JPWO2020009226A1 - Insulation filler, insulation, insulation structure - Google Patents
Insulation filler, insulation, insulation structure Download PDFInfo
- Publication number
- JPWO2020009226A1 JPWO2020009226A1 JP2020529066A JP2020529066A JPWO2020009226A1 JP WO2020009226 A1 JPWO2020009226 A1 JP WO2020009226A1 JP 2020529066 A JP2020529066 A JP 2020529066A JP 2020529066 A JP2020529066 A JP 2020529066A JP WO2020009226 A1 JPWO2020009226 A1 JP WO2020009226A1
- Authority
- JP
- Japan
- Prior art keywords
- mass
- heat insulating
- silica
- insulating filler
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000945 filler Substances 0.000 title claims abstract description 45
- 238000009413 insulation Methods 0.000 title description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 195
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 94
- 239000000843 powder Substances 0.000 claims abstract description 42
- 239000000835 fiber Substances 0.000 claims abstract description 27
- 239000012784 inorganic fiber Substances 0.000 claims abstract description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000002245 particle Substances 0.000 claims description 38
- 239000011810 insulating material Substances 0.000 claims description 23
- 238000002156 mixing Methods 0.000 claims description 13
- 239000007787 solid Substances 0.000 claims description 4
- 238000011049 filling Methods 0.000 description 21
- 238000000034 method Methods 0.000 description 17
- 239000010419 fine particle Substances 0.000 description 11
- 239000000463 material Substances 0.000 description 10
- 238000000465 moulding Methods 0.000 description 7
- 239000000203 mixture Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 239000011148 porous material Substances 0.000 description 4
- 230000002411 adverse Effects 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000003365 glass fiber Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 3
- 229910010271 silicon carbide Inorganic materials 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000009841 combustion method Methods 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 239000012774 insulation material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 239000002759 woven fabric Substances 0.000 description 2
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 1
- 229910002012 Aerosil® Inorganic materials 0.000 description 1
- 229910002019 Aerosil® 380 Inorganic materials 0.000 description 1
- 229920006310 Asahi-Kasei Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- 239000004113 Sepiolite Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- 229920004482 WACKER® Polymers 0.000 description 1
- SDXDHLDNCJPIJZ-UHFFFAOYSA-N [Zr].[Zr] Chemical compound [Zr].[Zr] SDXDHLDNCJPIJZ-UHFFFAOYSA-N 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000003317 industrial substance Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011490 mineral wool Substances 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000012783 reinforcing fiber Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052624 sepiolite Inorganic materials 0.000 description 1
- 235000019355 sepiolite Nutrition 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000005049 silicon tetrachloride Substances 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 239000010456 wollastonite Substances 0.000 description 1
- 229910052882 wollastonite Inorganic materials 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
- C01B33/18—Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B30/00—Compositions for artificial stone, not containing binders
- C04B30/02—Compositions for artificial stone, not containing binders containing fibrous materials
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M11/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
- D06M11/77—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof
- D06M11/79—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof with silicon dioxide, silicic acids or their salts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L59/00—Thermal insulation in general
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Inorganic Chemistry (AREA)
- Textile Engineering (AREA)
- Thermal Insulation (AREA)
- Silicon Compounds (AREA)
Abstract
乾式シリカ10質量%〜80質量%と、含水率が2質量%以上の湿式シリカ20質量%〜90質量%とからなる混合シリカ粉末を含む断熱充填材であり、混合シリカ粉末100質量部に対して、無機繊維を1質量部〜10質量部を含むことが好ましく、無機繊維が平均繊維径0.1μm〜50μmであることが好ましい。It is a heat insulating filler containing a mixed silica powder consisting of 10% by mass to 80% by mass of dry silica and 20% by mass to 90% by mass of wet silica having a water content of 2% by mass or more, with respect to 100 parts by mass of the mixed silica powder. It is preferable that the inorganic fiber contains 1 part by mass to 10 parts by mass, and the inorganic fiber preferably has an average fiber diameter of 0.1 μm to 50 μm.
Description
本発明は、断熱充填材、断熱材、断熱構造に関する。 The present invention relates to a heat insulating filler, a heat insulating material, and a heat insulating structure.
近年、省エネルギーの観点から放熱エネルギーを抑制するために、断熱材の需要が益々大きくなってきている。また、従来の住宅や配管、溶鉱炉、電気炉といった用途だけでなく、例えば内燃機関や燃料電池等の保温といった観点からも断熱材は注目されており、成型体に限らない様々な形状に適応可能な断熱材が求められている。 In recent years, the demand for heat insulating materials has been increasing more and more in order to suppress heat dissipation energy from the viewpoint of energy saving. In addition to conventional applications such as housing, piping, blast furnaces, and electric furnaces, heat insulating materials are attracting attention not only from the viewpoint of heat retention of internal combustion engines and fuel cells, for example, and can be applied to various shapes not limited to molded bodies. Insulation material is required.
室温付近での空気の平均自由行程は100nmであるため、100nm以下の微細気孔を含む多孔質体が優れた断熱性を示すことがよく知られている。このような多孔質断熱材には様々な種類があり、例えば特許文献1〜5に示されるような乾式法によって製造されたシリカ微粒子を使用した無機系多孔質断熱材が挙げられる。これは、微細気孔を内包する乾式シリカによって微細な多孔質構造が形成されていることで流体熱伝達が抑制されるため、優れた断熱性を示す。 Since the mean free path of air near room temperature is 100 nm, it is well known that a porous body containing fine pores of 100 nm or less exhibits excellent heat insulating properties. There are various types of such porous heat insulating materials, and examples thereof include inorganic porous heat insulating materials using silica fine particles produced by a dry method as shown in Patent Documents 1 to 5. This is because the fluid heat transfer is suppressed by forming a fine porous structure by the dry silica containing fine pores, so that it exhibits excellent heat insulating properties.
