JPH07144955A - Silica compact for heat insulating board and vacuum heat insulating board - Google Patents

Silica compact for heat insulating board and vacuum heat insulating board

Info

Publication number
JPH07144955A
JPH07144955A JP5311188A JP31118893A JPH07144955A JP H07144955 A JPH07144955 A JP H07144955A JP 5311188 A JP5311188 A JP 5311188A JP 31118893 A JP31118893 A JP 31118893A JP H07144955 A JPH07144955 A JP H07144955A
Authority
JP
Japan
Prior art keywords
silica
polytetrafluoroethylene
heat insulating
fibrous
insulating plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5311188A
Other languages
Japanese (ja)
Inventor
Norio Ishikawa
紀夫 石川
Takeshi Murakami
武司 村上
Akira Fujii
昭 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Silica Corp
Original Assignee
Nippon Silica Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Silica Industrial Co Ltd filed Critical Nippon Silica Industrial Co Ltd
Priority to JP5311188A priority Critical patent/JPH07144955A/en
Publication of JPH07144955A publication Critical patent/JPH07144955A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B30/00Compositions for artificial stone, not containing binders
    • C04B30/02Compositions for artificial stone, not containing binders containing fibrous materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/04Arrangements using dry fillers, e.g. using slag wool which is added to the object to be insulated by pouring, spreading, spraying or the like

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Insulation (AREA)
  • Refrigerator Housings (AREA)

Abstract

PURPOSE:To obtain a vacuum heat insulating board with high shape retentivity by increasing the amt. of fibrous polytetrafluoroethylene to a specified value in a compact contg. fine powdery silica as well as the polytetrafluoroethylene. CONSTITUTION:Polytetrafluoroethylene is added as a binder to fine powdery silica by 0.5-10 pts.wt. per 100 pts.wt. of the silica, they are vigorously mixed under high shear to disperse the polytetrafluoroethylene in a fibrous state in the fine powdery silica and the resulting mixture is compacted to obtain the objective compact. Since the amt. of fibrous polytetrafluoroethylene added is larger than the conventional amt., shape retentivity can be improved while maintaining low density. The fine powdery silica is preferably silica produced by a wet method and having 100-700m<2>/g BET specific surface area and 0.5-10mum average particle diameter. The pref. bulk density of the compact is 0.15-0.25g/ml.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気冷蔵庫用の真空断
熱板に使用される成形体、特に形状保持性が改良された
シリカ成形体に関する。さらに本発明は、上記成形体の
製造方法及び上記成形体を用いた真空断熱板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molded product used for a vacuum heat insulating plate for an electric refrigerator, and more particularly to a silica molded product having improved shape retention. Furthermore, the present invention relates to a method for manufacturing the above-mentioned molded body and a vacuum heat insulating plate using the above-mentioned molded body.

【0002】[0002]

【従来の技術とその問題点】工業用高温壁の断熱板ある
いは家庭用の電気冷蔵庫等に、シリカ粉体を基材とする
断熱板用成形体を使用することは公知である。これらの
成形体は、紙又は不織布等の通気性を有する容器に、パ
ーライト粉末、シリカ粉末等の無機系粉末を充填後成形
し、得られた成形体はそのまま断熱板として使用され
る。あるいは更に、この成形品を乾燥後、実質的に通気
性を有しないように金属アルミニウム箔をラミネートし
た合成樹脂性の容器等に充填し、次いで真空排気等の手
段により成形品中の空気を排気した後、この容器の開口
部を溶着等の手段を用いて閉止することにより、真空成
形断熱板として使用される場合等がある。
2. Description of the Related Art It is known to use a molded product for a heat insulating plate having a silica powder as a base material in a heat insulating plate for an industrial high temperature wall or a household electric refrigerator. These molded products are molded after filling an air-permeable container such as paper or non-woven fabric with an inorganic powder such as pearlite powder or silica powder, and the resulting molded product is used as it is as a heat insulating plate. Alternatively, after this molded product is dried, it is filled in a synthetic resin container or the like laminated with metallic aluminum foil so that it is substantially impermeable to air, and then the air in the molded product is exhausted by means such as vacuum exhaust. After that, the container may be used as a vacuum-molded heat insulating plate by closing the opening of the container with a means such as welding.

