WO2023181560A1 - パイプライン管理システム及び及びその制御方法 - Google Patents

パイプライン管理システム及び及びその制御方法 Download PDF

Info

Publication number
WO2023181560A1
WO2023181560A1 PCT/JP2022/047612 JP2022047612W WO2023181560A1 WO 2023181560 A1 WO2023181560 A1 WO 2023181560A1 JP 2022047612 W JP2022047612 W JP 2022047612W WO 2023181560 A1 WO2023181560 A1 WO 2023181560A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
pipeline
return
flow rate
management system
Prior art date
Application number
PCT/JP2022/047612
Other languages
English (en)
French (fr)
Inventor
亜由美 渡部
達朗 矢敷
祐子 可児
秀宏 飯塚
貴彰 水上
晋士 藤田
直行 石田
崇 佐々木
良平 稲垣
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2023181560A1 publication Critical patent/WO2023181560A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/02Pipe-line systems for gases or vapours
    • F17D1/04Pipe-line systems for gases or vapours for distribution of gas

Definitions

  • the present invention relates to a pipeline management system and a control method thereof.
  • the present invention relates to a pipeline management system suitable for managing and controlling the supply status of hydrogen when supplying it to people, and a control method thereof.
  • hydrogen will be produced by electrolysis of water using electricity from wind power generation, and this hydrogen will be mixed with a simulated gas equivalent to city gas and supplied to the usage site via gas piping.
  • the supplied mixed gas can be used as is in water heaters, gas stoves, etc.
  • Patent Document 1 can be cited as a prior art document that supplies city gas containing hydrogen gas to consumers using a pipeline.
  • This Patent Document 1 describes a technology that can use existing city gas pipelines and conduit networks to use both devices without any problems when hydrogen fuel equipment and existing city gas combustion equipment coexist.
  • This is a city gas supply method that supplies a mixed gas containing hydrogen gas and hydrocarbon gas to a group of consumers via a conduit network.In the first group of consumers, the hydrogen gas in the mixed gas is separated. In addition to using the separated hydrogen gas, the separated hydrogen gas is returned to the conduit network, and the second consumer group separates the hydrogen gas in the mixed gas and uses the separated hydrogen gas. The use and return of the separated hydrogen gas to the conduit network is described.
  • Patent Document 1 describes a technique for supplying a mixed gas to a group of consumers via a gas grid, it does not describe any means for controlling the state of returning gas into the gas grid. It has not been.
  • the present invention has been made in view of the above points, and its purpose is to appropriately control the state of return gas from the gas separation system to the gas grid, and to prevent deterioration of the gas grid and gas separation system.
  • An object of the present invention is to provide a pipeline management system and a control method thereof that can reduce uneven distribution of gas concentration within a gas grid.
  • the pipeline management system of the present invention is a gas separation system that is connected to a gas pipeline, extracts the gas from the gas pipeline filled with gas, and returns the gas to the gas pipeline. and a pipeline management device into which at least fluid information of the gas pipeline is input, and the pipeline management device determines whether or not the gas can be returned to the gas pipeline based on the flow velocity ratio of the gas pipeline and the return gas. If the flow velocity ratio of the gas is within a predefined range, the gas can be returned, and if it is below the predefined range or exceeds the predefined range, the gas cannot be returned. shall be.
  • the control method for a pipeline management system of the present invention includes a gas separation system that extracts the gas from a gas pipeline filled with gas and returns the gas to the gas pipeline.
  • a pipeline management device connected to a gas pipeline and into which at least fluid information of the gas pipeline is input, determines whether or not the gas can be returned to the gas pipeline based on the flow velocity ratio of the gas pipeline and the return gas; If the flow rate ratio of the gas is within a predefined range, the gas can be returned, and if it is below the predefined range or exceeds the predefined range, the gas cannot be returned.
  • the present invention it is possible to appropriately control the state of return gas from the gas separation system to the gas grid, prevent deterioration of the gas grid and the gas separation system, and reduce uneven distribution of gas concentration in the gas grid. .
  • FIG. 1 is a diagram showing a schematic configuration of a first embodiment of a pipeline management system of the present invention. It is a diagram showing a processing flow in Example 1 of the pipeline management system of the present invention.
  • 1 is a schematic configuration diagram showing a pipeline management device that constitutes a first embodiment of a pipeline management system of the present invention.
  • 4 is a diagram illustrating an example of a display unit that displays a determination result of the determination result display unit of the pipeline management device shown in FIG. 3.
  • FIG. FIG. 2 is a diagram showing a schematic configuration of a second embodiment of the pipeline management system of the present invention. It is a figure showing the schematic structure of Example 3 of the pipeline management system of the present invention. It is a figure showing the schematic structure of the return flow rate adjustment mechanism shown in Drawing 6 (a).
  • Example 7 is a diagram showing another example of the return flow rate adjustment mechanism described in Example 3 as Example 4 of the pipeline management system of the present invention. It is a figure showing the schematic structure of Example 5 of the pipeline management system of the present invention. It is a figure showing the schematic structure of the return position switching mechanism shown in Drawing 8 (a). . It is a figure showing the schematic structure of Example 6 of the pipeline management system of the present invention. It is a figure showing the schematic structure of Example 7 of the pipeline management system of the present invention. It is a figure which shows the processing flow in Example 7 of the pipeline management system of this invention.
  • FIG. 1 shows a schematic configuration of a first embodiment of the pipeline management system of the present invention
  • FIG. 2 shows a processing flow in the first embodiment of the pipeline management system of the present invention.
  • all of the configuration shown in FIG. 1 is used, but it is not necessary to use all of it, and a part of it may be used.
  • a pipeline management system 100A using a pipeline management device 5 will be described. Furthermore, in this embodiment, an example will be described in which a mixed gas of natural gas 102 and hydrogen gas 101 is supplied to a gas grid in which a hydrogen supply base 2 and a gas usage base 3 of a consumer are connected to a gas pipeline 1. do.
  • the gas usage base 3 of the consumer is connected to the gas pipeline 1 via the gas separation system 4.
  • a mixed gas of natural gas 102 and hydrogen gas 101 is assumed, but the mixed gas is not limited to hydrogen gas and natural gas as long as the gases have different densities. Further, the number of gases to be mixed is not limited to two types, but may be two or more types.
  • the hydrogen supply base 2 described above is equipped with facilities and equipment that have the function of supplying hydrogen gas 101 to the gas pipeline 1.
  • the hydrogen gas 101 of this hydrogen supply base 2 may be produced at the hydrogen supply base 2 or may be produced at another location.
  • Hydrogen gas 101 is injected from the hydrogen supply base 2 into the gas pipeline 1 filled with natural gas 102, and is supplied as a mixed gas 103 to the gas usage base 3 of the consumer via the gas separation system 4.
  • the required amount of hydrogen gas 101 and natural gas 102 or mixed gas 103 is taken out from the gas pipeline 1, and return gas 104 is returned to the gas pipeline 1.
  • the return gas 104 is gas that is not used at the gas utilization base 3.
  • the gas utilization base 3 uses only hydrogen gas 101, only the natural gas 102 may be used as the return gas 104, or the natural gas 102 and hydrogen gas 101 other than the amount to be used may be mixed to produce a mixed gas.
  • a gas having a gas composition different from that of gas 103 may be returned to the gas pipeline 1 as return gas 104.
  • the pipeline management device 5 of this embodiment includes a calculation section 5A, a judgment section 5B, and a judgment result display section 5C.
  • the calculation unit 5A includes a fluid information acquisition unit 5A1 and a pipeline flow rate calculation unit 5A2 for calculating the gas flow rate in the gas pipeline 1, a gas usage information acquisition unit 5A3 for calculating the return gas flow rate, and a gas separation system. It is roughly constituted by an information acquisition section 5A4, a return gas flow velocity calculation section 5A5, and a flow velocity ratio calculation section 5A6 that calculates a flow velocity ratio from the pipeline flow velocity and the return gas flow velocity.
  • the determining unit 5B includes a flow rate ratio specified range acquisition unit 5B1 that acquires the specified range of the flow rate ratio, and a return possibility determining unit 5B2 that determines whether or not the return is possible based on the flow rate ratio.
  • the determination result display section 5C is a display section that displays the determination result of the returnability determination section 5B2. An example of the display section is shown in FIG.
  • the example of the pipeline management system shown in FIG. 4 has approximately the same configuration as the pipeline management system 100A shown in FIG. and a second consumer gas usage base 3b.