上記従来技術における断熱材としての使用形態は、機械プレスによる成型体をベースとしたものが多く、上述した特許文献のように、発塵性や成型後の強度を改善する検討が多く成されてきている。このとき、均一な成型体を得るために、使用粉体には金型に対して均一に充填出来る良好な流動性が求められる。しかしながら、乾式シリカ微粒子は、小さな嵩密度とクーロン力に由来する強い付着性、噴出性を示すために製造工程中でのハンドリング性が課題である。 Many of the forms of use as a heat insulating material in the above-mentioned prior art are based on a molded body formed by mechanical pressing, and many studies have been made to improve dust generation and strength after molding as in the above-mentioned patent documents. ing. At this time, in order to obtain a uniform molded body, the powder used is required to have good fluidity that can be uniformly filled in the mold. However, the dry silica fine particles have a problem of handleability in the manufacturing process in order to exhibit strong adhesion and ejection property due to a small bulk density and Coulomb force.
また、特許文献6、7で袋状の外皮材中に粉末を充填することによって製造される断熱材について示されているように、粉末の流動によって空間に粉体を充填することで断熱層を形成する手法があり、充填性に優れる断熱性粉体が必要とされる。しかし、流動による充填では、対象空間中の空気を粉体へと置換するため、嵩密度が非常に小さな乾式シリカ微粒子では不向きである。 Further, as shown in Patent Documents 6 and 7 about a heat insulating material produced by filling a bag-shaped outer skin material with powder, a heat insulating layer is formed by filling the space with powder by the flow of powder. There is a method of forming, and a heat insulating powder having excellent filling property is required. However, filling by flow replaces the air in the target space with powder, so it is not suitable for dry silica fine particles having a very small bulk density.
特許文献8は、1)主成分としてのシリカ微粒子と、2)補強繊維と、3)水を含浸させた蓄液性物質とを含む混合物を湿式成形し、乾燥する断熱材の製造方法を記載している。特許文献9、10は、一次粒子径の異なる2種以上の微粒子が充填されてなる断熱ボードを記載している。しかし、特許文献8〜10は、含水率について記載がない。 Patent Document 8 describes a method for producing a heat insulating material in which a mixture containing 1) silica fine particles as a main component, 2) reinforcing fibers, and 3) a liquid storage substance impregnated with water is wet-molded and dried. doing. Patent Documents 9 and 10 describe a heat insulating board in which two or more kinds of fine particles having different primary particle diameters are filled. However, Patent Documents 8 to 10 do not describe the water content.
本発明は、上記課題と背景を鑑みてなされたものであり、良好な断熱性を有し、優れた充填性を発揮しうる断熱充填材を提供することを目的とする。 The present invention has been made in view of the above problems and background, and an object of the present invention is to provide a heat insulating filler having good heat insulating properties and capable of exhibiting excellent filling properties.
本発明者らは、上記課題と背景を鑑みて、鋭意検討を重ねた結果、乾式シリカ微粒子と湿式シリカ微粒子とを所定の割合で混合してなる混合シリカ粉末を含む断熱充填材により当該課題が解決できることを見出した。すなわち、本発明は下記のとおりである。 As a result of diligent studies in view of the above problems and background, the present inventors have solved the problem with a heat insulating filler containing mixed silica powder obtained by mixing dry silica fine particles and wet silica fine particles in a predetermined ratio. I found that it could be solved. That is, the present invention is as follows.
[1] 乾式シリカ10質量%〜80質量%と、含水率が2質量%以上の湿式シリカ20質量%〜90質量%とからなる混合シリカ粉末を含む断熱充填材。
[2] 前記混合シリカ粉末100質量部に対して、無機繊維を1質量部〜10質量部含む[1]に記載の断熱充填材。
[3] 前記無機繊維が平均繊維径0.1μm〜50μmである[2]に記載の断熱充填材。
[4] 輻射散乱粒子を含む[1]〜[3]のいずれかに記載の断熱充填材。
[5] 前記乾式シリカの平均粒径が0.8μm以下であり、前記湿式シリカの平均粒径が1μm以上である[1]〜[4]のいずれかに記載の断熱充填材。
[6] 固体である[1]〜[5]のいずれかに記載の断熱充填材。
[7] [1]〜[6]のいずれかに記載の断熱充填材を配合してなる断熱材。
[8] [7]に記載の断熱材を含む断熱構造。[1] A heat insulating filler containing a mixed silica powder containing 10% by mass to 80% by mass of dry silica and 20% by mass to 90% by mass of wet silica having a water content of 2% by mass or more.
[2] The heat insulating filler according to [1], which contains 1 part by mass to 10 parts by mass of inorganic fibers with respect to 100 parts by mass of the mixed silica powder.
[3] The heat insulating filler according to [2], wherein the inorganic fibers have an average fiber diameter of 0.1 μm to 50 μm.
[4] The heat insulating filler according to any one of [1] to [3], which contains radiant scattering particles.
[5] The heat insulating filler according to any one of [1] to [4], wherein the dry silica has an average particle size of 0.8 μm or less, and the wet silica has an average particle size of 1 μm or more.
[6] The heat insulating filler according to any one of [1] to [5], which is a solid.
[7] A heat insulating material obtained by blending the heat insulating filler according to any one of [1] to [6].
[8] A heat insulating structure including the heat insulating material according to [7].
本発明によれば、良好な断熱性を有し、優れた充填性を発揮しうる断熱充填材を提供できる。その結果、様々な形状物に対し優れた断熱効果、保温効果を提供できる。 According to the present invention, it is possible to provide a heat insulating filler having good heat insulating properties and capable of exhibiting excellent filling properties. As a result, excellent heat insulating effect and heat retaining effect can be provided for various shaped objects.
以下、本発明の詳細を説明する。
[1.断熱充填材]
本発明の一実施形態(本実施形態)に係る断熱充填材は、乾式シリカ10質量%〜80質量%と、含水率が2質量%以上の湿式シリカ20質量%〜90質量%とからなる混合シリカ粉末を含む。The details of the present invention will be described below.
[1. Insulation filler]
The heat insulating filler according to one embodiment of the present invention (the present embodiment) is a mixture of 10% by mass to 80% by mass of dry silica and 20% by mass to 90% by mass of wet silica having a water content of 2% by mass or more. Contains silica powder.
