WO2023182111A1 - 巻線界磁型の回転電機用駆動装置 - Google Patents
巻線界磁型の回転電機用駆動装置 Download PDFInfo
- Publication number
- WO2023182111A1 WO2023182111A1 PCT/JP2023/010185 JP2023010185W WO2023182111A1 WO 2023182111 A1 WO2023182111 A1 WO 2023182111A1 JP 2023010185 W JP2023010185 W JP 2023010185W WO 2023182111 A1 WO2023182111 A1 WO 2023182111A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- switching element
- rotor winding
- winding
- mode
- drive mode
- Prior art date
Links
- 238000004804 winding Methods 0.000 claims abstract description 92
- 230000007704 transition Effects 0.000 claims description 2
- 230000003247 decreasing effect Effects 0.000 abstract description 14
- 238000010586 diagram Methods 0.000 description 9
- 238000000034 method Methods 0.000 description 8
- 239000003990 capacitor Substances 0.000 description 6
- 238000009499 grossing Methods 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000004891 communication Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P25/00—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
- H02P25/02—Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
- H02P25/022—Synchronous motors
- H02P25/024—Synchronous motors controlled by supply frequency
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
Definitions
- the present disclosure relates to a winding field type rotating electrical machine drive device.
- the first switching element electrically connected between the power source and the brushes is set to PWM (Pulse Modulation).
- PWM Pulse Modulation
- a technique is known in which a second switching element electrically connected between the brush and the ground is always turned on while controlling the width (width modulation).
- the present disclosure achieves low-loss control when increasing the current flowing through the rotor winding, while reducing system loss that may increase when decreasing the current flowing through the rotor winding.
- the purpose is to
- a drive device for a wound field type rotating electrical machine that drives a wound field type rotating electrical machine in which a rotor winding is wound around a rotor core, a first switching element electrically connected between one end of the rotor winding and a high potential side line of a power source; a second switching element electrically connected between the other end of the rotor winding and a low potential line of the power source;
- a control device that controls the first switching element and the second switching element, The control device drives the first switching element and the second switching element in a first mode in which the states of both the first switching element and the second switching element are switched between an on state and an off state when reducing the current flowing through the rotor winding,
- a second switching element that maintains one of the first switching element and the second switching element in an on state and switches the other between an on state and an off state when increasing the current flowing through the rotor winding.
- a winding field type rotary electric machine driving device that is driven in a mode is provided.
- the present disclosure achieves low-loss control when increasing the current flowing through the rotor winding, while reducing system loss that may increase when decreasing the current flowing through the rotor winding. becomes possible.
- FIG. 1 is a configuration diagram showing a vehicle drive system including a drive device for a rotating electrical machine according to an embodiment.
- FIG. 2 is a schematic cross-sectional view showing a part of the cross section of the rotating electric machine.
- FIG. 2 is a diagram showing an example of a hardware configuration related to a microcomputer according to the present embodiment.
- FIG. 2 is a diagram schematically showing an example of various functions realized by the microcomputer of this embodiment.
- 3B is a flowchart illustrating an example of a process executed by a microcomputer that is related to each function shown in FIG. 3B.
- FIG. It is a figure which shows an example of various waveforms at the time of switching from single arm drive mode to double arm drive mode.
- 6 is an explanatory diagram of the current flowing through the rotor winding (rotor winding current) during a specific period in FIG. 5.
- FIG. 5 is an explanatory diagram of the current flowing through the rotor winding (rotor winding current) during a specific period
- FIG. 1 is a configuration diagram showing a vehicle drive system 1 including a drive device 5 for a rotating electrical machine according to this embodiment.
- FIG. 2 is a schematic cross-sectional view showing a part of the cross section of the rotating electric machine 3. As shown in FIG.
- the vehicle drive system 1 has a two-power supply configuration including a low-voltage battery 2A and a high-voltage battery 2B, and includes a rotating electric machine 3 and a drive device 5.
- the low voltage battery 2A is, for example, a lead battery, and has a rated voltage of, for example, 12V.
- the high voltage battery 2B is, for example, a lithium ion battery, and has a rated voltage significantly higher than that of the low voltage battery 2A, for example, has a rated voltage of 40V or more.
- the rated voltage of the high voltage battery 2B is assumed to be 300V or more. Note that the high voltage battery 2B may be in the form of a fuel cell or the like.
- the rotating electrical machine 3 is of a wire-wound field type and includes a rotor 310 in which a rotor winding 316 is wound around a rotor core 312.
- the rotor core 312 has teeth portions 3122 that protrude outward in the radial direction, and a conductor wire forming the rotor winding 316 is wound around the teeth portions 3122.
- a stator 320 is provided outside the rotor 310 in the radial direction.
- the stator winding 322 is wound around the teeth portion 3210 of the stator core 321, as shown in FIG.
- the drive device 5 includes a microcomputer 50 (hereinafter referred to as "microcomputer 50") and an electric circuit section 60.
- the microcomputer 50 may be realized as, for example, an ECU (Electronic Control Unit).
- the microcomputer 50 is connected to various electronic components (other ECUs and sensors) in the vehicle via a network 6 such as a CAN (controller area network).
- a network 6 such as a CAN (controller area network).
- the microcomputer 50 receives various commands such as control commands from a host ECU (not shown) via the network 6.
- the microcomputer 50 controls the rotating electric machine 3 via the electric circuit section 60 based on the control command.
- the microcomputer 50 operates based on power from the low voltage battery 2A.
- the electric circuit section 60 includes a smoothing capacitor 62, a power conversion circuit section 63, and a power supply circuit section 64.
- the smoothing capacitor 62 is provided between the high potential side line 20 and the low potential side line 22 of the high voltage battery 2B.
- a resistor R0 for passive discharge may be connected to both ends of the smoothing capacitor 62.
- the power conversion circuit section 63 is in the form of an inverter, and forms, for example, a three-phase bridge circuit.
- the power conversion circuit section 63 is connected between the high potential side line 20 and the low potential side line 22 in a manner parallel to the smoothing capacitor 62.
- the power conversion circuit section 63 includes each switching element SW3 of the arm on the high potential side and each switching element SW4 of the arm on the low potential side.
- the power supply circuit section 64 includes a bridge circuit section 641 and a drive circuit section 642.
- the bridge circuit section 641 is connected between the high potential side line 20 and the low potential side line 22 in a manner parallel to the smoothing capacitor 62 and the resistor R0 for passive discharge.
