まなくてもよい。 The propyl polyamine component may contain only a single polyamine component, or may contain multiple polyamine components. That is, the propyl polyamine component may be a mixture of a plurality of polyamine components, or may contain only a single purified polyamine component. The propyl polyamine component may contain only the PO-IP-polyamine component, or may contain polyamine components other than the PO-IP-polyamine component. The propyl polyamine component may or may not contain a polyamine component that does not have a hydroxypropyl group and only has an unsubstituted isopropyl group.
 ヒドロキシプロピル基を有さず、非置換イソプロピル基のみを有するポリアミン成分は、PO-IP-ポリアミン成分のヒドロキシプロピル基を水素原子に置換したポリアミンでもよい。以下、このようなプロピルポリアミン成分を、「IP-ポリアミン成分」とも称する。 The polyamine component having no hydroxypropyl groups and only unsubstituted isopropyl groups may be a polyamine in which the hydroxypropyl groups of the PO-IP-polyamine component are replaced with hydrogen atoms. Hereinafter, such a propyl polyamine component will also be referred to as an "IP-polyamine component."
 PO-IP-ポリアミン成分は、直鎖構造でもよく、分岐鎖構造でもよく、窒素原子を含む環構造を有してもよい。中でも直鎖構造のPO-IP-ポリアミン成分はCO吸着サイトが多い点で望ましい。 The PO-IP-polyamine component may have a linear structure, a branched structure, or a ring structure containing a nitrogen atom. Among them, a PO-IP-polyamine component with a linear structure is preferable because it has many CO 2 adsorption sites.
 PO-IP-ポリアミン成分とIP-ポリアミン成分とを必須成分として含む混合物としてのプロピルポリアミン成分を担持した二酸化炭素分離材は、特に安定性に優れている。具体的には、酸化劣化に対する耐性が高く、ポリアミンの揮散による減少が抑制され、かつ二酸化炭素の吸脱着性能が高い。 A carbon dioxide separation material supporting a propyl polyamine component as a mixture containing a PO-IP-polyamine component and an IP-polyamine component as essential components has particularly excellent stability. Specifically, it has high resistance to oxidative deterioration, suppresses decrease in polyamine due to volatilization, and has high carbon dioxide adsorption/desorption performance.
 プロピルポリアミン成分の中でも、PO-IP-ポリアミン成分は、二酸化炭素分離材の安定性を高める上で大きな役割を果たすと考えられる。PO-IP-ポリアミン成分およびIP-ポリアミン成分を含むポリアミンは、IP-ポリアミン成分のみを含むポリアミンよりも酸化劣化に対する耐性が非常に高く、かつ蒸気圧が低く、揮散が抑制されるためである。このような二酸化炭素分離材は長期的使用に適する。 Among the propyl polyamine components, the PO-IP-polyamine component is thought to play a major role in increasing the stability of the carbon dioxide separation material. This is because a polyamine containing a PO-IP-polyamine component and an IP-polyamine component has much higher resistance to oxidative deterioration than a polyamine containing only an IP-polyamine component, has a lower vapor pressure, and suppresses volatilization. Such carbon dioxide separation materials are suitable for long-term use.
 プロピルポリアミン成分に占めるPO-IP-ポリアミン成分の含有率は50モル%以下が望ましく、10モル%以上50モル%以下でもよい。プロピルポリアミン成分に占めるIP-ポリアミン成分の含有率は50モル%以上が望ましく、90モル%以下が望ましい。 The content of the PO-IP-polyamine component in the propyl polyamine component is preferably 50 mol% or less, and may be 10 mol% or more and 50 mol% or less. The content of the IP-polyamine component in the propyl polyamine component is preferably 50 mol% or more, and preferably 90 mol% or less.
 プロピル基Nは、2級アミンを構成する窒素原子または3級アミンを構成する窒素原子に結合し得るが、二酸化炭素の脱離性が高まる点で、非置換イソプロピル基は2級アミンを構成する窒素原子に結合していることが望ましい。一方、ヒドロキシプロピル基は、3級アミンを構成する窒素原子に結合し得る。ヒドロキシプロピル基は、ポリアミン分子の末端以外に存在する3級アミンを構成する窒素原子に結合していることが望ましい。 The propyl group N can be bonded to a nitrogen atom constituting a secondary amine or a nitrogen atom constituting a tertiary amine, but an unsubstituted isopropyl group constitutes a secondary amine because it increases the ability to eliminate carbon dioxide. It is desirable that it be bonded to a nitrogen atom. On the other hand, the hydroxypropyl group can be bonded to the nitrogen atom constituting the tertiary amine. The hydroxypropyl group is desirably bonded to a nitrogen atom constituting the tertiary amine that is present at a location other than the terminal end of the polyamine molecule.
 非置換イソプロピル基は、ポリアミン分子の末端に結合していることが望ましい。例えば、直鎖構造のポリアミン分子の場合、2つの末端にイソプロピル基が結合していてもよい。分岐鎖構造のポリアミン分子の場合、全ての分岐鎖の末端にイソプロピル基が結合していてもよい。 It is desirable that the unsubstituted isopropyl group is bonded to the end of the polyamine molecule. For example, in the case of a polyamine molecule with a linear structure, isopropyl groups may be bonded to two ends. In the case of a polyamine molecule having a branched structure, isopropyl groups may be bonded to the ends of all branched chains.
 2級アミンを構成する窒素原子に結合するイソプロピル基は、例えば、イソプロピル基Nの出発原料と、1級アミノ基との反応により形成されてもよい。イソプロピル基の出発原料としては、例えば、アセトンを用い得る。 The isopropyl group bonded to the nitrogen atom constituting the secondary amine may be formed, for example, by reacting the starting material of the isopropyl group N with a primary amino group. As a starting material for the isopropyl group, for example, acetone can be used.
 3級アミンを構成する窒素原子に結合するヒドロキシプロピル基は、例えば、ヒドロキシプロピル基の出発原料と、2級アミノ基との反応により形成されてもよい。ヒドロキシプロピル基の出発原料としては、例えば、プロピレンオキシドを用い得る。 The hydroxypropyl group bonded to the nitrogen atom constituting the tertiary amine may be formed, for example, by a reaction between a starting material for the hydroxypropyl group and a secondary amino group. As a starting material for the hydroxypropyl group, for example, propylene oxide can be used.
 PO-IPポリアミン成分は、例えば、市販されている、または公知の方法によって得られた1級アミノ基(-NH基)および-NH-基を有するポリアミンの1級アミノ基に2個以上のイソプロピル基を導入後、ポリアミンの2級アミノ基に1個以上のヒドロキシプロピル基を導入することによって製造することが可能である。 The PO-IP polyamine component is, for example, a polyamine having two or more primary amino groups (-NH 2 groups) and an -NH- group that is commercially available or obtained by a known method. After introducing an isopropyl group, it can be produced by introducing one or more hydroxypropyl groups into the secondary amino group of the polyamine.
 イソプロピル基を導入する方法としては、-NH基とアセトンなどのイソプロピル基Nの出発原料を反応させる方法が挙げられる。ヒドロキシプロピル基を導入する方法としては、-NH基とプロピレンオキシドなどのヒドロキシプロピル基の出発原料を反応させる方法が挙げられる。このとき、ポリアミンとプロピレンオキシドとのモル比を制御することで、PO-IP-ポリアミン成分とIP-ポリアミンとの混合物を任意の組成で得ることができる。 A method for introducing an isopropyl group includes a method of reacting a -NH 2 group with a starting material for isopropyl group N such as acetone. A method for introducing a hydroxypropyl group includes a method of reacting an -NH group with a starting material for a hydroxypropyl group such as propylene oxide. At this time, by controlling the molar ratio of polyamine and propylene oxide, a mixture of PO-IP-polyamine component and IP-polyamine can be obtained with any composition.
 具体的には、フラスコなどの反応容器内に酸化白金触媒と無水エタノールを入れ、反応容器内を水素で置換した後、水素を100kPa~150kPaになるまで入れ、所定時間撹拌し、酸化白金触媒を還元する。次に、1級アミノ基(-NH基)および-NH-基を有するポリアミンと、アセトンと、無水エタノールを、還元された触媒が入った反応容器に入れて、反応容器内を水素で置換した後、水素を約200kPa~350kPaになるまで入れ、その後、圧力の低下が無くなるまで水素を供給しながら撹拌する。このとき、アセトンとNHが反応して水が脱水して形成されたN=C結合が水素化される。溶液を濾過して触媒を除去した後、エタノールを減圧除去し、得られた無色の液体をさらに真空下で乾燥すればIP-ポリアミン成分を得ることができる。アセトンと1級アミノ基との反応(第1反応)では、非置換イソプロピル基が形成される。 Specifically, a platinum oxide catalyst and anhydrous ethanol are placed in a reaction container such as a flask, and the inside of the reaction container is replaced with hydrogen. Then, hydrogen is added until the pressure reaches 100 kPa to 150 kPa, and the mixture is stirred for a predetermined period of time. Give back. Next, a polyamine having primary amino groups (-NH 2 groups) and -NH- groups, acetone, and anhydrous ethanol are placed in a reaction vessel containing the reduced catalyst, and the inside of the reaction vessel is replaced with hydrogen. After that, hydrogen is added until the pressure becomes about 200 kPa to 350 kPa, and then the mixture is stirred while supplying hydrogen until there is no pressure drop. At this time, acetone and NH 2 react, water is dehydrated, and the N=C bond formed is hydrogenated. After filtering the solution to remove the catalyst, ethanol is removed under reduced pressure, and the resulting colorless liquid is further dried under vacuum to obtain the IP-polyamine component. In the reaction between acetone and a primary amino group (first reaction), an unsubstituted isopropyl group is formed.
 次に、IP-ポリアミン成分を水に溶解し、酸化プロピレンを滴下して混合し、混合物を室温で12時間攪拌する。その後、混合物を60℃まで加温し、さらに2時間保持する。得られた液体から水を減圧除去し、さらに真空乾燥することにより、PO-IP-ポリアミン成分を得ることができる。プロピレンオキシドと2級アミノ基との反応(第2反応)では、ヒドロキシプロピル基が形成される。 Next, the IP-polyamine component is dissolved in water, propylene oxide is added dropwise and mixed, and the mixture is stirred at room temperature for 12 hours. The mixture is then warmed to 60°C and held for an additional 2 hours. A PO-IP-polyamine component can be obtained by removing water from the obtained liquid under reduced pressure and further vacuum drying. In the reaction between propylene oxide and a secondary amino group (second reaction), a hydroxypropyl group is formed.
 アセトンは、1級アミノ基と優先的に反応し、NH基を有する2級アミンを構成する窒素原子を生成する。すなわち、イソプロピル基は2級アミンを構成する窒素原子に優先的に結合する。そのため、第1反応における反応物の制御が容易であり、二酸化炭素を吸脱着するNH基をより多く確保することができる。 Acetone reacts preferentially with primary amino groups to generate nitrogen atoms that constitute secondary amines having NH groups. That is, the isopropyl group preferentially bonds to the nitrogen atom constituting the secondary amine. Therefore, it is easy to control the reactants in the first reaction, and more NH groups that adsorb and desorb carbon dioxide can be secured.
 以下に、骨格アミンであるテトラエチレンペンタミン(TEPA)に、TEPAの1mol当たり2molのイソプロピル基と1molのヒドロキシプロピル基とを結合させて生成させたPO-IP-ポリアミン成分(以下、「PO-IP-TEPA」と称する。)の一例の構造を示す。 Below, a PO-IP-polyamine component (hereinafter referred to as "PO- The structure of an example of IP-TEPA (referred to as "IP-TEPA") is shown below.