本実施形態においては、具体的には、乾式シリカによって形成される微細気孔構造で低熱伝導率を維持でき、上記湿式シリカ中の水分によって表面の電荷が拡散されるために付着性が改善されることで、流動性が向上し優れた充填性発揮されると推察される。さらにこれらを混合した混合シリカ粉末の凝集と無機繊維への混合シリカ微粒子の添着によって流動性がより向上することが見出された。 Specifically, in the present embodiment, low thermal conductivity can be maintained by the fine pore structure formed by dry silica, and the charge on the surface is diffused by the moisture in the wet silica, so that the adhesiveness is improved. As a result, it is presumed that the fluidity is improved and excellent filling property is exhibited. Furthermore, it was found that the fluidity was further improved by the aggregation of the mixed silica powder in which these were mixed and the attachment of the mixed silica fine particles to the inorganic fibers.
本発明で使用する「乾式シリカ」とは、乾式法によって製造される非晶質シリカ物質の総称であり、燃焼法もしくはアーク法等、いずれの方法で製造されたものも使用できる。燃焼法とは例えば、四塩化珪素を高温の炎の中で反応させる方法をいう。乾式シリカ(乾式シリカ微粒子が好ましい)は微細な気孔を含んだ粒子であり、混合シリカ粉末において微細な多孔質構造を与えるものである。そのため、熱伝導率低減の観点から、含有量は10質量%〜80質量%とし、30〜70質量%とすることが好ましい。10質量%未満では十分な断熱性を発揮しない場合があり、80質量%を超えると粉体流動性が十分に確保できず、充填性が低下する場合がある。 The "dry silica" used in the present invention is a general term for amorphous silica substances produced by a dry method, and those produced by any method such as a combustion method or an arc method can be used. The combustion method is, for example, a method of reacting silicon tetrachloride in a high-temperature flame. Dry silica (preferably dry silica fine particles) is particles containing fine pores and gives a fine porous structure in the mixed silica powder. Therefore, from the viewpoint of reducing the thermal conductivity, the content is preferably 10% by mass to 80% by mass and preferably 30 to 70% by mass. If it is less than 10% by mass, sufficient heat insulating properties may not be exhibited, and if it exceeds 80% by mass, sufficient powder fluidity cannot be ensured and the filling property may be lowered.
本発明で使用する「湿式シリカ」とは、湿式法によって製造される非晶質シリカ物質の総称であり、沈降法もしくはゲル法等、いずれの方法で製造されたものも使用できる。沈降法とは例えば、珪酸ソーダの水溶液を中和してシリカを析出し、濾過、乾燥する方法をいう。この湿式シリカ(湿式シリカ微粒子が好ましい)は、乾式シリカを自身の周囲に添着させることで、粉末の付着性および噴出性を抑える粒子である。また、含有量は、混合シリカ粉末とした時の流動性と付着性の観点から20質量%〜90質量%とし、30〜70質量%とすることが好ましい。20質量%未満では良好なハンドリング性を発揮しない場合があり、90質量%を超えて添加してもそれ以上の効果の増進は期待できない。ここで、混合シリカ粉末とは、乾式シリカと湿式シリカと含み、任意の無機繊維を(必要な場合は輻射散乱粒子も)混合することで得られる粉末のことである。 The "wet silica" used in the present invention is a general term for amorphous silica substances produced by a wet method, and those produced by any method such as a precipitation method or a gel method can be used. The precipitation method is, for example, a method in which an aqueous solution of sodium silicate is neutralized to precipitate silica, which is then filtered and dried. The wet silica (preferably wet silica fine particles) is particles that suppress the adhesion and ejection property of the powder by adhering dry silica around itself. The content is preferably 20% by mass to 90% by mass and preferably 30 to 70% by mass from the viewpoint of fluidity and adhesiveness when the mixed silica powder is prepared. If it is less than 20% by mass, good handleability may not be exhibited, and even if it is added in excess of 90% by mass, further improvement of the effect cannot be expected. Here, the mixed silica powder is a powder obtained by mixing dry silica and wet silica with arbitrary inorganic fibers (and radiation scattering particles if necessary).
乾式シリカと湿式シリカとの混合時に含まれる水分は粒子に働くファンデルワールス力を抑える役割がある。この含水率は、湿式シリカの質量に対して2質量%以上であれば特に限らない。2質量%未満では、粒子に働く静電気により付着性が増大するため、良好なハンドリング性を発揮しない場合がある。湿式シリカの含水率は3〜15質量%であることが好ましく、5〜10質量%であることがより好ましい。 Moisture contained in the mixture of dry silica and wet silica has the role of suppressing the van der Waals force acting on the particles. This water content is not particularly limited as long as it is 2% by mass or more with respect to the mass of the wet silica. If it is less than 2% by mass, the adhesiveness increases due to static electricity acting on the particles, so that good handleability may not be exhibited. The water content of the wet silica is preferably 3 to 15% by mass, more preferably 5 to 10% by mass.
また、乾式シリカと湿式シリカとを混合してなる混合シリカ粉末の含水率は、良好なハンドリング性の観点から、2〜8質量%であることが好ましく、3〜7質量%であることがより好ましい。 Further, the water content of the mixed silica powder obtained by mixing dry silica and wet silica is preferably 2 to 8% by mass, more preferably 3 to 7% by mass, from the viewpoint of good handleability. preferable.
上記乾式シリカ、湿式シリカ、混合シリカの含水率は、熱重量分析装置(TGA)によって200℃まで昇温し、昇温前の重量Xと減少した重量X1を用いて含水率Wを算出する。
含水率W(質量%)=(X1/X)×100The water content of the dry silica, wet silica, and mixed silica is raised to 200 ° C. by a thermogravimetric analyzer (TGA), and the water content W is calculated using the weight X before the temperature rise and the reduced weight X 1. ..
