JP2004207578A - Working method of molding - Google Patents

Working method of molding Download PDF

Info

Publication number
JP2004207578A
JP2004207578A JP2002376388A JP2002376388A JP2004207578A JP 2004207578 A JP2004207578 A JP 2004207578A JP 2002376388 A JP2002376388 A JP 2002376388A JP 2002376388 A JP2002376388 A JP 2002376388A JP 2004207578 A JP2004207578 A JP 2004207578A
Authority
JP
Japan
Prior art keywords
oil
processing
cutting
molded
molded article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002376388A
Other languages
Japanese (ja)
Other versions
JP4380983B2 (en
JP2004207578A5 (en
Inventor
Yoshiaki Ichikawa
義明 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2002376388A priority Critical patent/JP4380983B2/en
Publication of JP2004207578A publication Critical patent/JP2004207578A/en
Publication of JP2004207578A5 publication Critical patent/JP2004207578A5/ja
Application granted granted Critical
Publication of JP4380983B2 publication Critical patent/JP4380983B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a rare earth permanent magnet for reducing the quantity of chips which do not become a product, caused by cutting or polishing. <P>SOLUTION: In the working method of the molding, a coarse powder for the R-Fe-B family rare earth permanent magnet is crushed into fine powder in a nitrogen gas, an argon gas or a mixed gas thereof of which the concentration of oxygen is 0.01 vol.% or less, the fine powder resulting from fine grinding pulverizing is collected into at least a sort of solvent selected from mineral oil, synthetic oil, vegetable oil and mixed oil thereof, and made into slurry raw material. The slurry raw material is wet-molded within a magnetic field and made into molding, and oil of the same composition as the solvent or mixed oil is blown over the molding under high pressure, thereby cutting the molding. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ジェット流を用いて被加工物などの切断などの加工を行う方法であり、詳しくはジェット流の媒体に油または混合油を用いる加工方法である。
【0002】
【従来の技術】
従来から、ウオータージェット技術において、被加工物の切断や研磨に、ノズルからの各種メデイア噴射あるいは超高圧水の噴射や液中高圧水噴射により発生したキャビテーション効果が活用されてきた(例えば、特許文献1あるいは特許文献2)。また、水中での利用方法として、高圧水のキャビテーション効果を利用した方法が水中洗浄およびバリ取りなどの加工に用いられている。また、大気中での利用方法として、高圧水の負圧を利用したウオーターブラストや空気圧を利用したサンドブラストによる塗膜やコーテイングの剥離除去、素地調整、研削などの表面処理が行われている。また、高圧水のみを利用した剥離処理も行われている。
【0003】
一方、現在、磁気特性のもっとも高いNd−Fe−B系永久磁石は、あらかじめ所定の組成になるように製作した溶解インゴットをジェットミルなどの粉砕機で微粉砕し、それをプレス機で押し固めて成形体を作っていた。この粉砕、成形の工程では微粉砕により表面積の大きくなった微粉が酸素を吸収し酸化しやすいため、出来上がった成形体は酸素をかなりの量含むことになり、これにより磁気特性の低下が発生した。これを対策するために、磁石の原料となる微粉砕した粉を直接鉱物油内に落下貯蔵し、鉱物油との混合によりスラリー状となった微粉をそのまま成形することにより外部からの酸素をほとんど取り込まない成形体を得る。次に、このスラリーをプレス機で成形し、その結果得られた成形体を、真空またはアルゴンガスや窒素ガスまたはそれらの混合ガスを雰囲気とする真空焼結炉の中で焼結を行い、焼結磁石を形成させた。さらに焼結磁石をもう一度400℃〜900℃の真空熱処理炉において加熱し、磁石内の組織を整えることにより、目的の保磁力を発生させることのできる焼結磁石素材を形成させる。この素材を切断や研磨により目的の寸法に仕上げることにより、永久磁石製品を製造する工程がとられていた(例えば、特許文献3)。
【0004】