 PO-IP-TEPAは、例えば、以下のスキームに示すプロセスで得ることができる。まず、テトラエチレンペンタミン(TEPA)に、TEPAの1分子当たり2分子のアセトンを反応させ、2つのイソプロピル基をTEPAに付加させる。このとき得られるイソプロピル化されたTEPAを「IP-TEPA」とも称する。その後、IP-TEPAの1分子当たり1分子以下のプロピレンオキシドを反応させ、ヒドロキシプロピル基を付加させる。例えば、IP-TEPA1mol当たりと反応させるプロピレンオキシドを1mol以下(例えば0.5mol以下)とすることで、PO-IP-TEPAと、ヒドロキシプロピル基を有さず、非置換イソプロピル基のみを有するIP-TEPAとの混合物を得ることができる。 PO-IP-TEPA can be obtained, for example, by the process shown in the scheme below. First, tetraethylenepentamine (TEPA) is reacted with two molecules of acetone per molecule of TEPA to add two isopropyl groups to TEPA. The isopropylated TEPA obtained at this time is also referred to as "IP-TEPA." Thereafter, one molecule of propylene oxide or less per molecule of IP-TEPA is reacted to add a hydroxypropyl group. For example, by setting the amount of propylene oxide to be reacted with 1 mol or less (for example, 0.5 mol or less) per 1 mol of IP-TEPA, PO-IP-TEPA and IP- Mixtures with TEPA can be obtained.
 PO-IP-TEPAのように、PO-IP-ポリアミン成分は、それぞれ別の2級アミンを構成する窒素原子に結合する2つのイソプロピル基と3級アミンを構成する窒素原子に結合するヒドロキシプロピル基とを有してよい。ヒドロキシプロピル基においてヒドロキシ基は2級炭素原子に結合している。 Like PO-IP-TEPA, the PO-IP-polyamine component consists of two isopropyl groups bonded to nitrogen atoms constituting separate secondary amines and a hydroxypropyl group bonded to nitrogen atoms constituting a tertiary amine, respectively. It may have. In the hydroxypropyl group, the hydroxyl group is bonded to a secondary carbon atom.
 以下、IP-TEPAの1mol当たり0.25mol(または0.5mol)のプロピレンオキシドを反応させて生成させたポリアミン成分IPを、「0.25PO-IP-TEPA」(「0.50PO-IP-TEPA」)のように称する。 Hereinafter, the polyamine component IP produced by reacting 0.25 mol (or 0.5 mol) of propylene oxide per 1 mol of IP-TEPA will be referred to as "0.25PO-IP-TEPA" ("0.50PO-IP-TEPA"). ”).
 なお、60℃でのIP-TEPAの蒸気圧は1.80kPaであるが、0.5PO-IP-TEPAの蒸気圧は1.47kPaにまで低減される。 Note that the vapor pressure of IP-TEPA at 60°C is 1.80 kPa, but the vapor pressure of 0.5PO-IP-TEPA is reduced to 1.47 kPa.
 次に、PO-IP-ポリアミン成分の別の例として、骨格アミンであるペンタエチレンヘキサミン(PEHA)に、PEHAの1mol当たり2molのアセトンと1molのプロピレンオキシドを反応させて生成させたポリアミン成分(以下、「PO-IP-PEHA」と称する。)の一例の構造を示す。ここでも、IP-PEPA1mol当たりと反応させるプロピレンオキシドを1mol以下(例えば0.5mol以下)とすることで、PO-IP-PEHAと、ヒドロキシプロピル基を有さず、非置換イソプロピル基のみを有するIP-PEHAとの混合物を得ることができる。 Next, as another example of the PO-IP-polyamine component, a polyamine component (hereinafter referred to as , referred to as "PO-IP-PEHA"). Here, too, by setting the amount of propylene oxide to be reacted with 1 mol or less of IP-PEPA to be 1 mol or less (for example, 0.5 mol or less), PO-IP-PEHA and IP that does not have a hydroxypropyl group and have only an unsubstituted isopropyl group - A mixture with PEHA can be obtained.
 次に、PO-IP-ポリアミン成分の更に別の例として、骨格アミンであるヘキサエチレンヘプタミン(HEHA)に、HEHAの1mol当たり2molのアセトンと1molのプロピレンオキシドを反応させて生成させたポリアミン成分(以下、「PO-IP-HEHA」と称する。)の一例の構造を示す。ここでも、IP-HEHA1mol当たりと反応させるプロピレンオキシドを1mol以下(例えば0.5mol以下)とすることで、PO-IP-HEHAと、ヒドロキシプロピル基を有さず、非置換イソプロピル基のみを有するIP-HEHAとの混合物を得ることができる。 Next, as yet another example of the PO-IP-polyamine component, a polyamine component produced by reacting hexaethyleneheptamine (HEHA), which is a backbone amine, with 2 mol of acetone and 1 mol of propylene oxide per 1 mol of HEHA. (hereinafter referred to as "PO-IP-HEHA"). Here, too, by setting the amount of propylene oxide to be reacted with 1 mol or less of IP-HEHA to be 1 mol or less (for example, 0.5 mol or less), PO-IP-HEHA and IP that does not have a hydroxypropyl group and only have an unsubstituted isopropyl group - A mixture with HEHA can be obtained.
 PO-IPポリアミン成分(ポリアミン分子)の構造としては、2つ以上のNH基と、窒素原子間に介在する1つ以上のアルキレン基とを有する構造が好ましい。ポリアミン1分子内に含まれるNH基の数は、二酸化炭素の吸着能力を高める観点からは多いほど望ましく、ポリアミン1分子に含まれるNH基の数は、2以上50以下が望ましく、3以上30以下がより望ましい。一方、ポリアミン分子の取り扱い性を考慮すると、ポリアミン1分子内に含まれるNH基の数は、3以上20以下が望ましく、4以上10以下がより望ましく、4以上7以下が更に望ましい。 The structure of the PO-IP polyamine component (polyamine molecule) is preferably a structure having two or more NH groups and one or more alkylene groups interposed between nitrogen atoms. The number of NH groups contained in one polyamine molecule is preferably as large as possible from the viewpoint of increasing carbon dioxide adsorption ability, and the number of NH groups contained in one polyamine molecule is preferably 2 or more and 50 or less, and 3 or more and 30 or less. is more desirable. On the other hand, in consideration of the handleability of the polyamine molecule, the number of NH groups contained in one polyamine molecule is preferably 3 or more and 20 or less, more preferably 4 or more and 10 or less, and even more preferably 4 or more and 7 or less.
 PO-IP-ポリアミン成分において、窒素原子間に介在するアルキレン基としては、炭素数1~6のアルキレン基が望ましく、具体的には、メチレン基、エチレン基、プロピレン基、ブチレン基などが好ましい。ポリアミン1分子内に含まれるアルキレン基の数は、ポリアミン1分子内に含まれるNH基の数に応じて選択すればよい。ポリアミン1分子内に1種のみのアルキレン基が含まれてもよく、2種以上のアルキレン基が含まれていてもよい。 In the PO-IP-polyamine component, the alkylene group interposed between the nitrogen atoms is preferably an alkylene group having 1 to 6 carbon atoms, and specifically, a methylene group, ethylene group, propylene group, butylene group, etc. are preferable. The number of alkylene groups contained in one molecule of polyamine may be selected depending on the number of NH groups contained in one molecule of polyamine. One molecule of polyamine may contain only one type of alkylene group, or may contain two or more types of alkylene groups.
 具体的には、PO-IP-ポリアミン成分は、一般式(1): Specifically, the PO-IP-polyamine component has the general formula (1):
で表される骨格を有してもよい。ただし、式(1)中のRは、水素原子または炭素数1~6のアルキル基または炭素数1~6のアルキルアミノ基を示し、Aは、炭素数2~6のアルキレン基を示し、mは、2~50の整数を示し、複数あるRは、同一であっても、それぞれ異なっていてもよく、少なくとも1つのRは水素原子または炭素数1~6のアルキルアミノ基であり、複数あるAは、同一であっても、それぞれ異なっていてもよい。 It may have a skeleton represented by However, R in formula (1) represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkylamino group having 1 to 6 carbon atoms, A represents an alkylene group having 2 to 6 carbon atoms, and m represents an integer of 2 to 50, multiple R's may be the same or different, at least one R is a hydrogen atom or an alkylamino group having 1 to 6 carbon atoms, and there are multiple R's. A may be the same or different.
 PO-IP-ポリアミン成分は、例えば、一般式(2): The PO-IP-polyamine component has, for example, general formula (2):
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
で表すことができる。 It can be expressed as
 式(2)中、Rは、Rまたは基:-A-NRを示し、Rは、Rまたは基:-A-NRを示し、Aは、炭素数2~6のアルキレン基を示し、nは、1~5(例えば2以上)の整数を示し、pおよびqは、それぞれ独立して0または1を示す。 In formula (2), R A represents R 6 or a group: -A-NR 6 R 7 , R B represents R 8 or a group: -A-NR 8 R 9 , and A has a carbon number of 2. ~6 alkylene group, n represents an integer of 1 to 5 (for example, 2 or more), and p and q each independently represent 0 or 1.
 複数あるAは、同一であっても、それぞれ異なっていてもよく、複数ある場合のRは、同一であっても、それぞれ異なっていてもよい。 A plurality of A's may be the same or different, and when there are a plurality of A's, R5 's may be the same or different.
 R、R2、R7およびR9は非置換イソプロピル基を示し、R3、R4、R6およびR8は水素原子を示し、R5の少なくとも1つ(好ましくは2つ以下で、より好ましくは1つ)は前記ヒドロキシプロピル基を示し、Rの残りは水素原子を示す。 R 1 , R 2 , R 7 and R 9 represent an unsubstituted isopropyl group, R 3 , R 4 , R 6 and R 8 represent a hydrogen atom, and at least one of R 5 (preferably two or less, More preferably, one) represents the hydroxypropyl group, and the remainder of R 5 represents a hydrogen atom.
 ポリアミンの骨格アミンとしては、エチレンイミン、プロピレンイミン、2-エチルアジリジン、2-プロピルアジリジンおよび2-ブチルアジリジンのモノポリマー並びにこれらの少なくとも2種のコポリマーからなる群より選ばれる少なくとも1種が挙げられる。ここでは、モノポリマーおよびコポリマーには、重合分子数が10以下(例えば7以下)のオリゴマーが含まれる。例えば、テトラエチレンペンタミン、スペルミン、N,N,N’,N’-テトラキス(3-アミノプロピル)-1,4-ブタンジアミン、ペンタエチレンヘキサミン、ヘキサエチレンヘプタミンおよびトリエチレンテトラミンからなる群より選ばれる少なくとも1種が挙げられる。ポリアミンの骨格アミンとは、2級アミンを構成する窒素原子に結合するイソプロピル基を生成させる際に、イソプロピル基の出発原料と反応させる1級アミノ基を有するポリアミンをいう。 Examples of the backbone amine of the polyamine include at least one selected from the group consisting of monopolymers of ethyleneimine, propyleneimine, 2-ethylaziridine, 2-propylaziridine, and 2-butylaziridine, and copolymers of at least two of these. . Here, the monopolymer and copolymer include oligomers having a polymerized number of molecules of 10 or less (for example, 7 or less). For example, from the group consisting of tetraethylenepentamine, spermine, N,N,N',N'-tetrakis(3-aminopropyl)-1,4-butanediamine, pentaethylenehexamine, hexaethyleneheptamine and triethylenetetramine. At least one selected type is mentioned. The backbone amine of a polyamine refers to a polyamine having a primary amino group that is reacted with the starting material of the isopropyl group when producing the isopropyl group bonded to the nitrogen atom constituting the secondary amine.
 PO-IP-ポリアミン成分の原料となるIP-ポリアミン成分の具体例としては、ジイソプロピル化テトラエチレンペンタミン、ジイソプロピル化スペルミン、ジイソプロピル化ペンタエチレンヘキサミン、ジイソプロピル化ヘキサエチレンヘプタミン、ジイソプロピル化トリエチレンテトラミン等のジイソプロピル化ポリアミン;テトライソプロピル化N,N,N’,N’-テトラキス(3-アミノプロピル)-1,4-ブタンジアミン等のテトライソプロピル化ポリアミンを挙げることができ、さらに具体的には、1,11-ビス(イソプロピルアミノ)-3,6,9-トリアザウンデカン、N,N’-ビス(3-(イソプロピルアミノ)プロピル)-1,4-ブタンジアミン、N,N,N’,N’-テトラキス(3-(イソプロピルアミノ)プロピル)-1,4-ブタンジアミン、1,14-ビス(イソプロピルアミノ)-3,6,9,12-テトラアザテトラデカン、1,17-ビス(イソプロピルアミノ)-3,6,9,12,15-ペンタアザヘプタデカン、1,8-ビス(イソプロピルアミノ)-3,6,-ジアザオクタン等を挙げることができる。 Specific examples of the IP-polyamine component that is a raw material for the PO-IP-polyamine component include diisopropylated tetraethylenepentamine, diisopropylated spermine, diisopropylated pentaethylenehexamine, diisopropylated hexaethyleneheptamine, diisopropylated triethylenetetramine, etc. diisopropylated polyamines; tetraisopropylated polyamines such as tetraisopropylated N,N,N',N'-tetrakis(3-aminopropyl)-1,4-butanediamine; more specifically, 1,11-bis(isopropylamino)-3,6,9-triazaundecane, N,N'-bis(3-(isopropylamino)propyl)-1,4-butanediamine, N,N,N', N'-tetrakis(3-(isopropylamino)propyl)-1,4-butanediamine, 1,14-bis(isopropylamino)-3,6,9,12-tetraazatetradecane, 1,17-bis(isopropyl) Examples include amino)-3,6,9,12,15-pentaazaheptadecane and 1,8-bis(isopropylamino)-3,6-diazaoctane.
 ここで、ジイソプロピル化ポリアミンとは、ポリアミンが有する2以上の窒素原子上に計2個のイソプロピル基が置換したポリアミンであり、テトライソプロピル化ポリアミンとは、ポリアミンが有する2以上の窒素原子上に計4個のイソプロピル基が置換したポリアミンである。このようなIP-ポリアミン成分に、例えばプロピレンオキシドを反応させることで、上記IP-ポリアミン成分の3級アミンを構成する窒素原子にヒドロキシプロピル基が結合したPO-IP-ポリアミン成分が得られる。 Here, diisopropylated polyamine is a polyamine in which two or more nitrogen atoms of the polyamine are substituted with a total of two isopropyl groups, and tetraisopropylated polyamine is a polyamine in which two or more nitrogen atoms of the polyamine are substituted with a total of two isopropyl groups. It is a polyamine substituted with four isopropyl groups. By reacting such an IP-polyamine component with, for example, propylene oxide, a PO-IP-polyamine component in which a hydroxypropyl group is bonded to the nitrogen atom constituting the tertiary amine of the IP-polyamine component can be obtained.