Moisture content W (mass%) = (X 1 / X) x 100
乾式シリカ及び湿式シリカのそれぞれの平均粒径(より具体的にはレーザー回折式粒度測定器(コールター社製「モデルLS−230」型)によって測定される50%積算粒子径D50)は0.01μm〜100μmが好ましく、流体熱伝達を抑える観点から、乾式シリカの平均粒径は10μm以下が好ましい。また、混合シリカ粉末とした時の流動性を向上させ、噴出性を抑えるために、湿式シリカの平均粒径は乾式シリカより大きいことが好ましい。Fumed silica and respective average particle size of wet silica (50% cumulative particle diameter D 50 that is measured by the more specifically a laser diffraction particle size analyzer (Coulter "Model LS-230" type)) is zero. The average particle size of the dry silica is preferably 10 μm or less, preferably 01 μm to 100 μm, and from the viewpoint of suppressing fluid heat transfer. Further, in order to improve the fluidity of the mixed silica powder and suppress the ejection property, the average particle size of the wet silica is preferably larger than that of the dry silica.
乾式シリカの平均粒径は1μm以下が好ましく、0.8μm以下がより好ましく、0.5μm以下が最も好ましい。乾式シリカの平均粒径は0.01μm以上が好ましく、0.03μm以上がより好ましく、0.05μm以上が最も好ましい。湿式シリカの平均粒径は、0.5μm以上が好ましく、1μm以上がより好ましく、5μm以上が最も好ましい。湿式シリカの平均粒径は、50μm以下が好ましく、30μm以下がより好ましく、20μm以下が最も好ましい。 The average particle size of the dry silica is preferably 1 μm or less, more preferably 0.8 μm or less, and most preferably 0.5 μm or less. The average particle size of the dry silica is preferably 0.01 μm or more, more preferably 0.03 μm or more, and most preferably 0.05 μm or more. The average particle size of the wet silica is preferably 0.5 μm or more, more preferably 1 μm or more, and most preferably 5 μm or more. The average particle size of the wet silica is preferably 50 μm or less, more preferably 30 μm or less, and most preferably 20 μm or less.
本実施形態においては、混合シリカ粉末にさらに無機繊維を混合することが好ましい。
本発明で使用する無機繊維は、混合シリカ粉末の繊維添着により充填性を向上させるものであれば特に限定されるものではなく、いかなるものでも使用できる。また、成形時には断熱充填材に成形性を与える役割を持つ。代表的なものとして、耐熱性に優れる人造繊維であるシリカ繊維、アルミナシリカ繊維、ガラス繊維、ジルコニア繊維、炭化ケイ素繊維、鉱物を原料として製造されるロックウール、天然鉱物のウォラストナイト、セピオライトなどが挙げられ、必要に応じてこれらを一種あるいは複数種使用することができる。In the present embodiment, it is preferable to further mix the inorganic fiber with the mixed silica powder.
The inorganic fiber used in the present invention is not particularly limited as long as it improves the filling property by fiber imposition of the mixed silica powder, and any inorganic fiber can be used. In addition, it has a role of imparting moldability to the heat insulating filler during molding. Typical examples are silica fiber, alumina silica fiber, glass fiber, zirconia fiber, silicon carbide fiber, rock wool manufactured from minerals, natural mineral wollastonite, sepiolite, etc., which are artificial fibers with excellent heat resistance. However, one or more of these can be used as needed.
上記無機繊維の平均繊維径とは、走査型電子顕微鏡(SEM)観察によって確認される繊維100本の直径の平均値である。平均繊維径は0.1μm〜50μmが好ましく、シリカ微粒子が付着する確率が増大し、粉体の噴出性を抑えられるため、1μm以上がより好ましく、5μm以上が最も好ましい。 The average fiber diameter of the inorganic fibers is an average value of the diameters of 100 fibers confirmed by scanning electron microscope (SEM) observation. The average fiber diameter is preferably 0.1 μm to 50 μm, and since the probability of adhesion of silica fine particles is increased and the ejection property of powder can be suppressed, 1 μm or more is more preferable, and 5 μm or more is most preferable.
上記無機繊維の平均繊維長は特に限定するものではないが、混合シリカ粉末の充填性を考慮すると10μm以上が好ましく、15〜35μmがより好ましい。
なお、上記無機繊維の平均繊維長は、走査型電子顕微鏡(SEM)観察によって確認される繊維100本の繊維長の平均値として求めることができる。The average fiber length of the inorganic fibers is not particularly limited, but is preferably 10 μm or more, more preferably 15 to 35 μm in consideration of the filling property of the mixed silica powder.
The average fiber length of the inorganic fibers can be determined as the average value of the fiber lengths of 100 fibers confirmed by scanning electron microscope (SEM) observation.
上記無機繊維の含有量は、混合シリカ粉末100質量部に対して、1質量部〜10質量部であることが好ましく、3〜7質量部であることがより好ましい。
1質量部以上であることで、十分な成形性が発揮されやすくなり、10質量部以下であることで繊維同士の接触が抑えられ、物質熱伝導が小さくなり熱伝導率を低下させることができる。The content of the inorganic fiber is preferably 1 part by mass to 10 parts by mass, and more preferably 3 to 7 parts by mass with respect to 100 parts by mass of the mixed silica powder.
When it is 1 part by mass or more, sufficient moldability is easily exhibited, and when it is 10 parts by mass or less, contact between fibers is suppressed, material heat conduction is reduced, and thermal conductivity can be lowered. ..
本発明の断熱充填材は、高温中(200℃以上)での断熱性を向上させるために輻射散乱粒子をさらに含有することができる。輻射散乱粒子は、赤外線を効果的に散乱又は吸収できるものであれば特に限定されるものではなく、例えば炭化ケイ素や酸化ジルコニウム、酸化チタン、酸化銅などが使用でき、これらの粒子を一種あるいは複数種使用してよい。
輻射散乱粒子の使用量は、断熱充填材100質量%に対して、0.5質量%〜35質量%が好ましく、1.0質量%〜20質量%がより好ましい。The adiabatic filler of the present invention can further contain radiant scattering particles in order to improve the adiabatic properties at high temperatures (200 ° C. or higher). The radiant scattering particles are not particularly limited as long as they can effectively scatter or absorb infrared rays, and for example, silicon carbide, zirconium oxide, titanium oxide, copper oxide and the like can be used, and one or more of these particles can be used. Seeds may be used.