【特許文献1】
特開平9−173916号公報(第1頁)
【特許文献2】
特開2002−224961号公報(第3頁、図1)
【特許文献3】
特開平10−233306号公報(第3〜4頁)
【0005】
【発明が解決しようとする課題】
しかし、単一形状の製品を大量に生産する場合は別であるが、多品種少量生産を行う場合、製品ごとに専用の金型を準備していると、多種の金型費や治工具費の影響で、製品の製造原価が大変高価となるため、市場での価格競争力を低下させてしまう。そこで、この対策として、一定形状の焼結・熱処理済み素材をあらかじめ準備し、これを出発点として、切断や研磨の加工工程を経ることにより目的寸法の磁石製品を生産していた。この場合、焼結後の永久磁石素材は硬度が高いため、通常の切削による加工は難しいことから、ダイヤモンド砥石を用いた研磨や切断の方法により素材を目的の寸法に仕上げていた。
【0006】
このような方法を用いると、最終製品の形状や大きさにかかわらず、同一形状の素材から切り出すため、切断や研磨後の製品にならない端材がはじめの素材体積の30%〜60%にものぼって発生した。NdFeB磁石の素材は材料費が高価であるにもかかわらず、研磨や切断により切り落とされた端材は粉末状の研磨材との混合物となってしまうため、切断された磁石素材を再利用するためには、磁石成分と研磨材を分離する工程が必要となり、コストがさらに余計にかかるため端材の再利用は行われていなかった。従って、複雑な形状をした磁石製品を製作する場合、研磨や切断により除去される素材部分の体積が増大することになり、加工コストは増大するし、材料の無駄な部分に基づく製造コストの増加する問題があった。
【0007】
【課題を解決するための手段】
上記の問題を解決するために考え出された本発明における希土類焼結磁石製品の製造方法は、プレスにより押し固めて形成した成形体を焼結工程の前に切断を行い、成形体の段階で、最終製品にするために必要な切断工程をすべて完了させ、この後成形体を焼結工程に進めるという工程をとることである。
【0008】
また、最終製品において製品角部または稜部において曲面面取り(R面取り)の必要なものについては、成形体の段階で、鉱物油等を噴射することにより面取りを行い、ほぼ最終製品の持つ曲面形状と同様に仕上げてから焼結工程へ進める。成形体は、混合油と磁粉の混合物であるスラリーをプレスして作製したものであるため、成形体は表面が鉱物油で覆われている。スラリーと同じ成分を持つ鉱物油を高圧で吹きつけることにより、成形体を切断する方法を用いた。これにより、成形体は切断されるときに、切断後の表面が常に鉱物油で覆われているため、成形体の酸化を防止することができ、かつ、鉱物油の噴射により成形体表面が冷却されるため、過熱による自然発火や変質を防止することができる。
【0009】
[1] 本発明の成形体の加工方法は、R−Fe−B系希土類永久磁石用粗粉を、酸素濃度が0.01体積%以下の窒素ガス中またはアルゴンガス中、あるいはこれらの混合ガス中で微粉砕し、
微粉砕後の微粉を鉱物油または合成油または植物油あるいはこれらの混合油から選ばれる溶媒中に回収してスラリー状の原料とし、
前記スラリー状の原料を磁界中で湿式成形して成形体とし、前記溶媒と同じ組成の油または混合油を高圧で成形体に吹きつけることにより成形体の切断もしくは面取りを行うことを特徴とする。
溶媒の油と切断用の油を同じ組成とすることには次の利点がある。異なる組成の油を用いた場合、再利用するためには使用済みの油を成分毎に分離するために手間がかかる。同組成の油であれば、分離の手間がかからず再利用効率が高い。
【0010】
[2] 上記[1]の成形体の加工方法において、成形体に吹きつけられる油または混合油はオイルジェット流となっており、
前記オイルジェット流は直径0.05mmから3.0mmまでの範囲にあり、吹きつけ時の圧力は50MPaから400MPaの範囲内にあることを特徴とする。
ここで、ジェット流にかかる直径とは、ジェット流のビームをその進行方向に直交する断面における直径、もしくはジェット流のビームをその進行方向に直交する向きから見たときのビームの幅、もしくはノズルの孔径に相当する。オイルジェット流の直径を0.05mmから3.0mmという小径に絞ることができるため、成形体の加工しろを少なくすることができる。
成形体を支持体の上に配置し、成形体の表面にオイルジェット流を吹きつけることにより切断や面取り等の加工を行う場合、支持体にはオイルジェット流を通過させるための穴や凹部を設ける。前記穴の径や凹部の幅は、オイルジェット流の直径より大きいことが望ましい。
【0011】
[3] 上記[1]または[2]の成形体の加工方法において、使用する油または混合油の室温での動粘度が1.1×10−5(m/s)以下であり、分留点が400℃以下で、密度は1.5×10(kg/m)以下であることが望ましい。さらに、前記溶媒に使う油よりも前記切断に使う油の動粘度が小さいことが望ましい。
ここで、動粘度の単位をストークスに変換する場合には、1.1×10−5(m/s)=0.11(St)=11(cSt)という関係を用いる。密度は、1.5×10(kg/m)=1.5(g/cm)という関係を有する。
【0012】
[4] 上記[1]または[2]の成形体の加工方法により成形体を切断するときに、その速度が0.5mm/s〜14mm/sであることを特徴とする。より具体的には、“速度”は油ジェットが成形体を切断する速度に相当する。0.5mm/s〜14mm/sの範囲は、30mm/min〜840mm/minに相当する。
【0013】
[5] 上記[1]乃至[4]のいずれかの成形体の加工方法において、使用する油または混合油中に体積%で0.1%〜8%の範囲で粒子を混合させたものをオイルジェット流の媒体として用い、
前記粒子は、天然砂、ガーネット、またはカーボランダムから選ばれる少なくとも1種で構成され、粒径が#70〜#150の範囲であることを特徴とする。
【0014】
[6] 本発明の他の成形体の加工方法は、磁場中でプレス成形した希土類永久磁石用の成形体をオイルジェット流で切断もしくは面取りする切断工程を有し、前記切断工程を焼結(成形体の焼結)より前に行うことを特徴とする。