- Bridge circuit section 641 includes a pair of switching elements SW1 and SW2 and a pair of diodes D1 and D2.
- the switching element SW1 is connected in series to the diode D1 in such a manner that it is connected to the high potential side cathode of the diode D1.
- One end of rotor winding 316 is connected between switching element SW1 and diode D1.
- the switching element SW2 is connected in series to the diode D2 in such a manner that it is connected to the low potential side anode of the diode D2.
- the other end of rotor winding 316 is connected between switching element SW2 and diode D2.
- switching element SW1 and its related configuration of the pair of switching elements SW1 and SW2 may be referred to as "high potential side” for distinction, and switching element SW2 and its related configuration may be referred to as "high potential side". , "low potential side” may be added.
- the on/off state of the pair of switching elements SW1 and SW2 is switched via the drive circuit section 642.
- the pair of switching elements SW1 and SW2 change the energization state to the rotor winding 316 under the control of the drive circuit section 642.
- the switching elements SW1 and SW2 are, for example, IGBT (Insulated Gate Bipolar Transistor), MOSFET (Metal Oxide Semiconductor Field-Effect Tran) It may also take other forms, such as ⁇ sister''.
- the drive circuit section 642 drives the gate of the switching element SW1 on the high potential side based on the control signal from the microcomputer 50, and drives the gate of the switching element SW2 on the low potential side based on the control signal from the microcomputer 50. drive
- FIG. 3A is a diagram showing an example of the hardware configuration of the microcomputer 50 of this embodiment.
- a peripheral device 590 is schematically illustrated in association with the hardware configuration of the microcomputer 50.
- the peripheral device 590 may include the drive circuit section 642 shown in FIG. 1, a host ECU (not shown), and the like.
- the microcomputer 50 includes a CPU (Central Processing Unit) 541, a RAM (Random Access Memory) 542, a ROM (Read Only Memory) 543, an auxiliary storage device 544, a drive device 545, and a communication interface 547, which are connected via a bus 549. It includes a wired transmitter/receiver 555 and a wireless transmitter/receiver 556 connected to a communication interface 547 .
- the auxiliary storage device 544 is, for example, a HDD (Hard Disk Drive) or an SSD (Solid State Drive), and is a storage device that stores data related to application software and the like.
- the wired transmitter/receiver 555 includes a transmitter/receiver that can communicate using a wired network.
- a peripheral device 590 is connected to the wired transmitter/receiver 555 . However, some or all of the peripheral devices 590 may be connected to the bus 549 or to the wireless transceiver 556.
- the wireless transmitter/receiver 556 is a transmitter/receiver that can communicate using a wireless network.
- the wireless network may include a mobile phone wireless communication network, the Internet, a VPN (Virtual Private Network), a WAN (Wide Area Network), and the like.
- the wireless transmitting/receiving section 556 may include a near field communication (NFC) section, a Bluetooth (registered trademark) communication section, a Wi-Fi (Wireless-Fidelity) transmitting/receiving section, an infrared transmitting/receiving section, etc. .
- NFC near field communication
- Bluetooth registered trademark
- Wi-Fi Wireless-Fidelity
- the microcomputer 50 may be connectable to the recording medium 546.
- the recording medium 546 stores a predetermined program.
- the program stored in this recording medium 546 is installed in the auxiliary storage device 544 of the microcomputer 50 via the drive device 545.
- the installed predetermined program can be executed by the CPU 541 of the microcomputer 50.
- the recording medium 546 is a recording medium that records information optically, electrically, or magnetically, such as a CD (Compact Disc)-ROM, a flexible disk, or a magneto-optical disk, or a recording medium that records information optically, electrically, or magnetically, such as a ROM, a flash memory, etc. It may be a semiconductor memory or the like that electrically records information.
- the recording medium 546 does not include a carrier wave.
- FIG. 3B is a diagram schematically showing an example of various functions realized by the microcomputer 50 of this embodiment.
- Microcomputer 50 includes an inverter control section 500 and a rotor winding energization control section 510.
- the inverter control unit 500 controls energization to the stator winding 322 by controlling the on/off state of each switching element SW3, SW4 of the power conversion circuit unit 63 via the gate driver circuit 52. At this time, the inverter control unit 500 calculates a control target value based on a control command (for example, a required torque value) from a host ECU (not shown), and controls the stator winding so that the control target value is realized. Energization to line 322 may be controlled.
- a control command for example, a required torque value
- the rotor winding energization control section 510 controls the energization state of the rotor winding 316 of the rotating electrical machine 3 via the drive circuit section 642.
- the inverter control unit 500 calculates a control target value (for example, a target current value) based on a control command (for example, a required torque value) from a host ECU (not shown), and calculates a control target value (for example, a target current value) to realize the control target value.
- Energization to the rotor winding 316 may be controlled so that the rotor winding 316 is energized.
- the rotor winding energization control section 510 includes a determination information acquisition section 512, a switching condition determination section 514, a double arm drive control section 516, and a single arm drive control section 518, as shown in FIG. 3B. including.
- the determination information acquisition unit 512 acquires determination information used in switching condition determination processing by the switching condition determination unit 514, which will be described later.
- the determination information to be acquired is determined according to the switching condition determination process, and some examples will be described later.
- the switching condition determination unit 514 executes a switching condition determination process that determines whether the switching condition is successful or not.
- the switching condition is between a double arm drive mode (an example of the first mode) in which the double arm drive control section 516 operates and a single arm drive mode (an example of the second mode) in which the single arm drive control section 518 operates. It is a condition for switching, and is defined in advance.
- the switching conditions are basically such that when the current flowing through the rotor winding 316 is increased, a single arm drive mode is formed, and when the current flowing through the rotor winding 316 is decreased, both arm drive mode is formed.
- a drive mode is defined in advance to be formed. It should be noted that the switching conditions may function in such a manner that such basic relationships are compromised under exceptional circumstances. Such exceptional circumstances are optional, may not exist, and are not specifically mentioned below.
- the switching conditions are such that a single arm drive mode is formed when the current flowing through the rotor winding 316 is increased, and a double arm drive mode is formed when the current flowing through the rotor winding 316 is decreased. Furthermore, success or failure may be determined based on control information related to the magnitude of the current flowing through the rotor winding 316. In this case, it is possible to easily determine whether the switching conditions are met or not based on various types of control information that are easy to obtain.
- the conditions for switching from the single arm drive mode to the double arm drive mode may be determined based on a current command (for example, target duty) for the rotor winding 316.