  • the display section includes a first display section 301 that displays the position of the gas pipeline 1 on the gas grid, and a flow rate ratio of the return gas 104 to the gas pipeline 1 of the gas separation system 4.
  • a second display unit 302 that displays the judgment result obtained by the pipeline management device 5 as to whether or not the gas can be returned to the gas pipeline 1, the adjusted flow rate of the return gas 104, the adjusted flow rate ratio, and gas usage information.
  • a third display section 303 that displays at least one of the gas compositions of the gas pipeline 1.
  • the pipeline management device 5 inputs the fluid information 201 in the gas pipeline 1, the gas usage information 202 at the consumer's gas usage base 3, and the processing information 203 of the gas separation system 4, and controls the gas in the gas pipeline 1.
  • the ratio between the flow rate and the gas flow rate of the return gas 104 is calculated.
  • the pipeline management device 5 first acquires fluid information 201 in the gas pipeline 1 (S1 in FIG. 2).
  • the fluid information 201 in the gas pipeline 1 is the flow rate, flow rate, pressure, and composition at any point in the gas pipeline 1.
  • the number of arbitrary points may be one or more.
  • the fluid information 201 in the gas pipeline 1 may be directly measured by a sensor such as a pressure gauge or a flow meter, or may be calculated by a software sensor.
  • a sensor such as a pressure gauge or a flow meter
  • the flow rate or flow rate can be calculated from the difference in pressure at any two points in the gas grid, or the flow rate or flow rate can be calculated from the gas usage amount at all gas usage points connected to the gas grid. This includes calculating the flow rate, etc.
  • the gas usage information 202 at the consumer's gas usage base 3 is the amount of gas used at the consumer's gas usage base 3.
  • the amount of gas used may be acquired periodically, such as every hour, or the amount of gas to be used in the future may be acquired as information.
  • the processing information 203 of the gas separation system 4 is processing performance based on the specifications of the gas separation system 4, and more specifically, the processing speed required for gas separation.
  • the flow velocity of gas in the gas pipeline 1 is calculated from the fluid information in the gas pipeline 1 (S2 in FIG. 2).
  • the gas composition in the gas pipeline 1 and the gas composition and amount (flow rate) required at the consumer's gas utilization base 3 are acquired (S3 in FIG. 2).
  • the return gas amount is determined by calculating the return gas amount returned from the gas separation system 4 based on the gas composition in the gas pipeline 1 and the gas composition and amount required at the consumer's gas usage base 3 ( Figure 2 S4).
  • the flow rate of the return gas is calculated from the return gas amount and the structure (caliber) of the mechanism that returns the gas to the gas pipeline 1 (S5 in FIG. 2).
  • the ratio between the gas flow rate calculated from the fluid information 201 in the gas pipeline 1 and the return gas flow rate is calculated (S6 in FIG. 2).
  • the pipeline management device 5 determines whether return is possible based on the ratio (Vpipe/Vreturn) between the gas flow rate (Vpipe) in the gas pipeline 1 and the return gas flow rate (Vreturn), and outputs it as a return possibility determination result 204.
  • a predetermined range of the flow rate ratio is obtained (S7 in FIG. 2), and if the flow rate ratio (Vpipe/Vreturn) is within the predetermined range of the flow rate ratio, return is possible, and the gas is transferred to the gas pipeline 1. If the gas falls below or exceeds a predetermined range, the gas cannot be returned (S8 in FIG. 2), and the gas flow rate is adjusted by a return flow rate adjustment mechanism 8, which will be described later, and returned to the pipeline 1. do.
  • the pipeline management device 5 uses the flow rate ratio (Vpipe/Vreturn), the denominator and numerator of the ratio are reversed, and the flow rate of the return gas 104 relative to the gas flow rate of the gas pipeline 1 (Vpipe/Vreturn) can also be used. good.
  • momentum ratio and pressure ratio may be used as indicators similar to flow velocity ratio. The specified ranges of the flow velocity ratio, momentum ratio, and pressure ratio are determined in advance by fluid simulation or experiment.
  • the return gas remains in the connecting pipe, resulting in a difference in gas composition from that in the gas pipeline 1, resulting in non-uniform gas concentration within the gas pipeline 1. Therefore, if the flow velocity ratio is larger than the upper limit threshold, it is determined that the product cannot be returned.
  • the flow velocity ratio is smaller than the lower threshold, that is, if the flow velocity of the return gas 104 (Vpipe/Vreturn) is greater than the flow velocity of the gas pipeline 1, a swirling flow may occur in the gas pipeline 1. . This creates a mechanical load on the gas pipeline 1. Therefore, if the flow velocity ratio is smaller than the lower limit threshold, it is determined that the product cannot be returned.
  • the pipeline management device 5 outputs the returnability determination result 204 and inputs it to the gas separation system 4, and in the gas separation system 4, when the returnability determination result 204 is "possible", the gas pipeline 1 is On the other hand, if the return possibility judgment result 204 is "not possible", the gas return is stopped by closing the valve or the operation of the device is stopped, or the flow rate of the return gas is adjusted to return the gas. ing.
  • FIG. 5 shows a second embodiment of the pipeline management system of the present invention.
  • the flow rate of the return gas 104 is adjusted when it is determined that return gas 104 is not possible.
  • this embodiment includes a storage tank 6 connected to the gas separation system 4 described in Embodiment 1, and the return gas 104 from the gas separation system 4 is once transferred to the storage tank. 6 and then returned from the storage tank 6 to the gas pipeline 1.
  • the pipeline flow velocity calculation unit 5A2 of the pipeline management device 5 calculates the flow velocity when returning the return gas 104 to the gas pipeline 1 based on the pressure information of the storage tank 6. , if the flow velocity ratio (Vpipe/Vreturn) is maintained within a predefined range, the gas is returned to the gas pipeline 1.
  • valve 7 installed in the gas pipeline 1 is opened, and the flow from the storage tank 6 to the gas pipeline 1 is opened. Gas is returned and if the flow rate ratio (Vpipe/Vreturn) exceeds the upper limit of the specified range, the valve 7 is closed and the gas is not returned from the storage tank 6 to the gas pipeline 1.
  • valve 7 is opened and gas is returned from the storage tank 6 to the gas pipeline 1. is adjusted to adjust the flow rate of the return gas 104 from the storage tank 6 to the gas pipeline 1.
  • the gas separation system 4 returns the return gas 104 to the gas pipeline 1 via the storage tank 6, but when the flow rate ratio (Vpipe/Vreturn) is within the specified range, the return gas 104 is returned to the gas pipeline 1 through the storage tank 6.
  • the return gas 104 may be directly returned from the gas separation system 4 to the gas pipeline 1 without going through the tank 6.
  • the opening degree of the valve 7 of the storage tank 6 is calculated based on the flow rate of the return gas 104 from the gas separation system 4 so that the ratio of flow velocities falls within the specified range. and set.
  • the target flow rate of the return gas 104 that is the target value of the flow rate ratio (the upper limit of the specified range) is calculated, and the gas flow rate required to obtain the target flow rate of the return gas 104 is calculated from the diameter of the connecting pipe. calculate.
  • the value obtained by subtracting the flow rate of the return gas from the gas separation system 4 from the required gas flow rate is calculated as the supplementary gas flow rate.
  • the opening degree of the valve 7 is adjusted so as to satisfy the supplementary gas flow rate, and the gas is returned from the storage tank 6 at a corresponding flow rate.
  • a check valve may be installed between the storage tank 6 and the gas pipeline 1 to prevent backflow from the gas pipeline 1 to the storage tank 6.
  • Embodiment 3 of the pipeline management system of the present invention is shown in FIGS. 6(a) and 6(b).
  • a pipeline management system 100C of the present embodiment shown in FIGS. 6(a) and 6(b) includes a return flow rate adjustment mechanism 8 installed in the pipeline management system 100A described in Example 1, and this return flow rate adjustment mechanism. 8 is used to adjust the flow rate of the return gas when the pipeline management system 100C determines that return gas is not possible.
  • a return flow rate adjustment mechanism 8 connected to the gas separation system 4 described in Example 1 is provided.
  • this return flow rate adjustment mechanism 8 includes a main connecting pipe 9 connected to the gas separation system 4 through which the return gas 104 flows, and a plurality of branches connected to the main connecting pipe 9. It consists of tubes 10a, 10b, 10c and 10d.
  • the plurality of branch pipes 10a, 10b, 10c and 10d are each provided with on-off valves 11a, 11b, 11c and 11d so that opening and closing can be set individually.
  • the pipeline management system 100C of this embodiment calculates the flow velocity when returning the gas to the gas pipeline 1 from the flow rate of the return gas 104 of the gas separation system 4, and calculates the flow velocity when returning the gas to the gas pipeline 1 so that the ratio of the flow velocity (Vpipe/Vreturn) falls within a specified range.