The amount of the radiant scattering particles used is preferably 0.5% by mass to 35% by mass, more preferably 1.0% by mass to 20% by mass, based on 100% by mass of the heat insulating filler.
本発明によって得られる断熱充填材の熱伝導率は、25℃における熱伝導率が0.05W/(m・K)以下であることが好ましく、0.029W/(m・K)以下であることがより好ましい。 The thermal conductivity of the heat insulating filler obtained by the present invention is preferably 0.05 W / (m · K) or less, preferably 0.029 W / (m · K) or less at 25 ° C. Is more preferable.
疎充填嵩密度とは、すり切り容器に対して一定の高さから粉体を落として充填し、すり切った際に得られる密度である。 The sparsely filled bulk density is the density obtained when powder is dropped from a certain height into a ground container and filled, and the powder is ground.
本発明で得られる断熱充填材は、設計した充填密度に近づける観点から混合シリカ粉末の状態で疎充填嵩密度が40kg/m3以上であることが好ましく、50〜80kg/m3であることがより好ましい。40kg/m3以上であることで十分な充填性が発揮され、空隙が増大しすぎず、十分な断熱性が得られやすくなる。Insulation filler obtained in the present invention is preferably loosely packed bulk density in the state of the mixed silica powder from the viewpoint to approach the packing density designed is 40 kg / m 3 or more, it is 50~80kg / m 3 More preferred. When the content is 40 kg / m 3 or more, sufficient filling property is exhibited, voids do not increase too much, and sufficient heat insulating property can be easily obtained.
断熱充填材の製造方法は特に限定するものではないが、例えば、乾式シリカ10質量%〜80質量%と、含水率が2質量%以上の湿式シリカ20質量%〜90質量%とを、数mmのクリアランスを持たせた磨砕式ミルによって混合することで得る方法や、気流で巻き上げながら金属羽でこれらを混合する二軸混合によって得る方法等が挙げられる。
以上のような本実施形態の断熱充填材は固体として使用できる。また、固体の中では、粉末として使用できる。The method for producing the heat insulating filler is not particularly limited, and for example, dry silica 10% by mass to 80% by mass and wet silica having a water content of 2% by mass or more of 20% by mass to 90% by mass are several mm. Examples thereof include a method of obtaining by mixing with a grinding mill having a clearance of the above, and a method of obtaining by biaxial mixing in which these are mixed with metal blades while being wound up by an air stream.
The heat insulating filler of the present embodiment as described above can be used as a solid. In addition, it can be used as a powder in a solid.
[2]断熱材
本実施形態に係る断熱材は、既述の断熱充填材を配合してなる。
具体的には、既述の断熱充填材を原料として充填することによって得られる断熱層又は断熱材のことであり、例えば、粉体の流動を利用して空間に充填することにより得られる断熱層であって、金型に加圧充填することによって得られる断熱材が挙げられる。[2] Insulation Material The heat insulating material according to the present embodiment contains the above-mentioned heat insulating filler.
Specifically, it is a heat insulating layer or a heat insulating material obtained by filling the above-mentioned heat insulating filler as a raw material. For example, a heat insulating layer obtained by filling a space using the flow of powder. Therefore, a heat insulating material obtained by pressurizing and filling a mold can be mentioned.
加圧充填によって得る場合の詳細な手法は、特に限定するものではないが、例えば、金型を使用した乾式一軸プレスによって板状に成型してもよい。ただし、乾燥時の空隙や亀裂の発生による成型欠陥の観点から、乾式成形が好ましい。 The detailed method for obtaining by pressure filling is not particularly limited, but for example, it may be molded into a plate shape by a dry uniaxial press using a die. However, dry molding is preferable from the viewpoint of molding defects due to the generation of voids and cracks during drying.
また、本実施形態に係る断熱材は、外皮材によって既述の断熱充填材の全体を被覆させてなるものでもよい。外皮材は、ガラス繊維、アルミナ繊維等の無機繊維織物や無機繊維不織布、樹脂フィルム、有機繊維織物、有機繊維不織布、アルミニウム、銅箔などの金属箔等シート形状のものが望ましいが、材質については特に限定されるものではない。 Further, the heat insulating material according to the present embodiment may be formed by covering the entire heat insulating filler described above with an outer skin material. The outer skin material is preferably a sheet-shaped material such as an inorganic fiber woven fabric such as glass fiber or alumina fiber, an inorganic fiber non-woven fabric, a resin film, an organic fiber woven fabric, an organic fiber non-woven fabric, or a metal foil such as aluminum or copper foil. It is not particularly limited.
被覆方法は特に限定されるものではなく、断熱充填材の充填率は使用用途によって適宜設定できる。例えば、加圧成型した断熱充填材を前述したシートによって被覆するものでもよく、シートを袋状に加工したものに断熱充填材を充填するものでもよい。 The coating method is not particularly limited, and the filling rate of the heat insulating filler can be appropriately set depending on the intended use. For example, the pressure-molded heat-insulating filler may be coated with the above-mentioned sheet, or the sheet may be processed into a bag shape and filled with the heat-insulating filler.
[3]断熱構造
本実施形態に係る断熱構造は既述の断熱材を含む。
本実施形態に係る断熱充填材は、そのまま断熱材として使用してよいが、他の断熱材と組み合わせて、断熱構造としてもよい。他の断熱材と組み合わせて使用する場合、例えば、異なる耐熱性を有する他の断熱材上に充填積層させた積層構造によって構成される断熱構造は、本実施形態に係る断熱充填材に断熱材を組み合わせた層状の断熱構造といえる。また、中空の箱に本実施形態に係る断熱充填材を断熱材として充填した断熱構造としてもよい。[3] Insulation structure The insulation structure according to the present embodiment includes the above-mentioned heat insulating material.