【0003】特に、電気冷蔵庫等に使用される真空成形
断熱板においては、近年、フロンガスによる環境破壊防
止のため、冷蔵庫等の断熱板として使用されている発泡
ウレタンの一部を無公害の無機系断熱板に置き換えてい
く動きが大きくなっている。又、省エネルギーの観点か
らも、現状の特定フロンを使用した発泡ウレタンの熱伝
導率が、約0.014kcal/m・hr・℃程度であるのに
対し、シリカを使用した真空断熱板は熱伝導率を発泡ウ
レタンの約1/2以下とすることができることから、大
きな注目を集めるようになっている。
In particular, in a vacuum-formed heat insulating plate used for an electric refrigerator or the like, recently, in order to prevent environmental damage due to CFC gas, a part of urethane foam used as a heat insulating plate for a refrigerator or the like is a non-polluting inorganic type. There is a growing movement to replace them with heat insulating plates. Also, from the viewpoint of energy saving, the thermal conductivity of urethane foam using the current specific CFC is about 0.014 kcal / m · hr · ° C, whereas the vacuum heat insulating plate using silica has thermal conductivity. Since the rate can be reduced to about 1/2 or less of that of urethane foam, it has attracted great attention.

【0004】前述のように、シリカ成形体は、乾燥処理
し、更に容器等に挿入し真空排気後、容器等の排気口を
溶着することにより真空断熱板が得られる。しかしなが
ら、シリカ粉末のみを圧縮成形したシリカ成形体は、強
度が充分ではなく、製品化までの間に割れや欠け、ある
いはくずれ等が発生することがあった。このように形状
保持性に欠ける成形体を用いると、最終真空断熱板の平
坦性が悪く、断熱部への装着性が悪くなる。その結果、
シリカ真空断熱板としての低熱伝導率の性能が十分に発
揮されず、又、極度に成形後の形状保持性が悪い場合に
は、断熱板として使用不能になる場合もあった。さら
に、シリカ成形体の形状保持性が良好でないために、製
造工程を自動化しにくいといった問題もあった。そこ
で、真空断熱板が得られるまでの工程で型崩れを起こさ
ない丈夫なシリカ成形体の提供が望まれている。
As described above, the silica molded body is dried, inserted into a container or the like, evacuated, and then the exhaust port of the container or the like is welded to obtain a vacuum heat insulating plate. However, the silica molded product obtained by compression molding only the silica powder is not sufficiently strong, and cracks, chips, or breakage may occur during commercialization. If a molded product lacking in shape retention is used, the final vacuum heat insulating plate will have poor flatness and poor attachment to the heat insulating portion. as a result,
If the performance of the silica vacuum heat insulating plate with low thermal conductivity is not sufficiently exhibited, and if the shape retention after molding is extremely poor, it may not be usable as a heat insulating plate. Furthermore, there is a problem that it is difficult to automate the manufacturing process because the shape retention of the silica molded body is not good. Therefore, it is desired to provide a durable silica molded body that does not lose its shape in the process of obtaining a vacuum heat insulating plate.

【0005】[0005]

【発明が解決しようとする課題】そこで、本発明の目的
は、形状保持性を改良したシリカ成形体及びその製造方
法を提供することにある。さらに本発明の目的は、上記
の形状保持性を改良したシリカ成形体を用いて真空断熱
板を提供することにある。即ち、本発明は、シリカ真空
成形断熱板の製造工程での型崩れをなくして、製造工程
の自動化を容易にし、かつ性能を充分に発揮できること
を可能とした真空断熱板用シリカ成形体、その製造方法
及び真空断熱板を提供することを目的としている。
SUMMARY OF THE INVENTION It is, therefore, an object of the present invention to provide a silica molded article having improved shape retention and a method for producing the same. A further object of the present invention is to provide a vacuum heat insulating plate using the above-mentioned silica molded body having improved shape retention. That is, the present invention eliminates the shape collapse in the manufacturing process of the silica vacuum forming heat insulating plate, facilitates automation of the manufacturing process, and makes it possible to sufficiently exhibit the performance, a silica molded body for a vacuum heat insulating plate, It is intended to provide a manufacturing method and a vacuum heat insulating plate.