 ポリアミン(特にプロピルポリアミン成分)の760mmHgにおける沸点は320℃以上である。この場合、ポリアミンを含む二酸化炭素分離材を高い温度(例えば、60℃程度)でも安定して使用できる。760mmHgで320℃以上の沸点を有していれば、減圧(例えば、0.2Pa程度)によって沸点が低下しても、ポリアミンが支持体に担持された状態を維持することができる。そのため、これらのポリアミンを用いることにより、使用温度を常温よりも高い温度とし、効率的に二酸化炭素の脱離を行うことができる。 The boiling point of polyamine (especially propyl polyamine component) at 760 mmHg is 320°C or higher. In this case, the carbon dioxide separation material containing polyamine can be stably used even at high temperatures (for example, about 60° C.). If the polyamine has a boiling point of 320° C. or higher at 760 mmHg, the state in which the polyamine is supported on the support can be maintained even if the boiling point is lowered by reduced pressure (for example, about 0.2 Pa). Therefore, by using these polyamines, the operating temperature can be set higher than room temperature, and carbon dioxide can be efficiently desorbed.
<支持体>
 支持体は、ポリアミン(特にプロピルポリアミン成分)を担持することができ、二酸化炭素の分離回収の条件に耐え得る材料であればよい。例えば、セラミックス、多孔質材料、炭素材料、樹脂材料などを用い得る。具体的には、シリカ、ポリメチルメタクリレート、アルミナ、シリカアルミナ、粘土鉱物、マグネシア、ジルコニア、ゼオライト、ゼオライト類縁化合物、天然鉱物、廃棄物固体、活性炭、カーボンモレキュラーシーブ等が挙げられる。支持体は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
<Support>
The support may be any material as long as it can support a polyamine (particularly a propyl polyamine component) and can withstand the conditions for separating and recovering carbon dioxide. For example, ceramics, porous materials, carbon materials, resin materials, etc. can be used. Specifically, silica, polymethyl methacrylate, alumina, silica alumina, clay minerals, magnesia, zirconia, zeolite, zeolite related compounds, natural minerals, waste solids, activated carbon, carbon molecular sieves, etc. can be mentioned. One type of support may be used alone, or two or more types may be used in combination.
 支持体は、市販品をそのまま用いてもよいし、公知の方法によって合成した支持体を用いてもよい。市販品としては、シグマアルドリッチ社製のメソ構造シリカMSU-F、エボニック社製のSIPERNAT(登録商標)50S、富士シリシア化学株式会社製のCARiACT(登録商標)Q10、Q30、Q50等が挙げられる。 As the support, a commercially available product may be used as is, or a support synthesized by a known method may be used. Commercially available products include mesostructured silica MSU-F manufactured by Sigma-Aldrich, SIPERNAT (registered trademark) 50S manufactured by Evonik, and CARiACT (registered trademark) Q10, Q30, Q50 manufactured by Fuji Silysia Chemical Co., Ltd.
 支持体は、ポリアミンを多く担持するために、多孔質で比表面積と細孔容積が大きな材料が好ましい。比表面積(BET)は50m/g以上2000m/g以下が望ましく、100m/g以上1000m/g以下がより望ましい。細孔容積は0.1cm/g以上2.3cm/g以下が望ましく、0.7cm/g以上2.3cm/g以下がより望ましい。 The support is preferably a porous material with a large specific surface area and pore volume in order to support a large amount of polyamine. The specific surface area (BET) is preferably 50 m 2 /g or more and 2000 m 2 /g or less, more preferably 100 m 2 /g or more and 1000 m 2 /g or less. The pore volume is preferably 0.1 cm 3 /g or more and 2.3 cm 3 /g or less, more preferably 0.7 cm 3 /g or more and 2.3 cm 3 /g or less.
 比表面積及び細孔容積は、例えば、定容法を用いて比表面積・細孔径分布測定装置(ASAP2420:株式会社島津製作所製)によって測定することができる。より具体的な比表面積・細孔径分布測定装置を用いたガス吸着測定方法としては、例えば、加熱真空排気により、試料の前処理を行い、サンプル管に測定試料をおよそ0.1g量り取る。その後、40℃まで加熱し、真空排気を6時間行った後、室温まで冷却し、サンプル質量を計量する。測定では液体窒素温度を設定し、圧力範囲を指定する。比表面積、細孔容積及び細孔径は、得られた窒素吸着等温線を解析して算出することができる。 The specific surface area and pore volume can be measured, for example, using a constant volume method using a specific surface area/pore size distribution measuring device (ASAP2420: manufactured by Shimadzu Corporation). As a more specific gas adsorption measurement method using a specific surface area/pore size distribution measuring device, for example, a sample is pretreated by heating and evacuation, and approximately 0.1 g of the measurement sample is weighed into a sample tube. Thereafter, the sample was heated to 40° C., evacuated for 6 hours, cooled to room temperature, and the mass of the sample was measured. For measurements, set the liquid nitrogen temperature and specify the pressure range. The specific surface area, pore volume, and pore diameter can be calculated by analyzing the obtained nitrogen adsorption isotherm.
<ポリアミン担持体>
 ポリアミン担持体は、ポリアミンを支持体に担持させたものである。ポリアミン担持体は、ポリアミン(特にプロピルポリアミン成分)とこれを担持する支持体とを含む。
<Polyamine carrier>
A polyamine carrier is a support in which a polyamine is supported. The polyamine carrier includes a polyamine (particularly a propyl polyamine component) and a support supporting the polyamine.
 ポリアミン担持体は、ポリアミンを準備する工程と、ポリアミン担持体を得る工程とを有する製造方法で製造できる。ポリアミン担持体を得る工程では、ポリアミンを支持体と接触させて、ポリアミンを担持する支持体を生成させればよい。 The polyamine support can be produced by a manufacturing method that includes a step of preparing a polyamine and a step of obtaining the polyamine support. In the step of obtaining a polyamine carrier, a polyamine may be brought into contact with a support to produce a support supporting the polyamine.
 ポリアミン担持体は、例えば、ポリアミン(特にプロピルポリアミン成分)の溶液に、支持体を混合し、例えば室温で撹拌後、溶媒(例えば水、アルコール)を留去することにより製造することができる。溶媒を留去する方法としては、例えば、エバポレーター等で加熱しながら減圧する方法が挙げられる。 The polyamine carrier can be produced, for example, by mixing a support into a solution of a polyamine (particularly a propyl polyamine component), stirring at room temperature, and then distilling off the solvent (for example, water, alcohol). Examples of the method for distilling off the solvent include a method of reducing the pressure while heating with an evaporator or the like.
 ポリアミン(特にプロピルポリアミン成分)を支持体に担持させることにより、水溶液の二酸化炭素分離材では適用できない圧力スィング法および温度スィング法に適用することが可能である。圧力スィング法は、二酸化炭素分離材を減圧条件下に置き、二酸化炭素を脱離させる工程を含む。温度スィング法は、二酸化炭素分離材を加熱し、二酸化炭素を脱離させる工程を含む。 By supporting a polyamine (particularly a propyl polyamine component) on a support, it is possible to apply it to pressure swing methods and temperature swing methods, which cannot be applied to aqueous carbon dioxide separation materials. The pressure swing method includes a step of placing a carbon dioxide separation material under reduced pressure conditions and desorbing carbon dioxide. The temperature swing method includes a step of heating a carbon dioxide separation material to desorb carbon dioxide.
<二酸化炭素分離材>
 二酸化炭素分離材は、例えば、ポリアミン担持体と、ポリアミン担持体を造粒するバインダーとを含む。すなわち、二酸化炭素分離材は、バインダーを用いた造粒物としてのポリアミン担持体を含んでもよい。バインダーを用いてポリアミン担持体を造粒することにより、耐振性や耐摩耗性を付与することができ、さらに水中での安定性を向上させることが可能である。
<Carbon dioxide separation material>
The carbon dioxide separation material includes, for example, a polyamine carrier and a binder that granulates the polyamine carrier. That is, the carbon dioxide separation material may include a polyamine support in the form of granules using a binder. By granulating the polyamine carrier using a binder, vibration resistance and abrasion resistance can be imparted, and further, stability in water can be improved.
 バインダーとしては、シリカ、アルミナ、シリカアルミナ、粘土鉱物、フッ素樹脂、セルロース誘導体およびエポキシ樹脂からなる群より選択される少なくとも1種を用いてもよい。フッ素樹脂としては、ポリテトラフルオロエチレン等が挙げられる。セルロース誘導体としては、ヒドロキシプロピルメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシエチル化澱粉等が挙げられる。エポキシ樹脂としては、ジグリセロールポリグリシジルエーテル、ソルビトールポリグリシジルエーテル等が挙げられ、エポキシ樹脂の硬化剤(変性ポリアミド樹脂等)との混合物として用いてもよい。その他の高分子(ポリビニルアルコール、ポリエチレンオキシド、ポリアクリル酸ソーダ、ポリアクリルアミド等)等を使用してもよい。これらの化合物は市販品として入手可能であるか、公知の方法によって容易に製造することが可能である。バインダーは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 As the binder, at least one selected from the group consisting of silica, alumina, silica alumina, clay minerals, fluororesins, cellulose derivatives, and epoxy resins may be used. Examples of the fluororesin include polytetrafluoroethylene and the like. Examples of cellulose derivatives include hydroxypropylmethylcellulose, methylcellulose, hydroxypropylcellulose, carboxymethylcellulose, hydroxyethylcellulose, and hydroxyethylated starch. Examples of the epoxy resin include diglycerol polyglycidyl ether, sorbitol polyglycidyl ether, etc., and may be used as a mixture with an epoxy resin curing agent (modified polyamide resin, etc.). Other polymers (polyvinyl alcohol, polyethylene oxide, sodium polyacrylate, polyacrylamide, etc.) may also be used. These compounds are commercially available or can be easily produced by known methods. One type of binder may be used alone, or two or more types may be used in combination.
 バインダーとしては、市販品として、日産化学株式会社製のスノーテック30およびAS-200、ダイキン工業株式会社製のポリフロンPTFE D-210C、三晶株式会社製のNEOVISCO MC RM4000、東レ株式会社製のAQナイロン P-70、ナガセケムテックス株式会社製のデナコール EX-421等を用いることができる。 Commercially available binders include Snowtech 30 and AS-200 manufactured by Nissan Chemical Co., Ltd., Polyflon PTFE D-210C manufactured by Daikin Industries, Ltd., NEOVISCO MC RM4000 manufactured by Sansho Co., Ltd., and AQ manufactured by Toray Industries, Inc. Nylon P-70, Denacol EX-421 manufactured by Nagase ChemteX Corporation, etc. can be used.
 バインダーの二酸化炭素分離材における含有量は、造粒が可能な量であれば、特に限定されないが、ポリアミンの含有量の低下を防ぐ点で少量であることが好ましい。 The content of the binder in the carbon dioxide separation material is not particularly limited as long as it can be granulated, but it is preferably a small amount in order to prevent a decrease in the polyamine content.
 バインダーを用いて造粒する場合の造粒物の平均粒径は、ガスを吸着材充填層に供給した時の圧力損失を低減する観点から、0.1mm~2.0mmが好ましい。 The average particle diameter of the granules when granulated using a binder is preferably 0.1 mm to 2.0 mm from the viewpoint of reducing pressure loss when gas is supplied to the adsorbent packed bed.
 二酸化炭素分離材に含まれるポリアミン(特にプロピルポリアミン成分)の含有率は、特に限定されないが、効率的に二酸化炭素を分離回収する観点から、例えば、15質量%以上が好ましく、20質量%以上が特に好ましい。ポリアミンの含有率は、例えば、70質量%以下でもよい。 The content of polyamine (especially propyl polyamine component) contained in the carbon dioxide separation material is not particularly limited, but from the viewpoint of efficiently separating and recovering carbon dioxide, it is preferably 15% by mass or more, and 20% by mass or more. Particularly preferred. The content of polyamine may be, for example, 70% by mass or less.
