JP2011088125A - Far-infrared radiation material - Google Patents

Far-infrared radiation material Download PDF

Info

Publication number
JP2011088125A
JP2011088125A JP2009245844A JP2009245844A JP2011088125A JP 2011088125 A JP2011088125 A JP 2011088125A JP 2009245844 A JP2009245844 A JP 2009245844A JP 2009245844 A JP2009245844 A JP 2009245844A JP 2011088125 A JP2011088125 A JP 2011088125A
Authority
JP
Japan
Prior art keywords
far
sand
infrared radiation
radiation material
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009245844A
Other languages
Japanese (ja)
Inventor
Koji Nomura
幸治 野村
Ryuichi Ezaki
竜一 江崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Acreco
ACRECO KK
Original Assignee
Acreco
ACRECO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Acreco, ACRECO KK filed Critical Acreco
Priority to JP2009245844A priority Critical patent/JP2011088125A/en
Publication of JP2011088125A publication Critical patent/JP2011088125A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/78Recycling of wood or furniture waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Abstract

<P>PROBLEM TO BE SOLVED: To provide a far-infrared radiation material in which burning process is not necessary, production cost is low and which can be stably supplied; a producing method of the same; and a far-infrared radiation material solidification. <P>SOLUTION: Particles of ≥0.15 mmϕis sifted out without burning waste casting sand. Next, isolated particles of <5 mm are cleaned by water, and irons are removed by using a wet magnetic separator. Then, by using a classifier, they are separated into washed sand of ≥0.15 mmϕ and fine particle sand of <0.15 mmϕ. Also, the fine particle sand is precipitated/concentrated in the water to obtain washed soil after being filtered by a filter press device. The washed sand or the washed soil obtained this way is a far-infrared radiation material having a high far-infrared emission rate. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は廃鋳物砂を原料とする遠赤外線放射材料に関する。   The present invention relates to a far-infrared radiation material using waste casting sand as a raw material.

遠赤外線は、赤外線の中でも特に波長の長いものをいい、社団法人遠赤外線協会における定義によれば、波長3μmから1,000μmまでの電磁波とされている。この遠赤外線は、金属以外の多くの物質(例えばプラスチックス、塗料、繊維、木材、ゴム、食物、セラミックス、水等)に、非常によく吸収されて熱エネルギーとなるため、効率よく物質を暖めることができる。このため、遠赤外線ヒータによって人工的に遠赤外線を放出させ、暖房や物の加熱や乾燥等に利用されている。また、食品分野の加熱や乾燥においても、遠赤外線による加熱は熱源と食品とが直接に接触しないため、食品表面の過熱が避けられる。さらには、食品深部の昇温に必要なだけのエネルギーを、比較的短時間のうちに与えることができるため均一加熱性に優れ、食品への投入エネルギーのコントロールが、他の加熱方法より容易となるという利点がある。   Far-infrared rays are those that have a particularly long wavelength among infrared rays. According to the definition of the far-infrared rays association, far-infrared rays are considered to be electromagnetic waves with wavelengths from 3 μm to 1,000 μm. This far-infrared ray is absorbed very well by many substances other than metals (for example, plastics, paints, fibers, wood, rubber, food, ceramics, water, etc.) and becomes thermal energy. be able to. For this reason, far-infrared rays are artificially emitted by a far-infrared heater and used for heating, heating and drying of objects. Also, in heating and drying in the food field, heating by far infrared rays does not directly contact the heat source and the food, so that overheating of the food surface can be avoided. Furthermore, the energy required to raise the temperature in the deep part of the food can be given in a relatively short period of time, so it is excellent in uniform heating, making it easier to control the energy input to the food than other heating methods. There is an advantage of becoming.

遠赤外線を得るためには、遠赤外線を放射する材料が必要となる。およそ、全ての物質は、その温度に応じて多かれ少なかれ遠赤外線を放出することができるが、その放出率は物質によって異なっている。また、物質から発生する遠赤外線は、物質の温度を高くするほど放射される遠赤外線のエネルギーも大きくなる。このため、遠赤外線の放射率が高く、耐熱性に優れたセラミックや天然石等が、遠赤外放射材料として用いられている(特許文献1、2)。例えば、遠赤外放射率の高いセラミックとして、Al2O3、SiO2、MgO、ZrO2、3Al2O3・2SiO2(ムライト)、ZrO2・SiO2(ジルコン)、2MgO・2Al2O3・5SiO2(コージェライト)等がある。また、遠赤外放射率の高い天然石として、ブラックシリカ等が挙げられる。 In order to obtain far infrared rays, a material that emits far infrared rays is required. Roughly, all materials can emit far infrared rays more or less depending on their temperature, but their emission rates vary from material to material. In addition, far-infrared rays generated from a substance increase the energy of the far-infrared rays emitted as the temperature of the substance increases. For this reason, ceramics, natural stones, and the like that have a high far-infrared emissivity and excellent heat resistance are used as far-infrared radiation materials (Patent Documents 1 and 2). For example, ceramics with high far-infrared emissivity include Al 2 O 3 , SiO 2 , MgO, ZrO 2 , 3Al 2 O 3 · 2SiO 2 (mullite), ZrO 2 · SiO 2 (zircon), 2MgO · 2Al 2 O 3 · 5SiO 2 (cordierite) etc. Moreover, black silica etc. are mentioned as a natural stone with a high far-infrared emissivity.