- the switching condition may be satisfied when the current command in the current cycle is lower than that in the previous cycle.
- the determination information to be acquired includes a current command for the rotor winding 316.
- the switching condition may be determined based on the detected value of the current flowing through the rotor winding 316 (the output value of the current sensor or the filtered value). In this case, the switching condition may be satisfied when the detected value of the current in the current cycle is lower than that in the previous detection cycle.
- the determination information to be acquired includes the detected value of the current flowing through the rotor winding 316.
- the switching condition may be satisfied when the current command is lower than the detected current value by a threshold value or more.
- the conditions for switching from the single arm drive mode to the double arm drive mode may be determined based on the current command to the stator winding 322. In this case, the switching condition may be satisfied when the current command in the current cycle is lower than that in the previous cycle.
- the switching condition may be determined based on the detected value of the current flowing through the stator winding 322 (the output value of the current sensor or the filtered value). In this case, the switching condition may be satisfied when the detected value of the current in the current cycle is lower than that in the previous detection cycle.
- the conditions for switching from the single arm drive mode to the double arm drive mode described above are basically not satisfied when the current flowing through the rotor winding 316 is maintained without increasing or decreasing.
- the single arm drive mode will be maintained.
- the above-mentioned switching conditions from the single-arm drive mode to the double-arm drive mode is not satisfied, so in that case, the single arm drive mode will be maintained.
- the double arm drive mode is a mode for reducing system loss by increasing the rate of current reduction in response to a reduction in the target duty, so it is only used when reducing the current flowing through the rotor winding 316.
- a single arm drive mode may be formed when maintaining the current flowing through the rotor winding 316 without increasing or decreasing it.
- the two-arm drive mode is formed when the current flowing through the rotor winding 316 is reduced, and then, when the current flowing through the rotor winding 316 is maintained without increasing or decreasing, the two-arm drive mode is changed.
- a transition to single arm drive mode may be realized.
- the single arm drive mode is formed, and after that, when maintaining the current flowing through the rotor winding 316 without increasing or decreasing, the single arm drive mode is maintained as it is. It's fine.
- the conditions for switching from the double-arm drive mode to the single-arm drive mode may be satisfied when the conditions for switching from the single-arm drive mode to the double-arm drive mode are not met.
- the conditions for switching from the double arm drive mode to the single arm drive mode may be independently determined based on the current command to the rotor winding 316.
- the switching condition may be satisfied when the current command in the current cycle increases compared to the previous cycle.
- the switching condition may be determined based on the detected value of the current flowing through the rotor winding 316 (the output value of the current sensor or the filtered value).
- the switching condition may be satisfied when the detected value of the current in the current cycle increases compared to the previous detection cycle.
- the switching condition may be satisfied when the current command exceeds the detected current value by a threshold value or more.
- the conditions for switching from the double arm drive mode to the single arm drive mode may be determined based on a current command to the stator winding 322. In this case, the switching condition may be satisfied when the current command in the current cycle increases compared to the previous cycle. Similarly, the switching condition may be determined based on the detected value of the current flowing through the stator winding 322 (the output value of the current sensor or the filtered value). In this case, the switching condition may be satisfied when the detected value of the current in the current cycle increases compared to the previous detection cycle.
- the double-arm drive control section 516 may operate until the conditions for switching from the double-arm drive mode to the single-arm drive mode are met.
- both arm drive control section 516 realizes both arm drive by turning on and off both switching elements SW1 and SW2 at a duty according to a current command (current command related to rotor winding 316).
- the both arm drive control unit 516 may realize both arm drive in such a manner that the switching elements SW1 and SW2 are simultaneously turned on (and accordingly simultaneously turned off).
- the single-arm drive control unit 518 may operate until the conditions for switching from the single-arm drive mode to the double-arm drive mode are met.
- the one-arm drive control unit 518 controls only one of the switching elements SW1 and SW2 (in this embodiment, the switching element SW1 on the high potential side) with a current command (a current command related to the rotor winding 316). Achieves single-arm drive that turns on and off with a duty according to the load.
- FIG. 4 is a flowchart illustrating an example of processing executed by the microcomputer 50, which is related to each function shown in FIG. 3B.
- the processing routine shown in FIG. 4 may be repeatedly executed at predetermined intervals.
- step S400 the microcomputer 50 acquires determination information.
- the determination information may be as described above.
- step S402 the microcomputer 50 determines whether the switching condition is satisfied based on the determination information acquired in step S400. For example, if the current drive mode is the single arm drive mode, it is determined whether the conditions for switching from the single arm drive mode to the double arm drive mode are met. Furthermore, if the current drive mode is the double-arm drive mode, it is determined whether the conditions for switching from the double-arm drive mode to the single-arm drive mode are met. If the switching condition is satisfied, the process advances to step S406 via step S404. On the other hand, if the switching condition is not satisfied, the process directly advances to step S406. In this case, the current drive mode is maintained without change.
- step S404 the microcomputer 50 switches the current drive mode to the target drive mode. For example, if the conditions for switching from the double-arm drive mode to the single-arm drive mode are met in step S402, the microcomputer 50 switches the current drive mode to the single-arm drive mode to be switched.
- step S406 the microcomputer 50 executes drive control according to the current drive mode. For example, when the current drive mode is the both-arm drive mode, the above-described both-arm drive control section 516 operates.
- FIG. 5 is a diagram showing an example of various waveforms when switching from single arm drive mode to double arm drive mode. From top to bottom, FIG. ”) and the current flowing through the rotor winding 316 (denoted as “rotor winding current” in FIG. 5).
- FIG. 6 is an explanatory diagram of the current flowing through the rotor winding 316 (rotor winding current) during the specific period T in FIG. In FIG. 6, a contrast waveform I'o when the single arm drive mode is continued is schematically shown by a dotted line.
- the target duty is relatively high and the current flowing through the rotor winding 316 is increasing until time t1.
- the carrier signal is a carrier signal for PWM control.
- a waveform S500 correlated to the target duty is shown for the carrier signal. The level of waveform S500 decreases as the target duty increases, and a period during which the carrier signal exceeds the level of waveform S500 corresponds to an on period.
- the target duty decreases, and the current flowing through the rotor winding 316 decreases accordingly.
- the conditions for switching from the single arm drive mode to the double arm drive mode are satisfied between time t1 and time t2, and the double arm drive mode is started at time t2.
- the switching element SW1 on the high potential side is turned off, and then the switching element SW1 on the high potential side and the switching element SW2 on the low potential side are switched on/off according to the target duty. There is.
- the switching element SW1 on the high potential side and the switching element SW2 on the low potential side are turned on/off at substantially the same timing.
- the switching conditions are defined such that the both arm drive mode is formed when the current flowing through the rotor winding 316 is reduced.
- the current decreasing speed v1 in both arm drive mode can be expressed as follows.
- Vi is the power supply voltage (the voltage of the high-voltage battery 2B, equivalent to the voltage across the smoothing capacitor 62)
- Io is the magnitude of the current flowing through the rotor winding 316
- R is the rotor winding
- the resistance 316, VF is the voltage across the diodes D1 and D2 (see FIG. 1) of the bridge circuit section 641
- L is the inductance of the rotor winding 316.
- the current decreasing speed v2 in the single arm drive mode can be expressed as follows.
- VCE is the on-voltage of switching elements SW1 and SW2.
- Vi ⁇ VCE since Vi ⁇ VCE,
- the system loss (the loss of the drive system as a whole) increases. That is, more current than necessary (see ⁇ I in FIG. 6) is passed through the rotor winding 316, and the system loss increases accordingly.
- the double arm drive mode is formed when the current flowing through the rotor winding 316 is reduced, the system loss that may increase when the current flowing through the rotor winding 316 is reduced is reduced. Can be reduced.
- the one-arm drive mode is formed when the current flowing through the rotor winding 316 is increased, switching loss is minimized when the current flowing through the rotor winding 316 is increased. be able to.
- switching loss is minimized when the current flowing through the rotor winding 316 is maintained without increasing or decreasing. can be achieved.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Ac Motors In General (AREA)
Abstract
巻線界磁型の回転電機用駆動装置であって、ロータ巻線の一端と電源の高電位側ラインとの間に第1スイッチング素子と、ロータ巻線の他端と電源の低電位側ラインとの間に第2スイッチング素子と、制御装置とを備え、制御装置は、ロータ巻線に流す電流を低下させる場合に、第1スイッチング素子及び第2スイッチング素子の双方の状態をオン状態とオフ状態の間で切り替える第1モードで駆動し、ロータ巻線に流す電流を増加させる場合に、第1スイッチング素子及び第2スイッチング素子の一方の状態をオン状態に維持しつつ他方の状態をオン状態とオフ状態の間で切り替える第2モードで駆動する、巻線界磁型の回転電機用駆動装置が開示される。
Description
本開示は、巻線界磁型の回転電機用駆動装置に関する。
内燃機関のクランクシャフトまわりに設けられる巻線界磁型の回転電機に関して、ロータ巻線へ電流供給する場合に、電源とブラシとの間に電気的に接続される第1スイッチング素子をPWM(Pulse Width Modulation)制御しつつ、ブラシとグランドとの間に電気的に接続される第2スイッチング素子を常時オン状態に制御する技術が知られている。
しかしながら、上記のような従来技術では、ロータ巻線に流す電流を低下させる際に、電流の低下速度が遅くなりやすく、システム損失が増加するおそれがある。
そこで、1つの側面では、本開示は、ロータ巻線に流す電流を増加させる際は低損失の制御を実現しつつ、ロータ巻線に流す電流を低下させる際に増加しうるシステム損失を低減することを目的とする。
1つの側面では、ロータ巻線がロータコアに巻回された巻線界磁型の回転電機を駆動する巻線界磁型の回転電機用駆動装置であって、
前記ロータ巻線の一端と電源の高電位側ラインとの間に電気的に接続される第1スイッチング素子と、
前記ロータ巻線の他端と前記電源の低電位側ラインとの間に電気的に接続される第2スイッチング素子と、
前記第1スイッチング素子及び前記第2スイッチング素子を制御する制御装置とを備え、
前記制御装置は、前記ロータ巻線に流す電流を低下させる場合に、前記第1スイッチング素子及び前記第2スイッチング素子の双方の状態をオン状態とオフ状態の間で切り替える第1モードで駆動し、前記ロータ巻線に流す電流を増加させる場合に、前記第1スイッチング素子及び前記第2スイッチング素子の一方の状態をオン状態に維持しつつ他方の状態をオン状態とオフ状態の間で切り替える第2モードで駆動する、巻線界磁型の回転電機用駆動装置が提供される。
前記ロータ巻線の一端と電源の高電位側ラインとの間に電気的に接続される第1スイッチング素子と、
前記ロータ巻線の他端と前記電源の低電位側ラインとの間に電気的に接続される第2スイッチング素子と、
前記第1スイッチング素子及び前記第2スイッチング素子を制御する制御装置とを備え、
前記制御装置は、前記ロータ巻線に流す電流を低下させる場合に、前記第1スイッチング素子及び前記第2スイッチング素子の双方の状態をオン状態とオフ状態の間で切り替える第1モードで駆動し、前記ロータ巻線に流す電流を増加させる場合に、前記第1スイッチング素子及び前記第2スイッチング素子の一方の状態をオン状態に維持しつつ他方の状態をオン状態とオフ状態の間で切り替える第2モードで駆動する、巻線界磁型の回転電機用駆動装置が提供される。
1つの側面では、本開示によれば、ロータ巻線に流す電流を増加させる際は低損失の制御を実現しつつ、ロータ巻線に流す電流を低下させる際に増加しうるシステム損失を低減することが可能となる。
以下、添付図面を参照しながら各実施例について詳細に説明する。なお、図面の寸法比率はあくまでも一例であり、これに限定されるものではなく、また、図面内の形状等は、説明の都合上、部分的に誇張している場合がある。
図1は、本実施例による回転電機用の駆動装置5を含む車両駆動システム1を示す構成図である。図2は、回転電機3の断面の一部を示す概略的な断面図である。
車両駆動システム1は、低圧バッテリ2Aと高圧バッテリ2Bを含む2電源構成であり、回転電機3と、駆動装置5とを含む。
低圧バッテリ2Aは、例えば鉛バッテリであり、定格電圧が例えば12Vである。
高圧バッテリ2Bは、例えばリチウムイオンバッテリであり、低圧バッテリ2Aより定格電圧が有意に高く、例えば定格電圧が40V以上である。本実施例では、一例として、高圧バッテリ2Bの定格電圧は、300V以上であるとする。なお、高圧バッテリ2Bは、燃料電池等の形態であってもよい。
回転電機3は、巻線界磁型であり、ロータ巻線316がロータコア312に巻回されたロータ310を備える。なお、ロータコア312は、図2に示すように、径方向外側に突出するティース部3122を有し、ティース部3122に、ロータ巻線316を形成する導体線が巻回される。ロータ310の径方向外側にはステータ320が設けられる。ステータ巻線322は、図2に示すように、ステータコア321のティース部3210まわりに巻装される。
駆動装置5は、マイクロコンピュータ50(以下、「マイコン50」と称する)と、電気回路部60とを含む。
マイコン50は、例えばECU(Electronic Control Unit)として実現されてよい。マイコン50は、CAN(controller area network)のようなネットワーク6を介して、車両内の各種の電子部品(他のECUやセンサ)に接続される。
マイコン50は、ネットワーク6を介して、上位ECU(図示せず)からの制御指令等の各種指令を受信する。マイコン50は、制御指令に基づいて、電気回路部60を介して回転電機3を制御する。マイコン50は、低圧バッテリ2Aからの電力に基づいて、動作する。
電気回路部60は、平滑コンデンサ62と、電力変換回路部63と、給電回路部64とを含む。
平滑コンデンサ62は、高圧バッテリ2Bの高電位側ライン20と低電位側ライン22の間に設けられる。平滑コンデンサ62の両端には、パッシブ放電用の抵抗R0が接続されてよい。
電力変換回路部63は、インバータの形態であり、例えば3相のブリッジ回路を形成する。電力変換回路部63は、高電位側ライン20と低電位側ライン22の間に、平滑コンデンサ62に対して並列となる態様で、接続される。電力変換回路部63は、高電位側のアームの各スイッチング素子SW3と低電位側のアームの各スイッチング素子SW4を備える。
給電回路部64は、ブリッジ回路部641と、駆動回路部642とを含む。
ブリッジ回路部641は、高電位側ライン20と低電位側ライン22の間に、平滑コンデンサ62及びパッシブ放電用の抵抗R0に対して並列となる態様で、接続される。ブリッジ回路部641は、対のスイッチング素子SW1、SW2と、対のダイオードD1、D2を含む。
スイッチング素子SW1は、ダイオードD1の高電位側のカソードに接続される態様で、ダイオードD1に直列に接続される。スイッチング素子SW1とダイオードD1の間には、ロータ巻線316の一端が接続される。また、スイッチング素子SW2は、ダイオードD2の低電位側のアノードに接続される態様で、ダイオードD2に直列に接続される。スイッチング素子SW2とダイオードD2の間には、ロータ巻線316の他端が接続される。以下、対のスイッチング素子SW1、SW2のうちの、スイッチング素子SW1及びそれに関連する構成には、区別のために、「高電位側」を付す場合があり、スイッチング素子SW2及びそれに関連する構成には、「低電位側」を付す場合がある。
対のスイッチング素子SW1、SW2は、駆動回路部642を介して、オン/オフ状態が切り替えられる。対のスイッチング素子SW1、SW2は、駆動回路部642による制御下で、ロータ巻線316に対する通電状態を変化させる。スイッチング素子SW1、SW2は、例えばIGBT(Insulated Gate Bipolar Transistor)であるが、MOSFET(Metal Oxide Semiconductor Field-Effect Transistor)等のような他の形態であってもよい。
駆動回路部642は、マイコン50からの制御信号に基づいて、高電位側のスイッチング素子SW1のゲートを駆動するとともに、マイコン50からの制御信号に基づいて、低電位側のスイッチング素子SW2のゲートを駆動する。
次に、図3A以降を参照して、本実施例の特徴的な構成を説明する。
図3Aは、本実施例のマイコン50に係るハードウェア構成の一例を示す図である。図3Aには、マイコン50のハードウェア構成に関連付けて、周辺機器590が模式的に図示されている。周辺機器590は、図1に示す駆動回路部642や上位ECU(図示せず)等を含んでよい。
マイコン50は、バス549で接続されたCPU(Central Processing Unit)541、RAM(Random Access Memory)542、ROM(Read Only Memory)543、補助記憶装置544、ドライブ装置545、及び通信インターフェース547、並びに、通信インターフェース547に接続された有線送受信部555及び無線送受信部556を含む。
補助記憶装置544は、例えばHDD(Hard Disk Drive)や、SSD(Solid State Drive)などであり、アプリケーションソフトウェアなどに関連するデータを記憶する記憶装置である。
補助記憶装置544は、例えばHDD(Hard Disk Drive)や、SSD(Solid State Drive)などであり、アプリケーションソフトウェアなどに関連するデータを記憶する記憶装置である。
有線送受信部555は、有線ネットワークを利用して通信可能な送受信部を含む。有線送受信部555には、周辺機器590が接続される。ただし、周辺機器590の一部又は全部は、バス549に接続されてもよいし、無線送受信部556に接続されてもよい。
無線送受信部556は、無線ネットワークを利用して通信可能な送受信部である。無線ネットワークは、携帯電話の無線通信網、インターネット、VPN(Virtual Private Network)、WAN(Wide Area Network)等を含んでよい。また、無線送受信部556は、近距離無線通信(NFC:Near Field Communication)部、ブルートゥース(Bluetooth、登録商標)通信部、Wi-Fi(Wireless-Fidelity)送受信部、赤外線送受信部などを含んでもよい。
なお、マイコン50は、記録媒体546と接続可能であってもよい。記録媒体546は、所定のプログラムを格納する。この記録媒体546に格納されたプログラムは、ドライブ装置545を介してマイコン50の補助記憶装置544等にインストールされる。インストールされた所定のプログラムは、マイコン50のCPU541により実行可能となる。例えば、記録媒体546は、CD(Compact Disc)-ROM、フレキシブルディスク、光磁気ディスク等のように情報を光学的、電気的あるいは磁気的に記録する記録媒体、ROM、フラッシュメモリ等のように情報を電気的に記録する半導体メモリ等であってよい。なお、記録媒体546には、搬送波は含まれない。
図3Bは、本実施例のマイコン50により実現される各種機能の一例を概略的に示す図である。
マイコン50は、インバータ制御部500と、ロータ巻線通電制御部510とを含む。
マイコン50は、インバータ制御部500と、ロータ巻線通電制御部510とを含む。
インバータ制御部500は、ゲートドライバ回路52を介して電力変換回路部63の各スイッチング素子SW3、SW4のオン/オフ状態を制御することで、ステータ巻線322に対する通電を制御する。この際、インバータ制御部500は、上位ECU(図示せず)からの制御指令(例えば要求トルク値)に基づいて、制御目標値を算出し、当該制御目標値が実現されるように、ステータ巻線322に対する通電を制御してよい。
ロータ巻線通電制御部510は、駆動回路部642を介して回転電機3のロータ巻線316に対する通電状態を制御する。この際、インバータ制御部500は、上位ECU(図示せず)からの制御指令(例えば要求トルク値)に基づいて、制御目標値(例えば目標電流値)を算出し、当該制御目標値が実現されるように、ロータ巻線316に対する通電を制御してよい。
本実施例では、ロータ巻線通電制御部510は、図3Bに示すように、判定用情報取得部512と、切替条件判定部514と、両アーム駆動制御部516と、片アーム駆動制御部518とを含む。
判定用情報取得部512は、後述する切替条件判定部514による切替条件判定処理に用いる判定用情報を取得する。取得対象の判定用情報は、切替条件判定処理に応じて決まり、いくつかの例は後述する。
切替条件判定部514は、切替条件の成否を判定する切替条件判定処理を実行する。切替条件とは、両アーム駆動制御部516が動作する両アーム駆動モード(第1モードの一例)と、片アーム駆動制御部518が動作する片アーム駆動モード(第2モードの一例)との間を切り替えるための条件であり、あらかじめ規定される。
本実施例では、切替条件は、基本的には、ロータ巻線316に流す電流を増加させる場合に片アーム駆動モードが形成され、かつ、ロータ巻線316に流す電流を低下させる場合に両アーム駆動モードが形成されるように、あらかじめ規定される。なお、切替条件は、例外的な状況下で、このような基本的な関係が損なわれる態様で機能してもよい。かかる例外的な状況は、任意であり、存在しなくてもよく、以下では、特に言及しない。
切替条件は、ロータ巻線316に流す電流を増加させる場合に片アーム駆動モードが形成されるように、かつ、ロータ巻線316に流す電流を低下させる場合に両アーム駆動モードが形成されるように、ロータ巻線316に流す電流の大きさに関連する制御情報に基づいて、成否が判定されてもよい。この場合、取得容易な各種制御情報に基づいて切替条件の成否を容易に判定できる。
例えば、片アーム駆動モードから両アーム駆動モードへの切替条件は、ロータ巻線316に対する電流指令(例えば目標デューティ)に基づいて判定されてよい。この場合、切替条件は、前回周期に比べて今回周期の電流指令が低下した場合に満たされてもよい。なお、この場合、取得対象の判定用情報は、ロータ巻線316に対する電流指令を含む。あるいは、切替条件は、ロータ巻線316を流れる電流の検出値(電流センサの出力値又はそのフィルタ後の値)に基づいて判定されてもよい。この場合、切替条件は、前回検出周期に比べて今回周期の電流の検出値が低下した場合に満たされてもよい。なお、この場合、取得対象の判定用情報は、ロータ巻線316を流れる電流の検出値を含む。あるいは、切替条件は、電流指令が電流の検出値よりも、閾値以上、下回った場合に満たされてもよい。あるいは、片アーム駆動モードから両アーム駆動モードへの切替条件は、ステータ巻線322に対する電流指令に基づいて判定されてよい。この場合、切替条件は、前回周期に比べて今回周期の電流指令が低下した場合に満たされてもよい。同様に、切替条件は、ステータ巻線322を流れる電流の検出値(電流センサの出力値又はそのフィルタ後の値)に基づいて判定されてもよい。この場合、切替条件は、前回検出周期に比べて今回周期の電流の検出値が低下した場合に満たされてもよい。
ここで、上述した片アーム駆動モードから両アーム駆動モードへの切替条件は、基本的には、ロータ巻線316に流す電流を増減させずに維持する場合には、満たされないため、その場合、片アーム駆動モードが維持されることになる。また、フィルタ後の値を利用する方法や、閾値を利用する方法では、ロータ巻線316に流す電流が有意に変化しない場合には、上述した片アーム駆動モードから両アーム駆動モードへの切替条件は、満たされないため、その場合、片アーム駆動モードが維持されることになる。
この点、両アーム駆動モードは、後述するように、目標デューティの低下に対する電流低下速度を高めることでシステム損失を低減するためのモードであるので、ロータ巻線316に流す電流を低下させる場合だけ形成されてもよい。すなわち、ロータ巻線316に流す電流を増減させずに維持する場合には、片アーム駆動モードが形成されてよい。この場合、例えば、ロータ巻線316に流す電流を低下させる場合に両アーム駆動モードが形成され、その後、ロータ巻線316に流す電流を増減させずに維持する場合には、両アーム駆動モードから片アーム駆動モードへの遷移が実現されてよい。また、ロータ巻線316に流す電流を増加させる場合に片アーム駆動モードが形成され、その後、ロータ巻線316に流す電流を増減させずに維持する場合には、片アーム駆動モードがそのまま維持されてよい。
従って、この場合、両アーム駆動モードから片アーム駆動モードへの切替条件は、片アーム駆動モードから両アーム駆動モードへの切替条件が満たされない場合に、満たされてよい。
あるいは、両アーム駆動モードから片アーム駆動モードへの切替条件は、ロータ巻線316に対する電流指令に基づいて独自に判定されてよい。この場合、切替条件は、前回周期に比べて今回周期の電流指令が増加した場合に満たされてもよい。あるいは、切替条件は、ロータ巻線316を流れる電流の検出値(電流センサの出力値又はそのフィルタ後の値)に基づいて判定されてもよい。この場合、切替条件は、前回検出周期に比べて今回周期の電流の検出値が増加した場合に満たされてもよい。あるいは、切替条件は、電流指令が電流の検出値よりも、閾値以上、上回った場合に満たされてもよい。あるいは、両アーム駆動モードから片アーム駆動モードへの切替条件は、ステータ巻線322に対する電流指令に基づいて判定されてよい。この場合、切替条件は、前回周期に比べて今回周期の電流指令が増加した場合に満たされてもよい。同様に、切替条件は、ステータ巻線322を流れる電流の検出値(電流センサの出力値又はそのフィルタ後の値)に基づいて判定されてもよい。この場合、切替条件は、前回検出周期に比べて今回周期の電流の検出値が増加した場合に満たされてもよい。
両アーム駆動制御部516は、片アーム駆動モードから両アーム駆動モードへの切替条件が満たされると、両アーム駆動モードから片アーム駆動モードへの切替条件が満たされるまで、動作してよい。両アーム駆動制御部516は、動作中、スイッチング素子SW1、SW2の双方を、電流指令(ロータ巻線316に係る電流指令)に応じたデューティでオン/オフする両アーム駆動を実現する。この際、両アーム駆動制御部516は、スイッチング素子SW1、SW2が同時にオン状態となる(それに伴い同時にオフ状態となる)態様で、両アーム駆動を実現してよい。
片アーム駆動制御部518は、両アーム駆動モードから片アーム駆動モードへの切替条件が満たされると、片アーム駆動モードから両アーム駆動モードへの切替条件が満たされるまで、動作してよい。片アーム駆動制御部518は、動作中、スイッチング素子SW1、SW2のうちの、一方だけ(本実施例では、高電位側のスイッチング素子SW1)を、電流指令(ロータ巻線316に係る電流指令)に応じたデューティでオン/オフする片アーム駆動を実現する。
図4は、図3Bに示した各機能に関連した処理であって、マイコン50により実行される処理の一例を示すフローチャートである。図4に示す処理ルーチンは、所定周期ごとに繰り返し実行されてよい。
ステップS400では、マイコン50は、判定用情報を取得する。判定用情報は上述したとおりであってよい。
ステップS402では、マイコン50は、ステップS400で取得した判定用情報に基づいて、切替条件が成立したか否かを判定する。例えば、現在の駆動モードが片アーム駆動モードである場合、片アーム駆動モードから両アーム駆動モードへの切替条件の成否が判定される。また、現在の駆動モードが両アーム駆動モードである場合、両アーム駆動モードから片アーム駆動モードへの切替条件の成否が判定される。切替条件が成立した場合、ステップS404を介してステップS406に進む。他方、切替条件が成立しない場合、そのままステップS406に進む。この場合、現在の駆動モードが変化することなく維持される。
ステップS404では、マイコン50は、現在の駆動モードを切替対象の駆動モードに切り替える。例えば、ステップS402で両アーム駆動モードから片アーム駆動モードへの切替条件が成立した場合、マイコン50は、現在の駆動モードを切替対象の片アーム駆動モードに切り替える。
ステップS406では、マイコン50は、現在の駆動モードに応じた駆動制御を実行する。例えば、現在の駆動モードが両アーム駆動モードである場合、上述した両アーム駆動制御部516が動作する。
次に、図5及び図6を参照して、本実施例の効果を説明する。
図5は、片アーム駆動モードから両アーム駆動モードに切り替わる際の各種波形の一例を示す図である。図5には、上から順に、キャリア信号、高電位側のスイッチング素子SW1(図5では「上アーム」と表記)のオン/オフ状態、低電位側のスイッチング素子SW2(図5では「下アーム」と表記)のオン/オフ状態、及び、ロータ巻線316を流れる電流(図5では「ロータ巻線電流」と表記)が示されている。図6は、図5の特定期間Tにおけるロータ巻線316を流れる電流(ロータ巻線電流)の説明図である。図6には、片アーム駆動モードを継続した場合の対照波形I’oが点線で模式的に示されている。
図5に示す例では、時点t1までは、目標デューティが比較的高く、ロータ巻線316を流れる電流が増加している。なお、図5において、キャリア信号は、PWM制御用のキャリア信号である。図5では、目標デューティに相関する波形S500がキャリア信号に対して示されている。波形S500のレベルは、目標デューティが大きいほど低くなる関係であり、キャリア信号が波形S500のレベルを超えている期間が、オン期間に対応する。
この場合、時点t1までは、片アーム駆動モードが実現されており、高電位側のスイッチング素子SW1がオン状態に維持されつつ、低電位側のスイッチング素子SW2だけが、目標デューティに応じてオン/オフ状態を切り替えられている。
時点t1を超えると目標デューティが低下し、それに伴い、ロータ巻線316を流れる電流が低下している。そして、時点t1から時点t2の間に、片アーム駆動モードから両アーム駆動モードへの切替条件が満たされ、時点t2にて、両アーム駆動モードが開始されている。具体的には、時点t2で高電位側のスイッチング素子SW1がオフし、その後、高電位側のスイッチング素子SW1及び低電位側のスイッチング素子SW2が目標デューティに応じてオン/オフ状態を切り替えられている。この際、図5に示すように、高電位側のスイッチング素子SW1及び低電位側のスイッチング素子SW2は、実質的に同じタイミングでオン/オフする。
ここで、本実施例では、上述したように、切替条件は、ロータ巻線316に流す電流を低下させる場合に両アーム駆動モードが形成されるように規定されている。この点、片アーム駆動モードを維持しながら、ロータ巻線316に流す電流を低下させることも可能である。
しかしながら、片アーム駆動モードによりロータ巻線316に流す電流を低下させる場合、両アーム駆動モードによりロータ巻線316に流す電流を低下させる場合に比べて、電流低下速度が遅くなるという問題がある。なお、電流低下速度は、ロータ巻線316に流す電流を低下させる際の、時間あたりの同電流の低下量を表す。具体的には、両アーム駆動モードでの電流低下速度v1は、以下のように表すことができる。
v1=di/dt=(-Vi-Io×R-2×VF)/L
ここで、Viは、電源電圧(高圧バッテリ2Bの電圧であり、平滑コンデンサ62の両端電圧相当)であり、Ioは、ロータ巻線316を流れる電流の大きさであり、Rは、ロータ巻線316の抵抗、VFは、ブリッジ回路部641のダイオードD1、D2(図1参照)の両端電圧であり、Lは、ロータ巻線316のインダクタンスである。
これに対して、片アーム駆動モードでの電流低下速度v2は、以下のように表すことができる。
v2=di/dt=(-Io×R-VF-VCE)/L
ここで、VCEは、スイッチング素子SW1,SW2のオン電圧である。この場合、Vi≫VCEであることから、|v1|>|v2|となるので、片アーム駆動モードでは電流低下速度が遅くなる。
v1=di/dt=(-Vi-Io×R-2×VF)/L
ここで、Viは、電源電圧(高圧バッテリ2Bの電圧であり、平滑コンデンサ62の両端電圧相当)であり、Ioは、ロータ巻線316を流れる電流の大きさであり、Rは、ロータ巻線316の抵抗、VFは、ブリッジ回路部641のダイオードD1、D2(図1参照)の両端電圧であり、Lは、ロータ巻線316のインダクタンスである。
これに対して、片アーム駆動モードでの電流低下速度v2は、以下のように表すことができる。
v2=di/dt=(-Io×R-VF-VCE)/L
ここで、VCEは、スイッチング素子SW1,SW2のオン電圧である。この場合、Vi≫VCEであることから、|v1|>|v2|となるので、片アーム駆動モードでは電流低下速度が遅くなる。
目標デューティの低下に対して電流低下速度が遅くなると(すなわち応答性が良好でないと)、システム損失(駆動システム全体としての損失)が大きくなる。すなわち、ロータ巻線316には必要以上の電流(図6のΔI参照)が流されることになり、その分だけ、システム損失が大きくなる。
この点、本実施例によれば、ロータ巻線316に流す電流を低下させる場合に両アーム駆動モードが形成されるので、ロータ巻線316に流す電流を低下させる際に増加しうるシステム損失を低減できる。他方、本実施例によれば、ロータ巻線316に流す電流を増加させる場合に片アーム駆動モードが形成されるので、ロータ巻線316に流す電流を増加させる場面においてスイッチング損失の最小化を図ることができる。また、ロータ巻線316に流す電流を増減させずに維持する場合に片アーム駆動モードを形成する構成では、ロータ巻線316に流す電流を増減させずに維持する場面においてスイッチング損失の最小化を図ることができる。
以上、各実施例について詳述したが、特定の実施例に限定されるものではなく、特許請求の範囲に記載された範囲内において、種々の変形及び変更が可能である。また、前述した実施例の構成要素を全部又は複数を組み合わせることも可能である。
3・・・回転電機、312・・・ロータコア、316・・・ロータ巻線、321・・・ステータコア、5・・・駆動装置(回転電機用駆動装置)、50・・・マイコン(制御装置)、SW1・・・スイッチング素子(第1スイッチング素子)、SW2・・・スイッチング素子(第2スイッチング素子)
Claims (3)
- ロータ巻線がロータコアに巻回された巻線界磁型の回転電機を駆動する巻線界磁型の回転電機用駆動装置であって、
前記ロータ巻線の一端と電源の高電位側ラインとの間に電気的に接続される第1スイッチング素子と、
前記ロータ巻線の他端と前記電源の低電位側ラインとの間に電気的に接続される第2スイッチング素子と、
前記第1スイッチング素子及び前記第2スイッチング素子を制御する制御装置とを備え、
前記制御装置は、前記ロータ巻線に流す電流を低下させる場合に、前記第1スイッチング素子及び前記第2スイッチング素子の双方の状態をオン状態とオフ状態の間で切り替える第1モードで駆動し、前記ロータ巻線に流す電流を増加させる場合に、前記第1スイッチング素子及び前記第2スイッチング素子の一方の状態をオン状態に維持しつつ他方の状態をオン状態とオフ状態の間で切り替える第2モードで駆動する、巻線界磁型の回転電機用駆動装置。 - 前記制御装置は、前記ロータ巻線に流す電流の大きさに関連する制御情報に基づいて、前記第1モードと前記第2モードとの間の切替条件の成否を判定する、請求項1に記載の巻線界磁型の回転電機用駆動装置。
- 前記制御装置は、前記ロータ巻線に流す電流の大きさに係る目標値又は検出値について前回値と今回値との差分が閾値未満である場合に、前記第2モードの維持又は前記第1モードから前記第2モードへの遷移を実現する、請求項1又は2に記載の巻線界磁型の回転電機用駆動装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022049167 | 2022-03-24 | ||
JP2022-049167 | 2022-03-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023182111A1 true WO2023182111A1 (ja) | 2023-09-28 |
Family
ID=88101544
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/010185 WO2023182111A1 (ja) | 2022-03-24 | 2023-03-15 | 巻線界磁型の回転電機用駆動装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023182111A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008182879A (ja) * | 2006-12-28 | 2008-08-07 | Nissan Motor Co Ltd | 界磁巻線型モータおよび界磁巻線型発電機の制御回路 |
US20200106374A1 (en) * | 2018-10-01 | 2020-04-02 | Hyundai Motor Company | Vehicle system, motor control system and motor control method |
-
2023
- 2023-03-15 WO PCT/JP2023/010185 patent/WO2023182111A1/ja unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008182879A (ja) * | 2006-12-28 | 2008-08-07 | Nissan Motor Co Ltd | 界磁巻線型モータおよび界磁巻線型発電機の制御回路 |
US20200106374A1 (en) * | 2018-10-01 | 2020-04-02 | Hyundai Motor Company | Vehicle system, motor control system and motor control method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10525841B2 (en) | Gate driver with short circuit protection | |
CN107176044B (zh) | 用于减少开关损耗的动态igbt栅极驱动 | |
CN105490510B (zh) | 用于车辆牵引逆变器的动态igbt栅极驱动 | |
US20240283385A1 (en) | Motor drive system, charging method and vehicle | |
JP4910369B2 (ja) | 電源制御装置 | |
US6411061B1 (en) | High performance brush motor driver in conjuction with low cost SR motor driver | |
US8350516B2 (en) | Electric motor drive device and method of controlling the same | |
JP7140045B2 (ja) | 駆動回路 | |
JP2009225531A (ja) | 半導体駆動装置及び電気自動車用駆動装置 | |
US8339075B2 (en) | Method for controlling a deceleration process of a DC motor and controller | |
TW201909525A (zh) | 用於逆變器的控制裝置 | |
EP4142143A1 (en) | Apparatus and method for driving motor | |
JP2019527027A (ja) | 電流コンバータの駆動方法およびその方法で駆動される電流コンバータ | |
WO2023182111A1 (ja) | 巻線界磁型の回転電機用駆動装置 | |
JP7490768B2 (ja) | 電源システム及び電源システムの制御方法 | |
JP5225709B2 (ja) | スイッチトリラクタンスモータの制御装置 | |
JP3801731B2 (ja) | 電気モ−タの通電制御装置 | |
US20240092224A1 (en) | Vehicle including dc-dc converter and method of controlling for the same | |
US11936318B2 (en) | Charging system and method using motor driving system | |
KR20200046678A (ko) | 환경차량용 모터 구동 방법 및 장치 | |
WO2024185265A1 (ja) | 回転電機用駆動装置及び移動体用駆動装置 | |
JP2003199391A (ja) | モータ駆動装置 | |
US12101046B2 (en) | Motor driving apparatus | |
US11784584B2 (en) | Variable mutual off time control for automotive power converter | |
US20240190294A1 (en) | Electrified vehicle and method for controlling the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23774707 Country of ref document: EP Kind code of ref document: A1 |