WO2023181443A1 - Thermal insulation material - Google Patents

Thermal insulation material Download PDF

Info

Publication number
WO2023181443A1
WO2023181443A1 PCT/JP2022/029291 JP2022029291W WO2023181443A1 WO 2023181443 A1 WO2023181443 A1 WO 2023181443A1 JP 2022029291 W JP2022029291 W JP 2022029291W WO 2023181443 A1 WO2023181443 A1 WO 2023181443A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat insulating
insulating material
material according
particles
mass
Prior art date
Application number
PCT/JP2022/029291
Other languages
French (fr)
Japanese (ja)
Inventor
祐太朗 田口
成輝 神田
Original Assignee
住友理工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友理工株式会社 filed Critical 住友理工株式会社
Priority to JP2023530033A priority Critical patent/JPWO2023181443A1/ja
Publication of WO2023181443A1 publication Critical patent/WO2023181443A1/en
Priority to US18/480,510 priority patent/US20240025813A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0045Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by a process involving the formation of a sol or a gel, e.g. sol-gel or precipitation processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B30/00Compositions for artificial stone, not containing binders
    • C04B30/02Compositions for artificial stone, not containing binders containing fibrous materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/30Oxides other than silica
    • C04B14/305Titanium oxide, e.g. titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/32Carbides; Nitrides; Borides ; Silicides
    • C04B14/322Carbides
    • C04B14/324Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/38Fibrous materials; Whiskers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
    • C04B28/26Silicates of the alkali metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/04Arrangements using dry fillers, e.g. using slag wool which is added to the object to be insulated by pouring, spreading, spraying or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/08Means for preventing radiation, e.g. with metal foil
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/40Surface-active agents, dispersants
    • C04B2103/406Surface-active agents, dispersants non-ionic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00258Electromagnetic wave absorbing or shielding materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/40Porous or lightweight materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/30Mortars, concrete or artificial stone characterised by specific physical values for heat transfer properties such as thermal insulation values, e.g. R-values