  • the number of branch pipes 10 to be used is determined.
  • the number M ( M ⁇ N).
  • Qreturn is the flow rate of the return gas 104 returned from the gas separation system 4.
  • pipe diameters D of the branch pipes 10 may be the same or may be different pipe diameters.
  • the number of branch pipes 10 to be used and the number of branch pipes 10 to be used are determined from the cross-sectional area of the branch pipes 10 calculated from the pipe diameter D.
  • FIG. 7 shows a fourth embodiment of the pipeline management system of the present invention.
  • the pipeline management system 100D of this embodiment shown in FIG. 7 uses the return flow rate adjustment mechanism 8 described in the third embodiment to connect the return gas 104 of the gas separation system 4 to the extraction pipe 12 for extracting the gas in the gas pipeline 1.
  • a bypass pipe 13 for mixing is connected.
  • a bypass pipe 13 for mixing with the return gas 104 of the gas separation system 4 is connected to the extraction pipe 12 for extracting the gas in the gas pipeline 1. It is equipped with a return flow rate adjustment mechanism 8.
  • the valve 15 is opened and the pump 14 sends the extracted gas to the return pipe 16.
  • the flow rate of the extracted gas sent from the bypass pipe 13 is adjusted so that the sum of the return gas flow rate (Qreturn) from the gas separation system 4 and the extracted gas flow rate (Qbypass) sent from the bypass pipe 13 satisfies the following equation (2). do.
  • D is the diameter of the return pipe 16. If the flow velocity ratio does not exceed the upper side of the specified range, the valve 15 is closed and only the return gas 104 is returned to the gas pipeline 1.
  • Embodiment 5 of the pipeline management system of the present invention is shown in FIGS. 8(a) and 8(b).
  • the pipeline management system 100E of this embodiment shown in FIGS. 8(a) and 8(b) includes a return position switching mechanism 19 instead of the return flow rate adjustment mechanism 8 of the third embodiment.
  • the gas flow rate in the gas pipeline 1 in this embodiment is determined by using the gas discharge at each demand point connected to the gas pipeline 1 as a driving force. Therefore, depending on the positional relationship of gas extraction at each demand point, a flow may occur in the opposite direction to the expected flow in the gas pipeline 1.
  • a return position switching mechanism 19 is provided.
  • the original gas supply point is connected to the left side of the gas pipeline 1, and the flow of the gas pipeline 1 normally advances from left to right.
  • the gas pipeline 1 of this embodiment includes two branch extraction pipes 17a and 17b, and an extraction pipe 12 (extraction pipe) where the branch extraction pipes 17a and 17b merge.
  • the arrow on the pipe 12 indicates that the extracted gas flows into the mixed gas 103), and the return pipe 16 (the arrow on the return pipe 16 indicates that the return gas 104 flows) are connected.
  • Gas transfer to the gas separation system 4 takes place via the gas separation system 4 .
  • the positional relationship is, from the left (upstream) side in FIG. 8(a), the branch extraction pipe 17a, the return pipe 16, and the branch extraction pipe 17b.
  • the two branch extraction pipes 17a and 17b are switched by switching the pumps 14a and 14b based on the flow rate ratio calculated by the flow rate ratio calculation unit 5A6 of the pipeline management device 5. Decide whether to use one of these to perform gas extraction.
  • the flow velocity of the gas pipeline 1 takes a positive value.
  • the flow velocity in the gas pipeline 1 takes a negative value. Therefore, the flow velocity ratio has a positive value when the flow is in the forward direction (from left to right), and a negative value when the flow is in the reverse direction (from right to left).
  • the return position switching mechanism 19 of this embodiment includes an extraction pipe 12, two branch return pipes 17a and 17b, and a return gas to the branch return pipes 17a and 17b. It may be configured with a return pipe 16 that supplies 104.
  • the branch return pipe 17b located downstream of the extraction pipe 12 is determined from among the branch return pipes 17a and 17b based on the sign of the flow velocity ratio, and the branch return pipe 17a to be used is determined.
  • the return position switching mechanism 19 of this embodiment may also be configured such that two branch return pipes 17a and 17b are prepared and connected to both the extraction pipe 12 and the return pipe 16 via switching valves 18a and 18b, respectively. good.
  • the extracted gas is sent from the branch extraction pipe 17a located on the upstream side of the gas pipeline 1 to the extraction pipe 12 depending on the positive or negative flow rate ratio, and is returned from the return pipe 16 to the branch extraction pipe 17b located on the downstream side.
  • the switching valves 18a and 18b can be controlled by the pipeline management device 5 to send the gas 104.
  • gas can be extracted from the upstream of the gas pipeline 1 and returned from the downstream.
  • the gas 104 can be fed in, and the return gas 104 can be prevented from mixing with the extracted gas.
  • FIG. 9 shows a sixth embodiment of the pipeline management system of the present invention.
  • the pipeline management system 100F of this embodiment shown in FIG. 9 serves as the return flow rate adjustment mechanism 8 of the third embodiment, and is a collection system that combines and returns return gases 104a and 104b from a plurality of gas separation systems 4a and 4b, respectively. It is equipped with a tube 20.
  • the return gases 104a and 104b of the plurality of gas separation systems 4a and 4b are combined in the collecting pipe 20 and returned to the gas pipeline 1.
  • Embodiment 7 of the pipeline management system of the present invention is shown in FIGS. 10 and 11.
  • the pipeline management system 100G of the present embodiment shown in FIG. 10 obtains fluid information 201 in the gas pipeline 1, which is input to the pipeline management system 100A described in the first embodiment, through simulation.
  • FIG. 10 shows a system configuration diagram when the fluid information 201 in the gas pipelines 1a and 1b in the pipeline management system 100G of this embodiment is obtained through simulation, and FIG. A processing flow when calculating fluid information 201 in the gas grid is shown.
  • the fluid information 201a and 201b of the gas pipelines 1a and 1b connected to the gas grid includes the pipeline/gas injection mechanism shape information acquired in advance, the amount of gas extracted at the demand point, the amount returned, and the supply point. Calculate by inputting the gas injection amount at .
  • the amount of gas removed at the demand point, the amount returned, and the amount of gas injected at the supply point can be obtained online at the current time, or if the schedule for several hours ahead is known in advance. may be calculated based on the schedule.
  • the number of hydrogen supply bases 2 and consumer gas usage bases (demand points) 3 connected to the gas grid is acquired (S11), and the previously acquired pipeline/gas injection mechanism shape information is input.
  • Fluid information (gas flow rate) of the target gas pipeline 1 in the current gas grid is calculated (S12).
  • the evaluation time (time t1 to tn, ⁇ t interval) is set (S13).
  • the evaluation time is set from the current time t1 to tn times ahead, and the evaluation interval is set to ⁇ t.
  • the operation schedule of the hydrogen supply base 2 and the consumer's gas usage base (demand point) 3 is acquired (S14).
  • the operation schedule refers to the hydrogen gas injection schedule at the hydrogen supply base 2 and the mixed gas extraction schedule at the demand point during the set evaluation time t1 to tn.
  • the hydrogen gas injection schedule is information such as the amount of hydrogen gas to be injected, the injection pressure, and the injection flow rate with respect to the time.
  • the mixed gas extraction schedule includes the amount of mixed gas to be extracted with respect to time, the extraction flow rate, the usage amount of the mixed gas components at the demand point, and the like.
  • the amount used for each component of the mixed gas at the consumer's gas usage base (demand point) 3 is the amount used for each component (hydrogen gas, natural gas) included in the mixed gas.
  • the total usage amount of the components of the mixed gas at the gas usage base matches the usage amount of the mixed gas.
  • the return gas schedule for the evaluation time period t1 to tn is calculated (S15 and S16).
  • the flow velocity of the target gas pipeline 1a or 1b in the gas grid during the evaluation time t1 to tn is calculated (S17, S18, S19).
  • the calculated flow velocity of the target gas pipeline 1a or 1b is used as fluid information of the gas pipeline 1 used by the pipeline management device 5.
  • the fluid information 201 inside the gas pipeline 1 can be obtained, and the return gas 104 can be returned to the gas grid.
  • the state can be appropriately controlled, deterioration of the gas grid and gas separation system 4 can be prevented, and uneven distribution of gas concentration in the gas grid can be reduced.
  • This embodiment is particularly effective when the gas pipeline 1 is connected to a gas grid over a wide area.
  • the present invention is not limited to the embodiments described above, and includes various modifications.
  • the embodiments described above are described in detail to explain the present invention in an easy-to-understand manner, and the present invention is not necessarily limited to having all the configurations described.
  • it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Pipeline Systems (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