一方、鋳物製造工程から生ずる鋳物砂廃棄物は、平成15年には年間130万トンに達し、そのうち70万トンは再生砂に、30万トンはセメント材料に、10万トンは路盤材にそれぞれリサイクルされているが、残りの20万トンは未だ再利用されずに埋め立て処分とされている。しかし、現在設置されている最終処分場の埋め立て可能な残余量は減少しており、新たな最終処分場の建設も困難な状況となっている。このため、廃鋳物砂を資源として有効に利用する技術が求められている。   On the other hand, foundry sand waste generated from the casting manufacturing process reached 1.3 million tons annually in 2003, of which 700,000 tons are recycled sand, 300,000 tons are cement materials, and 100,000 tons are roadbed materials. Although it is recycled, the remaining 200,000 tons are not yet reused and are disposed of in landfills. However, the remaining amount of landfill that can be landfilled at present is decreasing, making it difficult to construct a new final disposal site. For this reason, the technique which uses waste casting sand effectively as a resource is calculated | required.

こうした廃鋳物砂を資源として利用する技術としては、従来より、廃鋳物砂を焼成して樹脂成分を除去したり、湿式で不純物を除いたりして、再利用することが行われている(特許文献3〜6)。   As a technology for using such waste foundry sand as a resource, conventionally, the waste foundry sand is baked to remove the resin component, or the impurities are removed by wet treatment (patent). Literature 3-6).

特開昭64−69564号JP-A-64-69564 特開平6−191932JP-A-6-191932 特公昭51−3690号公報Japanese Patent Publication No.51-3690 実公昭51−44727号公報Japanese Utility Model Publication No. 51-44727 特公昭58−19379号公報Japanese Patent Publication No.58-19379 特公平1−2462号公報Japanese Patent Publication No. 1-2462

しかし、上記特許文献1や2に記載の遠赤外線放射材料では、製造原料の成分を調整し、製造工程において原料を焼成して反応させなければならず、製造コストの高騰を招いていた。また、ブラックシリカや黒鉛等、遠赤外線の放射率が高い天然石を用いた遠赤外線放射材料では、成分調整や焼成工程は不要であるものの、産地が限られていたり産出量が少なかったりして、高価で安定な供給が困難であるという問題があった。また、鋳物砂のリサイクルにおいても、地球温暖化防止の観点から、焼成工程が無くてC0を発生しない方法が望まれていた。 However, in the far-infrared radiation material described in Patent Documents 1 and 2, the components of the manufacturing raw material must be adjusted and the raw material must be baked and reacted in the manufacturing process, resulting in an increase in manufacturing cost. In addition, far-infrared radiation materials using natural stone with high far-infrared emissivity, such as black silica and graphite, do not require component adjustment or firing process, but the production area is limited or the output is small, There was a problem that expensive and stable supply was difficult. Also in recycling molding sand, from the viewpoint of preventing global warming, a method which does not generate C0 2 firing step without has been desired.

本発明は、こうした従来の実情に鑑みてなされたものであって、焼成工程が不要であり、製造コストが低廉で、安定供給が可能な遠赤外線放射材料及びその製造方法を提供することを解決すべき課題としている。   The present invention has been made in view of such conventional circumstances, and solves the problem of providing a far-infrared radiation material that does not require a firing step, is low in production cost, and can be stably supplied, and a method for producing the same. It is an issue that should be done.