Definitions

  • the present disclosure relates to a heat insulating material using a porous structure such as silica airgel.
  • Silica airgel which has low thermal conductivity, is known as a material for heat insulating materials.
  • a heat insulating material is placed between adjacent battery cells. This type of heat insulating material is required to have high heat insulating properties, especially at high temperatures, so that it can suppress heat transfer and suppress thermal runaway when a battery cell generates abnormal heat.
  • Patent Document 1 describes a composite heat insulating material in which a heat insulating layer containing silica airgel, short silica fibers, and an infrared absorbing material is sandwiched between two base fabrics.
  • Paragraph [0048] of the same document states that the infrared absorbing material is an effective heat retaining material when it is desired to maintain a high temperature range of 400 to 900°C.
  • Patent Document 2 describes a heat insulating material having an airgel fiber body in which a fiber base material is filled with silica airgel, and a porous coating layer covering the airgel fiber body.
  • Patent Document 3 describes a heat insulating material that includes silica airgel, ceramic crystals, inorganic fibers, and an infrared-active material.
  • Paragraph [0041] of the same document states that silicon carbide and titanium oxide are effective in reducing radiant heat energy.
  • Patent Document 4 describes a heat insulating material made by mixing silica airgel powder with an average particle diameter of 0.01 mm to 4.0 mm and silicon carbide powder with an average particle diameter of 2 ⁇ m.
  • Paragraph [0016] of the same document states that if the mass ratio of silicon carbide powder is greater than 0 and smaller than 110 to 100 of silica airgel powder, the thermal conductivity can be reduced.
  • silica airgel a plurality of fine silica particles are connected to form a skeleton, and between the skeletons there are pores smaller than the mean free path of air.
  • This fine porous structure mainly suppresses convection among the three forms of heat transfer (conduction, convection, and radiation), and exhibits high heat insulation properties.
  • radiation is a phenomenon in which heat is transferred by electromagnetic waves, and the higher the temperature, the greater the radiant energy released. Therefore, in a high-temperature atmosphere, radiation becomes the main cause of heat transfer. Therefore, at high temperatures, it is difficult to obtain the desired heat insulation properties with silica airgel alone, and it is effective to incorporate infrared shielding particles as described in Patent Documents 1 to 4 mentioned above.
  • Patent Document 4 describes the thermal conductivity of a mixture of silica airgel powder with a predetermined particle diameter and silicon carbide powder mixed at a predetermined ratio.
  • the thermal conductivity was only measured by changing the blending ratio after limiting the particle size of both powders, and the study did not include the filling state of the particles and the formation of heat transfer paths. No consideration has been given to the case of incorporating inorganic fibers, etc.
  • the present disclosure has been made in view of these circumstances, and an object of the present disclosure is to provide a heat insulating material that uses a porous structure such as silica airgel and has high heat insulation properties even at high temperatures.
  • the heat insulating material of the present disclosure includes a porous structure in which a plurality of particles are connected to form a skeleton, have pores inside, and have a hydrophobic site at least on the surface and inside.
  • infrared shielding particles, and inorganic fibers and is characterized by a heat insulating layer that satisfies the following conditions (a) to (d).
  • the content of each component under the conditions (a) to (d) is calculated based on the total mass of the heat insulating layer as 100% by mass.
  • the content of the inorganic fiber is 5% by mass or more and 25% by mass or less.
  • the content of the infrared shielding particles is 10% by mass or more.
  • the combined content of the porous structure and the infrared shielding particles is 70% by mass or more.
  • the ratio of the content of the porous structure to the content of the infrared shielding particles is 1.2 or more.
  • heat insulating material of the present disclosure by specifying the blending amounts of the porous structure, infrared shielding particles, and inorganic fibers in the heat insulating layer as shown in (a) to (d), heat transfer due to radiation can be suppressed; By simultaneously suppressing the formation of heat transfer paths, high heat insulation properties can be achieved not only at room temperature but also at high temperatures.
  • the condition (a) by satisfying the condition (a), the formation of heat transfer paths is suppressed while the reinforcing effect of the inorganic fibers is exhibited.
  • the condition (b) By satisfying the condition (b), the transfer of heat due to radiation can be effectively suppressed, and the heat insulation properties at high temperatures are improved.
  • the condition (c) the content of the porous structure and the infrared shielding particles that contribute to improving the heat insulation properties is increased, and the heat insulation properties are improved.
  • the condition (d) the porous structure can inhibit the connection between the infrared shielding particles. This makes it difficult to form a heat transfer path and improves heat insulation.
  • FIG. 2 is a schematic diagram for explaining a method for measuring the reference number of porous structures.
  • the heat insulating material of the present disclosure is not limited to the following forms, and can be implemented in various forms with changes and improvements that can be made by those skilled in the art without departing from the gist of the present disclosure. .
  • the heat insulating material of the present disclosure includes a heat insulating layer that includes a porous structure, infrared shielding particles, and inorganic fibers and satisfies the conditions (a) to (d) described above.
  • a porous structure has a skeleton formed by connecting a plurality of particles and has pores inside. It is desirable that the diameter of the particles forming the skeletons (primary particles) be about 2 to 5 nm, and the size of the pores formed between the skeletons be about 10 to 50 nm. Many of the pores are so-called mesopores with a diameter of 50 nm or less. Since mesopores are smaller than the mean free path of air, air convection is restricted and heat transfer is inhibited.
  • the shape of the porous structure is not particularly limited, such as a spherical shape or an irregularly shaped block, but a chamfered shape or a spherical shape is desirable.
  • the dispersibility in the liquid is improved, it becomes easier to prepare a composition for producing a heat insulating layer (composition for a heat insulating layer).
  • the voids between the porous structures can be reduced to increase the amount of filling, thereby suppressing the connection of the infrared shielding particles, so that the heat insulation properties can be improved.
  • the porous structure may be used in its manufactured state, or may be further pulverized before use.
  • a pulverizer such as a jet mill or a spheroidizing apparatus may be used. The pulverization process removes the corners of the particles and gives them a rounded shape. This makes the surface of the heat insulating layer smooth and makes it difficult to crack.
  • the average particle diameter of the porous structure is preferably about 1 to 200 ⁇ m.
  • the larger the particle size of the porous structure the smaller the surface area and the larger the pore volume, and therefore the greater the effect of improving heat insulation.
  • the infrared shielding particles fill the gaps between the porous structures, if the particle size of the porous structure is large, the area where the infrared shielding particles are not present may become large. . In this case, the frequency with which infrared rays emitted from the heat source impinge on the infrared shielding particles decreases, which may reduce the infrared shielding effect.
  • the average particle diameter of the porous structure is preferably 10 ⁇ m or more and 50 ⁇ m or more, and when considering the stability of the heat insulating layer composition and the ease of coating, it is preferably 100 ⁇ m or less.
  • a median diameter (D 50 ) determined from a volume-based particle size distribution measured by a laser diffraction/scattering method may be adopted. Note that catalog values may be used for commercially available products.
  • the small-diameter porous structures fit into the gaps between the large-diameter porous structures. Thereby, the amount of filling can be increased, and the small-diameter porous structure can inhibit the connection of the infrared-shielding particles, so that the effect of improving heat insulation properties is further increased. From this point of view, it is desirable to use a porous structure with a wide particle size distribution, or to use two or more types with different average particle sizes in combination. Further, during the manufacturing process of the heat insulating layer, the stirring conditions of the material may be adjusted so that some of the large diameter particles are pulverized into small diameter particles.
  • the content of the porous structure may be appropriately determined so as to satisfy the conditions (c) and (d) described above, taking into account the content of infrared shielding particles that also contribute to improving heat insulation properties.
  • the content of the porous structure alone is desirably 40% by mass or more, and more preferably 50% by mass or more, based on the mass of the entire heat insulating layer as 100% by mass.
  • the content of the porous structure alone is desirably 75% by mass or less, and more preferably 70% by mass or less, based on the mass of the entire heat insulating layer as 100% by mass.
  • the reference number of porous structures calculated by the following steps (i) to (iii) is 10 or more, and It is desirable that there are 15 or more.
  • a cross section in the thickness direction of the heat insulating layer is photographed using a scanning electron microscope (SEM) at a magnification of 200 times, and five straight lines each having a length of 400 ⁇ m are drawn in parallel at 40 ⁇ m intervals on the obtained cross-sectional photograph.
  • SEM scanning electron microscope
  • For each straight line drawn count the number of porous structures that intersect with the straight line, and calculate the total sum.
  • FIG. 1 shows a schematic diagram for explaining the method for measuring the reference number of porous structures.
  • FIG. 1 does not limit the heat insulating layer in any way, including the size, shape, and filling state of the porous structure.
  • a porous structure 11, infrared shielding particles 12, and inorganic fibers 13 are observed in a cross-sectional photograph 10 taken by SEM at a magnification of 200 times of a cross section of the heat insulating layer in the thickness direction.
  • the procedure for measuring the reference number of porous structures 11 is as follows. First, five straight lines ⁇ , ⁇ , ⁇ , ⁇ , and ⁇ are drawn on the cross-sectional photograph 10.
  • the lengths of the five straight lines ⁇ , ⁇ , ⁇ , ⁇ , and ⁇ are all 400 ⁇ m, and the interval between the straight lines is 40 ⁇ m.
  • the number of porous structures 11 that intersect with the straight line is counted, and the total sum is calculated.
  • the reference number is obtained by dividing the calculated sum by 5.
  • the number of porous structures 11 that intersect with the drawn straight line is v for the straight line ⁇ , w for the straight line ⁇ , x for the straight line ⁇ , y for the straight line ⁇ , and z for the straight line ⁇ .
  • the reference number is "(v+w+x+y+z)/5".
  • the reference number is an index that indicates the filling state of the porous structures in the heat insulation layer, and if it is 10 or more, the particle size of the porous structures is not too large and the particles are filled in the gaps between the large-diameter porous structures. It can be determined that a state in which small-diameter porous structures, infrared shielding particles, etc. are appropriately filled has been achieved.
  • the porous structure has a hydrophobic site at least on the surface and inside.
  • a hydrophobic site it is possible to suppress moisture from seeping into the pores, so the porous structure is maintained and the heat insulation properties are less likely to be impaired.
  • functions such as hydrophobicity can be imparted to the surface of the porous structure by surface treatment with a silane coupling agent or the like.
  • a hydrophobic treatment such as adding a hydrophobic group may be performed.
  • the type of porous structure is not particularly limited.
  • primary particles include silica, alumina, zirconia, and titania.
  • silica airgel in which the primary particles are silica that is, a plurality of silica fine particles are linked to form a skeleton, is desirable because of its excellent chemical stability.
  • a cohesive structure in which a plurality of fumed silica fine particles are connected to form a skeleton is also suitable.
  • the method for producing silica airgel is not particularly limited, and the drying step may be performed at normal pressure or supercritical.
  • the hydrophobization treatment is performed before the drying step, there is no need for supercritical drying, that is, drying can be performed at normal pressure, making it easier and cheaper to manufacture.
  • those dried under normal pressure are sometimes called “xerogel” and those dried under supercritical conditions are called “aerogel”; however, in this specification, both are referred to as “xerogel”. Together, they are referred to as "aerogel.”
  • the infrared shielding particles absorb heat from the heat source and re-emit it from the surface on the heat source side, thereby blocking radiant heat from the heat source and contributing to improved heat insulation, particularly at high temperatures.
  • the particle size of the infrared shielding particles is relatively small from the viewpoint of filling the gaps between the porous structures and suppressing the connection between the infrared shielding particles and other components, making it difficult to form heat transfer paths. is desirable.
  • the particle size is too small, it becomes difficult for infrared rays to hit the particles, and furthermore, infrared rays are not scattered sufficiently, making it difficult to exhibit the effect of blocking radiant heat.
  • the average particle diameter of the infrared shielding particles is preferably 0.3 ⁇ m or more and 22 ⁇ m or less.
  • the median diameter (D 50 ) determined from the volume-based particle size distribution measured by laser diffraction/scattering method may be adopted, as in the case of the porous structure. Catalog values may be used for products.
  • Infrared shielding particles include silicon carbide, kaolinite, montmorillonite, silicon nitride, mica, alumina, zirconia, aluminum nitride, titanium oxide, zirconium silicate, zinc oxide, tantalum oxide, tungsten oxide, niobium oxide, indium tin oxide, and Examples include cerium, boron carbide, manganese oxide, tin oxide, bismuth oxide, iron oxide, magnesium oxide, barium titanate, and the like. In particular, from the viewpoint of enhancing the effect of blocking radiant heat, it is desirable that the infrared shielding particles have high emissivity particles having an emissivity of 0.6 or more in the infrared wavelength region.
  • high emissivity particles include silicon carbide, kaolinite, silicon nitride, mica, alumina, zirconia, aluminum nitride, zirconium silicate, cerium oxide, boron carbide, manganese oxide, tin oxide, iron oxide, and the like. Furthermore, from the viewpoint of scattering incident infrared rays and enhancing the effect of blocking radiant heat, a form having particles having a high refractive index in the infrared wavelength region is also effective. For example, high refractive index particles having a refractive index of 2.0 or more in the visible light wavelength region are suitable.
  • High refractive index particles include silicon carbide, titanium oxide, zirconia, silicon nitride, aluminum nitride, zinc oxide, tantalum oxide, tungsten oxide, niobium oxide, cerium oxide, manganese oxide, tin oxide, bismuth oxide, iron oxide, titanate. Examples include barium.
  • silicon carbide, titanium oxide, silicon nitride, mica, alumina, aluminum nitride, boron carbide, iron oxide, magnesium oxide, etc. have a relatively large specific heat, so they have a large heat capacity and the particles themselves are difficult to heat. In this respect as well, it contributes to improving the heat insulating properties of the heat insulating layer. In addition, since it has high heat resistance, it also contributes to improving the heat resistance of the heat insulating layer. In particular, silicon carbide is suitable because its thermal conductivity does not increase much even in a high temperature atmosphere of about 800°C.
  • the content of the infrared shielding particles is 10% by mass or more when the total mass of the heat insulating layer is 100% by mass (condition (b) described above). From the viewpoint of increasing the effect of suppressing heat transfer due to radiation and further improving the heat insulation properties at high temperatures, the content of the infrared shielding particles is preferably 15% by mass or more, more preferably 20% by mass or more. Further, the combined content of the porous structure and the infrared shielding particles is 70% by mass or more when the total mass of the heat insulating layer is 100% by mass (condition (c) described above). From the viewpoint of further improving the heat insulation properties, the total content of the porous structure and the infrared shielding particles is preferably 75% by mass or more, more preferably 80% by mass or more.
  • the ratio of the content of the porous structure to the content of the infrared shielding particles is 1.2 or more. (Condition (d) above).
  • the porous structure inhibits the connection between the infrared shielding particles and suppresses the formation of heat transfer paths. Can be done.
  • the ratio of the content of the porous structure to the content of the infrared shielding particles is 8 or less. and is suitable.
  • the inorganic fibers are present in a physically entangled manner around the porous structure, thereby improving the mechanical strength of the heat insulating layer and suppressing the porous structure from falling off.
  • the type of inorganic fiber is not particularly limited, but in consideration of heat resistance, mechanical strength, etc., ceramic fibers such as glass fiber and alumina fiber are suitable.
  • the content of the inorganic fibers is 5% by mass or more and 25% by mass or less when the total mass of the heat insulating layer is 100% by mass (the above-mentioned condition (a)). By setting the content of the inorganic fibers within this range, the reinforcing effect of the inorganic fibers can be exhibited while preventing the formation of excessive heat transfer paths.
  • the length of the inorganic fibers is desirably 16 mm or less, considering both the reinforcing effect and the suppression of formation of heat transfer paths.
  • the heat insulating layer may also contain other components such as organic additives and reinforcing particles.
  • components such as porous structures are bound together. Examples include forms containing a binder.
  • a binder is present on the surface or in the gaps of a component such as a porous structure, there is a risk that a heat transfer path will be formed through the binder. Therefore, from the viewpoint of suppressing the formation of heat transfer paths and achieving high heat insulation properties at high temperatures, it is desirable that the heat insulation layer has no binder.
  • Organic additives Porous structures that have hydrophobic sites on the surface or inside are difficult to absorb water. Among these, silica airgel, hollow silica, and fumed silica cohesive structures have low specific gravity, so they easily float on water. For this reason, it is necessary to improve the water suspension of the porous structure to make it easier to disperse the porous structure when preparing a composition for a heat insulating layer using water as a solvent, and to improve the water dispersibility of the porous structure, and to adjust the From the viewpoint of adjusting the rheology and water retention of the composition for a heat insulating layer, it is desirable to incorporate an organic additive.
  • a surfactant may be used as the organic additive.
  • the type of surfactant is not particularly limited, and can be appropriately selected from ionic surfactants (cationic surfactants, anionic surfactants, amphoteric surfactants) and nonionic surfactants. do it.
  • One type of surfactant may be used alone, or two or more types may be used in combination. For example, when an ionic surfactant is used, even in a relatively small amount, it is possible to increase the viscosity of the composition for a heat insulating layer and to stabilize the dispersion of components such as porous structures in the composition for a heat insulating layer.
  • Examples of the ionic surfactant include carboxymethyl cellulose sodium (CMC-Na), polycarboxylic acid amine salt, polycarboxylic acid ammonium salt, polycarboxylic acid sodium salt, TEMPO oxidized cellulose nanofiber (CNF-Na), and the like.
  • CMC-Na carboxymethyl cellulose sodium
  • nonionic surfactant examples include polyethylene oxide (PEO) and polyvinyl alcohol (PVA).
  • a nonionic surfactant and an ionic surfactant in combination because the effects of each of the above-mentioned surfactants can be adjusted as desired.
  • PEO's water retention is not very high. Therefore, when preparing the composition for a heat insulating layer, water is less likely to enter the gaps between the porous structures, and voids are less likely to occur when water evaporates during drying. As a result, the gaps between the porous structures are easily filled with infrared shielding particles. Moreover, the gaps between the large-diameter porous structures are easily filled with the small-diameter porous structures.
  • thermogravimetric analysis TGA
  • the content of the organic additive should be 10% by mass or less, further 7% by mass or less, based on the total mass of the heat insulating layer as 100% by mass. It is desirable that there be.
  • reinforcing particles may be added to the heat insulating layer.
  • the type of reinforcing particles is not particularly limited, and examples include relatively hard materials such as precipitated silica, gel silica, fused silica, wollastonite, potassium titanate, magnesium silicate, glass flakes, calcium carbonate, and barium sulfate; Inorganic particles with a large specific surface area can be used.
  • Flame retardant Adding a flame retardant can impart flame retardancy to the heat insulating layer.
  • known flame retardants such as halogen-based, phosphorus-based, metal hydroxide-based, etc. may be used.
  • phosphorus-based flame retardants include ammonium polyphosphate, red phosphorus, and phosphate esters. Among these, those that are insoluble in water are desirable because the flame retardant is unlikely to flow out even if it comes into contact with moisture during use, and ammonium polyphosphate is preferred, for example.
  • the heat insulating material of the present disclosure only needs to include the heat insulating layer described above, and other configurations are not particularly limited.
  • it can be configured to include a base material that supports a heat insulating layer.
  • the base material may be placed only on one side of the heat insulating layer in the thickness direction, or may be placed on both sides so as to sandwich the heat insulating layer.
  • it may be a covering body in which the heat insulating layer is wrapped in a single base material.
  • An adhesive layer may be interposed between the heat insulating layer and the base material.
  • the adhesive layer may contain a flame retardant and the like in addition to the adhesive component.
  • Examples of the material of the base material include cloth, resin, paper, and steel plate.
  • Examples of the fibers constituting the cloth include glass fibers, rock wool, ceramic fibers, alumina fibers, silica fibers, carbon fibers, metal fibers, polyimide fibers, aramid fibers, and polyphenylene sulfide (PPS) fibers.
  • As ceramic fibers refractory ceramic fibers (RCF), polycrystalline alumina fibers (PCW), and alkaline earth silicate (AES) fibers are known. Among them, AES fiber has higher safety because it has biosolubility.
  • Examples of the resin include polyethylene terephthalate (PET), polyimide, polyamide, PPS, and the like.
  • Examples of paper include pulp, a composite of pulp and magnesium silicate, and the like.
  • Examples of the steel plate include galvalume steel plate (registered trademark), galvanized iron plate, stainless steel (SUS) plate, iron plate, titanium plate, and the like.
  • the shape of the base material is not particularly limited, and examples include woven fabric, nonwoven fabric, film, and sheet.
  • the base material may consist of a single layer or may be a laminate in which two or more layers of the same material or different materials are laminated.
  • fabrics (woven fabrics) and non-woven fabrics made from inorganic fibers such as glass fibers and metal fibers, such as glass cloth, and fireproof insulation paper made as a composite material of pulp and magnesium silicate have comparatively high thermal conductivity. It has a small size and has high shape retention even in high-temperature environments.
  • a base material with high heat resistance is employed, the heat insulating material of the present disclosure can be used in applications that require high heat resistance, thereby expanding the applications of the heat insulating material of the present disclosure.
  • safety is further improved by employing a base material having fire resistance.
  • the base material with high heat resistance may be manufactured from glass fiber, rock wool, ceramic fiber, polyimide, PPS, etc. Specifically, glass fiber nonwoven fabric, glass cloth, aluminum glass cloth, AES wool paper, polyimide fiber nonwoven fabric, etc. Examples include.
  • the heat insulating material of the present disclosure can be manufactured by pressure molding a material containing a porous structure, infrared shielding particles, inorganic fibers, and the like. Alternatively, it can be manufactured by applying a liquid (including slurry) composition for a heat insulating layer onto a base material and drying it.
  • the coating may be applied using a brush, a coating machine such as a blade coater, a bar coater, a die coater, a comma coater (registered trademark), a roll coater, or a sprayer.
  • the heat insulating layer composition may be manufactured by dipping the base material in the heat insulating layer composition or by forming the heat insulating layer composition on the base material by a papermaking method. Drying may be carried out at a temperature of 80 to 180° C. for several minutes to several tens of minutes.
  • the thickness of the heat insulating layer may be determined as appropriate depending on the application, and for example, from the viewpoint of heat insulation, it is desirable to set it to 0.1 mm or more, 0.5 mm or more, and even 1 mm or more. If the insulation layer is too thick, it not only increases cost, but also reduces strength and becomes brittle. For this reason, for example, 10 mm or less, 8 mm or less is suitable. In particular, from the viewpoint of reducing the thickness and increasing flexibility, it is desirable that the thickness be 5 mm or less, more preferably 3 mm or less.
  • stirring and mixing were further performed for 15 minutes. After that, stirring was continued for an additional 30 minutes while stopping the stirring every 2 minutes and scraping off the material adhering to the inner wall of the container, the blade surface, etc. with a spatula, and the mixture was mixed for an additional 30 minutes. was manufactured.
  • Silica airgel powder "Aerogel Particles P200” manufactured by Cabot Corporation, particle size 0.1 mm to 1.2 mm.
  • Glass fiber “Wet Chop” manufactured by Nippon Electric Glass Co., Ltd., length 3 mm, filament diameter 6.5 ⁇ m.
  • Silicon carbide (SiC) powder “Fuji Random GC” manufactured by Fuji Seisakusho Co., Ltd., particle size standard #4000.
  • Titanium oxide (TiO 2 ) powder “High purity titanium oxide HT0110” manufactured by Toho Titanium Co., Ltd.
  • PEO Polyethylene oxide manufactured by Sigma-Aldrich, viscosity average molecular weight ⁇ 1 million.
  • CMC Carboxylmethylcellulose sodium salt manufactured by Sigma-Aldrich, molecular weight 380,000.
  • Wet silica “Nipsil (registered trademark) NS-K” manufactured by Tosoh Silica Co., Ltd.
  • a pedestal was prepared in which a first spacer plate made of SUS was placed on top of glass fiber paper.
  • the thickness of the first spacer plate is 4 mm, and a 150 mm square injection hole is formed in the center.
  • the produced composition for a heat insulating layer was filled into the injection hole of the first spacer plate and formed into a plate shape.
  • the first spacer plate is removed, another second spacer plate is placed, and glass fiber paper is layered on top of it.
  • a laminate was manufactured.
  • the thickness of the second spacer plate is 3 mm, and like the first spacer plate, a square injection hole of 150 mm square is formed in the center.
  • a heat insulating layer composition is placed in the injection hole of the second spacer plate.
  • a first plate material made of aluminum and having a thickness of 5 mm and a square size of 320 mm, and a second plate material made of aluminum and having a thickness of 1 mm and a square size of 320 mm were prepared.
  • a plurality of grooves are formed on one surface of the first plate.
  • the plurality of grooves each have a linear shape of 2.5 mm in width, 3 mm in depth, and 200 mm in length, and are formed in parallel at 5 mm intervals.
  • Punching holes with a diameter of 1 mm are formed throughout the second plate material at intervals of 2 mm.
  • the second plate material was stacked on one side of the first plate material, and the laminate was placed on top of the second plate material.
  • the second plate material was placed on top of the laminate, and the first plate material was further stacked so that one side on which the groove was formed was on the second plate material side.
  • pressure drying using a hot press was performed for 30 minutes at a temperature of 165° C. and a load of about 98 kN. Thereafter, it was allowed to cool to room temperature, and the first plate material, second plate material, upper and lower glass fiber papers, and second spacer plate were removed to obtain a plate-shaped heat insulating material sample with a thickness of 3 mm.
  • the reference number of silica airgel was measured for the samples of Examples 1 and 3 in Table 1 below.
  • the measurement method is as follows. First, a test piece of a predetermined size was cut out from a heat insulating material sample and coated with platinum as a pretreatment. Thereafter, cross section processing was performed using a "Cross Section Polisher (registered trademark) SM09010" manufactured by JEOL Ltd. at an acceleration voltage of 4 kV and a processing time of 20 hours. Next, the cross section after processing was treated with an osmium coat to make it conductive, and a backscattered electron image and a cross-sectional photograph were taken using a "SEM S-3400N" manufactured by Hitachi, Ltd.
  • the thermal conductivity of the manufactured insulation material sample was measured using the “Quick Thermal Conductivity Meter QTM-700” and “High Temperature Probe PD-31N” manufactured by Kyoto Electronics Co., Ltd. , was measured as follows. First, the upper and lower sides of the probe were sandwiched between two heat insulation samples stacked one on top of the other, and a weight was placed on top of the probe to prevent it from being crushed, and the probe was placed in an electric furnace. Then, the temperature inside the electric furnace was raised to 800° C., and after the temperature inside the furnace was stabilized, the thermal conductivity was measured.
  • Table 1 shows the composition of the heat insulating material sample and the evaluation results of heat insulation properties based on the measurement results of thermal conductivity. The thermal insulation evaluation is passed if the thermal conductivity is less than 0.3 W/m ⁇ K (indicated by a circle in the table), and rejected if the thermal conductivity is 0.3 W/m ⁇ K or more ( (indicated by an x in the table).
  • the samples of Examples 1 to 7 that satisfy the conditions (a) to (d) above all have a thermal conductivity of less than 0.3 W/m ⁇ K, and can be used at high temperatures. It was also confirmed that it has excellent heat insulation properties.
  • the sample of Comparative Example 1 does not contain infrared shielding particles and does not satisfy conditions (b) to (d).
  • the sample of Comparative Example 2 has a ratio of silica airgel content to infrared shielding particle content of 0.5, and does not satisfy condition (d).
  • the sample of Comparative Example 3 has an infrared shielding particle content of 0.5% by mass, and does not satisfy condition (b).
  • the sample of Comparative Example 4 does not contain infrared shielding particles and does not satisfy conditions (b) to (d).
  • the sample of Comparative Example 5 has a total content of silica airgel and infrared shielding particles of 50% by mass, and does not satisfy condition (c). Therefore, the samples of Comparative Examples 1 to 5 all had a thermal conductivity of 0.3 W/m ⁇ K or more, and it was not possible to obtain the desired heat insulation properties at high temperatures.
  • the heat insulating material of the present disclosure is suitable for use as a heat insulating material for vehicles, a heat insulating material for houses, a heat insulating material for electronic devices, a heat insulating material for heat/cold containers, and the like. Among these, it is suitable for use in battery packs, heat-not-burn cigarettes, heat-insulating sheets for fire prevention, etc., which require insulation properties in high-temperature atmospheres.