本発明にかかる希土類永久磁石用成形体の加工方法は、寸法の大きい成形体を作製したのち、オイルジェット流で成形体を切断して、個々の磁石に対応した成形体に分割する。成形工程と焼結工程の間に加工を行わない場合に比べて、研磨や切断により除去される素材部分の体積を小さくすることができ、加工や製造コストの低減を図ることもできる。成形体は、切断に用いるオイルジェットと同組成のオイルを含んでいることが望ましいが、オイルを含んでいない成形体についても、本発明にかかる加工方法を適用することは可能である。なお、本発明にかかる永久磁石の製造方法は、成形工程と焼結工程を備え、成形工程の後にオイルジェット流で成形体を切断もしくは面取りする切断工程を有し、前記切断工程の後に焼結工程を行うものである。
【0015】
【発明の実施の形態】
製造した希土類磁石は、R−T−B系(RはYを含む希土類元素の少なくとも1種であり、Rに占めるPrが50原子%以上、TはFe、Coを含む遷移金属)の希土類焼結磁石用合金粉末を非酸化性雰囲気中で平均粒形1〜10μmに微粉砕し、得られた微粉を鉱物油、合成油および植物油から選択される少なくとも1種の油と、脂肪酸の1価アルコールエステル、多塩基酸の1価アルコールエステル、多価アルコール脂肪酸エステルおよびそれら誘導体のうちから選択される少なくとも1種からなる潤滑剤とからなる非酸化性液中に回収してスラリーを作製し、次いでこのスラリーを成形することにより成形体を形成する。
【0016】
本発明では成形体の酸化を防止するために、ジェット流の媒体として高圧水を使用することはせず、高圧のかかった油を使用した。溶媒として使用する油は、消防法で定めるところの第4類、第2第3石油類に属し、引火点が21℃以上で200℃未満、かつ1気圧での分留点が400℃以下、常温での動粘度が1.1×10−5(m/s)、すなわち11cSt以下のものである。引火点が21℃未満のものでは、安全性の維持に多大の費用と労力を要し、大量処理が必要な工業生産には適さない。また、1気圧での分留点が400℃を超えるもの、常温での動粘度が1.1×10−5(m/s)を超えるものでは、脱溶媒性が悪く、最終的に得られる焼結体中の残留炭素量が増加してHciが低下するため、適切ではない。
【0017】
スラリーのプレスは、今回の実施試験では油圧プレスを使用した。しかし、成形時に所定の加圧を成形体に与えることができるのであれば、油圧、メカ、油圧メカ混成構造のプレス機のうちどれを選択してもかまわない。金型の形状は、最終製品の形状を単体成形で作るのか、または大きな素材を切断や研磨で作るのかにより異なる。今回の実施では成形体を切断することを考え、切断後に最終製品に近い形状となるようにするため、ブロック形状の素材を金型により製作した。
【0018】
(実施例) まず、質量百分率(即ち、質量%)で、Nd=27.0%、Pr=0.5%、Dy=1.5%、B=1.05%、Nb=0.35%、Al=0.08%、Co=2.5%、Ga=0.09%、Cu=0.08%、O=0.03%、C=0.005%、N=0.004%、残部Feの組成を有する、厚さが0.2〜0.5mmの薄帯状合金を、ストリップキャスト法で作製した。この薄帯状の合金を、Arガス雰囲気中で1000℃で2時間加熱した。次に水素炉を使用し、この薄帯状の合金を常温で水素ガス雰囲気中で水素吸蔵させ、自然崩壊させた。
【0019】
次いで、炉内を真空排気しつつ550℃まで薄帯状の合金を加熱し、その温度で1時間保持して脱水素処理を行った。崩壊した合金を窒素ガス雰囲気中で機械的に破砕して、粒径32mesh以下(#32以下)の原料粗粉とした。この原料粗粉の組成を分析したところ、Nd=27.0%、Pr=0.5%、Dy=1.5%、B=1.05%、Nb=0.35%、Al=0.08%、Co=2.5%、Ga=0.09%、Cu=0.08%、O=0.12%、C=0.02%、N=0.008%、残部Feという分析値を得た。この原料粗粉80kgをジェットミル内に装入した後、ジェットミル内部をNガスで置換し、Nガス中の酸素濃度を実質的に0%(酸素分析計値で0.0001体積%、すなわち0.0001vol%)とした。
【0020】
次いで、粉砕圧力7.0kg/cm、原料粗粉の供給量10kg/hrの条件で粉砕した。微粉の平均粒度は4μmであった。ジェットミルの微粉回収口には鉱物油に潤滑剤を配合したものを満たした容器を直接設置し、Nガス雰囲気中で微粉を直接鉱物油中へ回収した。回収後の原料は、鉱物油の量を加減することで微粉の純分が80質量%の原料スラリーとした。この原料スラリーを、金型キャビティ内で12kOeの配向磁界を印加しながら0.8ton/cmの成形圧で湿式成形した。配向磁界の印加方向は、成形方向と垂直である。また、金型の上パンチには溶媒排出孔を多数設け、成形時には1mmの厚さの布製のフィルタを上パンチ面にあてて使用した。
【0021】
成形したブロック状成形体1は成形時にスラリーからしみでてきた余剰の油をふきとった後、切断を行った。成形体の切断時に使用した油ジェット用の油は、スラリーをプレスして成形体を形成したときと同一の物を使用した。成形体はXYテーブル2上に置き、その真上に固定された油ジェット用ノズル3に対し、切断位置を自由に変更できる様に設定した。XYテーブル上には、ノズルから噴出した油ジェット流4がテーブル上で跳ね上がらないようにするため、直径3.5mmの穴5がもうけてあり、成形体を通過した油ジェット流の油6はそのまま、この穴5を通過し、テーブルの下部へ流れて容器7に回収されるような構造となっている。
【0022】
成形体切断時に、切断刃の役割をする油ジェット流は流速が大変大きいため、油ジェット用ノズルは、ジェット流と接触する壁面の耐磨耗性を考慮して、オリフィスである入り口をダイヤモンドあるいはサファイアで製作し、他の部分をステンレス鋼で製作したものを用いた。また、高速で油の流れるノズル通路はセラミックスあるいは超硬セラミックスで製作した。油ジェット流を発生させるための高圧油の圧力は50MPaから400MPaの範囲で変化させ、切断を試みた。ノズル径は0.1mm〜0.5mmまで種々のものを製作して試用し、成形体厚さも10mmから60mmまで変更して切断を行ったが、すべてのノズルを用いてすべての成形体を切断することができた。ノズル径が細くなると切断された面の粗さが細かくなり、成形体の寸法精度が向上した。
【0023】
しかし、同じ油圧では流量が低下するため、切断速度はノズル径の太い場合に比べて低下した。表1に実施例として、油圧、ノズル径、流量を一定とした場合に、成形体切断速度が成形体の厚さによりどのように変化したか、成形体の切断時の条件の例を示す。表1の結果より、切断速度を20%ほど増加させても成形体を切断することは可能であるが、切断された破面の粗さが粗くなった。
【0024】
【表1】