発明者らは、遠赤外線の放射率が高い天然石としてよく知られているブラックシリカや黒鉛が、廃鋳物砂の化学成分と共通していることに注目し、廃鋳物砂が遠赤外線放射材料になり得るのではないかと考えた。すなわち、鋳物砂はケイ砂を原料としており、さらにはケイ砂を所望の型に成形するための固化剤としてフェノール樹脂やフラン樹脂が含まれている。そして、この樹脂成分は、加熱されて炭化する。このため、廃鋳物砂には、炭素成分が含まれている。これに対して、ブラックシリカもチャート(珪藻類を起源とし、その主成分はシリカである)に黒鉛が含まれたものであり、廃鋳物砂の成分と良く似ている。また、遠赤外線放射率の高い黒鉛はカーボンからなり、廃鋳物砂の成分と共通する。このため、従来、廃鋳物砂中の不要な部分として焼成処理して取り除かれていた炭素成分を積極的に利用すべく、廃鋳物砂を焼成することなく遠赤外線放射材料として利用できるのではないかと考え、さらに鋭意研究を行った結果、本発明を完成するに至った。   The inventors noticed that black silica and graphite, which are well known as natural stones with a high far-infrared emissivity, are in common with the chemical components of waste foundry sand. I thought it could be. That is, the casting sand is made from silica sand, and further contains phenol resin or furan resin as a solidifying agent for forming the silica sand into a desired mold. And this resin component is heated and carbonized. For this reason, the carbon component is contained in waste foundry sand. On the other hand, black silica is a chart containing graphite in a chart (which originates from diatoms and its main component is silica), and is very similar to the components of waste foundry sand. Moreover, graphite with a high far-infrared emissivity consists of carbon, and is common with the component of waste foundry sand. For this reason, in order to actively use the carbon component that has been removed by firing treatment as an unnecessary part in the waste casting sand, it cannot be used as a far infrared radiation material without firing the waste casting sand. As a result of further intensive studies, the present invention has been completed.

すなわち、本発明の遠赤外線放射材料は、焼成していない廃鋳物砂である無焼成廃鋳物砂からなることを特徴とする。   That is, the far-infrared radiation material of the present invention is characterized by comprising unfired waste foundry sand that is unfired waste foundry sand.

本発明者らの試験結果によれば、焼成していない廃鋳物砂の遠赤外線放射率は、従来から遠赤外線放射材料として用いられているSiCよりも優れており、コージェライトと比べてもそれほど遜色は無く、耐熱性にも優れ、遠赤外線放射材料として充分利用することができる。また、原料となる廃鋳物砂は、供給量が豊富である。さらには、焼成していない廃鋳物砂である無焼成廃鋳物砂を用いるため、製造に要するエネルギーが少なくてすみ、製造コストが極めて低廉であって、COの削減にもつながる。 According to the test results of the present inventors, the far-infrared emissivity of unfired waste foundry sand is superior to SiC that has been used as a far-infrared radiation material, and much less than cordierite. There is no fading, it has excellent heat resistance, and can be used as a far-infrared radiation material. Moreover, the amount of supply of waste casting sand as a raw material is abundant. Furthermore, since non-fired waste foundry sand that is unfired waste foundry sand is used, less energy is required for production, the production cost is extremely low, and CO 2 is reduced.

廃鋳物砂は、焼成していない無焼成廃鋳物砂であればそのまま用いることもできるが、篩い分けして粒子径が0.15mm以上のものを分別し、これを用いることが好ましい。発明者らの試験結果によれば、こうであれば、90%以上という優れた遠赤外線放射率を示す材料となる。   The waste casting sand can be used as it is as long as it is unfired waste casting sand. However, it is preferable to use sieving to separate particles having a particle diameter of 0.15 mm or more. According to the test results of the inventors, this is a material exhibiting an excellent far-infrared emissivity of 90% or more.

このため、本発明の遠赤外線放射材料の製造方法では、廃鋳物砂を焼成することなく所定の粒子径以下の部分を分取する分取工程を備えることとした。   For this reason, in the manufacturing method of the far-infrared radiation material of this invention, it decided to provide the fractionation process of fractionating a part below a predetermined particle diameter, without baking waste casting sand.

さらに、本発明の遠赤外線放射材料の製造方法では、廃鋳物砂を水洗する洗浄工程と、廃鋳物砂に含まれる鉄類を除去する鉄除去工程とを備えることも好ましい。洗浄工程では廃鋳物砂が水洗されるため、廃鋳物砂に含まれている水溶性の有害物が除去される。このため、有害物の溶出のおそれが少ない遠赤外線放射材料となる。また、鉄除去工程では鉄類が除去されるため、遠赤外線放射材料中に鉄類がほとんど含まれず、鉄さびによって固化したり、赤く変色したりするのを防ぐことができる。   Furthermore, in the manufacturing method of the far-infrared radiation material of this invention, it is also preferable to provide the washing | cleaning process of washing waste casting sand with water, and the iron removal process of removing the iron contained in waste casting sand. Since the waste casting sand is washed with water in the washing process, water-soluble harmful substances contained in the waste casting sand are removed. For this reason, it becomes a far-infrared radiation material with little possibility of the elution of harmful substances. In addition, since iron is removed in the iron removal step, the far-infrared radiation material contains almost no iron and can be prevented from solidifying or being discolored red by iron rust.