Abstract

This thermal insulation material is provided with a thermal insulation layer which has: a porous structure for forming a skeleton where a plurality of particles are connected while having pores inside and having a hydrophobic site on the surface thereof or on the surface and on the inside; infrared ray-shielding particles; and inorganic fibers. Said thermal insulation layer satisfies the following conditions (a)-(d). The content of the components in conditions (a)-(d) are calculated based on the mass of the thermal insulation layer overall being 100 mass%. (a) The content of said inorganic fibers is 5-25 mass%, inclusive. (b) The content of said infrared ray-shielding particles is 10 mass% or higher. (c) The content obtained by combining the porous structure and the infrared ray-shielding particles is 70 mass% or higher. (d) The ratio of the content of the porous structure to the content of the infrared ray-shielding particles is 1.2 or higher.

Description

断熱材insulation material
 本開示は、シリカエアロゲルなどの多孔質構造体を用いた断熱材に関する。 The present disclosure relates to a heat insulating material using a porous structure such as silica airgel.
 車載部品、住宅用建材、産業機器などには、従来より熱流制御を目的として種々の断熱材が使用されている。断熱材の材料としては、熱伝導率が小さいシリカエアロゲルなどが知られている。例えば、ハイブリッド自動車や電気自動車などに搭載されるバッテリーパックにおいては、隣り合うバッテリーセル間などに断熱材が配置される。この種の断熱材には、バッテリーセルが異常に発熱した場合に熱の伝達を抑制し、熱暴走を抑制することができるよう、特に高温下における高い断熱性が要求される。 A variety of insulation materials have been used for the purpose of controlling heat flow in automotive parts, housing materials, industrial equipment, etc. Silica airgel, which has low thermal conductivity, is known as a material for heat insulating materials. For example, in a battery pack installed in a hybrid vehicle, an electric vehicle, etc., a heat insulating material is placed between adjacent battery cells. This type of heat insulating material is required to have high heat insulating properties, especially at high temperatures, so that it can suppress heat transfer and suppress thermal runaway when a battery cell generates abnormal heat.
 例えば、特許文献1には、シリカエアロゲル、シリカ短繊維、および赤外線吸収材を有する断熱層を、二枚の基布で挟んだ複合型断熱材が記載されている。同文献の段落[0048]には、赤外線吸収材は400~900℃の高温領域を保持したい場合に有効な保温材料になることが記載されている。特許文献2には、シリカエアロゲルが繊維基材に充填されたエアロゲル繊維体と、それを被覆する多孔性の被覆層と、を有する断熱材が記載されている。同文献の段落[0052]、[0056]には、エアロゲル繊維体(断熱層)に、赤外線反射剤または赤外線吸収剤を配合すると、熱源からの輻射熱を効果的に遮断できることが記載されている。特許文献3には、シリカエアロゲル、セラミックス結晶、無機繊維、および赤外線作用材を有する断熱材が記載されている。同文献の段落[0041]には、炭化ケイ素、酸化チタンは、輻射熱エネルギーの低減に効果的であることが記載されている。特許文献4には、平均粒子径が0.01mm~4.0mmのシリカエアロゲル粉末と、平均粒子径が2μmの炭化ケイ素粉末と、を混合した断熱材が記載されている。同文献の段落[0016]には、質量割合で、シリカエアロゲル粉末の100に対して炭化ケイ素粉末を0より大きく110より小さくすると、熱伝導率を小さくできることが記載されている。 For example, Patent Document 1 describes a composite heat insulating material in which a heat insulating layer containing silica airgel, short silica fibers, and an infrared absorbing material is sandwiched between two base fabrics. Paragraph [0048] of the same document states that the infrared absorbing material is an effective heat retaining material when it is desired to maintain a high temperature range of 400 to 900°C. Patent Document 2 describes a heat insulating material having an airgel fiber body in which a fiber base material is filled with silica airgel, and a porous coating layer covering the airgel fiber body. Paragraphs [0052] and [0056] of the same document state that when an infrared reflector or an infrared absorber is added to the airgel fiber body (insulating layer), radiant heat from the heat source can be effectively blocked. Patent Document 3 describes a heat insulating material that includes silica airgel, ceramic crystals, inorganic fibers, and an infrared-active material. Paragraph [0041] of the same document states that silicon carbide and titanium oxide are effective in reducing radiant heat energy. Patent Document 4 describes a heat insulating material made by mixing silica airgel powder with an average particle diameter of 0.01 mm to 4.0 mm and silicon carbide powder with an average particle diameter of 2 μm. Paragraph [0016] of the same document states that if the mass ratio of silicon carbide powder is greater than 0 and smaller than 110 to 100 of silica airgel powder, the thermal conductivity can be reduced.
国際公開第2021/095279号International Publication No. 2021/095279 特開2009-299893号公報JP2009-299893A 国際公開第2013/141189号International Publication No. 2013/141189 特開2020-16326号公報JP2020-16326A
 シリカエアロゲルは、複数のシリカ微粒子が連結して骨格をなし、骨格間に空気の平均自由行程よりも小さい細孔を有する。この微細な多孔性構造により、熱移動の三形態(伝導、対流、輻射)のうち、主に対流が抑制されて高い断熱性が発揮される。ここで、輻射は、電磁波により熱が移動する現象であり、温度が高いほど放出される輻射エネルギーが大きくなる。このため、高温雰囲気においては、輻射が熱移動の主要因になる。よって、高温になると、シリカエアロゲルだけでは所望の断熱性を得ることは難しく、上記特許文献1~4に記載されているように、赤外線遮蔽粒子を配合することが有効になる。 In silica airgel, a plurality of fine silica particles are connected to form a skeleton, and between the skeletons there are pores smaller than the mean free path of air. This fine porous structure mainly suppresses convection among the three forms of heat transfer (conduction, convection, and radiation), and exhibits high heat insulation properties. Here, radiation is a phenomenon in which heat is transferred by electromagnetic waves, and the higher the temperature, the greater the radiant energy released. Therefore, in a high-temperature atmosphere, radiation becomes the main cause of heat transfer. Therefore, at high temperatures, it is difficult to obtain the desired heat insulation properties with silica airgel alone, and it is effective to incorporate infrared shielding particles as described in Patent Documents 1 to 4 mentioned above.
 しかしながら、赤外線遮蔽粒子を配合した場合、赤外線遮蔽粒子同士が連結することにより、熱の伝達経路が形成されるおそれがある。さらに、無機繊維などの他の材料が配合されると、これらと赤外線遮蔽粒子とが連結されることにより、熱の伝達経路がより形成されやすくなる。結果、伝導による熱移動が大きくなり、断熱性が低下するおそれがある。したがって、単に赤外線遮蔽粒子を配合するだけでは、高温下での熱移動を抑制するという効果を充分に発揮させることができない。この点、特許文献4には、所定の粒子径のシリカエアロゲル粉末と炭化ケイ素粉末とを、所定の割合で混合した混合物の熱伝導率が記載されている。しかしながら、同文献においては、両粉末の粒子径を限定した上で、配合比を変化させて熱伝導率を測定しているに過ぎず、粒子の充填状態および熱の伝達経路の形成についての検討や、無機繊維などを配合する場合の検討はなされていない。 However, when infrared shielding particles are blended, there is a risk that a heat transfer path may be formed due to the infrared shielding particles connecting with each other. Furthermore, when other materials such as inorganic fibers are blended, these and the infrared shielding particles are connected to each other, thereby making it easier to form a heat transfer path. As a result, heat transfer due to conduction increases, and there is a risk that the heat insulation properties will decrease. Therefore, simply blending infrared shielding particles cannot sufficiently exhibit the effect of suppressing heat transfer at high temperatures. In this regard, Patent Document 4 describes the thermal conductivity of a mixture of silica airgel powder with a predetermined particle diameter and silicon carbide powder mixed at a predetermined ratio. However, in this document, the thermal conductivity was only measured by changing the blending ratio after limiting the particle size of both powders, and the study did not include the filling state of the particles and the formation of heat transfer paths. No consideration has been given to the case of incorporating inorganic fibers, etc.
 本開示は、このような実情に鑑みてなされたものであり、シリカエアロゲルなどの多孔質構造体を用い、高温下においても高い断熱性を有する断熱材を提供することを課題とする。 The present disclosure has been made in view of these circumstances, and an object of the present disclosure is to provide a heat insulating material that uses a porous structure such as silica airgel and has high heat insulation properties even at high temperatures.
 上記課題を解決するため、本開示の断熱材は、複数の粒子が連結して骨格をなし、内部に細孔を有し、表面および内部のうち少なくとも表面に疎水部位を有する多孔質構造体と、赤外線遮蔽粒子と、無機繊維と、を有し、次の(a)~(d)の条件を満足する断熱層を備えることを特徴とする。(a)~(d)の条件における各成分の含有量は、該断熱層の全体の質量を100質量%として算出される。
(a)該無機繊維の含有量は、5質量%以上25質量%以下である。
(b)該赤外線遮蔽粒子の含有量は、10質量%以上である。
(c)該多孔質構造体および該赤外線遮蔽粒子を合わせた含有量は、70質量%以上である。
(d)該赤外線遮蔽粒子の含有量に対する該多孔質構造体の含有量の比率は、1.2以上である。
In order to solve the above problems, the heat insulating material of the present disclosure includes a porous structure in which a plurality of particles are connected to form a skeleton, have pores inside, and have a hydrophobic site at least on the surface and inside. , infrared shielding particles, and inorganic fibers, and is characterized by a heat insulating layer that satisfies the following conditions (a) to (d). The content of each component under the conditions (a) to (d) is calculated based on the total mass of the heat insulating layer as 100% by mass.
(a) The content of the inorganic fiber is 5% by mass or more and 25% by mass or less.
(b) The content of the infrared shielding particles is 10% by mass or more.
(c) The combined content of the porous structure and the infrared shielding particles is 70% by mass or more.
(d) The ratio of the content of the porous structure to the content of the infrared shielding particles is 1.2 or more.
 本開示の断熱材によると、断熱層における多孔質構造体、赤外線遮蔽粒子、および無機繊維の配合量を(a)~(d)のように規定することにより、輻射による熱移動の抑制と、熱の伝達経路形成の抑制と、を両立させて、常温では勿論、高温下においても高い断熱性を実現することができる。 According to the heat insulating material of the present disclosure, by specifying the blending amounts of the porous structure, infrared shielding particles, and inorganic fibers in the heat insulating layer as shown in (a) to (d), heat transfer due to radiation can be suppressed; By simultaneously suppressing the formation of heat transfer paths, high heat insulation properties can be achieved not only at room temperature but also at high temperatures.
 具体的には、(a)の条件を満足することにより、無機繊維による補強効果を発揮させつつ、熱の伝達経路の形成が抑制される。(b)の条件を満足することにより、輻射による熱の移動を効果的に抑制することができ、高温下における断熱性が向上する。(c)の条件を満足することにより、断熱性向上に寄与する多孔質構造体および赤外線遮蔽粒子の含有量が多くなり、断熱性が向上する。また、断熱性向上への寄与が小さい成分の含有量が相対的に少なくなるため、当該成分による熱の伝達経路の形成が抑制されるなどして断熱性が向上する。(d)の条件を満足することにより、赤外線遮蔽粒子同士の連結を、多孔質構造体により阻害することができる。これにより、熱の伝達経路が形成されにくくなり、断熱性が向上する。 Specifically, by satisfying the condition (a), the formation of heat transfer paths is suppressed while the reinforcing effect of the inorganic fibers is exhibited. By satisfying the condition (b), the transfer of heat due to radiation can be effectively suppressed, and the heat insulation properties at high temperatures are improved. By satisfying the condition (c), the content of the porous structure and the infrared shielding particles that contribute to improving the heat insulation properties is increased, and the heat insulation properties are improved. In addition, since the content of components that make a small contribution to improving heat insulation properties is relatively reduced, the formation of heat transfer paths by these components is suppressed, thereby improving heat insulation properties. By satisfying the condition (d), the porous structure can inhibit the connection between the infrared shielding particles. This makes it difficult to form a heat transfer path and improves heat insulation.
多孔質構造体の基準個数の測定方法を説明するための模式図である。FIG. 2 is a schematic diagram for explaining a method for measuring the reference number of porous structures.
 以下、本開示の断熱材について詳細に説明する。本開示の断熱材は、以下の形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において、当業者が行い得る変更、改良などを施した種々の形態にて実施することができる。 Hereinafter, the heat insulating material of the present disclosure will be described in detail. The heat insulating material of the present disclosure is not limited to the following forms, and can be implemented in various forms with changes and improvements that can be made by those skilled in the art without departing from the gist of the present disclosure. .
 <断熱層>
 本開示の断熱材は、多孔質構造体と、赤外線遮蔽粒子と、無機繊維と、を有し、前述した(a)~(d)の条件を満足する断熱層を備える。
<Insulating layer>
The heat insulating material of the present disclosure includes a heat insulating layer that includes a porous structure, infrared shielding particles, and inorganic fibers and satisfies the conditions (a) to (d) described above.
 [多孔質構造体]
 多孔質構造体は、複数の粒子が連結して骨格をなし内部に細孔を有する。骨格をなす粒子(一次粒子)の直径は、2~5nm程度、骨格と骨格との間に形成される細孔の大きさは、10~50nm程度であることが望ましい。細孔の多くは、50nm以下のいわゆるメソ孔である。メソ孔は、空気の平均自由行程よりも小さいため、空気の対流が制限され熱の移動が阻害される。多孔質構造体の形状は、球状、異形状の塊状など、特に限定されないが、面取りされた形状または球状が望ましい。この場合、液中での分散性が向上するため、断熱層を製造するための組成物(断熱層用組成物)の調製が容易になる。また、多孔質構造体間の空隙を少なくして充填量を多くすることができ、これにより赤外線遮蔽粒子の連結も抑制されるため、断熱性を高めることができる。多孔質構造体は、製造された状態で使用してもよいが、それをさらに粉砕処理して使用してもよい。粉砕処理には、ジェットミルなどの粉砕装置または球状化処理装置などを使用すればよい。粉砕処理することにより、粒子の角が取れ、粒子が丸みを帯びた形状になる。これにより、断熱層の表面が平滑になり、クラックが入りにくくなる。
[Porous structure]
A porous structure has a skeleton formed by connecting a plurality of particles and has pores inside. It is desirable that the diameter of the particles forming the skeletons (primary particles) be about 2 to 5 nm, and the size of the pores formed between the skeletons be about 10 to 50 nm. Many of the pores are so-called mesopores with a diameter of 50 nm or less. Since mesopores are smaller than the mean free path of air, air convection is restricted and heat transfer is inhibited. The shape of the porous structure is not particularly limited, such as a spherical shape or an irregularly shaped block, but a chamfered shape or a spherical shape is desirable. In this case, since the dispersibility in the liquid is improved, it becomes easier to prepare a composition for producing a heat insulating layer (composition for a heat insulating layer). In addition, the voids between the porous structures can be reduced to increase the amount of filling, thereby suppressing the connection of the infrared shielding particles, so that the heat insulation properties can be improved. The porous structure may be used in its manufactured state, or may be further pulverized before use. For the pulverization process, a pulverizer such as a jet mill or a spheroidizing apparatus may be used. The pulverization process removes the corners of the particles and gives them a rounded shape. This makes the surface of the heat insulating layer smooth and makes it difficult to crack.
 多孔質構造体の平均粒子径は1~200μm程度が望ましい。多孔質構造体の粒子径が大きいほど、表面積が小さくなり細孔容積が大きくなるため、断熱性を高める効果は大きくなる。但し、赤外線遮蔽粒子は多孔質構造体と多孔質構造体との間の隙間に充填されるため、多孔質構造体の粒子径が大きい場合、赤外線遮蔽粒子が存在しない領域が大きくなるおそれがある。この場合、熱源から発せられる赤外線が赤外線遮蔽粒子に当たる頻度が低下して、赤外線遮蔽効果が低下するおそれがある。例えば、多孔質構造体の平均粒子径は10μm以上、50μm以上であるとよく、断熱層用組成物の安定性や塗工のしやすさなども考慮すると、100μm以下であるとよい。平均粒子径は、レーザー回折・散乱法により測定される体積基準の粒度分布から求められるメジアン径(D50)を採用すればよい。なお、市販品についてはカタログ値を採用してもよい。 The average particle diameter of the porous structure is preferably about 1 to 200 μm. The larger the particle size of the porous structure, the smaller the surface area and the larger the pore volume, and therefore the greater the effect of improving heat insulation. However, since the infrared shielding particles fill the gaps between the porous structures, if the particle size of the porous structure is large, the area where the infrared shielding particles are not present may become large. . In this case, the frequency with which infrared rays emitted from the heat source impinge on the infrared shielding particles decreases, which may reduce the infrared shielding effect. For example, the average particle diameter of the porous structure is preferably 10 μm or more and 50 μm or more, and when considering the stability of the heat insulating layer composition and the ease of coating, it is preferably 100 μm or less. As the average particle diameter, a median diameter (D 50 ) determined from a volume-based particle size distribution measured by a laser diffraction/scattering method may be adopted. Note that catalog values may be used for commercially available products.
 多孔質構造体の粒子径が異なる場合、大径の多孔質構造体間の隙間に小径の多孔質構造体が入りこむ。これにより、充填量を多くすることができ、かつ、小径の多孔質構造体により赤外線遮蔽粒子の連結を阻害することができるため、断熱性を高める効果がより大きくなる。このような観点から、多孔質構造体としては、粒子径分布が広いものを使用したり、平均粒子径が異なる二種以上を併用することが望ましい。また、断熱層の製造過程で材料の撹拌条件などを調整して、大径の粒子の一部が小径の粒子に粉砕されるようにしてもよい。 When the particle diameters of the porous structures are different, the small-diameter porous structures fit into the gaps between the large-diameter porous structures. Thereby, the amount of filling can be increased, and the small-diameter porous structure can inhibit the connection of the infrared-shielding particles, so that the effect of improving heat insulation properties is further increased. From this point of view, it is desirable to use a porous structure with a wide particle size distribution, or to use two or more types with different average particle sizes in combination. Further, during the manufacturing process of the heat insulating layer, the stirring conditions of the material may be adjusted so that some of the large diameter particles are pulverized into small diameter particles.
 多孔質構造体の含有量は、同じく断熱性向上に寄与する赤外線遮蔽粒子の含有量を考慮して、前述した(c)、(d)の条件を満足するように適宜決定すればよい。例えば、多孔質構造体の単独の含有量としては、断熱層全体の質量を100質量%とした場合の40質量%以上であることが望ましく、50質量%以上であるとより好適である。他方、多孔質構造体が多くなると、多孔質構造体が脱落しやすくなるおそれがある。このため、多孔質構造体の単独の含有量は、断熱層全体の質量を100質量%とした場合の75質量%以下であることが望ましく、70質量%以下であるとより好適である。 The content of the porous structure may be appropriately determined so as to satisfy the conditions (c) and (d) described above, taking into account the content of infrared shielding particles that also contribute to improving heat insulation properties. For example, the content of the porous structure alone is desirably 40% by mass or more, and more preferably 50% by mass or more, based on the mass of the entire heat insulating layer as 100% by mass. On the other hand, if the number of porous structures increases, the porous structures may easily fall off. Therefore, the content of the porous structure alone is desirably 75% by mass or less, and more preferably 70% by mass or less, based on the mass of the entire heat insulating layer as 100% by mass.
 断熱層において多孔質構造体の好適な充填状態を実現するという観点においては、例えば、次の(i)~(iii)の手順で算出される多孔質構造体の基準個数が10個以上、さらには15個以上である形態が望ましい。
(i)断熱層の厚さ方向の断面を、走査型電子顕微鏡(SEM)により倍率200倍で撮影し、得られた断面写真に、長さ400μmの直線を40μm間隔で平行に五本描く。
(ii)描いた直線ごとに、直線と交わる多孔質構造体の個数を数えて、その総和を算出する。
(iii)算出された総和を5で除して、多孔質構造体の基準個数とする。
From the viewpoint of realizing a suitable filling state of porous structures in the heat insulating layer, for example, the reference number of porous structures calculated by the following steps (i) to (iii) is 10 or more, and It is desirable that there are 15 or more.
(i) A cross section in the thickness direction of the heat insulating layer is photographed using a scanning electron microscope (SEM) at a magnification of 200 times, and five straight lines each having a length of 400 μm are drawn in parallel at 40 μm intervals on the obtained cross-sectional photograph.
(ii) For each straight line drawn, count the number of porous structures that intersect with the straight line, and calculate the total sum.
(iii) Divide the calculated total by 5 to obtain the reference number of porous structures.
 図1に、多孔質構造体の基準個数の測定方法を説明するための模式図を示す。図1は、多孔質構造体などの大きさ、形状、充填状態を含めて、断熱層を何ら限定するものではない。図1に示すように、断熱層の厚さ方向の断面をSEMにより倍率200倍で撮影した断面写真10においては、多孔質構造体11、赤外線遮蔽粒子12、および無機繊維13が観察される。多孔質構造体11の基準個数を測定する手順は、以下のとおりである。まず、断面写真10に、五本の直線α、β、γ、δ、εを描く。五本の直線α、β、γ、δ、εの長さはいずれも400μmであり、直線同士の間隔は40μmである。次に、五本の直線α、β、γ、δ、εごとに、直線と交わる多孔質構造体11の個数を数えて、その総和を算出する。そして、算出された総和を5で除して基準個数を求める。例えば、描いた直線と交わる多孔質構造体11の個数が、直線αについてはv個、直線βについてはw個、直線γについてはx個、直線δについてはy個、直線εについてはz個である場合、基準個数は、「(v+w+x+y+z)/5」個になる。基準個数は、断熱層における多孔質構造体の充填状態を示す指標であり、10個以上であれば、多孔質構造体の粒子径が大きすぎず、大径の多孔質構造体間の隙間に小径の多孔質構造体および赤外線遮蔽粒子などが適度に充填された状態が実現されていると判断することができる。 FIG. 1 shows a schematic diagram for explaining the method for measuring the reference number of porous structures. FIG. 1 does not limit the heat insulating layer in any way, including the size, shape, and filling state of the porous structure. As shown in FIG. 1, a porous structure 11, infrared shielding particles 12, and inorganic fibers 13 are observed in a cross-sectional photograph 10 taken by SEM at a magnification of 200 times of a cross section of the heat insulating layer in the thickness direction. The procedure for measuring the reference number of porous structures 11 is as follows. First, five straight lines α, β, γ, δ, and ε are drawn on the cross-sectional photograph 10. The lengths of the five straight lines α, β, γ, δ, and ε are all 400 μm, and the interval between the straight lines is 40 μm. Next, for each of the five straight lines α, β, γ, δ, and ε, the number of porous structures 11 that intersect with the straight line is counted, and the total sum is calculated. Then, the reference number is obtained by dividing the calculated sum by 5. For example, the number of porous structures 11 that intersect with the drawn straight line is v for the straight line α, w for the straight line β, x for the straight line γ, y for the straight line δ, and z for the straight line ε. In this case, the reference number is "(v+w+x+y+z)/5". The reference number is an index that indicates the filling state of the porous structures in the heat insulation layer, and if it is 10 or more, the particle size of the porous structures is not too large and the particles are filled in the gaps between the large-diameter porous structures. It can be determined that a state in which small-diameter porous structures, infrared shielding particles, etc. are appropriately filled has been achieved.
 多孔質構造体は、表面および内部のうち少なくとも表面に疎水部位を有する。表面に疎水部位を有すると、細孔への水分などの染み込みを抑制することができるため、多孔性構造が維持され、断熱性が損なわれにくい。例えば、シランカップリング剤などで表面処理することにより、多孔質構造体の表面に疎水性などの機能を付与することができる。また、多孔質構造体の製造過程において、疎水基を付与するなどの疎水化処理を施してもよい。 The porous structure has a hydrophobic site at least on the surface and inside. When the surface has a hydrophobic site, it is possible to suppress moisture from seeping into the pores, so the porous structure is maintained and the heat insulation properties are less likely to be impaired. For example, functions such as hydrophobicity can be imparted to the surface of the porous structure by surface treatment with a silane coupling agent or the like. Further, in the manufacturing process of the porous structure, a hydrophobic treatment such as adding a hydrophobic group may be performed.
 多孔質構造体の種類は特に限定されない。一次粒子として、例えば、シリカ、アルミナ、ジルコニア、チタニアなどが挙げられる。なかでも化学的安定性に優れるという理由から、一次粒子がシリカである、すなわち複数のシリカ微粒子が連結して骨格をなすシリカエアロゲルが望ましい。また、複数のヒュームドシリカ微粒子が連結して骨格をなす凝集性構造体も好適である。 The type of porous structure is not particularly limited. Examples of primary particles include silica, alumina, zirconia, and titania. Among these, silica airgel in which the primary particles are silica, that is, a plurality of silica fine particles are linked to form a skeleton, is desirable because of its excellent chemical stability. Further, a cohesive structure in which a plurality of fumed silica fine particles are connected to form a skeleton is also suitable.
 シリカエアロゲルの製造方法は、特に限定されず、乾燥工程を常圧で行ったものでも、超臨界で行ったものでも構わない。例えば、疎水化処理を乾燥工程前に行うと、超臨界で乾燥する必要がなくなる、すなわち常圧で乾燥すればよいため、より容易かつ低コストに製造することができる。エアロゲルを製造する際の乾燥方法の違いにより、常圧で乾燥したものを「キセロゲル」、超臨界で乾燥したものを「エアロゲル」と呼び分けることがあるが、本明細書においては、その両方を含めて「エアロゲル」と称す。 The method for producing silica airgel is not particularly limited, and the drying step may be performed at normal pressure or supercritical. For example, if the hydrophobization treatment is performed before the drying step, there is no need for supercritical drying, that is, drying can be performed at normal pressure, making it easier and cheaper to manufacture. Due to the difference in drying methods used to produce airgel, those dried under normal pressure are sometimes called "xerogel" and those dried under supercritical conditions are called "aerogel"; however, in this specification, both are referred to as "xerogel". Together, they are referred to as "aerogel."
 [赤外線遮蔽粒子]
 赤外線遮蔽粒子は、熱源からの熱を吸収し、それを熱源側の表面から再放出することにより、熱源からの輻射熱を遮断して、特に高温下における断熱性の向上に寄与する。多孔質構造体間の隙間に充填され、赤外線遮蔽粒子同士や他の成分との連結を抑制して熱の伝達経路を形成しにくくするという観点から、赤外線遮蔽粒子の粒子径は比較的小さい方が望ましい。他方、粒子径が小さすぎると、赤外線が当たりにくくなり、さらには赤外線の散乱も充分ではなくなるため、輻射熱の遮断効果が発揮されにくい。このような観点から、赤外線遮蔽粒子の平均粒子径は、0.3μm以上22μm以下であるとよい。赤外線遮蔽粒子の平均粒子径についても、多孔質構造体の場合と同様に、レーザー回折・散乱法により測定される体積基準の粒度分布から求められるメジアン径(D50)を採用すればよく、市販品についてはカタログ値を採用してもよい。
[Infrared shielding particles]
The infrared shielding particles absorb heat from the heat source and re-emit it from the surface on the heat source side, thereby blocking radiant heat from the heat source and contributing to improved heat insulation, particularly at high temperatures. The particle size of the infrared shielding particles is relatively small from the viewpoint of filling the gaps between the porous structures and suppressing the connection between the infrared shielding particles and other components, making it difficult to form heat transfer paths. is desirable. On the other hand, if the particle size is too small, it becomes difficult for infrared rays to hit the particles, and furthermore, infrared rays are not scattered sufficiently, making it difficult to exhibit the effect of blocking radiant heat. From this point of view, the average particle diameter of the infrared shielding particles is preferably 0.3 μm or more and 22 μm or less. As for the average particle diameter of the infrared shielding particles, the median diameter (D 50 ) determined from the volume-based particle size distribution measured by laser diffraction/scattering method may be adopted, as in the case of the porous structure. Catalog values may be used for products.
 赤外線遮蔽粒子としては、炭化ケイ素、カオリナイト、モンモリロナイト、窒化ケイ素、マイカ、アルミナ、ジルコニア、窒化アルミニウム、酸化チタン、ケイ酸ジルコニウム、酸化亜鉛、酸化タンタル、酸化タングステン、酸化ニオブ、酸化インジウムスズ、酸化セリウム、炭化ホウ素、酸化マンガン、酸化スズ、酸化ビスマス、酸化鉄、酸化マグネシウム、チタン酸バリウムなどが挙げられる。なかでも、輻射熱の遮断効果を高めるという観点から、赤外線遮蔽粒子は、赤外線の波長領域における輻射率が0.6以上の高輻射率粒子を有することが望ましい。高輻射率粒子としては、炭化ケイ素、カオリナイト、窒化ケイ素、マイカ、アルミナ、ジルコニア、窒化アルミニウム、ケイ酸ジルコニウム、酸化セリウム、炭化ホウ素、酸化マンガン、酸化スズ、酸化鉄などが挙げられる。また、入射する赤外線を散乱させて輻射熱の遮断効果を高めるという観点から、赤外線の波長領域における屈折率が高い粒子を有する形態も有効である。例えば、可視光線の波長領域における屈折率が2.0以上の高屈折率粒子が好適である。高屈折率粒子としては、炭化ケイ素、酸化チタン、ジルコニア、窒化ケイ素、窒化アルミニウム、酸化亜鉛、酸化タンタル、酸化タングステン、酸化ニオブ、酸化セリウム、酸化マンガン、酸化スズ、酸化ビスマス、酸化鉄、チタン酸バリウムなどが挙げられる。 Infrared shielding particles include silicon carbide, kaolinite, montmorillonite, silicon nitride, mica, alumina, zirconia, aluminum nitride, titanium oxide, zirconium silicate, zinc oxide, tantalum oxide, tungsten oxide, niobium oxide, indium tin oxide, and Examples include cerium, boron carbide, manganese oxide, tin oxide, bismuth oxide, iron oxide, magnesium oxide, barium titanate, and the like. In particular, from the viewpoint of enhancing the effect of blocking radiant heat, it is desirable that the infrared shielding particles have high emissivity particles having an emissivity of 0.6 or more in the infrared wavelength region. Examples of high emissivity particles include silicon carbide, kaolinite, silicon nitride, mica, alumina, zirconia, aluminum nitride, zirconium silicate, cerium oxide, boron carbide, manganese oxide, tin oxide, iron oxide, and the like. Furthermore, from the viewpoint of scattering incident infrared rays and enhancing the effect of blocking radiant heat, a form having particles having a high refractive index in the infrared wavelength region is also effective. For example, high refractive index particles having a refractive index of 2.0 or more in the visible light wavelength region are suitable. High refractive index particles include silicon carbide, titanium oxide, zirconia, silicon nitride, aluminum nitride, zinc oxide, tantalum oxide, tungsten oxide, niobium oxide, cerium oxide, manganese oxide, tin oxide, bismuth oxide, iron oxide, titanate. Examples include barium.
 例えば、炭化ケイ素、酸化チタン、窒化ケイ素、マイカ、アルミナ、窒化アルミニウム、炭化ホウ素、酸化鉄、酸化マグネシウムなどは、比熱が比較的大きいため、熱容量が大きく、粒子自体が温まりにくい。この点においても、断熱層の断熱性向上に寄与する。加えて、耐熱性も高いため、断熱層の耐熱性向上にも寄与する。特に、炭化ケイ素は、800℃程度の高温雰囲気でも熱伝導率の上昇が少ないため好適である。 For example, silicon carbide, titanium oxide, silicon nitride, mica, alumina, aluminum nitride, boron carbide, iron oxide, magnesium oxide, etc. have a relatively large specific heat, so they have a large heat capacity and the particles themselves are difficult to heat. In this respect as well, it contributes to improving the heat insulating properties of the heat insulating layer. In addition, since it has high heat resistance, it also contributes to improving the heat resistance of the heat insulating layer. In particular, silicon carbide is suitable because its thermal conductivity does not increase much even in a high temperature atmosphere of about 800°C.
 赤外線遮蔽粒子の含有量は、断熱層の全体の質量を100質量%とした場合の10質量%以上である(前述の条件(b))。輻射による熱移動の抑制効果を高めて、高温下での断熱性をより向上させるという観点から、赤外線遮蔽粒子の含有量を15質量%以上、さらには20質量%以上にするとよい。また、多孔質構造体および赤外線遮蔽粒子を合わせた含有量は、断熱層の全体の質量を100質量%とした場合の70質量%以上である(前述の条件(c))。断熱性をより向上させるという観点から、多孔質構造体および赤外線遮蔽粒子の合計含有量を、75質量%以上、さらには80質量%以上にするとよい。また、赤外線遮蔽粒子の含有量に対する多孔質構造体の含有量の比率[多孔質構造体の含有量(質量%)/赤外線遮蔽粒子の含有量(質量%)]は、1.2以上である(前述の条件(d))。赤外線遮蔽粒子に対して多孔質構造体を質量比で1.2倍以上配合することにより、赤外線遮蔽粒子同士の連結を多孔質構造体により阻害して、熱の伝達経路の形成を抑制することができる。なお、赤外線遮蔽粒子の含有量を比較的多くして、輻射による熱移動の抑制効果を高めるという観点から、赤外線遮蔽粒子の含有量に対する多孔質構造体の含有量の比率は、8以下であると好適である。 The content of the infrared shielding particles is 10% by mass or more when the total mass of the heat insulating layer is 100% by mass (condition (b) described above). From the viewpoint of increasing the effect of suppressing heat transfer due to radiation and further improving the heat insulation properties at high temperatures, the content of the infrared shielding particles is preferably 15% by mass or more, more preferably 20% by mass or more. Further, the combined content of the porous structure and the infrared shielding particles is 70% by mass or more when the total mass of the heat insulating layer is 100% by mass (condition (c) described above). From the viewpoint of further improving the heat insulation properties, the total content of the porous structure and the infrared shielding particles is preferably 75% by mass or more, more preferably 80% by mass or more. Further, the ratio of the content of the porous structure to the content of the infrared shielding particles [content of the porous structure (mass%)/content of the infrared shielding particles (mass%)] is 1.2 or more. (Condition (d) above). By blending the porous structure with a mass ratio of 1.2 times or more to the infrared shielding particles, the porous structure inhibits the connection between the infrared shielding particles and suppresses the formation of heat transfer paths. Can be done. In addition, from the viewpoint of increasing the content of the infrared shielding particles to increase the effect of suppressing heat transfer due to radiation, the ratio of the content of the porous structure to the content of the infrared shielding particles is 8 or less. and is suitable.
 [無機繊維]
 無機繊維は、多孔質構造体の周りに物理的に絡み合って存在することにより、断熱層の機械的強度を向上させると共に、多孔質構造体の脱落を抑制する。無機繊維の種類は特に限定されないが、耐熱性、機械的強度などを考慮すると、ガラス繊維、アルミナ繊維などのセラミック繊維が好適である。無機繊維の含有量は、断熱層の全体の質量を100質量%とした場合の5質量%以上25質量%以下である(前述の条件(a))。無機繊維の含有量をこの範囲にすることにより、無機繊維による補強効果を発揮させつつ、過度に熱の伝達経路を形成しないようにする。無機繊維の長さは、補強効果と熱の伝達経路の形成抑制との両方を考慮して、16mm以下であることが望ましい。
[Inorganic fiber]
The inorganic fibers are present in a physically entangled manner around the porous structure, thereby improving the mechanical strength of the heat insulating layer and suppressing the porous structure from falling off. The type of inorganic fiber is not particularly limited, but in consideration of heat resistance, mechanical strength, etc., ceramic fibers such as glass fiber and alumina fiber are suitable. The content of the inorganic fibers is 5% by mass or more and 25% by mass or less when the total mass of the heat insulating layer is 100% by mass (the above-mentioned condition (a)). By setting the content of the inorganic fibers within this range, the reinforcing effect of the inorganic fibers can be exhibited while preventing the formation of excessive heat transfer paths. The length of the inorganic fibers is desirably 16 mm or less, considering both the reinforcing effect and the suppression of formation of heat transfer paths.
 [その他の成分]
 断熱層は、多孔質構造体、赤外線遮蔽粒子、および無機繊維の他に、有機添加剤、補強粒子などの他の成分を含んでいてもよい。ちなみに、断熱層の自立性を確保する、すなわち、断熱層単独で自重を支えることができ、断熱層単独で取り扱いが可能な状態にするという観点から、多孔質構造体などの成分を結着するバインダーを含む形態が挙げられる。しかしながら、多孔質構造体などの成分の表面や隙間にバインダーが存在すると、バインダーを介して熱の伝達経路が形成されるおそれがある。したがって、熱の伝達経路の形成を抑制し、高温下における高い断熱性を実現するという観点においては、断熱層はバインダーを有しない形態が望ましい。
[Other ingredients]
In addition to the porous structure, infrared shielding particles, and inorganic fibers, the heat insulating layer may also contain other components such as organic additives and reinforcing particles. By the way, from the perspective of ensuring the independence of the insulation layer, that is, making it possible for the insulation layer to support its own weight and be handled on its own, components such as porous structures are bound together. Examples include forms containing a binder. However, if a binder is present on the surface or in the gaps of a component such as a porous structure, there is a risk that a heat transfer path will be formed through the binder. Therefore, from the viewpoint of suppressing the formation of heat transfer paths and achieving high heat insulation properties at high temperatures, it is desirable that the heat insulation layer has no binder.
 (1)有機添加剤
 表面や内部に疎水部位を有する多孔質構造体は、水になじみにくい。なかでもシリカエアロゲル、中空シリカ、ヒュームドシリカ凝集性構造体などは比重が小さいため、水に浮きやすい。このため、多孔質構造体の水懸濁性を向上させて、水を溶媒として断熱層用組成物を調製する際に多孔質構造体を分散しやすくする観点や、断熱層の製造方法に合わせて断熱層用組成物のレオロジー、保水性を調整するという観点においては、有機添加剤を配合することが望ましい。
(1) Organic additives Porous structures that have hydrophobic sites on the surface or inside are difficult to absorb water. Among these, silica airgel, hollow silica, and fumed silica cohesive structures have low specific gravity, so they easily float on water. For this reason, it is necessary to improve the water suspension of the porous structure to make it easier to disperse the porous structure when preparing a composition for a heat insulating layer using water as a solvent, and to improve the water dispersibility of the porous structure, and to adjust the From the viewpoint of adjusting the rheology and water retention of the composition for a heat insulating layer, it is desirable to incorporate an organic additive.
 有機添加剤としては、例えば、界面活性剤を使用すればよい。界面活性剤の種類は、特に限定されるものではなく、イオン性界面活性剤(カチオン系界面活性剤、アニオン系界面活性剤、両性界面活性剤)および非イオン性界面活性剤の中から適宜選択すればよい。界面活性剤は、一種を単独で使用してもよく、二種以上を併用してもよい。例えば、イオン性界面活性剤を使用すると、比較的少量でも断熱層用組成物を高粘度化したり、断熱層用組成物中の多孔質構造体などの成分を分散安定化することができる。イオン性界面活性剤としては、カルボキシメチルセルロースナトリウム(CMC-Na)、ポリカルボン酸アミン塩、ポリカルボン酸アンモニウム塩、ポリカルボン酸ナトリウム塩、TEMPO酸化セルロースナノファイバー(CNF―Na)などが挙げられる。非イオン性界面活性剤を使用すると、断熱層用組成物を調製する際、多孔質構造体などの成分が溶媒中に取り込まれやすくなる。また、断熱層用組成物中でこれらの成分が凝集や分離した際に、再分散しやすくなったり、乾燥して断熱層を成形する際に溶媒が排出されやすくなる。非イオン性界面活性剤としては、ポリエチレンオキサイド(PEO)、ポリビニルアルコール(PVA)などが挙げられる。また、非イオン性界面活性剤およびイオン性界面活性剤を併用すると、前述した各々による効果を任意に調整することができるため、好適である。例えば、PEOの保水性はそれほど高くない。このため、断熱層用組成物を調製する際に多孔質構造体間の隙間に水が入りこみにくく、乾燥時に水が蒸発する際にボイドが発生しにくい。結果、多孔質構造体間の隙間に赤外線遮蔽粒子が充填されやすくなる。また、大径の多孔質構造体間の隙間に小径の多孔質構造体が充填されやすくなる。 As the organic additive, for example, a surfactant may be used. The type of surfactant is not particularly limited, and can be appropriately selected from ionic surfactants (cationic surfactants, anionic surfactants, amphoteric surfactants) and nonionic surfactants. do it. One type of surfactant may be used alone, or two or more types may be used in combination. For example, when an ionic surfactant is used, even in a relatively small amount, it is possible to increase the viscosity of the composition for a heat insulating layer and to stabilize the dispersion of components such as porous structures in the composition for a heat insulating layer. Examples of the ionic surfactant include carboxymethyl cellulose sodium (CMC-Na), polycarboxylic acid amine salt, polycarboxylic acid ammonium salt, polycarboxylic acid sodium salt, TEMPO oxidized cellulose nanofiber (CNF-Na), and the like. When a nonionic surfactant is used, components such as a porous structure are more likely to be incorporated into a solvent when preparing a composition for a thermal insulation layer. In addition, when these components aggregate or separate in the heat insulating layer composition, they tend to be redispersed, and the solvent tends to be discharged when drying and forming the heat insulating layer. Examples of nonionic surfactants include polyethylene oxide (PEO) and polyvinyl alcohol (PVA). Further, it is preferable to use a nonionic surfactant and an ionic surfactant in combination because the effects of each of the above-mentioned surfactants can be adjusted as desired. For example, PEO's water retention is not very high. Therefore, when preparing the composition for a heat insulating layer, water is less likely to enter the gaps between the porous structures, and voids are less likely to occur when water evaporates during drying. As a result, the gaps between the porous structures are easily filled with infrared shielding particles. Moreover, the gaps between the large-diameter porous structures are easily filled with the small-diameter porous structures.
 有機添加剤を配合する場合、高温に晒された際に分解したり炭化したりして生成した物質が熱の伝達経路を形成して、断熱性を低下させるおそれがある。例えば、600℃下での加熱残分が50質量%以下のものは、高温下で断熱性を低下させる生成物が少ないため好適である。具体的には、PEO、CMC-Na、ポリカルボン酸アミン塩、ポリカルボン酸アンモニウム塩、ポリカルボン酸ナトリウム塩、TEMPO酸化セルロースナノファイバー(CNF―Na)、PVAなどが挙げられる。加熱残分は、熱重量分析(TGA)により測定すればよい。具体的には、有機添加剤の約5mgを白金製のパンに採取し、窒素ガス雰囲気下、昇温速度20℃/分で、室温から600℃まで加熱し、加熱前後の質量から次式(I)により算出する。
加熱残分(%)=W/W×100 ・・・(I)
[W:加熱前のサンプル質量、W:加熱後のサンプル質量]
When blending organic additives, there is a risk that substances generated by decomposition or carbonization when exposed to high temperatures may form a heat transfer path and reduce the heat insulation properties. For example, one having a heating residue of 50% by mass or less at 600° C. is suitable because there are few products that deteriorate the heat insulation properties at high temperatures. Specific examples include PEO, CMC-Na, polycarboxylic acid amine salt, polycarboxylic acid ammonium salt, polycarboxylic acid sodium salt, TEMPO oxidized cellulose nanofiber (CNF-Na), PVA, and the like. The heating residue may be measured by thermogravimetric analysis (TGA). Specifically, approximately 5 mg of the organic additive was collected in a platinum pan, heated from room temperature to 600 °C at a temperature increase rate of 20 °C/min in a nitrogen gas atmosphere, and the mass before and after heating was calculated using the following formula ( Calculated by I).
Heating residue (%) = W 1 /W 0 ×100 ... (I)
[W 0 : Sample mass before heating, W 1 : Sample mass after heating]
 多孔質構造体などの成分の表面や隙間に有機添加剤が存在すると、それを介して熱の伝達経路が形成されるおそれがある。したがって、熱の伝達経路の形成を抑制するという観点においては、有機添加剤の含有量は、断熱層の全体の質量を100質量%とした場合の10質量%以下、さらには7質量%以下であることが望ましい。 If an organic additive is present on the surface or in the gaps of a component such as a porous structure, there is a risk that a heat transfer path will be formed through it. Therefore, from the viewpoint of suppressing the formation of heat transfer paths, the content of the organic additive should be 10% by mass or less, further 7% by mass or less, based on the total mass of the heat insulating layer as 100% by mass. It is desirable that there be.
 (2)補強粒子
 断熱層の機械的強度を向上させるという観点から、断熱層に補強粒子を配合してもよい。補強粒子の種類は特に限定されず、例えば、沈降法シリカ、ゲル法シリカ、溶融法シリカ、ウォラストナイト、チタン酸カリウム、ケイ酸マグネシウム、ガラスフレーク、炭酸カルシウム、硫酸バリウムなどの比較的硬度、比表面積が大きい無機系粒子を用いることができる。
(2) Reinforcing particles From the viewpoint of improving the mechanical strength of the heat insulating layer, reinforcing particles may be added to the heat insulating layer. The type of reinforcing particles is not particularly limited, and examples include relatively hard materials such as precipitated silica, gel silica, fused silica, wollastonite, potassium titanate, magnesium silicate, glass flakes, calcium carbonate, and barium sulfate; Inorganic particles with a large specific surface area can be used.
 (3)難燃剤
 難燃剤を配合すると、断熱層に難燃性を付与することができる。難燃剤は、ハロゲン系、リン系、金属水酸化物系などの既に公知のものを使用すればよい。環境負荷を考慮すると、リン系難燃剤を用いることが望ましい。リン系難燃剤としては、ポリリン酸アンモニウム、赤リン、リン酸エステルなどが挙げられる。なかでも、使用中に水分と接触しても難燃剤が流出しにくいという理由から、水に不溶なものが望ましく、例えばポリリン酸アンモニウムが好適である。
(3) Flame retardant Adding a flame retardant can impart flame retardancy to the heat insulating layer. As the flame retardant, known flame retardants such as halogen-based, phosphorus-based, metal hydroxide-based, etc. may be used. Considering the environmental impact, it is desirable to use phosphorus-based flame retardants. Examples of phosphorus-based flame retardants include ammonium polyphosphate, red phosphorus, and phosphate esters. Among these, those that are insoluble in water are desirable because the flame retardant is unlikely to flow out even if it comes into contact with moisture during use, and ammonium polyphosphate is preferred, for example.
 <基材>
 本開示の断熱材は、前述した断熱層を備えればよく、これ以外の構成については特に限定されない。例えば、断熱層を支持する基材を備えて構成することができる。この場合、基材を断熱層の厚さ方向の片側にのみ配置してもよく、断熱層を挟持するように両側に配置してよい。また、一枚の基材で断熱層を包んだ被覆体としてもよい。断熱層と基材との間に接着層を介在させてもよい。接着層は、接着成分の他、難燃剤などを含んでもよい。
<Base material>
The heat insulating material of the present disclosure only needs to include the heat insulating layer described above, and other configurations are not particularly limited. For example, it can be configured to include a base material that supports a heat insulating layer. In this case, the base material may be placed only on one side of the heat insulating layer in the thickness direction, or may be placed on both sides so as to sandwich the heat insulating layer. Alternatively, it may be a covering body in which the heat insulating layer is wrapped in a single base material. An adhesive layer may be interposed between the heat insulating layer and the base material. The adhesive layer may contain a flame retardant and the like in addition to the adhesive component.
 基材の材質は、布、樹脂、紙、鋼板などが挙げられる。布を構成する繊維としては、ガラス繊維、ロックウール、セラミックファイバー、アルミナ繊維、シリカ繊維、炭素繊維、金属繊維、ポリイミド繊維、アラミド繊維、ポリフェニレンサルファイド(PPS)繊維などが挙げられる。セラミックファイバーとしては、リフラクトリーセラミックファイバー(RCF)、多結晶質アルミナファイバー(Polycrystalline Wool:PCW)、アルカリアースシリケート(AES)ファイバーが知られている。なかでも、AESファイバーは、生体溶解性を有するためより安全性が高い。樹脂としては、ポリエチレンテレフタレート(PET)、ポリイミド、ポリアミド、PPSなどが挙げられる。紙としては、パルプ、パルプおよびケイ酸マグネシウムの複合材などが挙げられる。鋼板としては、ガルバリウム鋼板(登録商標)、トタン板、ステンレス鋼(SUS)板、鉄板、チタン板などが挙げられる。基材の形状は特に限定されず、織布、不織布、フィルム、シートなどが挙げられる。基材は、一層からなるものでも、同じ材料または異なる材料が二層以上に積層された積層体でもよい。 Examples of the material of the base material include cloth, resin, paper, and steel plate. Examples of the fibers constituting the cloth include glass fibers, rock wool, ceramic fibers, alumina fibers, silica fibers, carbon fibers, metal fibers, polyimide fibers, aramid fibers, and polyphenylene sulfide (PPS) fibers. As ceramic fibers, refractory ceramic fibers (RCF), polycrystalline alumina fibers (PCW), and alkaline earth silicate (AES) fibers are known. Among them, AES fiber has higher safety because it has biosolubility. Examples of the resin include polyethylene terephthalate (PET), polyimide, polyamide, PPS, and the like. Examples of paper include pulp, a composite of pulp and magnesium silicate, and the like. Examples of the steel plate include galvalume steel plate (registered trademark), galvanized iron plate, stainless steel (SUS) plate, iron plate, titanium plate, and the like. The shape of the base material is not particularly limited, and examples include woven fabric, nonwoven fabric, film, and sheet. The base material may consist of a single layer or may be a laminate in which two or more layers of the same material or different materials are laminated.