<二酸化炭素を分離又は回収する方法>
 二酸化炭素分離(回収)方法の処理対象は、二酸化炭素を含むガスである。二酸化炭素を含むガスは、例えば、石炭、重油、天然ガス等を燃料とする火力発電所、コークスで酸化鉄を還元する製鐵所の高炉、銑鉄中の炭素を燃焼して製鋼する製鐵所の転炉、各種製造所におけるボイラー、セメント工場におけるキルン等、さらには、ガソリン、重油、軽油等を燃料とする自動車、船舶、航空機等の輸送機器から排出される排ガスであってもよい。二酸化炭素を含むガスは、潜水調査船、宇宙ステーション、ビル、オフィス等の室内空間等の密閉空間において、人の呼吸や機器のエネルギー変換等で排出される二酸化炭素等を含むガスであってもよい。また、大気中の二酸化炭素であっても良い。
<Method of separating or recovering carbon dioxide>
The target of the carbon dioxide separation (recovery) method is gas containing carbon dioxide. Gases containing carbon dioxide are used, for example, in thermal power plants that use coal, heavy oil, natural gas, etc. as fuel, blast furnaces in steel plants that reduce iron oxide with coke, and steel plants that burn carbon in pig iron to make steel. Converters, boilers in various manufacturing plants, kilns in cement factories, etc., and even exhaust gas emitted from transportation equipment such as automobiles, ships, and aircraft that use gasoline, heavy oil, light oil, etc. as fuel may be used. Gas containing carbon dioxide may be emitted from human breathing or energy conversion of equipment in closed spaces such as indoor spaces such as submarine research vessels, space stations, buildings, and offices. good. Alternatively, carbon dioxide in the atmosphere may be used.
 本開示に係る二酸化炭素の分離又は回収方法では、二酸化炭素分離材を用いることを特徴とする。 The carbon dioxide separation or recovery method according to the present disclosure is characterized by using a carbon dioxide separation material.
 二酸化炭素分離(回収)方法は、処理対象のガスを二酸化炭素分離材に接触させ、二酸化炭素を吸収する第1工程、および、第1工程において二酸化炭素を吸収した二酸化炭素分離材から二酸化炭素を脱離させる第2工程、を含む。 The carbon dioxide separation (recovery) method includes a first step in which the gas to be treated is brought into contact with a carbon dioxide separation material to absorb carbon dioxide, and a second step in which carbon dioxide is removed from the carbon dioxide separation material that has absorbed carbon dioxide in the first step. A second step of desorption is included.
 第1工程における処理対象のガス中の二酸化炭素含有量及び温度は、二酸化炭素分離材が耐え得る条件であれば、特に限定されない。例えば、二酸化炭素分圧は100kPa以下でもよく、温度は10℃~60℃であってもよい。具体的には、火力発電所等で想定される使用条件(二酸化炭素分圧:7~100kPa、温度:40~60℃)や、宇宙ステーション等で想定される使用条件(二酸化炭素分圧:0~1kPa、温度:20~25℃)等が挙げられる。処理対象のガスは、大気圧であっても、加圧されていてもよい。 The carbon dioxide content and temperature in the gas to be treated in the first step are not particularly limited as long as the carbon dioxide separation material can withstand them. For example, the carbon dioxide partial pressure may be 100 kPa or less, and the temperature may be 10°C to 60°C. Specifically, the operating conditions assumed at thermal power plants, etc. (carbon dioxide partial pressure: 7 to 100 kPa, temperature: 40 to 60°C) and the operating conditions assumed at space stations, etc. (carbon dioxide partial pressure: 0 ~1kPa, temperature: 20~25°C), etc. The gas to be treated may be at atmospheric pressure or may be pressurized.
 第1工程の処理対象のガスは、水蒸気を含んでいてもよい。二酸化炭素分離材は水蒸気を含んでいる処理対象ガスであっても、二酸化炭素の吸着性に優れるため、除湿操作を省略することができる。 The gas to be treated in the first step may contain water vapor. Since the carbon dioxide separation material has excellent adsorption properties for carbon dioxide even if the gas to be treated contains water vapor, the dehumidification operation can be omitted.
 第2工程における二酸化炭素を脱離させる方法としては、(A)二酸化炭素分離材を減圧条件下におき、二酸化炭素を脱離させる工程(圧力スィング法)、(B)二酸化炭素分離材に水蒸気および不活性ガスの少なくとも一方(好ましくは二酸化炭素を含まないガス(もしくは二酸化炭素含有量の低いガス))を接触させ、二酸化炭素を脱離させる工程、及び(C)二酸化炭素分離材を加熱し、二酸化炭素を脱離させる工程(温度スィング法)などを含む方法が挙げられる。 The method for desorbing carbon dioxide in the second step includes (A) placing the carbon dioxide separation material under reduced pressure conditions and desorbing carbon dioxide (pressure swing method), (B) applying water vapor to the carbon dioxide separation material. and a step of contacting at least one of an inert gas (preferably a gas not containing carbon dioxide (or a gas with a low carbon dioxide content)) to desorb carbon dioxide, and (C) heating the carbon dioxide separation material. , a method including a step of desorbing carbon dioxide (temperature swing method), and the like.
 工程(A)を含む方法では、二酸化炭素の脱離量及び二酸化炭素分離材の安定性の点で、0.2Pa程度まで圧力を下げることが好ましい。減圧時に二酸化炭素分離材又はこれを含む容器を加熱してもよい。加熱する場合の温度は60℃程度までが望ましく、この場合、0.5Pa程度まで圧力を下げることが好ましい。工程(A)を含む方法は、処理対象のガスが温度20~60℃かつ二酸化炭素分圧100kPa以下である場合に好適である。 In the method including step (A), it is preferable to lower the pressure to about 0.2 Pa in terms of the amount of carbon dioxide desorbed and the stability of the carbon dioxide separation material. The carbon dioxide separation material or the container containing it may be heated during the pressure reduction. When heating, the temperature is desirably up to about 60° C., and in this case, it is preferable to lower the pressure to about 0.5 Pa. The method including step (A) is suitable when the gas to be treated has a temperature of 20 to 60° C. and a carbon dioxide partial pressure of 100 kPa or less.
 工程(B)を含む方法では、例えば、不活性ガス、水蒸気、二酸化炭素を含まないガスなどを二酸化炭素分離材に接触させることにより、二酸化炭素分圧を下げ、二酸化炭素を脱離させることができる。二酸化炭素分離材に接触させるガスとしては、二酸化炭素分離材がそのガス中で安定であればよく、アルゴンなどの不活性ガスや窒素、水蒸気等が好ましく、減圧された水蒸気がより好ましい。 In the method including step (B), for example, by bringing an inert gas, water vapor, a gas not containing carbon dioxide, etc. into contact with the carbon dioxide separation material, the partial pressure of carbon dioxide can be lowered and carbon dioxide can be desorbed. can. The gas to be brought into contact with the carbon dioxide separation material may be any gas as long as the carbon dioxide separation material is stable in the gas, preferably an inert gas such as argon, nitrogen, water vapor, etc., and more preferably reduced pressure water vapor.
 工程(C)を含む方法では、二酸化炭素吸収時よりも温度を上昇させることにより、二酸化炭素を脱離させることができる。この場合における、二酸化炭素吸収時の温度は、例えば、10~40℃であってもよく、二酸化炭素脱離時の温度は、例えば60℃程度であってもよい。 In the method including step (C), carbon dioxide can be desorbed by increasing the temperature above that during carbon dioxide absorption. In this case, the temperature during carbon dioxide absorption may be, for example, 10 to 40°C, and the temperature during carbon dioxide desorption may be, for example, about 60°C.
[実施例]
 次に、本開示について実施例を用いて詳細に説明するが、本発明は以下の実施例に限定されるものではない。また、ポリアミンの担持量(質量%)は、二酸化炭素を除いた二酸化炭素分離材(ポリアミン担持体)の質量に対するポリアミンの質量を百分率で表したものである(ここではポリアミンと支持体との合計に対するポリアミンの割合)。
[Example]
Next, the present disclosure will be described in detail using examples, but the present invention is not limited to the following examples. In addition, the supported amount of polyamine (mass%) is expressed as a percentage of the mass of polyamine relative to the mass of carbon dioxide separation material (polyamine carrier) excluding carbon dioxide (here, the total amount of polyamine and support percentage of polyamine).
 合成したポリアミンの理化学的性質の測定には以下の機器を用いた。
 液体クロマトグラフ質量分析計(LC-MS):日本ウォーターズ株式会社製のAllaiance LC/MSシステム
The following equipment was used to measure the physicochemical properties of the synthesized polyamine.
Liquid chromatograph mass spectrometer (LC-MS): Alliance LC/MS system manufactured by Nippon Waters Co., Ltd.
 以下において、「xPO-IP-TEPA」等の「xPO」等の記載は、骨格アミン(この例ではTEPA)1mol当たりと反応させたプロピレンオキシドのモル数がxmolであることを示す。例えば「0.25PO-IP-TEPA」等の「0.25PO」等の記載は、骨格アミン1mol当たりと反応させたプロピレンオキシドのモル数が0.25molであることを示す。 In the following, descriptions such as "xPO" such as "xPO-IP-TEPA" indicate that the number of moles of propylene oxide reacted with 1 mol of the skeleton amine (TEPA in this example) is x mol. For example, a description such as "0.25PO" such as "0.25PO-IP-TEPA" indicates that the number of moles of propylene oxide reacted with 1 mol of the skeleton amine is 0.25 mol.
 また、「0.25PO-IP-TEPA」等の「IP」は、骨格アミンの2つの1級アミノ基がイソプロピル化されてジイソプロピルアミンを形成していること(換言すれば、1分子当たりと反応させたアセトンのモル数が2molであること)を示す。 In addition, "IP" such as "0.25PO-IP-TEPA" means that the two primary amino groups of the backbone amine are isopropylated to form diisopropylamine (in other words, the reaction per molecule and The number of moles of acetone produced is 2 mol).
 また、例えば「0.25PO-IP-TEPA(29)/Q30」等の記載の「(29)/Q30」は、ポリアミン担持体に含まれるポリアミン成分の含有率が29質量%であり、かつ支持体がQ30であることを示す。 In addition, for example, "(29)/Q30" described in "0.25PO-IP-TEPA(29)/Q30" etc. has a polyamine component content of 29% by mass and a polyamine support. Indicates that the body is Q30.
《実施例1》
<IP-ポリアミン成分の合成>
 ジイソプロピル化テトラエチレンペンタミン(別名:1,11-ジイソプロピルアミノ-3,6,9-トリアザウンデカン)(IP-TEPA)の合成
《Example 1》
<Synthesis of IP-polyamine component>
Synthesis of diisopropylated tetraethylenepentamine (also known as 1,11-diisopropylamino-3,6,9-triazaundecane) (IP-TEPA)
 内容量1Lのフラスコに酸化白金触媒2gと市販の無水エタノール100mlを入れ、フラスコ内を水素で置換した後、水素を150kPaになるまで入れ、500rpmで15~20分間撹拌し、酸化白金触媒を還元した。 Put 2 g of platinum oxide catalyst and 100 ml of commercially available anhydrous ethanol into a 1 L flask, replace the inside of the flask with hydrogen, then add hydrogen until the pressure reaches 150 kPa, stir at 500 rpm for 15 to 20 minutes, and reduce the platinum oxide catalyst. did.
 次に、テトラエチレンペンタミン(TEPA)189.31g(1.0モル)、アセトン(CH-CO-CH)121.97g(2.1モル)、無水エタノール150mlを還元された触媒が入ったフラスコに入れた。 Next, a catalyst containing 189.31 g (1.0 mol) of tetraethylenepentamine (TEPA), 121.97 g (2.1 mol) of acetone (CH 3 -CO-CH 3 ), and 150 ml of absolute ethanol was added. into a flask.
 フラスコ内を水素で置換した後、水素を約200kPaになるまで入れ、水素の理論量(2mol)が吸収されて圧力が下がり、その後10時間吸収が無いことが確認されるまで溶液を攪拌した。 After replacing the inside of the flask with hydrogen, hydrogen was added until the pressure reached approximately 200 kPa, and the pressure decreased as the theoretical amount of hydrogen (2 mol) was absorbed.Then, the solution was stirred for 10 hours until it was confirmed that there was no absorption.
 溶液を濾過して触媒を除去した後、エタノールを40℃で減圧除去し、得られた無色の液体をさらに真空下(10-1mmHg)、50℃で一晩乾燥して、IP-TEPAを得た(収率95%)。 After filtering the solution to remove the catalyst, the ethanol was removed under reduced pressure at 40°C, and the resulting colorless liquid was further dried under vacuum (10 −1 mmHg) at 50°C overnight to remove IP-TEPA. (yield 95%).
<PO-IP-ポリアミン成分の合成>
