WO2023181772A1 - Method for manufacturing r-t-b based sintered magnet - Google Patents

Method for manufacturing r-t-b based sintered magnet Download PDF

Info

Publication number
WO2023181772A1
WO2023181772A1 PCT/JP2023/006577 JP2023006577W WO2023181772A1 WO 2023181772 A1 WO2023181772 A1 WO 2023181772A1 JP 2023006577 W JP2023006577 W JP 2023006577W WO 2023181772 A1 WO2023181772 A1 WO 2023181772A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
cutting
powder
powder compact
rtb
Prior art date
Application number
PCT/JP2023/006577
Other languages
French (fr)
Japanese (ja)
Inventor
剛志 村田
Original Assignee
株式会社プロテリアル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社プロテリアル filed Critical 株式会社プロテリアル
Publication of WO2023181772A1 publication Critical patent/WO2023181772A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B27/00Other grinding machines or devices
    • B24B27/06Grinders for cutting-off
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets

Definitions

  • the present application relates to a method for manufacturing an RTB-based sintered magnet.
  • RTB system sintered magnet (R is a rare earth element and always contains at least one selected from the group consisting of Nd, Pr, and Ce, T is at least one transition metal and always contains Fe) , B is boron) is a compound formed by the main phase of a compound having a R 2 Fe 14 B type crystal structure, the grain boundary phase located at the grain boundary part of this main phase, and the influence of trace additive elements and impurities. It is composed of phases.
  • RTB-based sintered magnets have a high residual magnetic flux density B r (hereinafter sometimes simply referred to as “B r ”) and a high coercive force H cJ (hereinafter simply referred to as “H cJ ”).
  • RTB-based sintered magnets are used in a wide variety of applications such as voice coil motors (VCMs) for hard disk drives, motors for electric vehicles (EV, HV, PHV), motors for industrial equipment, and home appliances. It is used for various purposes.
  • VCMs voice coil motors
  • EV electric vehicles
  • HV electric vehicles
  • PHV motors for industrial equipment
  • home appliances it is used for various purposes.
  • Such RTB-based sintered magnets are manufactured through, for example, a process of preparing alloy powder, a process of press-molding the alloy powder to produce a powder compact, and a process of sintering the powder compact. Ru.
  • the alloy powder is produced, for example, by the following method.
  • an alloy is manufactured from molten metals of various raw materials by a method such as an ingot method or a strip casting method.
  • the obtained alloy is subjected to a pulverization process to obtain an alloy powder having a predetermined particle size distribution.
  • This pulverization process usually includes a coarse pulverization process and a fine pulverization process. be exposed.
  • the sintered body obtained by the step of sintering the powder compact is then subjected to mechanical processing such as grinding and cutting, and is separated into pieces having the desired shape and size. More specifically, first, R--Fe--B rare earth magnet powder is compression-molded using a press machine to produce a compact that is larger in size than the final magnet product. After the molded body is made into a sintered body through a sintering process, the sintered body is ground into a desired shape using, for example, a cemented carbide blade saw or a rotary grindstone. For example, after first producing a block-shaped sintered body, the sintered body is sliced with a blade saw or the like to cut out a plurality of plate-shaped sintered body parts.
  • the sintered bodies of rare earth alloy magnets such as R-Fe-B sintered magnets are extremely hard and brittle, and the processing load is large, so high-precision grinding is a difficult task and the processing time is long. It takes. Furthermore, some material parts are inevitably lost during processing. For this reason, the processing process has been a major cause of increased manufacturing costs.
  • Patent Document 1 describes a technique of processing a magnet molded body using a wire saw before sintering.
  • a wire saw is a processing technique in which a wire running in one direction or both directions is pressed against a molded body to be processed, and the molded body is ground or cut using abrasive grains between the wire and the molded body. According to this technique, since the powder compact is cut which is much softer and easier to process than the sintered body, the time required for the cutting process is significantly shortened.
  • Patent Document 1 uses a wire saw having an outer diameter of 0.1 mm or more and 1.0 mm or less and abrasive grains fixed to this wire, and the oxygen concentration is 5% or more and 18% of the total in terms of molar ratio.
  • the following discloses the processing of powder compacts in a controlled inert gas atmosphere. Performing wire saw processing in an inert atmosphere with a controlled oxygen concentration requires complicated equipment and management, and is poor in mass productivity.
  • Embodiments of the present disclosure provide a new method for manufacturing RTB-based sintered magnets that enables a wire saw process that does not require preparation of an inert atmosphere.
  • the method for manufacturing an RTB-based sintered magnet of the present disclosure includes an RTB-based sintered magnet alloy (R is a rare earth element, consisting of Nd, Pr, and Ce).
  • R is a rare earth element, consisting of Nd, Pr, and Ce.
  • a pulverizing step of preparing a powder (which always contains at least one selected from the group consisting of: T is at least one transition metal and always includes Fe; and B is boron); and a powder compact using the powder.
  • the powder compact submerged in the liquid is cut by a wire running in a horizontal direction, and the wire is moved in an arbitrary cutting direction perpendicular to the running direction to cut one or more curved surfaces. forming a cut surface.
  • the cutting step includes dividing the horizontally running wire into a plurality of molded body pieces surrounded by the plurality of cut surfaces by moving the wire in an arbitrary cutting direction perpendicular to the running direction. including the step of
  • the maximum traveling speed of the wire is 300 m/min or more.
  • the tension of the wire is 29.4 N (3 kgf) or more.
  • the moving speed of the wire in the cutting direction is 100 mm/min or more and 800 mm/min or less.
  • the moving speed of the wire in the cutting direction when forming the curved surface is 100 mm/min or more and 600 mm/min or less.
  • the surface of the wire is of metallic composition.
  • the step of preparing the powder compact includes the step of compacting the powder by wet pressing.
  • the method further includes a step of recovering the powder particles cut from the powder compact by the cutting step from the liquid.
  • the embodiment of the present disclosure it is possible to cut with a wire saw without preparing an inert atmosphere, resulting in excellent mass productivity. Furthermore, it becomes possible to process the powder compact into a curved shape. According to the embodiment of the present disclosure, the degree of freedom in designing the shape of the powder compact is improved regardless of the shape of the mold of the press, so it is possible to reduce manufacturing costs while maintaining the characteristics of a high-performance magnet. becomes possible.
  • FIG. 1 is a flowchart showing the main steps of the manufacturing method in the embodiment of the present disclosure.
  • FIG. 2 is a flowchart showing the details of the cutting process of the manufacturing method in the embodiment of the present disclosure.
  • FIG. 3 is a perspective view schematically showing the configuration of a wire saw device used in an embodiment of the present disclosure.
  • FIG. 4A is a front view for explaining the process of cutting a powder compact submerged in a liquid with a wire.
  • FIG. 4B is a front view for explaining a process of cutting a powder compact submerged in a liquid with a metal wire.
  • FIG. 5A is a side view for explaining a process of cutting a powder compact submerged in a liquid with a wire.
  • FIG. 5B is a side view for explaining the process of cutting a powder compact submerged in a liquid with a wire.
  • FIG. 6A is a side view for explaining a process of cutting a powder compact submerged in a liquid with a wire.
  • FIG. 6B is a side view for explaining the process of cutting a powder compact submerged in a liquid with a wire.
  • FIG. 7A is a diagram schematically showing a cut surface formed on the powder compact 10 by a wire saw.
  • FIG. 7B is a diagram schematically showing a cut surface formed on the powder compact 10 by a wire saw.
  • FIG. 7C is a diagram schematically showing a cut surface formed on the powder compact 10 by a wire saw.
  • FIG. 8A is a diagram schematically showing another example of a cut surface formed on the powder compact 10 by a wire saw.
  • FIG. 8B is a diagram schematically showing another example of a cut surface formed on the powder compact 10 by a wire saw.
  • FIG. 8C is a diagram schematically showing another example of a cut surface formed on the powder compact 10 by a wire saw.
  • FIG. 8D is a diagram schematically showing another example of a cut surface formed on the powder compact 10 by a wire saw.
  • FIG. 8E is a diagram schematically showing another example of a cut surface formed on the powder compact 10 by a wire saw.
  • FIG. 8F is a diagram schematically showing another example of a cut surface formed on the powder compact 10 by a wire saw.
  • FIG. 9 is a graph showing how wire running speed and cutting speed affect the shape of a molded body piece.
  • FIG. 10 is a graph showing how wire running speed and cutting speed affect the shape of a molded body piece.
  • FIG. 11 is a graph showing how the wire traveling speed affects the shape of a molded body piece having a curved surface.
  • FIG. 12 is a graph showing how the wire running speed affects the shape of a molded piece having a curved surface.
  • RTB-based sintered magnet a method for manufacturing an RTB-based sintered magnet according to the present disclosure.
  • the method for manufacturing the RTB-based sintered magnet in this embodiment is as shown in the flowcharts of FIGS. 1 and 2.
  • ⁇ RTB system sintered magnet alloy R is a rare earth element and always contains at least one selected from the group consisting of Nd, Pr and Ce, T is at least one transition metal and Fe and B is boron).
  • the cutting step (S30) includes a first processing step (S32) of cutting the powder compact submerged in the liquid with a running wire to form a first cut surface; A powder compact submerged in a liquid that is the same as or different from the liquid is cut by a wire that is the same as or different from the running wire to form one or more second cut planes that intersect with the first cut plane. 2 processing step (S34).
  • such a cutting step (S30) is performed by cutting with a wire running horizontally and moving the wire in an arbitrary cutting direction perpendicular to the running direction, thereby cutting one or more surfaces including curved surfaces. It includes a step of forming a cut surface.
  • the cutting step (S30) is a step of dividing the horizontally running wire into a plurality of molded body pieces surrounded by a plurality of cutting surfaces including curved surfaces by moving the wire in an arbitrary cutting direction perpendicular to the running direction. can include.
  • liquids such as mineral or synthetic oils.
  • a high-speed liquid flow (jet flow) is generated in the area where the powder compact is in contact with the metal wire running at a predetermined speed range, and in the vicinity thereof, which causes the powder compact to It was found that the powder particles that make up the material were scraped off. Some of the powder particles scraped off from the powder compact ride on the high-speed flowing liquid and are sandwiched between the metal wire and the powder compact, exhibiting a grinding function similar to that of free abrasive grains, and forming the powder compact. It is thought to promote the cleavage of Considering the mechanism by which the wire cuts the powder compact in the liquid, it is considered that the shape and form of the surface of the wire are not particularly limited. In other words, the surface of the wire may be smooth like normal piano wire.
  • the running speed of the wire is 300 m/min or more, and the tension of the wire at that time is preferably 3 kgf (29.4 N) or more, for example, 15 kgf (147 N) or less. If the running speed of the wire is less than 300 m/min, sufficient flow velocity necessary to cut the powder compact cannot be obtained, and if the tension of the wire is less than 3 kgf, the wire will bend and the flatness of the cut surface will deteriorate. may decrease. If the tension of the wire exceeds 15 kgf, a problem of breakage may occur. Further, in the cutting process, the cutting speed (workpiece feed speed) in the direction perpendicular to the running direction of the wire is preferably 100 mm/min or more. This is because if the cutting speed is less than 100 mm/min, the time required for the cutting process becomes longer and production efficiency decreases.
  • the running speed of the wire can be 500 m/min or more.
  • the cutting speed can be 150 mm/min or more.
  • the moving speed of the wire in the cutting direction when forming a curved surface is preferably 100 mm/min or more and 600 mm/min or less.
  • One of the advantages of cutting a powder compact in a liquid is that the temperature rise due to frictional heat at the part where the powder compact and wire come into contact is suppressed, and the generated heat is easily dissipated into the liquid. .
  • the powder compact becomes hot due to the frictional heat generated and reacts with oxygen or water vapor in the atmosphere, resulting in an increase in the oxygen concentration in the final sintered magnet and deterioration of the magnetic properties.
  • such a problem can be avoided.
  • the step of preparing the powder compact includes the step of compacting the powder by wet pressing.
  • wet pressing is preferably performed by adding the same type of liquid to the powder as the liquid used in the cutting process. This is because the powder particles cut from the powder compact in the cutting process can be easily recovered from the liquid and reused.
  • the surface of the powder compact is processed to make it flat in order to cut in the horizontal and lateral directions before cutting in the vertical and vertical directions. can do.
  • At least a portion of the surface (for example, the upper surface) of the powder compact may have irregularities depending on the powder pressing process, and it has been necessary to cut or polish the surface after the sintering process.
  • such cutting or polishing steps can be omitted, so it is possible to reduce manufacturing costs while maintaining the characteristics of a high-performance magnet.
  • FIG. 3 is a perspective view showing a configuration example of the wire saw device 100 in the embodiment of the present disclosure.
  • the figure shows an X-axis, a Y-axis, and an X-axis that are orthogonal to each other.
  • the XY plane is horizontal and the Z axis is oriented vertically.
  • the wire saw device 100 in FIG. 3 includes rollers 30a, 30b, and 30c arranged so that their central axes of rotation are parallel to each other, and a single continuous wire 40.
  • Each of the rollers 30a, 30b, and 30c is rotatably supported by a support device 50.
  • the support device 50 can be moved vertically and vertically (in the positive and negative directions of the Z axis) by a drive device (not shown).
  • the drive device may obtain driving force from a hydraulic cylinder or may be operated by a motor. Further, in order to perform cutting along the horizontal lateral direction (X-axis direction), which will be described later, the support device 50 may move in the horizontal lateral direction.
  • the powder molded body 10 produced in the molding step (S20) is fixed to the fixing base 20 by a clamp portion (not shown), and placed inside the tank 70 that stores the liquid 60.
  • the tank 70 is shown in dashed lines and the height of the surface of the liquid 60 is shown in dotted lines.
  • the entire powder compact 10 is immersed in the liquid 60.
  • the fixing base 20 may be configured to move in the vertical and horizontal directions.
  • the powder compact 10 is not a sintered body but a powder compact (green compact) before being sintered.
  • the powder compact is an RTB-based sintered magnet alloy (R is a rare earth element and always contains at least one selected from the group consisting of Nd, Pr, and Ce, and T is at least one transition metal). It is obtained by molding a powder of (which always contains Fe and B is boron) by wet pressing or dry pressing in an orienting magnetic field.
  • the rollers 30a, 30b, and 30c are arranged at a predetermined interval so that the rotation center axis is located at the vertex of the triangle when viewed from a direction parallel to the X-axis.
  • a plurality of grooves are provided on each side surface of the rollers 31a, 31b, and 31c.
  • the wire 40 is wound in order around a plurality of grooves of the rollers 30a, 30b, and 30c.
  • the center spacing (pitch) of the plurality of grooves defines the width of the element divided by wire saw cutting. Both ends of the wire 40 are wound around a collection bobbin (not shown), for example.
  • the wire 40 in the embodiment of the present disclosure is a metal wire to which no abrasive grains are adhered to the surface.
  • the wire includes a wire (core wire) and abrasive grains located on the outer peripheral surface of the wire.
  • the average particle diameter of the abrasive grains is, for example, from several ⁇ m to several tens of ⁇ m.
  • a typical example of such abrasive grains is artificial diamond, which has a hardness higher than that of rare earth alloys.
  • the wire 40 in this embodiment is made of a metal material such as carbon steel, and is subjected to a tension of, for example, 3.0 kgf or more during the cutting process.
  • the metal wire material that can be used for the wire 40 may be, for example, piano wire, high-tensile steel wire, or the like.
  • the surface of the wire 40 may be plated.
  • the diameter of the wire 40 is, for example, in the range of 100 ⁇ m or more and 350 ⁇ m, preferably in the range of 180 ⁇ m or more and 300 ⁇ m or less. If the diameter of the wire 40 is less than 100 ⁇ m, there is a problem in that the wire 40 stretches during cutting due to insufficient strength. The larger the diameter of the wire 40, the better is the ability to discharge chips, but the amount of chips increases, so the diameter is preferably 350 ⁇ m or less.
  • rollers 30a, 30b, 30c and the collection bobbin rotate.
  • the rotation direction of the rollers 30a, 30b, and 30c depends on their arrangement and how the wire 40 is hung. In the wire saw device 100 shown in FIG. 3, rollers 30a, 30b, and 30c rotate in the same direction.
  • the collection bobbin and rollers 30a, 30b, and 30c are rotated in the opposite direction. This causes the wire 40 to move in the opposite direction, and by repeating this, the wire 40 can be reciprocated (moved).
  • the step of cutting the powder compact 10 with the wire 40 is performed with the powder compact 10 submerged in the liquid 60.
  • the powder compact 10 is a powder compact formed by wet pressing
  • a preferable example of the liquid 60 is an oil agent of the same type as the dispersion medium such as an oil agent (mineral oil or synthetic oil) used in the wet press.
  • the powder particles constituting the powder compact 10 fall off as chips from the portion cut by the wire 40.
  • These chips are powder particles constituting the powder compact 10 that have fallen off from the powder compact 10, and each particle has a rough fracture surface like metal chips (cutting waste). Not that there is.
  • the shape and size of the particles constituting the chips scraped off by the wire from the powder compact before sintering are similar to the shape and size of the powder particles used to produce the powder compact 10. The inventor of this application considered reusing this cutting powder.
  • the chips are particles whose grains have grown due to sintering or whose composition has changed due to a chemical reaction, or a combination of particles.
  • chips obtained from a powder compact before sintering have the same composition and size as other particles contained in the powder compact, and are therefore easier to reuse.
  • the powder compact 10 is produced by wet pressing, if wire saw processing is performed in the same type of oil as the dispersant, the collected powder (chips) can be used as is in wet pressing, improving production efficiency. rises.
  • S10 Grinding Step In the grinding step (S10), powder of an RTB-based sintered magnet alloy is prepared. Below, the composition of the RTB-based sintered magnet alloy, the process for manufacturing the alloy, and the process for preparing the alloy powder will be explained in order.
  • R is a rare earth element and always contains at least one selected from the group consisting of Nd, Pr, and Ce.
  • Dy and Tb are particularly effective in improving H cJ .
  • other rare earth elements such as La may be contained, and misch metal and didymium may also be used.
  • R may not be a pure element, and may contain impurities that are unavoidable in production within an industrially available range.
  • the content is, for example, 27% by mass or more and 35% by mass or less.
  • the R content of the RTB-based sintered magnet is 31% by mass or less (27% by mass or more and 31% by mass or less, preferably 29% by mass or more and 31% by mass or less).
  • the R content of the RTB-based sintered magnet to 31% by mass or less and the oxygen content to 500 ppm or more and 3500 ppm or less (preferably 500 ppm or more and 3200 ppm or less, and more preferably 500 ppm or more and 2500 ppm or less). , higher magnetic properties can be obtained.
  • T contains iron (including cases where T consists essentially of iron), and 50% or less of it by mass ratio may be replaced with cobalt (Co) (T consists essentially of iron and cobalt). (including cases). Co is effective in improving temperature characteristics and corrosion resistance, and the alloy powder may contain 10% by mass or less of Co.
  • the content of T may occupy the remainder of R and B, or R and B and M, which will be described later.
  • the content of B may be any known content, and for example, a preferable range is 0.9% by mass to 1.2% by mass. If it is less than 0.9% by mass, high H cJ may not be obtained, and if it exceeds 1.2% by mass, Br may decrease. Note that a part of B can be replaced with C (carbon).
  • an M element can be added to improve H cJ .
  • the M element is one or more selected from the group consisting of Al, Si, Ti, V, Cr, Mn, Ni, Cu, Zn, Ga, Zr, Nb, Mo, In, Sn, Hf, Ta, and W. .
  • the amount of the M element added is preferably 5.0% by mass or less. This is because if it exceeds 5.0% by mass, Br may decrease. Also, unavoidable impurities can be tolerated.
  • the content of N (nitrogen) in the RTB-based sintered magnet is preferably 50 ppm or more and 600 ppm or less. Further, the content of C (carbon) in the RTB-based sintered magnet is preferably 50 ppm or more and 1000 ppm or less.
  • An alloy ingot can be obtained by an ingot casting method in which a metal or alloy that has been adjusted in advance to have the composition described above is melted and placed in a mold.
  • molten metal is brought into contact with a single roll, twin rolls, rotating disk, or rotating cylindrical mold to rapidly cool it to produce a solidified alloy that is thinner than the alloy made by the ingot method, typically the strip casting method or centrifugal casting method. Alloy flakes can be produced by a rapid cooling method.
  • materials manufactured by either the ingot method or the quenching method can be used, but it is preferable to manufacture by a quenching method such as a strip casting method.
  • the thickness of the rapidly solidified alloy produced by the rapid cooling method is usually in the range of 0.03 mm to 1 mm, and has a flake shape.
  • the molten alloy begins to solidify from the surface in contact with the cooling roll (roll contact surface), and crystals grow in columnar shapes in the thickness direction from the roll contact surface. Rapidly solidified alloys are cooled in a shorter time than alloys (ingot alloys) produced by conventional ingot casting methods (mold casting methods), so they have finer structures and smaller crystal grain sizes. Also, the area of grain boundaries is wide.
  • the rapid cooling method has excellent dispersibility of the R-rich phase. For this reason, it is easy to fracture at grain boundaries by hydrogen pulverization.
  • the size of the hydrogen pulverized powder (coarsely pulverized powder) can be reduced to, for example, 1.0 mm or less.
  • the coarsely pulverized powder thus obtained is finely pulverized using, for example, a jet mill.
  • the rare earth alloy powder for RTB sintered magnets is active and easily oxidized.
  • gases used in jet mills include nitrogen, argon, helium, etc., in order to avoid the risk of heat generation and ignition, and to reduce the oxygen content as an impurity and improve the performance of the magnet.
  • An inert gas is used.
  • the material to be pulverized (coarsely pulverized powder) fed into a jet mill is, for example, pulverized into a fine powder having a particle size distribution with an average particle size (median diameter: d50) of 2.0 ⁇ m or more and 4.5 ⁇ m or less, and then is captured in a cyclone. It will be moved to a collection device. Cyclone collectors are used to separate powder from the airflow that carries it. Specifically, coarsely pulverized powder of RTB-based sintered magnet alloy is pulverized in a jet mill in the previous stage, and the fine powder generated by pulverization is sent to a cyclone collection device along with the gas used for pulverization. Supplied.
  • a mixture of inert gas (grinding gas) and pulverized fine powder forms a high-speed airflow and is sent to a cyclone collector.
  • a cyclone collector is used to separate these grinding gases and fine powders.
  • the fine powder separated from the grinding gas is collected by a powder collector.
  • S20 Molding process In the molding process (S20), a powder compact is produced using the powder obtained in the pulverizing process (S10).
  • a powder compact is produced from the above powder by pressing in a magnetic field.
  • pressing in a magnetic field from the viewpoint of suppressing oxidation, it is preferable to form a powder compact by pressing in an inert gas atmosphere or wet pressing.
  • wet pressing the surfaces of the particles constituting the powder compact are coated with a dispersant such as an oil agent to suppress contact with oxygen and water vapor in the atmosphere. Therefore, it is possible to prevent or suppress the particles from being oxidized by the atmosphere before, during or after the pressing process.
  • a slurry of fine powder mixed with a dispersion medium is prepared, and the slurry is supplied to a cavity in a mold of a wet pressing device and press-molded in a magnetic field.
  • the powder compact thus formed has a density of, for example, 4 g/cm 3 or more and 5 g/cm 3 or less.
  • a dispersion medium is a liquid in which a slurry can be obtained by dispersing alloy powder.
  • Mineral oil or synthetic oil can be mentioned as a preferred dispersion medium used in the present disclosure.
  • the type of mineral oil or synthetic oil is not specified, but if the kinematic viscosity at room temperature exceeds 10 cSt, the increased viscosity will strengthen the bonding force between the alloy powders, which will affect the orientation of the alloy powder during wet compaction in a magnetic field. may have a negative impact. Therefore, the kinematic viscosity of the mineral oil or synthetic oil at room temperature is preferably 10 cSt or less.
  • the fractionation point of mineral oil or synthetic oil exceeds 400° C., it becomes difficult to remove oil after obtaining a molded body, and the amount of residual carbon in the sintered body may increase, resulting in a decrease in magnetic properties. Therefore, the fractionation point of mineral oil or synthetic oil is preferably 400°C or lower.
  • vegetable oil may be used as a dispersion medium. Vegetable oil refers to oil extracted from plants, and the type of plant is not limited to a specific plant.
  • a slurry can be obtained by mixing the obtained alloy powder and a dispersion medium.
  • the concentration of the alloy powder in the slurry is preferably 70% or more (ie, 70% by mass or more) in terms of mass ratio. This is because at a flow rate of 20 to 600 cm 3 /sec, the alloy powder can be efficiently supplied into the cavity and excellent magnetic properties can be obtained.
  • the concentration of the alloy powder in the slurry is preferably 90% or less in terms of mass ratio.
  • the method of mixing the alloy powder and the dispersion medium is not particularly limited. The alloy powder and the dispersion medium may be prepared separately, and a predetermined amount of both may be weighed and mixed together.
  • a container containing a dispersion medium is placed at the alloy powder outlet of the jet mill or other grinding device, and the alloy powder obtained by pulverizing may be collected directly into a dispersion medium in a container to obtain a slurry.
  • the atmosphere in the container is also made of nitrogen gas and/or argon gas, and the obtained alloy powder is directly collected into a dispersion medium without being exposed to the atmosphere to form a slurry.
  • a slurry consisting of the alloy powder and the dispersion medium by wet-pulverizing the coarsely pulverized powder while it is held in a dispersion medium using a vibration mill, a ball mill, an attritor, or the like.
  • a powder compact having a predetermined size and shape can be obtained.
  • this powder compact is usually sintered to obtain a sintered body, but in this embodiment, the powder compact is divided by a wire saw device before sintering, as described below.
  • S30 Cutting process In the cutting process (S30), the powder compact is cut and divided into a plurality of compact pieces.
  • FIG. 3 The cutting of the powder compact in this step is performed by, for example, a wire saw device shown in FIG. 3.
  • 4A and 4B are front views for explaining the process of cutting the powder compact 10 submerged in the liquid 60 with the wire 40, respectively.
  • FIG. 4A shows the state before the cutting process starts
  • FIG. 4B shows the state in the middle of the cutting process.
  • a broken line inside the powder compact 10 shown in FIG. 4B schematically indicates the position of the wire 40 while cutting the powder compact 10.
  • the powder compact 10 is divided into a plurality of compact pieces.
  • the wire 40 moves in a direction perpendicular to the running direction of the wire 40 (negative direction of the Z-axis) while running at a predetermined speed in the Y-axis direction.
  • the direction perpendicular to the running direction of the wire 40 is the cutting direction, and the speed in this direction (cutting speed) is set to, for example, 100 mm/min or more.
  • the running wire 40 is moving in the negative direction of the Z-axis with respect to the powder compact 10 in a stationary state, but the powder compact 10 is moving along the Z-axis together with the fixing base 20. may be lifted in the positive direction.
  • FIGS. 5A and 5B are side views for explaining the process of cutting the powder compact 10 submerged in the liquid 60 with the wire 40, respectively.
  • FIG. 5A shows the state before the cutting process starts
  • FIG. 5B shows the state during the cutting process.
  • one powder compact 10 is divided into eight compact pieces.
  • the diameter of the wire 40 is, for example, 100 ⁇ m or more and 350 ⁇ m or less.
  • the running speed of the wire 40 (wire linear speed) may be set, for example, in a range of 100 m/min or more and 800 m/min or less.
  • the cutting speed (the feeding speed of the wire with respect to the powder compact 10 in the negative direction of the Z axis in FIG. 3) may be set, for example, in a range of 100 mm/min or more and 600 mm/min or less.
  • the tension applied to the wire 40 is, for example, 3 kgf or more and 15 kgf or less. The tension can be adjusted, for example, by adjusting the distance of roller 30c with respect to rollers 30a and 30b.
  • the powder compact 10 By cutting with a wire saw, the powder compact 10 can be divided into compact pieces having a thickness of about 1 to 10 mm, for example.
  • the thickness of the compact piece is determined by the spacing of the wires 40 and the diameter of the wires 40, as shown in FIG. 5B.
  • Performing wire saw processing in liquid also has the advantage of facilitating the discharge of cutting chips.
  • cutting can be performed while the powder compact 10 is immersed in the dispersion medium (mineral oil or synthetic oil) used when producing the powder compact 10 by wet pressing (cutting in oil).
  • the powder particles precipitated in the liquid during wire saw processing can be recovered, and the recovered powder particles can be reused as they are in the molding process.
  • FIGS. 6A and 6B are side views for explaining the process of horizontally cutting the powder compact 10 submerged in the liquid 60 with the wire 40.
  • the rollers 30a, 30b, and 30c are moving in the horizontal direction (in the direction of the rotation axis of each roller) relative to the powder compact 10 during the cutting process.
  • the surface of the powder compact 10 can be made flat by making horizontal incisions using the wire 40. At least a portion of the surface (for example, the upper surface) of the powder compact 10 may have irregularities depending on the powder pressing process.
  • a "filter cloth” is placed between the punch and the powder, and a dispersant (oil agent) is passed through the filter cloth. may be discharged. In that case, irregularities may be formed on the upper surface of the obtained powder compact by the filter cloth.
  • FIGS. 7A to 7C are diagrams schematically showing cut surfaces formed on the powder compact 10 by a wire saw.
  • the running wire 40 moves along the broken line 11c in FIG. 7A with respect to the powder compact 10 submerged in the liquid 60.
  • the rough surface region 10T of the powder compact 10 is cut thinly to form a first cut surface 11 perpendicular to the Z-axis direction.
  • the step (second treatment step) described with reference to FIGS. 5A and 5B a plurality of second cut surfaces 12 that intersect with the first cut surface 11 are formed.
  • the second cut surface 12 is formed by moving the running wire along the broken line 12c.
  • the first treatment step and the second treatment step may be performed using the same wire saw device or different wire saw devices.
  • the powder compact in the second treatment step, may be cut by the same wire while being submerged in the same liquid as that in which it was submerged in the first treatment step, or it may be cut by the same wire while the powder compact is submerged in the same liquid as the one in the first treatment step.
  • the wires may be cut by different wires while the wires are in the same state.
  • the first cutting surface 11 is parallel to the horizontal plane
  • the second cutting surface 12 is perpendicular to the first cutting surface 11.
  • the respective orientations of the first cut surface 11 and the second cut surface 12 are not limited to this example.
  • the second cutting speed is preferably, for example, 100 mm/min or more and 800 mm/min or less.
  • the technical effect of performing the first processing step of cutting the powder compact in the liquid horizontally and laterally before performing the second processing step of cutting the powder compact in the vertical and vertical directions is that It can be obtained not only when using a wire but also when using a wire in which abrasive grains are fixed to the surface of a metal wire.
  • FIG. 3 is a diagram for explaining a step of dividing the molded product into a plurality of pieces.
  • the rollers 30a, 30b, 30c that rotate the wire 40 and the support device 50 can move simultaneously in both the Z-axis direction and the X-axis direction.
  • the wire 40 moves in the negative direction of the Z-axis while moving in the positive direction of the X-axis.
  • a downwardly convex curved cut surface is formed in the powder compact 10.
  • an arbitrary curved surface can be formed by gradually changing the moving speed in the Z-axis direction.
  • one compact piece is formed from one powder compact 10, but the present invention is not limited to this example.
  • a plurality of molded body pieces can be formed from one powder molded body 10.
  • the shape and size of the molded body piece to be formed are not limited to the illustrated example.
  • each of the plurality of molded body pieces is sintered to produce a plurality of sintered bodies. That is, the individual molded body pieces cut by the above-mentioned wire saw process are sintered to obtain an RTB type sintered magnet (sintered body).
  • the sintering process of the molded body piece is performed at a temperature of, for example, 1000°C to 1150°C under a pressure of, for example, 0.13 Pa (10 -3 Torr) or less, preferably 0.07 Pa (5.0 ⁇ 10 -4 Torr) or less.
  • RTB-based sintered magnet is subjected to a grinding/polishing process, a surface treatment process, and a magnetization process, as necessary, to produce the final RTB-based sintered magnet.
  • the magnet is completed.
  • the method for manufacturing an RTB-based sintered magnet of the present disclosure includes introducing a heavy rare earth element RH (RH is at least one of Tb, Dy, and Ho) from the surface of the sintered body into the inside.
  • the method further includes a step of diffusing. By diffusing the heavy rare earth element RH from the surface of the sintered body into the interior, the coercive force can be efficiently increased.
  • the method of the diffusion step is not particularly limited. A known method can be adopted.
  • the powder compact was divided into eight compact pieces using a wire (metal wire made of piano wire) having a diameter of 250 ⁇ m. Cutting with a wire saw was performed while the powder compact was submerged in a liquid (the same liquid as the mineral oil used during molding was used). Each powder compact was cut with eight wires (multi-wire) running in parallel. The tension applied to the wire during cutting was 10 kg, and the roller spacing was 250 mm.
  • FIG. 9 is a graph showing how the wire running speed and cutting speed affect the shape of the molded body piece.
  • the horizontal axis of the graph is the wire running speed [m/min], and the vertical axis is the cutting speed [mm/min].
  • the "x” shown in this graph means that a "crack” has occurred in a part of the molded body piece divided by wire saw cutting, and the " ⁇ ” means that such a crack has occurred in the molded body piece. This means that the molded product could be divided into good-shaped pieces without any occurrence.
  • the maximum running speed of the wire is preferably 300 m/min or more.
  • the diameter of the wire is preferably 200 ⁇ m or more. Note that as the diameter of the wire increases, the cutting margin increases, but normal cutting is possible.
  • FIG. 10 shows the experimental results when the upper surface area of the powder compact was cut horizontally in oil using a single wire as shown in FIGS. 6A and 6B.
  • Transverse feed is the cutting speed in the horizontal lateral direction
  • linear speed is the running speed of the wire.
  • a crack-free molded piece could be obtained at a cutting speed of 100 to 300 mm/min at a running speed of 300 m/min.
  • a running speed of 500 m/min it was possible to obtain molded pieces without cracks at cutting speeds of 300 mm to 500/min.
  • a crack-free molded piece could be obtained at a cutting speed of 500 mm/min.
  • the powder compact In order to cut off the vicinity of the top surface of the powder compact by "transverse feeding", it is preferable that the powder compact has sufficient "hardness".
  • the hardness of a powder compact can be evaluated based on, for example, the compaction pressure or density during powder compaction. It has been found that when the density of the powder compact in air is less than 4 g/cm 3 , there is a problem in that the cut surface is not smooth. For this reason, it is preferable that the density of the powder compact is 4 g/cm 3 or more.
  • FIGS. 11 and 12 are graphs showing how the speed of wire movement in the cutting direction affects the shape of a molded piece having a curved surface when forming a molded piece having a semi-cylindrical shape. .
  • the data in FIG. 11 was obtained when the wire tension was 9 kgf (88.2 N), and the data in FIG. 12 was obtained when the wire tension was 12 kgf (117.6 N).
  • the diameter of the wire is 250 ⁇ m.
  • the incision made by the wire was advanced in the direction of increasing the position (coordinate) in the X-axis direction. It can be seen that the position of the cut plane deviates from the target position in the latter half of the cut. The cause of this is the bending of the wire.
  • the wire moving speed in the cutting direction is 100 mm/min or more and 600 mm/min or less, the desired curved shape can be cut with a high yield by adjusting the wire tension.
  • the tension is preferably 9 kgf (88.2 N) or more. Further, it is preferable that the wire moving speed in the cutting direction is 540 mm/min or less.