本発明は、ガス分離システム(4)からのガスグリッドへの返送ガスの返送状態を適切に制御し、ガスグリッドとガス分離システムの劣化防止やガスグリッド内のガス濃度の偏在を低減するパイプライン管理システムを得るために、ガスパイプライン(1)に接続され、ガスが充填されている前記ガスパイプラインから前記ガスを抜き出し、前記ガスパイプラインへ前記ガスを返送するガス分離システムと、少なくとも前記ガスパイプラインの流体情報が入力されているパイプライン管理装置(5)とを備え、前記パイプライン管理装置により、前記ガスパイプラインと返送ガス(104)の流速比から前記ガスの前記ガスパイプラインへの返送可否を判断し、前記ガスの流速比が予め規定された範囲内であれば返送可とし、予め規定された範囲を下回るか、或いは予め規定された範囲を超過する場合には返送不可とすることを特徴とする。

Description

パイプライン管理システム及び及びその制御方法
 本発明はパイプライン管理システム及び及びその制御方法に係り、例えば、再生可能エネルギーなどを利用した水の電気分解や天然ガスの改質などにより製造された水素を、パイプラインを利用して水素利用者へ供給する際の水素の供給状況の管理及び制御に好適なパイプライン管理システム及び及びその制御方法に関する。
 環境省において、令和元年に「再エネ電解水素の製造及び水素混合ガスの供給利用実証事業」が開始された。
 本事業では、風力発電の電力を用いて水の電気分解により水素を製造し、この水素と都市ガス相当の模擬ガスとを混合してガス配管によって利用場所に供給する。供給された混合ガスは、給湯器やガスコンロなどでそのまま利用される。
 水素ガスを含む都市ガスを、パイプラインを利用して需要者に供給する先行技術文献として、特許文献1を挙げることができる。
 この特許文献1には、既存の都市ガスパイプライン及び導管ネットワークを利用して、水素燃料設備と既存の都市ガス燃焼機器が並存する場合に、両方の機器を支障なく利用することができる技術として、水素ガスと炭化水素系ガスとを含む混合ガスを、導管ネットワークを介して需要家群に供給する都市ガス供給方法であり、第一の需要家群においては、混合ガス中の水素ガスを分離し、分離された水素ガスを使用すると共に、分離後の水素ガスを導管ネットワークに戻入し、かつ、第二の需要家群においては、混合ガス中の水素ガスを分離し、分離後の水素ガスを使用すると共に、分離された水素ガスを導管ネットワークに戻入することが記載されている。
特開2002-243100号公報
 ところで、混合ガスをガスグリッド(導管ネットワーク)で供給する際には、従来の都市ガスなどの均一成分のガスの供給と異なり、ガス流量や圧力だけでなく、混合ガス中の各成分の濃度を監視し管理する必要があり、加えて、需要家が使用しない分離後のガスをガスグリッドに戻入する際、ガスグリッド内のガスの混合や拡散、流れが変化する。
 従って、ガスグリッドと分離システムの劣化を防ぐためには、ガスの逆流や偏流が生じないようガスの返送状態を制御する必要がある。また、ガスグリッド内の濃度の偏りを防ぐため、返送時の濃度不均一が小さくなるようガスの返送状態を制御することが望まれる。
 しかしながら、上記した特許文献1では、ガスグリッドを介して混合ガスを需要家群に供給する技術は記載されているが、ガスグリッド内へのガスの返送状態を制御する手段については、何も記載されていない。
 ガスグリッドから供給された水素を使用し、不要なガスをガスグリッドへ返送する際は、ガスグリッドと分離機構の劣化やガスグリッド内の濃度の偏りを防ぐため、ガスの返送状態を制御する必要がある。
 本発明は上述の点に鑑みなされたもので、その目的とするところは、ガス分離システムからのガスグリッドへの返送ガスの返送状態を適切に制御し、ガスグリッドとガス分離システムの劣化防止やガスグリッド内のガス濃度の偏在を低減することができるパイプライン管理システム及び及びその制御方法を提供することにある。
 本発明のパイプライン管理システムは、上記目的を達成するために、ガスパイプラインに接続され、ガスが充填されている前記ガスパイプラインから前記ガスを抜き出し、前記ガスパイプラインへ前記ガスを返送するガス分離システムと、少なくとも前記ガスパイプラインの流体情報が入力されているパイプライン管理装置とを備え、前記パイプライン管理装置により、前記ガスパイプラインと返送ガスの流速比から前記ガスの前記ガスパイプラインへの返送可否を判断し、前記ガスの流速比が予め規定された範囲内であれば返送可とし、予め規定された範囲を下回るか、或いは予め規定された範囲を超過する場合には返送不可とすることを特徴とする。
 また、本発明のパイプライン管理システムの制御方法は、上記目的を達成するために、ガスが充填されているガスパイプラインから前記ガスを抜き出し、前記ガスパイプラインへ前記ガスを返送するガス分離システムが前記ガスパイプラインに接続されており、少なくとも前記ガスパイプラインの流体情報が入力されているパイプライン管理装置により、前記ガスパイプラインと返送ガスの流速比から前記ガスの前記ガスパイプラインへの返送可否を判断し、前記ガスの流速比が予め規定された範囲内であれば返送可とし、予め規定された範囲を下回るか、或いは予め規定された範囲を超過する場合には返送不可とすることを特徴とする。
 本発明によれば、ガス分離システムからのガスグリッドへの返送ガスの返送状態を適切に制御し、ガスグリッドとガス分離システムの劣化防止やガスグリッド内のガス濃度の偏在を低減することができる。
本発明のパイプライン管理システムの実施例1の概略構成を示す図である。 本発明のパイプライン管理システムの実施例1における処理フローを示す図である。 本発明のパイプライン管理システムの実施例1を構成するパイプライン管理装置を示す概略構成図である。 図3に示したパイプライン管理装置の判断結果表示部の判断結果を表示する表示部の一例を示す図である。 本発明のパイプライン管理システムの実施例2の概略構成を示す図である。 本発明のパイプライン管理システムの実施例3の概略構成を示す図である。 図6(a)に示した返送流速調整機構の概略構成を示す図である。 本発明のパイプライン管理システムの実施例4として、実施例3で説明した返送流速調整機構の他の例を示す図である。 本発明のパイプライン管理システムの実施例5の概略構成を示す図である。 図8(a)に示した返送位置切替機構の概略構成を示す図である。。 本発明のパイプライン管理システムの実施例6の概略構成を示す図である。 本発明のパイプライン管理システムの実施例7の概略構成を示す図である。 本発明のパイプライン管理システムの実施例7における処理フローを示す図である。
 以下、図示した実施例に基づいて本発明のパイプライン管理システム及び及びその制御方法を説明する。なお、以下に説明する各実施例において、同一の構成部品には同符号を使用し、説明が重複する場合は、その説明を省略する場合がある。また、本発明は、以下に説明する実施例に限定されるものではない。
 図1に、本発明のパイプライン管理システムの実施例1の概略構成を示し、図2に、本発明のパイプライン管理システムの実施例1における処理フローを示す。なお、本実施例では、図1に示す構成の全部を使用しているが、必ずしも全部を使用する必要はなく、一部を使用しても良い。
 本実施例では、パイプライン管理装置5を用いたパイプライン管理システム100Aについて説明する。また、本実施例では、ガスパイプライン1に、水素供給拠点2、需要家のガス利用拠点3が接続されたガスグリッドを対象に、天然ガス102と水素ガス101の混合ガスを供給する例について説明する。
 図1に示すように、本実施例のパイプライン管理システム100Aは、需要家のガス利用拠点3が、ガス分離システム4を介してガスパイプライン1に接続されている。なお、本実施例では、天然ガス102と水素ガス101との混合ガスを想定したが、混合するガスは、密度の異なるガスであれば水素ガスと天然ガスに限定しない。また、混合するガスは、2種類に限定されるものではなく、2種類以上としても良い。
 上述した水素供給拠点2は、ガスパイプライン1に水素ガス101を供給する機能を持つ施設及び設備を備えている。この水素供給拠点2の水素ガス101は、水素供給拠点2で製造されたものでも、他の場所で製造されたものでも良い。
 天然ガス102が充填されているガスパイプライン1に、水素供給拠点2から水素ガス101を注入し、混合ガス103としてガス分離システム4を介して需要家のガス利用拠点3に供給される。
 需要家のガス利用拠点3では、ガスパイプライン1から必要量の水素ガス101と天然ガス102或いは混合ガス103を取り出し、返送ガス104をガスパイプライン1に戻す。ここで、返送ガス104は、ガス利用拠点3で使用しないガスである。例えば、ガス利用拠点3が水素ガス101のみを使用する場合には、天然ガス102のみを返送ガス104としても良いし、天然ガス102と使用する分量以外の水素ガス101を混合して、混合ガス103と異なるガス組成のガスを返送ガス104としてガスパイプライン1に戻しても良い。
 本実施例のパイプライン管理装置5は、図3に示すように、演算部5A、判断部5B及び判断結果表示部5Cにより構成されている。演算部5Aは、ガスパイプライン1内のガス流速を算出するための流体情報取得部5A1及びパイプライン流速算出部5A2と、返送ガス流速を算出するためのガス利用情報取得部5A3と、ガス分離システム情報取得部5A4及び返送ガス流速算出部5A5と、パイプライン流速と返送ガス流速から流速比を算出する流速比算出部5A6とから概略構成されている。
 判断部5Bは、流速比の規定範囲を取得する流速比規定範囲取得部5B1と、流速比を基に返送可否を判断する返送可否判断部5B2とを備えている。判断結果表示部5Cは、返送可否判断部5B2の判断結果を表示する表示部である。表示部の一例を図4に示す。
 図4に示すパイプライン管理システムの例は、図1に示すパイプライン管理システム100Aと略同様な構成だが、需要家のガス利用拠点(需要点)3として第1の需要家のガス利用拠点3aと第2の需要家のガス利用拠点3bを備えている。
 図4に示すように、表示部としては、ガスグリッド上のガスパイプライン1の位置を表示する第1の表示部301と、ガス分離システム4のガスパイプライン1への返送ガス104の流速比を表示する第2の表示部302と、パイプライン管理装置5で得られたガスのガスパイプライン1への返送可否の判断結果、調整後の返送ガス104の流速、調整後の流速比、ガスの使用情報、ガスパイプライン1のガス組成のうち少なくとも1つを表示する第3の表示部303がある。
 次に、本実施例のパイプライン管理システム100Aにおけるガス処理について、図2の処理フローと共に説明する。
 パイプライン管理装置5では、ガスパイプライン1内の流体情報201と、需要家のガス利用拠点3でのガス利用情報202と、ガス分離システム4の処理情報203とを入力として、ガスパイプライン1のガス流速と返送ガス104のガス流速との比を算出する。
 先ず、パイプライン管理装置5では、初めにガスパイプライン1内の流体情報201を取得する(図2のS1)。ここで、ガスパイプライン1内の流体情報201とは、ガスパイプライン1内の任意の点の流速、流量、圧力、組成である。任意の点は、1つでも良いし、複数でも良い。
