JP7377498B2 - Heat insulating filling material, heat insulating material, heat insulating structure - Google Patents

Heat insulating filling material, heat insulating material, heat insulating structure Download PDF

Info

Publication number
JP7377498B2
JP7377498B2 JP2020529066A JP2020529066A JP7377498B2 JP 7377498 B2 JP7377498 B2 JP 7377498B2 JP 2020529066 A JP2020529066 A JP 2020529066A JP 2020529066 A JP2020529066 A JP 2020529066A JP 7377498 B2 JP7377498 B2 JP 7377498B2
Authority
JP
Japan
Prior art keywords
heat insulating
mass
silica
powder
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020529066A
Other languages
Japanese (ja)
Other versions
JPWO2020009226A1 (en
Inventor
航平 水田
浩徳 長▲崎▼
和人 田原
牧男 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Osaka University NUC
Original Assignee
Denka Co Ltd
Osaka University NUC
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd, Osaka University NUC, Denki Kagaku Kogyo KK filed Critical Denka Co Ltd
Publication of JPWO2020009226A1 publication Critical patent/JPWO2020009226A1/en
Application granted granted Critical
Publication of JP7377498B2 publication Critical patent/JP7377498B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B30/00Compositions for artificial stone, not containing binders
    • C04B30/02Compositions for artificial stone, not containing binders containing fibrous materials
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/77Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof
    • D06M11/79Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof with silicon dioxide, silicic acids or their salts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Insulation (AREA)
  • Silicon Compounds (AREA)

Description

本発明は、断熱充填材、断熱材、断熱構造に関する。 The present invention relates to a heat insulating filler, a heat insulating material, and a heat insulating structure.

近年、省エネルギーの観点から放熱エネルギーを抑制するために、断熱材の需要が益々大きくなってきている。また、従来の住宅や配管、溶鉱炉、電気炉といった用途だけでなく、例えば内燃機関や燃料電池等の保温といった観点からも断熱材は注目されており、成型体に限らない様々な形状に適応可能な断熱材が求められている。 In recent years, demand for heat insulating materials has been increasing in order to suppress heat radiation energy from the viewpoint of energy conservation. In addition, insulating materials are attracting attention not only for conventional uses such as houses, piping, blast furnaces, and electric furnaces, but also for keeping internal combustion engines and fuel cells warm, and can be applied to a variety of shapes, not just molded bodies. Insulating materials are required.

室温付近での空気の平均自由行程は100nmであるため、100nm以下の微細気孔を含む多孔質体が優れた断熱性を示すことがよく知られている。このような多孔質断熱材には様々な種類があり、例えば特許文献1~5に示されるような乾式法によって製造されたシリカ微粒子を使用した無機系多孔質断熱材が挙げられる。これは、微細気孔を内包する乾式シリカによって微細な多孔質構造が形成されていることで流体熱伝達が抑制されるため、優れた断熱性を示す。 Since the mean free path of air near room temperature is 100 nm, it is well known that porous bodies containing fine pores of 100 nm or less exhibit excellent heat insulation properties. There are various types of such porous heat insulating materials, such as inorganic porous heat insulating materials using silica fine particles produced by a dry method as shown in Patent Documents 1 to 5. This material exhibits excellent heat insulation properties because fluid heat transfer is suppressed due to the formation of a fine porous structure made of dry silica containing fine pores.

上記従来技術における断熱材としての使用形態は、機械プレスによる成型体をベースとしたものが多く、上述した特許文献のように、発塵性や成型後の強度を改善する検討が多く成されてきている。このとき、均一な成型体を得るために、使用粉体には金型に対して均一に充填出来る良好な流動性が求められる。しかしながら、乾式シリカ微粒子は、小さな嵩密度とクーロン力に由来する強い付着性、噴出性を示すために製造工程中でのハンドリング性が課題である。 Most of the forms of use as heat insulating materials in the above-mentioned prior art are based on molded bodies by mechanical pressing, and as in the patent documents mentioned above, many studies have been made to improve dust generation and strength after molding. ing. At this time, in order to obtain a uniform molded product, the powder used must have good fluidity so that it can be uniformly filled into the mold. However, since dry silica fine particles exhibit strong adhesion and ejectability due to their small bulk density and Coulomb force, handling during the manufacturing process is a problem.

また、特許文献6、7で袋状の外皮材中に粉末を充填することによって製造される断熱材について示されているように、粉末の流動によって空間に粉体を充填することで断熱層を形成する手法があり、充填性に優れる断熱性粉体が必要とされる。しかし、流動による充填では、対象空間中の空気を粉体へと置換するため、嵩密度が非常に小さな乾式シリカ微粒子では不向きである。 In addition, as shown in Patent Documents 6 and 7 regarding heat insulating materials manufactured by filling powder into a bag-shaped outer skin material, a heat insulating layer can be created by filling a space with powder by flowing the powder. There is a need for a heat insulating powder with excellent filling properties. However, in filling by flow, the air in the target space is replaced with powder, so dry silica fine particles having a very small bulk density are not suitable.

特許文献8は、1)主成分としてのシリカ微粒子と、2)補強繊維と、3)水を含浸させた蓄液性物質とを含む混合物を湿式成形し、乾燥する断熱材の製造方法を記載している。特許文献9、10は、一次粒子径の異なる2種以上の微粒子が充填されてなる断熱ボードを記載している。しかし、特許文献8~10は、含水率について記載がない。 Patent Document 8 describes a method for producing a heat insulating material in which a mixture containing 1) fine silica particles as a main component, 2) reinforcing fibers, and 3) a liquid-accumulating substance impregnated with water is wet-molded and dried. are doing. Patent Documents 9 and 10 describe a heat insulating board filled with two or more types of fine particles having different primary particle diameters. However, Patent Documents 8 to 10 do not describe the water content.