Abstract

A method for manufacturing an R-T-B based sintered magnet according to the present disclosure comprises: a milling step for preparing a powder of an alloy for an R-T-B based sintered magnet; a molding step for fabricating a powder molded body using the powder; a cutting step for cutting and dividing the powder molded body into a plurality of molded body pieces; and a sintering step for sintering each of the plurality of molded body pieces to fabricate a plurality of sintered bodies. The cutting step includes a step for forming one or a plurality of cut surfaces including a curved surface, by cutting the powder molded body, submerged in a liquid, with a wire running in a horizontal direction, and by causing the wire to move in an arbitrary incising direction perpendicular to the running direction.

Description

R-T-B系焼結磁石の製造方法Manufacturing method of RTB based sintered magnet
 本願は、R-T-B系焼結磁石の製造方法に関する。 The present application relates to a method for manufacturing an RTB-based sintered magnet.
 R-T-B系焼結磁石(Rは希土類元素であり、Nd、PrおよびCeからなる群から選択される少なくとも1つを必ず含み、Tは遷移金属の少なくとも1つでありFeを必ず含み、Bはホウ素である)は、RFe14B型結晶構造を有する化合物の主相と、この主相の粒界部分に位置する粒界相および微量添加元素や不純物の影響により生成する化合物相とから構成されている。R-T-B系焼結磁石は、高い残留磁束密度B(以下、単に「B」と記載する場合がある)と、高い保磁力HcJ(以下、単に「HcJ」と記載する場合がある)を示し、優れた磁気特性を有することから、永久磁石の中で最も高性能な磁石として知られている。このため、R-T-B系焼結磁石は、ハードディスクドライブのボイスコイルモータ(VCM)、電気自動車(EV、HV、PHV)用モータ、産業機器用モータなどの各種モータや家電製品など多種多様な用途に用いられている。 RTB system sintered magnet (R is a rare earth element and always contains at least one selected from the group consisting of Nd, Pr, and Ce, T is at least one transition metal and always contains Fe) , B is boron) is a compound formed by the main phase of a compound having a R 2 Fe 14 B type crystal structure, the grain boundary phase located at the grain boundary part of this main phase, and the influence of trace additive elements and impurities. It is composed of phases. RTB-based sintered magnets have a high residual magnetic flux density B r (hereinafter sometimes simply referred to as “B r ”) and a high coercive force H cJ (hereinafter simply referred to as “H cJ ”). It is known as the highest performance magnet among permanent magnets because of its excellent magnetic properties. For this reason, RTB-based sintered magnets are used in a wide variety of applications such as voice coil motors (VCMs) for hard disk drives, motors for electric vehicles (EV, HV, PHV), motors for industrial equipment, and home appliances. It is used for various purposes.
 このようなR-T-B系焼結磁石は、例えば、合金粉末を準備する工程、合金粉末をプレス成形して粉末成形体を作製する工程、粉末成形体を焼結する工程を経て製造される。合金粉末は、例えば、以下の方法で作製される。 Such RTB-based sintered magnets are manufactured through, for example, a process of preparing alloy powder, a process of press-molding the alloy powder to produce a powder compact, and a process of sintering the powder compact. Ru. The alloy powder is produced, for example, by the following method.
 まず、インゴット法またはストリップキャスト法などの方法によって各種原料金属の溶湯から合金を製造する。得られた合金を粉砕工程に供し、所定の粒径分布を有する合金粉末を得る。この粉砕工程には、通常、粗粉砕工程と微粉砕工程とが含まれており、前者は、例えば水素脆化現象を利用して、後者は例えば気流式粉砕機(ジェットミル)を用いて行われる。 First, an alloy is manufactured from molten metals of various raw materials by a method such as an ingot method or a strip casting method. The obtained alloy is subjected to a pulverization process to obtain an alloy powder having a predetermined particle size distribution. This pulverization process usually includes a coarse pulverization process and a fine pulverization process. be exposed.
 粉末成形体を焼結する工程によって得られた焼結体は、その後、研削、切断などの機械的な加工を施され、所望の形状およびサイズを持つように個片化される。より詳細には、まず、R-Fe-B系希土類磁石粉末をプレス装置で圧縮成形することにより、最終的な磁石製品よりも大きいサイズの成形体が作製される。そして、成形体を焼結工程によって焼結体にした後、例えば超硬合金製ブレードソー、または回転砥石などによって焼結体を研削加工し、所望の形状を付与することが行われている。例えば、まずブロック形状を有する焼結体を作製した後、その焼結体をブレードソーなどでスライスすることによって複数のプレート状焼結体部分を切り出すことが行われている。 The sintered body obtained by the step of sintering the powder compact is then subjected to mechanical processing such as grinding and cutting, and is separated into pieces having the desired shape and size. More specifically, first, R--Fe--B rare earth magnet powder is compression-molded using a press machine to produce a compact that is larger in size than the final magnet product. After the molded body is made into a sintered body through a sintering process, the sintered body is ground into a desired shape using, for example, a cemented carbide blade saw or a rotary grindstone. For example, after first producing a block-shaped sintered body, the sintered body is sliced with a blade saw or the like to cut out a plurality of plate-shaped sintered body parts.
 しかしながら、R-Fe-B系焼結磁石などの希土類合金磁石の焼結体は極めて硬くて脆い上に、加工負荷が大きいため、高精度の研削加工は困難な作業であり、加工時間が長くかかる。また、加工によって滅失する材料部分が不可避的に発生する。このため、加工工程が製造コスト増加の大きな原因となっていた。 However, the sintered bodies of rare earth alloy magnets such as R-Fe-B sintered magnets are extremely hard and brittle, and the processing load is large, so high-precision grinding is a difficult task and the processing time is long. It takes. Furthermore, some material parts are inevitably lost during processing. For this reason, the processing process has been a major cause of increased manufacturing costs.
 例えば前者の問題を解決するために、特許文献1は、磁石成形体を焼結前にワイヤソーを用いて加工する技術を記載している。ワイヤソーとは、一方向または双方向に走行するワイヤを、加工すべき成形体に押し付け、ワイヤと成形体との間にある砥粒によって成形体を研削または切断する加工技術である。この技術によれば、焼結体よりも格段に柔らかくて加工しやすい状態にある粉末成形体を切断するため、切断加工に要する時間が大幅に短縮される。 For example, in order to solve the former problem, Patent Document 1 describes a technique of processing a magnet molded body using a wire saw before sintering. A wire saw is a processing technique in which a wire running in one direction or both directions is pressed against a molded body to be processed, and the molded body is ground or cut using abrasive grains between the wire and the molded body. According to this technique, since the powder compact is cut which is much softer and easier to process than the sintered body, the time required for the cutting process is significantly shortened.
特開2003-303728号公報JP2003-303728A
 特許文献1は、0.1mm以上1.0mm以下の外径を有するワイヤと、このワイヤに固定された砥粒とを有するワイヤソーを用いて、酸素濃度がモル比で全体の5%以上18%以下に調節された不活性ガス雰囲気中で粉末成形体を加工することを開示している。このように酸素濃度が制御された不活性雰囲気中でワイヤソー加工を行うことは、設備や管理が煩雑になり、量産性に劣る。 Patent Document 1 uses a wire saw having an outer diameter of 0.1 mm or more and 1.0 mm or less and abrasive grains fixed to this wire, and the oxygen concentration is 5% or more and 18% of the total in terms of molar ratio. The following discloses the processing of powder compacts in a controlled inert gas atmosphere. Performing wire saw processing in an inert atmosphere with a controlled oxygen concentration requires complicated equipment and management, and is poor in mass productivity.
 本開示の実施形態は、不活性雰囲気の準備が必要ないワイヤソー工程を可能にする新しいR-T-B系焼結磁石の製造方法を提供する。 Embodiments of the present disclosure provide a new method for manufacturing RTB-based sintered magnets that enables a wire saw process that does not require preparation of an inert atmosphere.
 本開示のR-T-B系焼結磁石の製造方法は、例示的な実施形態において、R-T-B系焼結磁石用合金(Rは希土類元素であり、Nd、PrおよびCeからなる群から選択される少なくとも1つを必ず含み、Tは遷移金属の少なくとも1つでありFeを必ず含み、Bはホウ素である)の粉末を準備する粉砕工程と、前記粉末を用いて粉末成形体を作製する成形工程と、前記粉末成形体を切断し、複数の成形体片に分割する切断工程と、前記複数の成形体片のそれぞれを焼結して複数の焼結体を作製する焼結工程とを含む。前記切断工程は、液体中に沈めた前記粉末成形体を、水平方向に走行するワイヤによって切断し、ワイヤを走行方向に垂直な任意の切込方向に移動させることにより、曲面を含む1または複数の切断面を形成する工程を含む。 In an exemplary embodiment, the method for manufacturing an RTB-based sintered magnet of the present disclosure includes an RTB-based sintered magnet alloy (R is a rare earth element, consisting of Nd, Pr, and Ce). a pulverizing step of preparing a powder (which always contains at least one selected from the group consisting of: T is at least one transition metal and always includes Fe; and B is boron); and a powder compact using the powder. a cutting step of cutting the powder compact and dividing it into a plurality of compact pieces; and a sintering step of sintering each of the plurality of compact body pieces to produce a plurality of sintered bodies. process. In the cutting step, the powder compact submerged in the liquid is cut by a wire running in a horizontal direction, and the wire is moved in an arbitrary cutting direction perpendicular to the running direction to cut one or more curved surfaces. forming a cut surface.
 ある実施形態において、前記切断工程は、水平方向に走行する前記ワイヤを走行方向に垂直な任意の切込方向に移動させることにより、前記複数の切断面に囲まれた複数の成形体片に分割する工程を含む。 In one embodiment, the cutting step includes dividing the horizontally running wire into a plurality of molded body pieces surrounded by the plurality of cut surfaces by moving the wire in an arbitrary cutting direction perpendicular to the running direction. including the step of
 ある実施形態では、前記切断工程において、前記ワイヤの最高走行速度は300m/分以上である。 In one embodiment, in the cutting step, the maximum traveling speed of the wire is 300 m/min or more.
 ある実施形態では、前記切断工程において、前記ワイヤの張力は29.4N(3kgf)以上である。 In one embodiment, in the cutting step, the tension of the wire is 29.4 N (3 kgf) or more.
 ある実施形態では、前記切込み方向における前記ワイヤの移動速度は、100mm/分以上800mm/分以下である。 In one embodiment, the moving speed of the wire in the cutting direction is 100 mm/min or more and 800 mm/min or less.
 ある実施形態において、前記曲面を形成するときの前記切込み方向における前記ワイヤの移動速度は、100mm/分以上600mm/分以下である。 In one embodiment, the moving speed of the wire in the cutting direction when forming the curved surface is 100 mm/min or more and 600 mm/min or less.
 ある実施形態において、前記ワイヤの表面は金属組成である。 In some embodiments, the surface of the wire is of metallic composition.
 ある実施形態において、前記粉末成形体を準備する工程は、湿式プレスによって前記粉末を成形する工程を含む。 In one embodiment, the step of preparing the powder compact includes the step of compacting the powder by wet pressing.
 ある実施形態において、前記切断工程によって前記粉末成形体から削られた前記粉末の粒子を前記液体中から回収する工程を更に含む。 In one embodiment, the method further includes a step of recovering the powder particles cut from the powder compact by the cutting step from the liquid.
 本開示の実施形態によれば、不活性雰囲気を準備することなくワイヤソーによる切断が可能となり、量産性に優れる。さらに、粉末成形体を曲面状に加工することも可能になる。本開示の実施形態によれば、プレス器の金型形状によらず、粉末成形体の形状設計自由度が向上するため、高性能磁石の特性を維持しつつ、製造コストの低減を実現することが可能になる。 According to the embodiment of the present disclosure, it is possible to cut with a wire saw without preparing an inert atmosphere, resulting in excellent mass productivity. Furthermore, it becomes possible to process the powder compact into a curved shape. According to the embodiment of the present disclosure, the degree of freedom in designing the shape of the powder compact is improved regardless of the shape of the mold of the press, so it is possible to reduce manufacturing costs while maintaining the characteristics of a high-performance magnet. becomes possible.
図1は、本開示の実施形態における製造方法の主な工程を示すフローチャートである。FIG. 1 is a flowchart showing the main steps of the manufacturing method in the embodiment of the present disclosure. 図2は、本開示の実施形態における製造方法の切断工程の内容を示すフローチャートである。FIG. 2 is a flowchart showing the details of the cutting process of the manufacturing method in the embodiment of the present disclosure. 図3は、本開示の実施形態で用いられるワイヤソー装置の構成を模式的に示す斜視図である。FIG. 3 is a perspective view schematically showing the configuration of a wire saw device used in an embodiment of the present disclosure. 図4Aは、液体中に沈めた粉末成形体をワイヤによって切断する工程を説明するための正面図である。FIG. 4A is a front view for explaining the process of cutting a powder compact submerged in a liquid with a wire. 図4Bは、液体中に沈めた粉末成形体を金属素線のワイヤによって切断する工程を説明するための正面図である。FIG. 4B is a front view for explaining a process of cutting a powder compact submerged in a liquid with a metal wire. 図5Aは、液体中に沈めた粉末成形体をワイヤによって切断する工程を説明するための側面図である。FIG. 5A is a side view for explaining a process of cutting a powder compact submerged in a liquid with a wire. 図5Bは、液体中に沈めた粉末成形体をワイヤによって切断する工程を説明するための側面図である。FIG. 5B is a side view for explaining the process of cutting a powder compact submerged in a liquid with a wire. 図6Aは、液体中に沈めた粉末成形体をワイヤによって切断する工程を説明するための側面図である。FIG. 6A is a side view for explaining a process of cutting a powder compact submerged in a liquid with a wire. 図6Bは、液体中に沈めた粉末成形体をワイヤによって切断する工程を説明するための側面図である。FIG. 6B is a side view for explaining the process of cutting a powder compact submerged in a liquid with a wire. 図7Aは、ワイヤソーによって粉末成形体10に形成される切断面を模式的に示す図である。FIG. 7A is a diagram schematically showing a cut surface formed on the powder compact 10 by a wire saw. 図7Bは、ワイヤソーによって粉末成形体10に形成される切断面を模式的に示す図である。FIG. 7B is a diagram schematically showing a cut surface formed on the powder compact 10 by a wire saw. 図7Cは、ワイヤソーによって粉末成形体10に形成される切断面を模式的に示す図である。FIG. 7C is a diagram schematically showing a cut surface formed on the powder compact 10 by a wire saw. 図8Aは、ワイヤソーによって粉末成形体10に形成される切断面の他の例を模式的に示す図である。FIG. 8A is a diagram schematically showing another example of a cut surface formed on the powder compact 10 by a wire saw. 図8Bは、ワイヤソーによって粉末成形体10に形成される切断面の他の例を模式的に示す図である。FIG. 8B is a diagram schematically showing another example of a cut surface formed on the powder compact 10 by a wire saw. 図8Cは、ワイヤソーによって粉末成形体10に形成される切断面を他の例を模式的に示す図である。FIG. 8C is a diagram schematically showing another example of a cut surface formed on the powder compact 10 by a wire saw. 図8Dは、ワイヤソーによって粉末成形体10に形成される切断面の他の例を模式的に示す図である。FIG. 8D is a diagram schematically showing another example of a cut surface formed on the powder compact 10 by a wire saw. 図8Eは、ワイヤソーによって粉末成形体10に形成される切断面の他の例を模式的に示す図である。FIG. 8E is a diagram schematically showing another example of a cut surface formed on the powder compact 10 by a wire saw. 図8Fは、ワイヤソーによって粉末成形体10に形成される切断面を他の例を模式的に示す図である。FIG. 8F is a diagram schematically showing another example of a cut surface formed on the powder compact 10 by a wire saw. 図9は、ワイヤ走行速度と切込み速度が成形体片の形状にどのような影響を与えるかを示すグラフである。FIG. 9 is a graph showing how wire running speed and cutting speed affect the shape of a molded body piece. 図10は、ワイヤ走行速度と切込み速度が成形体片の形状にどのような影響を与えるかを示すグラフである。FIG. 10 is a graph showing how wire running speed and cutting speed affect the shape of a molded body piece. 図11は、ワイヤ走行速度が曲面を有する成形体片の形状にどのような影響を与えるかを示すグラフである。FIG. 11 is a graph showing how the wire traveling speed affects the shape of a molded body piece having a curved surface. 図12は、ワイヤ走行速度が曲面を有する成形体片の形状にどのような影響を与えるかを示すグラフである。FIG. 12 is a graph showing how the wire running speed affects the shape of a molded piece having a curved surface.
 以下、本開示によるR-T-B系焼結磁石の製造方法の実施形態を説明する。本実施形態におけるR-T-B系焼結磁石の製造方法は、図1および図2のフローチャートに示すように、
 ・R-T-B系焼結磁石用合金(Rは希土類元素であり、Nd、PrおよびCeからなる群から選択される少なくとも1つを必ず含み、Tは遷移金属の少なくとも1つでありFeを必ず含み、Bはホウ素である)の粉末を準備する粉砕工程(S10)と、
 ・粉砕工程(S10)で得られた粉末を用いて粉末成形体を作製する成形工程(S20)と、
 ・粉末成形体を切断し、複数の成形体片に分割する切断工程(S30)と、
 ・複数の成形体片のそれぞれを焼結して複数の焼結体を作製する焼結工程(S40)と、
を含む。
