WO2023182171A1 - Carbon dioxide separation material, method for separating and recovering carbon dioxide, and method for producing carbon dioxide separation material - Google Patents

Carbon dioxide separation material, method for separating and recovering carbon dioxide, and method for producing carbon dioxide separation material Download PDF

Info

Publication number
WO2023182171A1
WO2023182171A1 PCT/JP2023/010419 JP2023010419W WO2023182171A1 WO 2023182171 A1 WO2023182171 A1 WO 2023182171A1 JP 2023010419 W JP2023010419 W JP 2023010419W WO 2023182171 A1 WO2023182171 A1 WO 2023182171A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
polyamine
group
separation material
dioxide separation
Prior art date
Application number
PCT/JP2023/010419
Other languages
French (fr)
Japanese (ja)
Inventor
フィローズ アラム チョウドリー
ティ クェン ブ
克則 余語
利紀 村岡
Original Assignee
公益財団法人地球環境産業技術研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公益財団法人地球環境産業技術研究機構 filed Critical 公益財団法人地球環境産業技術研究機構
Publication of WO2023182171A1 publication Critical patent/WO2023182171A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/81Solid phase processes
    • B01D53/82Solid phase processes with stationary reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C215/00Compounds containing amino and hydroxy groups bound to the same carbon skeleton
    • C07C215/02Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C215/04Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated
    • C07C215/06Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated and acyclic
    • C07C215/14Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated and acyclic the nitrogen atom of the amino group being further bound to hydrocarbon groups substituted by amino groups
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to a carbon dioxide separation material, a method for separating or recovering carbon dioxide, and a method for manufacturing a carbon dioxide separation material.
  • Patent Document 1 discloses a carbon dioxide separation material containing a polyamine carrier in which a polyamine having at least two isopropyl groups on a nitrogen atom is supported on a support, and a method for separating or recovering carbon dioxide using the carbon dioxide separation material. is suggesting.
  • Patent Document 2 proposes a method for preparing alkylalkanolamines that involves the reaction of a carbonyl compound and a hydroxyalkylamine in the presence of hydrogen and a catalyst.
  • Patent Document 3 has a porous support on which an amine compound is immobilized as a core, and has an amine layer as a shell that is resistant to inactivation by sulfur dioxide, suppresses oxidative decomposition of the amine, and suppresses oxygen and We have proposed a core-shell type amine-based carbon dioxide adsorbent containing a chelating agent that is resistant to sulfur dioxide.
  • US Pat. No. 5,001,202 proposes a renewable solid sorbent for adsorbing carbon dioxide from gas mixtures containing air, comprising a modified polyamine and a solid support.
  • Modified polyamines are reaction products of amines and epoxides.
  • One aspect of the present invention includes a polyamine, and the polyamine is an isopropyl polyamine component having a hydrogen atom or a functional group bonded to a nitrogen atom and two or more isopropyl groups bonded to different nitrogen atoms in the molecule.
  • the at least one isopropyl group is a hydroxyisopropyl group having a hydroxy group
  • the hydroxy group is bonded to a primary carbon atom in the hydroxyisopropyl group
  • the isopropyl group not having a hydroxy group is a non-hydroxy group. It relates to a carbon dioxide separation material that is a substituted isopropyl group.
  • Another aspect of the present invention includes a first step of bringing a gas to be treated into contact with the carbon dioxide separation material to absorb carbon dioxide, and a step of bringing carbon dioxide from the carbon dioxide separation material that has absorbed carbon dioxide in the first step.
  • a method for separating or recovering carbon dioxide, the second step comprising: (A) placing the carbon dioxide separation material under reduced pressure conditions and desorbing carbon dioxide; (pressure swing method), (B) a step of contacting the carbon dioxide separation material with at least one of water vapor and an inert gas (preferably a gas not containing carbon dioxide) and desorbing carbon dioxide, and (C) the step of desorbing the carbon dioxide.
  • the present invention relates to a method for separating or recovering carbon dioxide, which includes any one or more of the steps of heating a carbon separation material and desorbing carbon dioxide (temperature swing method).
  • Yet another aspect of the present invention includes the steps of: preparing a polyamine; and contacting the polyamine with a support to obtain a polyamine carrier comprising the polyamine and the support supporting the polyamine.
  • the polyamine includes an isopropyl polyamine component having a hydrogen atom or a functional group bonded to a nitrogen atom and two or more isopropyl groups bonded to different nitrogen atoms in the molecule, and at least one of the isopropyl
  • the group is a hydroxyisopropyl group having a hydroxy group, in the hydroxyisopropyl group, the hydroxy group is bonded to a primary carbon atom, and the isopropyl group not having a hydroxy group is an unsubstituted isopropyl group, carbon dioxide
  • This invention relates to a method for producing a separation material.
  • the polyamine according to the present disclosure allows easy control of reactants in the production reaction, and the carbon dioxide separation material supporting this polyamine has high stability and excellent carbon dioxide adsorption/desorption performance. Therefore, it is possible to provide a carbon dioxide separation material with low cost and high performance. Further, by using the carbon dioxide separation material according to the present disclosure, carbon dioxide can be separated or recovered with high efficiency.
  • FIG. 7 is a diagram showing adsorption/desorption behavior of carbon dioxide by the polyamine carrier of Example 5.
  • FIG. 7 is a diagram showing adsorption/desorption behavior of carbon dioxide by the polyamine carrier of Example 6.
  • FIG. 3 is a diagram showing adsorption/desorption behavior of carbon dioxide by the polyamine carrier of Comparative Example 1.
  • FIG. 3 is a diagram showing adsorption/desorption behavior of carbon dioxide by the polyamine carrier of Comparative Example 2.
  • FIG. 7 is a diagram showing adsorption/desorption behavior of carbon dioxide by the polyamine carrier of Comparative Example 7.
  • FIG. 7 is a diagram showing adsorption/desorption behavior of carbon dioxide by the polyamine carrier of Comparative Example 8.
  • the carbon dioxide separation material is not limited to the following embodiments.
  • specific numerical values and materials may be illustrated, but other numerical values and materials may be applied as long as the effects of the present disclosure can be obtained.
  • the expression "numerical value A to numerical value B" includes numerical value A and numerical value B, and can be read as "more than or equal to numerical value A and less than or equal to numerical value B.”
  • any of the illustrated lower limits and any of the illustrated upper limits can be arbitrarily combined as long as the lower limit is not greater than the upper limit. .
  • one type may be selected from them and used alone, or two or more types may be used in combination.
  • the carbon dioxide separation material contains a polyamine, and the polyamine contains at least an isopropyl polyamine component.
  • the isopropyl polyamine component has a hydrogen atom or a functional group bonded to a nitrogen atom, and also has two or more isopropyl groups bonded to different nitrogen atoms within the molecule.
  • an isopropyl polyamine component will also be referred to as "polyamine component IP”.
  • the functional group bonded to the nitrogen atom include a hydroxyl group (N--OH) and an alkyl group (NR (R is an alkyl group such as a methyl group and an ethyl group)).
  • Polyamine component IP contains multiple nitrogen atoms in the molecule. Two or more of the plurality of nitrogen atoms are each bonded to a hydrogen atom. All of the plurality of nitrogen atoms may each be bonded to a hydrogen atom. By introducing the isopropyl group, the chemical bond between N and CO 2 becomes loose, and CO 2 can be eliminated with less energy (for example, at low temperature).
  • a nitrogen atom that bonds with a hydrogen atom may form a secondary amino group that bonds with one hydrogen atom, or may form a primary amino group that bonds with two hydrogen atoms.
  • polyamine component IP is a polyamine component having a total of two or more at least one of "hydroxyisopropyl group” and "unsubstituted isopropyl group.”
  • the polyamine component IP may contain only a single polyamine component, or may contain multiple polyamine components. That is, the polyamine component IP may be a mixture of a plurality of polyamine components, or may contain only a single purified polyamine component. The polyamine component IP may or may not contain a polyamine component having an unsubstituted isopropyl group.
  • the polyamine component IP may have a linear structure, a branched structure, or a ring structure containing a nitrogen atom. Among them, polyamines with a linear structure are preferable because they have many CO 2 adsorption sites.
  • the polyamine component IP includes a component in which at least one of the two or more isopropyl groups N in the molecule is a hydroxyisopropyl group.
  • All of the two or more isopropyl groups N that the polyamine component IP has in the molecule may be hydroxyisopropyl groups.
  • the polyamine component IP in which all of the two or more isopropyl groups N in the molecule are hydroxyisopropyl groups will be referred to as "HA-polyamine component (or first polyamine component)". That is, the first polyamine component has no unsubstituted isopropyl groups and has two or more hydroxyisopropyl groups each bonded to a different nitrogen atom.
  • HA-polyamine component a polyamine component (hereinafter referred to as "2. 0HA-TEPA”) is shown.
  • the HA-polyamine component may have two hydroxyisopropyl groups each attached to a nitrogen atom that constitutes a separate secondary amine. Since the hydroxyisopropyl group is bonded to the nitrogen atoms constituting the secondary amine, hydrogen atoms are bonded to all nitrogen atoms. In the hydroxyisopropyl group, the hydroxy group is bonded to the primary carbon atom, and the methyl group is bonded to the carbon atom at the ⁇ position relative to the nitrogen atom. It is thought that the methyl group has the effect of improving the rate of CO 2 elimination due to steric hindrance.
  • one or more is a hydroxyisopropyl group having a hydroxy group, and the remaining one or more is an unsubstituted isopropyl group having no hydroxy group (- CH( CH3 ) CH3 ) may be used.
  • HA-IP-polyamine component or second polyamine component.
  • the second polyamine component has one or more hydroxyisopropyl groups and one or more unsubstituted isopropyl groups each bonded to a different nitrogen atom.
  • HA-IP - As an example of a polyamine component IP containing a polyamine component, tetraethylenepentamine (TEPA), which is a backbone amine, is mixed with 0.25 mol (or 0.5 mol) of hydroxyacetone and 1.75 mol (or The polyamine component IP (hereinafter referred to as "0.25HA-IP-TEPA" and "0.50HA-IP-TEPA") produced by reacting 1.5 mol) of acetone will be explained.
  • the polyamine component IP produced by such a reaction mainly contains an HA-IP-polyamine component and an IP-polyamine component (or "IP-TEPA”), which will be described later. ) is a mixture of multiple polyamine components.
  • HA-IP-polyamine component shown below (hereinafter referred to as "1.0HA-IP-TEPA") has one isopropyl group and one isopropyl group bonded to nitrogen atoms constituting separate secondary amines. It has a hydroxyisopropyl group. Since the isopropyl group and the hydroxyisopropyl group are each bonded to a nitrogen atom constituting the secondary amine, a hydrogen atom is bonded to each nitrogen atom. In the hydroxyisopropyl group, the hydroxy group is bonded to the primary carbon atom, and the methyl group is bonded to the carbon atom at the ⁇ position relative to the nitrogen atom.
  • the difference between 0.25HA-IP-TEPA and 0.50HA-IP-TEPA can be said to be the difference in the mixing ratio of the HA-IP-polyamine component, the IP-polyamine component, and the HA-polyamine component.
  • a polyamine component IP containing a HA-IP-polyamine component 1,11-amino-4,7-diazadecane (DEDP), which is a backbone amine, is mixed with 0.25 mol of hydroxyacetone per 1 mol of DEDP.
  • DEDP 1,11-amino-4,7-diazadecane
  • a polyamine component (hereinafter referred to as "0.25HA-IP-DEDP") produced by reacting 0.25HA-IP-DEDP with 1.75 mol of acetone will be explained.
  • the polyamine component IP produced by such a reaction is also a mixture of a plurality of polyamine components.
  • HA-IP-polyamine component shown below has one isopropyl group bonded to the nitrogen atom constituting each separate secondary amine. and one hydroxyisopropyl group, and hydrogen atoms are bonded to all nitrogen atoms.
  • the hydroxy group is bonded to the primary carbon atom, and the methyl group is bonded to the carbon atom in the alpha position relative to the nitrogen atom.
  • polyamine component IP containing the HA-IP-polyamine component 0.25 mol of hydroxyacetone and 1.75 mol of acetone were reacted with 0.25 mol of hydroxyacetone and 1.75 mol of acetone per 1 mol of Spermine to the skeleton amine.
  • the polyamine component (hereinafter referred to as "0.25HA-IP-Spermine") produced by this method will be explained.
  • the polyamine component IP produced by such a reaction is also a mixture of a plurality of polyamine components.
  • HA-IP-polyamine component shown below has one isopropyl group bonded to the nitrogen atom constituting each separate secondary amine. and one hydroxyisopropyl group, and hydrogen atoms are bonded to all nitrogen atoms.
  • the hydroxy group is bonded to the primary carbon atom, and the methyl group is bonded to the carbon atom in the alpha position relative to the nitrogen atom.
  • the polyamine component IP When the polyamine component IP includes a plurality of polyamine components, it may include a polyamine component IP in which all of the two or more isopropyl groups N contained in the molecule are unsubstituted isopropyl groups (-CH(CH 3 ) CH 3 ). .
  • IP-polyamine component or third polyamine component
  • the third polyamine component does not have a hydroxyisopropyl group and has two or more unsubstituted isopropyl groups each bonded to a different nitrogen atom.
  • IP-TEPA polyamine component
  • TEPA tetraethylenepentamine
  • the IP-polyamine component may have two isopropyl groups bonded to nitrogen atoms, each forming a separate secondary amine. Since each isopropyl group is bonded to a nitrogen atom constituting the secondary amine, a hydrogen atom is bonded to each nitrogen atom. Again, a methyl group is bonded to the carbon atom in the alpha position relative to the nitrogen atom.
  • the polyamine component IP includes, for example, at least one selected from the group consisting of the first polyamine component (HA-polyamine component) and the second polyamine component (HA-IP-polyamine component), and optional components. In addition, it may further include a third polyamine component (IP-polyamine component).
  • the polyamine component IP which is a mixture containing a second polyamine component (HA-IP-polyamine component) and a third polyamine component (IP-polyamine component) as essential components, has high carbon dioxide adsorption/desorption performance, and this polyamine component
  • the carbon dioxide separation material supporting component IP has excellent stability.
  • the first polyamine component (HA-polyamine component) does not necessarily need to be included.
  • the content of the first polyamine component (HA-polyamine component) in the polyamine component IP is preferably 25 mol% or less, and the content of the second polyamine component (HA-IP-polyamine component) is 10 mol% or more and 50 mol% or less.
  • the content of the third polyamine component (IP-polyamine component) is preferably 50 mol% or more and 90 mol% or less.
  • the HA-polyamine component and the HA-IP-polyamine component enhance the stability of the carbon dioxide separation material supporting the polyamine component IP.
  • a polyamine containing at least one of an HA-polyamine component and a HA-IP-polyamine component has a lower vapor pressure and less volatilization than a polyamine containing only an IP-polyamine component, and is therefore suitable for long-term use.
  • a carbon dioxide separation material supporting a polyamine containing an HA-polyamine component as the polyamine component IP has excellent stability and carbon dioxide adsorption/desorption performance.
  • the vapor pressure of IP-TEPA at 60°C is 1.80 kPa, but the vapor pressure of 0.5HA-IP-TEPA is reduced to 1.47 kPa.
  • the isopropyl group N can bond to the nitrogen atom constituting the secondary amine or the nitrogen atom constituting the tertiary amine, but in terms of increasing the ability to eliminate carbon dioxide, the isopropyl group N It is desirable that it be bonded to an atom.
  • isopropyl group N is bonded to the end of the polyamine molecule.
  • isopropyl groups N may be bonded to two terminals.
  • isopropyl groups N may be bonded to the terminals of all branch chains.
  • the isopropyl group N bonded to the nitrogen atom constituting the secondary amine may be formed, for example, by a reaction between a starting material for the isopropyl group N and a primary amino group.
  • a starting material for the isopropyl group N for example, acetone, hydroxyacetone (CH 3 COCH 2 OH), etc. can be used.
  • the polyamine component IP (HA-polyamine component, HA-IP-polyamine component, and IP-polyamine component) is, for example, a primary amino group (-NH 2 group) and a commercially available or obtained by a known method. It can be produced by introducing two or more isopropyl groups N into the primary amino group of a polyamine having an NH- group.
  • Examples of the method for introducing isopropyl group N include a method of reacting -NH 2 group with a starting material for isopropyl group N such as acetone or hydroxyacetone. At this time, by using acetone and hydroxyacetone together and controlling the molar ratio of acetone and hydroxyacetone, mixtures of HA-polyamine component and HA-IP-polyamine, HA-IP-polyamine component and IP- Mixtures with polyamine components can be obtained in any composition.
  • a starting material for isopropyl group N such as acetone or hydroxyacetone.
  • a platinum oxide catalyst and anhydrous ethanol are placed in a reaction container such as a flask, and the inside of the reaction container is replaced with hydrogen. Then, hydrogen is added until the pressure reaches 100 kPa to 150 kPa, and the mixture is stirred for a predetermined period of time. Give back. Next, a polyamine having primary amino groups (-NH 2 groups) and -NH- groups, at least one of acetone and hydroxyacetone, and anhydrous ethanol are placed in a reaction vessel containing the reduced catalyst and reacted. After replacing the inside of the container with hydrogen, hydrogen is added until the pressure reaches approximately 200 kPa to 350 kPa, and then the mixture is stirred while supplying hydrogen until there is no pressure drop.
  • reaction between acetone and a primary amino group In the reaction between acetone and a primary amino group (first reaction), an unsubstituted isopropyl group is formed. In the reaction between hydroxyacetone and the primary amino group (second reaction), a hydroxyisopropyl group is formed. In the reaction between acetone, hydroxyacetone, and the primary amino group (third reaction), an unsubstituted isopropyl group and a hydroxyisopropyl group are formed.
  • the second reaction is suitable for producing the HA-polyamine component IP.
  • the third reaction is suitable for producing the HA-IP-polyamine component.
  • the reaction between hydroxyacetone and a primary amino group produces a hydroxyisopropyl group (-CH(CH 3 )CH 2 OH) having a hydroxy group (primary alcohol) bonded to a primary carbon atom.
  • a hydroxyisopropyl group (-CH 2 CH(OH)CH 3 ) having a hydroxy group (secondary alcohol) bonded to a secondary carbon atom is not generated.
  • the hydroxyisopropyl group has the effect of reducing the vapor pressure of the polyamine component IP and improving the stability of the carbon dioxide separation material supporting the polyamine component IP.
  • acetone and hydroxyacetone preferentially react with primary amino groups to generate nitrogen atoms that constitute secondary amines having NH groups.
  • the isopropyl group is bonded to the nitrogen atom constituting the secondary amine. Therefore, it is easy to control the reactants in the production reaction, and more NH groups that adsorb and desorb carbon dioxide can be secured.
  • the polyamine component IP it is desirable to use a polyamine molecule having two or more NH groups and one or more alkylene groups interposed between nitrogen atoms.
  • the number of NH groups contained in one polyamine molecule is preferably as large as possible from the viewpoint of increasing carbon dioxide adsorption ability, and the number of NH groups contained in one polyamine molecule is preferably 2 or more and 50 or less, and 3 or more and 30 or less. is more desirable.
  • the number of NH groups contained in one polyamine molecule is preferably 3 or more and 20 or less, more preferably 4 or more and 10 or less, and even more preferably 4 or more and 7 or less.
  • the alkylene group interposed between the nitrogen atoms is preferably an alkylene group having 1 to 6 carbon atoms, and specifically, a methylene group, ethylene group, propylene group, butylene group, etc. are preferable.
  • the number of alkylene groups contained in one molecule of polyamine may be selected depending on the number of NH groups contained in one molecule of polyamine.
  • One molecule of polyamine may contain only one type of alkylene group, or may contain two or more types of alkylene groups.
  • the first polyamine component, the second polyamine component, and the third polyamine component have the general formula (1):
  • R in formula (1) represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkylamino group having 1 to 6 carbon atoms
  • A represents an alkylene group having 2 to 6 carbon atoms
  • m indicates an integer from 2 to 50, and multiple A's may be the same or different.
  • the first polyamine component, the second polyamine component, and the third polyamine component each have, for example, the general formula (2):
  • R A represents R 6 or a group: -A-NR 6 R 7
  • R B represents R 8 or a group: -A-NR 8 R 9
  • A has a carbon number of 2.
  • n represents an integer of 0 to 5
  • p and q each independently represent 0 or 1.