 ガスパイプライン1内の流体情報201は、圧力計や流量計などのセンサにより直接計測しても良いし、ソフトセンサで算出しても良い。ソフトセンサとしては、例えば、ガスグリッド内の任意の2点での圧力の差分から流速や流量を算出すること、或いはガスグリッドに接続されているすべてのガス利用拠点でのガス使用量から流速や流量を算出すること、などが該当する。
 需要家のガス利用拠点3でのガス利用情報202とは、需要家のガス利用拠点3のガス使用量である。ガス使用量は、1時間毎など定期的に情報を取得しても良いし、今後の使用予定量を情報として取得しても良い。
 ガス分離システム4の処理情報203とは、ガス分離システム4の仕様に基づく処理性能であり、より具体的にはガスの分離に要する処理速度である。
 次に、ガスパイプライン1内の流体情報からガスパイプライン1内のガスの流速を算出する(図2のS2)。
 次に、ガス分離システム4の処理情報203からガスパイプライン1内のガス組成及び需要家のガス利用拠点3で要求されるガス組成と量(流量)を取得する(図2のS3)。
ガスパイプライン1内のガス組成、需要家のガス利用拠点3で要求されるガス組成と量を基に、ガス分離システム4から返送される返送ガス量を算出して返送ガス量が定まる(図2のS4)。
 返送ガス量と、ガスパイプライン1へガスを返送する機構の構造(口径)とから返送ガスの流速を算出する(図2のS5)。ガスパイプライン1内の流体情報201から算出したガス流速と、返送ガス流速との比を算出する(図2のS6)。
 また、パイプライン管理装置5では、ガスパイプライン1内のガス流速(Vpipe)と返送ガス流速(Vreturn)との比(Vpipe/Vreturn)から返送可否を判定し、返送可否判断結果204として出力する。
 予め定められた流速比の規定範囲を取得し(図2のS7)、流速の比(Vpipe/Vreturn)が予め定められた流速比の規定範囲内であれば返送可とし、ガスをガスパイプライン1に返送し、予め定められた規定の範囲を下回るか、或いは超過する場合には返送不可とし(図2のS8)、後述する返送流速調整機構8でガス流速を調整してパイプライン1に返送する。
 また、パイプライン管理装置5では、流速の比(Vpipe/Vreturn)を使用するが、比の分母と分子を逆転させ、ガスパイプライン1のガス流速に対する返送ガス104の流速(Vpipe/Vreturn)としても良い。また、流速比に準ずる指標として、運動量比、圧力比を指標としても良い。流速の比又は運動量比、圧力比の規定範囲は、予め流体シミュレーション又は実験により定めておく。
 流速比が上限閾値よりも大きい場合、つまり、ガスパイプライン1の流速に対して返送ガス104の流速(Vpipe/Vreturn)が小さい場合には、ガスパイプライン1とガス分離システム4をつなぐ接続管内に、ガスパイプライン1内のガスが逆流する可能性がある。これにより、接続管内に渦流が発生し、劣化が早まる懸念がある。
 また、接続管内に返送ガスが滞留してガスパイプライン1内のガス組成と差異が生じ、ガスパイプライン1内にガス濃度の不均一が発生する。そのため、流速比が上限閾値よりも大きい場合には、返送不可と判断する。
 流速比が下限閾値よりも小さい場合、つまり、ガスパイプライン1の流速に対して返送ガス104の流速(Vpipe/Vreturn)が大きい場合には、ガスパイプライン1中に旋回流が発生する可能性がある。これにより、ガスパイプライン1に力学的な負荷が生じる。そのため、流速比が下限閾値よりも小さい場合には、返送不可と判断する。
 また、パイプライン管理装置5では、返送可否判断結果204を出力してガス分離システム4に入力し、ガス分離システム4では、返送可否判断結果204が「可」の場合には、ガスパイプライン1にガスを返送し、一方、返送可否判断結果204が「不可」の場合には、バルブを閉めたり装置の運転を止めることにより、ガス返送を中止或いは返送ガスの流速を調整して返送するようにしている。
 このような本実施例によれば、ガス分離システム4からのガスグリッドへの返送ガスの返送状態を適切に制御でき、ガスグリッドとガス分離システム4の劣化防止、ガスグリッド内のガス濃度の偏在を低減することができる。
 図5に、本発明のパイプライン管理システムの実施例2を示す。
 図5に示す本実施例のパイプライン管理システム100Bは、実施例1に記載のパイプライン管理システム100Aに貯留タンク6を新たに設け、この貯留タンク6を用いて、パイプライン管理システム100Bにおいての返送「不可」と判断した場合に、返送ガス104の流速を調整するようにしたものである。
 即ち、本実施例では、図5に示すように、実施例1に記載のガス分離システム4に接続された貯留タンク6を備えており、ガス分離システム4からの返送ガス104は、一度貯留タンク6に保持され、その後、貯留タンク6からガスパイプライン1へ返送されることになる。
 本実施例のパイプライン管理システム100Bは、貯留タンク6の圧力情報に基づいてパイプライン管理装置5のパイプライン流速算出部5A2で、ガスパイプライン1へ返送ガス104を返送する際の流速を算出し、流速の比(Vpipe/Vreturn)が予め規定された範囲内に保たれる場合は、ガスパイプライン1へのガス返送を行う。
 具体的には、流速の比(Vpipe/Vreturn)が予め規定された範囲内に保たれる場合にはガスパイプライン1に設置されている弁7を開とし、貯留タンク6からガスパイプライン1へのガス返送を行い、流速の比(Vpipe/Vreturn)が規定範囲の上限値を超過する場合には弁7を閉とし、貯留タンク6からガスパイプライン1へのガス返送は行わない。
 また、流速の比(Vpipe/Vreturn)が規定範囲の下限値を下回る場合には弁7を開とし、貯留タンク6からガスパイプライン1へのガス返送を行うが、その際、弁7の開度を調整して貯留タンク6からガスパイプライン1への返送ガス104の流速を調整している。
 また、図5では、ガス分離システム4は、返送ガス104を、貯留タンク6を介してガスパイプライン1へ返送しているが、流速の比(Vpipe/Vreturn)が規定範囲内の時は、貯留タンク6を介さず直接ガス分離システム4からガスパイプライン1へ返送ガス104を返送しても良い。
 また、流速の比(Vpipe/Vreturn)が規定範囲の上限値を超過する場合には、ガス分離システム4からの返送ガス104と貯留タンク6内の返送ガスを混合してガスパイプライン1へ返送しても良い。
 その場合、本実施例のパイプライン管理システム100Bでは、流速の比が規定範囲となるよう、ガス分離システム4からの返送ガス104の流量を基に、貯留タンク6の弁7の開度を算出し設定する。
 具体的には、流速の比の目標値(規定範囲の上限値)となる返送ガス104の目標流速を算出し、返送ガス104の目標流速を得るために必要なガス流量を接続管の口径から算出する。必要なガス流量からの、ガス分離システム4からの返送ガスの流量を差し引いた値を、補填ガス流量として算出する。補填ガス流量を満たすように、弁7の開度を調整して貯留タンク6から相当分の流量でガスを返送する。
 なお、貯留タンク6からガスパイプライン1の間に逆止弁を設置し、ガスパイプライン1から貯留タンク6への逆流を防止しても良い。
 このような本実施例によれば、ガス分離システム4からのガスグリッドへの返送ガス104の返送状態を適切に制御でき、ガスグリッドとガス分離システム4の劣化防止、ガスグリッド内のガス濃度の偏在を低減することができる。
 図6(a)及び図6(b)に、本発明のパイプライン管理システムの実施例3を示す。
 図6(a)及び図6(b)に示す本実施例のパイプライン管理システム100Cは、実施例1に記載のパイプライン管理システム100Aに返送流速調整機構8を設置し、この返送流速調整機構8を用いて、パイプライン管理システム100Cにおいて返送「不可」と判断した場合に、返送ガスの流速を調整するようにしたものである。
 本実施例では、図6(a)に示すように、実施例1に記載のガス分離システム4に接続した返送流速調整機構8を備えている。
 この返送流速調整機構8は、図6(b)に示すように、ガス分離システム4に接続された返送ガス104が流れている主接続管9と、主接続管9に接続された複数の分岐管10a、10b、10c及び10dから成る。複数の分岐管10a、10b、10c及び10dは、それぞれ個別に開閉を設定できるように開閉弁11a、11b、11c及び11dを備えている。
 本実施例のパイプライン管理システム100Cは、ガス分離システム4の返送ガス104の流量からガスパイプライン1へ返送する際の流速を算出し、流速の比(Vpipe/Vreturn)が規定範囲となるように使用する分岐管10の本数を決定する。
 例えば、ガス流速の比の規定範囲r1~r2に対して、管径Dの分岐管10をN本備える調整機構に対し、以下の(1)式を満たすよう使用する分岐管10の本数M(M≦N)を設定する。ここで、Qreturnは、ガス分離システム4から返送される返送ガス104の流量である。
Figure JPOXMLDOC01-appb-M000001
 なお、分岐管10の管径Dは、同一としても良いし、異なる管径としても良い。異なる管径の場合は、使用する分岐管10の本数と、管径Dから算出される分岐管10の断面積から使用する分岐管10と本数を決定する。
 このような本実施例によれば、ガス分離システム4からのガスグリッドへの返送ガス104の返送状態を適切に制御でき、ガスグリッドとガス分離システム4の劣化防止、ガスグリッド内のガス濃度の偏在を低減することができる。
 図7に、本発明のパイプライン管理システムの実施例4を示す。
 図7に示す本実施例のパイプライン管理システム100Dは、実施例3に記載の返送流速調整機構8として、ガスパイプライン1内のガスを抜き出す抜出管12にガス分離システム4の返送ガス104と混和するためのバイパス管13が接続されているものである。
 本実施例のパイプライン管理システム100Dでは、図7に示すように、ガスパイプライン1内のガスを抜き出す抜出管12に、ガス分離システム4の返送ガス104と混和するためのバイパス管13が接続されている返送流速調整機構8を備えている。
 そして、ガス流速の比(Vpipe/Vreturn)が規定範囲の上側値を超過する場合には、抜出管12に接続されたバイパス管13を介して抜出ガスの一部を返送管16に合流させる。
 本実施例のパイプライン管理システム100Dでは、弁15を開としポンプ14により抜出ガスを返送管16に送る。ガス分離システム4からの返送ガス流量(Qreturn)とバイパス管13から送る抜出ガス流量(Qbypass)の合計が以下の(2)式を満たすよう、バイパス管13から送る抜出ガスの流量を調整する。
Figure JPOXMLDOC01-appb-M000002
 ここで、Dは返送管16の管径である。流速の比が規定範囲の上側を超過していない場合は、弁15を閉とし返送ガス104のみをガスパイプライン1に返送する。