Hereinafter, embodiments of a method for manufacturing an RTB-based sintered magnet according to the present disclosure will be described. The method for manufacturing the RTB-based sintered magnet in this embodiment is as shown in the flowcharts of FIGS. 1 and 2.
・RTB system sintered magnet alloy (R is a rare earth element and always contains at least one selected from the group consisting of Nd, Pr and Ce, T is at least one transition metal and Fe and B is boron).
・A molding step (S20) of producing a powder compact using the powder obtained in the crushing step (S10);
- A cutting step (S30) of cutting the powder compact and dividing it into a plurality of compact pieces;
- A sintering step (S40) of producing a plurality of sintered bodies by sintering each of the plurality of molded body pieces;
including.
 切断工程(S30)は、液体中に沈めた前記粉末成形体を、走行するワイヤによって切断し、第1切断面を形成する第1処理工程(S32)と、
 前記液体と同一または異なる液体中に沈めた粉末成形体を、走行する前記ワイヤと同一または異なるワイヤによって切断し、第1切断面に対して交差する1または複数の第2切断面を形成する第2処理工程(S34)とを含む。
The cutting step (S30) includes a first processing step (S32) of cutting the powder compact submerged in the liquid with a running wire to form a first cut surface;
A powder compact submerged in a liquid that is the same as or different from the liquid is cut by a wire that is the same as or different from the running wire to form one or more second cut planes that intersect with the first cut plane. 2 processing step (S34).
 このような切断工程(S30)は、好ましい実施形態において、水平方向に走行するワイヤによって切断し、ワイヤを走行方向に垂直な任意の切込方向に移動させることにより、曲面を含む1または複数の切断面を形成する工程を含む。切断工程(S30)は、水平方向に走行するワイヤを走行方向に垂直な任意の切込方向に移動させることにより、曲面を含む複数の切断面に囲まれた複数の成形体片に分割する工程を含むことができる。 In a preferred embodiment, such a cutting step (S30) is performed by cutting with a wire running horizontally and moving the wire in an arbitrary cutting direction perpendicular to the running direction, thereby cutting one or more surfaces including curved surfaces. It includes a step of forming a cut surface. The cutting step (S30) is a step of dividing the horizontally running wire into a plurality of molded body pieces surrounded by a plurality of cutting surfaces including curved surfaces by moving the wire in an arbitrary cutting direction perpendicular to the running direction. can include.
 本開示のR-T-B系焼結磁石の製造方法によれば、粉末成形体を液体中に沈めた状態でワイヤによる切断を行うため、不活性雰囲気を準備する必要が無い。本開示の実施形態で利用可能な液体の例は、鉱物油または合成油などの油剤である。 According to the method for manufacturing an RTB-based sintered magnet of the present disclosure, cutting is performed with a wire while the powder compact is submerged in a liquid, so there is no need to prepare an inert atmosphere. Examples of liquids that can be used in embodiments of the present disclosure are oils, such as mineral or synthetic oils.
 従来、粉末成形体をワイヤソー技術によって切断するには、ワイヤを構成する金属素線の表面に固着した硬い砥粒が粉末成形体と接触し、摩擦により粉末成形体の一部を削り取ることが必要であると考えられてきた。しかし、本発明者による実験の結果、走行する金属素線が、液体中に沈められた粉末成形体と接すると、砥粒が固着していない金属素線だけでも粉末成形体を研削し、切断できることがわかった。発明者の検討の結果、所定範囲の速度で走行する金属素線と粉末成形体とが接触している領域およびその近傍では、高速の液体流(ジェット流)が発生し、それによって粉末成形体を構成している粉末粒子が削り取られることがわかった。粉末成形体から削り取られた粉末粒子の一部は、高速で流れる液体に乗って金属素線と粉末成形体との間に挟まれ、遊離砥粒と同様の研削機能を発揮して粉末成形体の切断を促進すると考えられる。液中でワイヤが粉末成形体を切断するメカニズムから、ワイヤの表面の形状および形態は特に限定されないと考えられる。言い換えると、ワイヤの表面は、通常のピアノ線のように平滑であってもよい。 Conventionally, in order to cut a powder compact using wire saw technology, it is necessary for hard abrasive grains fixed to the surface of the metal wires that make up the wire to come into contact with the powder compact and scrape off a portion of the powder compact through friction. It has been thought that. However, as a result of experiments conducted by the present inventor, when a traveling metal wire comes into contact with a powder compact submerged in a liquid, even the metal wire without abrasive grains can grind and cut the powder compact. I found out that it can be done. As a result of the inventor's study, a high-speed liquid flow (jet flow) is generated in the area where the powder compact is in contact with the metal wire running at a predetermined speed range, and in the vicinity thereof, which causes the powder compact to It was found that the powder particles that make up the material were scraped off. Some of the powder particles scraped off from the powder compact ride on the high-speed flowing liquid and are sandwiched between the metal wire and the powder compact, exhibiting a grinding function similar to that of free abrasive grains, and forming the powder compact. It is thought to promote the cleavage of Considering the mechanism by which the wire cuts the powder compact in the liquid, it is considered that the shape and form of the surface of the wire are not particularly limited. In other words, the surface of the wire may be smooth like normal piano wire.
 切断工程において、ワイヤの走行速度は300m/分以上であることが好ましく、そのときのワイヤの張力は3kgf(29.4N)以上、例えば15kgf(147N)以下であることが好ましい。ワイヤの走行速度が300m/分未満であると、粉末成形体を切断するために必要な十分な流速が得られないし、ワイヤの張力が3kgf未満であると、ワイヤが撓み、切断面の平坦性が低下してしまう可能性がある。ワイヤの張力が15kgfを超えると、破断するという問題が生じる可能性がある。また、切断工程において、ワイヤの走行方向に対して直交する方向の切込み速度(ワーク送り速度)は、100mm/分以上であることが好ましい。切込み速度が100mm/分未満であると、切断工程に要する時間が長くなり、生産効率が低下するからである。 In the cutting process, it is preferable that the running speed of the wire is 300 m/min or more, and the tension of the wire at that time is preferably 3 kgf (29.4 N) or more, for example, 15 kgf (147 N) or less. If the running speed of the wire is less than 300 m/min, sufficient flow velocity necessary to cut the powder compact cannot be obtained, and if the tension of the wire is less than 3 kgf, the wire will bend and the flatness of the cut surface will deteriorate. may decrease. If the tension of the wire exceeds 15 kgf, a problem of breakage may occur. Further, in the cutting process, the cutting speed (workpiece feed speed) in the direction perpendicular to the running direction of the wire is preferably 100 mm/min or more. This is because if the cutting speed is less than 100 mm/min, the time required for the cutting process becomes longer and production efficiency decreases.
 なお、ワイヤの直径が200μm以上のとき、ワイヤの走行速度を500m/分以上にすることができる。ワイヤの走行速度が高いほど、切りこみ速度を高めることができる。例えば、ワイヤの直径が250μmで、ワイヤの走行速度を500m/分以上の場合、切りこみ速度を150mm/分以上にすることができる。なお、後述するように、曲面を形成するときの切込み方向におけるワイヤの移動速度は、100mm/分以上600mm/分以下であることが好ましい。 Note that when the diameter of the wire is 200 μm or more, the running speed of the wire can be 500 m/min or more. The higher the running speed of the wire, the higher the cutting speed can be. For example, if the wire diameter is 250 μm and the wire running speed is 500 m/min or more, the cutting speed can be 150 mm/min or more. Note that, as described later, the moving speed of the wire in the cutting direction when forming a curved surface is preferably 100 mm/min or more and 600 mm/min or less.
 液体中で粉末成形体を切断することの利点のひとつは、粉末成形体とワイヤとが接触する部分での摩擦熱による温度上昇が抑制され、発生した熱も液体中に散逸しやすいことにある。大気中であれば、発生した摩擦熱で高温になった粉末成形体が大気中の酸素または水蒸気と反応してしまい、最終的に得られる焼結磁石中の酸素濃度の上昇と磁石特性の劣化を招くところであるが、本実施形態では、そのような問題も回避できる。 One of the advantages of cutting a powder compact in a liquid is that the temperature rise due to frictional heat at the part where the powder compact and wire come into contact is suppressed, and the generated heat is easily dissipated into the liquid. . In the atmosphere, the powder compact becomes hot due to the frictional heat generated and reacts with oxygen or water vapor in the atmosphere, resulting in an increase in the oxygen concentration in the final sintered magnet and deterioration of the magnetic properties. However, in this embodiment, such a problem can be avoided.
 液体中で粉末成形体を切断することの他の利点は、ワイヤによって粉末成形体から削り取られた粉末粒子が液体中に沈殿し、回収が容易になることである。好ましい実施形態において、粉末成形体を準備する工程は、湿式プレスによって粉末を成形する工程を含む。その場合、湿式プレスは、切断工程における液体と同一種類の液体を前記粉末に加えて行うことが望ましい。切断工程によって粉末成形体から削られた粉末の粒子を液体中から回収して、再利用することが容易になるからである。 Another advantage of cutting the powder compact in a liquid is that the powder particles scraped from the powder compact by the wire settle in the liquid, making recovery easier. In a preferred embodiment, the step of preparing the powder compact includes the step of compacting the powder by wet pressing. In that case, wet pressing is preferably performed by adding the same type of liquid to the powder as the liquid used in the cutting process. This is because the powder particles cut from the powder compact in the cutting process can be easily recovered from the liquid and reused.
 さらに、本開示のR-T-B系焼結磁石の製造方法によれば、上下縦方向の切断の前に、水平横方向の切断を行うため、粉末成形体の表面を加工して平坦にすることができる。粉末成形体の表面に少なくとも一部(例えば上面)は、粉末プレス工程によっては凹凸を有する場合があり、焼結工程後の加工によって切削または研磨することが必要であった。本開示の実施形態によれば、そのような切削または研磨を行う工程を削除することができるため、高性能磁石の特性を維持しつつ、製造コストの低減を実現することが可能になる。 Furthermore, according to the method for manufacturing an RTB-based sintered magnet of the present disclosure, the surface of the powder compact is processed to make it flat in order to cut in the horizontal and lateral directions before cutting in the vertical and vertical directions. can do. At least a portion of the surface (for example, the upper surface) of the powder compact may have irregularities depending on the powder pressing process, and it has been necessary to cut or polish the surface after the sintering process. According to the embodiments of the present disclosure, such cutting or polishing steps can be omitted, so it is possible to reduce manufacturing costs while maintaining the characteristics of a high-performance magnet.
 図3を参照しながら、上記の製造方法に利用可能なワイヤソー装置の構成例を説明する。図3は、本開示の実施形態におけるワイヤソー装置100の構成例を示す斜視図である。図には、参考のため、互いに互いに直交するX軸、Y軸、およびX軸が示されている。この例において、XY平面は水平であり、Z軸は鉛直方向を向いている。 An example of the configuration of a wire saw device that can be used in the above manufacturing method will be described with reference to FIG. 3. FIG. 3 is a perspective view showing a configuration example of the wire saw device 100 in the embodiment of the present disclosure. For reference, the figure shows an X-axis, a Y-axis, and an X-axis that are orthogonal to each other. In this example, the XY plane is horizontal and the Z axis is oriented vertically.
 図3のワイヤソー装置100は、回転の中心軸が互いに平行になるように配列されたローラ30a、30b、30cと、一本の連続したワイヤ40を有している。ローラ30a、30b、30cのそれぞれは、支持装置50によって回転可能に支持されている。支持装置50は、不図示の駆動装置によって上下、縦方向(Z軸の正および負の方向)に移動することができる。駆動装置は、油圧シリンダによって駆動力を得てもよいし、モータによって動作してもよい。また、後述する水平横方向(X軸方向)に沿った切断を行うため、支持装置50は、水平横方向に移動してもよい。 The wire saw device 100 in FIG. 3 includes rollers 30a, 30b, and 30c arranged so that their central axes of rotation are parallel to each other, and a single continuous wire 40. Each of the rollers 30a, 30b, and 30c is rotatably supported by a support device 50. The support device 50 can be moved vertically and vertically (in the positive and negative directions of the Z axis) by a drive device (not shown). The drive device may obtain driving force from a hydraulic cylinder or may be operated by a motor. Further, in order to perform cutting along the horizontal lateral direction (X-axis direction), which will be described later, the support device 50 may move in the horizontal lateral direction.
 成形工程(S20)で作製された粉末成形体10は、図示されていないクランプ部によって固定用ベース20に固定され、液体60を蓄える槽70の内部に配置される。図3では、槽70が破線で示され、液体60の表面の高さが点線で示されている。図3の例において、粉末成形体10の全体が液体60に浸漬している。なお、支持装置50が上下縦方向および水平横方向に移動する代わりに、固定用ベース20が上下縦方向および水平横方向に移動するように構成されていてもよい。 The powder molded body 10 produced in the molding step (S20) is fixed to the fixing base 20 by a clamp portion (not shown), and placed inside the tank 70 that stores the liquid 60. In FIG. 3, the tank 70 is shown in dashed lines and the height of the surface of the liquid 60 is shown in dotted lines. In the example of FIG. 3, the entire powder compact 10 is immersed in the liquid 60. Note that instead of the support device 50 moving in the vertical and horizontal directions, the fixing base 20 may be configured to move in the vertical and horizontal directions.
 粉末成形体10を作製する工程の具体例は後述する。ここで留意する点は、粉末成形体10は焼結体ではなく、焼結される前の粉末の成形体(グリーンコンパクト)であることである。粉末成形体は、R-T-B系焼結磁石用合金(Rは希土類元素であり、Nd、PrおよびCeからなる群から選択される少なくとも1つを必ず含み、Tは遷移金属の少なくとも1つでありFeを必ず含み、Bはホウ素である)の粉末を配向磁場中において湿式プレスまたは乾式プレスで成形することによって得られる。 A specific example of the process of producing the powder compact 10 will be described later. It should be noted here that the powder compact 10 is not a sintered body but a powder compact (green compact) before being sintered. The powder compact is an RTB-based sintered magnet alloy (R is a rare earth element and always contains at least one selected from the group consisting of Nd, Pr, and Ce, and T is at least one transition metal). It is obtained by molding a powder of (which always contains Fe and B is boron) by wet pressing or dry pressing in an orienting magnetic field.
 ローラ30a、30b、30cは、X軸に平行な方向からみたとき、回転中心の軸が三角形の頂点に位置するように、所定の間隔を隔てて配置される。ローラ31a、31b、31cのそれぞれの側面に複数の溝が設けられている。ワイヤ40は、ローラ30a、30b、30cの複数の溝に順番に巻き架けられている。複数の溝の中心間隔(ピッチ)は、ワイヤソーによる切断によって分割される要素の幅を規定する。ワイヤ40の両端は、例えば、不図示の回収ボビンに巻回されている。 The rollers 30a, 30b, and 30c are arranged at a predetermined interval so that the rotation center axis is located at the vertex of the triangle when viewed from a direction parallel to the X-axis. A plurality of grooves are provided on each side surface of the rollers 31a, 31b, and 31c. The wire 40 is wound in order around a plurality of grooves of the rollers 30a, 30b, and 30c. The center spacing (pitch) of the plurality of grooves defines the width of the element divided by wire saw cutting. Both ends of the wire 40 are wound around a collection bobbin (not shown), for example.
 本開示の実施形態におけるワイヤ40は、表面に砥粒が固着していない金属素線である。従来のワイヤソー技術では、ワイヤは素線(芯線)と、素線の外周面に位置する砥粒と備えている。砥粒の平均粒径は、例えば数μmから数十μmである。このような砥粒の典型例は、人工ダイヤモンドであり、希土類合金の硬度よりも高い硬度を有している。このような従来のワイヤソー技術で使用されるワイヤ部分とは異なり、本実施形態におけるワイヤ40は、例えば炭素鋼などの金属材料から形成されており、切断工程中に例えば3.0kgf以上の張力が与えられても伸長することなく使用可能である。ワイヤ40に使用可能な金属素線の材料は、例えばピアノ線、高張力鋼線などであり得る。ワイヤ40の表面にメッキがなされていてもよい。ワイヤ40の直径は、例えば100μm以上350μmの範囲にあり、180μm以上300μm以下の範囲にあることが好ましい。ワイヤ40の直径が100μm未満になると、強度不足により、切断中にワイヤ40が延びてしまう問題がある。ワイヤ40の直径が大きいほど、切り粉の排出性が向上するが、切り粉の量が増加してしまうため、350μm以下であることが望ましい。 The wire 40 in the embodiment of the present disclosure is a metal wire to which no abrasive grains are adhered to the surface. In conventional wire saw technology, the wire includes a wire (core wire) and abrasive grains located on the outer peripheral surface of the wire. The average particle diameter of the abrasive grains is, for example, from several μm to several tens of μm. A typical example of such abrasive grains is artificial diamond, which has a hardness higher than that of rare earth alloys. Unlike the wire portion used in such conventional wire saw technology, the wire 40 in this embodiment is made of a metal material such as carbon steel, and is subjected to a tension of, for example, 3.0 kgf or more during the cutting process. Even if given, it can be used without expansion. The metal wire material that can be used for the wire 40 may be, for example, piano wire, high-tensile steel wire, or the like. The surface of the wire 40 may be plated. The diameter of the wire 40 is, for example, in the range of 100 μm or more and 350 μm, preferably in the range of 180 μm or more and 300 μm or less. If the diameter of the wire 40 is less than 100 μm, there is a problem in that the wire 40 stretches during cutting due to insufficient strength. The larger the diameter of the wire 40, the better is the ability to discharge chips, but the amount of chips increases, so the diameter is preferably 350 μm or less.