また、本発明の遠赤外線放射材料をセメント等の固化材で固めておいてもよい。こうであれば、遠赤外線放射材料のハンドリングも容易となる。ここで、固化材としては、アルギン酸ソーダ、アクリル系の高吸水性樹脂、ポリビニルアルコール樹脂等の有機ポリマー化合物や、酸化マグネシウム等の無機粉末等が挙げられる。   Further, the far-infrared radiation material of the present invention may be hardened with a solidifying material such as cement. This facilitates handling of the far infrared radiation material. Here, examples of the solidifying material include organic polymer compounds such as sodium alginate, acrylic superabsorbent resin, and polyvinyl alcohol resin, and inorganic powder such as magnesium oxide.

本発明の遠赤外線放射材料は、産業界のさまざまな分野において、利用することが出来る。
例えば、本発明の遠赤外線放射材料を道路に散布して、融雪剤として用いたり、農地に散布して土壌の保温に用いたりすることができる。また、セメント等で固化した板材を床暖房や岩盤浴の素材として用いることができる。また、家屋や工場や畜舎等の床材や壁材に混在させ、暖房効率を向上させることにより、エネルギー消費量を削減し、CO削減に貢献することもできる。さらには、遠赤外線ヒータの素材として用い、これを金属製品や樹脂製品や家具木工品等の塗装乾燥・焼き付けに用いたり、金属製品、合板、木製品、紙、布、電気・電子機器部品等の印刷の乾燥に用いたり、木材、繊維・織物、紙・パルプ、化学品・薬品等の水分乾燥に用いたり、金属製品の洗浄後の乾燥に用いたり、樹脂やゴムや皮革の原料乾燥や硬化や加硫に用いたり、ガラスや建材や陶磁器の原料・生地の乾燥、予熱、印刷乾燥、釉薬予熱、接着等に用いたり、電気・電子部品の洗浄後乾燥、塗膜焼付に用いたり、印刷回路乾燥、外装印刷・塗装の乾燥、パッケージ素子の封止、焼成、半田リフロー等に用いたり、暖房や乾式サウナや温熱治療やヘアードライヤーに用いたりすることが挙げられる。また、食品産業分野としては、海苔や穀類や茶や野菜や果物や加工食品の乾燥に用いたり、魚介類の乾物・干物製造用として用いたり、麺類や練り物の硬化・変成、豆類・穀類粉末の変成(熱処理)に用いたり、パン焼きや米菓の焼成や焼き芋や焼き栗の製造に用いたり、ちくわや蒲鉾や食肉や魚介類等の焼上げに用いたり、茶の焙煎や火入れ、コーヒー豆、ナッツ、胡麻等の焙煎・焙焼に用いたり、調理食品の保温、冷凍食品等の解凍に用いたり、液状食材・飲料の乾燥・濃縮・熟成等に用いたりすることが挙げられる。また、グリルやオーブントースタや炊飯器等の加熱部分に設置して遠赤外線による加熱を行うこともできる。
The far-infrared radiation material of the present invention can be used in various fields of industry.
For example, the far-infrared radiation material of the present invention can be applied to a road and used as a snow melting agent, or can be applied to agricultural land and used to keep soil warm. Moreover, the board | plate material solidified with cement etc. can be used as a raw material of a floor heating or a bedrock bath. Also, mix the flooring or wall materials, such as houses and factories and barns, by improving the heating efficiency, reduce energy consumption, it is also possible to contribute to reducing CO 2 emissions. Furthermore, it is used as a material for far-infrared heaters, and it is used for painting and drying of metal products, resin products, furniture woodwork, etc., and for metal products, plywood, wood products, paper, cloth, electrical / electronic equipment parts, etc. Used for drying printing, used for moisture drying of wood, fibers / textiles, paper / pulp, chemicals / chemicals, etc., used for drying after washing metal products, drying and curing raw materials for resin, rubber and leather It is used for vulcanization, glass, building materials and ceramic raw materials and dough drying, preheating, printing drying, glaze preheating, adhesion, etc. It may be used for circuit drying, exterior printing / coating drying, sealing of package elements, baking, solder reflow, etc., heating, dry sauna, thermal treatment, and hair dryer. Also, in the food industry field, it is used for drying seaweed, cereals, tea, vegetables, fruits and processed foods, used for the production of dried fish and dried fish and shellfish, hardening and metamorphosis of noodles and pastes, beans and cereal powders Used for the transformation of food (heat treatment), baking bread, rice crackers, baked salmon and grilled chestnuts, used for baking chikuwa, salmon, meat, seafood, etc., roasting tea, burning, coffee It may be used for roasting / roasting beans, nuts, sesame seeds, etc., used for heat preservation of cooked foods, thawing frozen foods, etc., and for drying / concentration / aging of liquid foods / beverages. Moreover, it can also install in heating parts, such as a grill, an oven toaster, a rice cooker, and can also heat by far infrared rays.