 このような本実施例によれば、ガス分離システム4からのガスグリッドへの返送ガス104の返送状態を適切に制御でき、ガスグリッドとガス分離システム4の劣化防止、ガスグリッド内のガス濃度の偏在を低減することができる。
 図8(a)及び図8(b)に、本発明のパイプライン管理システムの実施例5を示す。
 図8(a)及び図8(b)に示す本実施例のパイプライン管理システム100Eは、実施例3の返送流速調整機構8の代わりに、返送位置切替機構19を備えているものである。
 本実施例でのガスパイプライン1内のガス流速は、ガスパイプライン1に接続された各需要点でのガス抜出をドライビングフォースとして決定される。そのため、各需要点でのガス抜出の位置関係によっては、想定していたガスパイプライン1の流れと逆の向きに流れが生じることがある。
 本実施例では、図8(a)及び図8(b)に示すように、返送位置切替機構19を備えている。なお、本実施例では、大元のガス供給点は、ガスパイプライン1の左側に繋がっており、通常のガスパイプライン1の流れが左から右に進む場合について説明する。
 本実施例のガスパイプライン1には、図8(a)に示すように、2本の分岐抜出管17a及び17bと、この分岐抜出管17a及び17bが合流する抜出管12(抜出管12の矢印は、抜出したガスが混合ガス103に流れることを示す)、返送管16(返送管16の矢印は、返送ガス104が流れてくることを示す)が接続されており、これらを介してガス分離システム4へのガス移動が行われる。位置関係は、図8(a)の左(上流)側から分岐抜出管17a、返送管16、分岐抜出管17bとなる。
 本実施例の返送位置切替機構19では、パイプライン管理装置5の流速比算出部5A6で算出した流速比を基に、ポンプ14a及び14bを切り替えることで、2本の分岐抜出管17a及び17bのうちのいずれかを用いてガス抜出を行うか決定する。
 通常のガスパイプライン1の流れ方向(左から右)に沿ってガスが流れている場合、ガスパイプライン1の流速は正の値をとる。一方、ガスの流れが逆転している場合(右から左)は、ガスパイプライン1の流速は負の値となる。そのため、流速比は、流れが順方向(左から右)の場合は正、逆方向(右から左)の場合は負の値となる。
 本実施例のパイプライン管理システム100Eでは、流速比が正の場合は、図8(a)に示すように、ガスパイプライン1の上流側からガスを抜き出し、ガスパイプライン1の下流側にガスを返送するため、分岐抜出管17aを用いてガスパイプライン1からガスを抜き出すようポンプ14aに指令を送る。
 一方、流速比が負の場合は、分岐抜出管17bが返送管16の上流に位置するため、ポンプ14bに指令を送り、分岐抜出管17bを用いてガスパイプライン1からガスを抜き出す。上述のように、常にガスパイプライン1の上流側でガスを抜き出し、下流側でガスを返送するよう切替制御を行う。
 位置関係が逆、即ち、上流側にガスを返送し、下流側でガスを抜き出すと返送ガス104が抜出ガスに混入する懸念がある。
 しかし、本実施例の返送位置切替機構19では、常に上流側からガスを抜き出すことで、返送ガス104が抜出ガスに混入し、抜出ガスの濃度が不安定となることを防ぐことができる。
 また、本実施例の返送位置切替機構19は、図8(b)に示すように、抜出管12と、2本の分岐返送管17a及び17bと、この分岐返送管17a及び17bに返送ガス104を供給する返送管16との構成にしても良い。この場合には、流速比の正負から分岐返送管17a及び17bのうち、抜出管12の下流に位置する分岐返送管17bを判別し、使用する分岐返送管17aを決定する。
 また、本実施例の返送位置切替機構19は、2本の分岐返送管17a及び17bを用意し、それぞれ切替弁18a及び18bを介して抜出管12と返送管16の両方に繋ぐ構成としても良い。
 これにより、流速比の正負からガスパイプライン1の上流側に位置する分岐抜出管17aから抜出管12へ抜出ガスを送り、下流側に位置する分岐抜出管17bへ返送管16から返送ガス104を送るように、パイプライン管理装置5で切替弁18a及び18bを制御できる。
 このような本実施例によれば、実施例3と同様な効果が得られることは勿論、ガスグリッド内の流れ方向が逆転した場合にも、ガスパイプライン1の上流からガスを抜き出し、下流から返送ガス104を送り込むことができ、返送ガス104が抜出ガスに混和することを防止できる。
 図9に、本発明のパイプライン管理システムの実施例6を示す。
 図9に示す本実施例のパイプライン管理システム100Fは、実施例3の返送流速調整機構8として、複数のガス分離システム4a及び4bのそれぞれからの返送ガス104a及び104bを合流させて返送する集合管20を備えているものである。
 本実施例のパイプライン管理システム100Fでは、図9に示すように、複数のガス分離システム4a及び4bの返送ガス104a及び104bを集合管20で合流させてガスパイプライン1に返送している。
 なお、図9では、2台のガス分離システム4a及び4bの返送ガス104a及び104bを合流させているが、台数は2台に限らない。
 このような本実施例によれば、実施例3と同様な効果が得られることは勿論、ガス分離システム4a及び4bでの処理量が少なく、返送ガス104a及び104bの流量が不十分な場合にも、適切に返送ガスをガスパイプライン1に返送することができる。
 図10及び図11に、本発明のパイプライン管理システムの実施例7を示す。
 図10に示す本実施例のパイプライン管理システム100Gは、実施例1に記載のパイプライン管理システム100Aに入力するガスパイプライン1内の流体情報201を、シミュレーションにより入手ものである。
 図10に、本実施例のパイプライン管理システム100Gにおけるガスパイプライン1a及び1b内の流体情報201を、シミュレーションにより入手する場合のシステム構成図を示し、図11に、評価時間t1~tnの間のガスグリッド内の流体情報201を算出する場合の処理フローを示す。
 本実施例では、ガスグリッドに接続されたガスパイプライン1a及び1bの流体情報201a及び201bは、予め取得した管路・ガス注入機構形状情報と需要点でのガス抜出量、返送量、供給点でのガス注入量を入力として算出する。ここで、需要点でのガス抜出量、返送量、供給点でのガス注入量は、オンラインで現時刻の情報を取得しても良いし、予め数時刻先の予定が判明している場合には予定に基づき算出しても良い。
 本実施例のパイプライン管理システム100Gにおけるガス処理について、図11の処理フローを用いて説明する。
 先ず、ガスグリッド内に接続されている水素供給拠点2及び需要家のガス利用拠点(需要点)3の数を取得し(S11)、予め取得した管路・ガス注入機構形状情報を入力として、現在のガスグリッド内の対象のガスパイプライン1の流体情報(ガス流量)を計算する(S12)。
 次に、評価時間(時刻t1~tn、Δt間隔)を設定する(S13)。本実施例では、評価時間は現在時刻t1からtn時刻先までとし、評価間隔はΔtと設定した場合について説明する。
 次に、水素供給拠点2及び需要家のガス利用拠点(需要点)3の運転予定を取得する(S14)。ここで、運転予定とは、設定した評価時間t1~tnの間の水素供給拠点2における水素ガスの注入予定、需要点における混合ガスの抜出予定である。
 水素ガスの注入予定とは、時刻に対する水素ガスの注入量、注入圧力、注入流量などの情報である。混合ガスの抜出予定とは、時刻に対する混合ガスの抜出量、抜出流量、需要点での混合ガスの成分に対する使用量などである。需要家のガス利用拠点(需要点)3での混合ガスの成分に対する使用量とは、混合ガス中に含まれる成分(水素ガス、天然ガス)毎の使用量である。需要家のガス利用拠点(需要点)3において、混合ガスをそのまま使用する場合には、ガス利用拠点での混合ガスの成分に対する使用量の合計は、混合ガスの使用量と一致する。
 一方、需要家のガス利用拠点(需要点)3で特定の成分のみ使用する場合には、使用しない成分をガスパイプライン1に返送ガス104として返送するため、混合ガスの成分に対する使用量の合計は、混合ガスの使用量から返送ガス量を差し引いた値と一致する。混合ガスの抜出予定と、予め取得した管路・ガス注入機構形状情報を入力として、評価時間t1~tn間の返送ガスの予定を算出する(S15及びS16)。
 次に、現時刻のガスグリッド内の流体情報と、評価時間t1~tnの間の水素ガスの注入予定、混合ガスの抜出予定、返送ガスの返送予定と、予め取得した管路情報を入力として、評価時間t1~tnの間のガスグリッド内の対象ガスパイプライン1a又は1bの流速を計算する(S17、S18、S19)。算出した対象ガスパイプライン1a又は1bの流速を、パイプライン管理装置5で用いるガスパイプライン1の流体情報として使用する。
 このような本実施例によれば、ガスパイプライン1内の流体情報201の計測が困難な場合であっても、ガスパイプライン1内の流体情報201を取得でき、ガスグリッドへの返送ガス104の返送状態を適切に制御でき、ガスグリッドとガス分離システム4の劣化防止、ガスグリッド内のガス濃度の偏在を低減することができる。
 本実施例は、特に、ガスパイプライン1が広域にわたるガスグリッドに接続されている場合に有効である。
 なお、本発明は上述した実施例に限定されるものではなく、様々な変形例が含まれる。
例えば、上述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明したすべての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換える事が可能であり、また、ある実施例の構成に他の実施例の構成を加える事も可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をする事が可能である。
 1、1a、1b…ガスパイプライン、2…水素供給拠点、3…需要家のガス利用拠点(需要点)、3a…第1の需要家のガス利用拠点、3b…第2の需要家のガス利用拠点、4、4a、4b…ガス分離システム、5…パイプライン管理装置、5A…演算部、5A1…流体情報取得部、5A2…パイプライン流速算出部、5A3…ガス利用情報取得部、5A4…ガス分離システム情報取得部、5A5…返送ガス流速算出部、5A6…流速比算出部、5B…判断部、5B1…流速比規定範囲取得部、5B2…返送可否判断部、5C…判断結果表示部、6…貯留タンク、7、15…弁、8…返送流速調整機構、9…主接続管、10、10a、10b、10c、10d…分岐管、11a、11b、11c、11d…開閉弁、12…抜出管、13…バイパス管、14、14a、14b…ポンプ、16…返送管、17a、17b…分岐抜出管、18a、18b…切替弁、19…返送位置切替機構、20…集合管、100A、100B,100C、100D、100E、100F、100G…パイプライン管理システム、101…水素ガス、102…天然ガス、103…混合ガス、104、104a、104b……返送ガス、201、201a、201b…ガスパイプライン内の流体情報、202…需要家のガス利用拠点でのガス利用情報、203…ガス分離システムの処理情報、204…返送可否判断結果、301…第1の表示部、302…第2の表示部、303…第3の表示部。