特許第4860005号公報Patent No. 4860005 特開平7-237957号公報Japanese Patent Application Publication No. 7-237957 特許第05081464号公報Patent No. 05081464 特許第4367612号公報Patent No. 4367612 特表平11-513349号公報Special Publication No. 11-513349 特許第5783717号公報Patent No. 5783717 特開2013-1596号公報JP 2013-1596 Publication 特許第5409939号公報Patent No. 5409939 特開平1-199095号公報Japanese Patent Application Publication No. 199095/1995 特開平1-135998号公報Japanese Unexamined Patent Publication No. 1-135998

本発明は、上記課題と背景を鑑みてなされたものであり、良好な断熱性を有し、優れた充填性を発揮しうる断熱充填材を提供することを目的とする。 The present invention has been made in view of the above problems and background, and an object of the present invention is to provide a heat insulating filler that has good heat insulation properties and can exhibit excellent filling properties.

本発明者らは、上記課題と背景を鑑みて、鋭意検討を重ねた結果、乾式シリカ微粒子と湿式シリカ微粒子とを所定の割合で混合してなる混合シリカ粉末を含む断熱充填材により当該課題が解決できることを見出した。すなわち、本発明は下記のとおりである。 In view of the above-mentioned problems and background, the present inventors have made extensive studies and found that the problem can be solved by a heat-insulating filler containing a mixed silica powder made by mixing dry-processed silica particles and wet-processed silica particles at a predetermined ratio. I found a solution. That is, the present invention is as follows.

[1] 乾式シリカ10質量%~80質量%と、含水率が2質量%以上の湿式シリカ20質量%~90質量%とからなる混合シリカ粉末を含む断熱充填材。
[2] 前記混合シリカ粉末100質量部に対して、無機繊維を1質量部~10質量部含む[1]に記載の断熱充填材。
[3] 前記無機繊維が平均繊維径0.1μm~50μmである[2]に記載の断熱充填材。
[4] 輻射散乱粒子を含む[1]~[3]のいずれかに記載の断熱充填材。
[5] 前記乾式シリカの平均粒径が0.8μm以下であり、前記湿式シリカの平均粒径が1μm以上である[1]~[4]のいずれかに記載の断熱充填材。
[6] 固体である[1]~[5]のいずれかに記載の断熱充填材。
[7] [1]~[6]のいずれかに記載の断熱充填材を配合してなる断熱材。
[8] [7]に記載の断熱材を含む断熱構造。
[1] A heat insulating filler containing mixed silica powder consisting of 10% to 80% by mass of dry silica and 20% to 90% by mass of wet silica having a moisture content of 2% by mass or more.
[2] The heat-insulating filler according to [1], which contains 1 to 10 parts by mass of inorganic fibers based on 100 parts by mass of the mixed silica powder.
[3] The insulating filler according to [2], wherein the inorganic fiber has an average fiber diameter of 0.1 μm to 50 μm.
[4] The heat insulating filler according to any one of [1] to [3], which contains radiation scattering particles.
[5] The heat-insulating filler according to any one of [1] to [4], wherein the dry silica has an average particle size of 0.8 μm or less, and the wet silica has an average particle size of 1 μm or more.
[6] The heat-insulating filler according to any one of [1] to [5], which is solid.
[7] A heat insulating material containing the heat insulating filler according to any one of [1] to [6].
[8] A heat insulating structure including the heat insulating material according to [7].

本発明によれば、良好な断熱性を有し、優れた充填性を発揮しうる断熱充填材を提供できる。その結果、様々な形状物に対し優れた断熱効果、保温効果を提供できる。 According to the present invention, it is possible to provide a heat insulating filler that has good heat insulating properties and can exhibit excellent filling properties. As a result, excellent heat insulation and heat retention effects can be provided to objects of various shapes.

以下、本発明の詳細を説明する。
[1.断熱充填材]
本発明の一実施形態(本実施形態)に係る断熱充填材は、乾式シリカ10質量%~80質量%と、含水率が2質量%以上の湿式シリカ20質量%~90質量%とからなる混合シリカ粉末を含む。
The details of the present invention will be explained below.
[1. Insulating filling material]
The heat insulating filler according to one embodiment of the present invention (this embodiment) is a mixture of 10% to 80% by mass of dry silica and 20% to 90% by mass of wet silica having a moisture content of 2% by mass or more. Contains silica powder.

本実施形態においては、具体的には、乾式シリカによって形成される微細気孔構造で低熱伝導率を維持でき、上記湿式シリカ中の水分によって表面の電荷が拡散されるために付着性が改善されることで、流動性が向上し優れた充填性発揮されると推察される。さらにこれらを混合した混合シリカ粉末の凝集と無機繊維への混合シリカ微粒子の添着によって流動性がより向上することが見出された。 Specifically, in this embodiment, low thermal conductivity can be maintained due to the fine pore structure formed by the dry silica, and adhesion is improved because surface charges are diffused by the moisture in the wet silica. It is presumed that this improves fluidity and exhibits excellent filling properties. Furthermore, it has been found that the fluidity is further improved by agglomeration of the mixed silica powder and adhesion of the mixed silica fine particles to the inorganic fibers.

本発明で使用する「乾式シリカ」とは、乾式法によって製造される非晶質シリカ物質の総称であり、燃焼法もしくはアーク法等、いずれの方法で製造されたものも使用できる。燃焼法とは例えば、四塩化珪素を高温の炎の中で反応させる方法をいう。乾式シリカ(乾式シリカ微粒子が好ましい)は微細な気孔を含んだ粒子であり、混合シリカ粉末において微細な多孔質構造を与えるものである。そのため、熱伝導率低減の観点から、含有量は10質量%~80質量%とし、30~70質量%とすることが好ましい。10質量%未満では十分な断熱性を発揮しない場合があり、80質量%を超えると粉体流動性が十分に確保できず、充填性が低下する場合がある。 The "dry silica" used in the present invention is a general term for amorphous silica materials produced by a dry method, and those produced by any method such as a combustion method or an arc method can be used. The combustion method refers to, for example, a method in which silicon tetrachloride is reacted in a high-temperature flame. The dry silica (preferably fine dry silica particles) is a particle containing fine pores and provides a fine porous structure in the mixed silica powder. Therefore, from the viewpoint of reducing thermal conductivity, the content is 10% by mass to 80% by mass, preferably 30% to 70% by mass. If it is less than 10% by mass, sufficient heat insulation properties may not be exhibited, and if it exceeds 80% by mass, sufficient powder fluidity may not be ensured and filling properties may be reduced.