(実施形態)
本発明の遠赤外線放射材料の原料となる廃鋳物砂については、鉄鋳物、アルミ鋳物、銅合金鋳物等に用いられた廃鋳物砂を用いることができる。この中でも鉄鋳物が特に好ましい。アルミ鋳物や銅合金鋳物では、アルミや銅合金が吸着材に混入するおそれがある。また、銅合金には鉛等の有害な重金属を含むこともあるからである。
(Embodiment)
As the waste foundry sand used as the raw material of the far infrared radiation material of the present invention, waste foundry sand used for iron castings, aluminum castings, copper alloy castings and the like can be used. Among these, an iron casting is particularly preferable. In an aluminum casting or a copper alloy casting, there is a possibility that aluminum or a copper alloy may be mixed into the adsorbent. Moreover, it is because a copper alloy may contain harmful heavy metals, such as lead.

また、鋳物砂型には、ケイ砂、粘土、デンプン、植物性油、炭素等を含む生砂型や、ケイ砂、フェノール樹脂やフラン樹脂等の有機バインダー樹脂を含む有機砂型があるが、それらの何れも原料として用いることができる。   In addition, the casting sand mold includes a raw sand mold containing silica sand, clay, starch, vegetable oil, carbon and the like, and an organic sand mold containing an organic binder resin such as quartz sand, phenol resin and furan resin. Can also be used as a raw material.

鋳物工場から回収された上記の廃鋳物砂は、まず大きな固形物をスクリーン等により除去される。除去された固形物はロッドミル等で粉砕し、再度スクリーンで分級してもよい。こうして大きな固形物を除去された廃鋳物砂は、スパイラル洗浄機等で水洗され、磁選機によって鉄類が除去される。さらに分級機によって篩い分けされ、粒子径が0.15〜5mmの洗砂と、粒子径が0.15mm未満の微粒砂とに分級される。洗砂はストックヤードにて水切りして保管される。こうして洗砂を得ることができる。また、微粒砂はシックナーで撹拌濃縮された後、フィルタープレス等の脱水機によって脱水され30〜50質量%程度の含水率のケーキ状の洗土品が得られる。
こうして得られた洗砂品が粒子径0.15〜5mmの赤外線放射材料である。
また、こうして得られた洗土品が粒子径0.15mm未満の赤外線放射材料である。
From the waste foundry sand collected from the foundry, large solids are first removed by a screen or the like. The removed solid matter may be pulverized with a rod mill or the like and classified again with a screen. The waste foundry sand from which large solids have been removed in this manner is washed with a spiral washing machine or the like, and iron is removed with a magnetic separator. Further, it is sieved by a classifier and classified into sand having a particle size of 0.15 to 5 mm and fine sand having a particle size of less than 0.15 mm. Washed sand is drained and stored in the stockyard. Thus, the sand can be obtained. The fine sand is stirred and concentrated with a thickener and then dehydrated by a dehydrator such as a filter press to obtain a cake-like soil-washed product having a water content of about 30 to 50% by mass.
The sand-washed product thus obtained is an infrared radiation material having a particle size of 0.15 to 5 mm.
Further, the thus obtained soil-washed product is an infrared radiation material having a particle diameter of less than 0.15 mm.

以下、本発明をさらに具体化した実施例について説明する。   Examples that further embody the present invention will be described below.