Figure 2004207578
【0025】
切断中に切断面が酸化されたり、また成形体表面が序序に酸化されると、焼結後の磁石の磁気特性が低下する。そこで、成形体を、成形時に用いられたものと同一の油の中に浸漬し、この状態で、油ジェットを用いて成形体切断を行った。この時成形体の上部面は油の液面から1mm〜5mmの範囲深さで油中に浸漬されていた。油中に浸漬された状態でも、上記表1の条件で成形体を切断することが可能であった。ただし切断速度は、成形体が油中に浸漬されていない場合に比べて、20%〜50%ほど深さに応じて低下した。この方法は成形体の切断速度は低下するが、切断中に成形体表面がわずかに酸化することも完全に防ぐことができる。表1にて60mm/min=1mm/sに相当する。
【0026】
成形体を切断するためのジェット流の中に#70〜#150(即ち、粒径が70Mesh〜150Meshで定義されるもの)の天然砂粒子やガーネット粒子、カーボランダム粒子を体積で0.1%〜8%混入させて成形体を切断すると、上記の表1の切断速度よりも、20%〜130%大きな切断速度が得られる。しかし、ジェット流の衝撃により、切断面内にこの天然砂粒子やガーネット粒子、カーボランダム粒子が打ち込まれてしまうため、切断面の磁気特性が多少低下する。そこで、切断面を成形体の段階で、粒子を含まない油ジェット流で、再度研磨または薄く切り取るか、または、切断後に成形体を焼結・熱処理した後、切断面を再度研磨する必要がある。
【0027】
このようにして所定の大きさに切断された成形体は、最終的に得られる焼結体中の残留炭素量の増加をおさるため、真空排気下で加熱温度を500℃以下におさえて油分の除去が行われ、次に、900℃〜1200℃の温度範囲で焼結が行われ、焼結体となった。次に保磁力を所定の大きさに発現させるために、400℃〜950℃の範囲で熱処理を行い、最終加工しろが15%以下である磁石素材を得た。一方、成形体が切断されたときに発生した成形体端材は、機械的に押しつぶした後、再度もとのスラリーに混合することによって、再度成形体製作用のスラリーとして使用することができた。
【0028】
本実施例によれば、スラリーをプレスして作製した成形体を、スラリー調製時に用いたものと同一の油を用い、この油によるジェット流を用いた切断方法により、成形体の段階で、最終製品形状にできるだけ近い寸法まで切断することができた。この結果、その後につづく最終加工工程での研磨しろの体積を15%以下におさえることができ、切断面や加工面の大きい形状をもつ磁石について、研磨や切断に基づく加工費を大幅に低減させることができた。また、成形体の切断後に発生した、製品とならない成形体端材は、押しつぶして再度もとのスラリーに混合攪拌することにより、再度プレス成形体としてリサイクル使用することができ、その結果、従来の加工方法に比べて磁石材料費の大幅な低減を達成することができた。
【0029】
【発明の効果】
以上説明したように、本発明にかかる加工方法を用いることにより、研磨や切断により除去される素材部分の体積を小さくし、加工や製造コストも低減することができる。
【図面の簡単な説明】
【図1】本発明にかかる成形体の加工方法を説明する概略断面図である。
【符号の説明】
1 ブロック状成形体、 2 XYテーブル、 3 油ジェット用ノズル、
4 油ジェット流、 5 穴、 6 油、 7 容器[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for performing processing such as cutting of a workpiece or the like using a jet stream, and more specifically, to a processing method using oil or mixed oil as a medium for a jet stream.
[0002]
[Prior art]
Conventionally, in water jet technology, the cavitation effect generated by various media injection from a nozzle, ultra high pressure water injection, or high pressure water injection in liquid has been utilized for cutting and polishing of a workpiece (for example, see Patent Document 1). 1 or Patent Document 2). In addition, as a method of utilizing in water, a method utilizing the cavitation effect of high-pressure water is used for processing such as underwater washing and deburring. Surface treatments such as water blasting using negative pressure of high-pressure water and sand blasting using air pressure to remove and remove coatings and coatings, substrate adjustment, and grinding are also used as methods of using in the atmosphere. In addition, a stripping process using only high-pressure water is also performed.
[0003]
On the other hand, at present, Nd-Fe-B permanent magnets with the highest magnetic properties are obtained by finely pulverizing a melted ingot manufactured in advance to a predetermined composition with a pulverizer such as a jet mill and pressing it with a press. To make a molded body. In this pulverization and molding step, the fine powder having a large surface area due to the fine pulverization absorbs oxygen and is easily oxidized, so that the resulting molded body contains a considerable amount of oxygen, thereby causing a decrease in magnetic properties. . As a countermeasure, the finely pulverized powder, which is the raw material for the magnet, is directly dropped and stored in mineral oil, and the fine powder that has been slurried by mixing with the mineral oil is molded as it is to reduce external oxygen. Obtain molded products that are not incorporated. Next, this slurry is molded by a press machine, and the resulting molded body is sintered in a vacuum or a vacuum sintering furnace having an atmosphere of argon gas, nitrogen gas or a mixed gas thereof, and sintered. A magnet was formed. Further, the sintered magnet is heated again in a vacuum heat treatment furnace at 400 ° C. to 900 ° C., and the structure in the magnet is adjusted to form a sintered magnet material capable of generating a desired coercive force. A step of manufacturing a permanent magnet product by finishing this material to a target size by cutting or polishing has been taken (for example, Patent Document 3).
[0004]
[Patent Document 1]
JP-A-9-173916 (page 1)
[Patent Document 2]
Japanese Patent Application Laid-Open No. 2002-224951 (page 3, FIG. 1)
[Patent Document 3]
JP-A-10-233306 (pages 3 and 4)
[0005]
[Problems to be solved by the invention]
However, this is different from mass production of single-shape products, but in the case of multi-product small-lot production, if special dies are prepared for each product, various mold and jig costs As a result, the manufacturing cost of the product becomes very high, and the price competitiveness in the market is reduced. Therefore, as a countermeasure, a magnet product having a desired size is produced by preparing a sintered and heat-treated material having a predetermined shape in advance, and starting with this material through a cutting or polishing process. In this case, since the permanent magnet material after sintering has a high hardness, it is difficult to perform processing by ordinary cutting. Therefore, the material is finished to a desired size by a method of polishing or cutting using a diamond grindstone.
[0006]
By using such a method, regardless of the shape and size of the final product, the material is cut out of the same shape, so that the cut material that does not become a product after cutting or polishing can be 30% to 60% of the initial material volume. Occurred up. In spite of the high material cost of the NdFeB magnet material, the end material cut off by polishing or cutting becomes a mixture with the powdered abrasive material, so that the cut magnet material is reused. Requires a step of separating the magnet component and the abrasive material, and the cost is further increased, so that the scrap material has not been reused. Therefore, when manufacturing a magnet product having a complicated shape, the volume of the material portion removed by polishing or cutting increases, and the processing cost increases, and the manufacturing cost increases due to the useless portion of the material. There was a problem to do.
[0007]
[Means for Solving the Problems]
The method of manufacturing a rare earth sintered magnet product according to the present invention that has been devised to solve the above problem is to cut a compact formed by pressing with a press before the sintering step, That is, a step of completing all the cutting steps necessary for forming a final product, and then proceeding to a sintering step of the formed body.
[0008]
If the finished product requires curved chamfering (R chamfering) at the corner or ridge of the product, it is chamfered by spraying mineral oil or the like at the molding stage, and the curved surface shape of the final product is almost complete. And then proceed to the sintering process. Since the compact is formed by pressing a slurry that is a mixture of the mixed oil and the magnetic powder, the surface of the compact is covered with mineral oil. A method of cutting a compact by spraying a mineral oil having the same components as the slurry at a high pressure was used. Thus, when the molded body is cut, the surface after cutting is always covered with mineral oil, so that oxidation of the molded body can be prevented, and the surface of the molded body is cooled by the injection of the mineral oil. Therefore, spontaneous ignition and deterioration due to overheating can be prevented.
[0009]
[1] The method for processing a molded article according to the present invention is characterized in that the R-Fe-B-based rare earth permanent magnet coarse powder is mixed in a nitrogen gas or an argon gas having an oxygen concentration of 0.01% by volume or less, or a mixed gas thereof. Pulverize in
The fine powder after pulverization is recovered in a solvent selected from mineral oil, synthetic oil, vegetable oil, or a mixed oil thereof to obtain a slurry raw material,