  • a plurality of A's may be the same or different, and when there are a plurality of A's, R5 's may be the same or different.
  • R 1 , R 2 , R 6 and R 8 represent a hydroxyisopropyl group
  • R 3 , R 4 , R 5 , R 7 and R 9 represent a hydrogen atom
  • R 1 , R 2 , R 6 and R 8 represents a hydroxyisopropyl group, and the remainder of R 1 , R 2 , R 6 and R 8 represents an unsubstituted isopropyl group; R 3 , R 4 , R 5 , R 7 and R 9 represent hydrogen atoms.
  • R 1 , R 2 , R 6 and R 8 represent unsubstituted isopropyl groups, and R 3 , R 4 , R 5 , R 7 and R 9 represent hydrogen atoms.
  • Examples of the backbone amine of the polyamine include at least one selected from the group consisting of monopolymers of ethyleneimine, propyleneimine, 2-ethylaziridine, 2-propylaziridine, and 2-butylaziridine, and copolymers of at least two of these. .
  • monopolymers of ethyleneimine, propyleneimine, 2-ethylaziridine, 2-propylaziridine, and 2-butylaziridine and copolymers of at least two of these.
  • spermine for example, from the group consisting of tetraethylenepentamine, spermine, N,N,N',N'-tetrakis(3-aminopropyl)-1,4-butanediamine, pentaethylenehexamine, hexaethyleneheptamine and triethylenetetramine. At least one selected type is mentioned.
  • the backbone amine of a polyamine is a polyamine having a primary amino group that is reacted with the starting material of the isopropyl group N (acetone, hydroxyacetone, etc.) when generating the isopropyl group N bonded to the nitrogen atom constituting the secondary amine. means.
  • HA-IP-polyamine component examples include 1-isopropylamino-11-hydroxyisopropylamino-3,6,9-triazaundecane, N-3-(isopropylamino)propyl-N'-3-(hydroxy isopropylamino)propyl-1,4-butanediamine, N,N-bis(3-(isopropylamino)propyl)-N',N'-bis(3-(hydroxyisopropylamino)propyl)-1,4-butane Diamine, 1-isopropylamino-14-hydroxyisopropylamino-3,6,9,12-tetraazatetradecane, 1-isopropylamino-17-hydroxyisopropylamino-3,6,9,12,15-pentaazaheptadecane , 1-isopropylamino-8-hydroxyisopropylamino-3,6,-diazaoctane, and the like. Note that commercially
  • the boiling point of polyamine (especially polyamine component IP) at 760 mmHg is 320°C or higher.
  • the carbon dioxide separation material containing polyamine can be stably used even at high temperatures (for example, about 60° C.). If the polyamine has a boiling point of 320° C. or higher at 760 mmHg, the state in which the polyamine is supported on the support can be maintained even if the boiling point is lowered by reduced pressure (for example, about 0.2 Pa). Therefore, by using these polyamines, the operating temperature can be set higher than room temperature, and carbon dioxide can be efficiently desorbed.
  • the support may be any material as long as it can support the polyamine (especially the polyamine component IP) and can withstand the conditions for separating and recovering carbon dioxide.
  • ceramics, porous materials, carbon materials, resin materials, etc. can be used.
  • silica, polymethyl methacrylate, alumina, silica alumina, clay minerals, magnesia, zirconia, zeolite, zeolite related compounds, natural minerals, waste solids, activated carbon, carbon molecular sieves, etc. can be mentioned.
  • One type of support may be used alone, or two or more types may be used in combination.
  • a commercially available product may be used as is, or a support synthesized by a known method may be used.
  • Commercially available products include mesostructured silica MSU-F manufactured by Sigma-Aldrich, SIPERNAT (registered trademark) 50S manufactured by Evonik, and CARiACT (registered trademark) Q10, Q30, Q50 manufactured by Fuji Silysia Chemical Co., Ltd.
  • the support is preferably a porous material with a large specific surface area and pore volume in order to support a large amount of polyamine.
  • the specific surface area (BET) is preferably 50 m 2 /g or more and 2000 m 2 /g or less, more preferably 100 m 2 /g or more and 1000 m 2 /g or less.
  • the pore volume is preferably 0.1 cm 3 /g or more and 2.3 cm 3 /g or less, more preferably 0.7 cm 3 /g or more and 2.3 cm 3 /g or less.
  • the specific surface area and pore volume can be measured, for example, using a constant volume method using a specific surface area/pore size distribution measuring device (ASAP2420: manufactured by Shimadzu Corporation).
  • a specific surface area/pore size distribution measuring device for example, a sample is pretreated by heating and evacuation, and approximately 0.1 g of the measurement sample is weighed into a sample tube. Thereafter, the sample was heated to 40° C., evacuated for 6 hours, cooled to room temperature, and the mass of the sample was measured. For measurements, set the liquid nitrogen temperature and specify the pressure range.
  • the specific surface area, pore volume, and pore diameter can be calculated by analyzing the obtained nitrogen adsorption isotherm.
  • a polyamine carrier is a support in which a polyamine is supported.
  • the polyamine carrier includes a polyamine (especially polyamine component IP) and a support supporting the polyamine.
  • the polyamine support can be produced by a manufacturing method that includes a step of preparing a polyamine and a step of obtaining the polyamine support.
  • a polyamine may be brought into contact with a support to produce a support supporting the polyamine.
  • the polyamine carrier can be produced, for example, by mixing the support with a solution of polyamine (especially polyamine component IP), stirring at room temperature, and then distilling off the solvent (for example, alcohol).
  • a solution of polyamine especially polyamine component IP
  • the solvent for example, alcohol
  • Examples of the method for distilling off the solvent include a method of reducing the pressure while heating with an evaporator or the like.
  • the pressure swing method includes a step of placing a carbon dioxide separation material under reduced pressure conditions and desorbing carbon dioxide.
  • the temperature swing method includes a step of heating a carbon dioxide separation material to desorb carbon dioxide.
  • the carbon dioxide separation material includes, for example, a polyamine carrier and a binder that granulates the polyamine carrier. That is, the carbon dioxide separation material may include a polyamine support in the form of granules using a binder. By granulating the polyamine carrier using a binder, vibration resistance and abrasion resistance can be imparted, and further, stability in water can be improved.
  • the binder at least one selected from the group consisting of silica, alumina, silica alumina, clay minerals, fluororesins, cellulose derivatives, and epoxy resins may be used.
  • fluororesin include polytetrafluoroethylene and the like.
  • cellulose derivatives include hydroxypropylmethylcellulose, methylcellulose, hydroxypropylcellulose, carboxymethylcellulose, hydroxyethylcellulose, and hydroxyethylated starch.
  • the epoxy resin include diglycerol polyglycidyl ether, sorbitol polyglycidyl ether, etc., and may be used as a mixture with an epoxy resin curing agent (modified polyamide resin, etc.).
  • polymers polyvinyl alcohol, polyethylene oxide, sodium polyacrylate, polyacrylamide, etc.
  • binder may be used alone, or two or more types may be used in combination.
  • binders include Snowtech 30 and AS-200 manufactured by Nissan Chemical Co., Ltd., Polyflon PTFE D-210C manufactured by Daikin Industries, Ltd., NEOVISCO MC RM4000 manufactured by Sansho Co., Ltd., and AQ manufactured by Toray Industries, Inc. Nylon P-70, Denacol EX-421 manufactured by Nagase ChemteX Corporation, etc. can be used.
  • the content of the binder in the carbon dioxide separation material is not particularly limited as long as it can be granulated, but it is preferably a small amount in order to prevent a decrease in the polyamine content.
  • the average particle diameter of the granules when granulated using a binder is preferably 0.1 mm to 2.0 mm from the viewpoint of reducing pressure loss when gas is supplied to the adsorbent packed bed.
  • the content of polyamine (especially polyamine component IP) contained in the carbon dioxide separation material is not particularly limited, but from the viewpoint of efficiently separating and recovering carbon dioxide, it is preferably 15% by mass or more, and 20% by mass or more. Particularly preferred.
  • the content of polyamine may be, for example, 70% by mass or less.
  • the target of the carbon dioxide separation (recovery) method is gas containing carbon dioxide.
  • Gases containing carbon dioxide are used, for example, in thermal power plants that use coal, heavy oil, natural gas, etc. as fuel, blast furnaces in steel plants that reduce iron oxide with coke, and steel plants that burn carbon in pig iron to make steel. Converters, boilers in various manufacturing plants, kilns in cement factories, etc., and even exhaust gas emitted from transportation equipment such as automobiles, ships, and aircraft that use gasoline, heavy oil, light oil, etc. as fuel may be used.
  • Gas containing carbon dioxide may be emitted from human breathing or energy conversion of equipment in closed spaces such as indoor spaces such as submarine research vessels, space stations, buildings, and offices. good. Alternatively, carbon dioxide in the atmosphere may be used.
  • the carbon dioxide separation or recovery method according to the present disclosure is characterized by using a carbon dioxide separation material.
  • the carbon dioxide separation (recovery) method includes a first step in which the gas to be treated is brought into contact with a carbon dioxide separation material to absorb carbon dioxide, and a second step in which carbon dioxide is removed from the carbon dioxide separation material that has absorbed carbon dioxide in the first step. A second step of desorption is included.
  • the carbon dioxide content and temperature in the gas to be treated in the first step are not particularly limited as long as the carbon dioxide separation material can withstand them.
  • the carbon dioxide partial pressure may be 100 kPa or less, and the temperature may be 10°C to 60°C.
  • the operating conditions assumed at thermal power plants, etc. carbon dioxide partial pressure: 7 to 100 kPa, temperature: 40 to 60°C
  • the operating conditions assumed at space stations, etc. carbon dioxide partial pressure: 0 ⁇ 1kPa, temperature: 20 ⁇ 25°C
  • the gas to be treated may be at atmospheric pressure or may be pressurized.
  • the gas to be treated in the first step may contain water vapor. Since the carbon dioxide separation material has excellent adsorption properties for carbon dioxide even if the gas to be treated contains water vapor, the dehumidification operation can be omitted.
  • the method for desorbing carbon dioxide in the second step includes (A) placing the carbon dioxide separation material under reduced pressure conditions and desorbing carbon dioxide (pressure swing method), (B) applying water vapor to the carbon dioxide separation material. and a step of contacting at least one of an inert gas (preferably a gas not containing carbon dioxide (or a gas with a low carbon dioxide content)) to desorb carbon dioxide, and (C) heating the carbon dioxide separation material. , a method including a step of desorbing carbon dioxide (temperature swing method), and the like.
  • the pressure it is preferable to lower the pressure to about 0.2 Pa in terms of the amount of carbon dioxide desorbed and the stability of the carbon dioxide separation material.
  • the carbon dioxide separation material or the container containing it may be heated during the pressure reduction. When heating, the temperature is desirably up to about 60° C., and in this case, it is preferable to lower the pressure to about 0.5 Pa.
  • the method including step (A) is suitable when the gas to be treated has a temperature of 20 to 60° C. and a carbon dioxide partial pressure of 100 kPa or less.
  • step (B) for example, by bringing an inert gas, water vapor, a gas not containing carbon dioxide, etc. into contact with the carbon dioxide separation material, the partial pressure of carbon dioxide can be lowered and carbon dioxide can be desorbed.
  • the gas to be brought into contact with the carbon dioxide separation material may be any gas as long as the carbon dioxide separation material is stable in the gas, preferably an inert gas such as argon, nitrogen, water vapor, etc., and more preferably reduced pressure water vapor.
  • carbon dioxide can be desorbed by increasing the temperature above that during carbon dioxide absorption.
  • the temperature during carbon dioxide absorption may be, for example, 10 to 40°C
  • the temperature during carbon dioxide desorption may be, for example, about 60°C.
  • the supported amount of polyamine (mass%) is expressed as a percentage of the mass of polyamine relative to the mass of carbon dioxide separation material (polyamine carrier) excluding carbon dioxide (here, the total amount of polyamine and support percentage of polyamine).
  • LC-MS Liquid chromatograph mass spectrometer
  • 0.5HA-IP described as “0.5HA-IP-TEPA” has the number of moles of hydroxyacetone (HA) reacted with each molecule of the backbone amine being 0.5 mol, and It shows that the number of moles of acetone reacted with HA per 1 mol of the skeleton amine is such that the total amount is 2 mol (ie, 1.5 mol).
  • a separately weighed predetermined amount of support Q30 (CARiACT Q30 manufactured by Fuji Silysia Chemical Co., Ltd.; specific surface area 100 m 2 /g, average pore diameter 30 nm, pore volume 0.9 mL/g) was placed in an eggplant flask, and the mixture was heated at room temperature. After stirring for 2 hours, the methanol solvent was removed by heating it to 40°C with a rotary evaporator (manufactured by EYELA; N-1000) and reducing the pressure in the system until the pressure became 0.03 MPa. A polyamine carrier containing 25% by mass of 2HA-TEPA was obtained.
  • Removal of the methanol solvent was determined by weighing the total weight of the flask and reagents in advance, and was considered complete when a mass loss of 20 g, which corresponds to the methanol solvent, was confirmed.
  • the prepared polyamine carrier was stored in an eggplant flask with a stopper in a desiccator until it was used for evaluation tests.
  • Example 2 ⁇ A polyamine carrier was obtained in the same manner as in Example 1 except that the content of 2HA-TEPA was changed to 29% by mass.
  • Example 4 ⁇ A polyamine carrier was obtained in the same manner as in Example 3 except that the content of 0.5HA-IP-TEPA was changed to 29% by mass.
  • Example 1 the reaction in the upper stage of the scheme below proceeds in a flask.
  • Example 2 it is thought that the reaction to produce 1,11-diisopropylamino-3,6,9-triazaundecane (IP-TEPA) progressed at the same time as the reaction in the lower part of the scheme below progressed in the flask.
  • IP-TEPA 1,11-diisopropylamino-3,6,9-triazaundecane
  • Example 3 Same as Example 3 except that 18.52 g (0.25 mol) of hydroxyacetone (HA) and 101.64 g (1.75 mol) of acetone were added to the flask containing the reduced catalyst. 25HA-IP-TEPA was obtained (yield 95%). Further, in the same manner as in Example 3, a polyamine carrier containing 25% by mass of 0.25HA-IP-TEPA was obtained.
  • Example 6 A polyamine carrier was obtained in the same manner as in Example 5, except that the content of 0.25HA-IP-TEPA was changed to 29% by mass.
  • Example 7 A polyamine carrier was obtained in the same manner as in Example 5, except that the content of 0.25HA-IP-TEPA was changed to 35% by mass.
  • Example 8 ⁇ A polyamine carrier was obtained in the same manner as in Example 5 except that the content of 0.25HA-IP-TEPA was changed to 40% by mass.
  • Example 9 The content of 0.25HA-IP-TEPA was changed to 50% by mass, and instead of Q30 as a support, MSU-F (mesoporous silica manufactured by Sigma-Aldrich, specific surface area 550 m 2 /g, average pore diameter 20 nm, A polyamine support was obtained in the same manner as in Example 5, except that the pore volume was 2.0 mL/g).
  • MSU-F mesoporous silica manufactured by Sigma-Aldrich, specific surface area 550 m 2 /g, average pore diameter 20 nm
  • a polyamine support was obtained in the same manner as in Example 5, except that the pore volume was 2.0 mL/g).
  • Example 10 A polyamine carrier was obtained in the same manner as in Example 9, except that SIPERNAT (manufactured by Evonik, specific surface area: 380, pore volume: 1.1 mL/g) was used as the support instead of Q30.
  • SIPERNAT manufactured by Evonik, specific surface area: 380, pore volume: 1.1 mL/g
  • a flask containing the reduced catalyst was charged with 202.34 g (1.0 mol) of spermine as a backbone amine, and 18.52 g (0.25 mol) of hydroxyacetone (HA) as a starting material for the isopropyl group N.
  • 0.25HA-IP-Spermine was obtained in the same manner as in Example 5, except that 101.64 g (1.75 mol) of acetone and 101.64 g (1.75 mol) of acetone were added (yield: 95%). Further, in the same manner as in Example 6, a polyamine carrier containing 29% by mass of 0.25HA-IP-Spermine was obtained.
  • IP-polyamine Synthesis of diisopropylated tetraethylenepentamine (also known as 1,11-diisopropylamino-3,6,9-triazaundecane) (IP-TEPA)
  • IP-TEPA was obtained in the same manner as in Example 1, except that only 127.8 g (2.3 mol) of acetone was added as a starting material for the isopropyl group N to the flask containing the reduced catalyst (yield 95%). Further, in the same manner as in Example 1, a polyamine carrier containing 25% by mass of IP-TEPA was obtained. ⁇ Comparative Example 8 ⁇ A polyamine carrier was obtained in the same manner as in Example 7 except that the content of IP-TEPA was changed to 29% by mass.
  • Table 1 summarizes the composition of the polyamine carrier of each Example and Comparative Example.
  • the sample was pretreated by evacuation for 6 hours, and the sample temperature was further maintained at either 27°C, 40°C, or 60°C. Carbon dioxide was introduced little by little into the sample tube, a pressure range up to 100 kPa was specified, and the relationship between the partial pressure of carbon dioxide and the absorption amount at each measurement temperature was obtained.
  • the amount of carbon dioxide desorbed (recovered) by reduced pressure was taken as the amount of carbon dioxide absorbed when using the polyamine support after desorption. This is because the desorbed amount of carbon dioxide is subsequently absorbed.
  • carbon dioxide was introduced again using the method described above, and the isotherm was measured.
  • the amount of carbon dioxide absorbed was measured at 100 kPa or 13 kPa.
  • the degree of vacuum achieved when the pressure was reduced for 5 minutes was 0.5 Pa
  • the degree of vacuum achieved when the pressure was reduced for 20 minutes was 0.2 Pa.
  • the unit of carbon dioxide absorption amount in the table is the absorption amount (g) per 1 kg of polyamine carrier.
  • the absorption amount (mol/kg) shown in (A) indicates the absorption amount (first adsorption in Figures 1 to 6) of a fresh sample at each temperature and each pressure, and the absorption amount (mol/kg) shown in (B) by reduced pressure (
  • the amount (recovered) is the value obtained from the amount absorbed under the same conditions (Regeneration in Figures 1 to 6) using a polyamine support that was depressurized with a vacuum pump for 20 minutes, and the amount shown in (B) is the amount of absorption and depressurization. This corresponds to the amount absorbed and the amount desorbed (recovered) when desorption is repeated. In (B), the same operation was repeated three times and it was confirmed that similar values were obtained.
  • a reaction tube was filled with 1 g of the polyamine support of Example 6 (0.25HA-IP-TEPA (29)/Q30) or Example 12 (0.25HA-IP-Spermine (29)/Q30), and the mixture was placed in an argon stream. (30 cm 3 ⁇ min ⁇ 1 ), and after pretreatment of drying and degassing at 80°C for 6 hours, the reaction tube was kept at 60°C. Next, the introduced gas was switched to H 2 O/Ar mixed gas (total flow rate: 30 cm 3 ⁇ min ⁇ 1 ), and water was absorbed into the polyamine support.
  • the introduced gas was switched to argon (30 cm 3 ⁇ min ⁇ 1 ), and the change over time in the outlet gas composition was subsequently measured using a gas chromatograph.
  • argon gas was introduced instead of reducing the pressure using a vacuum pump, thereby lowering the partial pressure of carbon dioxide in the system and desorbing carbon dioxide.
  • the amount of absorption was determined from the integration of the time from the start of absorption until reaching saturation and the change in outlet concentration.
  • the amount of desorption was determined from the integration of the time from the time of switching to argon gas until carbon dioxide was almost no longer detected from the outlet side and the change in outlet concentration.
  • Table 5 shows the results.
  • the evaluation under dry conditions was performed in the same manner as Evaluation Test 1, except that the amount of carbon dioxide absorbed was measured at 60°C and 13kPa, and the amount desorbed at 60°C, and the results were measured using ASAP2020 described above. It is.
  • Desorption by heating is performed by passing a mixed gas containing carbon dioxide (CO 2 (13%) - N 2 balance) at 60 °C using a fixed bed flow test device, and after the amount of carbon dioxide absorbed reaches saturation. Then, argon gas was introduced, and the temperature was maintained at 60° C. for 30 minutes, and the amount of carbon dioxide released during that time was measured. Table 6 shows the results.
  • the carbon dioxide separation material according to the present disclosure increases the amount of carbon dioxide absorbed and can separate and recover a large amount of carbon dioxide in a short time under reduced pressure, so it is efficient, practical, and suitable for reuse.
  • the carbon dioxide separation material according to the present disclosure can separate and recover carbon dioxide using either the pressure swing method or the temperature swing method in the carbon dioxide absorption and desorption process, and can be used in various usage environments. It is possible to select appropriate carbon dioxide absorption and desorption steps.
  • the carbon dioxide separation material according to the present disclosure does not reduce its absorption, desorption, and reabsorption performance even when water vapor coexists, and does not require a dehumidification process, so it is useful for building energy-saving systems and equipment. Cost reduction is possible through miniaturization.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

This carbon dioxide separation material contains a polyamine. The polyamine contains an isopropyl polyamine component which has a hydrogen atom or a functional group bonded to a nitrogen atom and has two or more isopropyl groups bonded to different nitrogen atoms in the molecule. At least one of the isopropyl groups is a hydroxyl group-containing hydroxyisopropyl group. The hydroxyl group in the hydroxyisopropyl group is bonded to a primary carbon atom. The isopropyl group not having a hydroxyl group is an unsubstituted isopropyl group.

Description

二酸化炭素分離材、二酸化炭素を分離又は回収する方法、および、二酸化炭素分離材の製造方法Carbon dioxide separation material, method for separating or recovering carbon dioxide, and method for manufacturing carbon dioxide separation material
 本発明は、二酸化炭素分離材、二酸化炭素を分離又は回収する方法、および、二酸化炭素分離材の製造方法に関する。 The present invention relates to a carbon dioxide separation material, a method for separating or recovering carbon dioxide, and a method for manufacturing a carbon dioxide separation material.
 特許文献1は、窒素原子上に少なくとも2つイソプロピル基を有するポリアミンを支持体に担持したポリアミン担持体を含有する二酸化炭素分離材及び当該二酸化炭素分離材を用いた二酸化炭素の分離又は回収方法を提案している。 Patent Document 1 discloses a carbon dioxide separation material containing a polyamine carrier in which a polyamine having at least two isopropyl groups on a nitrogen atom is supported on a support, and a method for separating or recovering carbon dioxide using the carbon dioxide separation material. is suggesting.
 特許文献2は、水素および触媒の存在下でのカルボニル系化合物とヒドロキシルアルキルアミンとの反応を含む、アルキルアルカノールアミン類の調製方法を提案している。 Patent Document 2 proposes a method for preparing alkylalkanolamines that involves the reaction of a carbonyl compound and a hydroxyalkylamine in the presence of hydrogen and a catalyst.
 特許文献3は、アミン化合物が固定化された多孔質支持体をコアとして有し、二酸化硫黄による不活性化に耐性を有するアミン層をシェルとして有し、アミンの酸化分解を抑制し、酸素及び二酸化硫黄に耐性のあるキレート剤を含むコアシェル型アミン系二酸化炭素吸着剤を提案している。 Patent Document 3 has a porous support on which an amine compound is immobilized as a core, and has an amine layer as a shell that is resistant to inactivation by sulfur dioxide, suppresses oxidative decomposition of the amine, and suppresses oxygen and We have proposed a core-shell type amine-based carbon dioxide adsorbent containing a chelating agent that is resistant to sulfur dioxide.
 特許文献4は、変性ポリアミンおよび固体支持体を含み、空気を含むガス混合物から二酸化炭素を吸着するための再生可能な固体収着剤を提案している。変性ポリアミンは、アミンとエポキシドとの反応生成物である。 US Pat. No. 5,001,202 proposes a renewable solid sorbent for adsorbing carbon dioxide from gas mixtures containing air, comprising a modified polyamine and a solid support. Modified polyamines are reaction products of amines and epoxides.
国際公開第2014/208712号International Publication No. 2014/208712 特表2012-530771号公報(特許第5678050号)Special Publication No. 2012-530771 (Patent No. 5678050) 米国特許第10654025号明細書US Patent No. 10654025 米国公開特許2019/0168185号公報US Published Patent No. 2019/0168185
 上述のように二酸化炭素を吸着するための複数の材料が開発されているが、製造コストの低減と性能の更なる向上が求められている。例えば、支持体にポリアミンを担持した二酸化炭素分離材の安定性を高め、ポリアミンの揮散による減少を抑制することが望まれている。 As mentioned above, multiple materials for adsorbing carbon dioxide have been developed, but there is a need to reduce manufacturing costs and further improve performance. For example, it is desired to improve the stability of a carbon dioxide separation material in which a polyamine is supported on a support and to suppress the decrease due to volatilization of the polyamine.
 本発明の一側面は、ポリアミンを含み、前記ポリアミンは、窒素原子に結合する水素原子または官能基を有するとともに分子内のそれぞれ別の窒素原子に結合する2つ以上のイソプロピル基を有するイソプロピルポリアミン成分を含み、少なくとも1つの前記イソプロピル基は、ヒドロキシ基を有するヒドロキシイソプロピル基であり、前記ヒドロキシイソプロピル基においてヒドロキシ基は1級炭素原子に結合しており、ヒドロキシ基を有さない前記イソプロピル基は非置換イソプロピル基である、二酸化炭素分離材に関する。 One aspect of the present invention includes a polyamine, and the polyamine is an isopropyl polyamine component having a hydrogen atom or a functional group bonded to a nitrogen atom and two or more isopropyl groups bonded to different nitrogen atoms in the molecule. , the at least one isopropyl group is a hydroxyisopropyl group having a hydroxy group, the hydroxy group is bonded to a primary carbon atom in the hydroxyisopropyl group, and the isopropyl group not having a hydroxy group is a non-hydroxy group. It relates to a carbon dioxide separation material that is a substituted isopropyl group.
 本発明の別の側面は、処理対象のガスを上記二酸化炭素分離材に接触させ、二酸化炭素を吸収する第1工程、および前記第1工程において二酸化炭素を吸収した前記二酸化炭素分離材から二酸化炭素を脱離させる第2工程、を含む二酸化炭素を分離又は回収する方法であって、前記第2工程が(A)前記二酸化炭素分離材を減圧条件下におき、二酸化炭素を脱離させる工程(圧力スィング法)、(B)前記二酸化炭素分離材に水蒸気および不活性ガスの少なくとも一方(好ましくは二酸化炭素を含まないガス)を接触させ、二酸化炭素を脱離させる工程、及び(C)前記二酸化炭素分離材を加熱し、二酸化炭素を脱離させる工程(温度スィング法)のいずれか一つ以上を含む、二酸化炭素を分離又は回収する方法に関する。 Another aspect of the present invention includes a first step of bringing a gas to be treated into contact with the carbon dioxide separation material to absorb carbon dioxide, and a step of bringing carbon dioxide from the carbon dioxide separation material that has absorbed carbon dioxide in the first step. A method for separating or recovering carbon dioxide, the second step comprising: (A) placing the carbon dioxide separation material under reduced pressure conditions and desorbing carbon dioxide; (pressure swing method), (B) a step of contacting the carbon dioxide separation material with at least one of water vapor and an inert gas (preferably a gas not containing carbon dioxide) and desorbing carbon dioxide, and (C) the step of desorbing the carbon dioxide. The present invention relates to a method for separating or recovering carbon dioxide, which includes any one or more of the steps of heating a carbon separation material and desorbing carbon dioxide (temperature swing method).
 本発明の更に別の側面は、ポリアミンを準備する工程と、前記ポリアミンを支持体と接触させ、前記ポリアミンと、前記ポリアミンを担持する前記支持体と、を含むポリアミン担持体を得る工程と、を具備し、前記ポリアミンは、窒素原子に結合する水素原子または官能基を有するとともに分子内のそれぞれ別の窒素原子に結合する2つ以上のイソプロピル基を有するイソプロピルポリアミン成分を含み、少なくとも1つの前記イソプロピル基は、ヒドロキシ基を有するヒドロキシイソプロピル基であり、前記ヒドロキシイソプロピル基においてヒドロキシ基は1級炭素原子に結合しており、ヒドロキシ基を有さない前記イソプロピル基は非置換イソプロピル基である、二酸化炭素分離材の製造方法に関する。 Yet another aspect of the present invention includes the steps of: preparing a polyamine; and contacting the polyamine with a support to obtain a polyamine carrier comprising the polyamine and the support supporting the polyamine. The polyamine includes an isopropyl polyamine component having a hydrogen atom or a functional group bonded to a nitrogen atom and two or more isopropyl groups bonded to different nitrogen atoms in the molecule, and at least one of the isopropyl The group is a hydroxyisopropyl group having a hydroxy group, in the hydroxyisopropyl group, the hydroxy group is bonded to a primary carbon atom, and the isopropyl group not having a hydroxy group is an unsubstituted isopropyl group, carbon dioxide This invention relates to a method for producing a separation material.
 本開示に係るポリアミンは、生成反応における反応物の制御が容易であり、このポリアミンを担持した二酸化炭素分離材は安定性が高く、二酸化炭素の吸脱着性能に優れている。よって、低コストで高性能な二酸化炭素分離材を提供することができる。また、本開示に係る二酸化炭素分離材を用いることで、高効率で二酸化炭素を分離又は回収することができる。 The polyamine according to the present disclosure allows easy control of reactants in the production reaction, and the carbon dioxide separation material supporting this polyamine has high stability and excellent carbon dioxide adsorption/desorption performance. Therefore, it is possible to provide a carbon dioxide separation material with low cost and high performance. Further, by using the carbon dioxide separation material according to the present disclosure, carbon dioxide can be separated or recovered with high efficiency.
 本発明の新規な特徴を添付の請求の範囲に記述するが、本発明は、構成および内容の両方に関し、本発明の他の目的および特徴と併せ、図面を照合した以下の詳細な説明によりさらによく理解されるであろう。 While the novel features of the invention are set forth in the appended claims, the invention is further understood by the following detailed description, taken together with the drawings, both as to structure and content, as well as other objects and features of the invention. It will be well understood.
実施例5のポリアミン担持体による二酸化炭素の吸脱着挙動を示す図である。FIG. 7 is a diagram showing adsorption/desorption behavior of carbon dioxide by the polyamine carrier of Example 5. 実施例6のポリアミン担持体による二酸化炭素の吸脱着挙動を示す図である。FIG. 7 is a diagram showing adsorption/desorption behavior of carbon dioxide by the polyamine carrier of Example 6. 比較例1のポリアミン担持体による二酸化炭素の吸脱着挙動を示す図である。FIG. 3 is a diagram showing adsorption/desorption behavior of carbon dioxide by the polyamine carrier of Comparative Example 1. 比較例2のポリアミン担持体による二酸化炭素の吸脱着挙動を示す図である。FIG. 3 is a diagram showing adsorption/desorption behavior of carbon dioxide by the polyamine carrier of Comparative Example 2. 比較例7のポリアミン担持体による二酸化炭素の吸脱着挙動を示す図である。FIG. 7 is a diagram showing adsorption/desorption behavior of carbon dioxide by the polyamine carrier of Comparative Example 7. 比較例8のポリアミン担持体による二酸化炭素の吸脱着挙動を示す図である。FIG. 7 is a diagram showing adsorption/desorption behavior of carbon dioxide by the polyamine carrier of Comparative Example 8.
 以下、本発明の実施形態に係る二酸化炭素分離材について説明するが、二酸化炭素分離材は、以下の実施形態に限定されるものではない。以下の説明では、具体的な数値や材料を例示する場合があるが、本開示の効果が得られる限り、他の数値や材料を適用してもよい。この明細書において、「数値A~数値B」という記載は、数値Aおよび数値Bを含み、「数値A以上で数値B以下」と読み替えることが可能である。以下の説明において、特定の物性や条件などに関する数値の下限と上限とを例示した場合、下限が上限以上とならない限り、例示した下限のいずれかと例示した上限のいずれかを任意に組み合わせることができる。複数の材料が例示される場合、その中から1種を選択して単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Hereinafter, a carbon dioxide separation material according to an embodiment of the present invention will be described, but the carbon dioxide separation material is not limited to the following embodiments. In the following description, specific numerical values and materials may be illustrated, but other numerical values and materials may be applied as long as the effects of the present disclosure can be obtained. In this specification, the expression "numerical value A to numerical value B" includes numerical value A and numerical value B, and can be read as "more than or equal to numerical value A and less than or equal to numerical value B." In the following explanation, when lower and upper limits of numerical values related to specific physical properties or conditions are illustrated, any of the illustrated lower limits and any of the illustrated upper limits can be arbitrarily combined as long as the lower limit is not greater than the upper limit. . When a plurality of materials are exemplified, one type may be selected from them and used alone, or two or more types may be used in combination.
 二酸化炭素分離材は、ポリアミンを含み、ポリアミンは、少なくともイソプロピルポリアミン成分を含む。 The carbon dioxide separation material contains a polyamine, and the polyamine contains at least an isopropyl polyamine component.
 ここで、イソプロピルポリアミン成分は、窒素原子に結合する水素原子または官能基を有するとともに分子内のそれぞれ別の窒素原子に結合する2つ以上のイソプロピル基を有する。以下、このようなイソプロピルポリアミン成分を、「ポリアミン成分IP」とも称する。なお、窒素原子に結合する官能基としては、水酸基(N-OH)、アルキル基(N-R(Rはメチル基、エチル基等のアルキル基))等が例示できる。 Here, the isopropyl polyamine component has a hydrogen atom or a functional group bonded to a nitrogen atom, and also has two or more isopropyl groups bonded to different nitrogen atoms within the molecule. Hereinafter, such an isopropyl polyamine component will also be referred to as "polyamine component IP". Examples of the functional group bonded to the nitrogen atom include a hydroxyl group (N--OH) and an alkyl group (NR (R is an alkyl group such as a methyl group and an ethyl group)).
 ポリアミン成分IPは、分子内に複数の窒素原子を含む。複数の窒素原子の2つ以上がそれぞれ水素原子と結合している。複数の窒素原子の全てがそれぞれ水素原子と結合していてもよい。イソプロピル基の導入により、NとCOとの化学的結合が緩やかになり、少ないエネルギー(例えば低温)でCO2が脱離できるようになる。 Polyamine component IP contains multiple nitrogen atoms in the molecule. Two or more of the plurality of nitrogen atoms are each bonded to a hydrogen atom. All of the plurality of nitrogen atoms may each be bonded to a hydrogen atom. By introducing the isopropyl group, the chemical bond between N and CO 2 becomes loose, and CO 2 can be eliminated with less energy (for example, at low temperature).
 水素原子と結合する窒素原子は、1つの水素原子と結合する2級アミノ基を形成していてもよく、2つの水素原子と結合する1級アミノ基を形成していてもよい。 A nitrogen atom that bonds with a hydrogen atom may form a secondary amino group that bonds with one hydrogen atom, or may form a primary amino group that bonds with two hydrogen atoms.
 ここで、単に「イソプロピル基」と称する場合、ヒドロキシ基を有する「ヒドロキシイソプロピル基」およびヒドロキシ基を有さない「非置換イソプロピル基」の両方の総称として「イソプロピル基」を用いる。よって、「ポリアミン成分IP」は、「ヒドロキシイソプロピル基」および「非置換イソプロピル基」の少なくとも一方を合計で2つ以上有するポリアミン成分である。 Here, when simply referring to an "isopropyl group", the "isopropyl group" is used as a general term for both a "hydroxyisopropyl group" having a hydroxy group and an "unsubstituted isopropyl group" not having a hydroxy group. Therefore, "polyamine component IP" is a polyamine component having a total of two or more at least one of "hydroxyisopropyl group" and "unsubstituted isopropyl group."
 ポリアミン成分IPは、単一のポリアミン成分のみを含んでもよく、複数のポリアミン成分を含んでもよい。すなわち、ポリアミン成分IPは、複数のポリアミン成分の混合物でもよく、精製された単一のポリアミン成分のみを含んでもよい。ポリアミン成分IPは、非置換イソプロピル基を有するポリアミン成分を含んでもよいし、含まなくてもよい。 The polyamine component IP may contain only a single polyamine component, or may contain multiple polyamine components. That is, the polyamine component IP may be a mixture of a plurality of polyamine components, or may contain only a single purified polyamine component. The polyamine component IP may or may not contain a polyamine component having an unsubstituted isopropyl group.
 ポリアミン成分IPは、直鎖構造でもよく、分岐鎖構造でもよく、窒素原子を含む環構造を有してもよい。中でも直鎖構造のポリアミンはCO吸着サイトが多い点で望ましい。 The polyamine component IP may have a linear structure, a branched structure, or a ring structure containing a nitrogen atom. Among them, polyamines with a linear structure are preferable because they have many CO 2 adsorption sites.
 以下、窒素原子に結合するイソプロピル基を「イソプロピル基N」と称する。ポリアミン成分IPは、分子内に有する2つ以上のイソプロピル基Nのうち、少なくとも1つがヒドロキシイソプロピル基である成分を含む。 Hereinafter, the isopropyl group bonded to the nitrogen atom will be referred to as "isopropyl group N." The polyamine component IP includes a component in which at least one of the two or more isopropyl groups N in the molecule is a hydroxyisopropyl group.
 ポリアミン成分IPが分子内に有する2つ以上のイソプロピル基Nの全てがヒドロキシイソプロピル基であってもよい。以下、分子内の2つ以上のイソプロピル基Nの全てがヒドロキシイソプロピル基であるポリアミン成分IPを「HA-ポリアミン成分(もしくは第1ポリアミン成分)」と称する。すなわち、第1ポリアミン成分は、非置換イソプロピル基を有さず、かつそれぞれ別の窒素原子に結合する2つ以上のヒドロキシイソプロピル基を有する。 All of the two or more isopropyl groups N that the polyamine component IP has in the molecule may be hydroxyisopropyl groups. Hereinafter, the polyamine component IP in which all of the two or more isopropyl groups N in the molecule are hydroxyisopropyl groups will be referred to as "HA-polyamine component (or first polyamine component)". That is, the first polyamine component has no unsubstituted isopropyl groups and has two or more hydroxyisopropyl groups each bonded to a different nitrogen atom.
 以下に、HA-ポリアミン成分の一例として、骨格アミンであるテトラエチレンペンタミン(TEPA)に、TEPAの1mol当たり2.0molのヒドロキシイソプロピル基を結合させて生成させたポリアミン成分(以下、「2.0HA-TEPA」と称する。)の構造を示す。 Below, as an example of the HA-polyamine component, a polyamine component (hereinafter referred to as "2. 0HA-TEPA") is shown.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 2.0HA-TEPAのように、HA-ポリアミン成分は、それぞれ別の2級アミンを構成する窒素原子に結合する2つのヒドロキシイソプロピル基を有してよい。ヒドロキシイソプロピル基が2級アミンを構成する窒素原子に結合しているため、全ての窒素原子にそれぞれ水素原子が結合している。ヒドロキシイソプロピル基においてヒドロキシ基は1級炭素原子に結合しており、窒素原子に対するα位置の炭素原子にメチル基が結合している。メチル基は立体障害によってCOの脱離速度を向上させる作用を有すると考えられる。 Like 2.0HA-TEPA, the HA-polyamine component may have two hydroxyisopropyl groups each attached to a nitrogen atom that constitutes a separate secondary amine. Since the hydroxyisopropyl group is bonded to the nitrogen atoms constituting the secondary amine, hydrogen atoms are bonded to all nitrogen atoms. In the hydroxyisopropyl group, the hydroxy group is bonded to the primary carbon atom, and the methyl group is bonded to the carbon atom at the α position relative to the nitrogen atom. It is thought that the methyl group has the effect of improving the rate of CO 2 elimination due to steric hindrance.
 ポリアミン成分IPが分子内に有する2つ以上のイソプロピル基Nのうち、1つ以上がヒドロキシ基を有するヒドロキシイソプロピル基であり、残りの1つ以上がヒドロキシ基を有さない非置換イソプロピル基(-CH(CH3)CH3)であってもよい。以下、このようなハイブリッド型のポリアミン分子を「HA-IP-ポリアミン成分(もしくは第2ポリアミン成分)」と称する。すなわち、第2ポリアミン成分は、それぞれ別の窒素原子に結合する1つ以上のヒドロキシイソプロピル基と1つ以上の非置換イソプロピル基とを有する。 Among the two or more isopropyl groups N that the polyamine component IP has in the molecule, one or more is a hydroxyisopropyl group having a hydroxy group, and the remaining one or more is an unsubstituted isopropyl group having no hydroxy group (- CH( CH3 ) CH3 ) may be used. Hereinafter, such a hybrid polyamine molecule will be referred to as "HA-IP-polyamine component (or second polyamine component)." That is, the second polyamine component has one or more hydroxyisopropyl groups and one or more unsubstituted isopropyl groups each bonded to a different nitrogen atom.
 HA-IP-ポリアミン成分を含むポリアミン成分IPの一例として、骨格アミンであるテトラエチレンペンタミン(TEPA)に、TEPAの1mol当たり0.25mol(または0.5mol)のヒドロキシアセトンと1.75mol(または1.5mol)のアセトンを反応させて生成させたポリアミン成分IP(以下、「0.25HA-IP-TEPA」、「0.50HA-IP-TEPA」と称する。)について説明する。このような反応で生成するポリアミン成分IPは、HA-IP-ポリアミン成分と後述のIP-ポリアミン成分(もしくは「IP-TEPA」)とを主成分として含み、HA-ポリアミン成分(2.0HA-TEPA)を含み得る複数のポリアミン成分の混合物である。 HA-IP - As an example of a polyamine component IP containing a polyamine component, tetraethylenepentamine (TEPA), which is a backbone amine, is mixed with 0.25 mol (or 0.5 mol) of hydroxyacetone and 1.75 mol (or The polyamine component IP (hereinafter referred to as "0.25HA-IP-TEPA" and "0.50HA-IP-TEPA") produced by reacting 1.5 mol) of acetone will be explained. The polyamine component IP produced by such a reaction mainly contains an HA-IP-polyamine component and an IP-polyamine component (or "IP-TEPA"), which will be described later. ) is a mixture of multiple polyamine components.
 以下に示す一例のHA-IP-ポリアミン成分(以下、「1.0HA-IP-TEPA」と称する。)は、それぞれ別の2級アミンを構成する窒素原子に結合する1つのイソプロピル基と1つのヒドロキシイソプロピル基とを有する。イソプロピル基およびヒドロキシイソプロピル基がそれぞれ2級アミンを構成する窒素原子に結合しているため、全ての窒素原子にそれぞれ水素原子が結合している。ヒドロキシイソプロピル基においてヒドロキシ基は1級炭素原子に結合しており、窒素原子に対するα位置の炭素原子にメチル基が結合している。0.25HA-IP-TEPAと0.50HA-IP-TEPAの違いは、HA-IP-ポリアミン成分とIP-ポリアミン成分とHA-ポリアミン成分の混合比の違いということができる。 An example of the HA-IP-polyamine component shown below (hereinafter referred to as "1.0HA-IP-TEPA") has one isopropyl group and one isopropyl group bonded to nitrogen atoms constituting separate secondary amines. It has a hydroxyisopropyl group. Since the isopropyl group and the hydroxyisopropyl group are each bonded to a nitrogen atom constituting the secondary amine, a hydrogen atom is bonded to each nitrogen atom. In the hydroxyisopropyl group, the hydroxy group is bonded to the primary carbon atom, and the methyl group is bonded to the carbon atom at the α position relative to the nitrogen atom. The difference between 0.25HA-IP-TEPA and 0.50HA-IP-TEPA can be said to be the difference in the mixing ratio of the HA-IP-polyamine component, the IP-polyamine component, and the HA-polyamine component.
 次に、HA-IP-ポリアミン成分を含むポリアミン成分IPの別の例として、骨格アミンである1,11-アミノ-4,7-ジアザデカン(DEDP)に、DEDPの1mol当たり0.25molのヒドロキシアセトンと1.75molのアセトンを反応させて生成させたポリアミン成分(以下、「0.25HA-IP-DEDP」と称する。)について説明する。このような反応で生成するポリアミン成分IPも複数のポリアミン成分の混合物である。ここでも、以下に示す一例のHA-IP-ポリアミン成分(以下、「1.0HA-IP-DEDP」と称する。)は、それぞれ別の2級アミンを構成する窒素原子に結合する1つのイソプロピル基と1つのヒドロキシイソプロピル基とを有し、全ての窒素原子にそれぞれ水素原子が結合している。ヒドロキシ基は1級炭素原子に結合しており、窒素原子に対するα位置の炭素原子にメチル基が結合している。 Next, as another example of a polyamine component IP containing a HA-IP-polyamine component, 1,11-amino-4,7-diazadecane (DEDP), which is a backbone amine, is mixed with 0.25 mol of hydroxyacetone per 1 mol of DEDP. A polyamine component (hereinafter referred to as "0.25HA-IP-DEDP") produced by reacting 0.25HA-IP-DEDP with 1.75 mol of acetone will be explained. The polyamine component IP produced by such a reaction is also a mixture of a plurality of polyamine components. Again, the example HA-IP-polyamine component shown below (hereinafter referred to as "1.0HA-IP-DEDP") has one isopropyl group bonded to the nitrogen atom constituting each separate secondary amine. and one hydroxyisopropyl group, and hydrogen atoms are bonded to all nitrogen atoms. The hydroxy group is bonded to the primary carbon atom, and the methyl group is bonded to the carbon atom in the alpha position relative to the nitrogen atom.
 次に、HA-IP-ポリアミン成分を含むポリアミン成分IPの更に別の例として、骨格アミンであるスペルミン(Spermine)に、Spermineの1mol当たり0.25molのヒドロキシアセトンと1.75molのアセトンを反応させて生成させたポリアミン成分(以下、「0.25HA-IP-Spermine」と称する。)について説明する。このような反応で生成するポリアミン成分IPも複数のポリアミン成分の混合物である。ここでも、以下に示す一例のHA-IP-ポリアミン成分(以下、「1.0HA-IP-Spermine」と称する。)は、それぞれ別の2級アミンを構成する窒素原子に結合する1つのイソプロピル基と1つのヒドロキシイソプロピル基とを有し、全ての窒素原子にそれぞれ水素原子が結合している。ヒドロキシ基は1級炭素原子に結合しており、窒素原子に対するα位置の炭素原子にメチル基が結合している。 Next, as yet another example of the polyamine component IP containing the HA-IP-polyamine component, 0.25 mol of hydroxyacetone and 1.75 mol of acetone were reacted with 0.25 mol of hydroxyacetone and 1.75 mol of acetone per 1 mol of Spermine to the skeleton amine. The polyamine component (hereinafter referred to as "0.25HA-IP-Spermine") produced by this method will be explained. The polyamine component IP produced by such a reaction is also a mixture of a plurality of polyamine components. Again, the example HA-IP-polyamine component shown below (hereinafter referred to as "1.0HA-IP-Spermine") has one isopropyl group bonded to the nitrogen atom constituting each separate secondary amine. and one hydroxyisopropyl group, and hydrogen atoms are bonded to all nitrogen atoms. The hydroxy group is bonded to the primary carbon atom, and the methyl group is bonded to the carbon atom in the alpha position relative to the nitrogen atom.
 ポリアミン成分IPが複数のポリアミン成分を含む場合、分子内に含まれる2つ以上のイソプロピル基Nの全てが非置換イソプロピル基(-CH(CH3)CH3)であるポリアミン成分IPを含んでもよい。以下、このようなポリアミン成分IPを「IP-ポリアミン成分(もしくは第3ポリアミン成分)」と称する。すなわち、第3ポリアミン成分は、ヒドロキシイソプロピル基を有さず、かつそれぞれ別の窒素原子に結合する2つ以上の非置換イソプロピル基を有する。 When the polyamine component IP includes a plurality of polyamine components, it may include a polyamine component IP in which all of the two or more isopropyl groups N contained in the molecule are unsubstituted isopropyl groups (-CH(CH 3 ) CH 3 ). . Hereinafter, such polyamine component IP will be referred to as "IP-polyamine component (or third polyamine component)". That is, the third polyamine component does not have a hydroxyisopropyl group and has two or more unsubstituted isopropyl groups each bonded to a different nitrogen atom.
 以下に、IP-ポリアミン成分の一例として、骨格ポリアミンであるテトラエチレンペンタミン(TEPA)に、TEPAの1mol当たり2.0molのアセトンを反応させて生成させたポリアミン成分(以下、「IP-TEPA」と称する。)の構造を示す。 Below, as an example of an IP-polyamine component, a polyamine component (hereinafter referred to as "IP-TEPA") is produced by reacting tetraethylenepentamine (TEPA), which is a backbone polyamine, with 2.0 mol of acetone per 1 mol of TEPA. ) is shown below.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 IP-TEPAのように、IP-ポリアミン成分は、それぞれ別の2級アミンを構成する窒素原子に結合する2つのイソプロピル基を有してよい。イソプロピル基はそれぞれ2級アミンを構成する窒素原子に結合しているため、全ての窒素原子にそれぞれ水素原子が結合している。ここでも、窒素原子に対するα位置の炭素原子にメチル基が結合している。 Like IP-TEPA, the IP-polyamine component may have two isopropyl groups bonded to nitrogen atoms, each forming a separate secondary amine. Since each isopropyl group is bonded to a nitrogen atom constituting the secondary amine, a hydrogen atom is bonded to each nitrogen atom. Again, a methyl group is bonded to the carbon atom in the alpha position relative to the nitrogen atom.
 以上のように、ポリアミン成分IPは、例えば、第1ポリアミン成分(HA-ポリアミン成分)および第2ポリアミン成分(HA-IP-ポリアミン成分)からなる群より選択される少なくとも1種を含み、任意成分として、更に、第3ポリアミン成分(IP-ポリアミン成分)を含んでもよい。 As described above, the polyamine component IP includes, for example, at least one selected from the group consisting of the first polyamine component (HA-polyamine component) and the second polyamine component (HA-IP-polyamine component), and optional components. In addition, it may further include a third polyamine component (IP-polyamine component).
 中でも、第2ポリアミン成分(HA-IP-ポリアミン成分)と第3ポリアミン成分(IP-ポリアミン成分)とを必須成分として含む混合物としてのポリアミン成分IPは、二酸化炭素の吸脱着性能が高く、このポリアミン成分IPを担持した二酸化炭素分離材は安定性に優れている。このとき、第1ポリアミン成分(HA-ポリアミン成分)は必ずしも含まなくてもよい。 Among them, the polyamine component IP, which is a mixture containing a second polyamine component (HA-IP-polyamine component) and a third polyamine component (IP-polyamine component) as essential components, has high carbon dioxide adsorption/desorption performance, and this polyamine component The carbon dioxide separation material supporting component IP has excellent stability. At this time, the first polyamine component (HA-polyamine component) does not necessarily need to be included.
 ポリアミン成分IPに占める第1ポリアミン成分(HA-ポリアミン成分)の含有量は25モル%以下が望ましく、第2ポリアミン成分(HA-IP-ポリアミン成分)の含有量は10モル%以上50モル%以下が望ましく、第3ポリアミン成分(IP-ポリアミン成分)の含有量は50モル%以上90モル%以下が望ましい。 The content of the first polyamine component (HA-polyamine component) in the polyamine component IP is preferably 25 mol% or less, and the content of the second polyamine component (HA-IP-polyamine component) is 10 mol% or more and 50 mol% or less. The content of the third polyamine component (IP-polyamine component) is preferably 50 mol% or more and 90 mol% or less.
 HA-ポリアミン成分およびHA-IP-ポリアミン成分は、ポリアミン成分IPを担持した二酸化炭素分離材の安定性を高める。HA-ポリアミン成分およびHA-IP-ポリアミン成分の少なくとも一方を含むポリアミンは、IP-ポリアミン成分のみを含むポリアミンよりも蒸気圧が低く、揮散が抑制されるため、長期的使用に適する。特に、ポリアミン成分IPとしてHA-ポリアミン成分を含むポリアミンを担持した二酸化炭素分離材は安定性に優れるとともに二酸化炭素の吸脱着性能に優れている。 The HA-polyamine component and the HA-IP-polyamine component enhance the stability of the carbon dioxide separation material supporting the polyamine component IP. A polyamine containing at least one of an HA-polyamine component and a HA-IP-polyamine component has a lower vapor pressure and less volatilization than a polyamine containing only an IP-polyamine component, and is therefore suitable for long-term use. In particular, a carbon dioxide separation material supporting a polyamine containing an HA-polyamine component as the polyamine component IP has excellent stability and carbon dioxide adsorption/desorption performance.
 例えば、60℃でのIP-TEPAの蒸気圧は1.80kPaであるが、0.5HA-IP-TEPAの蒸気圧は1.47kPaにまで低減される。 For example, the vapor pressure of IP-TEPA at 60°C is 1.80 kPa, but the vapor pressure of 0.5HA-IP-TEPA is reduced to 1.47 kPa.
 イソプロピル基Nは、2級アミンを構成する窒素原子または3級アミンを構成する窒素原子に結合し得るが、二酸化炭素の脱離性が高まる点で、イソプロピル基Nが2級アミンを構成する窒素原子に結合していることが望ましい。 The isopropyl group N can bond to the nitrogen atom constituting the secondary amine or the nitrogen atom constituting the tertiary amine, but in terms of increasing the ability to eliminate carbon dioxide, the isopropyl group N It is desirable that it be bonded to an atom.
 イソプロピル基Nは、ポリアミン分子の末端に結合していることが望ましい。例えば、直鎖構造のポリアミン分子の場合、2つの末端にイソプロピル基Nが結合していてもよい。分岐鎖構造のポリアミン分子の場合、全ての分岐鎖の末端にイソプロピル基Nが結合していてもよい。 It is desirable that the isopropyl group N is bonded to the end of the polyamine molecule. For example, in the case of a polyamine molecule with a linear structure, isopropyl groups N may be bonded to two terminals. In the case of a polyamine molecule having a branched chain structure, isopropyl groups N may be bonded to the terminals of all branch chains.
 2級アミンを構成する窒素原子に結合するイソプロピル基Nは、例えば、イソプロピル基Nの出発原料と、1級アミノ基との反応により形成されてもよい。イソプロピル基Nの出発原料としては、例えば、アセトン、ヒドロキシアセトン(CHCOCHOH)などを用い得る。 The isopropyl group N bonded to the nitrogen atom constituting the secondary amine may be formed, for example, by a reaction between a starting material for the isopropyl group N and a primary amino group. As a starting material for the isopropyl group N, for example, acetone, hydroxyacetone (CH 3 COCH 2 OH), etc. can be used.
 ポリアミン成分IP(HA-ポリアミン成分、HA-IP-ポリアミン成分およびIP-ポリアミン成分)は、例えば、市販されている、または公知の方法によって得られた1級アミノ基(-NH基)および-NH-基を有するポリアミンの1級アミノ基に2個以上のイソプロピル基Nを導入することによって製造することが可能である。 The polyamine component IP (HA-polyamine component, HA-IP-polyamine component, and IP-polyamine component) is, for example, a primary amino group (-NH 2 group) and a commercially available or obtained by a known method. It can be produced by introducing two or more isopropyl groups N into the primary amino group of a polyamine having an NH- group.
 イソプロピル基Nを導入する方法としては、-NH基とアセトン、ヒドロキシアセトンなどのイソプロピル基Nの出発原料を反応させる方法が挙げられる。このとき、アセトンとヒドロキシアセトンとを併用するとともに、アセトンとヒドロキシアセトンのモル比を制御することで、HA-ポリアミン成分とHA-IP-ポリアミンとの混合物や、HA-IP-ポリアミン成分とIP-ポリアミン成分との混合物を、任意の組成で得ることができる。 Examples of the method for introducing isopropyl group N include a method of reacting -NH 2 group with a starting material for isopropyl group N such as acetone or hydroxyacetone. At this time, by using acetone and hydroxyacetone together and controlling the molar ratio of acetone and hydroxyacetone, mixtures of HA-polyamine component and HA-IP-polyamine, HA-IP-polyamine component and IP- Mixtures with polyamine components can be obtained in any composition.
 具体的には、フラスコなどの反応容器内に酸化白金触媒と無水エタノールを入れ、反応容器内を水素で置換した後、水素を100kPa~150kPaになるまで入れ、所定時間撹拌し、酸化白金触媒を還元する。次に、1級アミノ基(-NH基)および-NH-基を有するポリアミンと、アセトンおよびヒドロキシアセトンの少なくとも一方と、無水エタノールを、還元された触媒が入った反応容器に入れて、反応容器内を水素で置換した後、水素を約200kPa~350kPaになるまで入れ、その後、圧力の低下が無くなるまで水素を供給しながら撹拌する。このとき、アセトンとNHが反応して水が脱水して形成されたN=C結合が水素化される。溶液を濾過して触媒を除去した後、エタノールを減圧除去し、得られた無色の液体をさらに真空下で乾燥すればポリアミン成分IPを得ることができる。 Specifically, a platinum oxide catalyst and anhydrous ethanol are placed in a reaction container such as a flask, and the inside of the reaction container is replaced with hydrogen. Then, hydrogen is added until the pressure reaches 100 kPa to 150 kPa, and the mixture is stirred for a predetermined period of time. Give back. Next, a polyamine having primary amino groups (-NH 2 groups) and -NH- groups, at least one of acetone and hydroxyacetone, and anhydrous ethanol are placed in a reaction vessel containing the reduced catalyst and reacted. After replacing the inside of the container with hydrogen, hydrogen is added until the pressure reaches approximately 200 kPa to 350 kPa, and then the mixture is stirred while supplying hydrogen until there is no pressure drop. At this time, acetone and NH 2 react, water is dehydrated, and the N=C bond formed is hydrogenated. After filtering the solution to remove the catalyst, ethanol is removed under reduced pressure, and the resulting colorless liquid is further dried under vacuum to obtain polyamine component IP.
 アセトンと1級アミノ基との反応(第1反応)では、非置換イソプロピル基が形成される。ヒドロキシアセトンと1級アミノ基との反応(第2反応)では、ヒドロキシイソプロピル基が形成される。アセトンとヒドロキシアセトンと1級アミノ基との反応(第3反応)では、非置換イソプロピル基とヒドロキシイソプロピル基とが形成される。第2反応は、HA-ポリアミン成分IPの生成に適している。第3反応は、HA-IP-ポリアミン成分の生成に適している。 In the reaction between acetone and a primary amino group (first reaction), an unsubstituted isopropyl group is formed. In the reaction between hydroxyacetone and the primary amino group (second reaction), a hydroxyisopropyl group is formed. In the reaction between acetone, hydroxyacetone, and the primary amino group (third reaction), an unsubstituted isopropyl group and a hydroxyisopropyl group are formed. The second reaction is suitable for producing the HA-polyamine component IP. The third reaction is suitable for producing the HA-IP-polyamine component.
 ヒドロキシアセトンと1級アミノ基との反応では、1級炭素原子に結合するヒドロキシ基(1級アルコール)を有するヒドロキシイソプロピル基(-CH(CH)CHOH)が生成する。2級炭素原子に結合するヒドロキシ基(2級アルコール)を有するヒドロキシイソプロピル基(-CHCH(OH)CH)は原則として生成しない。ヒドロキシイソプロピル基は、ポリアミン成分IPの蒸気圧を低減し、このポリアミン成分IPを担持した二酸化炭素分離材の安定性を向上させる作用を有する。 The reaction between hydroxyacetone and a primary amino group produces a hydroxyisopropyl group (-CH(CH 3 )CH 2 OH) having a hydroxy group (primary alcohol) bonded to a primary carbon atom. In principle, a hydroxyisopropyl group (-CH 2 CH(OH)CH 3 ) having a hydroxy group (secondary alcohol) bonded to a secondary carbon atom is not generated. The hydroxyisopropyl group has the effect of reducing the vapor pressure of the polyamine component IP and improving the stability of the carbon dioxide separation material supporting the polyamine component IP.
 また、アセトンおよびヒドロキシアセトンは、1級アミノ基と優先的に反応し、NH基を有する2級アミンを構成する窒素原子を生成する。イソプロピル基は2級アミンを構成する窒素原子に結合する。そのため、生成反応における反応物の制御が容易であり、二酸化炭素を吸脱着するNH基をより多く確保することができる。 Furthermore, acetone and hydroxyacetone preferentially react with primary amino groups to generate nitrogen atoms that constitute secondary amines having NH groups. The isopropyl group is bonded to the nitrogen atom constituting the secondary amine. Therefore, it is easy to control the reactants in the production reaction, and more NH groups that adsorb and desorb carbon dioxide can be secured.
 ポリアミン成分IPとしては、2つ以上のNH基と、窒素原子間に介在する1つ以上のアルキレン基と、を有するポリアミン分子を用いることが望ましい。ポリアミン1分子内に含まれるNH基の数は、二酸化炭素の吸着能力を高める観点からは多いほど望ましく、ポリアミン1分子に含まれるNH基の数は、2以上50以下が望ましく、3以上30以下がより望ましい。一方、ポリアミン分子の取り扱い性を考慮すると、ポリアミン1分子内に含まれるNH基の数は、3以上20以下が望ましく、4以上10以下がより望ましく、4以上7以下が更に望ましい。 As the polyamine component IP, it is desirable to use a polyamine molecule having two or more NH groups and one or more alkylene groups interposed between nitrogen atoms. The number of NH groups contained in one polyamine molecule is preferably as large as possible from the viewpoint of increasing carbon dioxide adsorption ability, and the number of NH groups contained in one polyamine molecule is preferably 2 or more and 50 or less, and 3 or more and 30 or less. is more desirable. On the other hand, in consideration of the handleability of the polyamine molecule, the number of NH groups contained in one polyamine molecule is preferably 3 or more and 20 or less, more preferably 4 or more and 10 or less, and even more preferably 4 or more and 7 or less.
 ポリアミン成分IPにおいて、窒素原子間に介在するアルキレン基としては、炭素数1~6のアルキレン基が望ましく、具体的には、メチレン基、エチレン基、プロピレン基、ブチレン基などが好ましい。ポリアミン1分子内に含まれるアルキレン基の数は、ポリアミン1分子内に含まれるNH基の数に応じて選択すればよい。ポリアミン1分子内に1種のみのアルキレン基が含まれてもよく、2種以上のアルキレン基が含まれていてもよい。 In the polyamine component IP, the alkylene group interposed between the nitrogen atoms is preferably an alkylene group having 1 to 6 carbon atoms, and specifically, a methylene group, ethylene group, propylene group, butylene group, etc. are preferable. The number of alkylene groups contained in one molecule of polyamine may be selected depending on the number of NH groups contained in one molecule of polyamine. One molecule of polyamine may contain only one type of alkylene group, or may contain two or more types of alkylene groups.
 第1ポリアミン成分、第2ポリアミン成分および第3ポリアミン成分は、一般式(1): The first polyamine component, the second polyamine component, and the third polyamine component have the general formula (1):
で表される骨格を有してもよい。ただし、式(1)中のRは、水素原子または炭素数1~6のアルキル基または炭素数1~6のアルキルアミノ基を示し、Aは、炭素数2~6のアルキレン基を示し、mは、2~50の整数を示し、複数あるAは、同一であっても、それぞれ異なっていてもよい It may have a skeleton represented by However, R in formula (1) represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkylamino group having 1 to 6 carbon atoms, A represents an alkylene group having 2 to 6 carbon atoms, and m indicates an integer from 2 to 50, and multiple A's may be the same or different.
 第1ポリアミン成分、第2ポリアミン成分および第3ポリアミン成分は、例えば、それぞれ一般式(2): The first polyamine component, the second polyamine component, and the third polyamine component each have, for example, the general formula (2):
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
で表すことができる。 It can be expressed as
 式(2)中、Rは、Rまたは基:-A-NRを示し、Rは、Rまたは基:-A-NRを示し、Aは、炭素数2~6のアルキレン基を示し、nは、0~5の整数を示し、pおよびqは、それぞれ独立して0または1を示す。 In formula (2), R A represents R 6 or a group: -A-NR 6 R 7 , R B represents R 8 or a group: -A-NR 8 R 9 , and A has a carbon number of 2. ~6 alkylene group, n represents an integer of 0 to 5, and p and q each independently represent 0 or 1.
 複数あるAは、同一であっても、それぞれ異なっていてもよく、複数ある場合のRは、同一であっても、それぞれ異なっていてもよい。 A plurality of A's may be the same or different, and when there are a plurality of A's, R5 's may be the same or different.
 第1ポリアミン成分の場合、R、R、RおよびRはヒドロキシイソプロピル基を示し、R、R、R、RおよびRは水素原子を示す。 In the case of the first polyamine component, R 1 , R 2 , R 6 and R 8 represent a hydroxyisopropyl group, and R 3 , R 4 , R 5 , R 7 and R 9 represent a hydrogen atom.
 第2ポリアミン成分の場合、R、R、RおよびRの少なくとも1つはヒドロキシイソプロピル基を示し、R、R、RおよびRの残部は非置換イソプロピル基を示し、R、R、R、RおよびRは水素原子を示す。 In the case of the second polyamine component, at least one of R 1 , R 2 , R 6 and R 8 represents a hydroxyisopropyl group, and the remainder of R 1 , R 2 , R 6 and R 8 represents an unsubstituted isopropyl group; R 3 , R 4 , R 5 , R 7 and R 9 represent hydrogen atoms.
 第3ポリアミン成分の場合、R、R、RおよびRは非置換イソプロピル基を示し、R、R、R、RおよびRは水素原子を示す。 In the case of the third polyamine component, R 1 , R 2 , R 6 and R 8 represent unsubstituted isopropyl groups, and R 3 , R 4 , R 5 , R 7 and R 9 represent hydrogen atoms.
 ポリアミンの骨格アミンとしては、エチレンイミン、プロピレンイミン、2-エチルアジリジン、2-プロピルアジリジンおよび2-ブチルアジリジンのモノポリマー並びにこれらの少なくとも2種のコポリマーからなる群より選ばれる少なくとも1種が挙げられる。例えば、テトラエチレンペンタミン、スペルミン、N,N,N’,N’-テトラキス(3-アミノプロピル)-1,4-ブタンジアミン、ペンタエチレンヘキサミン、ヘキサエチレンヘプタミンおよびトリエチレンテトラミンからなる群より選ばれる少なくとも1種が挙げられる。ポリアミンの骨格アミンとは、2級アミンを構成する窒素原子に結合するイソプロピル基Nを生成させる際に、イソプロピル基Nの出発原料(アセトン、ヒドロキシアセトン等)と反応させる1級アミノ基を有するポリアミンをいう。 Examples of the backbone amine of the polyamine include at least one selected from the group consisting of monopolymers of ethyleneimine, propyleneimine, 2-ethylaziridine, 2-propylaziridine, and 2-butylaziridine, and copolymers of at least two of these. . For example, from the group consisting of tetraethylenepentamine, spermine, N,N,N',N'-tetrakis(3-aminopropyl)-1,4-butanediamine, pentaethylenehexamine, hexaethyleneheptamine and triethylenetetramine. At least one selected type is mentioned. The backbone amine of a polyamine is a polyamine having a primary amino group that is reacted with the starting material of the isopropyl group N (acetone, hydroxyacetone, etc.) when generating the isopropyl group N bonded to the nitrogen atom constituting the secondary amine. means.
 HA-IP-ポリアミン成分の具体例としては、1-イソプロピルアミノ-11-ヒドロキシイソプロピルアミノ-3,6,9-トリアザウンデカン、N-3-(イソプロピルアミノ)プロピル-N’-3-(ヒドロキシイソプロピルアミノ)プロピル-1,4-ブタンジアミン、N,N-ビス(3-(イソプロピルアミノ)プロピル)-N’,N’-ビス(3-(ヒドロキシイソプロピルアミノ)プロピル)-1,4-ブタンジアミン、1-イソプロピルアミノ-14-ヒドロキシイソプロピルアミノ-3,6,9,12-テトラアザテトラデカン、1-イソプロピルアミノ-17-ヒドロキシイソプロピルアミノ-3,6,9,12,15-ペンタアザヘプタデカン、1-イソプロピルアミノ-8-ヒドロキシイソプロピルアミノ-3,6,-ジアザオクタンなどが挙げられる。なお、市販されているHA-IP-ポリアミンは、通常、複数成分の混合物である。 Specific examples of the HA-IP-polyamine component include 1-isopropylamino-11-hydroxyisopropylamino-3,6,9-triazaundecane, N-3-(isopropylamino)propyl-N'-3-(hydroxy isopropylamino)propyl-1,4-butanediamine, N,N-bis(3-(isopropylamino)propyl)-N',N'-bis(3-(hydroxyisopropylamino)propyl)-1,4-butane Diamine, 1-isopropylamino-14-hydroxyisopropylamino-3,6,9,12-tetraazatetradecane, 1-isopropylamino-17-hydroxyisopropylamino-3,6,9,12,15-pentaazaheptadecane , 1-isopropylamino-8-hydroxyisopropylamino-3,6,-diazaoctane, and the like. Note that commercially available HA-IP-polyamine is usually a mixture of multiple components.
 ポリアミン(特にポリアミン成分IP)の760mmHgにおける沸点は320℃以上である。この場合、ポリアミンを含む二酸化炭素分離材を高い温度(例えば、60℃程度)でも安定して使用できる。760mmHgで320℃以上の沸点を有していれば、減圧(例えば、0.2Pa程度)によって沸点が低下しても、ポリアミンが支持体に担持された状態を維持することができる。そのため、これらのポリアミンを用いることにより、使用温度を常温よりも高い温度とし、効率的に二酸化炭素の脱離を行うことができる。 The boiling point of polyamine (especially polyamine component IP) at 760 mmHg is 320°C or higher. In this case, the carbon dioxide separation material containing polyamine can be stably used even at high temperatures (for example, about 60° C.). If the polyamine has a boiling point of 320° C. or higher at 760 mmHg, the state in which the polyamine is supported on the support can be maintained even if the boiling point is lowered by reduced pressure (for example, about 0.2 Pa). Therefore, by using these polyamines, the operating temperature can be set higher than room temperature, and carbon dioxide can be efficiently desorbed.
<支持体>
 支持体は、ポリアミン(特にポリアミン成分IP)を担持することができ、二酸化炭素の分離回収の条件に耐え得る材料であればよい。例えば、セラミックス、多孔質材料、炭素材料、樹脂材料などを用い得る。具体的には、シリカ、ポリメチルメタクリレート、アルミナ、シリカアルミナ、粘土鉱物、マグネシア、ジルコニア、ゼオライト、ゼオライト類縁化合物、天然鉱物、廃棄物固体、活性炭、カーボンモレキュラーシーブ等が挙げられる。支持体は1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
<Support>
The support may be any material as long as it can support the polyamine (especially the polyamine component IP) and can withstand the conditions for separating and recovering carbon dioxide. For example, ceramics, porous materials, carbon materials, resin materials, etc. can be used. Specifically, silica, polymethyl methacrylate, alumina, silica alumina, clay minerals, magnesia, zirconia, zeolite, zeolite related compounds, natural minerals, waste solids, activated carbon, carbon molecular sieves, etc. can be mentioned. One type of support may be used alone, or two or more types may be used in combination.
 支持体は、市販品をそのまま用いてもよいし、公知の方法によって合成した支持体を用いてもよい。市販品としては、シグマアルドリッチ社製のメソ構造シリカMSU-F、エボニック社製のSIPERNAT(登録商標)50S、富士シリシア化学株式会社製のCARiACT(登録商標)Q10、Q30、Q50等が挙げられる。 As the support, a commercially available product may be used as is, or a support synthesized by a known method may be used. Commercially available products include mesostructured silica MSU-F manufactured by Sigma-Aldrich, SIPERNAT (registered trademark) 50S manufactured by Evonik, and CARiACT (registered trademark) Q10, Q30, Q50 manufactured by Fuji Silysia Chemical Co., Ltd.
 支持体は、ポリアミンを多く担持するために、多孔質で比表面積と細孔容積が大きな材料が好ましい。比表面積(BET)は50m/g以上2000m/g以下が望ましく、100m/g以上1000m/g以下がより望ましい。細孔容積は0.1cm/g以上2.3cm/g以下が望ましく、0.7cm/g以上2.3cm/g以下がより望ましい。 The support is preferably a porous material with a large specific surface area and pore volume in order to support a large amount of polyamine. The specific surface area (BET) is preferably 50 m 2 /g or more and 2000 m 2 /g or less, more preferably 100 m 2 /g or more and 1000 m 2 /g or less. The pore volume is preferably 0.1 cm 3 /g or more and 2.3 cm 3 /g or less, more preferably 0.7 cm 3 /g or more and 2.3 cm 3 /g or less.
 比表面積及び細孔容積は、例えば、定容法を用いて比表面積・細孔径分布測定装置(ASAP2420:株式会社島津製作所製)によって測定することができる。より具体的な比表面積・細孔径分布測定装置を用いたガス吸着測定方法としては、例えば、加熱真空排気により、試料の前処理を行い、サンプル管に測定試料をおよそ0.1g量り取る。その後、40℃まで加熱し、真空排気を6時間行った後、室温まで冷却し、サンプル質量を計量する。測定では液体窒素温度を設定し、圧力範囲を指定する。比表面積、細孔容積及び細孔径は、得られた窒素吸着等温線を解析して算出することができる。 The specific surface area and pore volume can be measured, for example, using a constant volume method using a specific surface area/pore size distribution measuring device (ASAP2420: manufactured by Shimadzu Corporation). As a more specific gas adsorption measurement method using a specific surface area/pore size distribution measuring device, for example, a sample is pretreated by heating and evacuation, and approximately 0.1 g of the measurement sample is weighed into a sample tube. Thereafter, the sample was heated to 40° C., evacuated for 6 hours, cooled to room temperature, and the mass of the sample was measured. For measurements, set the liquid nitrogen temperature and specify the pressure range. The specific surface area, pore volume, and pore diameter can be calculated by analyzing the obtained nitrogen adsorption isotherm.
<ポリアミン担持体>
 ポリアミン担持体は、ポリアミンを支持体に担持させたものである。ポリアミン担持体は、ポリアミン(特にポリアミン成分IP)とこれを担持する支持体とを含む。
<Polyamine carrier>
A polyamine carrier is a support in which a polyamine is supported. The polyamine carrier includes a polyamine (especially polyamine component IP) and a support supporting the polyamine.
 ポリアミン担持体は、ポリアミンを準備する工程と、ポリアミン担持体を得る工程とを有する製造方法で製造できる。ポリアミン担持体を得る工程では、ポリアミンを支持体と接触させて、ポリアミンを担持する支持体を生成させればよい。 The polyamine support can be produced by a manufacturing method that includes a step of preparing a polyamine and a step of obtaining the polyamine support. In the step of obtaining a polyamine carrier, a polyamine may be brought into contact with a support to produce a support supporting the polyamine.
 ポリアミン担持体は、例えば、ポリアミン(特にポリアミン成分IP)の溶液に、支持体を混合し、例えば室温で撹拌後、溶媒(例えばアルコール)を留去することにより製造することができる。溶媒を留去する方法としては、例えば、エバポレーター等で加熱しながら減圧する方法が挙げられる。 The polyamine carrier can be produced, for example, by mixing the support with a solution of polyamine (especially polyamine component IP), stirring at room temperature, and then distilling off the solvent (for example, alcohol). Examples of the method for distilling off the solvent include a method of reducing the pressure while heating with an evaporator or the like.
 ポリアミン(特にポリアミン成分IP)を支持体に担持させることにより、水溶液の二酸化炭素分離材では適用できない圧力スィング法および温度スィング法に適用することが可能である。圧力スィング法は、二酸化炭素分離材を減圧条件下に置き、二酸化炭素を脱離させる工程を含む。温度スィング法は、二酸化炭素分離材を加熱し、二酸化炭素を脱離させる工程を含む。 By supporting a polyamine (especially polyamine component IP) on a support, it is possible to apply it to pressure swing methods and temperature swing methods, which cannot be applied to aqueous carbon dioxide separation materials. The pressure swing method includes a step of placing a carbon dioxide separation material under reduced pressure conditions and desorbing carbon dioxide. The temperature swing method includes a step of heating a carbon dioxide separation material to desorb carbon dioxide.
<二酸化炭素分離材>
 二酸化炭素分離材は、例えば、ポリアミン担持体と、ポリアミン担持体を造粒するバインダーとを含む。すなわち、二酸化炭素分離材は、バインダーを用いた造粒物としてのポリアミン担持体を含んでもよい。バインダーを用いてポリアミン担持体を造粒することにより、耐振性や耐摩耗性を付与することができ、さらに水中での安定性を向上させることが可能である。
<Carbon dioxide separation material>
The carbon dioxide separation material includes, for example, a polyamine carrier and a binder that granulates the polyamine carrier. That is, the carbon dioxide separation material may include a polyamine support in the form of granules using a binder. By granulating the polyamine carrier using a binder, vibration resistance and abrasion resistance can be imparted, and further, stability in water can be improved.
 バインダーとしては、シリカ、アルミナ、シリカアルミナ、粘土鉱物、フッ素樹脂、セルロース誘導体およびエポキシ樹脂からなる群より選択される少なくとも1種を用いてもよい。フッ素樹脂としては、ポリテトラフルオロエチレン等が挙げられる。セルロース誘導体としては、ヒドロキシプロピルメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロース、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシエチル化澱粉等が挙げられる。エポキシ樹脂としては、ジグリセロールポリグリシジルエーテル、ソルビトールポリグリシジルエーテル等が挙げられ、エポキシ樹脂の硬化剤(変性ポリアミド樹脂等)との混合物として用いてもよい。その他の高分子(ポリビニルアルコール、ポリエチレンオキシド、ポリアクリル酸ソーダ、ポリアクリルアミド等)等を使用してもよい。これらの化合物は市販品として入手可能であるか、公知の方法によって容易に製造することが可能である。バインダーは1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。 As the binder, at least one selected from the group consisting of silica, alumina, silica alumina, clay minerals, fluororesins, cellulose derivatives, and epoxy resins may be used. Examples of the fluororesin include polytetrafluoroethylene and the like. Examples of cellulose derivatives include hydroxypropylmethylcellulose, methylcellulose, hydroxypropylcellulose, carboxymethylcellulose, hydroxyethylcellulose, and hydroxyethylated starch. Examples of the epoxy resin include diglycerol polyglycidyl ether, sorbitol polyglycidyl ether, etc., and may be used as a mixture with an epoxy resin curing agent (modified polyamide resin, etc.). Other polymers (polyvinyl alcohol, polyethylene oxide, sodium polyacrylate, polyacrylamide, etc.) may also be used. These compounds are commercially available or can be easily produced by known methods. One type of binder may be used alone, or two or more types may be used in combination.
 バインダーとしては、市販品として、日産化学株式会社製のスノーテック30およびAS-200、ダイキン工業株式会社製のポリフロンPTFE D-210C、三晶株式会社製のNEOVISCO MC RM4000、東レ株式会社製のAQナイロン P-70、ナガセケムテックス株式会社製のデナコール EX-421等を用いることができる。 Commercially available binders include Snowtech 30 and AS-200 manufactured by Nissan Chemical Co., Ltd., Polyflon PTFE D-210C manufactured by Daikin Industries, Ltd., NEOVISCO MC RM4000 manufactured by Sansho Co., Ltd., and AQ manufactured by Toray Industries, Inc. Nylon P-70, Denacol EX-421 manufactured by Nagase ChemteX Corporation, etc. can be used.
 バインダーの二酸化炭素分離材における含有量は、造粒が可能な量であれば、特に限定されないが、ポリアミンの含有量の低下を防ぐ点で少量であることが好ましい。 The content of the binder in the carbon dioxide separation material is not particularly limited as long as it can be granulated, but it is preferably a small amount in order to prevent a decrease in the polyamine content.
 バインダーを用いて造粒する場合の造粒物の平均粒径は、ガスを吸着材充填層に供給した時の圧力損失を低減する観点から、0.1mm~2.0mmが好ましい。 The average particle diameter of the granules when granulated using a binder is preferably 0.1 mm to 2.0 mm from the viewpoint of reducing pressure loss when gas is supplied to the adsorbent packed bed.
 二酸化炭素分離材に含まれるポリアミン(特にポリアミン成分IP)の含有率は、特に限定されないが、効率的に二酸化炭素を分離回収する観点から、例えば、15質量%以上が好ましく、20質量%以上が特に好ましい。ポリアミンの含有率は、例えば、70質量%以下でもよい。 The content of polyamine (especially polyamine component IP) contained in the carbon dioxide separation material is not particularly limited, but from the viewpoint of efficiently separating and recovering carbon dioxide, it is preferably 15% by mass or more, and 20% by mass or more. Particularly preferred. The content of polyamine may be, for example, 70% by mass or less.
<二酸化炭素を分離又は回収する方法>
 二酸化炭素分離(回収)方法の処理対象は、二酸化炭素を含むガスである。二酸化炭素を含むガスは、例えば、石炭、重油、天然ガス等を燃料とする火力発電所、コークスで酸化鉄を還元する製鐵所の高炉、銑鉄中の炭素を燃焼して製鋼する製鐵所の転炉、各種製造所におけるボイラー、セメント工場におけるキルン等、さらには、ガソリン、重油、軽油等を燃料とする自動車、船舶、航空機等の輸送機器から排出される排ガスであってもよい。二酸化炭素を含むガスは、潜水調査船、宇宙ステーション、ビル、オフィス等の室内空間等の密閉空間において、人の呼吸や機器のエネルギー変換等で排出される二酸化炭素等を含むガスであってもよい。また、大気中の二酸化炭素であっても良い。
<Method of separating or recovering carbon dioxide>
The target of the carbon dioxide separation (recovery) method is gas containing carbon dioxide. Gases containing carbon dioxide are used, for example, in thermal power plants that use coal, heavy oil, natural gas, etc. as fuel, blast furnaces in steel plants that reduce iron oxide with coke, and steel plants that burn carbon in pig iron to make steel. Converters, boilers in various manufacturing plants, kilns in cement factories, etc., and even exhaust gas emitted from transportation equipment such as automobiles, ships, and aircraft that use gasoline, heavy oil, light oil, etc. as fuel may be used. Gas containing carbon dioxide may be emitted from human breathing or energy conversion of equipment in closed spaces such as indoor spaces such as submarine research vessels, space stations, buildings, and offices. good. Alternatively, carbon dioxide in the atmosphere may be used.
 本開示に係る二酸化炭素の分離又は回収方法は、二酸化炭素分離材を用いることを特徴とする。 The carbon dioxide separation or recovery method according to the present disclosure is characterized by using a carbon dioxide separation material.
 二酸化炭素分離(回収)方法は、処理対象のガスを二酸化炭素分離材に接触させ、二酸化炭素を吸収する第1工程、および、第1工程において二酸化炭素を吸収した二酸化炭素分離材から二酸化炭素を脱離させる第2工程、を含む。 The carbon dioxide separation (recovery) method includes a first step in which the gas to be treated is brought into contact with a carbon dioxide separation material to absorb carbon dioxide, and a second step in which carbon dioxide is removed from the carbon dioxide separation material that has absorbed carbon dioxide in the first step. A second step of desorption is included.
 第1工程における処理対象のガス中の二酸化炭素含有量及び温度は、二酸化炭素分離材が耐え得る条件であれば、特に限定されない。例えば、二酸化炭素分圧は100kPa以下でもよく、温度は10℃~60℃であってもよい。具体的には、火力発電所等で想定される使用条件(二酸化炭素分圧:7~100kPa、温度:40~60℃)や、宇宙ステーション等で想定される使用条件(二酸化炭素分圧:0~1kPa、温度:20~25℃)等が挙げられる。処理対象のガスは、大気圧であっても、加圧されていてもよい。 The carbon dioxide content and temperature in the gas to be treated in the first step are not particularly limited as long as the carbon dioxide separation material can withstand them. For example, the carbon dioxide partial pressure may be 100 kPa or less, and the temperature may be 10°C to 60°C. Specifically, the operating conditions assumed at thermal power plants, etc. (carbon dioxide partial pressure: 7 to 100 kPa, temperature: 40 to 60°C) and the operating conditions assumed at space stations, etc. (carbon dioxide partial pressure: 0 ~1kPa, temperature: 20~25°C), etc. The gas to be treated may be at atmospheric pressure or may be pressurized.
 第1工程の処理対象のガスは、水蒸気を含んでいてもよい。二酸化炭素分離材は水蒸気を含んでいる処理対象ガスであっても、二酸化炭素の吸着性に優れるため、除湿操作を省略することができる。 The gas to be treated in the first step may contain water vapor. Since the carbon dioxide separation material has excellent adsorption properties for carbon dioxide even if the gas to be treated contains water vapor, the dehumidification operation can be omitted.
 第2工程における二酸化炭素を脱離させる方法としては、(A)二酸化炭素分離材を減圧条件下におき、二酸化炭素を脱離させる工程(圧力スィング法)、(B)二酸化炭素分離材に水蒸気および不活性ガスの少なくとも一方(好ましくは二酸化炭素を含まないガス(もしくは二酸化炭素含有量の低いガス))を接触させ、二酸化炭素を脱離させる工程、及び(C)二酸化炭素分離材を加熱し、二酸化炭素を脱離させる工程(温度スィング法)などを含む方法が挙げられる。 The method for desorbing carbon dioxide in the second step includes (A) placing the carbon dioxide separation material under reduced pressure conditions and desorbing carbon dioxide (pressure swing method), (B) applying water vapor to the carbon dioxide separation material. and a step of contacting at least one of an inert gas (preferably a gas not containing carbon dioxide (or a gas with a low carbon dioxide content)) to desorb carbon dioxide, and (C) heating the carbon dioxide separation material. , a method including a step of desorbing carbon dioxide (temperature swing method), and the like.
 工程(A)を含む方法では、二酸化炭素の脱離量及び二酸化炭素分離材の安定性の点で、0.2Pa程度まで圧力を下げることが好ましい。減圧時に二酸化炭素分離材又はこれを含む容器を加熱してもよい。加熱する場合の温度は60℃程度までが望ましく、この場合、0.5Pa程度まで圧力を下げることが好ましい。工程(A)を含む方法は、処理対象のガスが温度20~60℃かつ二酸化炭素分圧100kPa以下である場合に好適である。 In the method including step (A), it is preferable to lower the pressure to about 0.2 Pa in terms of the amount of carbon dioxide desorbed and the stability of the carbon dioxide separation material. The carbon dioxide separation material or the container containing it may be heated during the pressure reduction. When heating, the temperature is desirably up to about 60° C., and in this case, it is preferable to lower the pressure to about 0.5 Pa. The method including step (A) is suitable when the gas to be treated has a temperature of 20 to 60° C. and a carbon dioxide partial pressure of 100 kPa or less.
 工程(B)を含む方法では、例えば、不活性ガス、水蒸気、二酸化炭素を含まないガスなどを二酸化炭素分離材に接触させることにより、二酸化炭素分圧を下げ、二酸化炭素を脱離させることができる。二酸化炭素分離材に接触させるガスとしては、二酸化炭素分離材がそのガス中で安定であればよく、アルゴンなどの不活性ガスや窒素、水蒸気等が好ましく、減圧された水蒸気がより好ましい。 In the method including step (B), for example, by bringing an inert gas, water vapor, a gas not containing carbon dioxide, etc. into contact with the carbon dioxide separation material, the partial pressure of carbon dioxide can be lowered and carbon dioxide can be desorbed. can. The gas to be brought into contact with the carbon dioxide separation material may be any gas as long as the carbon dioxide separation material is stable in the gas, preferably an inert gas such as argon, nitrogen, water vapor, etc., and more preferably reduced pressure water vapor.
 工程(C)を含む方法では、二酸化炭素吸収時よりも温度を上昇させることにより、二酸化炭素を脱離させることができる。この場合における、二酸化炭素吸収時の温度は、例えば、10~40℃であってもよく、二酸化炭素脱離時の温度は、例えば60℃程度であってもよい。 In the method including step (C), carbon dioxide can be desorbed by increasing the temperature above that during carbon dioxide absorption. In this case, the temperature during carbon dioxide absorption may be, for example, 10 to 40°C, and the temperature during carbon dioxide desorption may be, for example, about 60°C.
[実施例]
 次に、本開示について実施例を用いて詳細に説明するが、本発明は以下の実施例に限定されるものではない。また、ポリアミンの担持量(質量%)は、二酸化炭素を除いた二酸化炭素分離材(ポリアミン担持体)の質量に対するポリアミンの質量を百分率で表したものである(ここではポリアミンと支持体との合計に対するポリアミンの割合)。
[Example]
Next, the present disclosure will be described in detail using examples, but the present invention is not limited to the following examples. In addition, the supported amount of polyamine (mass%) is expressed as a percentage of the mass of polyamine relative to the mass of carbon dioxide separation material (polyamine carrier) excluding carbon dioxide (here, the total amount of polyamine and support percentage of polyamine).
 化合物の理化学的性質の測定には以下の機器を用いた。
 液体クロマトグラフ質量分析計(LC-MS):日本ウォーターズ株式会社製のAllaiance LC/MSシステム
The following equipment was used to measure the physicochemical properties of compounds.
Liquid chromatograph mass spectrometer (LC-MS): Alliance LC/MS system manufactured by Nippon Waters Co., Ltd.
 以下において、例えば「2HA-TEPA」等の記載の「2HA」は、骨格アミン1mol当たりと反応させたヒドロキシアセトン(HA)のモル数が2molであることを示す。 In the following, for example, "2HA" in "2HA-TEPA" and the like indicates that the number of moles of hydroxyacetone (HA) reacted with 1 mole of the skeleton amine is 2 moles.
 また、例えば「0.5HA-IP-TEPA」等の記載の「0.5HA-IP」は、骨格アミン1分子当たりと反応させたヒドロキシアセトン(HA)のモル数が0.5molであり、かつ骨格アミン1mol当たりと反応させたアセトンのモル数がHAと合計で2molとなる量(すなわち1.5mol)であることを示す。 In addition, for example, "0.5HA-IP" described as "0.5HA-IP-TEPA" has the number of moles of hydroxyacetone (HA) reacted with each molecule of the backbone amine being 0.5 mol, and It shows that the number of moles of acetone reacted with HA per 1 mol of the skeleton amine is such that the total amount is 2 mol (ie, 1.5 mol).
 また、例えば「0.5HA-IP-TEPA(29)/Q30」等の記載の「(29)/Q30」は、ポリアミン担持体に含まれるポリアミン成分IPの含有率が29質量%であり、かつ支持体がQ30であることを示す。 Further, for example, "(29)/Q30" described in "0.5HA-IP-TEPA(29)/Q30" etc. has a content of polyamine component IP contained in the polyamine carrier of 29% by mass, and Indicates that the support is Q30.
《実施例1》
<ポリアミン成分IPの合成>
 ジヒドロキシイソプロピル化テトラエチレンペンタミン(別名:1,11-ジヒドロキシイソプロピルアミノ-3,6,9-トリアザウンデカン)(2HA-TEPA)の合成
《Example 1》
<Synthesis of polyamine component IP>
Synthesis of dihydroxyisopropylated tetraethylenepentamine (also known as 1,11-dihydroxyisopropylamino-3,6,9-triazaundecane) (2HA-TEPA)
 内容量1Lのフラスコに酸化白金触媒2gと市販の無水エタノール100mlを入れ、フラスコ内を水素で置換した後、水素を150kPaになるまで入れ、500rpmで15~20分間撹拌し、酸化白金触媒を還元した。 Put 2 g of platinum oxide catalyst and 100 ml of commercially available anhydrous ethanol into a 1 L flask, replace the inside of the flask with hydrogen, then add hydrogen until the pressure reaches 150 kPa, stir at 500 rpm for 15 to 20 minutes, and reduce the platinum oxide catalyst. did.
 次に、テトラエチレンペンタミン(TEPA)189.31g(1.0モル)、ヒドロキシアセトン(HA:CH-CO-CHOH)170.38g(2.3モル)、無水エタノール150mlを還元された触媒が入ったフラスコに入れた。 Next, 189.31 g (1.0 mol) of tetraethylenepentamine (TEPA), 170.38 g (2.3 mol) of hydroxyacetone (HA: CH 3 -CO-CH 2 OH), and 150 ml of absolute ethanol were reduced. into the flask containing the catalyst.
 フラスコ内を水素で置換した後、水素を約200kPaになるまで入れ、水素の理論量(2mol)が吸収されて圧力が下がり、その後10時間吸収が無いことが確認されるまで溶液を攪拌した。 After replacing the inside of the flask with hydrogen, hydrogen was added until the pressure reached approximately 200 kPa, and the pressure decreased as the theoretical amount of hydrogen (2 mol) was absorbed.Then, the solution was stirred for 10 hours until it was confirmed that there was no absorption.
 溶液を濾過して触媒を除去した後、エタノールを40℃で減圧除去し、得られた無色の液体をさらに真空下(10-1mmHg)、50℃で一晩乾燥して、2HA-TEPAを得た(収率95%)。 After filtering the solution to remove the catalyst, the ethanol was removed under reduced pressure at 40 °C, and the resulting colorless liquid was further dried under vacuum (10 −1 mmHg) at 50 °C overnight to remove 2HA-TEPA. (yield 95%).
<二酸化炭素分離材(ポリアミン担持体)の調製>
 所定量の2HA-TEPAを秤量し、これを容量300cmのナスフラスコに量りとったメタノール(和光純薬工業社製;特級)20gに溶解させた。
<Preparation of carbon dioxide separation material (polyamine carrier)>
A predetermined amount of 2HA-TEPA was weighed and dissolved in 20 g of methanol (manufactured by Wako Pure Chemical Industries, Ltd.; special grade) weighed into a 300 cm 3 eggplant flask.
 その後、別途秤量した所定量の支持体Q30(富士シリシア化学株式会社製のCARiACT Q30;比表面積100m/g、平均細孔径30nm、細孔容積0.9mL/g)をナスフラスコに入れ、室温で2時間攪拌した後、これをロータリーエバポレーター(EYELA社製;N-1000)で40℃に加熱しながら、系内の圧力が0.03MPaになるまで減圧することで、メタノール溶媒を除去し、2HA-TEPAを25質量%含むポリアミン担持体を得た。 Thereafter, a separately weighed predetermined amount of support Q30 (CARiACT Q30 manufactured by Fuji Silysia Chemical Co., Ltd.; specific surface area 100 m 2 /g, average pore diameter 30 nm, pore volume 0.9 mL/g) was placed in an eggplant flask, and the mixture was heated at room temperature. After stirring for 2 hours, the methanol solvent was removed by heating it to 40°C with a rotary evaporator (manufactured by EYELA; N-1000) and reducing the pressure in the system until the pressure became 0.03 MPa. A polyamine carrier containing 25% by mass of 2HA-TEPA was obtained.
 メタノール溶媒の除去は、フラスコと試薬類の合計の重さを予め量り取り、メタノール溶媒に相当する20gの質量減少が確認できた時点で完了とした。調製したポリアミン担持体は評価試験に供するまでナスフラスコに栓をしてデシケータ内で保管した。 Removal of the methanol solvent was determined by weighing the total weight of the flask and reagents in advance, and was considered complete when a mass loss of 20 g, which corresponds to the methanol solvent, was confirmed. The prepared polyamine carrier was stored in an eggplant flask with a stopper in a desiccator until it was used for evaluation tests.
《実施例2》
 2HA-TEPAの含有率を29質量%に変更したこと以外、実施例1と同様に、ポリアミン担持体を得た。
《Example 2》
A polyamine carrier was obtained in the same manner as in Example 1 except that the content of 2HA-TEPA was changed to 29% by mass.
《実施例3》
<IP-ポリアミンの合成>
 1-イソプロピルアミノ-11-ヒドロキシイソプロピルアミノ-3,6,9-トリアザウンデカン)と、1,11-ジイソプロピルアミノ-3,6,9-トリアザウンデカン)との混合物(0.5HA-IP-TEPA)の合成
《Example 3》
<Synthesis of IP-polyamine>
A mixture of 1-isopropylamino-11-hydroxyisopropylamino-3,6,9-triazaundecane) and 1,11-diisopropylamino-3,6,9-triazaundecane (0.5HA-IP- Synthesis of TEPA)
 還元された触媒が入ったフラスコに、イソプロピル基Nの出発原料としてヒドロキシアセトンだけでなく、ヒドロキシアセトン(HA)37.04g(0.5モル)とアセトン87.12g(1.5モル)を入れたこと以外、実施例1と同様に、0.5HA-IP-TEPAを得た(収率95%)。また、実施例1と同様に、0.5HA-IP-TEPAを25質量%含むポリアミン担持体を得た。 Into a flask containing the reduced catalyst, not only hydroxyacetone but also 37.04 g (0.5 mol) of hydroxyacetone (HA) and 87.12 g (1.5 mol) of acetone were added as starting materials for the isopropyl group N. Except for the above, 0.5HA-IP-TEPA was obtained in the same manner as in Example 1 (yield 95%). Further, in the same manner as in Example 1, a polyamine carrier containing 25% by mass of 0.5HA-IP-TEPA was obtained.
《実施例4》
 0.5HA-IP-TEPAの含有率を29質量%に変更したこと以外、実施例3と同様に、ポリアミン担持体を得た。
《Example 4》
A polyamine carrier was obtained in the same manner as in Example 3 except that the content of 0.5HA-IP-TEPA was changed to 29% by mass.
 実施例1では、フラスコ内で下記スキームの上段の反応が進行する。実施例2では、フラスコ内で下記スキームの下段の反応が進行すると同時に1,11-ジイソプロピルアミノ-3,6,9-トリアザウンデカン(IP-TEPA)を生成する反応が進行したと考えられる。 In Example 1, the reaction in the upper stage of the scheme below proceeds in a flask. In Example 2, it is thought that the reaction to produce 1,11-diisopropylamino-3,6,9-triazaundecane (IP-TEPA) progressed at the same time as the reaction in the lower part of the scheme below progressed in the flask.
《実施例5》
<IP-ポリアミンの合成>
 0.25HA-IP-TEPAの合成
《Example 5》
<Synthesis of IP-polyamine>
Synthesis of 0.25HA-IP-TEPA
 還元された触媒が入ったフラスコに、ヒドロキシアセトン(HA)18.52g(0.25モル)とアセトン101.64g(1.75モル)を入れたこと以外、実施例3と同様に、0.25HA-IP-TEPAを得た(収率95%)。また、実施例3と同様に、0.25HA-IP-TEPAを25質量%含むポリアミン担持体を得た。 Same as Example 3 except that 18.52 g (0.25 mol) of hydroxyacetone (HA) and 101.64 g (1.75 mol) of acetone were added to the flask containing the reduced catalyst. 25HA-IP-TEPA was obtained (yield 95%). Further, in the same manner as in Example 3, a polyamine carrier containing 25% by mass of 0.25HA-IP-TEPA was obtained.
《実施例6》
 0.25HA-IP-TEPAの含有率を29質量%に変更したこと以外、実施例5と同様に、ポリアミン担持体を得た。
《Example 6》
A polyamine carrier was obtained in the same manner as in Example 5, except that the content of 0.25HA-IP-TEPA was changed to 29% by mass.
《実施例7》
 0.25HA-IP-TEPAの含有率を35質量%に変更したこと以外、実施例5と同様に、ポリアミン担持体を得た。
《Example 7》
A polyamine carrier was obtained in the same manner as in Example 5, except that the content of 0.25HA-IP-TEPA was changed to 35% by mass.
《実施例8》
 0.25HA-IP-TEPAの含有率を40質量%に変更したこと以外、実施例5と同様に、ポリアミン担持体を得た。
《Example 8》
A polyamine carrier was obtained in the same manner as in Example 5 except that the content of 0.25HA-IP-TEPA was changed to 40% by mass.
《実施例9》
 0.25HA-IP-TEPAの含有率を50質量%に変更し、かつ支持体としてQ30の代わりにMSU-F(シグマアルドリッチ社製のメソポーラスシリカ、比表面積550m/g、平均細孔径20nm、細孔容積2.0mL/g)を用いたこと以外、実施例5と同様に、ポリアミン担持体を得た。
《Example 9》
The content of 0.25HA-IP-TEPA was changed to 50% by mass, and instead of Q30 as a support, MSU-F (mesoporous silica manufactured by Sigma-Aldrich, specific surface area 550 m 2 /g, average pore diameter 20 nm, A polyamine support was obtained in the same manner as in Example 5, except that the pore volume was 2.0 mL/g).
《実施例10》
 支持体としてQ30の代わりにSIPERNAT(エボニック社製、比表面積380、細孔容積1.1mL/g)を用いたこと以外、実施例9と同様に、ポリアミン担持体を得た。
《Example 10》
A polyamine carrier was obtained in the same manner as in Example 9, except that SIPERNAT (manufactured by Evonik, specific surface area: 380, pore volume: 1.1 mL/g) was used as the support instead of Q30.
《実施例11》
<IP-ポリアミンの合成>
 1-イソプロピルアミノ-11-ヒドロキシイソプロピルアミノ-4,7-ジアザデカンと、1,11-ジイソプロピルアミノ-4,7-ジアザデカン)との混合物(0.25HA-IP-DEDP)の合成
《Example 11》
<Synthesis of IP-polyamine>
Synthesis of a mixture of 1-isopropylamino-11-hydroxyisopropylamino-4,7-diazadecane and 1,11-diisopropylamino-4,7-diazadecane (0.25HA-IP-DEDP)
 還元された触媒が入ったフラスコに、骨格アミンとして1,11-アミノ-4,7-ジアザデカン(DEDP)174.29g(1.0モル)を入れ、イソプロピル基Nの出発原料としてヒドロキシアセトン(HA)18.52g(0.25モル)とアセトン101.64g(1.75モル)を入れたこと以外、実施例5と同様に、0.25HA-IP-DEDPを得た(収率95%)。また、実施例6と同様に、0.25HA-IP-DEDPを29質量%含むポリアミン担持体を得た。 A flask containing the reduced catalyst was charged with 174.29 g (1.0 mol) of 1,11-amino-4,7-diazadecane (DEDP) as a backbone amine, and hydroxyacetone (HA) was added as a starting material for the isopropyl group N. ) 18.52 g (0.25 mol) and 101.64 g (1.75 mol) of acetone were added, but in the same manner as in Example 5, 0.25HA-IP-DEDP was obtained (yield 95%). . Further, in the same manner as in Example 6, a polyamine carrier containing 29% by mass of 0.25HA-IP-DEDP was obtained.
《実施例12》
<IP-ポリアミンの合成>
 イソプロピルヒドロキシイソプロピルスペルミンと、1,11-ジイソプロピルアミノ-4,9-ジアザドデカン)との混合物(0.25HA-IP-Spermine)の合成
《Example 12》
<Synthesis of IP-polyamine>
Synthesis of a mixture of isopropylhydroxyisopropylspermine and 1,11-diisopropylamino-4,9-diazadodecane (0.25HA-IP-Spermine)
 還元された触媒が入ったフラスコに、骨格アミンとしてスペルミン(Spermine)202.34g(1.0モル)を入れ、イソプロピル基Nの出発原料としてヒドロキシアセトン(HA)18.52g(0.25モル)とアセトン101.64g(1.75モル)を入れたこと以外、実施例5と同様に、0.25HA-IP-Spermineを得た(収率95%)。また、実施例6と同様に、0.25HA-IP-Spermineを29質量%含むポリアミン担持体を得た。 A flask containing the reduced catalyst was charged with 202.34 g (1.0 mol) of spermine as a backbone amine, and 18.52 g (0.25 mol) of hydroxyacetone (HA) as a starting material for the isopropyl group N. 0.25HA-IP-Spermine was obtained in the same manner as in Example 5, except that 101.64 g (1.75 mol) of acetone and 101.64 g (1.75 mol) of acetone were added (yield: 95%). Further, in the same manner as in Example 6, a polyamine carrier containing 29% by mass of 0.25HA-IP-Spermine was obtained.
《比較例1~6》
 表1に示す骨格アミンをそのまま表1に示す支持体に表1に示す含有率で担持させてポリアミン担持体を得た。
《Comparative Examples 1 to 6》
The skeleton amines shown in Table 1 were directly supported on the supports shown in Table 1 at the content rates shown in Table 1 to obtain polyamine carriers.
《比較例7》
<IP-ポリアミンの合成>
 ジイソプロピル化テトラエチレンペンタミン(別名:1,11-ジイソプロピルアミノ-3,6,9-トリアザウンデカン)(IP-TEPA)の合成
《Comparative Example 7》
<Synthesis of IP-polyamine>
Synthesis of diisopropylated tetraethylenepentamine (also known as 1,11-diisopropylamino-3,6,9-triazaundecane) (IP-TEPA)
 還元された触媒が入ったフラスコに、イソプロピル基Nの出発原料としてアセトン127.8g(2.3モル)だけを入れたこと以外、実施例1と同様に、IP-TEPAを得た(収率95%)。また、実施例1と同様に、IP-TEPAを25質量%含むポリアミン担持体を得た。
《比較例8》
 IP-TEPAの含有率を29質量%に変更したこと以外、実施例7と同様に、ポリアミン担持体を得た。
IP-TEPA was obtained in the same manner as in Example 1, except that only 127.8 g (2.3 mol) of acetone was added as a starting material for the isopropyl group N to the flask containing the reduced catalyst (yield 95%). Further, in the same manner as in Example 1, a polyamine carrier containing 25% by mass of IP-TEPA was obtained.
《Comparative Example 8》
A polyamine carrier was obtained in the same manner as in Example 7 except that the content of IP-TEPA was changed to 29% by mass.
 表1に各実施例および比較例のポリアミン担持体の組成をまとめる。 Table 1 summarizes the composition of the polyamine carrier of each Example and Comparative Example.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
<評価試験>
 実施例および比較例のポリアミン担持体について、所定の温度で二酸化炭素の各圧力における平衡吸収量を定容法によって測定した。測定装置には、株式会社島津製作所製のASAP2020を用いた。この装置は、JIS Z 8831-2およびJIS Z 8831-3に記載の原理でガス吸着量を測定することにより、材料の比表面積および細孔径を求めることができる装置である。本装置を用いて同様の原理により二酸化炭素の吸収量を測定することができる。各評価試験における測定方法は、特に記載のない限り、以下の通りである。
<Evaluation test>
For the polyamine carriers of Examples and Comparative Examples, the equilibrium absorption amount of carbon dioxide at each pressure at a predetermined temperature was measured by a constant volume method. ASAP2020 manufactured by Shimadzu Corporation was used as the measuring device. This device is a device that can determine the specific surface area and pore diameter of a material by measuring the amount of gas adsorption based on the principles described in JIS Z 8831-2 and JIS Z 8831-3. Using this device, the amount of carbon dioxide absorbed can be measured based on the same principle. The measurement method in each evaluation test is as follows unless otherwise specified.
 サンプル管に測定試料を約0.1g量り取った後、6時間の真空排気により、試料の前処理を行い、さらに27℃、40℃または60℃のいずれかの温度に試料温度を保持した。サンプル管に二酸化炭素を少しずつ導入し、100kPaまでの圧力範囲を指定して、各測定温度における二酸化炭素の分圧と吸収量との関係を得た。 After weighing out approximately 0.1 g of a measurement sample into a sample tube, the sample was pretreated by evacuation for 6 hours, and the sample temperature was further maintained at either 27°C, 40°C, or 60°C. Carbon dioxide was introduced little by little into the sample tube, a pressure range up to 100 kPa was specified, and the relationship between the partial pressure of carbon dioxide and the absorption amount at each measurement temperature was obtained.
 減圧による二酸化炭素の脱離(回収)量は、脱離後のポリアミン担持体を用いた場合の二酸化炭素の吸収量とした。脱離した量の二酸化炭素が、その後、吸収されるためである。具体的には、二酸化炭素を吸収させた試料からターボ分子ポンプにより、20分間減圧排気した後、再度、前記方法によって、二酸化炭素を導入し、等温線を測定した。二酸化炭素の吸収量は、100kPaまたは13kPaでの吸収量を読み取った。5分間減圧時の到達真空度は0.5Paであり、20分間減圧時の到達真空度は0.2Paであった。 The amount of carbon dioxide desorbed (recovered) by reduced pressure was taken as the amount of carbon dioxide absorbed when using the polyamine support after desorption. This is because the desorbed amount of carbon dioxide is subsequently absorbed. Specifically, after the sample in which carbon dioxide had been absorbed was evacuated under reduced pressure for 20 minutes using a turbo molecular pump, carbon dioxide was introduced again using the method described above, and the isotherm was measured. The amount of carbon dioxide absorbed was measured at 100 kPa or 13 kPa. The degree of vacuum achieved when the pressure was reduced for 5 minutes was 0.5 Pa, and the degree of vacuum achieved when the pressure was reduced for 20 minutes was 0.2 Pa.
<評価試験1>
 実施例1~12および比較例1~9で得られたポリアミン担持体の二酸化炭素の吸収量および減圧による脱離(回収)量を測定した。表2に結果を示す。また、図1、2に実施例5、6の0.25HA-IP-TEPA(25)/Q30と0.25HA-IP-TEPA(29)/Q30の結果を示し、図3、4に比較例1、2のTEPA(25)/Q30とTEPA(29)/Q30の結果を示し、図5、6に比較例7、8のIP-TEPA(25)/Q30とIP-TEPA(29)/Q30の結果を示す。各図において、横軸(Absolutepressure)はCOの絶対圧もしくは分圧に相当し、縦軸(CO2 adsorbed)はCOの吸収量を示す。
<Evaluation test 1>
The amount of carbon dioxide absorbed by the polyamine carriers obtained in Examples 1 to 12 and Comparative Examples 1 to 9 and the amount desorbed (recovered) under reduced pressure were measured. Table 2 shows the results. In addition, Figures 1 and 2 show the results of 0.25HA-IP-TEPA (25)/Q30 and 0.25HA-IP-TEPA (29)/Q30 of Examples 5 and 6, and Figures 3 and 4 show the results of comparative examples. The results of TEPA(25)/Q30 and TEPA(29)/Q30 in Comparative Examples 7 and 8 are shown in Figures 5 and 6. The results are shown below. In each figure, the horizontal axis (Absolutepressure) corresponds to the absolute pressure or partial pressure of CO2 , and the vertical axis (CO2 adsorbed) indicates the amount of CO2 absorbed.
 以下、表中の二酸化炭素の吸収量の単位はポリアミン担持体1kg当たりの吸収量(g)である。また、(A)に示す吸収量(mol/kg)は、フレッシュなサンプルの各温度、各圧力における吸収量(図1~6のFirst adsorption)を示し、(B)に示す減圧による脱離(回収)量は、20分間真空ポンプにて減圧したポリアミン担持体を用いた同条件での吸収量(図1~6のRegeneration)から求めた値であり、(B)に示す量が吸収と減圧脱離を繰り返した時の吸収量と脱離(回収)量に相当する。(B)では同様の操作を3回繰り返し、同様の値が得られることを確認した。 Hereinafter, the unit of carbon dioxide absorption amount in the table is the absorption amount (g) per 1 kg of polyamine carrier. In addition, the absorption amount (mol/kg) shown in (A) indicates the absorption amount (first adsorption in Figures 1 to 6) of a fresh sample at each temperature and each pressure, and the absorption amount (mol/kg) shown in (B) by reduced pressure ( The amount (recovered) is the value obtained from the amount absorbed under the same conditions (Regeneration in Figures 1 to 6) using a polyamine support that was depressurized with a vacuum pump for 20 minutes, and the amount shown in (B) is the amount of absorption and depressurization. This corresponds to the amount absorbed and the amount desorbed (recovered) when desorption is repeated. In (B), the same operation was repeated three times and it was confirmed that similar values were obtained.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
<評価試験2>
 実施例1~12および比較例1~8で得られたポリアミン担持体を用い、40℃、13kPaの条件で二酸化炭素の吸収量を測定し、40℃で脱離量を測定した他は、評価試験1と同様にして各値を測定した。表3に結果を示す。
<Evaluation test 2>
Using the polyamine supports obtained in Examples 1 to 12 and Comparative Examples 1 to 8, the amount of carbon dioxide absorbed was measured at 40°C and 13 kPa, and the amount of desorption was measured at 40°C. Each value was measured in the same manner as Test 1. Table 3 shows the results.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
<評価試験3:温度の影響>
 実施例6(0.25HA-IP-TEPA(29)/Q30)および比較例2(TEPA(29)/Q30)のポリアミン担持体をそれぞれ用いて、27℃、40℃および60℃のそれぞれ温度で、二酸化炭素の吸収量と脱離(回収)量を測定した。表4に結果を示す。
<Evaluation test 3: Effect of temperature>
The polyamine supports of Example 6 (0.25HA-IP-TEPA(29)/Q30) and Comparative Example 2 (TEPA(29)/Q30) were used at temperatures of 27°C, 40°C, and 60°C, respectively. The amount of carbon dioxide absorbed and desorbed (recovered) was measured. Table 4 shows the results.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
<評価試験4:水蒸気の影響検討>
 ポリアミン担持体は、二酸化炭素以外に水蒸気を含む混合ガスから二酸化炭素を分離する条件でも使用されるため、水蒸気の影響を検討した。加湿条件下における二酸化炭素の吸収量の測定には、固定床流通式試験装置(GLサイエンス社製)を用いた。
<Evaluation test 4: Examination of the influence of water vapor>
Since the polyamine support is used under conditions where carbon dioxide is separated from a mixed gas containing water vapor in addition to carbon dioxide, the influence of water vapor was investigated. A fixed bed flow test device (manufactured by GL Science) was used to measure the amount of carbon dioxide absorbed under humidified conditions.
 実施例6(0.25HA-IP-TEPA(29)/Q30)または実施例12(0.25HA-IP-Spermine(29)/Q30)のポリアミン担持体1gを反応管に充填し、アルゴン気流中(30cm・min-1)、80℃で6時間乾燥脱気の前処理後、反応管を60℃に保温した。次に導入ガスをHO/Ar混合ガス(全流速:30cm・min-1)に切り替え、ポリアミン担持体に水を吸収させた。 A reaction tube was filled with 1 g of the polyamine support of Example 6 (0.25HA-IP-TEPA (29)/Q30) or Example 12 (0.25HA-IP-Spermine (29)/Q30), and the mixture was placed in an argon stream. (30 cm 3 ·min −1 ), and after pretreatment of drying and degassing at 80°C for 6 hours, the reaction tube was kept at 60°C. Next, the introduced gas was switched to H 2 O/Ar mixed gas (total flow rate: 30 cm 3 ·min −1 ), and water was absorbed into the polyamine support.
 水の吸収が飽和に達した後、導入ガスをCO(13%)-HO-N(balance)(全流速:30cm・min-1)に切り替え、同時に出口ガス組成の経時変化をガスクロマトグラフ(GLサイエンス社製;GC-390又はGC-323)で測定することにより破過曲線を得た。 After the absorption of water reached saturation, the introduced gas was switched to CO 2 (13%)-H 2 O-N 2 (balance) (total flow rate: 30 cm 3 ·min -1 ), and at the same time the change in outlet gas composition over time was observed. A breakthrough curve was obtained by measuring with a gas chromatograph (manufactured by GL Sciences; GC-390 or GC-323).
 二酸化炭素の吸収量が飽和に達した後、導入ガスをアルゴン(30cm・min-1)に切り替え、引き続き、出口ガス組成の経時変化をガスクロマトグラフにより測定した。本測定では真空ポンプによる減圧に代えてアルゴンガスを導入することにより、系内の二酸化炭素分圧を下げて二酸化炭素を脱離させた。 After the amount of carbon dioxide absorbed reached saturation, the introduced gas was switched to argon (30 cm 3 ·min −1 ), and the change over time in the outlet gas composition was subsequently measured using a gas chromatograph. In this measurement, argon gas was introduced instead of reducing the pressure using a vacuum pump, thereby lowering the partial pressure of carbon dioxide in the system and desorbing carbon dioxide.
 吸収量は、吸収開始時から飽和に達するまでの時間と出口濃度変化の積算から求めた。脱離量は、アルゴンガスに切り替えた時間から二酸化炭素が出口側からほぼ検出されなくなるまでの時間と出口濃度変化の積算から求めた。表5に結果を示す。乾燥条件での評価は、60℃、13kPaの条件で二酸化炭素の吸収量を測定し、60℃で脱離量を測定した他は、評価試験1と同様にして、前述のASAP2020によって測定した結果である。 The amount of absorption was determined from the integration of the time from the start of absorption until reaching saturation and the change in outlet concentration. The amount of desorption was determined from the integration of the time from the time of switching to argon gas until carbon dioxide was almost no longer detected from the outlet side and the change in outlet concentration. Table 5 shows the results. The evaluation under dry conditions was performed in the same manner as Evaluation Test 1, except that the amount of carbon dioxide absorbed was measured at 60°C and 13kPa, and the amount desorbed at 60°C, and the results were measured using ASAP2020 described above. It is.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
<評価試験5:加熱による脱離の検討>
 温度スイング法への適用可能性を検討するため、固定床流通式試験装置(GLサイエンス社製)を用いて、実施例9(0.25HA-IP-TEPA(50)/MSU-F)または比較例5(TEPA(50)/MSU-F)のポリアミン担持体の加熱による脱離(回収)について検討を行った。
<Evaluation test 5: Examination of desorption by heating>
In order to examine the applicability to the temperature swing method, a fixed bed flow test device (manufactured by GL Science) was used to test Example 9 (0.25HA-IP-TEPA (50)/MSU-F) or comparative Desorption (recovery) of the polyamine support of Example 5 (TEPA (50)/MSU-F) by heating was investigated.
 加熱による脱離は、固定床流通式試験装置を用いて60℃で二酸化炭素を含む混合ガス(CO(13%)-Nバランス)を通し、二酸化炭素の吸収量が飽和に達した後、アルゴンガスを導入し、60℃で30分間保持して、その間に脱離した二酸化炭素の量を測定した。表6に結果を示す。 Desorption by heating is performed by passing a mixed gas containing carbon dioxide (CO 2 (13%) - N 2 balance) at 60 °C using a fixed bed flow test device, and after the amount of carbon dioxide absorbed reaches saturation. Then, argon gas was introduced, and the temperature was maintained at 60° C. for 30 minutes, and the amount of carbon dioxide released during that time was measured. Table 6 shows the results.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 本開示に係る二酸化炭素分離材は、二酸化炭素の吸収量が増加すると共に、短時間の減圧で多くの二酸化炭素を分離回収できるため、効率的かつ実用的であり、再利用に適している。また、本開示に係る二酸化炭素分離材は、二酸化炭素吸収及び脱離工程において、圧力スィング法、温度スィング法のいずれの方法でも二酸化炭素の分離回収を行うことが可能であり、様々な使用環境に適した二酸化炭素吸収及び脱離工程を選択することが可能である。加えて、本開示に係る二酸化炭素分離材は、水蒸気が共存する場合においても、吸収、脱離及び再吸収の性能が低下せず、除湿工程を必要としないため、省エネルギーのシステム構築及び装置の小型化によるコスト削減が可能である。 The carbon dioxide separation material according to the present disclosure increases the amount of carbon dioxide absorbed and can separate and recover a large amount of carbon dioxide in a short time under reduced pressure, so it is efficient, practical, and suitable for reuse. In addition, the carbon dioxide separation material according to the present disclosure can separate and recover carbon dioxide using either the pressure swing method or the temperature swing method in the carbon dioxide absorption and desorption process, and can be used in various usage environments. It is possible to select appropriate carbon dioxide absorption and desorption steps. In addition, the carbon dioxide separation material according to the present disclosure does not reduce its absorption, desorption, and reabsorption performance even when water vapor coexists, and does not require a dehumidification process, so it is useful for building energy-saving systems and equipment. Cost reduction is possible through miniaturization.
 本発明を現時点での好ましい実施態様に関して説明したが、そのような開示を限定的に解釈してはならない。種々の変形および改変は、上記開示を読むことによって本発明に属する技術分野における当業者には間違いなく明らかになるであろう。したがって、添付の請求の範囲は、本発明の真の精神および範囲から逸脱することなく、すべての変形および改変を包含する、と解釈されるべきものである。
 
Although the invention has been described in terms of presently preferred embodiments, such disclosure is not to be construed as a limitation. Various modifications and alterations will no doubt become apparent to those skilled in the art to which this invention pertains after reading the above disclosure. It is, therefore, intended that the appended claims be construed as covering all changes and modifications without departing from the true spirit and scope of the invention.

Claims (17)

  1.  ポリアミンを含み、
     前記ポリアミンは、窒素原子に結合する水素原子または官能基を有するとともに分子内のそれぞれ別の窒素原子に結合する2つ以上のイソプロピル基を有するイソプロピルポリアミン成分を含み、
     少なくとも1つの前記イソプロピル基は、ヒドロキシ基を有するヒドロキシイソプロピル基であり、前記ヒドロキシイソプロピル基においてヒドロキシ基は1級炭素原子に結合しており、
     ヒドロキシ基を有さない前記イソプロピル基は非置換イソプロピル基である、二酸化炭素分離材。
    Contains polyamines,
    The polyamine includes an isopropyl polyamine component having a hydrogen atom or a functional group bonded to a nitrogen atom and two or more isopropyl groups bonded to different nitrogen atoms in the molecule,
    At least one of the isopropyl groups is a hydroxyisopropyl group having a hydroxy group, and in the hydroxyisopropyl group, the hydroxy group is bonded to a primary carbon atom,
    A carbon dioxide separation material, wherein the isopropyl group having no hydroxy group is an unsubstituted isopropyl group.
  2.  前記イソプロピル基は2級アミンを構成する窒素原子に結合している、請求項1に記載の二酸化炭素分離材。 The carbon dioxide separation material according to claim 1, wherein the isopropyl group is bonded to a nitrogen atom that constitutes a secondary amine.
  3.  前記イソプロピルポリアミン成分は、2つ以上のNH基と、窒素原子間に介在する1つ以上のアルキレン基と、を有する、請求項1または2に記載の二酸化炭素分離材。 The carbon dioxide separation material according to claim 1 or 2, wherein the isopropyl polyamine component has two or more NH groups and one or more alkylene groups interposed between nitrogen atoms.
  4.  前記ポリアミンは、前記イソプロピルポリアミン成分として、第1ポリアミン成分および第2ポリアミン成分からなる群より選択される少なくとも1種を含み、任意成分として、更に、第3ポリアミン成分を含んでもよく、
     前記第1ポリアミン成分は、前記非置換イソプロピル基を有さず、かつそれぞれ別の窒素原子に結合する2つ以上の前記ヒドロキシイソプロピル基を有し、
     前記第2ポリアミン成分は、それぞれ別の窒素原子に結合する1つ以上の前記ヒドロキシイソプロピル基と1つ以上の前記非置換イソプロピル基とを有し、
     前記第3ポリアミン成分は、前記ヒドロキシイソプロピル基を有さず、かつそれぞれ別の窒素原子に結合する2つ以上の前記非置換イソプロピル基を有する、請求項1~3のいずれか1項に記載の二酸化炭素分離材。
    The polyamine includes at least one selected from the group consisting of a first polyamine component and a second polyamine component as the isopropyl polyamine component, and may further include a third polyamine component as an optional component.
    The first polyamine component does not have the unsubstituted isopropyl group and has two or more of the hydroxyisopropyl groups each bonded to a different nitrogen atom,
    The second polyamine component has one or more of the hydroxyisopropyl groups and one or more of the unsubstituted isopropyl groups each bonded to a different nitrogen atom,
    The third polyamine component does not have the hydroxyisopropyl group and has two or more of the unsubstituted isopropyl groups each bonded to a different nitrogen atom, according to any one of claims 1 to 3. Carbon dioxide separation material.
  5.  前記第1ポリアミン成分、前記第2ポリアミン成分および前記第3ポリアミン成分が、一般式(1):
    で表される骨格を有し、
     式(1)中のRは、水素原子または炭素数1~6のアルキル基または炭素数1~6のアルキルアミノ基を示し、
     Aは、炭素数2~6のアルキレン基を示し、
     mは、2~50の整数を示し、
     複数あるAは、同一であっても、それぞれ異なっていてもよい、請求項4に記載の二酸化炭素分離材。
    The first polyamine component, the second polyamine component, and the third polyamine component have the general formula (1):
    It has a skeleton represented by
    R in formula (1) represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkylamino group having 1 to 6 carbon atoms,
    A represents an alkylene group having 2 to 6 carbon atoms,
    m represents an integer from 2 to 50,
    The carbon dioxide separation material according to claim 4, wherein the plurality of A's may be the same or different.
  6.  前記第1ポリアミン成分、前記第2ポリアミン成分および前記第3ポリアミン成分が、それぞれ一般式(2):
    Figure JPOXMLDOC01-appb-I000002
    で表され、
     式(2)中、Rは、Rまたは基:-A-NRを示し、
     Rは、Rまたは基:-A-NRを示し、
     Aは、炭素数2~6のアルキレン基を示し、
     nは、0~5の整数を示し、
     pおよびqは、それぞれ独立して0または1を示し、
     複数あるAは、同一であっても、それぞれ異なっていてもよく、
     複数ある場合のRは、同一であっても、それぞれ異なっていてもよく、
     前記第1ポリアミン成分の場合、R、R、RおよびRは前記ヒドロキシイソプロピル基を示し、R、R、R、RおよびRは水素原子を示し、
     前記第2ポリアミン成分の場合、R、R、RおよびRの少なくとも1つは前記ヒドロキシイソプロピル基を示し、R、R、RおよびRの残部は前記非置換イソプロピル基を示し、R、R、R、RおよびRは水素原子を示し、
     前記第3ポリアミン成分の場合、R、R、RおよびRは前記非置換イソプロピル基を示し、R、R、R、RおよびRは水素原子を示す、請求項4に記載の二酸化炭素分離材。
    The first polyamine component, the second polyamine component, and the third polyamine component each have the general formula (2):
    Figure JPOXMLDOC01-appb-I000002
    It is expressed as
    In formula (2), R A represents R 6 or a group: -A-NR 6 R 7 ,
    R B represents R 8 or a group: -A-NR 8 R 9 ;
    A represents an alkylene group having 2 to 6 carbon atoms,
    n represents an integer from 0 to 5,
    p and q each independently represent 0 or 1,
    Multiple A's may be the same or different,
    When there are multiple R 5 's, they may be the same or different,
    In the case of the first polyamine component, R 1 , R 2 , R 6 and R 8 represent the hydroxyisopropyl group, R 3 , R 4 , R 5 , R 7 and R 9 represent a hydrogen atom,
    In the case of the second polyamine component, at least one of R 1 , R 2 , R 6 and R 8 represents the hydroxyisopropyl group, and the remainder of R 1 , R 2 , R 6 and R 8 represents the unsubstituted isopropyl group. , R 3 , R 4 , R 5 , R 7 and R 9 represent hydrogen atoms,
    In the case of the third polyamine component, R 1 , R 2 , R 6 and R 8 represent the unsubstituted isopropyl group, and R 3 , R 4 , R 5 , R 7 and R 9 represent a hydrogen atom. 4. Carbon dioxide separation material according to 4.
  7.  前記ポリアミンの760mmHgにおける沸点が320℃以上である、請求項1~6のいずれか1項に記載の二酸化炭素分離材。 The carbon dioxide separation material according to any one of claims 1 to 6, wherein the polyamine has a boiling point of 320°C or higher at 760 mmHg.
  8.  前記ポリアミンの骨格アミンが、エチレンイミン、プロピレンイミン、2-エチルアジリジン、2-プロピルアジリジンおよび2-ブチルアジリジンのモノポリマー並びにこれらの少なくとも2種のコポリマーからなる群より選ばれる少なくとも1種である、請求項1~7のいずれか1項に記載の二酸化炭素分離材。 The backbone amine of the polyamine is at least one selected from the group consisting of monopolymers of ethyleneimine, propyleneimine, 2-ethylaziridine, 2-propylaziridine and 2-butylaziridine, and copolymers of at least two of these. The carbon dioxide separation material according to any one of claims 1 to 7.
  9.  前記ポリアミンの骨格アミンが、テトラエチレンペンタミン、スペルミン、N,N,N’,N’-テトラキス(3-アミノプロピル)-1,4-ブタンジアミン、ペンタエチレンヘキサミン、ヘキサエチレンヘプタミンおよびトリエチレンテトラミンからなる群より選ばれる少なくとも1種である、請求項1~8のいずれか1項に記載の二酸化炭素分離材。 The backbone amine of the polyamine is tetraethylenepentamine, spermine, N,N,N',N'-tetrakis(3-aminopropyl)-1,4-butanediamine, pentaethylenehexamine, hexaethyleneheptamine, and triethylene. The carbon dioxide separation material according to any one of claims 1 to 8, which is at least one member selected from the group consisting of tetramine.
  10.  前記二酸化炭素分離材は、ポリアミン担持体を含み、
     前記ポリアミン担持体は、前記ポリアミンと、前記ポリアミンを担持する支持体と、を含む、請求項1~9のいずれか1項に記載の二酸化炭素分離材。
    The carbon dioxide separation material includes a polyamine carrier,
    The carbon dioxide separation material according to any one of claims 1 to 9, wherein the polyamine carrier includes the polyamine and a support supporting the polyamine.
  11.  前記支持体が、シリカ、ポリメチルメタクリレート、アルミナ、シリカアルミナ、粘土鉱物、マグネシア、ジルコニア、ゼオライト、ゼオライト類縁化合物、天然鉱物、廃棄物固体、活性炭およびカーボンモレキュラーシーブからなる群より選択される少なくとも1種である、請求項10に記載の二酸化炭素分離材。 The support is at least one selected from the group consisting of silica, polymethyl methacrylate, alumina, silica alumina, clay minerals, magnesia, zirconia, zeolites, zeolite analogs, natural minerals, waste solids, activated carbon, and carbon molecular sieves. The carbon dioxide separation material according to claim 10, which is a seed.
  12.  前記支持体が、比表面積(BET)が50m/g以上1000m/g以下であり、かつ、細孔容積が0.1cm/g~2.3cm/gである、請求項10または11に記載の二酸化炭素分離材。 Claim 10 or _ 12. Carbon dioxide separation material according to 11.
  13.  前記ポリアミン担持体と、前記ポリアミン担持体を造粒するバインダーと、を含む、請求項10~12のいずれか1項に記載の二酸化炭素分離材。 The carbon dioxide separation material according to any one of claims 10 to 12, comprising the polyamine carrier and a binder for granulating the polyamine carrier.
  14.  前記バインダーが、シリカ、アルミナ、シリカアルミナ、粘土鉱物、フッ素樹脂、セルロース誘導体およびエポキシ樹脂からなる群より選択される少なくとも1種である、請求項13に記載の二酸化炭素分離材。 The carbon dioxide separation material according to claim 13, wherein the binder is at least one selected from the group consisting of silica, alumina, silica alumina, clay minerals, fluororesins, cellulose derivatives, and epoxy resins.
  15.  処理対象のガスを請求項1~14のいずれか1項に記載の二酸化炭素分離材に接触させ、二酸化炭素を吸収する第1工程、および
     前記第1工程において二酸化炭素を吸収した前記二酸化炭素分離材から二酸化炭素を脱離させる第2工程、
    を含む二酸化炭素を分離又は回収する方法であって、
     前記第2工程が
    (A)前記二酸化炭素分離材を減圧条件下におき、二酸化炭素を脱離させる工程(圧力スィング法)、
    (B)前記二酸化炭素分離材に水蒸気および不活性ガスの少なくとも一方を接触させ、二酸化炭素を脱離させる工程、及び
    (C)前記二酸化炭素分離材を加熱し、二酸化炭素を脱離させる工程(温度スィング法)
    のいずれか一つ以上を含む、二酸化炭素を分離又は回収する方法。
    A first step of bringing the gas to be treated into contact with the carbon dioxide separation material according to any one of claims 1 to 14 and absorbing carbon dioxide; and the carbon dioxide separation that has absorbed carbon dioxide in the first step. a second step of desorbing carbon dioxide from the material;
    A method for separating or recovering carbon dioxide containing
    The second step is (A) a step of placing the carbon dioxide separation material under reduced pressure conditions and desorbing carbon dioxide (pressure swing method);
    (B) a step of contacting the carbon dioxide separation material with at least one of water vapor and an inert gas to desorb carbon dioxide, and (C) a step of heating the carbon dioxide separation material to desorb carbon dioxide ( temperature swing method)
    A method for separating or recovering carbon dioxide, including one or more of the following.
  16.  前記処理対象のガスが温度20~60℃かつ二酸化炭素分圧100kPa以下のガスである請求項15に記載の二酸化炭素を分離又は回収する方法。 The method for separating or recovering carbon dioxide according to claim 15, wherein the gas to be treated is a gas having a temperature of 20 to 60°C and a partial pressure of carbon dioxide of 100 kPa or less.
  17.  ポリアミンを準備する工程と、
     前記ポリアミンを支持体と接触させ、前記ポリアミンと、前記ポリアミンを担持する前記支持体と、を含むポリアミン担持体を得る工程と、
    を具備し、
     前記ポリアミンは、窒素原子に結合する水素原子または官能基を有するとともに分子内のそれぞれ別の窒素原子に結合する2つ以上のイソプロピル基を有するイソプロピルポリアミン成分を含み、
     少なくとも1つの前記イソプロピル基は、ヒドロキシ基を有するヒドロキシイソプロピル基であり、前記ヒドロキシイソプロピル基においてヒドロキシ基は1級炭素原子に結合しており、
     ヒドロキシ基を有さない前記イソプロピル基は非置換イソプロピル基である、二酸化炭素分離材の製造方法。
     
     
     
     
    a step of preparing a polyamine;
    contacting the polyamine with a support to obtain a polyamine carrier containing the polyamine and the support supporting the polyamine;
    Equipped with
    The polyamine includes an isopropyl polyamine component having a hydrogen atom or a functional group bonded to a nitrogen atom and two or more isopropyl groups bonded to different nitrogen atoms in the molecule,
    At least one of the isopropyl groups is a hydroxyisopropyl group having a hydroxy group, and in the hydroxyisopropyl group, the hydroxy group is bonded to a primary carbon atom,
    A method for producing a carbon dioxide separation material, wherein the isopropyl group having no hydroxy group is an unsubstituted isopropyl group.



PCT/JP2023/010419 2022-03-25 2023-03-16 Carbon dioxide separation material, method for separating and recovering carbon dioxide, and method for producing carbon dioxide separation material WO2023182171A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022050574A JP2023143283A (en) 2022-03-25 2022-03-25 Carbon dioxide separation material, method for separating or recovering carbon dioxide, and method for producing carbon dioxide separation material
JP2022-050574 2022-03-25

Publications (1)

Publication Number Publication Date
WO2023182171A1 true WO2023182171A1 (en) 2023-09-28

Family

ID=88101539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/010419 WO2023182171A1 (en) 2022-03-25 2023-03-16 Carbon dioxide separation material, method for separating and recovering carbon dioxide, and method for producing carbon dioxide separation material

Country Status (2)

Country Link
JP (1) JP2023143283A (en)
WO (1) WO2023182171A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014208712A1 (en) * 2013-06-28 2014-12-31 公益財団法人地球環境産業技術研究機構 Carbon dioxide separating material, and method for separation or recovery of carbon dioxide
JP2022007403A (en) * 2020-06-26 2022-01-13 東ソー株式会社 Polyethylenepolyamine derivative

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014208712A1 (en) * 2013-06-28 2014-12-31 公益財団法人地球環境産業技術研究機構 Carbon dioxide separating material, and method for separation or recovery of carbon dioxide
JP2022007403A (en) * 2020-06-26 2022-01-13 東ソー株式会社 Polyethylenepolyamine derivative

Also Published As

Publication number Publication date
JP2023143283A (en) 2023-10-06

Similar Documents

Publication Publication Date Title
JP6300457B2 (en) Carbon dioxide separator and method for separating or recovering carbon dioxide
US10953384B2 (en) Regenerative adsorbents of modified amines on solid supports
Wang et al. Surfactant promoted solid amine sorbents for CO 2 capture
Patel et al. High capacity carbon dioxide adsorption by inexpensive covalent organic polymers
Lu et al. Polyamine‐tethered porous polymer networks for carbon dioxide capture from flue gas
Choi et al. Structural effects of amine polymers on stability and energy efficiency of adsorbents in post-combustion CO2 capture
US8298986B2 (en) Structures for capturing CO2, methods of making the structures, and methods of capturing CO2
Liu et al. Control of porosity of novel carbazole-modified polytriazine frameworks for highly selective separation of CO 2–N 2
JP2015504000A (en) Alkylamine functionalized metal organic framework for gas separation
US9283511B2 (en) Composite materials for reversible CO2 capture
Ding et al. Mannitol-based acetal-linked porous organic polymers for selective capture of carbon dioxide over methane
JP6014576B2 (en) Amino compound-supported porous material and method for producing the same
WO2023182171A1 (en) Carbon dioxide separation material, method for separating and recovering carbon dioxide, and method for producing carbon dioxide separation material
WO2023182173A1 (en) Carbon dioxide isolator, method for isolating or recovering carbon dioxide, and method for producing carbon dioxide isolator
JP7240633B2 (en) CO2 adsorption/desorption material
Vinodh et al. Homopiperazine grafted mesoporous silicas from rice husk ash for CO2 adsorption
US20220096999A1 (en) Materials including alkyl diamine-substituted aryl compounds, methods of making, and methods of separating co2
WO2023181676A1 (en) Carbon dioxide separator, and method for separating or recovering carbon dioxide
KR102488884B1 (en) Cucurbituril-amine compound-porous material complex, preparation method thereof and carbon dioxide asorbent comprising the same
US9808784B2 (en) Mesoporous cellular foam impregnated with iron-substituted heteropolyacid, preparation method therefor, and carbon dioxide separation method using same
AU2020417967B2 (en) Compositions, methods, and systems for capturing carbon dioxide from a gas stream
WO2023100986A1 (en) Carbon dioxide adsorbent
EP4289503A1 (en) Sorbent materials for carbon dioxide separation
CN116571216B (en) Carbon dioxide solid amine adsorption material and preparation method and application thereof
JP2021003664A (en) CO2 adsorbent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23774767

Country of ref document: EP

Kind code of ref document: A1