 例えば、ガラスクロスなど、ガラス繊維や金属繊維などの無機繊維から製造される布帛(織布)、不織布や、パルプおよびケイ酸マグネシウムの複合材として製造される耐火断熱紙は、熱伝導率が比較的小さく、高温雰囲気においても形状保持性が高い。また、耐熱性が高い基材を採用すると、高い耐熱性が要求される用途にも適用することができるため、本開示の断熱材の用途が広がる。さらに、耐火性を有する基材を採用すると、安全性がより向上する。耐熱性が高い基材は、ガラス繊維、ロックウール、セラミックファイバー、ポリイミド、PPSなどから製造すればよく、具体的には、ガラス繊維不織布、ガラスクロス、アルミガラスクロス、AESウールペーパー、ポリイミド繊維不織布などが挙げられる。 For example, fabrics (woven fabrics) and non-woven fabrics made from inorganic fibers such as glass fibers and metal fibers, such as glass cloth, and fireproof insulation paper made as a composite material of pulp and magnesium silicate have comparatively high thermal conductivity. It has a small size and has high shape retention even in high-temperature environments. Furthermore, if a base material with high heat resistance is employed, the heat insulating material of the present disclosure can be used in applications that require high heat resistance, thereby expanding the applications of the heat insulating material of the present disclosure. Furthermore, safety is further improved by employing a base material having fire resistance. The base material with high heat resistance may be manufactured from glass fiber, rock wool, ceramic fiber, polyimide, PPS, etc. Specifically, glass fiber nonwoven fabric, glass cloth, aluminum glass cloth, AES wool paper, polyimide fiber nonwoven fabric, etc. Examples include.
 <断熱材の製造方法>
 本開示の断熱材は、多孔質構造体、赤外線遮蔽粒子、および無機繊維などを含む材料を加圧成形して製造することができる。あるいは、液状(スラリー状を含む)の断熱層用組成物を基材に塗布、乾燥して製造することができる。塗布には、刷毛塗りしたり、ブレードコーター、バーコーター、ダイコーター、コンマコーター(登録商標)、ロールコーターなどの塗工機や、スプレーなどを使用すればよい。あるいは、基材を断熱層用組成物に浸漬したり、抄造方法により断熱層用組成物を基材上に形成させるなどして製造してもよい。乾燥は、80~180℃の温度下で、数分~数十分程度行えばよい。
<Method for manufacturing insulation material>
The heat insulating material of the present disclosure can be manufactured by pressure molding a material containing a porous structure, infrared shielding particles, inorganic fibers, and the like. Alternatively, it can be manufactured by applying a liquid (including slurry) composition for a heat insulating layer onto a base material and drying it. The coating may be applied using a brush, a coating machine such as a blade coater, a bar coater, a die coater, a comma coater (registered trademark), a roll coater, or a sprayer. Alternatively, the heat insulating layer composition may be manufactured by dipping the base material in the heat insulating layer composition or by forming the heat insulating layer composition on the base material by a papermaking method. Drying may be carried out at a temperature of 80 to 180° C. for several minutes to several tens of minutes.
 断熱層の厚さは、用途に応じて適宜決定すればよく、例えば、断熱性の観点から、0.1mm以上、0.5mm以上、さらには1mm以上にすることが望ましい。断熱層が厚すぎると、コスト高になるだけでなく、強度が低下して脆くなる。このため、例えば、10mm以下、8mm以下が好適である。特に薄型化、柔軟性を高めるなどの観点においては、5mm以下、さらには3mm以下にすることが望ましい。 The thickness of the heat insulating layer may be determined as appropriate depending on the application, and for example, from the viewpoint of heat insulation, it is desirable to set it to 0.1 mm or more, 0.5 mm or more, and even 1 mm or more. If the insulation layer is too thick, it not only increases cost, but also reduces strength and becomes brittle. For this reason, for example, 10 mm or less, 8 mm or less is suitable. In particular, from the viewpoint of reducing the thickness and increasing flexibility, it is desirable that the thickness be 5 mm or less, more preferably 3 mm or less.
 次に、実施例を挙げて本開示をより具体的に説明する。 Next, the present disclosure will be described in more detail with reference to Examples.
 (1)断熱材サンプルの製造
 後出の表1に示す組成の断熱材サンプルを製造した。まず、シリカエアロゲル、赤外線遮蔽粒子、ガラス繊維、有機添加剤、および補強粒子を混錬機((株)井上製作所製「トリミックス(登録商標)」)に投入して1分間撹拌混合した。そのまま撹拌を続けながら、固形分40~50%になるように水を添加すると共に、無機バインダーを配合するサンプル(後出の表1における比較例4、5)についてはコロイダルシリカ(シリカ粒子の水分散液;シグマアルドリッチ社製「LUDOX(登録商標) LS」)を添加した。それからさらに、撹拌混合を15分間行った。その後、2分間撹拌を行うごとに撹拌を停止して、容器内壁面、ブレード表面などに付着した材料をへらでかき落としながら、追加で30分間の撹拌混合を行い、粘土状の断熱層用組成物を製造した。
(1) Manufacture of heat insulating material samples A heat insulating material sample having the composition shown in Table 1 below was manufactured. First, silica airgel, infrared shielding particles, glass fibers, organic additives, and reinforcing particles were put into a kneader ("Trimix (registered trademark)" manufactured by Inoue Seisakusho Co., Ltd.) and stirred and mixed for 1 minute. While continuing to stir, water was added to make the solid content 40 to 50%, and for samples containing an inorganic binder (Comparative Examples 4 and 5 in Table 1 below), colloidal silica (water of silica particles) was added. A dispersion liquid ("LUDOX (registered trademark) LS" manufactured by Sigma-Aldrich) was added. Then, stirring and mixing were further performed for 15 minutes. After that, stirring was continued for an additional 30 minutes while stopping the stirring every 2 minutes and scraping off the material adhering to the inner wall of the container, the blade surface, etc. with a spatula, and the mixture was mixed for an additional 30 minutes. was manufactured.
 使用した材料の詳細は以下のとおりである。
シリカエアロゲル粉末:キャボットコーポレーション製「Aerogel Particles P200」、粒子径0.1mm~1.2mm。
ガラス繊維:日本電気硝子(株)製「ウェットチョップ」、長さ3mm、フィラメント径6.5μm。
炭化ケイ素(SiC)粉末:(株)不二製作所製「フジランダムGC」、粒度規格#4000。
酸化チタン(TiO)粉末:東邦チタニウム(株)製「高純度酸化チタンHT0110」。
PEO:シグマアルドリッチ社製のポリエチレンオキシド、粘度平均分子量~100万。
CMC:シグマアルドリッチ社製のカルボキシルメチルセルロースナトリウム塩、分子量38万。
湿式シリカ:東ソー・シリカ(株)製「Nipsil(登録商標) NS-K」。
Details of the materials used are as follows.
Silica airgel powder: "Aerogel Particles P200" manufactured by Cabot Corporation, particle size 0.1 mm to 1.2 mm.
Glass fiber: "Wet Chop" manufactured by Nippon Electric Glass Co., Ltd., length 3 mm, filament diameter 6.5 μm.
Silicon carbide (SiC) powder: "Fuji Random GC" manufactured by Fuji Seisakusho Co., Ltd., particle size standard #4000.
Titanium oxide (TiO 2 ) powder: “High purity titanium oxide HT0110” manufactured by Toho Titanium Co., Ltd.
PEO: Polyethylene oxide manufactured by Sigma-Aldrich, viscosity average molecular weight ~1 million.
CMC: Carboxylmethylcellulose sodium salt manufactured by Sigma-Aldrich, molecular weight 380,000.
Wet silica: "Nipsil (registered trademark) NS-K" manufactured by Tosoh Silica Co., Ltd.
 次に、ガラス繊維ペーパーの上にSUS製の第一スペーサー板を重ねた台座を準備した。第一スペーサー板の厚さは4mmであり、中央に150mm角の正方形状の注入孔が形成されている。製造した断熱層用組成物を第一スペーサー板の注入孔に充填し、板状に成形した。その後、第一スペーサー板を外し、別の第二スペーサー板を配置して、その上からガラス繊維ペーパーを重ね、「ガラス繊維ペーパー/断熱層用組成物/第二スペーサー板/ガラス繊維ペーパー」からなる積層体を製造した。第二スペーサー板の厚さは3mmであり、第一スペーサー板と同様に、中央に150mm角の正方形状の注入孔が形成されている。第二スペーサー板の注入孔には断熱層用組成物が配置されている。これとは別に、厚さ5mm、320mm角のアルミニウム製の第一板材と、厚さ1mm、320mm角のアルミニウム製の第二板材と、を準備した。第一板材の一面には、複数の溝部が形成されている。複数の溝部は、各々、幅2.5mm、深さ3mm、長さ200mmの直線状を呈し、5mm間隔で平行に形成されている。第二板材には、直径1mmのパンチング穴が2mm間隔で全体に形成されている。第一板材の一面側に第二板材を重ね、その上に積層体を配置した。そして、積層体の上に第二板材を載せ、さらに第一板材を、溝部が形成されている一面が第二板材側になるように重ねた。この状態で、温度165℃、荷重約98kNにて、熱プレスによる加圧乾燥を30分間行った。その後、常温まで放冷し、第一板材、第二板材、上下のガラス繊維ペーパーおよび第二スペーサー板を取り外して、厚さ3mmの板状の断熱材サンプルを得た。 Next, a pedestal was prepared in which a first spacer plate made of SUS was placed on top of glass fiber paper. The thickness of the first spacer plate is 4 mm, and a 150 mm square injection hole is formed in the center. The produced composition for a heat insulating layer was filled into the injection hole of the first spacer plate and formed into a plate shape. After that, the first spacer plate is removed, another second spacer plate is placed, and glass fiber paper is layered on top of it. A laminate was manufactured. The thickness of the second spacer plate is 3 mm, and like the first spacer plate, a square injection hole of 150 mm square is formed in the center. A heat insulating layer composition is placed in the injection hole of the second spacer plate. Separately, a first plate material made of aluminum and having a thickness of 5 mm and a square size of 320 mm, and a second plate material made of aluminum and having a thickness of 1 mm and a square size of 320 mm were prepared. A plurality of grooves are formed on one surface of the first plate. The plurality of grooves each have a linear shape of 2.5 mm in width, 3 mm in depth, and 200 mm in length, and are formed in parallel at 5 mm intervals. Punching holes with a diameter of 1 mm are formed throughout the second plate material at intervals of 2 mm. The second plate material was stacked on one side of the first plate material, and the laminate was placed on top of the second plate material. Then, the second plate material was placed on top of the laminate, and the first plate material was further stacked so that one side on which the groove was formed was on the second plate material side. In this state, pressure drying using a hot press was performed for 30 minutes at a temperature of 165° C. and a load of about 98 kN. Thereafter, it was allowed to cool to room temperature, and the first plate material, second plate material, upper and lower glass fiber papers, and second spacer plate were removed to obtain a plate-shaped heat insulating material sample with a thickness of 3 mm.
 得られた断熱材サンプルのうち、後出の表1における実施例1、3のサンプルについて、シリカエアロゲルの基準個数を測定した。測定方法は以下のとおりである。まず、断熱材サンプルから所定の大きさの試験片を切り出し、前処理として白金コートを行った。その後、日本電子(株)製「クロスセクションポリッシャ(登録商標) SM09010」を使用して、加速電圧4kV、加工時間20時間にて断面出し加工を行った。次に、加工後の断面をオスミウムコートにより導電化処理し、(株)日立製作所製「SEM S-3400N」により反射電子像、加速電圧15kV、倍率200倍にて断面写真を撮影した。得られた断面写真に、長さ400μmの直線を40μm間隔で平行に五本描き、描いた直線ごとに、直線と交わるシリカエアロゲルの個数を数えた。そして、シリカエアロゲルの個数を合計し、その値を5で除して、基準個数を求めた。結果、実施例1のサンプルの基準個数は26.4、実施例3のサンプルの基準個数は16.2であった。 Among the obtained insulation material samples, the reference number of silica airgel was measured for the samples of Examples 1 and 3 in Table 1 below. The measurement method is as follows. First, a test piece of a predetermined size was cut out from a heat insulating material sample and coated with platinum as a pretreatment. Thereafter, cross section processing was performed using a "Cross Section Polisher (registered trademark) SM09010" manufactured by JEOL Ltd. at an acceleration voltage of 4 kV and a processing time of 20 hours. Next, the cross section after processing was treated with an osmium coat to make it conductive, and a backscattered electron image and a cross-sectional photograph were taken using a "SEM S-3400N" manufactured by Hitachi, Ltd. at an acceleration voltage of 15 kV and a magnification of 200 times. Five straight lines each having a length of 400 μm were drawn in parallel at 40 μm intervals on the obtained cross-sectional photograph, and the number of silica airgel that intersected each straight line was counted. Then, the number of silica airgel was totaled, and the value was divided by 5 to obtain a reference number. As a result, the reference number of samples of Example 1 was 26.4, and the reference number of samples of Example 3 was 16.2.
 (2)熱伝導率の測定
 製造した断熱材サンプルの熱伝導率を、京都電子工業(株)製「迅速熱伝導率計 QTM-700」および「高温対応型プローブ PD-31N」を使用して、次のようにして測定した。まず、断熱材サンプルを二枚重ねた状態でプローブの上側と下側とを挟み、上から断熱材サンプルが潰れない程度の質量の重しを載せて電気炉内に設置した。それから、電気炉内の温度を800℃に昇温し、炉内温度が安定した後、熱伝導率を測定した。
(2) Measurement of thermal conductivity The thermal conductivity of the manufactured insulation material sample was measured using the “Quick Thermal Conductivity Meter QTM-700” and “High Temperature Probe PD-31N” manufactured by Kyoto Electronics Co., Ltd. , was measured as follows. First, the upper and lower sides of the probe were sandwiched between two heat insulation samples stacked one on top of the other, and a weight was placed on top of the probe to prevent it from being crushed, and the probe was placed in an electric furnace. Then, the temperature inside the electric furnace was raised to 800° C., and after the temperature inside the furnace was stabilized, the thermal conductivity was measured.
 (3)断熱性の評価
 表1に、断熱材サンプルの組成、および熱伝導率の測定結果に基づく断熱性の評価結果を示す。断熱性の評価は、熱伝導率が0.3W/m・K未満であれば合格(表中、○印で示す)、熱伝導率が0.3W/m・K以上であれば不合格(表中、×印で示す)とした。
Figure JPOXMLDOC01-appb-T000001
(3) Evaluation of heat insulation properties Table 1 shows the composition of the heat insulating material sample and the evaluation results of heat insulation properties based on the measurement results of thermal conductivity. The thermal insulation evaluation is passed if the thermal conductivity is less than 0.3 W/m・K (indicated by a circle in the table), and rejected if the thermal conductivity is 0.3 W/m・K or more ( (indicated by an x in the table).
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、前述した(a)~(d)の条件を満足する実施例1~7のサンプルは、いずれも熱伝導率が0.3W/m・K未満であり、高温下においても断熱性に優れることが確認された。これに対して、比較例1のサンプルは、赤外線遮蔽粒子を含まず、条件(b)~(d)を満足しない。比較例2のサンプルは、赤外線遮蔽粒子の含有量に対するシリカエアロゲルの含有量の比率が0.5であり、条件(d)を満足しない。比較例3のサンプルは、赤外線遮蔽粒子の含有量が0.5質量%であり、条件(b)を満足しない。比較例4のサンプルは、赤外線遮蔽粒子を含まず、条件(b)~(d)を満足しない。比較例5のサンプルは、シリカエアロゲルと赤外線遮蔽粒子との合計含有量が50質量%であり、条件(c)を満足しない。したがって、比較例1~5のサンプルは、いずれも熱伝導率が0.3W/m・K以上になり、高温下における所望の断熱性を得ることはできなかった。 As shown in Table 1, the samples of Examples 1 to 7 that satisfy the conditions (a) to (d) above all have a thermal conductivity of less than 0.3 W/m・K, and can be used at high temperatures. It was also confirmed that it has excellent heat insulation properties. In contrast, the sample of Comparative Example 1 does not contain infrared shielding particles and does not satisfy conditions (b) to (d). The sample of Comparative Example 2 has a ratio of silica airgel content to infrared shielding particle content of 0.5, and does not satisfy condition (d). The sample of Comparative Example 3 has an infrared shielding particle content of 0.5% by mass, and does not satisfy condition (b). The sample of Comparative Example 4 does not contain infrared shielding particles and does not satisfy conditions (b) to (d). The sample of Comparative Example 5 has a total content of silica airgel and infrared shielding particles of 50% by mass, and does not satisfy condition (c). Therefore, the samples of Comparative Examples 1 to 5 all had a thermal conductivity of 0.3 W/m·K or more, and it was not possible to obtain the desired heat insulation properties at high temperatures.
 本開示の断熱材は、車両用断熱材、住宅用断熱材、電子機器用断熱材、保温保冷容器用断熱材などに好適である。なかでも、高温雰囲気における断熱性が要求されるバッテリーパック、加熱式タバコ、防火用断熱シートなどへの使用が好適である。 The heat insulating material of the present disclosure is suitable for use as a heat insulating material for vehicles, a heat insulating material for houses, a heat insulating material for electronic devices, a heat insulating material for heat/cold containers, and the like. Among these, it is suitable for use in battery packs, heat-not-burn cigarettes, heat-insulating sheets for fire prevention, etc., which require insulation properties in high-temperature atmospheres.
10:断熱層(断面写真)、11:多孔質構造体、12:赤外線遮蔽粒子、13:無機繊維。 10: Heat insulation layer (cross-sectional photo), 11: Porous structure, 12: Infrared shielding particles, 13: Inorganic fiber.

Claims (17)

  1.  複数の粒子が連結して骨格をなし、内部に細孔を有し、表面および内部のうち少なくとも表面に疎水部位を有する多孔質構造体と、赤外線遮蔽粒子と、無機繊維と、を有し、次の(a)~(d)の条件を満足する断熱層を備えることを特徴とする断熱材。
    (a)該無機繊維の含有量は、5質量%以上25質量%以下である。
    (b)該赤外線遮蔽粒子の含有量は、10質量%以上である。
    (c)該多孔質構造体および該赤外線遮蔽粒子を合わせた含有量は、70質量%以上である。
    (d)該赤外線遮蔽粒子の含有量に対する該多孔質構造体の含有量の比率は、1.2以上である。
    (a)~(d)の条件における各成分の含有量は、該断熱層の全体の質量を100質量%として算出される。
    A porous structure in which a plurality of particles are connected to form a skeleton, have pores inside, and have a hydrophobic site at least on the surface and inside, infrared shielding particles, and inorganic fibers, A heat insulating material characterized by comprising a heat insulating layer that satisfies the following conditions (a) to (d).
    (a) The content of the inorganic fiber is 5% by mass or more and 25% by mass or less.
    (b) The content of the infrared shielding particles is 10% by mass or more.
    (c) The combined content of the porous structure and the infrared shielding particles is 70% by mass or more.
    (d) The ratio of the content of the porous structure to the content of the infrared shielding particles is 1.2 or more.
    The content of each component under the conditions (a) to (d) is calculated based on the total mass of the heat insulating layer as 100% by mass.
  2.  前記断熱層における前記多孔質構造体の充填状態を示す指標として、次の(i)~(iii)の手順で算出される基準個数は、10個以上である請求項1に記載の断熱材。
    (i)該断熱層の厚さ方向の断面を、走査型電子顕微鏡により倍率200倍で撮影し、得られた断面写真に、長さ400μmの直線を40μm間隔で平行に五本描く。
    (ii)描いた該直線ごとに、該直線と交わる該多孔質構造体の個数を数えて、その総和を算出する。
    (iii)算出された総和を5で除して、該多孔質構造体の基準個数とする。
    The heat insulating material according to claim 1, wherein the reference number calculated by the following steps (i) to (iii) as an index indicating the filling state of the porous structure in the heat insulating layer is 10 or more.
    (i) A cross section in the thickness direction of the heat insulating layer is photographed using a scanning electron microscope at a magnification of 200 times, and five straight lines each having a length of 400 μm are drawn in parallel at 40 μm intervals on the obtained cross-sectional photograph.
    (ii) For each straight line drawn, count the number of porous structures that intersect with the straight line, and calculate the total.
    (iii) Divide the calculated total by 5 to obtain the reference number of porous structures.
  3.  前記赤外線遮蔽粒子の平均粒子径は、0.3μm以上22μm以下である請求項1または請求項2に記載の断熱材。 The heat insulating material according to claim 1 or 2, wherein the average particle diameter of the infrared shielding particles is 0.3 μm or more and 22 μm or less.
  4.  前記赤外線遮蔽粒子は、赤外線の波長領域における輻射率が0.6以上の高輻射率粒子を有する請求項1ないし請求項3のいずれかに記載の断熱材。 The heat insulating material according to any one of claims 1 to 3, wherein the infrared shielding particles include high emissivity particles having an emissivity of 0.6 or more in the infrared wavelength region.
  5.  前記赤外線遮蔽粒子は、可視光線の波長領域における屈折率が2.0以上の高屈折率粒子を有する請求項1ないし請求項4のいずれかに記載の断熱材。 The heat insulating material according to any one of claims 1 to 4, wherein the infrared shielding particles include high refractive index particles having a refractive index of 2.0 or more in the wavelength region of visible light.
  6.  前記断熱層は、さらに有機添加剤を有する請求項1ないし請求項5のいずれかに記載の断熱材。 The heat insulating material according to any one of claims 1 to 5, wherein the heat insulating layer further contains an organic additive.
  7.  前記有機添加剤は、界面活性剤を有する請求項6に記載の断熱材。 The heat insulating material according to claim 6, wherein the organic additive includes a surfactant.
  8.  前記界面活性剤は、非イオン性界面活性剤を有する請求項7に記載の断熱材。 The heat insulating material according to claim 7, wherein the surfactant includes a nonionic surfactant.
  9.  前記界面活性剤は、非イオン性界面活性剤およびイオン性界面活性剤の両方を有する請求項7に記載の断熱材。 The heat insulating material according to claim 7, wherein the surfactant includes both a nonionic surfactant and an ionic surfactant.
  10.  前記有機添加剤は、600℃下での加熱残分が50質量%以下である請求項6ないし請求項9のいずれかに記載の断熱材。 The heat insulating material according to any one of claims 6 to 9, wherein the organic additive has a heating residue of 50% by mass or less at 600°C.
  11.  前記無機繊維の長さは、16mm以下である請求項1ないし請求項10のいずれかに記載の断熱材。 The heat insulating material according to any one of claims 1 to 10, wherein the length of the inorganic fiber is 16 mm or less.
  12.  前記多孔質構造体は、複数のシリカ微粒子が連結して骨格をなすシリカエアロゲルを有する請求項1ないし請求項11のいずれかに記載の断熱材。 The heat insulating material according to any one of claims 1 to 11, wherein the porous structure includes silica airgel in which a plurality of fine silica particles are connected to form a skeleton.
  13.  前記多孔質構造体は、複数のヒュームドシリカ微粒子が連結して骨格をなす凝集性構造体を有する請求項1ないし請求項12のいずれかに記載の断熱材。 The heat insulating material according to any one of claims 1 to 12, wherein the porous structure has a cohesive structure in which a plurality of fumed silica fine particles are connected to form a skeleton.
  14.  前記断熱層は、バインダーを有しない請求項1ないし請求項13のいずれかに記載の断熱材。 The heat insulating material according to any one of claims 1 to 13, wherein the heat insulating layer does not include a binder.
  15.  さらに、前記断熱層に積層される基材を有する請求項1ないし請求項14のいずれかに記載の断熱材。 The heat insulating material according to any one of claims 1 to 14, further comprising a base material laminated on the heat insulating layer.
  16.  前記赤外線遮蔽粒子は、炭化ケイ素粒子を有する請求項1ないし請求項15のいずれかに記載の断熱材。 The heat insulating material according to any one of claims 1 to 15, wherein the infrared shielding particles include silicon carbide particles.
  17.  前記赤外線遮蔽粒子は、酸化チタン粒子を有する請求項1ないし請求項16のいずれかに記載の断熱材。 The heat insulating material according to any one of claims 1 to 16, wherein the infrared shielding particles include titanium oxide particles.
PCT/JP2022/029291 2022-03-25 2022-07-29 Thermal insulation material WO2023181443A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023530033A JPWO2023181443A1 (en) 2022-03-25 2022-07-29
US18/480,510 US20240025813A1 (en) 2022-03-25 2023-10-04 Heat insulating member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-049657 2022-03-25
JP2022049657 2022-03-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/480,510 Continuation US20240025813A1 (en) 2022-03-25 2023-10-04 Heat insulating member

Publications (1)

Publication Number Publication Date
WO2023181443A1 true WO2023181443A1 (en) 2023-09-28

Family

ID=88100344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029291 WO2023181443A1 (en) 2022-03-25 2022-07-29 Thermal insulation material

Country Status (3)

Country Link
US (1) US20240025813A1 (en)
JP (1) JPWO2023181443A1 (en)
WO (1) WO2023181443A1 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187512A (en) * 1981-05-13 1982-11-18 Masao Yoshizawa Combustion plate for infrared ray radiant heater
JPH0733551A (en) * 1993-07-27 1995-02-03 Nippon Steel Chem Co Ltd Production of heat insulating material for vacuum furnace
JPH07237957A (en) * 1992-01-09 1995-09-12 Ibiden Co Ltd Heat insulating material composition
JP2009299893A (en) 2008-05-15 2009-12-24 Nichias Corp Heat insulating material, heat insulating structure using it and its method for manufacturing
JP2010176947A (en) * 2009-01-28 2010-08-12 Sony Corp Method for manufacturing gas diffusion layer for electrochemical device and mixture used for the same
JP2011088125A (en) * 2009-10-26 2011-05-06 Acreco:Kk Far-infrared radiation material
WO2013141189A1 (en) 2012-03-23 2013-09-26 井前工業株式会社 Heat insulator composition, heat insulator using same, and method for manufacturing heat insulator
JP2015529272A (en) * 2012-09-24 2015-10-05 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se In-situ foamed polyurethane foam production composition and production method, in-situ foamed polyurethane foam, and method of use thereof
WO2016163670A1 (en) * 2015-04-07 2016-10-13 주식회사 엘지화학 Aerogel-containing composition and heat insulation blanket prepared by using same
CN206943696U (en) * 2017-06-19 2018-01-30 威赫热能技术(上海)有限公司 A kind of nano-vacuum insulation panel
JP2020016326A (en) 2018-07-27 2020-01-30 明星工業株式会社 Thermal insulation material
WO2021095279A1 (en) 2019-11-15 2021-05-20 井前工業株式会社 Composite insulation material and manufacturing method therefor
JP2021143733A (en) * 2020-03-12 2021-09-24 住友理工株式会社 Heat insulating material and manufacturing method therefor

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187512A (en) * 1981-05-13 1982-11-18 Masao Yoshizawa Combustion plate for infrared ray radiant heater
JPH07237957A (en) * 1992-01-09 1995-09-12 Ibiden Co Ltd Heat insulating material composition
JPH0733551A (en) * 1993-07-27 1995-02-03 Nippon Steel Chem Co Ltd Production of heat insulating material for vacuum furnace
JP2009299893A (en) 2008-05-15 2009-12-24 Nichias Corp Heat insulating material, heat insulating structure using it and its method for manufacturing
JP2010176947A (en) * 2009-01-28 2010-08-12 Sony Corp Method for manufacturing gas diffusion layer for electrochemical device and mixture used for the same
JP2011088125A (en) * 2009-10-26 2011-05-06 Acreco:Kk Far-infrared radiation material
WO2013141189A1 (en) 2012-03-23 2013-09-26 井前工業株式会社 Heat insulator composition, heat insulator using same, and method for manufacturing heat insulator
JP2015529272A (en) * 2012-09-24 2015-10-05 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se In-situ foamed polyurethane foam production composition and production method, in-situ foamed polyurethane foam, and method of use thereof
WO2016163670A1 (en) * 2015-04-07 2016-10-13 주식회사 엘지화학 Aerogel-containing composition and heat insulation blanket prepared by using same
CN206943696U (en) * 2017-06-19 2018-01-30 威赫热能技术(上海)有限公司 A kind of nano-vacuum insulation panel
JP2020016326A (en) 2018-07-27 2020-01-30 明星工業株式会社 Thermal insulation material
WO2021095279A1 (en) 2019-11-15 2021-05-20 井前工業株式会社 Composite insulation material and manufacturing method therefor
JP2021143733A (en) * 2020-03-12 2021-09-24 住友理工株式会社 Heat insulating material and manufacturing method therefor

Also Published As

Publication number Publication date
US20240025813A1 (en) 2024-01-25
JPWO2023181443A1 (en) 2023-09-28

Similar Documents

Publication Publication Date Title
US10858501B2 (en) Aerogel-containing composition and insulation blanket prepared using the same
EP2969530B1 (en) Aerogel blanket and method of production
US20140057083A1 (en) Heat insulating composition, heat insulator using same, and method for manufacturing heat insulator
CN112424878B (en) Flame retardant materials for electric vehicle battery applications
EP3961789A1 (en) Heat-blocking material composition, heat-blocking material, and method for manufacturing same
JP2021143733A (en) Heat insulating material and manufacturing method therefor
WO2020190588A1 (en) Papers useful as thermal insulation and flame barriers for battery cells
JP5550432B2 (en) Flame retardant coating composition and plate-like body using the same
CN101864215B (en) Environment-friendly fire-proof coating for steel structures and preparation method thereof
WO2023181443A1 (en) Thermal insulation material
JP7377498B2 (en) Heat insulating filling material, heat insulating material, heat insulating structure
CN116285478A (en) Basalt inorganic long crystal flake fireproof paint and preparation method thereof
WO2023276441A1 (en) Thermal insulation material
JP2022125585A (en) Heat insulation material
KR102557236B1 (en) Grain-oriented electrical steel sheet manufacturing method and grain-oriented electrical steel sheet
JP2023122790A (en) Fireproof heat insulation sheet
JP7466856B2 (en) Insulation filler, insulation material, insulation structure
WO2022270359A1 (en) Fire spread prevention material, battery pack and automobile
WO2023157781A1 (en) Thermal runaway suppression sheet, battery pack using same, and battery pack module
WO2024009905A1 (en) Heat-insulating and flame-shielding sheet, and assembled battery and battery module package using same
Ding et al. Self-repairing non-expanded flame-retardant coatings prepared by sol-gel method
JP7364739B2 (en) Heat transfer suppression sheet and assembled battery
WO2024059682A1 (en) Aerogel composition for thermal insulation
WO2023089451A1 (en) Coatings containing zirconium silicate and inorganic binders for impact resistant thermal barrier applications
JP2022091057A (en) Method for manufacturing sheet-like heat-resistant material, and laminate

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023530033

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22933577

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022933577

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022933577

Country of ref document: EP

Effective date: 20240411