本発明で使用する「湿式シリカ」とは、湿式法によって製造される非晶質シリカ物質の総称であり、沈降法もしくはゲル法等、いずれの方法で製造されたものも使用できる。沈降法とは例えば、珪酸ソーダの水溶液を中和してシリカを析出し、濾過、乾燥する方法をいう。この湿式シリカ(湿式シリカ微粒子が好ましい)は、乾式シリカを自身の周囲に添着させることで、粉末の付着性および噴出性を抑える粒子である。また、含有量は、混合シリカ粉末とした時の流動性と付着性の観点から20質量%~90質量%とし、30~70質量%とすることが好ましい。20質量%未満では良好なハンドリング性を発揮しない場合があり、90質量%を超えて添加してもそれ以上の効果の増進は期待できない。ここで、混合シリカ粉末とは、乾式シリカと湿式シリカと含み、任意の無機繊維を(必要な場合は輻射散乱粒子も)混合することで得られる粉末のことである。 The "wet silica" used in the present invention is a general term for amorphous silica substances produced by a wet method, and those produced by any method such as a precipitation method or a gel method can be used. The sedimentation method is, for example, a method in which an aqueous solution of sodium silicate is neutralized to precipitate silica, followed by filtration and drying. This wet silica (preferably wet silica fine particles) is a particle that suppresses the adhesion and ejectability of powder by adhering dry silica around itself. Further, the content is 20% to 90% by mass, preferably 30% to 70% by mass, from the viewpoint of fluidity and adhesion when mixed silica powder is prepared. If it is less than 20% by mass, good handling properties may not be exhibited, and if it is added in excess of 90% by mass, no further enhancement of the effect can be expected. Here, the mixed silica powder is a powder that includes dry silica and wet silica and is obtained by mixing arbitrary inorganic fibers (and radiation scattering particles if necessary).

乾式シリカと湿式シリカとの混合時に含まれる水分は粒子に働くファンデルワールス力を抑える役割がある。この含水率は、湿式シリカの質量に対して2質量%以上であれば特に限らない。2質量%未満では、粒子に働く静電気により付着性が増大するため、良好なハンドリング性を発揮しない場合がある。湿式シリカの含水率は3~15質量%であることが好ましく、5~10質量%であることがより好ましい。 The water contained when dry silica and wet silica are mixed has the role of suppressing the van der Waals force acting on the particles. This water content is not particularly limited as long as it is 2% by mass or more based on the mass of wet silica. If the amount is less than 2% by mass, the adhesion increases due to static electricity acting on the particles, so that good handling properties may not be exhibited. The moisture content of wet silica is preferably 3 to 15% by mass, more preferably 5 to 10% by mass.

また、乾式シリカと湿式シリカとを混合してなる混合シリカ粉末の含水率は、良好なハンドリング性の観点から、2~8質量%であることが好ましく、3~7質量%であることがより好ましい。 Further, from the viewpoint of good handling, the moisture content of the mixed silica powder obtained by mixing dry silica and wet silica is preferably 2 to 8% by mass, more preferably 3 to 7% by mass. preferable.

上記乾式シリカ、湿式シリカ、混合シリカの含水率は、熱重量分析装置(TGA)によって200℃まで昇温し、昇温前の重量Xと減少した重量Xを用いて含水率Wを算出する。
含水率W(質量%)=(X/X)×100
The moisture content of the dry silica, wet silica, and mixed silica is determined by heating the dry silica, wet silica, and mixed silica to 200°C using a thermogravimetric analyzer (TGA), and calculating the moisture content W using the weight X before heating and the reduced weight X 1 . .
Moisture content W (mass%) = (X 1 /X) x 100

乾式シリカ及び湿式シリカのそれぞれの平均粒径(より具体的にはレーザー回折式粒度測定器(コールター社製「モデルLS-230」型)によって測定される50%積算粒子径D50)は0.01μm~100μmが好ましく、流体熱伝達を抑える観点から、乾式シリカの平均粒径は10μm以下が好ましい。また、混合シリカ粉末とした時の流動性を向上させ、噴出性を抑えるために、湿式シリカの平均粒径は乾式シリカより大きいことが好ましい。The average particle size (more specifically, the 50% cumulative particle size D 50 measured by a laser diffraction particle size analyzer (Model LS-230 manufactured by Coulter)) of dry silica and wet silica is 0. The average particle size of the dry silica is preferably 10 μm or less from the viewpoint of suppressing fluid heat transfer. Further, in order to improve fluidity and suppress extrusion properties when mixed silica powder is prepared, it is preferable that the average particle size of wet silica is larger than that of dry silica.

乾式シリカの平均粒径は1μm以下が好ましく、0.8μm以下がより好ましく、0.5μm以下が最も好ましい。乾式シリカの平均粒径は0.01μm以上が好ましく、0.03μm以上がより好ましく、0.05μm以上が最も好ましい。湿式シリカの平均粒径は、0.5μm以上が好ましく、1μm以上がより好ましく、5μm以上が最も好ましい。湿式シリカの平均粒径は、50μm以下が好ましく、30μm以下がより好ましく、20μm以下が最も好ましい。 The average particle diameter of the dry silica is preferably 1 μm or less, more preferably 0.8 μm or less, and most preferably 0.5 μm or less. The average particle diameter of the dry silica is preferably 0.01 μm or more, more preferably 0.03 μm or more, and most preferably 0.05 μm or more. The average particle size of wet silica is preferably 0.5 μm or more, more preferably 1 μm or more, and most preferably 5 μm or more. The average particle size of the wet silica is preferably 50 μm or less, more preferably 30 μm or less, and most preferably 20 μm or less.