【0006】[0006]

【課題を解決するための手段】本発明者らは、シリカ微
粉末を真空断熱板用シリカ成形体として使用する際、低
熱伝導率を維持しながら、シリカ成形体の形状保持性を
良くする方法について鋭意研究を積み重ねた。元来、シ
リカ真空断熱板としての機能である低熱伝導率を実現す
るには、残留気体による熱伝導率、輻射熱伝導率及び固
体による熱伝導率の3つの因子をそれぞれ小さくするこ
とが重要である。シリカ真空断熱板の場合、残留気体に
よる熱伝導率は真空度を0.5トール程度以下に保つこ
とによって実質的に無視することができる。又、輻射熱
伝導率は微細シリカ粉末を使用した場合、粒子間の空隙
が概略サブミクロンと小さく保たれていることから熱伝
導率への寄与は小さいものである。従って、シリカ真空
断熱板の熱伝導率を小さくするには、固体による熱伝導
を小さくすれば良いことになる。
The present inventors have proposed a method for improving the shape retention of a silica compact while maintaining a low thermal conductivity when using the silica fine powder as a silica compact for a vacuum heat insulating plate. Earnestly researched about. Originally, in order to realize the low thermal conductivity which is the function as the silica vacuum heat insulating plate, it is important to reduce the three factors of the thermal conductivity due to the residual gas, the radiant thermal conductivity and the thermal conductivity due to the solid. . In the case of a silica vacuum insulation plate, the thermal conductivity due to residual gas can be substantially ignored by keeping the vacuum degree at about 0.5 Torr or less. Also, when using fine silica powder, the radiant heat conductivity has a small contribution to the heat conductivity because the voids between particles are kept as small as approximately submicron. Therefore, in order to reduce the thermal conductivity of the silica vacuum heat insulating plate, it is sufficient to reduce the thermal conductivity of the solid.

【0007】即ち、シリカ真空断熱板に使用されるシリ
カ成形体の固体熱伝導率を小さくする必要があり、これ
にはシリカ成形体の密度を低く保つと同時にシリカ粒子
同士の接触を点接触とすることが重要である。しかしな
がら、シリカ成形体の密度を低く保ちながら粒子同士を
点接触とすることと、シリカ成形体の強度を増して形状
保持性を良くすることとは相反する要因である。例え
ば、単に圧縮圧力を上げて成形したのでは、シリカ成形
体の強度は向上でき、形状保持性は良くなるが、低熱伝
導率を維持することが困難である。又、各種バインダー
を使用して形状保持性を改良しようと試みたが、原因は
明らかでないが、バインダーによる形状保持性の向上の
効果が低かった。その結果、バインダー量を増加させる
ことになり、やはり成形体の密度を上げざるを得ないこ
ととなる。従って、いかにこの相反する点、即ち、シリ
カ成形体の密度を低く保ちながら形状保持性を良くする
かについて検討を重ねた。
That is, it is necessary to reduce the solid thermal conductivity of the silica compact used for the silica vacuum heat insulating plate. This is to keep the density of the silica compact low and to make the contact between the silica particles be point contact. It is important to. However, the point contact between the particles while keeping the density of the silica molded product low and the increase in the strength of the silica molded product to improve the shape retention are contradictory factors. For example, if the compression pressure is simply increased to perform the molding, the strength of the silica molded product can be improved and the shape retention is improved, but it is difficult to maintain the low thermal conductivity. Attempts have been made to improve the shape-retaining property by using various binders, but although the cause is not clear, the effect of improving the shape-retaining property by the binder is low. As a result, the amount of the binder is increased, and the density of the molded body must be increased. Therefore, the inventors conducted repeated studies on how to contradict this, that is, how to improve the shape retention while keeping the density of the silica molded product low.

【0008】その結果、意外にも、繊維状ポリテトラフ
ルオロエチレンをバインダーとして用い、かつその添加
量を繊維状ポリテトラフルオロエチレンの従来知られた
量より多くすことにより、密度を低く維持しつつ形状保
持性を向上できることを見出し、本発明を完成させるに
至った。即ち、本発明は、微粉末シリカ100重量部に
対し、0.5〜10重量部、好ましくは1〜5重量部の
繊維状ポリテトラフルオロエチレンを添加した、形状保
持性が良好な成形体に関する。
As a result, surprisingly, by using fibrous polytetrafluoroethylene as a binder and adding the amount of fibrous polytetrafluoroethylene more than the conventionally known amount, the density was kept low. The inventors have found that the shape-retaining property can be improved, and have completed the present invention. That is, the present invention relates to a molded article having good shape retention, to which 0.5 to 10 parts by weight, preferably 1 to 5 parts by weight of fibrous polytetrafluoroethylene is added to 100 parts by weight of fine powder silica. .