 IP-TEPAの1モル当たり0.5モルのプロピレンオキシドを滴下して混合し、混合物を室温で12時間攪拌し、その後、60℃まで加温してさらに2時間保持した。得られた液体から水を減圧除去し、さらに真空乾燥させて、0.5PO-IP-TEPAを得た。
<Synthesis of PO-IP-polyamine component>
0.5 mole of propylene oxide per mole of IP-TEPA was mixed dropwise and the mixture was stirred at room temperature for 12 hours, then warmed to 60° C. and held for an additional 2 hours. Water was removed from the obtained liquid under reduced pressure and further vacuum dried to obtain 0.5PO-IP-TEPA.
<二酸化炭素分離材(ポリアミン担持体)の調製>
 所定量の0.5PO-IP-TEPAを秤量し、これを容量300cm3のナスフラスコに量りとったメタノール(和光純薬工業社製;特級)20gに溶解させた。
<Preparation of carbon dioxide separation material (polyamine carrier)>
A predetermined amount of 0.5PO-IP-TEPA was weighed and dissolved in 20 g of methanol (manufactured by Wako Pure Chemical Industries, Ltd.; special grade) weighed into a 300 cm 3 eggplant flask.
 その後、別途秤量した所定量の支持体Q30(富士シリシア化学株式会社製のCARiACT Q30;比表面積100m/g、平均細孔径30nm、細孔容積0.9mL/g)をナスフラスコに入れ、室温で2時間攪拌した後、これをロータリーエバポレーター(EYELA社製;N-1000)で40℃に加熱しながら、系内の圧力が0.03MPaになるまで減圧することで、メタノール溶媒を除去し、0.5PO-IP-TEPAを25質量%含むポリアミン担持体(0.5PO-IP-TEPA(25)/Q30)を得た。 Thereafter, a separately weighed predetermined amount of support Q30 (CARiACT Q30 manufactured by Fuji Silysia Chemical Co., Ltd.; specific surface area 100 m 2 /g, average pore diameter 30 nm, pore volume 0.9 mL/g) was placed in an eggplant flask, and the mixture was heated at room temperature. After stirring for 2 hours, the methanol solvent was removed by heating it to 40°C with a rotary evaporator (manufactured by EYELA; N-1000) and reducing the pressure in the system until the pressure became 0.03 MPa. A polyamine carrier (0.5PO-IP-TEPA(25)/Q30) containing 25% by mass of 0.5PO-IP-TEPA was obtained.
 メタノール溶媒の除去は、フラスコと試薬類の合計の重さを予め量り取り、メタノール溶媒に相当する20gの質量減少が確認できた時点で完了とした。調製したポリアミン担持体は評価試験に供するまでナスフラスコに栓をしてデシケータ内で保管した。 Removal of the methanol solvent was determined by weighing the total weight of the flask and reagents in advance, and was considered complete when a mass loss of 20 g, which corresponds to the methanol solvent, was confirmed. The prepared polyamine carrier was stored in an eggplant flask with a stopper in a desiccator until it was used for evaluation tests.
《実施例2》
 0.5PO-IP-TEPAの含有率を29質量%に変更したこと以外、実施例1と同様に、ポリアミン担持体(0.5PO-IP-TEPA(29)/Q30)を得た。
《Example 2》
A polyamine carrier (0.5PO-IP-TEPA (29)/Q30) was obtained in the same manner as in Example 1, except that the content of 0.5PO-IP-TEPA was changed to 29% by mass.
《実施例3》
<PO-IP-ポリアミン成分の合成>
 IP-TEPAの1モル当たりと反応させるプロピレンオキシドを0.25molに変更したこと以外、実施例1と同様に、0.25PO-IP-TEPAを得た(収率95%)。また、実施例1と同様に、0.25PO-IP-TEPAを25質量%含むポリアミン担持体(0.25PO-IP-TEPA(25)/Q30)を得た。
《Example 3》
<Synthesis of PO-IP-polyamine component>
0.25PO-IP-TEPA was obtained in the same manner as in Example 1, except that the amount of propylene oxide reacted with 1 mole of IP-TEPA was changed to 0.25 mol (yield 95%). Further, in the same manner as in Example 1, a polyamine carrier (0.25PO-IP-TEPA(25)/Q30) containing 25% by mass of 0.25PO-IP-TEPA was obtained.
《実施例4》
 0.25PO-IP-TEPAの含有率を29質量%に変更したこと以外、実施例3と同様に、ポリアミン担持体(0.25PO-IP-TEPA(29)/Q30)を得た。
《Example 4》
A polyamine carrier (0.25PO-IP-TEPA(29)/Q30) was obtained in the same manner as in Example 3 except that the content of 0.25PO-IP-TEPA was changed to 29% by mass.
《実施例5》
<IP-ポリアミンの合成>
 1,10-ジイソプロピルアミノ-4,7-ジアザデカン(IP-DEDP)の合成
《Example 5》
<Synthesis of IP-polyamine>
Synthesis of 1,10-diisopropylamino-4,7-diazadecane (IP-DEDP)
 還元された触媒が入ったフラスコに、骨格アミンとして1,10-アミノ-4,7-ジアザデカン(DEDP)174.29g(1.0モル)を入れ、イソプロピル基の出発原料としてアセトン121.97g(2.1モル)を入れたこと以外、実施例1と同様に、IP-DEDPを得た(収率95%)。 A flask containing the reduced catalyst was charged with 174.29 g (1.0 mol) of 1,10-amino-4,7-diazadecane (DEDP) as a backbone amine, and 121.97 g (1.0 mol) of acetone was added as a starting material for the isopropyl group. IP-DEDP was obtained in the same manner as in Example 1, except that 2.1 mol) was added (yield: 95%).
<PO-IP-ポリアミン成分の合成>
 IP-DEDPの1モルあたり0.25モルのプロピレンオキシドと反応させたこと以外、実施例1と同様に、0.25PO-IP-DEDPを得た(収率95%)。また、実施例1と同様に、0.25PO-IP-DEDPを29質量%含むポリアミン担持体(0.25PO-IP-DEDP(29)/Q30)を得た。
<Synthesis of PO-IP-polyamine component>
0.25PO-IP-DEDP was obtained in the same manner as in Example 1, except that 1 mole of IP-DEDP was reacted with 0.25 mole of propylene oxide (yield: 95%). Further, in the same manner as in Example 1, a polyamine carrier (0.25PO-IP-DEDP(29)/Q30) containing 29% by mass of 0.25PO-IP-DEDP was obtained.
《実施例6》
<IP-ポリアミンの合成>
 還元された触媒が入ったフラスコに、骨格アミンとしてペンタエチレンヘキサミン(PEHA)1.0モルを入れ、イソプロピル基の出発原料としてアセトン2.1モルを入れたこと以外、実施例1と同様に、IP-PEHAを得た(収率95%)。
《Example 6》
<Synthesis of IP-polyamine>
Same as Example 1, except that 1.0 mol of pentaethylenehexamine (PEHA) was added as the backbone amine and 2.1 mol of acetone was added as the starting material for the isopropyl group to the flask containing the reduced catalyst. IP-PEHA was obtained (yield 95%).
<PO-IP-ポリアミン成分の合成>
 IP-PEHAの1モルあたり0.25モルのプロピレンオキシドと反応させたこと以外、実施例1と同様に、0.25PO-IP-PEHAを得た(収率95%)。また、実施例1と同様に、0.25PO-IP-PEHAを29質量%含むポリアミン担持体(0.25PO-IP-PEHA(29)/Q30)を得た。
<Synthesis of PO-IP-polyamine component>
0.25PO-IP-PEHA was obtained in the same manner as in Example 1, except that 1 mole of IP-PEHA was reacted with 0.25 mole of propylene oxide (yield 95%). Further, in the same manner as in Example 1, a polyamine carrier (0.25PO-IP-PEHA(29)/Q30) containing 29% by mass of 0.25PO-IP-PEHA was obtained.
《実施例7》
<IP-ポリアミンの合成>
 還元された触媒が入ったフラスコに、骨格アミンとしてヘキサエチレンヘプタミン(HEHA)1.0モルを入れ、イソプロピル基の出発原料としてアセトン2.1モルを入れたこと以外、実施例1と同様に、IP-HEHAを得た(収率95%)。
《Example 7》
<Synthesis of IP-polyamine>
Same as Example 1, except that 1.0 mol of hexaethyleneheptamine (HEHA) was added as the backbone amine and 2.1 mol of acetone was added as the starting material for the isopropyl group into the flask containing the reduced catalyst. , IP-HEHA was obtained (yield 95%).
<PO-IP-ポリアミン成分の合成>
 IP-HEHAの1モルあたり0.25モルのプロピレンオキシドと反応させたこと以外、実施例1と同様に、0.25PO-IP-HEHAを得た(収率95%)。また、実施例1と同様に、0.25PO-IP-HEHAを29質量%含むポリアミン担持体(0.25PO-IP-HEHA(29)/Q30)を得た。
<Synthesis of PO-IP-polyamine component>
0.25PO-IP-HEHA was obtained in the same manner as in Example 1, except that 1 mole of IP-HEHA was reacted with 0.25 mole of propylene oxide (yield: 95%). Further, in the same manner as in Example 1, a polyamine carrier (0.25PO-IP-HEHA(29)/Q30) containing 29% by mass of 0.25PO-IP-HEHA was obtained.
《比較例1》
 TEPA(骨格アミン)をそのままQ30に含有率29質量%で担持させてポリアミン担持体(TEPA(29)/Q30)を得た。
《Comparative example 1》
TEPA (skeletal amine) was directly supported on Q30 at a content of 29% by mass to obtain a polyamine support (TEPA(29)/Q30).
《比較例2》
 IP-TEPAをそのままQ30に含有率29質量%で担持させてポリアミン担持体(IP-TEPA(29)/Q30)を得た。
《Comparative example 2》
IP-TEPA was directly supported on Q30 at a content of 29% by mass to obtain a polyamine support (IP-TEPA(29)/Q30).
《比較例3》
 DEDP(骨格アミン)をそのままQ30に含有率29質量%で担持させてポリアミン担持体(DEDP(29)/Q30)を得た。
《Comparative example 3》
DEDP (skeletal amine) was directly supported on Q30 at a content of 29% by mass to obtain a polyamine support (DEDP(29)/Q30).
《比較例4》
 IP-DEDPをそのままQ30に含有率29質量%で担持させてポリアミン担持体(IP-DEDP(29)/Q30)を得た。
《Comparative example 4》
IP-DEDP was directly supported on Q30 at a content of 29% by mass to obtain a polyamine support (IP-DEDP(29)/Q30).
《比較例5》
 PEHA(骨格アミン)をそのままQ30に含有率29質量%で担持させてポリアミン担持体(PEHA(29)/Q30)を得た。
《Comparative example 5》
PEHA (skeletal amine) was directly supported on Q30 at a content of 29% by mass to obtain a polyamine support (PEHA(29)/Q30).
《比較例6》
 IP-PEHAをそのままQ30に含有率29質量%で担持させてポリアミン担持体(IP-PEHA(29)/Q30)を得た。
《Comparative example 6》
IP-PEHA was directly supported on Q30 at a content of 29% by mass to obtain a polyamine support (IP-PEHA(29)/Q30).
《比較例7》
 HEHA(骨格アミン)をそのままQ30に含有率29質量%で担持させてポリアミン担持体(HEHA(29)/Q30)を得た。
《Comparative Example 7》
HEHA (skeletal amine) was directly supported on Q30 at a content of 29% by mass to obtain a polyamine support (HEHA(29)/Q30).
《比較例8》
 IP-HEHAをそのままQ30に含有率29質量%で担持させてポリアミン担持体(IP-HEHA(29)/Q30)を得た。
《Comparative Example 8》
IP-HEHA was directly supported on Q30 at a content of 29% by mass to obtain a polyamine support (IP-HEHA(29)/Q30).
 表1に各実施例および比較例のポリアミン担持体の組成をまとめる。 Table 1 summarizes the composition of the polyamine carrier of each Example and Comparative Example.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
<評価試験1>
 実施例および比較例のポリアミン担持体について、所定の温度で二酸化炭素の各圧力における吸収量を破過曲線測定装置(ジーエルサイエンス(株)製)を用いて測定した。
<Evaluation test 1>
Regarding the polyamine carriers of Examples and Comparative Examples, the absorption amount of carbon dioxide at each pressure at a predetermined temperature was measured using a breakthrough curve measurement device (manufactured by GL Sciences, Inc.).
 サンプル管に測定試料を約1g量り取り、80℃で6時間アルゴンを流して試料の前処理を行った後、60℃に試料温度を保持した。サンプル管に分圧13kPaで二酸化炭素を流し、出口ガス組成をガスクロマトグラフで測定した。吸収量は、CO吸収開始から飽和に至るまでの時間と出口ガス濃度の積算から求めた。 Approximately 1 g of a measurement sample was weighed into a sample tube, and the sample was pretreated by flowing argon at 80°C for 6 hours, and then the sample temperature was maintained at 60°C. Carbon dioxide was flowed through the sample tube at a partial pressure of 13 kPa, and the outlet gas composition was measured using a gas chromatograph. The absorption amount was determined from the integration of the time from the start of CO 2 absorption to saturation and the outlet gas concentration.
 二酸化炭素の脱離(回収)量は、流すガスをアルゴンに切り替えてから出口ガスに二酸化炭素が検出されなくなるまでの時間と出口ガス濃度の積算から求めた。 The amount of carbon dioxide desorbed (recovered) was determined from the integration of the time from switching the flowing gas to argon until no carbon dioxide was detected in the exit gas and the exit gas concentration.
 実施例4および比較例1、2で得られたポリアミン担持体の二酸化炭素の吸収量および減圧による脱離(回収)量を測定した。表2に結果を示す。 The amount of carbon dioxide absorbed by the polyamine carriers obtained in Example 4 and Comparative Examples 1 and 2 and the amount desorbed (recovered) under reduced pressure were measured. Table 2 shows the results.