(実施例1)
<固形物除去工程S1>
図1に示すように、まず固形物除去工程S1として、鉄鋳物工場から廃棄された廃鋳物砂を収集し、50mm及び5mmの2段階のスクリーンに通してガラス、金属、レンガ等の夾雑物を除去し、5mm未満の粒子径の部分を分取する。5〜50mmの分級部分については、ロッドミルで5mm未満の粒子径に破砕して5mm未満の粒子径とする。
Example 1
<Solid matter removing step S1>
As shown in FIG. 1, first, as a solid matter removing step S1, waste foundry sand discarded from an iron foundry is collected, passed through a two-stage screen of 50 mm and 5 mm, and impurities such as glass, metal, and brick are removed. Remove and fractionate a part with a particle size of less than 5 mm. About a classification | category part of 5-50 mm, it crushes to the particle diameter of less than 5 mm with a rod mill, and is set as the particle diameter of less than 5 mm.

<洗浄工程S2>
次に洗浄工程S2として、固形物除去工程S1で分取された5mm未満の粒子をスパイラル洗浄機に送り、水洗浄を行う。
<Washing step S2>
Next, as washing process S2, particles less than 5 mm separated in the solid matter removing process S1 are sent to a spiral washing machine, and water washing is performed.

<鉄除去工程S3>
さらに、洗浄工程S2によって洗浄された5mm未満の粒子中の鉄類を湿式磁選機を用いて除去する。
<Iron removal process S3>
Furthermore, irons in the particles of less than 5 mm cleaned by the cleaning step S2 are removed using a wet magnetic separator.

<篩工程S4>
そして、バイブル分級機を用いて0.15mmφ以上の洗砂品と0.15mmφ未満の微粒砂とに分ける。
<Sieving step S4>
And using a Bible classifier, it is divided into a sand-washed product of 0.15 mmφ or more and a fine sand of less than 0.15 mmφ.

<フィルタープレス工程S5>
さらに、篩工程S4によって得られた微粒砂をシックナーに送り、水中でゆっくり撹拌しながら沈殿濃縮し、得られた微粒砂の濃縮スラリーをフィルタープレス装置でろ過し、精製された洗土品を得た。
<Filter press step S5>
Further, the fine sand obtained in the sieving step S4 is sent to a thickener, and concentrated and precipitated with slow stirring in water. The resulting fine sand slurry is filtered with a filter press to obtain a purified soil washing product. It was.

こうして得られた洗土品が粒子径0.15mm未満の赤外線放射材料である。
また、上記篩工程S4で得られた洗砂品が粒子径0.15〜5mmの赤外線放射材料である。
The soil washing product thus obtained is an infrared radiation material having a particle diameter of less than 0.15 mm.
The sand-washed product obtained in the sieving step S4 is an infrared radiation material having a particle size of 0.15 to 5 mm.

<評 価>
上記のようにして得られた洗土品及び洗砂品について、赤外線放射材料としての評価をするため、少量のセメントで固化し、その赤外線放射率を測定した。以下にその詳細を示す。
<Evaluation>
The soil-washed product and sand-washed product obtained as described above were solidified with a small amount of cement in order to evaluate as an infrared emitting material, and the infrared emissivity was measured. The details are shown below.

(遠赤外線放射測定用試料の製造)
上記洗砂品90重量部と普通ポルトランドセメント10重量部と水35重量部とを混合し、50×50×5mmの板状に成形した。そして、2週間は密封養生し、その後1週間の水中養生を行い、最後に気中養生を1週間行った試料1を遠赤外線放射測定に用いた。
(Manufacture of far infrared radiation measurement samples)
90 parts by weight of the above sand-washed product, 10 parts by weight of ordinary Portland cement, and 35 parts by weight of water were mixed and molded into a plate shape of 50 × 50 × 5 mm. Then, for 2 weeks, sealed curing was performed, followed by water curing for 1 week, and finally, sample 1 subjected to air curing for 1 week was used for far infrared radiation measurement.

また、上記洗土品85重量部と普通ポルトランドセメント15重量部と水50重量部とを混合し、50×50×5mmの板状に成形し、上記試料1の製造と同様の養生を行った試料2を遠赤外線放射測定に用いた。   Further, 85 parts by weight of the above-mentioned soil-cleaning product, 15 parts by weight of ordinary Portland cement, and 50 parts by weight of water were mixed, formed into a plate shape of 50 × 50 × 5 mm, and cured in the same manner as in the production of Sample 1. Sample 2 was used for far infrared radiation measurement.