 切断時には、ローラ30a、30b、30cおよび回収ボビンが回転する。ローラ30a、30b、30cの回転方向は、これらの配置やワイヤ40の掛け方に依存する。図3に示すワイヤソー装置100では、ローラ30a、30b、30cは同一方向に回転する。 During cutting, the rollers 30a, 30b, 30c and the collection bobbin rotate. The rotation direction of the rollers 30a, 30b, and 30c depends on their arrangement and how the wire 40 is hung. In the wire saw device 100 shown in FIG. 3, rollers 30a, 30b, and 30c rotate in the same direction.
 所定長さのワイヤ40が、一方の回収ボビンに巻き取られたら、回収ボビンおよびローラ30a、30b、30cを逆方向に回転させる。これにより、ワイヤ40が逆方向に移動し、これを繰り返すことによって、ワイヤ40が往復運動(移動)させることができる。 Once a predetermined length of wire 40 has been wound onto one of the collection bobbins, the collection bobbin and rollers 30a, 30b, and 30c are rotated in the opposite direction. This causes the wire 40 to move in the opposite direction, and by repeating this, the wire 40 can be reciprocated (moved).
 本実施形態では、ワイヤ40によって粉末成形体10を切断する工程が、粉末成形体10を液体60中に沈めた状態で実行される。粉末成形体10が湿式プレスによって形成された粉末成形体である場合、液体60の好ましい例は、湿式プレスで使用した油剤(鉱物油または合成油)などの分散媒と同一種類の油剤である。 In this embodiment, the step of cutting the powder compact 10 with the wire 40 is performed with the powder compact 10 submerged in the liquid 60. When the powder compact 10 is a powder compact formed by wet pressing, a preferable example of the liquid 60 is an oil agent of the same type as the dispersion medium such as an oil agent (mineral oil or synthetic oil) used in the wet press.
 このようなワイヤソー装置100によって粉末成形体10を加工するとき、ワイヤ40によって切削された部分から粉末成形体10を構成している粉末粒子が切り粉となって落ちる。これらの切り粉は、粉末成形体10を構成する粉末粒子が粉末成形体10から脱落したものであり、個々の粒子が金属の切り粉(切削くず)のような荒れた破断面を有しているわけではない。焼結前の粉末成形体からワイヤによって削り落ちた切り粉を構成する粒子の形状およびサイズは、粉末成形体10の作製に用いられた粉末粒子の形状およびサイズと同様である。本願発明者は、この切り粉を再利用することを検討した。粉末成形体を焼結して得られる硬い焼結体を切削した場合、その切り粉は焼結によって粒成長したり、化学反応によって組成が変化したりした粒子、または粒子の結合物である。そのため、それらを希土類磁石の粉末に混ぜて再利用しても磁石特性が劣化する可能性が高い。これに対して、焼結前の粉末成形体から得られる切り粉であれば、粉末成形体に含まれている他の粒子に比べて組成およびサイズも同様であるため、再利用しやすい。 When processing the powder compact 10 with such a wire saw device 100, the powder particles constituting the powder compact 10 fall off as chips from the portion cut by the wire 40. These chips are powder particles constituting the powder compact 10 that have fallen off from the powder compact 10, and each particle has a rough fracture surface like metal chips (cutting waste). Not that there is. The shape and size of the particles constituting the chips scraped off by the wire from the powder compact before sintering are similar to the shape and size of the powder particles used to produce the powder compact 10. The inventor of this application considered reusing this cutting powder. When a hard sintered body obtained by sintering a powder compact is cut, the chips are particles whose grains have grown due to sintering or whose composition has changed due to a chemical reaction, or a combination of particles. Therefore, even if they are mixed with rare earth magnet powder and reused, the magnetic properties are likely to deteriorate. On the other hand, chips obtained from a powder compact before sintering have the same composition and size as other particles contained in the powder compact, and are therefore easier to reuse.
 また、粉末成形体10が湿式プレスによって作製される場合、分散剤と同種の油剤中でワイヤソー加工を行えば、回収した粉末(切り粉)をそのまま湿式プレスに用いることが可能であり、生産効率が上昇する。 In addition, when the powder compact 10 is produced by wet pressing, if wire saw processing is performed in the same type of oil as the dispersant, the collected powder (chips) can be used as is in wet pressing, improving production efficiency. rises.
 以下、本実施形態のR-T-B系焼結磁石の製造方法を詳細に説明する。 Hereinafter, the method for manufacturing the RTB-based sintered magnet of this embodiment will be explained in detail.
 S10:粉砕工程
 粉砕工程(S10)では、R-T-B系焼結磁石用合金の粉末を準備する。以下、R-T-B系焼結磁石用合金の組成、合金の製造工程、および合金の粉末を準備する工程を順に説明する。
S10: Grinding Step In the grinding step (S10), powder of an RTB-based sintered magnet alloy is prepared. Below, the composition of the RTB-based sintered magnet alloy, the process for manufacturing the alloy, and the process for preparing the alloy powder will be explained in order.
<R-T-B系焼結磁石用合金希の組成>
 Rは希土類元素であり、Nd、PrおよびCeからなる群から選択される少なくとも1つを必ず含む。好ましくは、Nd-Dy、Nd-Tb、Nd-Dy-Tb、Nd-Pr-Dy、Nd-Pr-Tb、Nd-Pr-Dy-Tb、Nd-Ce-Dy、Nd-Ce-Tb、Nd-Ce-Dy-Tb、Nd-Pr-Ce-Dy、Nd-Pr-Ce-Tb、Nd-Pr-Ce-Dy-Tbで示される希土類元素の組合せを用いる。
<Composition of rare alloy for RTB-based sintered magnets>
R is a rare earth element and always contains at least one selected from the group consisting of Nd, Pr, and Ce. Preferably, Nd-Dy, Nd-Tb, Nd-Dy-Tb, Nd-Pr-Dy, Nd-Pr-Tb, Nd-Pr-Dy-Tb, Nd-Ce-Dy, Nd-Ce-Tb, Nd -Ce-Dy-Tb, Nd-Pr-Ce-Dy, Nd-Pr-Ce-Tb, and Nd-Pr-Ce-Dy-Tb combinations of rare earth elements are used.
 Rのうち、DyおよびTbは、特にHcJの向上に効果を発揮する。上記元素以外にはLaなど他の希土類元素を含有してもよく、ミッシュメタルやジジムを用いることもできる。また、Rは純元素でなくてもよく、工業上入手可能な範囲で、製造上不可避な不純物を含有するものでもよい。含有量は、例えば、27質量%以上35質量%以下である。好ましくは、R-T-B系焼結磁石のR含有量は31質量%以下(27質量%以上31質量%以下、好ましくは、29質量%以上31質量%以下)である。R-T-B系焼結磁石のR含有量を31質量%以下でかつ、酸素の含有量が500ppm以上3500ppm以下(好ましくは500ppm以上3200ppm以下、さらに好ましくは500ppm以上2500ppm以下)とすることにより、より高い磁気特性を得ることができる。 Among R, Dy and Tb are particularly effective in improving H cJ . In addition to the above elements, other rare earth elements such as La may be contained, and misch metal and didymium may also be used. Further, R may not be a pure element, and may contain impurities that are unavoidable in production within an industrially available range. The content is, for example, 27% by mass or more and 35% by mass or less. Preferably, the R content of the RTB-based sintered magnet is 31% by mass or less (27% by mass or more and 31% by mass or less, preferably 29% by mass or more and 31% by mass or less). By setting the R content of the RTB-based sintered magnet to 31% by mass or less and the oxygen content to 500 ppm or more and 3500 ppm or less (preferably 500 ppm or more and 3200 ppm or less, and more preferably 500 ppm or more and 2500 ppm or less). , higher magnetic properties can be obtained.
 Tは、鉄を含み(Tが実質的に鉄から成る場合も含む)、質量比でその50%以下をコバルト(Co)で置換してもよい(Tが実質的に鉄とコバルトとから成る場合を含む)。Coは温度特性の向上、耐食性の向上に有効であり、合金粉末は10質量%以下のCoを含んでよい。Tの含有量は、RとBあるいはRとBと後述するMとの残部を占めてよい。 T contains iron (including cases where T consists essentially of iron), and 50% or less of it by mass ratio may be replaced with cobalt (Co) (T consists essentially of iron and cobalt). (including cases). Co is effective in improving temperature characteristics and corrosion resistance, and the alloy powder may contain 10% by mass or less of Co. The content of T may occupy the remainder of R and B, or R and B and M, which will be described later.
 Bの含有量についても公知の含有量で差し支えなく、例えば、0.9質量%~1.2質量%が好ましい範囲である。0.9質量%未満では高いHcJが得られない場合があり、1.2質量%を超えるとBが低下する場合がある。なお、Bの一部はC(炭素)で置換することができる。 The content of B may be any known content, and for example, a preferable range is 0.9% by mass to 1.2% by mass. If it is less than 0.9% by mass, high H cJ may not be obtained, and if it exceeds 1.2% by mass, Br may decrease. Note that a part of B can be replaced with C (carbon).
 上記元素に加え、HcJ向上のためにM元素を添加することができる。M元素は、Al、Si、Ti、V、Cr、Mn、Ni、Cu、Zn、Ga、Zr、Nb、Mo、In、Sn、Hf、TaおよびWからなる群から選択される一種以上である。M元素の添加量は5.0質量%以下が好ましい。5.0質量%を超えるとBrが低下する場合があるためである。また、不可避的不純物も許容することができる。 In addition to the above elements, an M element can be added to improve H cJ . The M element is one or more selected from the group consisting of Al, Si, Ti, V, Cr, Mn, Ni, Cu, Zn, Ga, Zr, Nb, Mo, In, Sn, Hf, Ta, and W. . The amount of the M element added is preferably 5.0% by mass or less. This is because if it exceeds 5.0% by mass, Br may decrease. Also, unavoidable impurities can be tolerated.
 R-T-B系焼結磁石におけるN(窒素)の含有量は、50ppm以上600ppm以下が好ましい。また、R-T-B系焼結磁石におけるC(炭素)の含有量は、50ppm以上1000ppm以下が好ましい。 The content of N (nitrogen) in the RTB-based sintered magnet is preferably 50 ppm or more and 600 ppm or less. Further, the content of C (carbon) in the RTB-based sintered magnet is preferably 50 ppm or more and 1000 ppm or less.
<R-T-B系焼結磁石用合金の製造工程>
 R-T-B系焼結磁石用合金の製造工程を例示する。上述した組成となるように事前に調整した金属または合金を溶解し、鋳型に入れるインゴット鋳造法により合金インゴットを得ることができる。また、溶湯を単ロール、双ロール、回転ディスクまたは回転円筒鋳型等に接触させて急冷し、インゴット法で作られた合金よりも薄い凝固合金を作製するストリップキャスト法または遠心鋳造法に代表される急冷法により合金フレークを製造することができる。
<Production process of RTB alloy for sintered magnets>
The manufacturing process of an RTB alloy for sintered magnets will be exemplified. An alloy ingot can be obtained by an ingot casting method in which a metal or alloy that has been adjusted in advance to have the composition described above is melted and placed in a mold. In addition, molten metal is brought into contact with a single roll, twin rolls, rotating disk, or rotating cylindrical mold to rapidly cool it to produce a solidified alloy that is thinner than the alloy made by the ingot method, typically the strip casting method or centrifugal casting method. Alloy flakes can be produced by a rapid cooling method.
 本開示の実施形態においては、インゴット法と急冷法のどちらの方法により製造された材料も使用可能であるが、ストリップキャスト法などの急冷法により製造されることが好ましい。急冷法によって作製した急冷合金の厚さは、通常0.03mm~1mmの範囲にあり、フレーク形状である。合金溶湯は冷却ロールの接触した面(ロール接触面)から凝固し始め、ロール接触面から厚さ方向に結晶が柱状に成長してゆく。急冷合金は、従来のインゴット鋳造法(金型鋳造法)によって作製された合金(インゴット合金)と比較して、短時間で冷却されているため、組織が微細化され、結晶粒径が小さい。また粒界の面積が広い。Rリッチ相は粒界内に大きく広がるため、急冷法はRリッチ相の分散性に優れる。このため水素粉砕法により粒界で破断し易い。急冷合金を水素粉砕することで、水素粉砕粉(粗粉砕粉)のサイズを例えば1.0mm以下とすることができる。このようにして得た粗粉砕粉を例えばジェットミルで微粉砕する。 In the embodiments of the present disclosure, materials manufactured by either the ingot method or the quenching method can be used, but it is preferable to manufacture by a quenching method such as a strip casting method. The thickness of the rapidly solidified alloy produced by the rapid cooling method is usually in the range of 0.03 mm to 1 mm, and has a flake shape. The molten alloy begins to solidify from the surface in contact with the cooling roll (roll contact surface), and crystals grow in columnar shapes in the thickness direction from the roll contact surface. Rapidly solidified alloys are cooled in a shorter time than alloys (ingot alloys) produced by conventional ingot casting methods (mold casting methods), so they have finer structures and smaller crystal grain sizes. Also, the area of grain boundaries is wide. Since the R-rich phase widely spreads within the grain boundaries, the rapid cooling method has excellent dispersibility of the R-rich phase. For this reason, it is easy to fracture at grain boundaries by hydrogen pulverization. By subjecting the rapidly solidified alloy to hydrogen pulverization, the size of the hydrogen pulverized powder (coarsely pulverized powder) can be reduced to, for example, 1.0 mm or less. The coarsely pulverized powder thus obtained is finely pulverized using, for example, a jet mill.
<R-T-B系焼結磁石用合金の粉末を準備する工程>
 R-T-B系焼結磁石用の希土類合金の粉末は活性であり、酸化しやすい。このため、ジェットミルで使用される気体としては、発熱・発火の危険性の回避、不純物としての酸素含有量を低減させて磁石の高性能化を図るため、例えば、窒素、アルゴン、ヘリウムなどの不活性ガスが用いられる。
<Process of preparing powder of RTB-based sintered magnet alloy>
The rare earth alloy powder for RTB sintered magnets is active and easily oxidized. For this reason, gases used in jet mills include nitrogen, argon, helium, etc., in order to avoid the risk of heat generation and ignition, and to reduce the oxygen content as an impurity and improve the performance of the magnet. An inert gas is used.
 ジェットミルに投入された被粉砕物(粗粉砕粉)は、例えば、平均粒度(中位径:d50)が2.0μm以上4.5μm以下の粒度分布を持つ微粉末に粉砕されてからサイクロン捕集装置に移動することになる。サイクロン捕集装置は、粉末を運ぶ気流から粉末を分離するために使用される。具体的には、R-T-B系焼結磁石用合金の粗粉砕粉が前段のジェットミルで粉砕され、粉砕によって生成された微粉末が、粉砕に利用された気体とともにサイクロン捕集装置に供給される。不活性ガス(粉砕ガス)と粉砕された微粉末との混合物が高速な気流をなして、サイクロン捕集装置に送られてくる。サイクロン捕集装置は、これらの粉砕ガスと微粉末とを分離するために利用される。粉砕ガスから分離された微粉末は、粉末捕集器で回収される。 The material to be pulverized (coarsely pulverized powder) fed into a jet mill is, for example, pulverized into a fine powder having a particle size distribution with an average particle size (median diameter: d50) of 2.0 μm or more and 4.5 μm or less, and then is captured in a cyclone. It will be moved to a collection device. Cyclone collectors are used to separate powder from the airflow that carries it. Specifically, coarsely pulverized powder of RTB-based sintered magnet alloy is pulverized in a jet mill in the previous stage, and the fine powder generated by pulverization is sent to a cyclone collection device along with the gas used for pulverization. Supplied. A mixture of inert gas (grinding gas) and pulverized fine powder forms a high-speed airflow and is sent to a cyclone collector. A cyclone collector is used to separate these grinding gases and fine powders. The fine powder separated from the grinding gas is collected by a powder collector.
 S20:成形工程
 成形工程(S20)では、粉砕工程(S10)で得られた粉末を用いて粉末成形体を作製する。
S20: Molding process In the molding process (S20), a powder compact is produced using the powder obtained in the pulverizing process (S10).
 本実施形態では、磁場中プレスによって上記の粉末から粉末成形体を作製する。磁場中プレスでは、酸化抑制の観点から、不活性ガス雰囲気中によるプレスまたは湿式プレスによって粉末成形体を形成することが好ましい。特に湿式プレスは粉末成形体を構成する粒子の表面が油剤などの分散剤によって被覆され、大気中の酸素や水蒸気との接触が抑制される。このため、プレス工程の前後あるいはプレス工程中に粒子が大気によって酸化されることを防止または抑制することができる。 In this embodiment, a powder compact is produced from the above powder by pressing in a magnetic field. In pressing in a magnetic field, from the viewpoint of suppressing oxidation, it is preferable to form a powder compact by pressing in an inert gas atmosphere or wet pressing. In particular, in wet pressing, the surfaces of the particles constituting the powder compact are coated with a dispersant such as an oil agent to suppress contact with oxygen and water vapor in the atmosphere. Therefore, it is possible to prevent or suppress the particles from being oxidized by the atmosphere before, during or after the pressing process.
 磁場中湿式プレスを行う場合、微粉末に分散媒を混ぜたスラリーを用意し、湿式プレス装置の金型におけるキャビティに供給して磁場中でプレス成形する。こうして形成される粉末成形体は、例えば、4g/cm以上5g/cm以下の密度を有している。 When performing wet pressing in a magnetic field, a slurry of fine powder mixed with a dispersion medium is prepared, and the slurry is supplied to a cavity in a mold of a wet pressing device and press-molded in a magnetic field. The powder compact thus formed has a density of, for example, 4 g/cm 3 or more and 5 g/cm 3 or less.
・分散媒
 分散媒は、その内部に合金粉末を分散させることによりスラリーを得ることができる液体である。
- Dispersion medium A dispersion medium is a liquid in which a slurry can be obtained by dispersing alloy powder.
 本開示に用いる好ましい分散媒として鉱物油または合成油を挙げることができる。鉱物油または合成油はその種類が特定されるものではないが、常温での動粘度が10cStを超えると粘性の増大によって合金粉末相互の結合力が強まり磁場中湿式成形時の合金粉末の配向性に悪影響を与える場合がある。このため、鉱物油または合成油の常温での動粘度は10cSt以下が好ましい。また鉱物油または合成油の分留点が400℃を超えると成形体を得た後の脱油が困難となり、焼結体内の残留炭素量が多くなって磁気特性が低下する場合がある。したがって、鉱物油または合成油の分留点は400℃以下が好ましい。また、分散媒として植物油を用いてもよい。植物油は植物より抽出される油を指し、植物の種類も特定の植物に限定されるものではない。 Mineral oil or synthetic oil can be mentioned as a preferred dispersion medium used in the present disclosure. The type of mineral oil or synthetic oil is not specified, but if the kinematic viscosity at room temperature exceeds 10 cSt, the increased viscosity will strengthen the bonding force between the alloy powders, which will affect the orientation of the alloy powder during wet compaction in a magnetic field. may have a negative impact. Therefore, the kinematic viscosity of the mineral oil or synthetic oil at room temperature is preferably 10 cSt or less. Furthermore, if the fractionation point of mineral oil or synthetic oil exceeds 400° C., it becomes difficult to remove oil after obtaining a molded body, and the amount of residual carbon in the sintered body may increase, resulting in a decrease in magnetic properties. Therefore, the fractionation point of mineral oil or synthetic oil is preferably 400°C or lower. Furthermore, vegetable oil may be used as a dispersion medium. Vegetable oil refers to oil extracted from plants, and the type of plant is not limited to a specific plant.
・スラリーの作製
 得られた合金粉末と分散媒とを混合することでスラリーを得ることができる。
- Preparation of slurry A slurry can be obtained by mixing the obtained alloy powder and a dispersion medium.
 合金粉末と分散媒との混合率は特に限定されないが、スラリー中の合金粉末の濃度は、質量比で、好ましくは70%以上(すなわち、70質量%以上)である。20~600cm/秒の流量において、キャビティ内部に効率的に合金粉末を供給できると共に、優れた磁気特性が得られるからである。スラリー中の合金粉末の濃度は、質量比で、好ましくは90%以下である。合金粉末と分散媒との混合方法は特に限定されない。合金粉末と分散媒とを別々に用意し、両者を所定量秤量して混ぜ合わせることによって製造してよい。また、粗粉砕粉をジェットミル等で乾式粉砕して合金粉末を得る際にジェットミル等の粉砕装置の合金粉末排出口に分散媒を入れた容器を配置し、粉砕して得られた合金粉末を容器内の分散媒中に直接回収しスラリーを得てもよい。この場合、容器内も窒素ガスおよび/またはアルゴンガスからなる雰囲気とし、得られた合金粉末を大気に触れさせることなく直接分散媒中に回収して、スラリーとすることが好ましい。さらには、粗粉砕粉を分散媒中に保持した状態で振動ミル、ボールミルまたはアトライター等を用いて湿式粉砕し、合金粉末と分散媒とから成るスラリーを得ることも可能である。 Although the mixing ratio of the alloy powder and the dispersion medium is not particularly limited, the concentration of the alloy powder in the slurry is preferably 70% or more (ie, 70% by mass or more) in terms of mass ratio. This is because at a flow rate of 20 to 600 cm 3 /sec, the alloy powder can be efficiently supplied into the cavity and excellent magnetic properties can be obtained. The concentration of the alloy powder in the slurry is preferably 90% or less in terms of mass ratio. The method of mixing the alloy powder and the dispersion medium is not particularly limited. The alloy powder and the dispersion medium may be prepared separately, and a predetermined amount of both may be weighed and mixed together. In addition, when obtaining alloy powder by dry-pulverizing coarsely ground powder with a jet mill or the like, a container containing a dispersion medium is placed at the alloy powder outlet of the jet mill or other grinding device, and the alloy powder obtained by pulverizing may be collected directly into a dispersion medium in a container to obtain a slurry. In this case, it is preferable that the atmosphere in the container is also made of nitrogen gas and/or argon gas, and the obtained alloy powder is directly collected into a dispersion medium without being exposed to the atmosphere to form a slurry. Furthermore, it is also possible to obtain a slurry consisting of the alloy powder and the dispersion medium by wet-pulverizing the coarsely pulverized powder while it is held in a dispersion medium using a vibration mill, a ball mill, an attritor, or the like.
 こうして得たスラリーを公知の湿式プレス装置で成形することにより、所定の大きさおよび形状を有する粉末成形体を得ることができる。従来、この粉末成形体を焼結して焼結体を得ることが通常であるが、本実施形態では、以下に説明するように、焼結前にワイヤソー装置によって粉末成形体を分割する。 By molding the slurry thus obtained using a known wet press device, a powder compact having a predetermined size and shape can be obtained. Conventionally, this powder compact is usually sintered to obtain a sintered body, but in this embodiment, the powder compact is divided by a wire saw device before sintering, as described below.
 S30:切断工程
 切断工程(S30)では、粉末成形体を切断し、複数の成形体片に分割する。
S30: Cutting process In the cutting process (S30), the powder compact is cut and divided into a plurality of compact pieces.
 まず、垂直または水平に切込みを入れることによって平面上の切断面を形成する方法を説明し、その後に、斜め方向に拡がる切断面、あるいは曲面状の切断面を形成る方法を説明する。 First, a method for forming a planar cut surface by making vertical or horizontal cuts will be explained, and then a method for forming a cut surface that spreads diagonally or a curved surface will be explained.
 この工程における粉末成形体の切断は、例えば図3に示されるワイヤソー装置によって行われる。図4Aおよび図4Bは、それぞれ、液体60中に沈めた粉末成形体10をワイヤ40によって切断する工程を説明するための正面図である。図4Aは、切断工程が開始する前の状態を示し、図4Bは切断工程の途中の状態を示している。図4Bに示される粉末成形体10内の破線は、粉末成形体10を切断中のワイヤ40の位置を模式的に示している。ワイヤ40の破線で示される位置が粉末成形体10の上面から下方に移動し、粉末成形体10の底面に達したとき、粉末成形体10は複数の成形体片に分割される。 The cutting of the powder compact in this step is performed by, for example, a wire saw device shown in FIG. 3. 4A and 4B are front views for explaining the process of cutting the powder compact 10 submerged in the liquid 60 with the wire 40, respectively. FIG. 4A shows the state before the cutting process starts, and FIG. 4B shows the state in the middle of the cutting process. A broken line inside the powder compact 10 shown in FIG. 4B schematically indicates the position of the wire 40 while cutting the powder compact 10. When the position of the wire 40 indicated by the broken line moves downward from the top surface of the powder compact 10 and reaches the bottom surface of the powder compact 10, the powder compact 10 is divided into a plurality of compact pieces.
 図示される例において、ワイヤ40はY軸方向に所定の速度で走行ながら、ワイヤ40の走行方向に対して直交する方向(Z軸の負の方向)に移動する。ワイヤ40の走行方向に対して直交する方向は、切込み方向であり、この方向の速度(切込み速度)は、例えば100mm/分以上に設定される。図4Bに示される例では、静止した状態の粉末成形体10に対して、走行するワイヤ40がZ軸の負の方向に移動しているが、粉末成形体10が固定用ベース20とともにZ軸の正の方向に持ち上げられてもよい。 In the illustrated example, the wire 40 moves in a direction perpendicular to the running direction of the wire 40 (negative direction of the Z-axis) while running at a predetermined speed in the Y-axis direction. The direction perpendicular to the running direction of the wire 40 is the cutting direction, and the speed in this direction (cutting speed) is set to, for example, 100 mm/min or more. In the example shown in FIG. 4B, the running wire 40 is moving in the negative direction of the Z-axis with respect to the powder compact 10 in a stationary state, but the powder compact 10 is moving along the Z-axis together with the fixing base 20. may be lifted in the positive direction.
 図5Aおよび図5Bは、それぞれ、液体60中に沈めた粉末成形体10をワイヤ40によって切断する工程を説明するための側面図である。図5Aは、切断工程が開始する前の状態を示し、図5Bは切断工程の途中の状態を示している。図示される例において、1個の粉末成形体10が8個の成形体片に分割される。 FIGS. 5A and 5B are side views for explaining the process of cutting the powder compact 10 submerged in the liquid 60 with the wire 40, respectively. FIG. 5A shows the state before the cutting process starts, and FIG. 5B shows the state during the cutting process. In the illustrated example, one powder compact 10 is divided into eight compact pieces.
 ワイヤ40の直径は、例えば100μm以上350μm以下ある。ワイヤ40の走行速度(ワイヤ線速)は、例えば、100m/分以上800m/分以下の範囲に設定され得る。一方、切込み速度(図3のZ軸の負の方向における、粉末成形体10に対するワイヤの送り速度)は、例えば、100mm/分以上600mm/分以下の範囲に設定され得る。ワイヤ40に印加され張力は、例えば3kgf以上15kgf以下である。張力は、例えばローラ30cのローラ30aおよびローラ30bに対する距離を調整することにより、調整され得る。ワイヤソー切断によって、粉末成形体10は、例えば厚さ1~10mm程度の成形体片に分割され得る。成形体片の厚さは、図5Bに示されるように、ワイヤ40の間隔およびワイヤ40の直径によって決まる。 The diameter of the wire 40 is, for example, 100 μm or more and 350 μm or less. The running speed of the wire 40 (wire linear speed) may be set, for example, in a range of 100 m/min or more and 800 m/min or less. On the other hand, the cutting speed (the feeding speed of the wire with respect to the powder compact 10 in the negative direction of the Z axis in FIG. 3) may be set, for example, in a range of 100 mm/min or more and 600 mm/min or less. The tension applied to the wire 40 is, for example, 3 kgf or more and 15 kgf or less. The tension can be adjusted, for example, by adjusting the distance of roller 30c with respect to rollers 30a and 30b. By cutting with a wire saw, the powder compact 10 can be divided into compact pieces having a thickness of about 1 to 10 mm, for example. The thickness of the compact piece is determined by the spacing of the wires 40 and the diameter of the wires 40, as shown in FIG. 5B.
 ワイヤソー加工を液体中で行うことにより、切り粉の排出が促進される利点もある。また、前述したように、粉末成形体10を湿式プレスで作製するときに使用した分散媒(鉱物油または合成油)中に粉末成形体10を浸漬させた状態で行う(油中切断)ことにより、ワイヤソー加工中に液体中に沈殿した粉末粒子を回収し、回収した粉末粒子をそのまま成形工程で再利用することができる。 Performing wire saw processing in liquid also has the advantage of facilitating the discharge of cutting chips. In addition, as described above, cutting can be performed while the powder compact 10 is immersed in the dispersion medium (mineral oil or synthetic oil) used when producing the powder compact 10 by wet pressing (cutting in oil). , the powder particles precipitated in the liquid during wire saw processing can be recovered, and the recovered powder particles can be reused as they are in the molding process.
 図6Aおよび図6Bは、液体60中に沈めた粉末成形体10をワイヤ40によって水平方向に切断する工程を説明するための側面図である。図示される例において、切断工程中において、ローラ30a、30b、30cが粉末成形体10に対して相対的に水平方向(各ローラの回転軸方向)に移動している。図4Aから図5Bを参照しながら説明した工程を行う前に、ワイヤ40による水平方向の切りこみを行うことにより、粉末成形体10の表面を平坦にすることが可能になる。粉末成形体10の表面の少なくとも一部(例えば上面)は、粉末プレス工程によっては凹凸を有する場合がある。例えば、粉末ブレス装置のダイの孔に粉末を充填した後、粉末をパンチで押圧する前、パンチと粉末との間に「ろ布」が配されて、ろ布を介して分散剤(油剤)を吐出させることが行われ得る。その場合、得られた粉末成形体の上面にろ布によって凹凸が形成され得る。 FIGS. 6A and 6B are side views for explaining the process of horizontally cutting the powder compact 10 submerged in the liquid 60 with the wire 40. In the illustrated example, the rollers 30a, 30b, and 30c are moving in the horizontal direction (in the direction of the rotation axis of each roller) relative to the powder compact 10 during the cutting process. Before performing the steps described with reference to FIGS. 4A to 5B, the surface of the powder compact 10 can be made flat by making horizontal incisions using the wire 40. At least a portion of the surface (for example, the upper surface) of the powder compact 10 may have irregularities depending on the powder pressing process. For example, after filling powder into the die hole of a powder press machine and before pressing the powder with a punch, a "filter cloth" is placed between the punch and the powder, and a dispersant (oil agent) is passed through the filter cloth. may be discharged. In that case, irregularities may be formed on the upper surface of the obtained powder compact by the filter cloth.
 本開示の実施形態では、このような凹凸面を焼結工程前にワイヤによって切除するため、焼結工程後に平坦化のための切削または研磨を行う工程を省略することができる。 In the embodiment of the present disclosure, since such an uneven surface is cut off with a wire before the sintering process, the process of cutting or polishing for flattening after the sintering process can be omitted.
 図7Aから図7Cは、ワイヤソーによって粉末成形体10に形成される切断面を模式的に示す図である。図6Aおよび図6Bを参照しながら説明した工程(第1処理工程)により、液体60中に沈めた粉末成形体10に対し、走行するワイヤ40が図7Aの破線11cに沿って移動することにより、粉末成形体10の荒れた表面領域10Tが薄く切断されて、Z軸方向と直交する第1切断面11が形成される。その後、図5Aおよび図5Bを参照しながら説明した工程(第2処理工程)を行うことにより、第1切断面11に対して交差する複数の第2切断面12が形成される。第2処理工程では、第2切断面12は、走行するワイヤが破線12cに沿って移動することによって形成される。第1処理工程および第2処理工程は、同一のワイヤソー装置を用いて行ってもよいし、異なるワイヤソー装置を用いて行ってもよい。言い換えると、第2処理工程は、第1処理工程で粉末成形体が沈められた液体と同一の液体中に沈められた状態で、同一のワイヤによって切断されてもよいし、異なる液体中に沈められた状態で異なるワイヤによって切断されてもよい。 FIGS. 7A to 7C are diagrams schematically showing cut surfaces formed on the powder compact 10 by a wire saw. By the step (first treatment step) described with reference to FIGS. 6A and 6B, the running wire 40 moves along the broken line 11c in FIG. 7A with respect to the powder compact 10 submerged in the liquid 60. , the rough surface region 10T of the powder compact 10 is cut thinly to form a first cut surface 11 perpendicular to the Z-axis direction. Thereafter, by performing the step (second treatment step) described with reference to FIGS. 5A and 5B, a plurality of second cut surfaces 12 that intersect with the first cut surface 11 are formed. In the second processing step, the second cut surface 12 is formed by moving the running wire along the broken line 12c. The first treatment step and the second treatment step may be performed using the same wire saw device or different wire saw devices. In other words, in the second treatment step, the powder compact may be cut by the same wire while being submerged in the same liquid as that in which it was submerged in the first treatment step, or it may be cut by the same wire while the powder compact is submerged in the same liquid as the one in the first treatment step. The wires may be cut by different wires while the wires are in the same state.
 図7Aから図7Cに示される例において、第1切断面11は、水平面に平行であり、第2切断面12は、第1切断面11に直交している。第1切断面11および第2切断面12のそれぞれの向きは、この例に限定されない。 In the example shown in FIGS. 7A to 7C, the first cutting surface 11 is parallel to the horizontal plane, and the second cutting surface 12 is perpendicular to the first cutting surface 11. The respective orientations of the first cut surface 11 and the second cut surface 12 are not limited to this example.
 第2切込み速度は、例えば100mm/分以上800mm/分以下であることが好ましい。 The second cutting speed is preferably, for example, 100 mm/min or more and 800 mm/min or less.
 なお、液体中の粉末成形体を上下縦方向に切断する第2処理工程を行う前に、水平横方向に切断する第1処理工程を行うことの技術的効果は、金属素線から構成されたワイヤを用いる場合に限られず、金属素線の表面に砥粒が固着したワイヤを用いる場合にも得られる。しかしながら、液体中において粉末成形体を切断する場合、砥粒が固着していない金属素線で切断する方が、砥粒脱落による問題を回避できるので好ましい。 The technical effect of performing the first processing step of cutting the powder compact in the liquid horizontally and laterally before performing the second processing step of cutting the powder compact in the vertical and vertical directions is that It can be obtained not only when using a wire but also when using a wire in which abrasive grains are fixed to the surface of a metal wire. However, when cutting a powder compact in a liquid, it is preferable to cut with a metal wire to which no abrasive grains are attached, since problems caused by abrasive grains falling off can be avoided.
 図8Aから図8Fは、液体60中に沈めた粉末成形体10に対して、ワイヤ40を走行方向に垂直な任意の切込方向に移動させることにより、曲面を含む複数の切断面に囲まれた複数の成形体片に分割する工程を説明するための図である。図示される例では、切断工程中において、ワイヤ40を回転させるローラ30a、30b、30cおよび支持装置50が、Z軸方向およびX軸方向の両方に対して同時に移動することができる。 8A to 8F show that the powder compact 10 submerged in the liquid 60 is surrounded by a plurality of cut surfaces including curved surfaces by moving the wire 40 in an arbitrary cutting direction perpendicular to the running direction. FIG. 3 is a diagram for explaining a step of dividing the molded product into a plurality of pieces. In the illustrated example, during the cutting process, the rollers 30a, 30b, 30c that rotate the wire 40 and the support device 50 can move simultaneously in both the Z-axis direction and the X-axis direction.
 図8Aの状態から図8Bの状態に変化させる過程で、ワイヤ40はX軸の負方向に水平に移動する。この結果、粉末成形体10には、水平な切断面が形成される。 In the process of changing from the state shown in FIG. 8A to the state shown in FIG. 8B, the wire 40 moves horizontally in the negative direction of the X-axis. As a result, a horizontal cut surface is formed in the powder compact 10.
 次に、図8Bの状態から図8Cの状態に変化させる過程で、ワイヤ40はZ軸の負方向に垂直に移動する。この結果、粉末成形体10には、垂直な切断面が形成される。 Next, in the process of changing from the state shown in FIG. 8B to the state shown in FIG. 8C, the wire 40 moves perpendicularly to the negative direction of the Z-axis. As a result, a vertical cut surface is formed in the powder compact 10.
 更、図8Cの状態から図8Dの状態に変化させる過程で、ワイヤ40はX軸の正方向に移動しながら、Z軸の負方向に移動する。この結果、粉末成形体10には、下に凸の曲面状の切断面が形成される。このとき、例えばX軸方向の移動速度を一定にする場合、Z軸方向の移動速度を徐々に変更することにより、任意の曲面を形成することができる。 Furthermore, in the process of changing from the state shown in FIG. 8C to the state shown in FIG. 8D, the wire 40 moves in the negative direction of the Z-axis while moving in the positive direction of the X-axis. As a result, a downwardly convex curved cut surface is formed in the powder compact 10. At this time, for example, if the moving speed in the X-axis direction is kept constant, an arbitrary curved surface can be formed by gradually changing the moving speed in the Z-axis direction.
 図8Dの状態から図8Eの状態に変化させる過程で、ワイヤ40はX軸の正方向に移動しながら、Z軸の正方向に移動する。この結果、粉末成形体10には、下に凸の曲面状の切断面が形成される。 In the process of changing from the state shown in FIG. 8D to the state shown in FIG. 8E, the wire 40 moves in the positive direction of the Z-axis while moving in the positive direction of the X-axis. As a result, a downwardly convex curved cut surface is formed in the powder compact 10.
 最後に、図8Eの状態から図8Fの状態に変化させる過程で、ワイヤ40はZ軸の正方向に垂直に移動する。この結果、粉末成形体10には、垂直な切断面が形成され、最終的に下の凸の蒲鉾型形状の成形体片が得られる。 Finally, in the process of changing from the state in FIG. 8E to the state in FIG. 8F, the wire 40 moves perpendicularly to the positive direction of the Z-axis. As a result, a vertical cut surface is formed in the powder compact 10, and finally a downwardly convex, semi-cylindrical shaped compact piece is obtained.
 図8Aから図8Fに示す例では、1個の粉末成形体10から1個の成形体片が形成されるが、本発明は、この例に限定されない。ワイヤ40の移動を制御することにより、1個の粉末成形体10から複数の成形体片を形成することができる。また、形成される成形体片の形状および大きさも図示される例に限定されない。 In the example shown in FIGS. 8A to 8F, one compact piece is formed from one powder compact 10, but the present invention is not limited to this example. By controlling the movement of the wire 40, a plurality of molded body pieces can be formed from one powder molded body 10. Further, the shape and size of the molded body piece to be formed are not limited to the illustrated example.
 S40:焼結工程
 焼結工程(S40)では、複数の成形体片のそれぞれを焼結して複数の焼結体を作製する。すなわち、上記のワイヤソー工程によって切断された個々の成形体片を焼結してR-T-B系焼結磁石(焼結体)を得る。成形体片の焼結工程は、例えば、0.13Pa(10-3Torr)以下、好ましくは0.07Pa(5.0×10-4Torr)以下の圧力下で、例えば温度1000℃~1150℃の範囲で行うことができる。焼結による酸化を防止するために、雰囲気の残留ガスは、ヘリウム、アルゴンなどの不活性ガスにより置換され得る。得られた焼結体に対しては時効処理などの付加的な熱処理を行うことが好ましい。このような熱処理により、磁気特性を向上させることができる。熱処理温度、熱処理時間などの熱処理条件は、公知の条件を採用することができる。こうして得たR-T-B系焼結磁石に対しては、必要に応じて、研削・研磨工程、表面処理工程、および着磁工程が施され、最終的なR-T-B系焼結磁石が完成する。
S40: Sintering process In the sintering process (S40), each of the plurality of molded body pieces is sintered to produce a plurality of sintered bodies. That is, the individual molded body pieces cut by the above-mentioned wire saw process are sintered to obtain an RTB type sintered magnet (sintered body). The sintering process of the molded body piece is performed at a temperature of, for example, 1000°C to 1150°C under a pressure of, for example, 0.13 Pa (10 -3 Torr) or less, preferably 0.07 Pa (5.0 × 10 -4 Torr) or less. This can be done within the range of To prevent oxidation due to sintering, residual gases in the atmosphere may be replaced by inert gases such as helium, argon, etc. It is preferable to perform additional heat treatment such as aging treatment on the obtained sintered body. Such heat treatment can improve magnetic properties. Heat treatment conditions such as heat treatment temperature and heat treatment time can employ known conditions. The thus obtained RTB-based sintered magnet is subjected to a grinding/polishing process, a surface treatment process, and a magnetization process, as necessary, to produce the final RTB-based sintered magnet. The magnet is completed.
 ある好ましい実施形態において、本開示のR-T-B系焼結磁石の製造方法は、重希土類元素RH(RHは、Tb、Dy、Hoの少なくとも1つ)を焼結体の表面から内部に拡散する拡散工程を更に含む。重希土類元素RHを焼結体の表面から内部に拡散すると、保磁力を効率的に高めることができる。拡散工程の方法は特に問わない。公知の方法を採用することができる。 In a preferred embodiment, the method for manufacturing an RTB-based sintered magnet of the present disclosure includes introducing a heavy rare earth element RH (RH is at least one of Tb, Dy, and Ho) from the surface of the sintered body into the inside. The method further includes a step of diffusing. By diffusing the heavy rare earth element RH from the surface of the sintered body into the interior, the coercive force can be efficiently increased. The method of the diffusion step is not particularly limited. A known method can be adopted.
(実施例)
 Nd:22.6%、Pr:7.8%、B:0.9%、Co:0.5%、Al:0.1%、Cu:0.2%、Ga:0.4%(いずれも質量%)、残部Feの組成となるように各元素の原料を秤量し、ストリップキャスティング法により合金を作製した。得られた合金を水素粉砕し粗粉砕粉を得た。
(Example)
Nd: 22.6%, Pr: 7.8%, B: 0.9%, Co: 0.5%, Al: 0.1%, Cu: 0.2%, Ga: 0.4% (both The raw materials of each element were weighed so as to have a composition with the balance being Fe (% by mass), and the balance was Fe, and an alloy was produced by a strip casting method. The obtained alloy was subjected to hydrogen pulverization to obtain coarsely pulverized powder.
 次に、得られた粗粉砕粉に、潤滑剤としてステアリン酸亜鉛を粗粉砕粉100質量%に対して0.04質量%添加、混合した後、ジェットミルを用いて、窒素気流中で乾式粉砕し、粒径D50が4μmの微粉砕粉(合金粉末)を得た。前記微粉砕分を窒素雰囲気中で分留点が250℃、室温での動粘度が2cStの鉱物油に浸漬してスラリーを準備した。スラリー濃度は、85質量%であった。得られたスラリーを磁界中で成形(湿式成形)し、粉末成形体を作製した。粉末成形体のサイズは、80mm×45mm×60mmであった。 Next, 0.04% by mass of zinc stearate was added as a lubricant to the obtained coarsely pulverized powder based on 100% by mass of the coarsely pulverized powder, and after mixing, dry pulverization was carried out in a nitrogen stream using a jet mill. A finely pulverized powder (alloy powder) having a particle size D50 of 4 μm was obtained. The finely pulverized material was immersed in mineral oil having a fractionation point of 250° C. and a kinematic viscosity of 2 cSt at room temperature in a nitrogen atmosphere to prepare a slurry. The slurry concentration was 85% by mass. The obtained slurry was molded in a magnetic field (wet molding) to produce a powder compact. The size of the powder compact was 80 mm x 45 mm x 60 mm.
 前記粉末成形体を直径250μmのワイヤ(ピアノ線からなる金属素線)で8個の成形体片に分割した。ワイヤソーによる切断は、粉末成形体を液体中(液体は成形時に使用した前記鉱物油と同じものを使用)に沈めた状態で行った。平行に走行する8本のワイヤ(マルチワイヤ)で各粉末成形体を切断した。切断時にワイヤに印加した張力は10kgであり、ローラ間隔は250mmであった。 The powder compact was divided into eight compact pieces using a wire (metal wire made of piano wire) having a diameter of 250 μm. Cutting with a wire saw was performed while the powder compact was submerged in a liquid (the same liquid as the mineral oil used during molding was used). Each powder compact was cut with eight wires (multi-wire) running in parallel. The tension applied to the wire during cutting was 10 kg, and the roller spacing was 250 mm.
 図9は、ワイヤ走行速度と切込み速度が成形体片の形状にどのような影響を与えるかを示すグラフである。グラフの横軸はワイヤ走行速度[m/分]、縦軸は切込み速度[mm/分]である。このグラフに示されている「×」は、ワイヤソー切断によって分割された成形体片の一部に「割れ」が発生したことを意味し、「〇」は、そのような割れが成形体片に発生せず、良好な形状の成形体片に分割できたことを意味している。 FIG. 9 is a graph showing how the wire running speed and cutting speed affect the shape of the molded body piece. The horizontal axis of the graph is the wire running speed [m/min], and the vertical axis is the cutting speed [mm/min]. The "x" shown in this graph means that a "crack" has occurred in a part of the molded body piece divided by wire saw cutting, and the "〇" means that such a crack has occurred in the molded body piece. This means that the molded product could be divided into good-shaped pieces without any occurrence.
 直径250μmのワイヤを用いた場合、300m/分の走行速度では、100~150mm/分の切込み速度で割れのない成形体片を得ることができた。さらに、500m/分の走行速度では、250mm/分の切込み速度で割れのない成形体片を得ることができた。さらに、700m/分の走行速度では、400mm/分の切込み速度でも、切断中にワイヤは撓まず、割れのない成形体片を得ることができた。そのため、ワイヤの最高走行速度は300m/分以上であることが好ましい。 When using a wire with a diameter of 250 μm, at a running speed of 300 m/min, it was possible to obtain a crack-free molded piece at a cutting speed of 100 to 150 mm/min. Furthermore, at a running speed of 500 m/min, a crack-free molded piece could be obtained at a cutting speed of 250 mm/min. Furthermore, at a running speed of 700 m/min, even at a cutting speed of 400 mm/min, the wire did not bend during cutting, and it was possible to obtain molded pieces without cracks. Therefore, the maximum running speed of the wire is preferably 300 m/min or more.
 なお、直径が160μmのワイヤを用いた場合は、走行速度および切込み速度の両方が比較的低い場合に良好な成形体片に分割することができた。ワイヤの直径が小さくなるほど、ワイヤが延びやすく、撓みやすいため、高い張力を印加して高速度で走行させると、粉末成形体の切断時に割れや欠けが発生しやすくなると考えられる。このため、ワイヤ(金属素線)の直径は200μm以上であることが好ましい。なお、ワイヤの直径が大きく成るほど、削りしろが増加するが、正常な切断は可能である。 Note that when a wire with a diameter of 160 μm was used, it was possible to divide the molded product into good pieces when both the running speed and cutting speed were relatively low. The smaller the diameter of the wire, the easier it is to stretch and bend, so if a high tension is applied and the wire runs at a high speed, it is thought that cracks and chips are more likely to occur when cutting the powder compact. Therefore, the diameter of the wire (metal wire) is preferably 200 μm or more. Note that as the diameter of the wire increases, the cutting margin increases, but normal cutting is possible.
 比較のため、大気中に置いた粉末成形体を金属素線だけで切断しようとしても、正常に切断を行うはできず、走行する金属素線と粉末成形体との接触は、液体(好ましくは油)中で行うことが必要であることが確認された。 For comparison, even if you try to cut a powder compact placed in the atmosphere with just a metal wire, the cutting will not work properly, and the contact between the traveling metal wire and the powder compact will be caused by liquid (preferably It was confirmed that it was necessary to conduct the test in oil).
 図10は、図6Aおよび図6Bに示されるようにして、1本のワイヤによって粉末成形体の上面領域を水平横方向に油中切断したときの実験結果を示している。「横送り」は、水平横方向の切込み速度であり、「線速」は、ワイヤの走行速度である。直径250μmのワイヤを用いた場合、300m/分の走行速度では、100~300mm/分の切込み速度で割れのない成形体片を得ることができた。さらに、500m/分の走行速度では、300mm~500/分の切込み速度で割れのない成形体片を得ることができた。さらに、700m/分の走行速度でも500mm/分の切込み速度で割れのない成形体片を得ることができた。 FIG. 10 shows the experimental results when the upper surface area of the powder compact was cut horizontally in oil using a single wire as shown in FIGS. 6A and 6B. "Transverse feed" is the cutting speed in the horizontal lateral direction, and "linear speed" is the running speed of the wire. When a wire with a diameter of 250 μm was used, a crack-free molded piece could be obtained at a cutting speed of 100 to 300 mm/min at a running speed of 300 m/min. Further, at a running speed of 500 m/min, it was possible to obtain molded pieces without cracks at cutting speeds of 300 mm to 500/min. Furthermore, even at a running speed of 700 m/min, a crack-free molded piece could be obtained at a cutting speed of 500 mm/min.
 「横送り」によって粉末成形体の上面付近を切り取るには、粉末成形体が十分な「硬さ」を有していることが好ましい。粉末成形体の固さは、例えば粉末成形時の成形圧力または密度などにって評価できる。空気中にあるときの粉末成形体の密度が4g/cmを下回ると、切断面が平滑でなくなるという問題があることがわかった。このため、粉末成形体の密度は4g/cm以上であることが好ましい。 In order to cut off the vicinity of the top surface of the powder compact by "transverse feeding", it is preferable that the powder compact has sufficient "hardness". The hardness of a powder compact can be evaluated based on, for example, the compaction pressure or density during powder compaction. It has been found that when the density of the powder compact in air is less than 4 g/cm 3 , there is a problem in that the cut surface is not smooth. For this reason, it is preferable that the density of the powder compact is 4 g/cm 3 or more.
 図11および図12は、それぞれ、蒲鉾型形状の成形体片を形成する場合において、切込み方向におけるワイヤ移動速度が曲面を有する成形体片の形状にどのような影響を与えるかを示すグラフである。図11のデータは、ワイヤの張力が9kgf(88.2N)の場合に得られ、図12のデータは、ワイヤの張力が12kgf(117.6N)の場合に得られた。ワイヤの直径は250μmである。この例において、曲面を切断するとき、ワイヤによる切込みは、X軸方向における位置(座標)が大きくなる方向に進められた。切込みの後半において切断面の位置は目標の位置からはずれていることがわかる。この原因は、ワイヤの撓みである。 FIGS. 11 and 12 are graphs showing how the speed of wire movement in the cutting direction affects the shape of a molded piece having a curved surface when forming a molded piece having a semi-cylindrical shape. . The data in FIG. 11 was obtained when the wire tension was 9 kgf (88.2 N), and the data in FIG. 12 was obtained when the wire tension was 12 kgf (117.6 N). The diameter of the wire is 250 μm. In this example, when cutting the curved surface, the incision made by the wire was advanced in the direction of increasing the position (coordinate) in the X-axis direction. It can be seen that the position of the cut plane deviates from the target position in the latter half of the cut. The cause of this is the bending of the wire.
 発明者の検討によると、切込み方向におけるワイヤ移動速度が100mm/分以上600mm/分以下であれば、ワイヤの張力を調整することにより、目的とする曲面形状を歩留まり良く切断できることがわかった。張力は、好ましくは9kgf(88.2N)以上である。また、切込み方向にワイヤ移動速度は540mm/分以下であることが好ましい。 According to the inventor's study, it was found that when the wire moving speed in the cutting direction is 100 mm/min or more and 600 mm/min or less, the desired curved shape can be cut with a high yield by adjusting the wire tension. The tension is preferably 9 kgf (88.2 N) or more. Further, it is preferable that the wire moving speed in the cutting direction is 540 mm/min or less.
10・・・粉末成形体、20・・・固定用ベース、30a、30b、30c・・・ローラ、40・・・ワイヤ、50・・・支持装置、60・・・液体、70・・・槽、100・・・ワイヤソー装置 DESCRIPTION OF SYMBOLS 10... Powder compact, 20... Fixing base, 30a, 30b, 30c... Roller, 40... Wire, 50... Support device, 60... Liquid, 70... Tank , 100... wire saw device

Claims (9)

  1.  R-T-B系焼結磁石用合金(Rは希土類元素であり、Nd、PrおよびCeからなる群から選択される少なくとも1つを必ず含み、Tは遷移金属の少なくとも1つでありFeを必ず含み、Bはホウ素である)の粉末を準備する粉砕工程と、
     前記粉末を用いて粉末成形体を作製する成形工程と、
     前記粉末成形体を切断し、複数の成形体片に分割する切断工程と、
     前記複数の成形体片のそれぞれを焼結して複数の焼結体を作製する焼結工程と、
    を含み、
     前記切断工程は、
     液体中に沈めた前記粉末成形体を、水平方向に走行するワイヤによって切断し、ワイヤを走行方向に垂直な任意の切込方向に移動させることにより、曲面を含む1または複数の切断面を形成する工程を含む、R-T-B系焼結磁石の製造方法。
    RTB alloy for sintered magnets (R is a rare earth element and always contains at least one selected from the group consisting of Nd, Pr and Ce, T is at least one transition metal and contains Fe) a pulverizing step of preparing a powder of
    a molding step of producing a powder compact using the powder;
    a cutting step of cutting the powder compact and dividing it into a plurality of compact pieces;
    a sintering step of producing a plurality of sintered bodies by sintering each of the plurality of molded body pieces;
    including;
    The cutting step includes:
    The powder compact submerged in the liquid is cut by a wire running in a horizontal direction, and the wire is moved in an arbitrary cutting direction perpendicular to the running direction to form one or more cut surfaces including curved surfaces. A method for producing an RTB-based sintered magnet, including the step of:
  2.  前記切断工程は、水平方向に走行する前記ワイヤを走行方向に垂直な任意の切込方向に移動させることにより、前記複数の切断面に囲まれた複数の成形体片に分割する工程を含む、請求項1に記載のR-T-B系焼結磁石の製造方法。 The cutting step includes a step of dividing the wire running in a horizontal direction into a plurality of molded body pieces surrounded by the plurality of cutting surfaces by moving the wire in an arbitrary cutting direction perpendicular to the running direction. A method for manufacturing an RTB based sintered magnet according to claim 1.
  3.  前記切断工程において、前記ワイヤの最高走行速度は300m/分以上である、請求項1または2に記載のR-T-B系焼結磁石の製造方法。 The method for manufacturing an RTB-based sintered magnet according to claim 1 or 2, wherein in the cutting step, the maximum traveling speed of the wire is 300 m/min or more.
  4.  前記切断工程において、前記ワイヤの張力は29.4N(3kgf)以上である、請求項1から3のいずれか1項に記載のR-T-B系焼結磁石の製造方法。 The method for manufacturing an RTB-based sintered magnet according to any one of claims 1 to 3, wherein in the cutting step, the tension of the wire is 29.4 N (3 kgf) or more.
  5.  前記切込み方向における前記ワイヤの移動速度は、100mm/分以上800mm/分以下である、請求項1から4のいずれか1項に記載のR-T-B系焼結磁石の製造方法。 The method for manufacturing an RTB-based sintered magnet according to any one of claims 1 to 4, wherein the moving speed of the wire in the cutting direction is 100 mm/min or more and 800 mm/min or less.
  6.  前記曲面を形成するときの前記切込み方向における前記ワイヤの移動速度は、100mm/分以上600mm/分以下である、請求項5に記載のR-T-B系焼結磁石の製造方法。 The method for manufacturing an RTB-based sintered magnet according to claim 5, wherein the moving speed of the wire in the cutting direction when forming the curved surface is 100 mm/min or more and 600 mm/min or less.
  7.  前記ワイヤの表面は金属組成である、請求項1から6のいずれか1項に記載のR-T-B系焼結磁石の製造方法。 The method for manufacturing an RTB-based sintered magnet according to any one of claims 1 to 6, wherein the surface of the wire has a metallic composition.
  8.  前記粉末成形体を準備する工程は、湿式プレスによって前記粉末を成形する工程を含む、請求項1から7のいずれか1項に記載のR-T-B系焼結磁石の製造方法。 The method for manufacturing an RTB-based sintered magnet according to any one of claims 1 to 7, wherein the step of preparing the powder compact includes a step of compacting the powder by wet pressing.
  9.  前記切断工程によって前記粉末成形体から削られた前記粉末の粒子を前記液体中から回収する工程を更に含む、請求項1から8のいずれか1項に記載のR-T-B系焼結磁石の製造方法。 The RTB based sintered magnet according to any one of claims 1 to 8, further comprising a step of recovering from the liquid the particles of the powder cut from the powder compact by the cutting step. manufacturing method.
PCT/JP2023/006577 2022-03-22 2023-02-22 Method for manufacturing r-t-b based sintered magnet WO2023181772A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022045166 2022-03-22
JP2022-045166 2022-03-22

Publications (1)

Publication Number Publication Date
WO2023181772A1 true WO2023181772A1 (en) 2023-09-28

Family

ID=88100566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006577 WO2023181772A1 (en) 2022-03-22 2023-02-22 Method for manufacturing r-t-b based sintered magnet

Country Status (1)

Country Link
WO (1) WO2023181772A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002036113A (en) * 2000-07-25 2002-02-05 Sumitomo Special Metals Co Ltd Method of cutting rare-earth alloy and method of manufacturing rare-earth alloy magnet
JP2003303728A (en) * 2001-07-31 2003-10-24 Sumitomo Special Metals Co Ltd Method of manufacturing sintered magnet
JP2005268668A (en) * 2004-03-19 2005-09-29 Tdk Corp Manufacturing method and apparatus of rare earth sintered magnet
JP2006283100A (en) * 2005-03-31 2006-10-19 Tdk Corp Method for cutting rare earth alloy powder molding
JP2021155811A (en) * 2020-03-27 2021-10-07 日立金属株式会社 Method of producing r-t-b-based sintered magnet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002036113A (en) * 2000-07-25 2002-02-05 Sumitomo Special Metals Co Ltd Method of cutting rare-earth alloy and method of manufacturing rare-earth alloy magnet
JP2003303728A (en) * 2001-07-31 2003-10-24 Sumitomo Special Metals Co Ltd Method of manufacturing sintered magnet
JP2005268668A (en) * 2004-03-19 2005-09-29 Tdk Corp Manufacturing method and apparatus of rare earth sintered magnet
JP2006283100A (en) * 2005-03-31 2006-10-19 Tdk Corp Method for cutting rare earth alloy powder molding
JP2021155811A (en) * 2020-03-27 2021-10-07 日立金属株式会社 Method of producing r-t-b-based sintered magnet

Similar Documents

Publication Publication Date Title
JP7243698B2 (en) Method for producing RTB based sintered magnet
JP7232390B2 (en) Method for producing RTB based sintered magnet
JP3713254B2 (en) Manufacturing method of sintered magnet
CN1303623C (en) Nanocomposite magnet and its manufacturing method
JP7468058B2 (en) Manufacturing method of RTB based sintered magnet
WO2023181772A1 (en) Method for manufacturing r-t-b based sintered magnet
JP7243910B1 (en) Method for producing RTB based sintered magnet
JP7243909B1 (en) Method for producing RTB based sintered magnet
JP7243908B1 (en) Method for producing RTB based sintered magnet
JP7439613B2 (en) Manufacturing method of RTB based sintered magnet
JP7439614B2 (en) Manufacturing method of RTB based sintered magnet
JP2024049587A (en) Manufacturing method of RTB based sintered magnet
JP2024050442A (en) Manufacturing method of RTB based sintered magnet
JP6060971B2 (en) Manufacturing method of rare earth sintered magnet
JP2005268668A (en) Manufacturing method and apparatus of rare earth sintered magnet
JP2004207578A (en) Working method of molding
JP4457770B2 (en) Manufacturing method of sintered magnet
JP2007196307A (en) Grinder, grinding method and method of manufacturing rare earth sintered magnet
CN117790158A (en) Method for producing R-T-B sintered magnet
JP2023141524A (en) Manufacturing method of r-t-b sintered magnet
JP2023003951A (en) Manufacturing method for rare earth sintered magnet
JP4591748B2 (en) Manufacturing method and manufacturing apparatus of rare earth sintered magnet
JP4910457B2 (en) Wire saw device and cutting method using the same
JP2023037123A (en) Method of manufacturing r-t-b based sintered magnet
JP2006041041A (en) Method for manufacturing sintered magnet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23774371

Country of ref document: EP

Kind code of ref document: A1