The slurry raw material is wet-molded in a magnetic field to form a molded body, and cutting or chamfering the molded body is performed by spraying an oil or a mixed oil having the same composition as the solvent on the molded body at a high pressure. .
Making the solvent oil and the cutting oil the same composition has the following advantages. When oils having different compositions are used, it takes time and effort to separate used oils for each component in order to reuse them. If the oil has the same composition, the separation efficiency is high and the recycling efficiency is high.
[0010]
[2] In the method for processing a molded article according to the above [1], the oil or mixed oil sprayed on the molded article is an oil jet stream,
The oil jet stream has a diameter in the range of 0.05 mm to 3.0 mm, and the pressure at the time of spraying is in the range of 50 MPa to 400 MPa.
Here, the diameter of the jet stream is the diameter of the cross section of the jet stream beam perpendicular to the traveling direction, or the beam width when the jet stream beam is viewed from the direction perpendicular to the traveling direction, or the nozzle. Corresponding to the hole diameter of Since the diameter of the oil jet stream can be reduced to a small diameter of 0.05 mm to 3.0 mm, the processing margin of the molded body can be reduced.
When the molded body is placed on a support and processing such as cutting or chamfering is performed by spraying an oil jet stream on the surface of the molded body, holes or recesses for passing the oil jet stream are formed in the support. Provide. It is desirable that the diameter of the hole or the width of the concave portion is larger than the diameter of the oil jet flow.
[0011]
[3] In the method for processing a molded article according to the above [1] or [2], the kinematic viscosity at room temperature of the oil or the mixed oil used is 1.1 × 10 −5 (m 2 / s) or less. It is desirable that the retention point is 400 ° C. or less and the density is 1.5 × 10 3 (kg / m 3 ) or less. Further, it is desirable that the kinematic viscosity of the oil used for cutting is smaller than that of the oil used for the solvent.
Here, when converting the unit of the kinematic viscosity to Stokes, the relationship of 1.1 × 10 −5 (m 2 /s)=0.11 (St) = 11 (cSt) is used. The density has a relationship of 1.5 × 10 3 (kg / m 3 ) = 1.5 (g / cm 3 ).
[0012]
[4] The cutting speed is 0.5 mm / s to 14 mm / s when the shaped body is cut by the method for processing a shaped body according to [1] or [2]. More specifically, "speed" corresponds to the speed at which the oil jet cuts the compact. The range of 0.5 mm / s to 14 mm / s corresponds to 30 mm / min to 840 mm / min.
[0013]
[5] The method for processing a molded article according to any one of [1] to [4], wherein particles obtained by mixing particles in a range of 0.1% to 8% by volume in an oil or a mixed oil to be used. Used as a medium for oil jet flow,
The particles are composed of at least one selected from natural sand, garnet, and carborundum, and have a particle size in the range of # 70 to # 150.
[0014]
[6] Another method for processing a molded article of the present invention includes a cutting step of cutting or chamfering a molded article for a rare earth permanent magnet press-molded in a magnetic field with an oil jet stream, and sintering the cutting step ( Before the sintering of the compact).
In the method for processing a molded article for a rare earth permanent magnet according to the present invention, a molded article having a large size is prepared, and then the molded article is cut by an oil jet flow to divide the molded article into a molded article corresponding to each magnet. Compared to a case where no processing is performed between the forming step and the sintering step, the volume of the material portion removed by polishing or cutting can be reduced, and processing and manufacturing costs can be reduced. It is desirable that the molded body contains oil having the same composition as the oil jet used for cutting, but the processing method according to the present invention can be applied to molded bodies that do not contain oil. The method for manufacturing a permanent magnet according to the present invention includes a forming step and a sintering step, and has a cutting step of cutting or chamfering the formed body by an oil jet flow after the forming step, and sintering after the cutting step. The process is performed.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
The manufactured rare earth magnet is a rare earth magnet of R-T-B type (R is at least one kind of rare earth element including Y, Pr accounts for 50 atomic% or more in R, and T is a transition metal containing Fe and Co). The alloy powder for a magnet is finely pulverized in a non-oxidizing atmosphere to an average particle size of 1 to 10 μm, and the obtained fine powder is at least one oil selected from mineral oil, synthetic oil and vegetable oil, and monovalent fatty acid. Alcohol ester, monohydric alcohol ester of polybasic acid, polyhydric alcohol fatty acid ester and a lubricant made of at least one selected from the derivatives thereof and recovered in a non-oxidizing liquid to form a slurry, Next, a molded article is formed by molding the slurry.
[0016]
In the present invention, in order to prevent oxidation of the compact, high-pressure water is not used as a jet flow medium, but oil under high pressure is used. Oil used as a solvent belongs to Class 4 and Class 2 petroleum as defined by the Fire Services Act, and has a flash point of 21 ° C or higher and lower than 200 ° C, and a fractionation point at 1 atm of 400 ° C or lower, The kinematic viscosity at room temperature is 1.1 × 10 −5 (m 2 / s), that is, 11 kSt or less. If the flash point is less than 21 ° C., a great deal of cost and labor is required to maintain safety, and it is not suitable for industrial production requiring large-scale processing. If the fractionation point at 1 atm exceeds 400 ° C. and the kinematic viscosity at room temperature exceeds 1.1 × 10 −5 (m 2 / s), the solvent removal property is poor, and the final This is not appropriate because the amount of residual carbon in the resulting sintered body increases and Hci decreases.
[0017]
For the pressing of the slurry, a hydraulic press was used in the present test. However, as long as a predetermined pressure can be applied to the compact during molding, any one of a hydraulic press, a mechanical press, and a press having a hybrid hydraulic / mechanical structure may be selected. The shape of the mold differs depending on whether the shape of the final product is made by simple molding or by cutting or polishing a large material. In the present embodiment, considering the cutting of the molded body, a block-shaped material was manufactured using a metal mold so that the shape would be close to the final product after cutting.
[0018]
(Example) First, in mass percentage (that is, mass%), Nd = 27.0%, Pr = 0.5%, Dy = 1.5%, B = 1.05%, Nb = 0.35% , Al = 0.08%, Co = 2.5%, Ga = 0.09%, Cu = 0.08%, O = 0.03%, C = 0.005%, N = 0.004%, A strip-shaped alloy having a composition of the balance Fe and a thickness of 0.2 to 0.5 mm was produced by a strip casting method. This ribbon-shaped alloy was heated at 1000 ° C. for 2 hours in an Ar gas atmosphere. Next, using a hydrogen furnace, the thin ribbon-shaped alloy was occluded with hydrogen in a hydrogen gas atmosphere at room temperature, and naturally collapsed.
[0019]