 以下、表中の二酸化炭素の吸収量の単位はポリアミン担持体1kg当たりの吸収量(mol)である。また、(A)に示す吸収量(mol/kg)は、フレッシュなサンプルの60℃、13kPaにおける吸収量を示し、(B)に示す脱離(回収)量は、アルゴンガスを流して脱離させた60℃での脱離(回収)量である。 Hereinafter, the unit of carbon dioxide absorption amount in the table is the absorption amount (mol) per 1 kg of polyamine carrier. In addition, the amount of absorption (mol/kg) shown in (A) indicates the amount of absorption at 60°C and 13 kPa of a fresh sample, and the amount of desorption (recovery) shown in (B) is the amount of absorption by flowing argon gas. This is the amount of desorption (recovery) at 60°C.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
<評価試験2>
 実施例および比較例のポリアミン担持体について、所定の温度で二酸化炭素の各圧力における平衡吸収量を定容法によって測定した。測定装置には、マイクロメリティックス社製のChemiSorb HTPを用いた。評価試験2~4における測定方法は、特に記載のない限り、以下の通りである。サンプル管に測定試料を約0.1g量り取り、80℃で6時間ヘリウムを流して試料の前処理を行った後、40℃に試料温度を保持した。サンプル管に二酸化炭素を少しずつ導入し、100kPaまでの圧力範囲を指定して、各測定温度における二酸化炭素の分圧と吸収量との関係を得た。得られた等温線から13kPaでの平衡吸収量を読み取った。
<Evaluation test 2>
For the polyamine carriers of Examples and Comparative Examples, the equilibrium absorption amount of carbon dioxide at each pressure at a predetermined temperature was measured by a constant volume method. ChemiSorb HTP manufactured by Micromeritics was used as a measuring device. The measurement methods in Evaluation Tests 2 to 4 are as follows unless otherwise specified. Approximately 0.1 g of a measurement sample was weighed into a sample tube, and the sample was pretreated by flowing helium at 80°C for 6 hours, and then the sample temperature was maintained at 40°C. Carbon dioxide was introduced little by little into the sample tube, a pressure range up to 100 kPa was specified, and the relationship between the partial pressure of carbon dioxide and the absorption amount at each measurement temperature was obtained. The equilibrium absorption amount at 13 kPa was read from the obtained isotherm.
 ポリアミン担持体の酸化劣化は、充填層反応器を用いて行った。ポリアミン担持体1.0gを石英管に詰め、100℃で3時間窒素を流して前処理を行った後、100℃で42時間模擬空気(21%O-Nバランス)を流して劣化処理した。その後、上記と同様の方法によって、40℃で、二酸化炭素を導入し、等温線を得た。二酸化炭素の吸収量は、13kPaでの平衡吸収量を読み取った。 Oxidative degradation of the polyamine support was performed using a packed bed reactor. 1.0 g of the polyamine carrier was packed in a quartz tube, pretreated by flowing nitrogen at 100°C for 3 hours, and then subjected to deterioration treatment by flowing simulated air (21% O 2 - N 2 balance) at 100°C for 42 hours. did. Thereafter, carbon dioxide was introduced at 40° C. by the same method as above, and an isotherm was obtained. The amount of carbon dioxide absorbed was measured as the equilibrium absorption amount at 13 kPa.
 実施例1~7および比較例1~8で得られたフレッシュなポリアミン担持体および劣化処理後のポリアミン担持体の二酸化炭素の吸収量、並びに、劣化後のポリアミン担持体のフレッシュなポリアミン担持体に対する吸収量維持率(Retention)を測定した。表3に結果を示す。 The amount of carbon dioxide absorbed by the fresh polyamine carriers obtained in Examples 1 to 7 and Comparative Examples 1 to 8 and the polyamine carriers after deterioration treatment, and the carbon dioxide absorption amount of the polyamine carriers after deterioration relative to the fresh polyamine carriers. The absorption retention rate (Retention) was measured. Table 3 shows the results.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 また、図1~3に実施例2、4および比較例1、2のフレッシュな試料と劣化処理後の試料の結果を示す。図1、2において、横軸(Absolute pressure)はCOの絶対圧もしくは分圧に相当し、縦軸(CO adsorbed)はCOの吸収量を示す。図3は、図1、2の結果をまとめて示す棒グラフである。 Further, FIGS. 1 to 3 show the results of fresh samples and samples after deterioration treatment of Examples 2 and 4 and Comparative Examples 1 and 2. In FIGS. 1 and 2, the horizontal axis (Absolute pressure) corresponds to the absolute pressure or partial pressure of CO 2 , and the vertical axis (CO 2 adsorbed) indicates the amount of CO 2 absorbed. FIG. 3 is a bar graph showing the results of FIGS. 1 and 2 together.
<評価試験3>
 評価試験2と同様の方法で得られた等温線から100kPaでの吸収量を読み取り、二酸化炭素の吸収量とした。
<Evaluation test 3>
The absorption amount at 100 kPa was read from the isotherm obtained in the same manner as in Evaluation Test 2, and was taken as the absorption amount of carbon dioxide.
 評価試験2と同様の方法で劣化させたポリアミン担持体の等温線を評価試験2と同様の方法で得た。二酸化炭素の吸収量は、100kPaでの吸収量を読み取った。 The isotherm of the polyamine support that was degraded in the same manner as in Evaluation Test 2 was obtained in the same manner as in Evaluation Test 2. The amount of carbon dioxide absorbed was measured at 100 kPa.
 実施例1~7および比較例1~8で得られたフレッシュなポリアミン担持体および劣化処理後のポリアミン担持体の二酸化炭素の吸収量、並びに、劣化後のポリアミン担持体のフレッシュなポリアミン担持体に対する吸収量維持率(Retention)を測定した。表4に結果を示す。 The amount of carbon dioxide absorbed by the fresh polyamine carriers obtained in Examples 1 to 7 and Comparative Examples 1 to 8 and the polyamine carriers after deterioration treatment, and the carbon dioxide absorption amount of the polyamine carriers after deterioration relative to the fresh polyamine carriers. The absorption retention rate (Retention) was measured. Table 4 shows the results.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
<評価試験4>
 評価試験2の後、実施例4のフレッシュなポリアミン担持体および劣化処理後のポリアミン担持体の試料を20分間減圧排気した後、評価試験2と同様の方法によって、40℃で、二酸化炭素を導入し、等温線を測定した。二酸化炭素の吸収量は、100kPaでの吸収量を読み取った。
<Evaluation test 4>
After Evaluation Test 2, the samples of the fresh polyamine carrier and the degraded polyamine carrier of Example 4 were evacuated for 20 minutes, and then carbon dioxide was introduced at 40°C by the same method as Evaluation Test 2. Then, the isotherm was measured. The amount of carbon dioxide absorbed was measured at 100 kPa.
 また、図4、図5にフレッシュな試料と劣化処理後の試料の結果を示す。各図において、横軸(Absolute pressure)はCOの絶対圧もしくは分圧に相当し、縦軸(CO adsorbed)はCOの吸収量を示す。表5に結果を示す。 Further, FIGS. 4 and 5 show the results of fresh samples and samples after deterioration treatment. In each figure, the horizontal axis (Absolute pressure) corresponds to the absolute pressure or partial pressure of CO 2 , and the vertical axis (CO 2 adsorbed) indicates the amount of CO 2 absorbed. Table 5 shows the results.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
<評価試験5:水蒸気の影響検討>
 ポリアミン担持体は、二酸化炭素以外に水蒸気を含む混合ガスから二酸化炭素を分離する条件でも使用されるため、水蒸気の影響を検討した。加湿条件下における二酸化炭素の吸収量を破過曲線測定装置(ジーエルサイエンス(株)製)を用いて測定した。
<Evaluation test 5: Examination of the influence of water vapor>
Since the polyamine support is used under conditions where carbon dioxide is separated from a mixed gas containing water vapor in addition to carbon dioxide, the influence of water vapor was investigated. The amount of carbon dioxide absorbed under humidified conditions was measured using a breakthrough curve measuring device (manufactured by GL Sciences, Inc.).
 実施例4および実施例7のフレッシュなポリアミン担持体の約1gをサンプル管に量り取り、80℃で6時間アルゴンを流して乾燥脱気の前処理を行った後、60℃に試料温度を保持した。次にHO/Ar混合ガスを流してポリアミン担持体に水を吸収させた。 Approximately 1 g of the fresh polyamine support of Example 4 and Example 7 was weighed into a sample tube, and after pretreatment for drying and degassing by flowing argon at 80°C for 6 hours, the sample temperature was maintained at 60°C. did. Next, a H 2 O/Ar mixed gas was flowed to cause the polyamine support to absorb water.
 水の吸収が飽和に達した後、分圧13kPaで二酸化炭素を流し、同時に出口ガス組成をガスクロマトグラフで測定し、破過曲線を得た。 After water absorption reached saturation, carbon dioxide was flowed at a partial pressure of 13 kPa, and at the same time, the outlet gas composition was measured using a gas chromatograph to obtain a breakthrough curve.
 二酸化炭素の吸収量が飽和に達した後、アルゴンを流し、出口ガス組成をガスクロマトグラフにより測定した。本測定では真空ポンプによる減圧に代えてアルゴンガスを流すことにより、系内の二酸化炭素分圧を下げて二酸化炭素を脱離させた。 After the amount of carbon dioxide absorbed reached saturation, argon was flowed and the outlet gas composition was measured using a gas chromatograph. In this measurement, instead of depressurizing with a vacuum pump, argon gas was flowed to lower the partial pressure of carbon dioxide in the system and remove carbon dioxide.
 吸収量は、吸収開始時から飽和に達するまでの時間と出口濃度の積算から求めた。脱離量は、アルゴンガスに切り替えた時間から出口ガスに二酸化炭素が検出されなくなるまでの時間と出口濃度の積算から求めた。表6に結果を示す。乾燥条件での評価は、60℃、13kPaの条件で二酸化炭素の吸収量を測定し、60℃で脱離量を測定した。 The amount of absorption was determined from the integration of the time from the start of absorption until reaching saturation and the outlet concentration. The amount of desorption was determined from the integration of the time from the time of switching to argon gas until no carbon dioxide was detected in the outlet gas and the outlet concentration. Table 6 shows the results. For evaluation under dry conditions, the amount of carbon dioxide absorbed was measured at 60°C and 13 kPa, and the amount desorbed was measured at 60°C.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 本開示に係る二酸化炭素分離材は、二酸化炭素の吸収量が増加すると共に、短時間の減圧で多くの二酸化炭素を分離回収できるため、効率的かつ実用的であり、再利用に適している。また、本開示に係る二酸化炭素分離材は、二酸化炭素吸収及び脱離工程において、圧力スィング法、温度スィング法のいずれの方法でも二酸化炭素の分離回収を行うことが可能であり、様々な使用環境に適した二酸化炭素吸収及び脱離工程を選択することが可能である。加えて、本開示に係る二酸化炭素分離材は、酸化劣化に対する耐性が高く、ポリアミンの揮散による減少が生じにくい。さらに、水蒸気が共存する場合においても、吸収、脱離及び再吸収の性能が低下せず、除湿工程を必要としないため、省エネルギーのシステム構築及び装置の小型化によるコスト削減が可能である。 The carbon dioxide separation material according to the present disclosure increases the amount of carbon dioxide absorbed and can separate and recover a large amount of carbon dioxide in a short time under reduced pressure, so it is efficient, practical, and suitable for reuse. In addition, the carbon dioxide separation material according to the present disclosure can separate and recover carbon dioxide using either the pressure swing method or the temperature swing method in the carbon dioxide absorption and desorption process, and can be used in various usage environments. It is possible to select appropriate carbon dioxide absorption and desorption steps. In addition, the carbon dioxide separation material according to the present disclosure has high resistance to oxidative deterioration and is less likely to be reduced due to volatilization of polyamine. Furthermore, even when water vapor coexists, the performance of absorption, desorption, and reabsorption does not deteriorate, and a dehumidification process is not required, making it possible to construct an energy-saving system and reduce costs by downsizing the device.
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。
 