Claims (20)

  1.  ガスが充填されているガスパイプラインから前記ガスを抜き出し、前記ガスパイプラインへ前記ガスを返送するガス分離システムが前記ガスパイプラインに接続されており、少なくとも前記ガスパイプラインの流体情報が入力されているパイプライン管理装置により、前記ガスパイプラインと返送ガスの流速比から前記ガスの前記ガスパイプラインへの返送可否を判断し、前記ガスの流速比が予め規定された範囲内であれば返送可とし、予め規定された範囲を下回るか、或いは予め規定された範囲を超過する場合には返送不可とすることを特徴とするパイプライン管理システムの制御方法。
  2.  請求項1に記載のパイプライン管理システムの制御方法であって、
     前記パイプライン管理装置では、前記ガスパイプラインと返送ガスの流速比から前記ガスの前記ガスパイプラインへの返送可否を判断し、前記ガスの流速比が予め規定された範囲内となるように前記返送ガスの流速を制御することを特徴とするパイプライン管理システムの制御方法。
  3.  請求項2に記載のパイプライン管理システムの制御方法であって、
     前記パイプライン管理装置では、前記ガスパイプライン内の流体情報と、需要家のガス利用拠点でのガス利用情報と、前記ガス分離システムの処理情報とを入力として、前記ガスパイプラインのガス流速と前記返送ガスのガス流速との比を算出することを特徴とするパイプライン管理システムの制御方法。
  4.  請求項3に記載のパイプライン管理システムの制御方法であって、
     前記ガスパイプライン内の前記流体情報とは、前記ガスパイプライン内の任意の点の流速、流量、圧力、組成であり、
     前記需要家の前記ガス利用拠点での前記ガス利用情報とは、前記ガス利用拠点のガス使用量であり、
     前記ガス分離システムの前記処理情報とは、前記ガス分離システムの仕様に基づく処理性能であることを特徴とするパイプライン管理システムの制御方法。
  5.  請求項3又は4に記載のパイプライン管理システムの制御方法であって、
     前記ガスパイプライン内の流体情報を、センサ、ソフトセンサ、ガスグリッドを対象としたシミュレーションのいずれか、又はそれらを組み合わせて取得することを特徴とするパイプライン管理システムの制御方法。
  6.  請求項3に記載のパイプライン管理システムの制御方法であって、
     前記パイプライン管理装置では、
     前記ガスパイプライン内の前記流体情報を取得する工程(S1)と、
     前記ガスパイプライン内の流体情報から前記ガスパイプライン内のガスの流速を算出する工程(S2)と、
     前記ガス分離システムの処理情報から前記ガスパイプライン内のガス組成及び前記需要家のガス利用拠点で要求されるガス組成と量(流量)を取得する工程(S3)と、
     前記ガスパイプライン内のガス組成、前記需要家のガス利用拠点で要求されるガス組成と量を基に、前記ガス分離システムから返送される返送ガス量を算出して返送ガス量を決める工程(S4)と、
     前記返送ガス量と、前記ガスパイプラインへガスを返送する機構の構造とから前記返送ガスの流速を算出する工程(S5)と、
     前記ガスパイプライン内の前記流体情報から算出したガス流速と返送ガス流速との比を算出する工程(S6)と、
     予め定められた前記ガスの流速比の規定範囲を取得する工程(S7)と、
     前記ガスパイプライン内のガス流速(Vpipe)と返送ガス流速(Vreturn)との比(Vpipe/Vreturn)が予め規定された範囲内であれば返送可とし、予め規定された範囲を下回るか、或いは超過する場合には返送不可とする工程(S8)とを、実行することを特徴とするパイプライン管理システムの制御方法。
  7.  請求項2に記載のパイプライン管理システムの制御方法であって、
     前記ガスパイプラインと前記ガス分離システムの両方に接続された貯留設備へのガスの貯留と排出を制御することで、前記ガスパイプラインへの前記返送ガスの流速を制御することを特徴とするパイプライン管理システムの制御方法。
  8.  請求項2に記載のパイプライン管理システムの制御方法であって、
     前記ガス分離システムに接続された主接続管と、該主接続管に接続された複数の分岐管とから成る返送流速調整機構の前記分岐管の使用本数を変更することで、前記ガスパイプラインへの前記返送ガスの流速を制御することを特徴とするパイプライン管理システムの制御方法。
  9.  請求項2に記載のパイプライン管理システムの制御方法であって、
     前記ガスパイプライン内のガスを抜き出す抜出管に、前記ガス分離システムの前記返送ガスと混和するためのバイパス管が接続されている返送流速調整機構により、前記バイパス管のガス流量を調整し、前記ガスパイプラインへの前記返送ガスの流速を制御することを特徴とするパイプライン管理システムの制御方法。
  10.  請求項1に記載のパイプライン管理システムの制御方法であって、
     前記ガスパイプラインに接続された2本の分岐抜出管と、2本の前記分岐抜出管が合流する抜出管と、前記返送ガスが流れてくる返送管とから成り、前記抜出管と前記返送管の位置関係を変更可能な返送位置切替機構により、前記ガスの流れ方向に対して上流側に前記抜出管、下流側に前記返送管が位置するよう切替制御することを特徴とするパイプライン管理システムの制御方法。
  11.  ガスパイプラインに接続され、ガスが充填されている前記ガスパイプラインから前記ガスを抜き出し、前記ガスパイプラインへ前記ガスを返送するガス分離システムと、少なくとも前記ガスパイプラインの流体情報が入力されているパイプライン管理装置とを備え、 前記パイプライン管理装置により、前記ガスパイプラインと返送ガスの流速比から前記ガスの前記ガスパイプラインへの返送可否を判断し、前記ガスの流速比が予め規定された範囲内であれば返送可とし、予め規定された範囲を下回るか、或いは予め規定された範囲を超過する場合には返送不可とすることを特徴とするパイプライン管理システム。
  12.  請求項11に記載のパイプライン管理システムであって、
     前記パイプライン管理装置は、前記ガスパイプラインと返送ガスの流速比から前記ガスの前記ガスパイプラインへの返送可否を判断し、前記ガスの流速比が予め規定された範囲内となるように前記返送ガスの流速を制御することを特徴とするパイプライン管理システム。
  13.  請求項12に記載のパイプライン管理システムであって、
     前記パイプライン管理装置は、演算部と判断部及び判断結果表示部を備え、
     前記演算部は、前記ガスパイプライン内のガス流速を算出するための流体情報取得部及びパイプライン流速算出部と、前記返送ガスの流速を算出するためのガス利用情報取得部と、ガス分離システム情報取得部及び返送ガス流速算出部と、前記ガスパイプライン内のガス流速と前記返送ガスの流速から流速比を算出する流速比算出部とから成り、
     前記判断部は、流速比の規定範囲を取得する流速比規定範囲取得部と、流速比を基に返送可否を判断する返送可否判断部とから成り、
     前記判断結果表示部は、前記返送可否判断部の判断結果を表示する表示部であることを特徴とするパイプライン管理システム。
  14.  請求項13に記載のパイプライン管理システムであって、
     前記返送可否判断部の表示部は、
     ガスグリッド上の前記ガスパイプラインの位置を表示する第1の表示部と、
     前記ガス分離システムの前記ガスパイプラインへの前記返送ガスの流速比を表示する第2の表示部と、
     前記パイプライン管理装置で得られたガスの前記ガスパイプラインへの返送可否の判断結果、調整後の前記返送ガスの流速、調整後の流速比、ガスの使用情報、前記ガスパイプラインのガス組成のうち少なくとも1つを表示する第3の表示部であることを特徴とするパイプライン管理システム。
  15.  請求項12に記載のパイプライン管理システムであって、
     前記ガスパイプラインと前記ガス分離システムの両方に接続された貯留設備を備え、
     前記貯留設備へのガス貯留と排出を制御することで、前記ガスパイプラインへの前記返送ガスの流速を制御することを特徴とするパイプライン管理システム。
  16.  請求項12に記載のパイプライン管理システムであって、
     前記ガス分離システムに接続された主接続管と、該主接続管に接続された複数の分岐管とからなる返送流速調整機構を備え、
     前記返送流速調整機構の前記分岐管の使用本数を変更することで、前記ガスパイプラインへの前記返送ガスの流速を制御することを特徴とするパイプライン管理システム。
  17.  請求項12に記載のパイプライン管理システムであって、
     前記ガスパイプライン内のガスを抜き出す抜出管に、前記ガス分離システムの前記返送ガスと混和するためのバイパス管が接続されている返送流速調整機構を備え、
     前記バイパス管のガス流量を調整し、前記ガスパイプラインへの前記返送ガスの流速を制御することを特徴とするパイプライン管理システム。
  18.  請求項12に記載のパイプライン管理システムであって、
     前記ガスパイプラインに接続された2本の分岐抜出管と、2本の前記分岐抜出管が合流する抜出管と、前記返送ガスが流れてくる返送管とから成り、前記抜出管と前記返送管の位置関係を変更可能な返送位置切替機構を備え、
     前記返送位置切替機構により、前記ガスの流れ方向に対して上流側に前記抜出管、下流側に前記返送管が位置するよう切替制御することを特徴とするパイプライン管理システム。
  19.  請求項12に記載のパイプライン管理システムであって、
     前記ガスパイプラインに接続された2本の分岐抜出管と、2本の前記分岐抜出管が合流する抜出管と、前記返送ガスが流れてくる返送管とから成り、前記抜出管と前記返送管の位置関係を変更可能な返送位置切替機構を備え、
     前記返送位置切替機構により、前記ガスの流れ方向に対して上流側に前記抜出管、下流側に前記返送管が位置するよう切替制御することを特徴とするパイプライン管理システム。
  20.  請求項11乃至14のいずれか1項に記載のパイプライン管理システムであって、
     前記ガス分離システムに接続された主接続管と、該主接続管に接続された複数の分岐管とからなる返送流速調整機構を備え、
     前記返送流速調整機構は、複数のガス分離システムのそれぞれからの返送ガスを合流させて返送する集合管を備えていることを特徴とするパイプライン管理システム。
PCT/JP2022/047612 2022-03-23 2022-12-23 パイプライン管理システム及び及びその制御方法 WO2023181560A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-046822 2022-03-23
JP2022046822A JP2023140800A (ja) 2022-03-23 2022-03-23 パイプライン管理システム及び及びその制御方法