Next, the strip-shaped alloy was heated to 550 ° C. while the inside of the furnace was evacuated, and held at that temperature for 1 hour to perform a dehydrogenation treatment. The collapsed alloy was mechanically crushed in a nitrogen gas atmosphere to obtain a raw material powder having a particle size of 32 mesh or less (# 32 or less). When the composition of this raw material coarse powder was analyzed, Nd = 27.0%, Pr = 0.5%, Dy = 1.5%, B = 1.05%, Nb = 0.35%, and Al = 0.05%. Analysis values of 08%, Co = 2.5%, Ga = 0.09%, Cu = 0.08%, O = 0.12%, C = 0.02%, N = 0.008%, and the balance Fe Got. After charging the raw material coarse powder 80kg in a jet mill, the inner jet mill was replaced with N 2 gas, substantially 0% of oxygen concentration in the N 2 gas (oxygen analyzer value 0.0001 vol% , That is, 0.0001 vol%).
[0020]
Next, pulverization was performed under the conditions of a pulverization pressure of 7.0 kg / cm 2 and a supply amount of the raw material coarse powder of 10 kg / hr. The average particle size of the fine powder was 4 μm. A container filled with a mixture of a mineral oil and a lubricant was directly installed at the fine powder collection port of the jet mill, and the fine powder was directly recovered into the mineral oil in an N 2 gas atmosphere. The raw material after recovery was a raw material slurry in which the fine content of fine powder was 80% by mass by adjusting the amount of mineral oil. This raw material slurry was wet-molded in a mold cavity at a molding pressure of 0.8 ton / cm 2 while applying an orientation magnetic field of 12 kOe. The direction of application of the orientation magnetic field is perpendicular to the molding direction. The upper punch of the mold was provided with a number of solvent discharge holes, and a 1 mm-thick cloth filter was applied to the upper punch surface during molding.
[0021]
The formed block-shaped molded body 1 was cut off after wiping off excess oil that had oozed from the slurry at the time of molding. The same oil as that used when the slurry was pressed to form the molded body was used as the oil for the oil jet used when cutting the molded body. The molded body was placed on an XY table 2 and set so that the cutting position could be freely changed with respect to an oil jet nozzle 3 fixed directly above the molded body. On the XY table, a hole 5 having a diameter of 3.5 mm is formed in order to prevent the oil jet stream 4 ejected from the nozzle from jumping up on the table. , Through the hole 5, to the lower part of the table, and to be collected in the container 7.
[0022]
Since the oil jet flow acting as a cutting blade has a very high flow velocity when cutting a molded body, the oil jet nozzle has a diamond or orifice at the entrance which is an orifice in consideration of the abrasion resistance of the wall contacting the jet flow. It was made of sapphire and the other parts were made of stainless steel. The nozzle passage through which oil flows at a high speed was made of ceramics or cemented carbide. The pressure of the high-pressure oil for generating the oil jet flow was changed in the range of 50 MPa to 400 MPa, and cutting was attempted. Nozzle diameters from 0.1 mm to 0.5 mm were manufactured and tested, and the thickness of the compact was changed from 10 mm to 60 mm. Cutting was performed, but all the compacts were cut using all nozzles. We were able to. As the nozzle diameter became smaller, the roughness of the cut surface became finer, and the dimensional accuracy of the molded body was improved.
[0023]
However, since the flow rate was reduced at the same oil pressure, the cutting speed was reduced as compared with the case where the nozzle diameter was large. As an example, Table 1 shows an example of how the cutting speed of a molded product changes depending on the thickness of the molded product when the hydraulic pressure, the nozzle diameter, and the flow rate are constant, and examples of conditions for cutting the molded product. From the results in Table 1, it is possible to cut the molded body even if the cutting speed is increased by about 20%, but the roughness of the cut fracture surface becomes rough.
[0024]
[Table 1]
Figure 2004207578
[0025]
If the cut surface is oxidized during cutting, or if the surface of the formed body is oxidized, the magnetic properties of the magnet after sintering are deteriorated. Therefore, the molded body was immersed in the same oil as that used at the time of molding, and in this state, the molded body was cut using an oil jet. At this time, the upper surface of the molded body was immersed in the oil at a depth of 1 mm to 5 mm from the oil level. Even in a state of being immersed in oil, the molded article could be cut under the conditions shown in Table 1 above. However, the cutting speed decreased by 20% to 50% depending on the depth as compared with the case where the molded body was not immersed in the oil. This method reduces the cutting speed of the molded body, but can completely prevent the surface of the molded body from being slightly oxidized during cutting. In Table 1, it corresponds to 60 mm / min = 1 mm / s.
[0026]
0.1% by volume of natural sand particles, garnet particles, and carborundum particles of # 70 to # 150 (that is, particles having a particle size defined by 70 Mesh to 150 Mesh) in a jet stream for cutting the compact. When the molded body is cut with a mixing rate of 88%, a cutting speed higher by 20% to 130% than the cutting speed shown in Table 1 above is obtained. However, the natural sand particles, garnet particles, and carborundum particles are driven into the cut surface by the impact of the jet flow, so that the magnetic characteristics of the cut surface are slightly reduced. Therefore, it is necessary to grind the cut surface again with an oil jet stream containing no particles at the stage of the molded body, or to thinly cut the cut surface, or after sintering and heat treating the molded body after cutting, it is necessary to grind the cut surface again. .
[0027]
The molded body cut into a predetermined size in this manner is heated under a vacuum exhaust at a heating temperature of 500 ° C. or lower in order to reduce the amount of residual carbon in the finally obtained sintered body. Removal was performed, and then sintering was performed in a temperature range of 900 ° C to 1200 ° C to obtain a sintered body. Next, heat treatment was performed at a temperature in the range of 400 ° C. to 950 ° C. in order to develop a coercive force to a predetermined magnitude, thereby obtaining a magnet material having a final working margin of 15% or less. On the other hand, the molded product remnants generated when the molded product was cut were mechanically crushed, and then mixed with the original slurry again, thereby being able to be used again as a slurry for producing the molded product. .
[0028]
According to the present example, the molded body produced by pressing the slurry was formed using the same oil as that used during the preparation of the slurry, and was cut at the stage of the molded body by a cutting method using a jet stream of this oil. It was possible to cut to dimensions as close as possible to the product shape. As a result, the volume of the polishing margin in the subsequent final processing step can be reduced to 15% or less, and for magnets having a large cut surface or processed surface, the processing cost based on polishing or cutting is greatly reduced. I was able to. In addition, the shavings that do not become a product, generated after cutting the shaping, can be crushed, mixed and stirred with the original slurry again, and reused as a press-formed body again. Significant reduction in magnet material cost was achieved compared to the processing method.
[0029]
【The invention's effect】
As described above, by using the processing method according to the present invention, the volume of the material portion removed by polishing or cutting can be reduced, and the processing and manufacturing costs can be reduced.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view illustrating a method for processing a molded article according to the present invention.
[Explanation of symbols]
1 block shaped body, 2 XY table, 3 oil jet nozzle,
4 oil jet stream, 5 holes, 6 oil, 7 containers