【0009】ポリテトラフルオロエチレンは、防塵添加
剤テフロンK(三井・デュポンフロロケミカル社商標)
として市販されている。剪断力を加えると繊維化する特
異な性質を有するものである。通常、粉体の防塵処理に
は0.01〜0.1%の添加量が推奨されている。しか
しながら、シリカ成形体の形状保持性を改良する本発明
の目的に対しては、0.1%以下の添加量では好結果は
得られず、上記のように、微粉末シリカ100重量部に
対して0.5重量部以上の添加量とすることが適当であ
る。0.5重量部未満では、成形体の形状保持性が不十
分である。また、一定量以上を添加しても、その効果は
頭打ちとなり、実用的には、微粉末シリカ100重量部
に対して10重量部以下の添加量で十分である。
Polytetrafluoroethylene is a dust-proof additive Teflon K (trademark of Mitsui DuPont Fluorochemicals).
Is marketed as. It has a unique property of becoming fibrous when a shearing force is applied. Usually, an addition amount of 0.01 to 0.1% is recommended for dustproof treatment of powder. However, for the purpose of the present invention to improve the shape-retaining property of the silica molded product, a good result is not obtained with an addition amount of 0.1% or less, and as described above, it is based on 100 parts by weight of fine powder silica. It is suitable to add 0.5 parts by weight or more. If it is less than 0.5 part by weight, the shape retention of the molded product is insufficient. Further, even if a certain amount or more is added, the effect reaches the ceiling, and practically, an addition amount of 10 parts by weight or less to 100 parts by weight of fine powder silica is sufficient.

【0010】成形の対象である微粉末シリカとしては、
四塩化ケイ素等のシランを高温で加水分解して得られる
乾式法シリカ、及びケイ酸ナトリウム水溶液と鉱酸との
反応によって得られる湿式法シリカが挙げられる。但
し、より低い熱伝導率性を得るには湿式法シリカが好ま
しい。又、シリカの物性としてはBET比表面積100
〜700m2/g、より好ましくは150〜400m2/g
であり、且つ平均粒子径が0.5〜10μm、より好ま
しくは0.5〜5μmであること好ましい。BET比表
面積が上記範囲内では、シリカの嵩密度が小さく、成形
性を維持しながら低い熱伝導率を維持することができる
ので適当である。又、一般に、平均粒子径が小さい方
が、より低い嵩密度を維持できるが、上記範囲内であれ
ば大きな差はない。
The fine powder silica to be molded is as follows:
Examples thereof include dry process silica obtained by hydrolyzing silane such as silicon tetrachloride at a high temperature, and wet process silica obtained by reacting an aqueous sodium silicate solution with a mineral acid. However, wet process silica is preferable in order to obtain lower thermal conductivity. The physical properties of silica are 100 BET specific surface area.
~ 700 m 2 / g, more preferably 150-400 m 2 / g
And the average particle size is 0.5 to 10 μm, and more preferably 0.5 to 5 μm. When the BET specific surface area is within the above range, the bulk density of silica is small, and low thermal conductivity can be maintained while maintaining moldability, which is appropriate. In general, a smaller average particle size can maintain a lower bulk density, but within the above range, there is no great difference.

【0011】さらに、シリカ成形体の嵩密度は、0.1
5〜0.25g/mlの範囲であることが、熱伝導率の
低い断熱体を得るという観点から好ましい。上記の範囲
の嵩密度は、前記のBET比表面積及び平均粒子径を有
するシリカ微粉末を使用することにより得られる。より
好ましくは、0.15〜0.2g/mlの嵩密度である
ことが望ましい。但し、嵩密度を小さくし過ぎても、成
形が不可能となったりあるいは真空断熱板とした時に外
圧に耐えられずつぶれてしまうことがある。そのため、
0.15g/ml以上の嵩密度であることが適当であ
る。
Further, the bulk density of the silica molding is 0.1.
The range of 5 to 0.25 g / ml is preferable from the viewpoint of obtaining a heat insulator having a low thermal conductivity. The bulk density in the above range is obtained by using the silica fine powder having the BET specific surface area and the average particle diameter described above. More preferably, the bulk density is 0.15 to 0.2 g / ml. However, even if the bulk density is made too small, molding may become impossible, or the vacuum heat insulating plate may not withstand external pressure and may collapse. for that reason,
It is suitable that the bulk density is 0.15 g / ml or more.

【0012】本発明の成形体は、微粉末シリカとポリテ
トラフルオロエチレンとを、ポリテトラフルオロエチレ
ンが繊維状になる状態で混合して、繊維状ポリテトラフ
ルオロエチレンを微粉末シリカ中に分散させ、次いで成
形して得られる。ポリテトラフルオロエチレンが繊維状
になる状態での混合は、例えば微粉末シリカとポリテト
ラフルオロエチレンとを高剪断下で強力に混合すること
により得られる。微粉末シリカとポリテトラフルオロエ
チレンとは、高剪断下で強力に混合されていることで、
ポリテトラフルオロエチレンが繊維状になり、微粉末シ
リカ中に良好に分散させることができる。ポリテトラフ
ルオロエチレンは、通常粉末あるいは水性懸濁液であ
り、剪断力を加えると繊維化する。単に両者を混合した
だけでは、ポリテトラフルオロエチレンが繊維状にでき
ない。このような状態は、例えばヘンシェルミキサーな
どの高速流動ミキサーの使用した分散、手でもみほぐ
す、又はボールミルを使用して分散することにより、両
者を分散することが得られる。ヘンシェルミキサーを用
いる場合、例えば、周速は20m/秒程度で混合され
る。分散の状態が良ければ、ポリテトラフルオロエチレ
ンはもぐさ状となり、シリカ粉の粉塵発生も見られず、
ポリテトラフルオロエチレンの微細繊維と微粉末シリカ
とが良く分散され、シリカ粒子と繊維との絡み合いが強
くなって、この混合物を成形することにより、高い形状
保持性を有する成形体を得ることができる。
In the molded article of the present invention, finely divided silica and polytetrafluoroethylene are mixed in a fibrous state of polytetrafluoroethylene to disperse the fibrous polytetrafluoroethylene in the finely divided silica. Then, it is obtained by molding. The mixing of polytetrafluoroethylene in a fibrous state can be obtained, for example, by strongly mixing fine powder silica and polytetrafluoroethylene under high shear. Finely powdered silica and polytetrafluoroethylene are strongly mixed under high shear,
Polytetrafluoroethylene becomes fibrous and can be satisfactorily dispersed in finely divided silica. Polytetrafluoroethylene is usually a powder or an aqueous suspension, and becomes a fiber when a shearing force is applied. The polytetrafluoroethylene cannot be made into a fibrous state simply by mixing the both. In such a state, both can be obtained by dispersing using a high speed fluid mixer such as a Henschel mixer, loosening by hand, or dispersing using a ball mill. When using a Henschel mixer, for example, the peripheral speed is mixed at about 20 m / sec. If the state of dispersion is good, polytetrafluoroethylene becomes moxa-like, and dust generation of silica powder is not seen,
Fine particles of polytetrafluoroethylene and finely divided silica are well dispersed, the entanglement between silica particles and fibers becomes strong, and by molding this mixture, it is possible to obtain a molded article having high shape retention. .

【0013】得られた微粉末シリカと繊維状ポリテトラ
フルオロエチレンとの混合物はそのまま、あるいは通気
性を有する容器又は袋に充填後プレス成形等により、成
形することで成形体とすることができる。プレス成形
は、例えば0.03〜0.3kg/cm2 Gの範囲の圧
力で行うことができる。得られたシリカ成形体は、電気
冷蔵庫以外の用途等では、真空排気することなく、その
まま断熱板として使用することができる。また、得られ
たシリカ成形体は、さらに実質的に通気性を有しない容
器に挿入充填後、容器内を真空排気し、容器を密封し
て、電気冷蔵庫用に適した、シリカ真空断熱板を得るこ
とができる。ここで、実質的に通気性を有しない容器と
は、合成樹脂製の袋、金属製の袋、金属を蒸着した合成
樹脂の袋、金属箔をラミネートした合成樹脂製の袋等で
あることができる。また、排気後の容器内の真空は、約
0.01〜0.5トールの範囲であることが適当であ
る。
The obtained mixture of finely powdered silica and fibrous polytetrafluoroethylene can be formed into a molded product as it is, or by filling it into a container or bag having air permeability and then molding by press molding or the like. The press molding can be performed at a pressure in the range of 0.03 to 0.3 kg / cm 2 G, for example. The obtained silica molded product can be used as it is as a heat insulating plate without vacuum evacuation in applications other than electric refrigerators. Further, the obtained silica molded body is further inserted into a container having substantially no air permeability and filled, and then the inside of the container is evacuated, the container is sealed, and a silica vacuum heat insulating plate suitable for an electric refrigerator is provided. Obtainable. Here, the substantially air-impermeable container may be a synthetic resin bag, a metal bag, a metal-deposited synthetic resin bag, a metal foil laminated synthetic resin bag, or the like. it can. Also, the vacuum inside the container after evacuation is suitably in the range of about 0.01 to 0.5 torr.

【0014】[0014]

【発明の効果】本発明の断熱板用シリカ成形体は、形状
保持性に優れているので、シリカ真空断熱板として使用
する場合、欠けや割れあるいはくずれ等の心配がなくな
り、製造工程上のトラブルを解消することが可能であ
る。さらに、製造工程におけるシリカ粉塵の発生をも解
消することが可能である。又、粉塵発生が少なくなるこ
とから、本発明の成形体を使用した電気冷蔵庫等が使用
不能となり廃棄、解体された場合に、シリカ粉の飛散等
の恐れがなくなるなどの利点もある。
EFFECTS OF THE INVENTION Since the silica molded article for heat insulating plate of the present invention is excellent in shape retention, when it is used as a silica vacuum heat insulating plate, there is no fear of chipping, cracking or breaking, and troubles in the manufacturing process. Can be eliminated. Furthermore, it is possible to eliminate the generation of silica dust in the manufacturing process. Further, since the generation of dust is reduced, there is also an advantage that when the electric refrigerator or the like using the molded product of the present invention becomes unusable and is discarded or dismantled, there is no fear of scattering silica powder.

【0015】[0015]

【実施例】以下、本発明を更に具体的に実施例及び比較
例を挙げて説明する。なお、各物性値等の測定は次に示
す方法により実施した。 1)BET比表面積 カンターソープ(米国Quantachrome社製)
を用いて1点法により測定した。 2)2次粒子の平均粒子径 コールターカウンタ−TA−II(Coulter El
ectonics社製)を用い、30μm及び100μ
mのアパーチャーチューブにより測定した。 3)熱伝導率 オートΛ HC−072型(英弘精機社製)を用いて測
定した。 4)形状保持性 目視及び触感により判定し、形状保持性の良いものを
○、悪いものを×として表示した。
EXAMPLES The present invention will be described more specifically with reference to Examples and Comparative Examples. The measurement of each physical property value was performed by the following methods. 1) BET specific surface area Canter soap (manufactured by Quantachrome, USA)
Was measured by the one-point method. 2) Average particle size of secondary particles Coulter counter-TA-II (Coulter El)
(manufactured by ectonics), 30 μm and 100 μm
It was measured with an aperture tube of m. 3) Thermal conductivity It was measured using Auto Λ HC-072 type (manufactured by Eiko Seiki Co., Ltd.). 4) Shape-retaining property Judgment was made visually and by touch, and those having good shape-retaining property were indicated by ◯, and those having poor shape-retaining property were indicated by x.

【0016】実施例1 BET比表面積200m2/g、平均粒子径が2μmの沈
降法シリカ1kgに、ポリテトラフルオロエチレン粉末
30gを添加し高速流動ミキサー中で良く混練して繊維
状のポリテトラフルオロエチレンがシリカに分散された
混合物を得た。得られた混合粉体の一部をクラフト紙製
の袋に密閉充填後、型枠を用いてプレス成形(圧力:3
0kg/cm2 G)し、縦×横×厚さがそれぞれ200
mm×200mm×12mmのシリカ成形体を作成し
た。この時シリカ成形体の嵩密度0.2g/mlとなる
ように型枠の大きさを設定した。得られたシリカ成形体
の形状保持性を観察した後、120℃で12時間乾燥処
理し、実質的に通気性を有しない合成樹脂製の袋に挿入
充填後、真空チャンバー内で0.4トールの真空下でヒ
ートシールにより密封しシリカ真空断熱板を得た。得ら
れたシリカ真空断熱板の形状保持性を再度観察すると共
に熱伝導率を測定した。結果を表1に示した。
Example 1 To 1 kg of precipitated silica having a BET specific surface area of 200 m 2 / g and an average particle size of 2 μm, 30 g of polytetrafluoroethylene powder was added and well kneaded in a high-speed fluid mixer to form fibrous polytetrafluoro. A mixture was obtained in which ethylene was dispersed in silica. A portion of the obtained mixed powder is hermetically filled in a kraft paper bag, and then press-molded using a mold (pressure: 3
0 kg / cm 2 G) and the length x width x thickness is 200 each
A silica molded body having a size of mm × 200 mm × 12 mm was prepared. At this time, the size of the mold was set so that the bulk density of the silica molded body was 0.2 g / ml. After observing the shape-retaining property of the obtained silica molded product, it was dried at 120 ° C. for 12 hours, inserted into a bag made of synthetic resin having substantially no air permeability, and filled, and then 0.4 Torr in a vacuum chamber. It was sealed by heat sealing under vacuum to obtain a silica vacuum heat insulating plate. The shape retention of the obtained silica vacuum heat insulating plate was observed again and the thermal conductivity was measured. The results are shown in Table 1.

【0017】実施例2〜6及び比較例1 シリカの種類、物性値及びポリテトラフルオロエチレン
の添加量を変化させ、実施例1と同様の方法によりシリ
カ真空断熱板を作成し評価した。なお、真空度はいずれ
の例においても0.4トールとして測定した。結果を表
1に示した。
Examples 2 to 6 and Comparative Example 1 A silica vacuum heat insulating plate was prepared and evaluated by the same method as in Example 1 while changing the type of silica, the physical properties and the amount of polytetrafluoroethylene added. The degree of vacuum was 0.4 Torr in each example. The results are shown in Table 1.

【0018】[0018]

【表1】 [Table 1]

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 微粉末シリカ100重量部に対し、0.
5〜10重量部の繊維状ポリテトラフルオロエチレンを
含有することを特徴とする断熱板用シリカ成形体。
1. To 100 parts by weight of finely divided silica, 0.
A silica molded product for a heat insulating plate, which contains 5 to 10 parts by weight of fibrous polytetrafluoroethylene.
【請求項2】 微粉末シリカが、100〜700m2/g
のBET比表面積及び0.5〜10μmの平均粒子径を
有する湿式法シリカである請求項1記載のシリカ成形
体。
2. Finely divided silica is 100 to 700 m 2 / g.
The silica molded body according to claim 1, which is a wet process silica having a BET specific surface area of 5 and an average particle diameter of 0.5 to 10 μm.
【請求項3】 嵩密度が0.15〜0.25g/mlあ
る請求項1又は2記載のシリカ成形体。
3. The silica molded product according to claim 1, which has a bulk density of 0.15 to 0.25 g / ml.
【請求項4】 微粉末シリカとポリテトラフルオロエチ
レンとを、ポリテトラフルオロエチレンが繊維状になる
状態で混合して、繊維状ポリテトラフルオロエチレンを
微粉末シリカ中に分散させ、次いで成形して成形体とす
る、請求項1記載のシリカ成形体の製造方法。
4. Finely powdered silica and polytetrafluoroethylene are mixed in a fibrous state of polytetrafluoroethylene to disperse the fibrous polytetrafluoroethylene in the finely powdered silica and then molded. The method for producing a silica molded body according to claim 1, which is a molded body.
【請求項5】 微粉末シリカとポリテトラフルオロエチ
レンとを、高剪断下で強力に混合して、繊維状ポリテト
ラフルオロエチレンを微粉末シリカ中に分散させる請求
項4記載の製造方法。
5. The method according to claim 4, wherein the fine powder silica and polytetrafluoroethylene are vigorously mixed under high shear to disperse the fibrous polytetrafluoroethylene in the fine powder silica.
【請求項6】 請求項1記載のシリカ成形体が、実質的
に通気性を有しない真空の容器内に充填されたことを特
徴とする真空断熱板。
6. A vacuum heat insulating plate, wherein the silica molded product according to claim 1 is filled in a vacuum container having substantially no air permeability.
JP5311188A 1993-11-17 1993-11-17 Silica compact for heat insulating board and vacuum heat insulating board Pending JPH07144955A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5311188A JPH07144955A (en) 1993-11-17 1993-11-17 Silica compact for heat insulating board and vacuum heat insulating board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5311188A JPH07144955A (en) 1993-11-17 1993-11-17 Silica compact for heat insulating board and vacuum heat insulating board

Publications (1)

Publication Number Publication Date
JPH07144955A true JPH07144955A (en) 1995-06-06

Family

ID=18014159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5311188A Pending JPH07144955A (en) 1993-11-17 1993-11-17 Silica compact for heat insulating board and vacuum heat insulating board

Country Status (1)

Country Link
JP (1) JPH07144955A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002161994A (en) * 2000-11-27 2002-06-07 Matsushita Refrig Co Ltd Vacuum insulant, vacuum insulant applied refrigerator
JP2002525543A (en) * 1998-09-30 2002-08-13 キャボット コーポレイション Vacuum insulation panel and manufacturing method thereof
JP2007100750A (en) * 2005-09-30 2007-04-19 Ibiden Co Ltd Heat insulation material
JP2013530325A (en) * 2010-05-31 2013-07-25 ワッカー ケミー アクチエンゲゼルシャフト Insulator having a layered structure
EP3387344A4 (en) * 2015-12-08 2019-07-31 Whirlpool Corporation Method for preparing a densified insulation material
JPWO2020009226A1 (en) * 2018-07-06 2021-08-26 デンカ株式会社 Insulation filler, insulation, insulation structure
US11156970B2 (en) 2015-08-05 2021-10-26 Whirlpool Corporation Foodstuff sensing appliance

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002525543A (en) * 1998-09-30 2002-08-13 キャボット コーポレイション Vacuum insulation panel and manufacturing method thereof
JP2011153713A (en) * 1998-09-30 2011-08-11 Cabot Corp Vacuum heat insulation panel and method of manufacturing the same
JP2002161994A (en) * 2000-11-27 2002-06-07 Matsushita Refrig Co Ltd Vacuum insulant, vacuum insulant applied refrigerator
JP2007100750A (en) * 2005-09-30 2007-04-19 Ibiden Co Ltd Heat insulation material
JP4679324B2 (en) * 2005-09-30 2011-04-27 イビデン株式会社 Insulation
JP2013530325A (en) * 2010-05-31 2013-07-25 ワッカー ケミー アクチエンゲゼルシャフト Insulator having a layered structure
US11156970B2 (en) 2015-08-05 2021-10-26 Whirlpool Corporation Foodstuff sensing appliance
EP3387344A4 (en) * 2015-12-08 2019-07-31 Whirlpool Corporation Method for preparing a densified insulation material
US11052579B2 (en) 2015-12-08 2021-07-06 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
US11691318B2 (en) 2015-12-08 2023-07-04 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
JPWO2020009226A1 (en) * 2018-07-06 2021-08-26 デンカ株式会社 Insulation filler, insulation, insulation structure

Similar Documents

Publication Publication Date Title
US5084320A (en) Evacuated thermal insulation
JP6070710B2 (en) Vacuum insulation material manufacturing method and vacuum insulation material
JP3212309B2 (en) High insulation panel
CN106415107B (en) Vacuum heat insulation material
EP2883850A1 (en) Low density inorganic powder insulator using expanded perlite, method for manufacturing same and mold machine for manufacturing same
JPWO2013141189A1 (en) Heat insulating material composition, heat insulating material using the same, and method for manufacturing heat insulating material
US11920735B2 (en) Method for thermally insulating an evacuable container
JP2012172378A (en) Aerogel and heat insulator using aerogel
JP5672891B2 (en) Vacuum heat insulating material and manufacturing method thereof
JPH07144955A (en) Silica compact for heat insulating board and vacuum heat insulating board
JP2016033419A (en) Manufacturing method of heat insulation plate and vacuum heat insulation material
JPH05194008A (en) Production of heat insulating material
US20150361652A1 (en) Thermal and/or acoustic insulation materials shaped from silica
JP6228115B2 (en) High performance insulation
JP5824272B2 (en) Powder, molded body, enveloping body, and method for producing powder
JPH09143690A (en) Porous vapor depositing material and its production
CN110041080A (en) A method of preparing near-spherical hexagonal boron nitride agglomerated particle
JP2020016326A (en) Thermal insulation material
JPH094785A (en) Vacuum heat insulation material
JPH07149510A (en) Silica for heat-insulating board and heat-insulating board
KR101514906B1 (en) Heat insulation material and production method for same
KR100515404B1 (en) A method for the preparation of bone filler with rugged surface
JPH07149513A (en) Hydrous silicic acid for heat-insulating board and heat-insulating board
JP5824228B2 (en) Powder, molded body, enveloping body, and method for producing powder
JP2012218961A (en) Powder, molding, covered body, and method for producing the powder