Although the invention has been described in terms of presently preferred embodiments, such disclosure is not to be construed as a limitation. Various modifications and alterations will no doubt become apparent to those skilled in the art to which this invention pertains after reading the above disclosure. It is, therefore, intended that the appended claims be construed as covering all changes and modifications without departing from the true spirit and scope of the invention.

Claims (16)

  1.  ポリアミンを含み、
     前記ポリアミンは、窒素原子に結合する水素原子または官能基を有するとともに分子内のそれぞれ別の窒素原子に結合する3つ以上のプロピル基を有するプロピルポリアミン成分を含み、
     少なくとも1つの前記プロピル基は、ヒドロキシ基を有するヒドロキシプロピル基であり、
     前記ヒドロキシプロピル基は、3級アミンを構成する窒素原子に結合し、
     前記ヒドロキシ基は2級炭素原子に結合しており、
     2つ以上の前記プロピル基は、ヒドロキシ基を有さない非置換イソプロピル基である、二酸化炭素分離材。
    Contains polyamines,
    The polyamine includes a propyl polyamine component having a hydrogen atom or a functional group bonded to a nitrogen atom and three or more propyl groups bonded to different nitrogen atoms in the molecule,
    At least one of the propyl groups is a hydroxypropyl group having a hydroxy group,
    The hydroxypropyl group is bonded to a nitrogen atom constituting a tertiary amine,
    the hydroxy group is bonded to a secondary carbon atom,
    A carbon dioxide separation material, wherein the two or more propyl groups are unsubstituted isopropyl groups having no hydroxy group.
  2.  前記非置換イソプロピル基は、2級アミンを構成する窒素原子に結合している、請求項1に記載の二酸化炭素分離材。 The carbon dioxide separation material according to claim 1, wherein the unsubstituted isopropyl group is bonded to a nitrogen atom that constitutes a secondary amine.
  3.  前記プロピルポリアミン成分は、2つ以上のNH基と、窒素原子間に介在する1つ以上のアルキレン基と、を有する、請求項1または2に記載の二酸化炭素分離材。 The carbon dioxide separation material according to claim 1 or 2, wherein the propyl polyamine component has two or more NH groups and one or more alkylene groups interposed between nitrogen atoms.
  4.  前記プロピルポリアミン成分が、一般式(1):
    Figure JPOXMLDOC01-appb-I000001
    で表される骨格を有し、
     式(1)中のRは、水素原子または炭素数1~6のアルキル基または炭素数1~6のアルキルアミノ基を示し、
     Aは、炭素数2~6のアルキレン基を示し、
     mは、2~50の整数を示し、
     複数あるRは、同一であっても、それぞれ異なっていてもよく、少なくとも1つのRは水素原子または炭素数1~6のアルキルアミノ基であり、
     複数あるAは、同一であっても、それぞれ異なっていてもよい、請求項1~3のいずれか1項に記載の二酸化炭素分離材。
    The propyl polyamine component has the general formula (1):
    Figure JPOXMLDOC01-appb-I000001
    It has a skeleton represented by
    R in formula (1) represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkylamino group having 1 to 6 carbon atoms,
    A represents an alkylene group having 2 to 6 carbon atoms,
    m represents an integer from 2 to 50,
    A plurality of R's may be the same or different, and at least one R is a hydrogen atom or an alkylamino group having 1 to 6 carbon atoms,
    The carbon dioxide separation material according to any one of claims 1 to 3, wherein the plurality of A's may be the same or different.
  5.  前記プロピルポリアミン成分が一般式(2):
    Figure JPOXMLDOC01-appb-I000002
    で表され、式(2)中、
     Rは、Rまたは基:-A-NRを示し、
     Rは、Rまたは基:-A-NRを示し、
     Aは、炭素数2~6のアルキレン基を示し、
     nは、1~5の整数を示し、
     pおよびqは、それぞれ独立して0または1を示し、
     複数あるAは、同一であっても、それぞれ異なっていてもよく、
     複数ある場合のRは、同一であっても、それぞれ異なっていてもよく、
     R、R2、R7およびR9は前記非置換イソプロピル基を示し、R3、R4、R6およびR8は水素原子を示し、
     R5の少なくとも1つは前記ヒドロキシプロピル基を示し、R5の残りは水素原子を示す、請求項4に記載の二酸化炭素分離材。
    The propyl polyamine component has the general formula (2):
    Figure JPOXMLDOC01-appb-I000002
    In formula (2),
    R A represents R 6 or a group: -A-NR 6 R 7 ;
    R B represents R 8 or a group: -A-NR 8 R 9 ;
    A represents an alkylene group having 2 to 6 carbon atoms,
    n represents an integer from 1 to 5,
    p and q each independently represent 0 or 1,
    Multiple A's may be the same or different,
    When there are multiple R 5 's, they may be the same or different,
    R 1 , R 2 , R 7 and R 9 represent the unsubstituted isopropyl group, R 3 , R 4 , R 6 and R 8 represent a hydrogen atom,
    The carbon dioxide separation material according to claim 4, wherein at least one of R 5 represents the hydroxypropyl group, and the remaining R 5 represent hydrogen atoms.
  6.  前記ポリアミンの760mmHgにおける沸点が320℃以上である、請求項1~5のいずれか1項に記載の二酸化炭素分離材。 The carbon dioxide separation material according to any one of claims 1 to 5, wherein the polyamine has a boiling point of 320°C or higher at 760 mmHg.
  7.  前記ポリアミンの骨格アミンが、エチレンイミン、プロピレンイミン、2-エチルアジリジン、2-プロピルアジリジンおよび2-ブチルアジリジンのモノポリマー並びにこれらの少なくとも2種のコポリマーからなる群より選ばれる少なくとも1種である、請求項1~6のいずれか1項に記載の二酸化炭素分離材。 The backbone amine of the polyamine is at least one selected from the group consisting of monopolymers of ethyleneimine, propyleneimine, 2-ethylaziridine, 2-propylaziridine and 2-butylaziridine, and copolymers of at least two of these. The carbon dioxide separation material according to any one of claims 1 to 6.
  8.  前記ポリアミンの骨格アミンが、テトラエチレンペンタミン、スペルミン、N,N,N’,N’-テトラキス(3-アミノプロピル)-1,4-ブタンジアミン、ペンタエチレンヘキサミン、ヘキサエチレンヘプタミンおよびトリエチレンテトラミンからなる群より選ばれる少なくとも1種である、請求項1~7のいずれか1項に記載の二酸化炭素分離材。 The backbone amine of the polyamine is tetraethylenepentamine, spermine, N,N,N',N'-tetrakis(3-aminopropyl)-1,4-butanediamine, pentaethylenehexamine, hexaethyleneheptamine, and triethylene. The carbon dioxide separation material according to any one of claims 1 to 7, which is at least one member selected from the group consisting of tetramine.
  9.  前記二酸化炭素分離材は、ポリアミン担持体を含み、
     前記ポリアミン担持体は、前記ポリアミンと、前記ポリアミンを担持する支持体と、を含む、請求項1~8のいずれか1項に記載の二酸化炭素分離材。
    The carbon dioxide separation material includes a polyamine carrier,
    The carbon dioxide separation material according to any one of claims 1 to 8, wherein the polyamine carrier includes the polyamine and a support supporting the polyamine.
  10.  前記支持体が、シリカ、ポリメチルメタクリレート、アルミナ、シリカアルミナ、粘土鉱物、マグネシア、ジルコニア、ゼオライト、ゼオライト類縁化合物、天然鉱物、廃棄物固体、活性炭およびカーボンモレキュラーシーブからなる群より選択される少なくとも1種である、請求項9に記載の二酸化炭素分離材。 The support is at least one selected from the group consisting of silica, polymethyl methacrylate, alumina, silica alumina, clay minerals, magnesia, zirconia, zeolites, zeolite analogs, natural minerals, waste solids, activated carbon, and carbon molecular sieves. The carbon dioxide separation material according to claim 9, which is a seed.
  11.  前記支持体が、比表面積(BET)が50m/g以上1000m/g以下であり、かつ、細孔容積が0.1cm/g~2.3cm/gである、請求項9または10に記載の二酸化炭素分離材。 Claim 9 or 9, wherein the support has a specific surface area (BET) of 50 m 2 /g or more and 1000 m 2 /g or less, and a pore volume of 0.1 cm 3 /g to 2.3 cm 3 /g. 10. Carbon dioxide separation material according to 10.
  12.  前記ポリアミン担持体と、前記ポリアミン担持体を造粒するバインダーと、を含む、請求項9~11のいずれか1項に記載の二酸化炭素分離材。 The carbon dioxide separation material according to any one of claims 9 to 11, comprising the polyamine carrier and a binder for granulating the polyamine carrier.
  13.  前記バインダーが、シリカ、アルミナ、シリカアルミナ、粘土鉱物、フッ素樹脂、セルロース誘導体およびエポキシ樹脂からなる群より選択される少なくとも1種である、請求項12に記載の二酸化炭素分離材。 The carbon dioxide separation material according to claim 12, wherein the binder is at least one selected from the group consisting of silica, alumina, silica alumina, clay minerals, fluororesins, cellulose derivatives, and epoxy resins.
  14.  処理対象のガスを請求項1~13のいずれか1項に記載の二酸化炭素分離材に接触させ、二酸化炭素を吸収する第1工程、および
     前記第1工程において二酸化炭素を吸収した前記二酸化炭素分離材から二酸化炭素を脱離させる第2工程、
    を含む二酸化炭素を分離又は回収する方法であって、
     前記第2工程が
    (A)前記二酸化炭素分離材を減圧条件下におき、二酸化炭素を脱離させる工程(圧力スィング法)、
    (B)前記二酸化炭素分離材に水蒸気および不活性ガスの少なくとも一方を接触させ、二酸化炭素を脱離させる工程、及び
    (C)前記二酸化炭素分離材を加熱し、二酸化炭素を脱離させる工程(温度スィング法)
    のいずれか一つ以上を含む、二酸化炭素を分離又は回収する方法。
    A first step of bringing the gas to be treated into contact with the carbon dioxide separation material according to any one of claims 1 to 13 and absorbing carbon dioxide, and the carbon dioxide separation that absorbed carbon dioxide in the first step. a second step of desorbing carbon dioxide from the material;
    A method for separating or recovering carbon dioxide containing
    The second step is (A) a step of placing the carbon dioxide separation material under reduced pressure conditions and desorbing carbon dioxide (pressure swing method);
    (B) a step of contacting the carbon dioxide separation material with at least one of water vapor and an inert gas to desorb carbon dioxide, and (C) a step of heating the carbon dioxide separation material to desorb carbon dioxide ( temperature swing method)
    A method for separating or recovering carbon dioxide, including one or more of the following.
  15.  前記処理対象のガスが温度20~60℃かつ二酸化炭素分圧100kPa以下のガスである請求項14に記載の二酸化炭素を分離又は回収する方法。 The method for separating or recovering carbon dioxide according to claim 14, wherein the gas to be treated is a gas having a temperature of 20 to 60°C and a partial pressure of carbon dioxide of 100 kPa or less.
  16.  ポリアミンを準備する工程と、
     前記ポリアミンを支持体と接触させ、前記ポリアミンと、前記ポリアミンを担持する前記支持体と、を含むポリアミン担持体を得る工程と、
    を具備し、
     前記ポリアミンは、窒素原子に結合する水素原子または官能基を有するとともに分子内のそれぞれ別の窒素原子に結合する3つ以上のプロピル基を有するプロピルポリアミン成分を含み、
     少なくとも1つの前記プロピル基は、ヒドロキシ基を有するヒドロキシプロピル基であり、
     前記ヒドロキシプロピル基は、3級アミンを構成する窒素原子に結合し、
     前記ヒドロキシ基は2級炭素原子に結合しており、
     2つ以上の前記プロピル基は、ヒドロキシ基を有さない非置換イソプロピル基である、二酸化炭素分離材の製造方法。
    a step of preparing a polyamine;
    contacting the polyamine with a support to obtain a polyamine carrier containing the polyamine and the support supporting the polyamine;
    Equipped with
    The polyamine includes a propyl polyamine component having a hydrogen atom or a functional group bonded to a nitrogen atom and three or more propyl groups bonded to different nitrogen atoms in the molecule,
    At least one of the propyl groups is a hydroxypropyl group having a hydroxy group,
    The hydroxypropyl group is bonded to a nitrogen atom constituting a tertiary amine,
    the hydroxy group is bonded to a secondary carbon atom,
    A method for producing a carbon dioxide separation material, wherein the two or more propyl groups are unsubstituted isopropyl groups having no hydroxy group.
PCT/JP2023/010423 2022-03-25 2023-03-16 Carbon dioxide isolator, method for isolating or recovering carbon dioxide, and method for producing carbon dioxide isolator WO2023182173A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022050582A JP2023143289A (en) 2022-03-25 2022-03-25 Carbon dioxide separation material, method for separating or recovering carbon dioxide, and method for producing carbon dioxide separation material
JP2022-050582 2022-03-25