Claims (6)

R−Fe−B系希土類永久磁石用粗粉を、酸素濃度が0.01体積%以下の窒素ガス中またはアルゴンガス中、あるいはこれらの混合ガス中で微粉砕し、
微粉砕後の微粉を鉱物油または合成油または植物油あるいはこれらの混合油から選ばれる少なくとも1種の溶媒中に回収してスラリー状の原料とし、
前記スラリー状の原料を磁界中で湿式成形して成形体とし、前記溶媒と同じ組成の油または混合油を高圧で成形体に吹きつけることにより成形体の切断もしくは面取りを行うことを特徴とする成形体の加工方法。
The R-Fe-B-based rare earth permanent magnet coarse powder is finely pulverized in a nitrogen gas or an argon gas having an oxygen concentration of 0.01% by volume or less, or in a mixed gas thereof,
The fine powder after the pulverization is recovered in at least one solvent selected from mineral oil, synthetic oil, vegetable oil, or a mixed oil thereof to obtain a slurry raw material,
The slurry raw material is wet-molded in a magnetic field to form a molded body, and cutting or chamfering the molded body is performed by spraying an oil or a mixed oil having the same composition as the solvent on the molded body at a high pressure. Processing method of molded body.
請求項1の成形体の加工方法において、成形体に吹きつけられる油または混合油はオイルジェット流となっており、
前記オイルジェット流は直径0.05mmから3.0mmまでの範囲にあり、吹きつけ時の圧力は50MPaから400MPaの範囲内にあることを特徴とする成形体の加工方法。
In the method for processing a molded article according to claim 1, the oil or mixed oil sprayed on the molded article is an oil jet stream,
The method for processing a molded product, wherein the oil jet flow has a diameter in a range of 0.05 mm to 3.0 mm, and a pressure at the time of spraying is in a range of 50 MPa to 400 MPa.
請求項1または2の成形体の加工方法において、使用する油または混合油は、室温での動粘度が1.1×10−5(m/s)以下であり、分留点が400℃以下であり、密度は1.5×10(kg/m)以下であることを特徴とする成形体の加工方法。In the method for processing a molded article according to claim 1 or 2, the oil or mixed oil used has a kinematic viscosity at room temperature of 1.1 × 10 −5 (m 2 / s) or less and a fractionation point of 400 ° C. And a density of 1.5 × 10 3 (kg / m 3 ) or less. 請求項1または2の成形体の加工方法により成形体を切断するときに、その速度が0.5mm/s〜14mm/sであることを特徴とする成形体の加工方法。3. A method for processing a molded article according to claim 1, wherein the cutting speed is 0.5 mm / s to 14 mm / s when the molded article is cut by the method for processing a molded article according to claim 1 or 2. 請求項1乃至4いずれかの成形体の加工方法において、使用する油または混合油中に体積%で0.1%〜8%の範囲で粒子を混合させたものをオイルジェット流の媒体として用い、
前記粒子は、天然砂、ガーネット、またはカーボランダムから選ばれる少なくとも1種の粒子で構成され、粒径が#70〜#150の範囲であることを特徴とする成形体の加工方法。
5. A method for processing a molded article according to claim 1, wherein a mixture of particles used in an oil or a mixed oil in a range of 0.1% to 8% by volume is used as an oil jet flow medium. ,
The method for processing a molded article, wherein the particles are composed of at least one type of particle selected from natural sand, garnet, and carborundum, and have a particle size in the range of # 70 to # 150.
磁場中でプレス成形した希土類永久磁石用の成形体をオイルジェット流で切断もしくは面取りする切断工程を有し、前記切断工程を焼結より前に行うことを特徴とする成形体の加工方法。A method for processing a molded article, comprising: a cutting step of cutting or chamfering a molded article for a rare earth permanent magnet press-molded in a magnetic field by an oil jet flow, wherein the cutting step is performed before sintering.
JP2002376388A 2002-12-26 2002-12-26 Method for producing R-Fe-B sintered magnet Expired - Lifetime JP4380983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002376388A JP4380983B2 (en) 2002-12-26 2002-12-26 Method for producing R-Fe-B sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002376388A JP4380983B2 (en) 2002-12-26 2002-12-26 Method for producing R-Fe-B sintered magnet