遠赤外線放射率の測定は、JIS R 1801により行った。測定装置の基本構成は,赤外放射スペクトルを測定するFTIR(フーリエ変換赤外分光光度計)、試料を裏面から加熱して試料表面温度を制御する試料加熱装置、及び分光放射率を算出する際に参照スペクトルとして用いる黒体放射を放射する黒体炉からなる。表面温度が100℃以上300℃未満となるように試料裏面から加熱し、波長4〜20μmの範囲で測定した。   The far-infrared emissivity was measured according to JIS R 1801. The basic configuration of the measuring device is FTIR (Fourier Transform Infrared Spectrophotometer) that measures the infrared radiation spectrum, the sample heating device that controls the surface temperature of the sample by heating the sample from the back surface, and when calculating the spectral emissivity It consists of a blackbody furnace that emits blackbody radiation used as a reference spectrum. The sample was heated from the back of the sample so that the surface temperature was 100 ° C. or higher and lower than 300 ° C., and measured in the wavelength range of 4 to 20 μm.

(測定結果)
洗砂品から製造した試料1についての測定結果を図2に示す。また、洗土品から製造した試料2についての測定結果を図3に示す。図3から、洗砂品から製造した試料1は平均で90.6%の高い遠赤外線の放射率を示すことが分かった。また、洗土品から製造した試料2についても平均で86.51%の高い遠赤外線の放射率を示すことが分かった。なお、どちらの試料も4μmから6μmにかけて放射率が低下しているが、これは廃鋳物砂に含まれていたシリカ分による影響と考えられる。
(Measurement result)
The measurement result about the sample 1 manufactured from the sand-washed product is shown in FIG. Moreover, the measurement result about the sample 2 manufactured from the soil-cleaning goods is shown in FIG. From FIG. 3, it was found that Sample 1 produced from the sand-washed product showed a high far-infrared emissivity of 90.6% on average. It was also found that Sample 2 produced from the soil-washed product also showed a high far-infrared emissivity of 86.51% on average. Note that the emissivity of both samples decreased from 4 μm to 6 μm, which is considered to be due to the silica content contained in the waste casting sand.

試料1及び試料2の遠赤外線放射率を、他の遠赤外線放射材料の測定値(出典:遠赤外線セラミックスのすべて:オプトロニクス社、1989.2)と比較したものを表1に示す。この表から、試料1及び試料2は、コージェライトには及ばないものの、遠赤外線放射材料として従来より用いられているSiC(0.844)より大きな値となっており、高い遠赤外線放射率を有することが分かる。   Table 1 shows the comparison of the far-infrared emissivity of Sample 1 and Sample 2 with the measured values of other far-infrared radiation materials (Source: All of far-infrared ceramics: Optronics, 1989.2). From this table, although sample 1 and sample 2 do not reach cordierite, they have a larger value than SiC (0.844) conventionally used as a far infrared radiation material, and have a high far infrared emissivity. You can see that

Figure 2011088125
Figure 2011088125

この発明は上記発明の実施の態様及び実施例の説明に何ら限定されるものではない。特許請求の範囲を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。   The present invention is not limited to the description of the embodiments and examples of the invention described above. Various modifications are also included in the present invention as long as those skilled in the art can easily conceive without departing from the scope of the claims.

試料1及び試料2の遠赤外線放射材料の製造工程図である。It is a manufacturing-process figure of the far-infrared radiation material of the sample 1 and the sample 2. FIG. 試料1の遠赤外線放射率の測定結果を示すグラフである。4 is a graph showing the measurement results of far-infrared emissivity of Sample 1. 試料2の遠赤外線放射率の測定結果を示すグラフである。6 is a graph showing the measurement results of far-infrared emissivity of Sample 2.

S1…固形物除去工程
S2…洗浄工程
S3…鉄除去工程
S4…分取工程
S5…フィルタープレス工程
S1 ... Solid matter removal step S2 ... Washing step S3 ... Iron removal step S4 ... Preparative step S5 ... Filter press step

Claims (5)

焼成していない廃鋳物砂である無焼成廃鋳物砂からなることを特徴とする遠赤外線放射材料。   A far-infrared radiation material comprising unfired waste foundry sand which is unfired waste foundry sand. 粒子径は0.15mm以上とされていることを特徴とする請求項1記載の遠赤外線放射材料。   The far-infrared radiation material according to claim 1, wherein the particle diameter is 0.15 mm or more. 廃鋳物砂を焼成することなく所定の粒子径の部分を分取する分取工程を備えることを特徴とする遠赤外線放射材料の製造方法。   A method for producing a far-infrared radiation material, comprising a fractionation step of fractionating a portion having a predetermined particle size without firing waste foundry sand. さらに廃鋳物砂を水洗する洗浄工程と、
廃鋳物砂に含まれる鉄類を除去する鉄除去工程と、
を備えることを特徴とする請求項3記載の遠赤外線放射材料の製造方法。
Furthermore, a washing process for washing waste casting sand with water,
An iron removal process for removing iron contained in waste foundry sand;
The manufacturing method of the far-infrared radiation material of Claim 3 characterized by the above-mentioned.
請求項1乃至3のいずれか1項に記載の遠赤外線放射材料を固化材で固めたことを特徴とする遠赤外線放射材料固化物。   A far-infrared radiation material solidified product obtained by solidifying the far-infrared radiation material according to any one of claims 1 to 3 with a solidifying material.
JP2009245844A 2009-10-26 2009-10-26 Far-infrared radiation material Pending JP2011088125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009245844A JP2011088125A (en) 2009-10-26 2009-10-26 Far-infrared radiation material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009245844A JP2011088125A (en) 2009-10-26 2009-10-26 Far-infrared radiation material