本実施形態においては、混合シリカ粉末にさらに無機繊維を混合することが好ましい。
本発明で使用する無機繊維は、混合シリカ粉末の繊維添着により充填性を向上させるものであれば特に限定されるものではなく、いかなるものでも使用できる。また、成形時には断熱充填材に成形性を与える役割を持つ。代表的なものとして、耐熱性に優れる人造繊維であるシリカ繊維、アルミナシリカ繊維、ガラス繊維、ジルコニア繊維、炭化ケイ素繊維、鉱物を原料として製造されるロックウール、天然鉱物のウォラストナイト、セピオライトなどが挙げられ、必要に応じてこれらを一種あるいは複数種使用することができる。
In this embodiment, it is preferable to further mix inorganic fibers with the mixed silica powder.
The inorganic fiber used in the present invention is not particularly limited, and any inorganic fiber can be used as long as it improves filling properties by adhering the mixed silica powder to the fiber. It also plays a role in giving moldability to the heat insulating filler during molding. Typical examples include silica fiber, alumina silica fiber, glass fiber, zirconia fiber, silicon carbide fiber, which are man-made fibers with excellent heat resistance, rock wool manufactured from minerals, and natural minerals such as wollastonite and sepiolite. are mentioned, and one or more of these can be used as necessary.

上記無機繊維の平均繊維径とは、走査型電子顕微鏡(SEM)観察によって確認される繊維100本の直径の平均値である。平均繊維径は0.1μm~50μmが好ましく、シリカ微粒子が付着する確率が増大し、粉体の噴出性を抑えられるため、1μm以上がより好ましく、5μm以上が最も好ましい。 The average fiber diameter of the inorganic fibers is the average value of the diameters of 100 fibers confirmed by scanning electron microscopy (SEM) observation. The average fiber diameter is preferably 0.1 μm to 50 μm, more preferably 1 μm or more, and most preferably 5 μm or more, since this increases the probability that fine silica particles will adhere and suppresses the ejection of powder.

上記無機繊維の平均繊維長は特に限定するものではないが、混合シリカ粉末の充填性を考慮すると10μm以上が好ましく、15~35μmがより好ましい。
なお、上記無機繊維の平均繊維長は、走査型電子顕微鏡(SEM)観察によって確認される繊維100本の繊維長の平均値として求めることができる。
The average fiber length of the inorganic fibers is not particularly limited, but in consideration of the filling properties of the mixed silica powder, it is preferably 10 μm or more, more preferably 15 to 35 μm.
Note that the average fiber length of the inorganic fibers can be determined as the average value of the fiber lengths of 100 fibers confirmed by scanning electron microscopy (SEM) observation.

上記無機繊維の含有量は、混合シリカ粉末100質量部に対して、1質量部~10質量部であることが好ましく、3~7質量部であることがより好ましい。
1質量部以上であることで、十分な成形性が発揮されやすくなり、10質量部以下であることで繊維同士の接触が抑えられ、物質熱伝導が小さくなり熱伝導率を低下させることができる。
The content of the inorganic fiber is preferably 1 part by mass to 10 parts by mass, more preferably 3 to 7 parts by mass, based on 100 parts by mass of mixed silica powder.
When the amount is 1 part by mass or more, sufficient moldability is easily exhibited, and when it is 10 parts by mass or less, contact between fibers is suppressed, material heat conduction is reduced, and thermal conductivity can be lowered. .

本発明の断熱充填材は、高温中(200℃以上)での断熱性を向上させるために輻射散乱粒子をさらに含有することができる。輻射散乱粒子は、赤外線を効果的に散乱又は吸収できるものであれば特に限定されるものではなく、例えば炭化ケイ素や酸化ジルコニウム、酸化チタン、酸化銅などが使用でき、これらの粒子を一種あるいは複数種使用してよい。
輻射散乱粒子の使用量は、断熱充填材100質量%に対して、0.5質量%~35質量%が好ましく、1.0質量%~20質量%がより好ましい。
The heat insulating filler of the present invention may further contain radiation scattering particles in order to improve the heat insulating properties at high temperatures (200° C. or higher). The radiation scattering particles are not particularly limited as long as they can effectively scatter or absorb infrared rays. For example, silicon carbide, zirconium oxide, titanium oxide, copper oxide, etc. can be used, and one or more of these particles can be used. Seeds may be used.
The amount of radiation scattering particles used is preferably 0.5% by mass to 35% by mass, more preferably 1.0% by mass to 20% by mass, based on 100% by mass of the heat insulating filler.

本発明によって得られる断熱充填材の熱伝導率は、25℃における熱伝導率が0.05W/(m・K)以下であることが好ましく、0.029W/(m・K)以下であることがより好ましい。 The thermal conductivity of the heat insulating filler obtained by the present invention at 25°C is preferably 0.05 W/(m・K) or less, and preferably 0.029 W/(m・K) or less. is more preferable.

疎充填嵩密度とは、すり切り容器に対して一定の高さから粉体を落として充填し、すり切った際に得られる密度である。 The sparsely packed bulk density is the density obtained when powder is dropped from a certain height into a grated container, filled, and grated.

本発明で得られる断熱充填材は、設計した充填密度に近づける観点から混合シリカ粉末の状態で疎充填嵩密度が40kg/m以上であることが好ましく、50~80kg/mであることがより好ましい。40kg/m以上であることで十分な充填性が発揮され、空隙が増大しすぎず、十分な断熱性が得られやすくなる。The heat insulating filler obtained by the present invention preferably has a loosely packed bulk density in the form of mixed silica powder of 40 kg/m 3 or more, preferably 50 to 80 kg/m 3 from the viewpoint of approaching the designed packing density. More preferred. When it is 40 kg/m 3 or more, sufficient filling properties are exhibited, voids do not increase too much, and sufficient heat insulation properties are easily obtained.

断熱充填材の製造方法は特に限定するものではないが、例えば、乾式シリカ10質量%~80質量%と、含水率が2質量%以上の湿式シリカ20質量%~90質量%とを、数mmのクリアランスを持たせた磨砕式ミルによって混合することで得る方法や、気流で巻き上げながら金属羽でこれらを混合する二軸混合によって得る方法等が挙げられる。
以上のような本実施形態の断熱充填材は固体として使用できる。また、固体の中では、粉末として使用できる。
The method for producing the heat insulating filler is not particularly limited, but for example, 10% to 80% by mass of dry silica and 20% to 90% by mass of wet silica with a moisture content of 2% by mass or more are mixed in a few mm. Examples of methods include a method of mixing using a grinding mill with a clearance of
The heat insulating filler of this embodiment as described above can be used as a solid. Moreover, among solids, it can be used as a powder.

[2]断熱材
本実施形態に係る断熱材は、既述の断熱充填材を配合してなる。
具体的には、既述の断熱充填材を原料として充填することによって得られる断熱層又は断熱材のことであり、例えば、粉体の流動を利用して空間に充填することにより得られる断熱層であって、金型に加圧充填することによって得られる断熱材が挙げられる。
[2] Heat Insulating Material The heat insulating material according to this embodiment is formed by blending the above-mentioned heat insulating filler.
Specifically, it refers to a heat insulating layer or a heat insulating material obtained by filling the above-mentioned heat insulating filler as a raw material, for example, a heat insulating layer obtained by filling a space using the flow of powder. An example of this is a heat insulating material obtained by pressurizing and filling a mold.

加圧充填によって得る場合の詳細な手法は、特に限定するものではないが、例えば、金型を使用した乾式一軸プレスによって板状に成型してもよい。ただし、乾燥時の空隙や亀裂の発生による成型欠陥の観点から、乾式成形が好ましい。 Although the detailed method for obtaining by pressurized filling is not particularly limited, for example, it may be formed into a plate shape by dry uniaxial pressing using a mold. However, from the viewpoint of molding defects due to generation of voids and cracks during drying, dry molding is preferable.

また、本実施形態に係る断熱材は、外皮材によって既述の断熱充填材の全体を被覆させてなるものでもよい。外皮材は、ガラス繊維、アルミナ繊維等の無機繊維織物や無機繊維不織布、樹脂フィルム、有機繊維織物、有機繊維不織布、アルミニウム、銅箔などの金属箔等シート形状のものが望ましいが、材質については特に限定されるものではない。 Further, the heat insulating material according to this embodiment may be formed by covering the entirety of the above-mentioned heat insulating filler with an outer skin material. The outer skin material is preferably in sheet form, such as inorganic fiber fabrics such as glass fibers and alumina fibers, inorganic fiber non-woven fabrics, resin films, organic fiber fabrics, organic fiber non-woven fabrics, metal foils such as aluminum and copper foil, etc. However, regarding the material, It is not particularly limited.

被覆方法は特に限定されるものではなく、断熱充填材の充填率は使用用途によって適宜設定できる。例えば、加圧成型した断熱充填材を前述したシートによって被覆するものでもよく、シートを袋状に加工したものに断熱充填材を充填するものでもよい。 The coating method is not particularly limited, and the filling rate of the heat insulating filler can be appropriately set depending on the intended use. For example, a pressure-molded heat insulating filler may be covered with the sheet described above, or a sheet processed into a bag shape may be filled with the heat insulating filler.

[3]断熱構造
本実施形態に係る断熱構造は既述の断熱材を含む。
本実施形態に係る断熱充填材は、そのまま断熱材として使用してよいが、他の断熱材と組み合わせて、断熱構造としてもよい。他の断熱材と組み合わせて使用する場合、例えば、異なる耐熱性を有する他の断熱材上に充填積層させた積層構造によって構成される断熱構造は、本実施形態に係る断熱充填材に断熱材を組み合わせた層状の断熱構造といえる。また、中空の箱に本実施形態に係る断熱充填材を断熱材として充填した断熱構造としてもよい。
[3] Heat Insulating Structure The heat insulating structure according to this embodiment includes the above-mentioned heat insulating material.
The heat-insulating filler according to this embodiment may be used as a heat-insulating material as it is, or may be combined with other heat-insulating materials to form a heat-insulating structure. When used in combination with other heat insulating materials, for example, a heat insulating structure formed by a laminated structure in which the heat insulating material of this embodiment is filled and laminated on another heat insulating material having a different heat resistance, It can be said to be a combined layered insulation structure. Alternatively, a heat insulating structure may be used in which a hollow box is filled with the heat insulating filler according to this embodiment as a heat insulating material.

以下、実施例及び比較例を挙げてさらに詳細に内容を説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the contents will be explained in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

「実験例1」
乾式シリカと湿式シリカを表1で示す混合比率で混合し、これらの混合物(混合シリカ粉末)100質量部に対して無機繊維4.5質量部を混合することで、断熱充填材を作製した。
"Experiment example 1"
A heat insulating filler was prepared by mixing dry silica and wet silica at the mixing ratio shown in Table 1, and mixing 4.5 parts by mass of inorganic fibers with 100 parts by mass of the mixture (mixed silica powder).

これらの乾式シリカ、湿式シリカ、混合シリカ粉末や断熱充填材等について、含水率、疎充填嵩密度の割合及び熱伝導率をそれぞれ測定した。得られた結果を表1に示す。なお、使用材料は下記のとおりである。 The moisture content, loosely packed bulk density ratio, and thermal conductivity of these dry silica, wet silica, mixed silica powder, heat insulating filler, etc. were measured. The results obtained are shown in Table 1. The materials used are as follows.

(使用材料)
乾式シリカ1(F1):CAB-O-SIL M-5粉末(商品名、Cabot Specialty Chemicals社製)平均粒径0.20μm、嵩密度70g/L、含水率0.9質量%
乾式シリカ2(F2):AEROSIL 380(商品名、日本アエロジル社製)平均粒径0.05μm未満、嵩密度50g/L、含水率1.0質量%
乾式シリカ3(F3):NDK-N20(商品名、旭化成ワッカーシリコーン社製)平均粒径0.15μm、嵩密度40g/L、含水率1.2質量%
(Materials used)
Pyrosilica 1 (F1): CAB-O-SIL M-5 powder (trade name, manufactured by Cabot Specialty Chemicals) average particle size 0.20 μm, bulk density 70 g/L, water content 0.9% by mass
Dry Silica 2 (F2): AEROSIL 380 (trade name, manufactured by Nippon Aerosil Co., Ltd.) Average particle size less than 0.05 μm, bulk density 50 g/L, water content 1.0% by mass
Dry silica 3 (F3): NDK-N20 (trade name, manufactured by Asahi Kasei Wacker Silicone Co., Ltd.) Average particle size 0.15 μm, bulk density 40 g/L, water content 1.2% by mass

湿式シリカ1(W1):CARPLEX #80粉末(商品名、エボニック・ジャパン株式会社製) 平均粒径15μm、嵩密度145g/L、含水率8.0質量%
湿式シリカ2(W2):トクシール NP(商品名、Oriental Silicas Corporation製)平均粒径10μm、嵩密度63g/L、含水率6.2質量%
湿式シリカ3(W3):ミズカシル P-527(商品名,水澤化学工業社製)平均粒径1.8μm、嵩密度190g/L、含水率5.2質量%
Wet Silica 1 (W1): CARPLEX #80 powder (trade name, manufactured by Evonik Japan Co., Ltd.) Average particle size 15 μm, bulk density 145 g/L, water content 8.0% by mass
Wet Silica 2 (W2): Tokusil NP (trade name, manufactured by Oriental Silicas Corporation) average particle size 10 μm, bulk density 63 g/L, water content 6.2% by mass
Wet silica 3 (W3): Mizukasil P-527 (trade name, manufactured by Mizusawa Chemical Industry Co., Ltd.) average particle size 1.8 μm, bulk density 190 g/L, water content 5.2% by mass

無機繊維1(IF1):シリカファイバーシート AS-300(商品名、旭産業社製)平均繊維径10μm、25mm裁断解繊加工(平均繊維長さ:25mm) Inorganic fiber 1 (IF1): Silica fiber sheet AS-300 (product name, manufactured by Asahi Sangyo Co., Ltd.) Average fiber diameter 10 μm, 25 mm cutting and defibration processing (average fiber length: 25 mm)

上記使用材料の嵩密度は、密充填嵩密度のことであり、ホソカワミクロン(株)社製の「パウダテスターPT-S型」により測定される。 The bulk density of the above-mentioned material used refers to a close-packed bulk density, and is measured with a "Powder Tester Model PT-S" manufactured by Hosokawa Micron Corporation.

(評価方法)
含水率:乾式シリカ、湿式シリカ、混合シリカ粉末の含水率は、示差熱重量分析装置TG-DTA 2000SR(商品名、BrukerAXS社)を使用して、200℃時点での重量減少率とした。
(Evaluation method)
Moisture content: The moisture content of dry silica, wet silica, and mixed silica powder was determined as the weight loss rate at 200° C. using a differential thermal gravimetric analyzer TG-DTA 2000SR (trade name, BrukerAXS).

疎充填嵩密度は、内径Φ63mm、容量200mLのステンレスビーカーに対して、150mmの間隔をあけて、漏斗から断熱充填材を落下させ、すり切り充填させることで算出される密度とした。疎充填嵩密度は大きいほど充填性が良好であり、好ましくは40kg/m以上である。The sparsely packed bulk density was the density calculated by dropping the heat insulating filler from a funnel at intervals of 150 mm into a stainless steel beaker with an inner diameter of 63 mm and a capacity of 200 mL, and then cutting and filling the beaker. The larger the sparsely packed bulk density is, the better the packing property is, and is preferably 40 kg/m 3 or more.

熱伝導率:作製した断熱充填材を、一軸プレスを使用した金型成型によって成型体(200mm×200mm×20mm、密度230kg/m程度)を作製し、ISO8301に準拠した熱伝導率測定装置(英弘精機社製)を用いて23℃で測定した。Thermal conductivity: A molded body (200 mm x 200 mm x 20 mm, density approximately 230 kg/m 3 ) was produced by molding the prepared heat insulating filler into a mold using a uniaxial press, and a thermal conductivity measurement device ( (manufactured by Hideko Seiki Co., Ltd.) at 23°C.

成形性:一軸プレスを使用した金型成型によって成型体(寸法等は同上)を作製し、成形性を目視で評価した。成型体にひび割れが確認されなかった場合を○、ひび割れあるいは破損が確認された場合を×とした。 Moldability: A molded body (dimensions, etc., same as above) was produced by molding using a uniaxial press, and moldability was visually evaluated. A case where no cracks were observed in the molded body was rated as ○, and a case where cracks or damage were confirmed was rated as ×.

Figure 0007377498000001
Figure 0007377498000001

表1より、湿式シリカの割合が増大するに従い、熱伝導率に悪影響を及ぼすことなく粉体の充填性が向上し、含水率と疎充填嵩密度、及び成形性が向上していることがわかる。 From Table 1, it can be seen that as the proportion of wet silica increases, the filling properties of the powder improve without adversely affecting the thermal conductivity, and the water content, loosely packed bulk density, and formability improve. .

「実験例2」
乾式シリカF1を50質量%、湿式シリカW1を50質量%の比率で混合し、得られた混合物(混合シリカ粉末:実験No.1-4)に対して表2に示す無機繊維を使用し、表2の通りその配合量を変えて断熱充填材を作製したこと以外は実験例1と同様に行った。結果を表2に示す。
"Experiment example 2"
Dry silica F1 was mixed at a ratio of 50% by mass and wet silica W1 was 50% by mass, and the inorganic fibers shown in Table 2 were used for the resulting mixture (mixed silica powder: Experiment No. 1-4), The same procedure as in Experimental Example 1 was conducted except that the heat insulating filler was prepared by changing the blending amount as shown in Table 2. The results are shown in Table 2.

(使用材料)
無機繊維2(IF2):ガラス繊維(日本電気硝子社製)平均繊維径50μm、平均繊維長25mm
無機繊維3(IF3):アルミナシリカ繊維(商品名デンカアルセン、デンカ製)平均繊維径5.0μm、平均繊維長25mm
(Materials used)
Inorganic fiber 2 (IF2): Glass fiber (manufactured by Nippon Electric Glass Co., Ltd.) average fiber diameter 50 μm, average fiber length 25 mm
Inorganic fiber 3 (IF3): Alumina silica fiber (trade name Denka Arsen, manufactured by Denka) average fiber diameter 5.0 μm, average fiber length 25 mm

Figure 0007377498000002
Figure 0007377498000002

表2より、本発明の範囲内で無機繊維を配合することにより熱伝導率に悪影響を及ぼすことなく粉体の充填性が向上し、含水率と疎充填嵩密度、及び成形性が向上していることがわかる。 Table 2 shows that by blending inorganic fibers within the scope of the present invention, the filling properties of the powder are improved without adversely affecting the thermal conductivity, and the moisture content, loosely packed bulk density, and formability are improved. I know that there is.

「実験例3」
実験No.1-4の配合を使用し、表3に示す輻射散乱粒子を使用し、表3の通り配合量を変え、高温(600℃)での熱伝導率(高温熱伝導率)を測定したこと以外は実験例1と同様に行った。
"Experiment Example 3"
Experiment No. Except that the thermal conductivity at high temperature (600°C) was measured using the formulation of 1-4, using the radiation scattering particles shown in Table 3, and changing the blending amount as shown in Table 3. was conducted in the same manner as in Experimental Example 1.

(実験方法)
高温熱伝導率:作製した断熱充填材を、一軸プレスを使用した金型成型によって成型体(寸法等は同上)を作製し、JIS A 1412-1に準拠した保護熱板法熱伝導率測定装置(英弘精機社製)を用いて600℃で測定した。
(experimental method)
High-temperature thermal conductivity: The prepared heat insulating filler is molded into a mold using a uniaxial press to form a molded body (dimensions etc. are the same as above), and a protective hot plate method thermal conductivity measurement device conforming to JIS A 1412-1 is used. (manufactured by Hideko Seiki Co., Ltd.) at 600°C.

(使用材料)
輻射散乱粒子(R1):炭化ケイ素(デンカ製)平均粒径4.2μm
輻射散乱粒子(R2):酸化チタン(富士フイルム和光純薬社製)平均粒径5.0μm
輻射散乱粒子(R3):ケイ酸ジルコニウム 和光一級(富士フイルム和光純薬社製)平均粒径5.0μm
(Materials used)
Radiation scattering particles (R1): silicon carbide (manufactured by Denka) average particle size 4.2 μm
Radiation scattering particles (R2): titanium oxide (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) average particle size 5.0 μm
Radiation scattering particles (R3): Zirconium silicate Wako first grade (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) Average particle size 5.0 μm

Figure 0007377498000003
Figure 0007377498000003

表3より、本発明の範囲内で輻射散乱粒子を配合することによりその他の物性に悪影響を及ぼすことなく高温熱伝導率が低減されていることがわかる。 Table 3 shows that by incorporating radiation scattering particles within the scope of the present invention, the high temperature thermal conductivity is reduced without adversely affecting other physical properties.

以上のように構成された本発明の断熱充填材は優れた操作性と充填性を有し、かつ従来以上の耐熱性と断熱性を有するため、複雑な形状に対しても適応可能であり、車両や飛行機、その他内燃機関、配管の省エネルギー化に寄与することができる。 The heat insulating filling material of the present invention configured as described above has excellent operability and filling properties, and has higher heat resistance and heat insulation properties than conventional ones, so it can be applied to complex shapes. It can contribute to energy conservation in vehicles, airplanes, other internal combustion engines, and piping.

Claims (8)

乾式シリカ10質量%~80質量%と、含水率が2質量%以上の湿式シリカ20質量%~90質量%とからなる混合シリカ粉末を含み、
前記混合シリカ粉末の含水率が~8質量%であり、
前記含水率が、熱重量分析装置によって200℃まで昇温し、昇温前の重量Xと減少した重量X1を用いて、含水率(質量%)=(X1/X)×100の式により算出される断熱充填材。
A mixed silica powder consisting of 10% to 80% by mass of dry silica and 20% to 90% by mass of wet silica with a moisture content of 2% by mass or more,
The mixed silica powder has a water content of 3 to 8% by mass,
The moisture content is heated to 200 ° C. using a thermogravimetric analyzer, and calculated using the formula of moisture content (mass%) = (X1/X) × 100 using the weight X before heating and the reduced weight X1. Insulating filling material.
前記混合シリカ粉末100質量部に対して、無機繊維を1質量部~10質量部含む請求項1に記載の断熱充填材。 The heat insulating filler according to claim 1, containing 1 to 10 parts by mass of inorganic fibers based on 100 parts by mass of the mixed silica powder. 前記無機繊維が平均繊維径0.1μm~50μmである請求項2に記載の断熱充填材。 The heat insulating filler according to claim 2, wherein the inorganic fibers have an average fiber diameter of 0.1 μm to 50 μm. 輻射散乱粒子を含む請求項1~3のいずれか一項に記載の断熱充填材。 The insulation filler according to any one of claims 1 to 3, comprising radiation scattering particles. 前記乾式シリカの平均粒径が0.8μm以下であり、前記湿式シリカの平均粒径が1μm以上である請求項1~4のいずれか一項に記載の断熱充填材。 The heat-insulating filler according to any one of claims 1 to 4, wherein the dry silica has an average particle size of 0.8 μm or less, and the wet silica has an average particle size of 1 μm or more. 固体である請求項1~5のいずれか一項に記載の断熱充填材。 The insulation filler according to any one of claims 1 to 5, which is a solid. 請求項1~6のいずれか一項に記載の断熱充填材を配合してなる断熱材。 A heat insulating material containing the heat insulating filler according to any one of claims 1 to 6. 請求項7に記載の断熱材を含む断熱構造。 A heat insulating structure comprising the heat insulating material according to claim 7.
JP2020529066A 2018-07-06 2019-07-05 Heat insulating filling material, heat insulating material, heat insulating structure Active JP7377498B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018129047 2018-07-06
JP2018129047 2018-07-06
PCT/JP2019/026834 WO2020009226A1 (en) 2018-07-06 2019-07-05 Thermal insulation filler, thermal insulation material and thermal insulation structure

Publications (2)

Publication Number Publication Date
JPWO2020009226A1 JPWO2020009226A1 (en) 2021-08-26
JP7377498B2 true JP7377498B2 (en) 2023-11-10

Family

ID=69059439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020529066A Active JP7377498B2 (en) 2018-07-06 2019-07-05 Heat insulating filling material, heat insulating material, heat insulating structure

Country Status (2)

Country Link
JP (1) JP7377498B2 (en)
WO (1) WO2020009226A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7466856B2 (en) 2019-12-26 2024-04-15 デンカ株式会社 Insulation filler, insulation material, insulation structure
CN114576471A (en) * 2022-03-01 2022-06-03 四川零零昊科技有限公司 Flexible felt, heat insulation method, filler of flexible felt, preparation method and application

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003026759A (en) 2001-07-23 2003-01-29 Nippon Polyurethane Ind Co Ltd Resin composition for forming backing layer and manufacturing method of mat
JP2011196509A (en) 2010-03-23 2011-10-06 Achilles Corp Vacuum heat insulating material
JP2012246181A (en) 2011-05-27 2012-12-13 Asahi Kasei Chemicals Corp Powder, molded body thereof, wrapped body, and method of producing the powder
JP2013028501A (en) 2011-07-28 2013-02-07 Asahi Kasei Chemicals Corp Powder, molded body, encapsulated body, and method for producing the powder
JP2013199421A (en) 2012-02-21 2013-10-03 Japan Insulation Co Ltd Heat insulating material and method for manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61291466A (en) * 1985-06-18 1986-12-22 松下電器産業株式会社 Vacuum heat-insulative structure
JPH07144955A (en) * 1993-11-17 1995-06-06 Nippon Silica Ind Co Ltd Silica compact for heat insulating board and vacuum heat insulating board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003026759A (en) 2001-07-23 2003-01-29 Nippon Polyurethane Ind Co Ltd Resin composition for forming backing layer and manufacturing method of mat
JP2011196509A (en) 2010-03-23 2011-10-06 Achilles Corp Vacuum heat insulating material
JP2012246181A (en) 2011-05-27 2012-12-13 Asahi Kasei Chemicals Corp Powder, molded body thereof, wrapped body, and method of producing the powder
JP2013028501A (en) 2011-07-28 2013-02-07 Asahi Kasei Chemicals Corp Powder, molded body, encapsulated body, and method for producing the powder
JP2013199421A (en) 2012-02-21 2013-10-03 Japan Insulation Co Ltd Heat insulating material and method for manufacturing the same

Also Published As

Publication number Publication date
JPWO2020009226A1 (en) 2021-08-26
WO2020009226A1 (en) 2020-01-09

Similar Documents

Publication Publication Date Title
Jebasingh et al. A comprehensive review on latent heat and thermal conductivity of nanoparticle dispersed phase change material for low-temperature applications
EP3391433B1 (en) Microporous insulators
CN107406329B (en) Aerogel-containing composition and insulation blanket prepared using the same
CN106415107B (en) Vacuum heat insulation material
US7535715B2 (en) Conformable interface materials for improving thermal contacts
JP7377498B2 (en) Heat insulating filling material, heat insulating material, heat insulating structure
WO2014030651A1 (en) Vacuum heat-insulating material and method for manufacturing vacuum heat-insulating material
US9950963B2 (en) Thermal insulator and method of manufacturing the same
JP2011085216A (en) Thermal insulation and method of producing the same
WO2020204209A1 (en) Heat-blocking material composition, heat-blocking material, and method for manufacturing same
JP7343189B2 (en) High-temperature insulation material and method for producing its three-dimensional molded product
JP7466856B2 (en) Insulation filler, insulation material, insulation structure
JP2015052095A (en) Coating agent for forming heat radiation film, heat radiation film-fitted base material, and method for producing the heat radiation film-fitted base material
TWI597359B (en) Lubricating oil containing nano graphite sheet
Williams et al. Flame Retardant Effect of Aerogel and Nanosilica on Engineered Polymers
JP6984331B2 (en) Method for manufacturing resin composition
JP6127353B2 (en) Insulating material and manufacturing method thereof
Liu et al. SiO2 aerogel coating with organic montmorillonite compounded with flame retardants: A strategy for design of a multifunctional thermal barrier coating
JP6796347B1 (en) Silica-containing molded article and silica-containing composition
Yun et al. Hexagonal Boron Nitride Nanosheets/Graphene Nanoplatelets/Cellulose Nanofibers-based Multifunctional Thermal Interface Materials Enabling Electromagnetic Interference Shielding and Electrical Insulation
WO2016147665A1 (en) Heat insulator and method for producing same
CN118202181A (en) Heat insulating material
JP2010111526A (en) Lightweight heat insulating molded body and method for producing the same
Kolar et al. Addition of Al (OH) 3 vs. AlO (OH) nanoparticles on the optical, thermo-mechanical and heat/oxygen transmission properties of microfibrillated cellulose films
WO2023089451A1 (en) Coatings containing zirconium silicate and inorganic binders for impact resistant thermal barrier applications

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20210413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210510

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231020

R150 Certificate of patent or registration of utility model

Ref document number: 7377498

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150