Publications (1)

Publication Number Publication Date
WO2023181560A1 true WO2023181560A1 (ja) 2023-09-28

Family

ID=88100472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047612 WO2023181560A1 (ja) 2022-03-23 2022-12-23 パイプライン管理システム及び及びその制御方法

Country Status (2)

Country Link
JP (1) JP2023140800A (ja)
WO (1) WO2023181560A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002213695A (ja) * 2001-01-19 2002-07-31 Tokyo Gas Co Ltd 都市ガス供給方法及び装置
JP2016035254A (ja) * 2014-08-04 2016-03-17 東京ガス・エンジニアリング株式会社 ガスパイプラインにおける減圧エネルギー回収装置
WO2020044424A1 (ja) * 2018-08-28 2020-03-05 東芝エネルギーシステムズ株式会社 水素配送計画装置および水素配送計画方法
JP2020047495A (ja) * 2018-09-20 2020-03-26 トヨタ自動車株式会社 コミュニティシステム
JP2020060847A (ja) * 2018-10-05 2020-04-16 トヨタ自動車株式会社 水素需給マッチングシステム
CN111992071A (zh) * 2020-08-13 2020-11-27 山西铭石煤层气利用股份有限公司 一种氢能源利用燃气掺混系统及氢气和天然气配比控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002213695A (ja) * 2001-01-19 2002-07-31 Tokyo Gas Co Ltd 都市ガス供給方法及び装置
JP2016035254A (ja) * 2014-08-04 2016-03-17 東京ガス・エンジニアリング株式会社 ガスパイプラインにおける減圧エネルギー回収装置
WO2020044424A1 (ja) * 2018-08-28 2020-03-05 東芝エネルギーシステムズ株式会社 水素配送計画装置および水素配送計画方法
JP2020047495A (ja) * 2018-09-20 2020-03-26 トヨタ自動車株式会社 コミュニティシステム
JP2020060847A (ja) * 2018-10-05 2020-04-16 トヨタ自動車株式会社 水素需給マッチングシステム
CN111992071A (zh) * 2020-08-13 2020-11-27 山西铭石煤层气利用股份有限公司 一种氢能源利用燃气掺混系统及氢气和天然气配比控制方法

Also Published As

Publication number Publication date
JP2023140800A (ja) 2023-10-05

Similar Documents

Publication Publication Date Title
KR101544963B1 (ko) 상수도관용 수차발전기 제어 시스템
Zhou et al. Future scenario of China’s downstream oil supply chain: Low carbon-oriented optimization for the design of planned multi-product pipelines
JP5564043B2 (ja) 複数のガス流間のガス流量を制御する方法
CN111396982B (zh) 一种热力耦合水力的热网平衡调节方法及供热系统
CN107730129A (zh) 考虑光热热电联产与电锅炉的电‑气‑热互联系统风险评估方法
CN109510196A (zh) 一种基于电-气耦合系统的故障恢复博弈模型
CN113032935A (zh) 一种大型并联天然气管网优化运行模型及求解方法
Wu et al. A two-stage rolling optimization strategy for park-level integrated energy system considering multi-energy flexibility
WO2023181560A1 (ja) パイプライン管理システム及び及びその制御方法
CN203240278U (zh) 一种lng接收站外输天然气热值调高系统
Cascio et al. Flexible energy harvesting from natural gas distribution networks through line-bagging
Lejano Optimizing the layout and design of branched pipeline water distribution systems
CN218819665U (zh) 一种中低压掺氢的多级压力天然气管道掺氢实验系统
CN216431267U (zh) 天然气掺氢系统
WO2022230123A1 (ja) 水素需給システムおよび水素需給方法
CN110880786B (zh) 一种消纳大规模风电的电-气互联系统鲁棒区间调度方法
Sandou et al. Global modelling and simulation of a district heating network
US20140013757A1 (en) Solar Thermal Gas Turbine System
Vieira et al. Optimization of the energy management in water supply systems
CN216693076U (zh) 一种具有反输功能的燃气调压计量系统
JP3540738B2 (ja) 流量分配装置
Bykov et al. Power Flow Optimization Problems for Multi-Energy Systems
CN112032700B (zh) 供热系统和热电联产系统
JP7242383B2 (ja) ガス差圧式発電装置の制御方法、ガス差圧式発電装置、及びその制御プログラム
RU2737214C1 (ru) Термоакустический регулятор давления

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22933687

Country of ref document: EP

Kind code of ref document: A1