Publications (1)

Publication Number Publication Date
JP2011088125A true JP2011088125A (en) 2011-05-06

Family

ID=44106889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009245844A Pending JP2011088125A (en) 2009-10-26 2009-10-26 Far-infrared radiation material

Country Status (1)

Country Link
JP (1) JP2011088125A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103708842A (en) * 2013-12-12 2014-04-09 南阳铭鑫斯迪奥科技有限公司 Chrome-magnesia-zircon stuffing sand and preparation method thereof
CN106513655A (en) * 2016-11-07 2017-03-22 中车齐齐哈尔车辆有限公司 Manufacturing method for ladle filler sand and filling method for filling land filler sand into steel ladle
JP2021529667A (en) * 2018-06-29 2021-11-04 ネマク, ソシエダ アノニマ ブルサーティリ デ カピタル バリアブレNemak, S.A.B. de C.V. How to treat casting sand mixture
WO2023181443A1 (en) * 2022-03-25 2023-09-28 住友理工株式会社 Thermal insulation material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103708842A (en) * 2013-12-12 2014-04-09 南阳铭鑫斯迪奥科技有限公司 Chrome-magnesia-zircon stuffing sand and preparation method thereof
CN106513655A (en) * 2016-11-07 2017-03-22 中车齐齐哈尔车辆有限公司 Manufacturing method for ladle filler sand and filling method for filling land filler sand into steel ladle
JP2021529667A (en) * 2018-06-29 2021-11-04 ネマク, ソシエダ アノニマ ブルサーティリ デ カピタル バリアブレNemak, S.A.B. de C.V. How to treat casting sand mixture
US11707777B2 (en) 2018-06-29 2023-07-25 Nemak, S.A.B. De C.V. Method for preparing a foundry sand mixture
WO2023181443A1 (en) * 2022-03-25 2023-09-28 住友理工株式会社 Thermal insulation material

Similar Documents

Publication Publication Date Title
JP2011088125A (en) Far-infrared radiation material
CN103864401B (en) Method for preparing high-strength, high-whiteness, high- thermal-shock-resistance petuntse
JP2009226302A (en) Method for treating waste printed circuit board
CN104014385A (en) Method for processing glutinous rice flour
ITMI20100180A1 (en) COMPOSITIONS HEATING SUBJECT TO ELECTROMAGNETIC RADIATION
JP2013032237A (en) Clay fired product, method for producing the same, and clay composition for producing the clay fired product
JPH06287091A (en) Sic-containing far-infrared ray emitter, drier and firing unit
CN103086717A (en) Ovenware for microwave oven
KR101571356B1 (en) Ceramic manufacture method containing oystershell powder
CN102040370B (en) Preparation technique of black sand pottery
JP2013040075A (en) Pottery and porcelain, and manufacturing method therefor
CN106938913A (en) A kind of riverway sludge fired brick preparation method
KR19980016204U (en) Far Infrared Radiation Ceramic
JP7432206B2 (en) Ceramic manufacturing method, ceramic manufacturing granules and their manufacturing method
KR101983840B1 (en) Method of fabrication of natural glaze comprising basalt, and method of fabrication of heat resistance dinner ware using the same
KR100856574B1 (en) Manufacturing method of the loess charcoal for a roaster
JP2004202141A (en) Heating element using electromagnetic wave
JP3412121B2 (en) Ceramic far-infrared radiator products and manufacturing method
JP6048737B2 (en) Oil deterioration preventing agent using shirasu and method for producing the same
CN106542801B (en) heat-resistant black sand cooker and preparation process method thereof
JP2003325298A (en) Ovenware for microwave oven
WO2001014278A1 (en) Method for preparing far-infrared radiation ceramics
KR19980036657A (en) Method of manufacturing porcelain tableware using mica
JP4446379B2 (en) Method for producing powdered fired product
CN104446353B (en) High-temperature-resistant ceramic material for manufacturing pot body