Publications (1)

Publication Number Publication Date
WO2023182173A1 true WO2023182173A1 (en) 2023-09-28

Family

ID=88101537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/010423 WO2023182173A1 (en) 2022-03-25 2023-03-16 Carbon dioxide isolator, method for isolating or recovering carbon dioxide, and method for producing carbon dioxide isolator

Country Status (2)

Country Link
JP (1) JP2023143289A (en)
WO (1) WO2023182173A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014208712A1 (en) * 2013-06-28 2014-12-31 公益財団法人地球環境産業技術研究機構 Carbon dioxide separating material, and method for separation or recovery of carbon dioxide
JP2022007403A (en) * 2020-06-26 2022-01-13 東ソー株式会社 Polyethylenepolyamine derivative

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014208712A1 (en) * 2013-06-28 2014-12-31 公益財団法人地球環境産業技術研究機構 Carbon dioxide separating material, and method for separation or recovery of carbon dioxide
JP2022007403A (en) * 2020-06-26 2022-01-13 東ソー株式会社 Polyethylenepolyamine derivative

Also Published As

Publication number Publication date
JP2023143289A (en) 2023-10-06

Similar Documents

Publication Publication Date Title
JP6300457B2 (en) Carbon dioxide separator and method for separating or recovering carbon dioxide
US20210197172A1 (en) Regenerative adsorbents of modified amines on solid supports
Lu et al. Polyamine‐tethered porous polymer networks for carbon dioxide capture from flue gas
Patel et al. High capacity carbon dioxide adsorption by inexpensive covalent organic polymers
Wang et al. Application of polyethylenimine‐impregnated solid adsorbents for direct capture of low‐concentration CO2
JP2015504000A (en) Alkylamine functionalized metal organic framework for gas separation
US9283511B2 (en) Composite materials for reversible CO2 capture
Ding et al. Mannitol-based acetal-linked porous organic polymers for selective capture of carbon dioxide over methane
JP5186410B2 (en) CO2 separation agent and method for selective separation of CO2
WO2018089968A1 (en) Pcstructures including supported polyamines and methods of making the supported polyamines
JP6014576B2 (en) Amino compound-supported porous material and method for producing the same
WO2020130856A1 (en) Metal-organic frameworks for gas adsorption
WO2023182173A1 (en) Carbon dioxide isolator, method for isolating or recovering carbon dioxide, and method for producing carbon dioxide isolator
WO2023182171A1 (en) Carbon dioxide separation material, method for separating and recovering carbon dioxide, and method for producing carbon dioxide separation material
JP7240633B2 (en) CO2 adsorption/desorption material
WO2023181676A1 (en) Carbon dioxide separator, and method for separating or recovering carbon dioxide
AU2020417967B2 (en) Compositions, methods, and systems for capturing carbon dioxide from a gas stream
US20220096999A1 (en) Materials including alkyl diamine-substituted aryl compounds, methods of making, and methods of separating co2
US9808784B2 (en) Mesoporous cellular foam impregnated with iron-substituted heteropolyacid, preparation method therefor, and carbon dioxide separation method using same
JP2004261670A (en) Method for treating exhaust gas
KR20220084734A (en) Cucurbituril-amine compound-porous material complex, preparation method thereof and carbon dioxide asorbent comprising the same
KR20180006771A (en) Carbon dioxide adsorbents and manufacturing method thereof
WO2023100986A1 (en) Carbon dioxide adsorbent
CN116571216B (en) Carbon dioxide solid amine adsorption material and preparation method and application thereof
WO2023237579A1 (en) Sorbent materials for carbon dioxide separation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23774769

Country of ref document: EP

Kind code of ref document: A1