The heat insulating filler according to the present embodiment may be used as it is as a heat insulating material, but may be combined with other heat insulating materials to form a heat insulating structure. When used in combination with other heat insulating materials, for example, in a heat insulating structure composed of a laminated structure filled and laminated on another heat insulating material having different heat resistance, the heat insulating material is added to the heat insulating filler according to the present embodiment. It can be said that it is a combined layered heat insulating structure. Further, a heat insulating structure may be formed in which a hollow box is filled with the heat insulating filler according to the present embodiment as a heat insulating material.
以下、実施例及び比較例を挙げてさらに詳細に内容を説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the contents will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
「実験例1」
乾式シリカと湿式シリカを表1で示す混合比率で混合し、これらの混合物(混合シリカ粉末)100質量部に対して無機繊維4.5質量部を混合することで、断熱充填材を作製した。"Experimental Example 1"
A heat insulating filler was prepared by mixing dry silica and wet silica at the mixing ratio shown in Table 1 and mixing 4.5 parts by mass of inorganic fibers with 100 parts by mass of the mixture (mixed silica powder).
これらの乾式シリカ、湿式シリカ、混合シリカ粉末や断熱充填材等について、含水率、疎充填嵩密度の割合及び熱伝導率をそれぞれ測定した。得られた結果を表1に示す。なお、使用材料は下記のとおりである。 For these dry silica, wet silica, mixed silica powder, heat insulating filler, etc., the water content, the ratio of the sparsely packed bulk density, and the thermal conductivity were measured, respectively. The results obtained are shown in Table 1. The materials used are as follows.
(使用材料)
乾式シリカ1(F1):CAB−O−SIL M−5粉末(商品名、Cabot Specialty Chemicals社製)平均粒径0.20μm、嵩密度70g/L、含水率0.9質量%
乾式シリカ2(F2):AEROSIL 380(商品名、日本アエロジル社製)平均粒径0.05μm未満、嵩密度50g/L、含水率1.0質量%
乾式シリカ3(F3):NDK−N20(商品名、旭化成ワッカーシリコーン社製)平均粒径0.15μm、嵩密度40g/L、含水率1.2質量%(Material used)
Dry silica 1 (F1): CAB-O-SIL M-5 powder (trade name, manufactured by Cabot Specialty Chemicals) Average particle size 0.20 μm, bulk density 70 g / L, moisture content 0.9% by mass
Dry silica 2 (F2): AEROSIL 380 (trade name, manufactured by Nippon Aerosil Co., Ltd.) Average particle size less than 0.05 μm, bulk density 50 g / L, moisture content 1.0 mass%
Dry silica 3 (F3): NDK-N20 (trade name, manufactured by Asahi Kasei Wacker Silicone Co., Ltd.) Average particle size 0.15 μm, bulk density 40 g / L, moisture content 1.2% by mass
湿式シリカ1(W1):CARPLEX #80粉末(商品名、エボニック・ジャパン株式会社製) 平均粒径15μm、嵩密度145g/L、含水率8.0質量%
湿式シリカ2(W2):トクシール NP(商品名、Oriental Silicas Corporation製)平均粒径10μm、嵩密度63g/L、含水率6.2質量%
湿式シリカ3(W3):ミズカシル P−527(商品名,水澤化学工業社製)平均粒径1.8μm、嵩密度190g/L、含水率5.2質量%Wet silica 1 (W1): CARPLEX # 80 powder (trade name, manufactured by Ebonic Japan Co., Ltd.) Average particle size 15 μm, bulk density 145 g / L, moisture content 8.0% by mass
Wet silica 2 (W2): Toxile NP (trade name, manufactured by Oriental Silicon Corporation) average particle size 10 μm, bulk density 63 g / L, moisture content 6.2 mass%
Wet silica 3 (W3): Mizukasil P-527 (trade name, manufactured by Mizusawa Industrial Chemicals, Inc.) Average particle size 1.8 μm, bulk density 190 g / L, moisture content 5.2 mass%
無機繊維1(IF1):シリカファイバーシート AS−300(商品名、旭産業社製)平均繊維径10μm、25mm裁断解繊加工(平均繊維長さ:25mm) Inorganic fiber 1 (IF1): Silica fiber sheet AS-300 (trade name, manufactured by Asahi Sangyo Co., Ltd.) Average fiber diameter 10 μm, 25 mm cutting and defibration processing (average fiber length: 25 mm)
上記使用材料の嵩密度は、密充填嵩密度のことであり、ホソカワミクロン(株)社製の「パウダテスターPT−S型」により測定される。 The bulk density of the material used is the tightly packed bulk density, and is measured by "Powder Tester PT-S type" manufactured by Hosokawa Micron Co., Ltd.
(評価方法)
含水率:乾式シリカ、湿式シリカ、混合シリカ粉末の含水率は、示差熱重量分析装置TG−DTA 2000SR(商品名、BrukerAXS社)を使用して、200℃時点での重量減少率とした。(Evaluation method)
Moisture content: The water content of dry silica, wet silica, and mixed silica powder was determined as the weight reduction rate at 200 ° C. using a differential thermogravimetric analyzer TG-DTA 2000SR (trade name, BrukerAXS).
疎充填嵩密度は、内径Φ63mm、容量200mLのステンレスビーカーに対して、150mmの間隔をあけて、漏斗から断熱充填材を落下させ、すり切り充填させることで算出される密度とした。疎充填嵩密度は大きいほど充填性が良好であり、好ましくは40kg/m3以上である。The sparsely filled bulk density was determined by dropping a heat insulating filler from a funnel and grinding it into a stainless steel beaker having an inner diameter of Φ63 mm and a capacity of 200 mL at intervals of 150 mm. The larger the sparse filling bulk density, the better the filling property, preferably 40 kg / m 3 or more.
熱伝導率:作製した断熱充填材を、一軸プレスを使用した金型成型によって成型体(200mm×200mm×20mm、密度230kg/m3程度)を作製し、ISO8301に準拠した熱伝導率測定装置(英弘精機社製)を用いて23℃で測定した。Thermal conductivity: A molded body (200 mm × 200 mm × 20 mm, density 230 kg / m 3 ) is prepared by molding the prepared heat insulating filler with a uniaxial press, and a thermal conductivity measuring device (ISO8301 compliant). It was measured at 23 ° C. using a product manufactured by Eiko Seiki Co., Ltd.