Publications (3)

Publication Number Publication Date
JP2004207578A true JP2004207578A (en) 2004-07-22
JP2004207578A5 JP2004207578A5 (en) 2006-03-09
JP4380983B2 JP4380983B2 (en) 2009-12-09

Family

ID=32813870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002376388A Expired - Lifetime JP4380983B2 (en) 2002-12-26 2002-12-26 Method for producing R-Fe-B sintered magnet

Country Status (1)

Country Link
JP (1) JP4380983B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007083364A (en) * 2005-09-22 2007-04-05 Towa Corp Cutting nozzle
WO2011125578A1 (en) * 2010-03-31 2011-10-13 日立金属株式会社 Method for recycling slurry, method for manufacturing rare-earth based sintered magnet, and apparatus for recycling slurry
CN102856067A (en) * 2012-09-04 2013-01-02 深圳市金瑞中核电子有限公司 Process for producing magnetic ring
WO2013047429A1 (en) 2011-09-30 2013-04-04 日立金属株式会社 Regeneration method and regeneration apparatus for powder for rare earth sintered magnet
EP2805918A3 (en) * 2011-02-04 2015-01-28 Climax Molybdenum Company Molybdenum disulfide powders and methods and apparatus for producing the same
CN111100558A (en) * 2019-12-25 2020-05-05 浙江星星科技股份有限公司 Rare earth polishing solution for polishing glass panel and polishing method using rare earth polishing solution

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109249087B (en) * 2018-10-16 2019-11-29 浙江中杭水泵股份有限公司 A kind of raw material cutting machine structure device based on infra-red radiation flaw detection

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01228113A (en) * 1988-03-09 1989-09-12 Hitachi Metals Ltd Processing method for r-fe-b magnet
JPH0265641A (en) * 1988-08-31 1990-03-06 Hitachi Ltd Structure at field winding lead-out section of turbine generator
JPH09173916A (en) * 1995-12-21 1997-07-08 Sugino Mach Ltd Nozzle head of water jet gun

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01228113A (en) * 1988-03-09 1989-09-12 Hitachi Metals Ltd Processing method for r-fe-b magnet
JPH0265641A (en) * 1988-08-31 1990-03-06 Hitachi Ltd Structure at field winding lead-out section of turbine generator
JPH09173916A (en) * 1995-12-21 1997-07-08 Sugino Mach Ltd Nozzle head of water jet gun

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007083364A (en) * 2005-09-22 2007-04-05 Towa Corp Cutting nozzle
US9358614B2 (en) 2010-03-31 2016-06-07 Hitachi Metals, Ltd. Slurry recycling method, producing method of rare earth sintered magnet and slurry recycling apparatus
WO2011125578A1 (en) * 2010-03-31 2011-10-13 日立金属株式会社 Method for recycling slurry, method for manufacturing rare-earth based sintered magnet, and apparatus for recycling slurry
CN102822915A (en) * 2010-03-31 2012-12-12 日立金属株式会社 Method for recycling slurry, method for manufacturing rare-earth based sintered magnet, and apparatus for recycling slurry
US10807167B2 (en) 2010-03-31 2020-10-20 Hitachi Metals, Ltd. Slurry recycling method, producing method of rare earth sintered magnet and slurry recycling apparatus
KR101790811B1 (en) * 2010-03-31 2017-10-26 히타치 긴조쿠 가부시키가이샤 Slurry recycling method, producing method of rare earth sintered magnet and slurry recycling apparatus
JP5682623B2 (en) * 2010-03-31 2015-03-11 日立金属株式会社 Slurry regeneration method, rare earth sintered magnet production method, and slurry regeneration apparatus
EP2555211A4 (en) * 2010-03-31 2017-08-30 Hitachi Metals, Ltd. Method for recycling slurry, method for manufacturing rare-earth based sintered magnet, and apparatus for recycling slurry
US9878332B2 (en) 2011-02-04 2018-01-30 Climax Molybdenum Company Methods of producing molybdenum disulfide powders
EP2805918A3 (en) * 2011-02-04 2015-01-28 Climax Molybdenum Company Molybdenum disulfide powders and methods and apparatus for producing the same
US10549286B2 (en) 2011-02-04 2020-02-04 Climax Molybdenum Company Apparatus for producing molybdenum disulfide powders
US9463509B2 (en) 2011-09-30 2016-10-11 Hitachi Metals, Ltd. Recycle method and recycle apparatus for powder for rare earth sintered magnet
JPWO2013047429A1 (en) * 2011-09-30 2015-03-26 日立金属株式会社 Method and apparatus for regenerating powder for rare earth sintered magnet
WO2013047429A1 (en) 2011-09-30 2013-04-04 日立金属株式会社 Regeneration method and regeneration apparatus for powder for rare earth sintered magnet
CN102856067A (en) * 2012-09-04 2013-01-02 深圳市金瑞中核电子有限公司 Process for producing magnetic ring
CN111100558A (en) * 2019-12-25 2020-05-05 浙江星星科技股份有限公司 Rare earth polishing solution for polishing glass panel and polishing method using rare earth polishing solution

Also Published As

Publication number Publication date
JP4380983B2 (en) 2009-12-09

Similar Documents

Publication Publication Date Title
CN103173640B (en) A kind of preparation method of the regeneration WC-Co hard alloy containing rare earth
JP7021269B2 (en) Grain boundary engineering
WO2015146888A1 (en) R-t-b-based alloy powder and method for producing same, and r-t-b-based sintered magnet and method for producing same
JP7232390B2 (en) Method for producing RTB based sintered magnet
JP7243698B2 (en) Method for producing RTB based sintered magnet
JP2004207578A (en) Working method of molding
JP2004207578A5 (en)
CN112201428A (en) Method for preparing high-performance magnetic steel by using neodymium iron boron reclaimed materials
JP4282016B2 (en) Manufacturing method of rare earth sintered magnet
JP2006283100A (en) Method for cutting rare earth alloy powder molding
JP2007196307A (en) Grinder, grinding method and method of manufacturing rare earth sintered magnet
JP4591748B2 (en) Manufacturing method and manufacturing apparatus of rare earth sintered magnet
JP2005268668A (en) Manufacturing method and apparatus of rare earth sintered magnet
JP2021155811A (en) Method of producing r-t-b-based sintered magnet
JPH0869908A (en) Manufacture of rare-earth permanent magnet
JP7439614B2 (en) Manufacturing method of RTB based sintered magnet
JP2006281356A (en) Manufacturing method of rare earth magnet powder compact
WO2023181772A1 (en) Method for manufacturing r-t-b based sintered magnet
CN112222415B (en) Method for preparing cobalt-based permanent magnet material by using cobalt-based reclaimed material
JP4543713B2 (en) Method for producing R-TM-B permanent magnet using sludge
JP7439613B2 (en) Manufacturing method of RTB based sintered magnet
JPH0888133A (en) Manufacture of rare earth element magnet
JP2006041295A (en) Manufacturing method of rare earth sintered magnet and manufacturing method of magnet for vcm (voice coil motor)
JP2005268433A (en) Rare earth sintered magnet and manufacturing method thereof
JP2006041041A (en) Method for manufacturing sintered magnet

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051221

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051221

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051221

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4380983

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

EXPY Cancellation because of completion of term