成形性:一軸プレスを使用した金型成型によって成型体(寸法等は同上)を作製し、成形性を目視で評価した。成型体にひび割れが確認されなかった場合を○、ひび割れあるいは破損が確認された場合を×とした。 Moldability: A molded product (dimensions, etc.) was produced by mold molding using a uniaxial press, and the moldability was visually evaluated. The case where no crack was confirmed in the molded body was evaluated as ◯, and the case where crack or breakage was confirmed was evaluated as x.
表1より、湿式シリカの割合が増大するに従い、熱伝導率に悪影響を及ぼすことなく粉体の充填性が向上し、含水率と疎充填嵩密度、及び成形性が向上していることがわかる。 From Table 1, it can be seen that as the proportion of wet silica increases, the packing property of the powder is improved without adversely affecting the thermal conductivity, and the water content, the sparsely packed bulk density, and the moldability are improved. ..
「実験例2」
乾式シリカF1を50質量%、湿式シリカW1を50質量%の比率で混合し、得られた混合物(混合シリカ粉末:実験No.1−4)に対して表2に示す無機繊維を使用し、表2の通りその配合量を変えて断熱充填材を作製したこと以外は実験例1と同様に行った。結果を表2に示す。"Experimental Example 2"
Dry silica F1 was mixed at a ratio of 50% by mass and wet silica W1 was mixed at a ratio of 50% by mass, and the inorganic fibers shown in Table 2 were used with respect to the obtained mixture (mixed silica powder: Experiment No. 1-4). As shown in Table 2, the same procedure as in Experimental Example 1 was carried out except that the heat insulating filler was prepared by changing the blending amount. The results are shown in Table 2.
(使用材料)
無機繊維2(IF2):ガラス繊維(日本電気硝子社製)平均繊維径50μm、平均繊維長25mm
無機繊維3(IF3):アルミナシリカ繊維(商品名デンカアルセン、デンカ製)平均繊維径5.0μm、平均繊維長25mm(Material used)
Inorganic fiber 2 (IF2): Glass fiber (manufactured by Nippon Electric Glass Co., Ltd.) Average fiber diameter 50 μm, average fiber length 25 mm
Inorganic fiber 3 (IF3): Alumina silica fiber (trade name: Denka Arsen, manufactured by Denka) Average fiber diameter 5.0 μm, average fiber length 25 mm
表2より、本発明の範囲内で無機繊維を配合することにより熱伝導率に悪影響を及ぼすことなく粉体の充填性が向上し、含水率と疎充填嵩密度、及び成形性が向上していることがわかる。 From Table 2, by blending the inorganic fibers within the scope of the present invention, the filling property of the powder is improved without adversely affecting the thermal conductivity, and the water content, the sparse filling bulk density, and the moldability are improved. You can see that there is.
「実験例3」
実験No.1−4の配合を使用し、表3に示す輻射散乱粒子を使用し、表3の通り配合量を変え、高温(600℃)での熱伝導率(高温熱伝導率)を測定したこと以外は実験例1と同様に行った。"Experimental Example 3"
Experiment No. Except for the fact that the compounding of 1-4 was used, the radiant scattering particles shown in Table 3 were used, the compounding amount was changed as shown in Table 3, and the thermal conductivity (high temperature thermal conductivity) at a high temperature (600 ° C.) was measured. Was carried out in the same manner as in Experimental Example 1.
(実験方法)
高温熱伝導率:作製した断熱充填材を、一軸プレスを使用した金型成型によって成型体(寸法等は同上)を作製し、JIS A 1412−1に準拠した保護熱板法熱伝導率測定装置(英弘精機社製)を用いて600℃で測定した。(experimental method)
High-temperature thermal conductivity: A protective heat plate method thermal conductivity measuring device that complies with JIS A 1412-1 by producing a molded body (dimensions, etc.) of the prepared heat insulating filler by die molding using a uniaxial press. It was measured at 600 ° C. using (manufactured by Eiko Seiki Co., Ltd.).
(使用材料)
輻射散乱粒子(R1):炭化ケイ素(デンカ製)平均粒径4.2μm
輻射散乱粒子(R2):酸化チタン(富士フイルム和光純薬社製)平均粒径5.0μm
輻射散乱粒子(R3):ケイ酸ジルコニウム 和光一級(富士フイルム和光純薬社製)平均粒径5.0μm(Material used)
Radiant scattering particles (R1): Silicon carbide (manufactured by Denka) Average particle size 4.2 μm
Radiant scattering particles (R2): Titanium oxide (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) Average particle size 5.0 μm
Radiant Scattered Particles (R3): Zirconium Zirconium Wako First Class (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) Average particle size 5.0 μm
表3より、本発明の範囲内で輻射散乱粒子を配合することによりその他の物性に悪影響を及ぼすことなく高温熱伝導率が低減されていることがわかる。 From Table 3, it can be seen that the high temperature thermal conductivity is reduced by blending the radiant scattering particles within the range of the present invention without adversely affecting other physical characteristics.
以上のように構成された本発明の断熱充填材は優れた操作性と充填性を有し、かつ従来以上の耐熱性と断熱性を有するため、複雑な形状に対しても適応可能であり、車両や飛行機、その他内燃機関、配管の省エネルギー化に寄与することができる。 The heat insulating filler of the present invention constructed as described above has excellent operability and filling property, and also has heat resistance and heat insulating property higher than those of the conventional one, so that it can be applied to a complicated shape. It can contribute to energy saving of vehicles, airplanes, other internal combustion engines, and piping.
Claims (8)
A heat insulating structure including the heat insulating material according to claim 7.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018129047 | 2018-07-06 | ||
JP2018129047 | 2018-07-06 | ||
PCT/JP2019/026834 WO2020009226A1 (en) | 2018-07-06 | 2019-07-05 | Thermal insulation filler, thermal insulation material and thermal insulation structure |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2020009226A1 true JPWO2020009226A1 (en) | 2021-08-26 |
JP7377498B2 JP7377498B2 (en) | 2023-11-10 |
Family
ID=69059439
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020529066A Active JP7377498B2 (en) | 2018-07-06 | 2019-07-05 | Heat insulating filling material, heat insulating material, heat insulating structure |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7377498B2 (en) |
WO (1) | WO2020009226A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7466856B2 (en) | 2019-12-26 | 2024-04-15 | デンカ株式会社 | Insulation filler, insulation material, insulation structure |
CN114576471A (en) * | 2022-03-01 | 2022-06-03 | 四川零零昊科技有限公司 | Flexible felt, heat insulation method, filler of flexible felt, preparation method and application |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61291466A (en) * | 1985-06-18 | 1986-12-22 | 松下電器産業株式会社 | Vacuum heat-insulative structure |
JPH07144955A (en) * | 1993-11-17 | 1995-06-06 | Nippon Silica Ind Co Ltd | Silica compact for heat insulating board and vacuum heat insulating board |
JP2003026759A (en) * | 2001-07-23 | 2003-01-29 | Nippon Polyurethane Ind Co Ltd | Resin composition for forming backing layer and manufacturing method of mat |
JP2011196509A (en) * | 2010-03-23 | 2011-10-06 | Achilles Corp | Vacuum heat insulating material |
JP2012246181A (en) * | 2011-05-27 | 2012-12-13 | Asahi Kasei Chemicals Corp | Powder, molded body thereof, wrapped body, and method of producing the powder |
JP2013028501A (en) * | 2011-07-28 | 2013-02-07 | Asahi Kasei Chemicals Corp | Powder, molded body, encapsulated body, and method for producing the powder |
JP2013199421A (en) * | 2012-02-21 | 2013-10-03 | Japan Insulation Co Ltd | Heat insulating material and method for manufacturing the same |
-
2019
- 2019-07-05 WO PCT/JP2019/026834 patent/WO2020009226A1/en active Application Filing
- 2019-07-05 JP JP2020529066A patent/JP7377498B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61291466A (en) * | 1985-06-18 | 1986-12-22 | 松下電器産業株式会社 | Vacuum heat-insulative structure |
JPH07144955A (en) * | 1993-11-17 | 1995-06-06 | Nippon Silica Ind Co Ltd | Silica compact for heat insulating board and vacuum heat insulating board |
JP2003026759A (en) * | 2001-07-23 | 2003-01-29 | Nippon Polyurethane Ind Co Ltd | Resin composition for forming backing layer and manufacturing method of mat |
JP2011196509A (en) * | 2010-03-23 | 2011-10-06 | Achilles Corp | Vacuum heat insulating material |
JP2012246181A (en) * | 2011-05-27 | 2012-12-13 | Asahi Kasei Chemicals Corp | Powder, molded body thereof, wrapped body, and method of producing the powder |
JP2013028501A (en) * | 2011-07-28 | 2013-02-07 | Asahi Kasei Chemicals Corp | Powder, molded body, encapsulated body, and method for producing the powder |
JP2013199421A (en) * | 2012-02-21 | 2013-10-03 | Japan Insulation Co Ltd | Heat insulating material and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
WO2020009226A1 (en) | 2020-01-09 |
JP7377498B2 (en) | 2023-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10608224B2 (en) | Apparatus with thermally responsive insulator between battery cells | |
Alam et al. | In situ formation of a cellular graphene framework in thermoplastic composites leading to superior thermal conductivity | |
Zhan et al. | Thermal transport in 3D nanostructures | |
JP6070710B2 (en) | Vacuum insulation material manufacturing method and vacuum insulation material | |
US7535715B2 (en) | Conformable interface materials for improving thermal contacts | |
CN106415107B (en) | Vacuum heat insulation material | |
KR20160120202A (en) | Aerogel containing composition and thermal insulation blanket prepared by using the same | |
US9950963B2 (en) | Thermal insulator and method of manufacturing the same | |
JPWO2020009226A1 (en) | Insulation filler, insulation, insulation structure | |
WO2021181932A1 (en) | Thermal insulation material and method for producing same | |
Chen et al. | Influence of TiO 2 particles and APP on combustion behavior and mechanical properties of flame-retardant thermoplastic polyurethane | |
Lin et al. | Multifunctional nanofibrillated cellulose/ZnO@ rGO composite films for thermal conductivity, electrical insulation, and antibacterial applications | |
JP2021102998A (en) | Heat insulation filler, heat insulation material, and heat insulation structure | |
JP2020016326A (en) | Thermal insulation material | |
JP2012246181A (en) | Powder, molded body thereof, wrapped body, and method of producing the powder | |
Williams et al. | Flame Retardant Effect of Aerogel and Nanosilica on Engineered Polymers | |
JP6984331B2 (en) | Method for manufacturing resin composition | |
JP2018203565A (en) | Adiabatic material and vacuum heat insulation material | |
Yun et al. | Hexagonal boron nitride nanosheets/graphene nanoplatelets/cellulose nanofibers-based multifunctional thermal interface materials enabling electromagnetic interference shielding and electrical insulation | |
JP5700548B2 (en) | Molded body, encapsulated body, and method for producing molded body | |
JP6127353B2 (en) | Insulating material and manufacturing method thereof | |
JP5824228B2 (en) | Powder, molded body, enveloping body, and method for producing powder | |
KR20130095299A (en) | Heat insulation material and production method for same | |
JP5352894B2 (en) | Heater manufacturing method, heater inorganic insulating material, and heater using the same | |
WO2016147665A1 (en) | Heat insulator and method for producing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AA64 | Notification of invalidation of claim of internal priority (with term) |
Free format text: JAPANESE INTERMEDIATE CODE: A241764 Effective date: 20210413 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210510 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20210510 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220412 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220927 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221128 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230110 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230303 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230606 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230804 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230926 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231020 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7377498 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |