WO2023181405A1 - 基板処理装置、処理容器、基板保持具及び半導体装置の製造方法 - Google Patents

基板処理装置、処理容器、基板保持具及び半導体装置の製造方法 Download PDF

Info

Publication number
WO2023181405A1
WO2023181405A1 PCT/JP2022/014647 JP2022014647W WO2023181405A1 WO 2023181405 A1 WO2023181405 A1 WO 2023181405A1 JP 2022014647 W JP2022014647 W JP 2022014647W WO 2023181405 A1 WO2023181405 A1 WO 2023181405A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing
substrate
fluorine
gas
containing material
Prior art date
Application number
PCT/JP2022/014647
Other languages
English (en)
French (fr)
Inventor
求 出貝
幸則 油谷
Original Assignee
株式会社Kokusai Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kokusai Electric filed Critical 株式会社Kokusai Electric
Priority to PCT/JP2022/014647 priority Critical patent/WO2023181405A1/ja
Priority to TW112102337A priority patent/TW202343570A/zh
Publication of WO2023181405A1 publication Critical patent/WO2023181405A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Definitions

  • the present disclosure relates to a substrate processing apparatus, a processing container, a substrate holder, and a method for manufacturing a semiconductor device.
  • a process of forming a film on a substrate is sometimes performed (for example, see Japanese Patent Application Publication No. 2020-155607).
  • the substrate may be subjected to pretreatment including etching treatment (see, for example, Japanese Patent Laid-Open Nos. 2009-27011 and 2007-243014).
  • etching treatment see, for example, Japanese Patent Laid-Open Nos. 2009-27011 and 2007-243014.
  • components of the gas used in the etching process remain in the processing chamber containing the substrate, and these remaining components (sometimes referred to as residue) adhere to the components placed inside the processing container and the inner walls of the processing container. It may affect the quality of the board.
  • the present disclosure provides a technique that can suppress gas residues used in substrate processing.
  • a processing container having a processing space therein for processing a substrate, and a component disposed in the processing space, a wall surface of the processing container facing the processing space and a wall surface of the component facing the processing space.
  • a technique is provided in which each surface is configured to be covered with a fluorine-containing material, and the fluorine-containing material is selected depending on the processing temperature of the substrate.
  • FIG. 1 is a schematic configuration diagram of a substrate processing apparatus according to an embodiment of the present disclosure, showing a processing furnace in a longitudinal section.
  • FIG. 1 is an enlarged vertical cross-sectional view of a processing furnace of a substrate processing apparatus according to an embodiment of the present disclosure.
  • 3 is a sectional view taken along line 3X-3X of the processing furnace shown in FIG. 2.
  • FIG. 2 is a side view showing a substrate support used in the substrate processing apparatus shown in FIG. 1.
  • FIG. 1 is a diagram showing the configuration of a control device of a substrate processing apparatus according to an embodiment of the present disclosure.
  • FIG. 3 is a diagram showing a flow of a substrate processing process according to an embodiment of the present disclosure.
  • FIG. 3 is a partially enlarged cross-sectional view of the surface of the wafer, on which a base including a silicon oxide film and a base including a silicon nitride film are exposed.
  • FIG. 2 is an enlarged partial cross-sectional view of the surface of the wafer 200 after the surface of the base 200a has been modified by supplying a hydrocarbon group-containing gas so as to terminate the surface with hydrocarbon groups.
  • FIG. 2 is an enlarged partial cross-sectional view of the surface of the wafer 200 after a first layer containing silicon and carbon is selectively formed on the surface of the base 200b by supplying a gas containing silicon and halogen.
  • FIG. 2 is a partially enlarged cross-sectional view of the surface of the wafer 200 after a silicon oxycarbonate film is selectively formed on the surface of the base 200b.
  • 7E is a partially enlarged cross-sectional view of the surface of the wafer 200 after hydrocarbon groups terminating the surface of the base 200a are removed from the surface of the base 200a by post-processing the wafer 200 shown in FIG. 7E.
  • FIG. FIG. 2 is a schematic configuration diagram of a processing furnace according to another embodiment of the present disclosure, showing the processing furnace in a longitudinal section.
  • the substrate processing apparatus 100 includes a processing furnace 202.
  • the processing furnace 202 has a heater 207 as a heating mechanism.
  • the heater 207 has a cylindrical shape, for example, and is vertically installed by being supported by a holding plate.
  • the heater 207 also functions as an activation mechanism that activates the gas with heat.
  • a reaction tube 203 is arranged concentrically with the heater 207.
  • the reaction tube 203 is formed into a cylindrical shape (for example, a cylindrical shape) with a closed upper end and an open lower end.
  • the reaction tube 203 is made of a heat-resistant material such as quartz (SiO 2 ) or silicon carbide (SiC).
  • quartz SiO 2
  • SiC silicon carbide
  • a manifold 209 is arranged below the reaction tube 203 and concentrically with the reaction tube 203.
  • the manifold 209 is formed in a cylindrical shape (for example, a cylindrical shape) with open upper and lower ends.
  • the manifold 209 is made of a metal material such as stainless steel (SUS).
  • SUS stainless steel
  • An O-ring 220a is provided between the manifold 209 and the reaction tube 203 as a sealing member.
  • a processing container 210 (in other words, a reaction container) is mainly constituted by the reaction tube 203 and the manifold 209.
  • a processing chamber 201 is formed in the cylindrical hollow part of the processing container 210 .
  • the processing chamber 201 is configured to accommodate a wafer 200 as a substrate. In this processing chamber 201, processing is performed on the wafer 200.
  • a nozzle 249a as a first supply section, a nozzle 249b as a second supply section, and a nozzle 249c as a third supply section are provided so as to penetrate the side wall of the manifold 209.
  • the nozzle 249a, the nozzle 249b, and the nozzle 249c are also referred to as a first nozzle, a second nozzle, and a third nozzle, respectively.
  • Nozzles 249a, 249b, and 249c are different nozzles.
  • Each of nozzles 249a and 249c is provided adjacent to nozzle 249b.
  • the nozzles 249a, 249b, and 249c are made of a heat-resistant material such as quartz or SiC.
  • a gas supply pipe 232a is connected to the nozzle 249a
  • a gas supply pipe 232b is connected to the nozzle 249b
  • a gas supply pipe 232c is connected to the nozzle 249c.
  • the gas supply pipes 232a to 232c are provided with mass flow controllers (MFC) 241a to 241c, which are flow rate controllers (flow rate control units), and valves 243a to 243c, which are on-off valves, respectively, in order from the upstream side of the gas flow.
  • MFC mass flow controllers
  • valves 243a to 243c which are on-off valves, respectively, in order from the upstream side of the gas flow.
  • Gas supply pipes 232d and 232e are connected to the gas supply pipe 232a downstream of the valve 243a, respectively.
  • Gas supply pipes 232f, 232g, and 232h are connected to the gas supply pipes 232b, 232c downstream of the valves 243b, 243c, respectively.
  • the gas supply pipes 232d to 232h are provided with MFCs 241d to 241h and valves 243d to 243h, respectively, in order from the upstream side of the gas flow.
  • the gas supply pipes 232a to 232h are made of a metal material such as SUS, for example.
  • the nozzles 249a, 249b, and 249c are inserted into an annular space between the inner wall of the reaction tube 203 and the wafers 200 in a plan view from the lower part of the inner wall of the reaction tube 203 in the direction in which the wafers 200 are arranged. Each one is arranged so as to rise upward.
  • the nozzle 249b is arranged to face an exhaust port 231a, which will be described later, across the center of the wafer 200 carried into the processing chamber 201.
  • the nozzle 249a and the nozzle 249c are arranged so as to sandwich the nozzle 249b from both sides along the inner wall of the reaction tube 203.
  • a gas supply hole 250a for supplying gas is provided on the side surface of the nozzle 249a.
  • the gas supply hole 250a is open to face the exhaust port 231a in a plan view, and can supply gas toward the wafer 200.
  • a plurality of gas supply holes 250a are provided from the bottom to the top of the reaction tube 203.
  • a gas supply hole 250b for supplying gas is provided on the side surface of the nozzle 249b.
  • the gas supply hole 250b is open so as to face the exhaust port 231a in a plan view, and can supply gas toward the wafer 200.
  • a plurality of gas supply holes 250b are provided from the bottom to the top of the reaction tube 203.
  • a gas supply hole 250c for supplying gas is provided on the side surface of the nozzle 249c.
  • the gas supply hole 250c is open to face the exhaust port 231a in a plan view, and can supply gas toward the wafer 200.
  • a plurality of gas supply holes 250c are provided from the bottom to the top of the reaction tube 203.
  • the reformed gas is supplied from the gas supply pipe 232a to the processing chamber 201 via the MFC 241a, the valve 243a, and the nozzle 249a.
  • a raw material (source gas) is supplied from the gas supply pipe 232b to the processing chamber 201 via the MFC 241b, the valve 243b, and the nozzle 249b.
  • An oxidizing agent (oxidizing gas) as a first reaction gas is supplied from the gas supply pipe 232c to the processing chamber 201 via the MFC 241c, the valve 243c, and the nozzle 249c.
  • a catalyst (catalyst gas) as a second reaction gas is supplied from the gas supply pipe 232d to the processing chamber 201 via the MFC 241d, the valve 243d, the gas supply pipe 232a, and the nozzle 249a.
  • Inert gas is supplied from the gas supply pipes 232e to 232g to the processing chamber 201 via the MFCs 241e to 241g, valves 243e to 243g, gas supply pipes 232a to 232c, and nozzles 249a to 249c, respectively.
  • the inert gas acts as a purge gas, a carrier gas, a diluent gas, and the like.
  • Etching gas is supplied from the gas supply pipe 232h to the processing chamber 201 via the MFC 241h, the valve 243h, the gas supply pipe 232c, and the nozzle 249c.
  • a reformed gas supply system is mainly composed of the gas supply pipe 232a, MFC 241a, and valve 243a.
  • a raw material gas supply system is mainly composed of the gas supply pipe 232b, MFC 241b, and valve 243b.
  • An oxidizing gas supply system is mainly composed of the gas supply pipe 232c, MFC 241c, and valve 243c.
  • a catalyst supply system is mainly composed of the gas supply pipe 232d, MFC 241d, and valve 243d.
  • An inert gas supply system is mainly composed of gas supply pipes 232e to 232g, MFCs 241e to 241g, and valves 243e to 243g.
  • An etching gas supply system is mainly composed of the gas supply pipe 232h, the MFC 241h, and the valve 243h.
  • any or all of the various supply systems described above may be configured as an integrated supply system 248 in which valves 243a to 243h, MFCs 241a to 241h, etc. are integrated.
  • the integrated supply system 248 is connected to each of the gas supply pipes 232a to 232h, and performs supply operations of various gases into the gas supply pipes 232a to 232h, that is, opening and closing operations of valves 243a to 243h and MFCs 241a to 241h.
  • the flow rate adjustment operation and the like are configured to be controlled by a controller 121, which will be described later.
  • An exhaust port 231a is provided below the side wall of the reaction tube 203 to exhaust the atmosphere of the processing chamber 201. As shown in FIG. 3, the exhaust port 231a is provided at a position facing the nozzle 249a, the nozzle 249b, and the nozzle 249c with the wafer 200 in between in a plan view. Specifically, it is provided at a position facing the gas supply hole 250a, the gas supply hole 250b, and the gas supply hole 250c. An exhaust pipe 231 is connected to the exhaust port 231a.
  • a vacuum pump 246 as an evacuation device is connected to the exhaust pipe 231 via a pressure sensor 245 as a pressure detector that detects the pressure in the processing chamber 201 and an APC (Auto Pressure Controller) valve 244 as a pressure regulator. has been done.
  • the APC valve 244 is configured to be able to evacuate the processing chamber 201 and stop evacuation by opening and closing the valve while the vacuum pump 246 is in operation. Further, the APC valve 244 can adjust the pressure in the processing chamber 201 by adjusting the valve opening based on pressure information detected by the pressure sensor 245 while the vacuum pump 246 is in operation. It is composed of
  • the exhaust system is mainly composed of the exhaust pipe 231, the APC valve 244, and the pressure sensor 245.
  • a seal cap 219 is provided below the manifold 209 as a furnace mouth cover that can airtightly close the lower end opening of the manifold 209.
  • the seal cap 219 is formed into a disc shape.
  • the seal cap 219 is made of a metal material such as SUS.
  • An O-ring 220b serving as a sealing member that comes into contact with the lower end of the manifold 209 is provided on the upper surface of the seal cap 219.
  • a rotation mechanism 267 for rotating the boat 217 which will be described later, is installed below the seal cap 219.
  • the rotation shaft 255 of the rotation mechanism 267 passes through the seal cap 219 and is connected to the boat 217.
  • the rotation mechanism 267 is configured to rotate the wafer 200 by rotating the boat 217.
  • the seal cap 219 is configured to be vertically raised and lowered by a boat elevator 115 serving as a raising and lowering mechanism installed outside the reaction tube 203.
  • the boat elevator 115 is configured as a transport device that transports (loads and unloads) the wafer 200 into and out of the processing chamber 201 by raising and lowering the seal cap 219 .
  • a shutter 219s is provided below the manifold 209 as a furnace mouth cover that can airtightly close the lower end opening of the manifold 209 when the seal cap 219 is lowered and the boat 217 is taken out of the processing chamber 201.
  • the shutter 219s is formed into a disk shape.
  • the shutter 219s is made of a metal material such as SUS.
  • An O-ring 220c as a sealing member that comes into contact with the lower end of the manifold 209 is provided on the upper surface of the shutter 219s.
  • the opening and closing operations (elevating and lowering operations, rotating operations, etc.) of the shutter 219s are controlled by a shutter opening and closing mechanism 115s.
  • the boat 217 serving as a substrate support is configured to support a plurality of wafers 200, for example, 25 to 200 wafers 200 in a horizontal position and aligned vertically with their centers aligned with each other in multiple stages. They are arranged so that they are spaced apart.
  • the boat 217 is made of a heat-resistant material such as quartz or SiC. Alternatively, it may be made of a metal material such as SUS.
  • heat insulating plates 218 made of a heat-resistant material such as quartz or SiC are supported in multiple stages. Specifically, as shown in FIG.
  • the boat 217 includes two parallel plates, the bottom plate 12 and the top plate 11, and a plurality of parallel plates provided substantially perpendicularly between the bottom plate 12 and the top plate 11. , for example, three pillars 15.
  • the pillar 15 has a cylindrical shape, for example.
  • the three pillars 15 are arranged and fixed to the bottom plate 12 in a substantially semicircular shape.
  • the top plate 11 is fixed to the upper ends of three pillars 15.
  • each support 15 has a plurality of support parts that can support (in other words, place) a plurality of wafers 200 in a substantially horizontal position by arranging them at predetermined intervals in the vertical direction.
  • Support pins 16 are provided in multiple stages.
  • the support pin 16 is made of a heat-resistant material such as quartz or SiC. Further, like the support column 15, it may be made of stainless steel. Each support pin 16 has a cylindrical shape, for example, and is provided to protrude toward the inside of the boat 217. That is, it protrudes toward the center of the boat 217 (the center of the wafer 200). In this case, each support pin 15 is provided with one support pin 16. That is, three support pins 16 are provided protrudingly in one stage. The wafer 200 is supported by supporting the outer periphery of the wafer 200 on the three protruding support pins 16.
  • a temperature sensor 263 as a temperature detector is installed inside the reaction tube 203. By adjusting the power supply to the heater 207 based on the temperature information detected by the temperature sensor 263, the temperature inside the processing chamber 201 becomes a desired temperature distribution. Temperature sensor 263 is provided along the inner wall of reaction tube 203.
  • the controller 121 as a control unit is configured as a computer having a CPU (Central Processing Unit) 121a, a RAM (Random Access Memory) 121b, a storage device 121c, and an I/O port 121d.
  • the RAM 121b, storage device 121c, and I/O port 121d are configured to be able to exchange data with the CPU 121a via an internal bus 121e.
  • An input/output device 122 configured as, for example, a touch panel is connected to the controller 121 .
  • the storage device 121c is composed of, for example, a flash memory, an HDD (Hard Disk Drive), or the like.
  • a control program for controlling the operation of the substrate processing apparatus, a process recipe in which procedures, conditions, etc. of substrate processing to be described later are described, and the like are stored in a readable manner.
  • the process recipe is a combination of instructions that causes the controller 121 to execute each procedure in substrate processing described later to obtain a predetermined result, and functions as a program.
  • process recipes, control programs, etc. will be collectively referred to as simply programs.
  • a process recipe is also simply referred to as a recipe.
  • the word program When the word program is used in this specification, it may include only a single recipe, only a single control program, or both.
  • the RAM 121b is configured as a memory area (in other words, a work area) in which programs, data, etc. read by the CPU 121a are temporarily held.
  • the I/O port 121d includes the above-mentioned MFCs 241a, 241b, 241c, 241d, 241e, 241f, 241g and 241h, valves 243a, 243b, 243c, 243d, 243e, 241f, 241g and 241h, pressure sensor 245, APC valve 244, It is connected to a vacuum pump 246, a temperature sensor 263, a heater 207, a rotation mechanism 267, a boat elevator 115, a shutter opening/closing mechanism 115s, and the like.
  • the CPU 121a is configured to read and execute a control program from the storage device 121c, and read recipes from the storage device 121c in response to input of operation commands from the input/output device 122.
  • the CPU 121a adjusts the flow rates of various gases using the MFCs 241a, 241b, 241c, 241d, 241e, 241f, 241g, and 241h, and the valves 243a, 243b, 243c, 243d, 243e, 243f, and 243g, in accordance with the contents of the read recipe.
  • opening/closing operation opening/closing operation of the APC valve 244 and pressure adjustment operation by the APC valve 244 based on the pressure sensor 245, starting and stopping of the vacuum pump 246, temperature adjustment operation of the heater 207 based on the temperature sensor 263, and rotation mechanism 267. It is configured to control the rotation and rotational speed adjustment operation of the boat 217, the raising and lowering operation of the boat 217 by the boat elevator 115, the opening and closing operation of the shutter 219s by the shutter opening and closing mechanism 115s, and the like.
  • the controller 121 can be configured by installing the above-mentioned program stored in the external storage device 123 into a computer.
  • the external storage device 123 includes, for example, a magnetic disk such as an HDD, an optical disk such as a CD, a magneto-optical disk such as an MO, a semiconductor memory such as a USB memory, and the like.
  • the storage device 121c and the external storage device 123 are configured as computer-readable recording media. Hereinafter, these will be collectively referred to as simply recording media.
  • recording medium may include only the storage device 121c, only the external storage device 123, or both.
  • the program may be provided to the computer using communication means such as the Internet or a dedicated line, without using the external storage device 123.
  • the wall surface of the processing container 210 facing the processing space 212 and the surface of the component member 214 facing the processing space 212 are each covered with a fluorine-containing material.
  • the constituent members 214 in this embodiment include the boat 217, the nozzle 249a, the nozzle 249b, and the nozzle 249c; however, the present disclosure is not limited thereto; for example, the reaction tube 203 and the manifold 209 may also be included in the constituent member 214. can be included.
  • the rotating shaft 255 (as a part of the boat 217) and the shutter 219s (particularly on the wall side facing the processing space 212) are also covered with a fluorine-containing material as a constituent member 214. It is preferable to configure it so that it is covered with.
  • a processing container 210 is formed by the reaction tube 203 and the manifold 209. That is, the processing space 212 of the processing container 210 is configured by the internal space of the reaction tube 203 (processing chamber 201) and the internal space of the manifold 209.
  • the inner wall surface of the reaction tube 203 constituting the processing container 210 is covered with a fluorine-containing material.
  • the entire inner peripheral surface 203a and the entire ceiling surface 203b of the reaction tube 203 are covered with the fluorine-containing material F1.
  • the entire inner circumferential surface 203a and the entire ceiling surface 203b of the reaction tube 203 are covered with a fluorine-based resin that is the fluorine-containing material F1.
  • the region of the reaction tube 203 covered with the fluorine-containing material F1 is indicated by a chain double-dashed line.
  • the inner wall surface of the manifold 209 that constitutes the processing container 210 is covered with a fluorine-containing material.
  • a fluorine-containing material As an example, in this embodiment, the entire inner peripheral surface 209a of the manifold 209 is covered with the fluorine-containing material F2.
  • the entire inner circumferential surface 209a of the manifold 209 is covered with a fluorine-based resin, which is the fluorine-containing material F2.
  • region covered with the fluorine-containing material F2 of the manifold 209 is shown with a two-dot chain line.
  • a flange 203c that projects outward is provided at the lower end of the reaction tube 203.
  • This flange 203c is supported by the upper end of the manifold 209.
  • the aforementioned O-ring 220a is provided between the flange 203c of the reaction tube 203 and the upper end of the manifold 209.
  • the surface (lower surface in the figure) of the flange 203c is covered with the fluorine-containing material F3.
  • the surface of the flange 203c is covered with a fluorine-based resin, which is the fluorine-containing material F3.
  • region covered with the fluorine-containing material F3 of the flange 203c is shown with a two-dot chain line.
  • the surface (upper surface) of the seal cap 219 is covered with a fluorine-containing material.
  • a fluorine-containing material As an example, in this embodiment, the entire surface of the seal cap 219 is covered with the fluorine-containing substance F4. Specifically, the entire surface of the seal cap 219 is covered with a fluorine-based resin, which is the fluorine-containing substance F4.
  • the region covered by the fluorine-containing material F4 of the seal cap 219 is shown by a two-dot chain line.
  • the surface of the boat 217 is covered with a fluorine-containing material.
  • the boat 217 may be configured such that the portion facing the processing space 212 is coated with the fluorine-containing material, and the portion not facing the processing space 212 is not coated with the fluorine-containing material.
  • the entire strut 15, bottom plate 12, and top plate 11 of the boat 217 are covered with the fluorine-containing material F5.
  • the lower end (bottom plate 12) of the boat 217 may be configured not to be coated with the fluorine-containing material on the condition that it does not face the processing space 212; Preferably, it is coated with F5.
  • the surface of the support pin 16 that contacts the wafer 200 does not face the processing space 212 due to the wafer 200, the surface of the support pin 16 may be configured not to be coated with a fluorine-containing substance. Note that it is preferable that the fluorine-containing material coated on the surface of the support pin 16 has the largest coefficient of friction among the fluorine-containing materials.
  • region covered with the fluorine-containing material F5 of the boat 217 is shown with a two-dot chain line.
  • the boat 217 may be made of a material with high thermal conductivity, such as metal. However, if metal is exposed in the processing space 212, it will become metal contamination, so at least the portion facing the processing space 212 is covered with the fluorine-containing substance F5.
  • the surfaces of nozzle 249a, nozzle 249b, and nozzle 249c are covered with a fluorine-containing material.
  • a fluorine-containing material the surface of the portion of the nozzle 249a facing the processing space 212, in other words, the surface of the portion of the nozzle 249a located within the processing space 212 is coated with the fluorine-containing substance F6. That is, the surface of the nozzle 249a is covered with a fluorine-based resin, which is the fluorine-containing material F6.
  • the region covered by the fluorine-containing material F6 of the nozzle 249a is shown by a two-dot chain line.
  • the surface of the portion of the nozzle 249b facing the processing space 212 is coated with the fluorine-containing substance F7.
  • the region covered by the fluorine-containing substance F7 of the nozzle 249b is shown by a two-dot chain line.
  • the surface of the portion of the nozzle 249c facing the processing space 212 in other words, the surface of the portion of the nozzle 249c facing the processing space 212 is coated with the fluorine-containing substance F8.
  • the region covered by the fluorine-containing substance F8 of the nozzle 249c is shown by a two-dot chain line.
  • the wall surface of the processing container 210 and the surfaces of the boat 217, the nozzle 249a, the nozzle 249b, and the nozzle 249c are coated with the above-mentioned fluorine-containing materials F1, F2, F3, F4,
  • F6, F7, and F8 may be treated as being C-F terminated (terminated with a fluorocarbon-containing material).
  • the C-F terminated surface has no chemically active sites, and the dispersion force is small due to the high electronegativity of F (fluorine), so the molecules of any processing gas (etching gas, raw material gas, etc.) Neither chemical adsorption nor physical adsorption occurs easily.
  • fluorine-containing substances F1, F2, F3, F4, F5, F6, F7, and F8 (hereinafter appropriately abbreviated as "fluorine-containing substances F") used in the substrate processing apparatus 100 are, for example, The selection will be made accordingly.
  • each part is made of different fluorine depending on the position of the wall surface of the processing container 210, the surface of each of the boat 217, the nozzle 249a, the nozzle 249b, and the nozzle 249c, and the wafer 200 arranged in the processing space 212. It is configured to be covered with inclusions.
  • the fluorine-containing substance F1 coated on the inner wall surface of the reaction tube 203 is the fluorine-containing substance F5, F6, F7, and F8 coated on the surfaces of each of the boat 217, nozzle 249a, nozzle 249b, and nozzle 249c.
  • the transmittance of infrared rays is higher.
  • the processing temperature of the wafer 200 is set to be lower than the allowable temperature limit of the fluorine-containing material.
  • the highest temperature is set to be lower than the allowable temperature limit of the fluorine-containing material described above.
  • (First pretreatment step) Next, the natural oxide film on the wafer 200 is removed. Etching gas is used to remove the native oxide film on the wafer 200.
  • the valve 243h is opened, and the etching gas is caused to flow into the nozzle 249b from the gas supply pipe 232b, and is supplied to the processing chamber 201 via the nozzle 249h.
  • the processing chamber 201 is evacuated in advance, the processing chamber 201 is heated to a predetermined temperature (100° C. as an example), and the etching gas is supplied to the processing chamber with the valve 243h open. 201.
  • the valve 243h is opened and closed every predetermined time period (opening and closing of the valve 243h is repeated at predetermined time intervals), and the natural oxide film of the wafer 200 is etched with the etching gas.
  • the valve 243h and the valve 243g are closed to evacuate the processing chamber 201, and then the valve 243g is opened to purge the processing chamber 201 with an inert gas.
  • an F-containing gas such as hydrogen fluoride (HF) gas, ammonium trifluoride (NF 3 ) gas, or chlorine trifluoride (ClF 3 ) gas may be used, or boron trichloride ( A Cl-containing gas such as BCl 3 ) gas may also be used.
  • HF hydrogen fluoride
  • NF 3 ammonium trifluoride
  • Cl chlorine trifluoride
  • BCl 3 boron trichloride
  • the etching gas is removed from the wafer 200.
  • a gas containing oxygen (O) and H is used as an oxidizing agent (oxidizing gas).
  • oxidizing gas oxidizing gas
  • water vapor (H 2 O gas) is supplied from the above-mentioned oxidizing gas supply system to the processing chamber 201 via a water vapor generator (not shown) and exhausted from the exhaust pipe 231 .
  • the water vapor (H 2 O gas) comes into contact with the halogen species, reacts, and is discarded, thereby removing the halogen species.
  • the processing chamber 201 is heated to a predetermined temperature (for example, 200° C.), and water vapor is supplied to the processing chamber 201.
  • a predetermined temperature for example, 200° C.
  • water vapor is supplied to the processing chamber 201.
  • the processing chamber 201 is evacuated, and then the valve 243f is opened to purge the processing chamber 201 with an inert gas.
  • this step is not essential like the first pretreatment step, but it is preferable to perform this step depending on the target process (for example, oxide film, etc.).
  • the surface of the wafer 200 is coated with a plurality of types of bases, here, as an example, an oxygen (O)-containing film, that is, a SiO film as an oxide film.
  • the base 200a containing O and the base 200b containing an O-free film, that is, a non-oxide film (for example, a SiN film as a nitride film) are exposed.
  • the base 200a has a surface terminated with hydroxyl groups (OH) (hereinafter referred to as OH termination) over the entire area (entire surface).
  • the base 200b has a surface in which many regions are not OH-terminated, that is, a surface in which some regions are OH-terminated.
  • the processing chamber 201 that is, the space where the wafer 200 is present, is evacuated by the vacuum pump 246 so that the desired pressure (degree of vacuum) is achieved.
  • the pressure in the processing chamber 201 is measured by the pressure sensor 245, and the APC valve 244 is feedback-controlled based on the measured pressure information.
  • the wafer 200 in the processing chamber 201 is heated by the heater 207 so that it reaches a desired processing temperature.
  • the energization of the heater 207 is feedback-controlled based on the temperature information detected by the temperature sensor 263 so that the processing chamber 201 has a desired temperature distribution.
  • rotation of the wafer 200 by the rotation mechanism 267 is started. Evacuation of the processing chamber 201 and heating and rotation of the wafer 200 are all continued until at least the processing on the wafer 200 is completed.
  • a hydrocarbon group-containing gas as a reforming gas is supplied to the wafer 200 with the base 200a and the base 200b exposed on the surface.
  • valve 243a Open the valve 243a and let the reformed gas flow into the gas supply pipe 232a.
  • the reformed gas has a flow rate adjusted by the MFC 241a, is supplied into the processing chamber 201 via the nozzle 249a, and is exhausted from the exhaust port 231a.
  • modification is supplied to the wafer 200 (hydrocarbon group-containing gas supply).
  • the valves 243e to 243g may be opened to supply inert gas into the processing chamber 201 through the nozzles 249a to 249c, respectively.
  • the surface of the base 200a can be terminated with trimethylsilyl groups (Si-Me 3 ) contained in the reformed gas.
  • the methyl group (trimethylsilyl group) that terminates on the surface of the base 200a prevents adsorption of source gas (Si and halogen-containing gas) to the surface of the base 200a during selective growth described later, and prevents film formation on the surface of the base 200a. Acts as an adsorption inhibitor that inhibits the progress of the reaction.
  • the valve 243a is closed and the supply of the reformed gas to the processing chamber 201 is stopped. Then, the processing chamber 201 is evacuated to remove gas remaining in the processing chamber 201 from the processing chamber 201. At this time, the valves 243e to 243g are opened to supply inert gas to the processing chamber 201 through the nozzles 249a to 249c. The inert gas supplied from the nozzles 249a to 249c acts as a purge gas, thereby purging the inside of the processing chamber 201 (purge).
  • the processing conditions for supplying reformed gas are as follows: Reformed gas supply flow rate: 1 sccm to 3000 sccm, preferably 1 to 500 sccm Reformed gas supply time: 1 second to 120 minutes, preferably 30 seconds to 60 minutes Inert gas supply flow rate (for each gas supply pipe): 0 to 20000 sccm Processing temperature: room temperature (25°C) to 500°C, preferably room temperature to 250°C, more preferably room temperature to 200°C Processing pressure: 5-1000Pa is exemplified.
  • the processing conditions for purge are as follows: Inert gas supply flow rate (each gas supply pipe): 500 to 20,000 sccm Inert gas supply time: 10 to 30 seconds Processing pressure: 1 to 30 Pa is exemplified.
  • a gas containing an alkyl group can be used as the hydrocarbon group-containing gas as the reformed gas.
  • a gas containing an alkyl group for example, a gas containing an alkylsilyl group in which an alkyl group is coordinated to silicon (Si), that is, an alkylsilane-based gas can be used.
  • An alkyl group is a general term for the remaining atomic group after removing one hydrogen (H) atom from an alkane (a chain saturated hydrocarbon represented by the general formula C n H 2n+2 ), and is represented by the general formula C n H 2n+1. It is a functional group that Alkyl groups include methyl, ethyl, propyl, butyl, and the like. Since the alkyl group is bonded to Si, which is the central atom of the alkylsilane molecule, the alkyl group in the alkylsilane can also be referred to as a ligand or an alkyl ligand.
  • the hydrocarbon group-containing gas may further contain an amino group.
  • an alkylaminosilane gas can be used as the hydrocarbon group- and amino group-containing gas.
  • An amino group is a functional group in which one or two hydrocarbon groups containing one or more carbon (C) atoms are coordinated to one nitrogen (N) atom (H of the amino group represented by NH2 ) .
  • a functional group in which one or both of the following are substituted with a hydrocarbon group containing one or more C atoms.
  • the hydrocarbon group may contain a single bond like an alkyl group, or may contain an unsaturated bond such as a double bond or triple bond.
  • hydrocarbon group-containing gas in addition to dimethylaminotrimethylsilane ((CH 3 ) 2 NSi(CH 3 ) 3 , abbreviation: DMATMS) gas, for example, an aminosilane gas represented by the following general formula [1] is used. be able to.
  • DMATMS dimethylaminotrimethylsilane
  • A represents a hydrogen atom, an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, or an alkoxy group such as a methoxy group, an ethoxy group, a propoxy group, a butoxy group.
  • the alkyl group may be not only a linear alkyl group but also a branched alkyl group such as an isopropyl group, an isobutyl group, a sec-butyl group, or a tertiary-butyl group.
  • the alkoxy group may be not only a linear alkoxy group but also a branched alkoxy group such as an isopropoxy group or an isobutoxy group.
  • B represents a hydrogen atom or an alkyl group such as a methyl group, an ethyl group, a propyl group, or a butyl group.
  • the alkyl group may be not only a linear alkyl group but also a branched alkyl group such as an isopropyl group, an isobutyl group, a sec-butyl group, or a tertiary-butyl group.
  • a plurality of A's may be the same or different, and two B's may be the same or different.
  • x is an integer from 1 to 3.
  • a rare gas such as nitrogen (N 2 ) gas, argon (Ar) gas, helium (He) gas, neon (Ne) gas, or xenon (Xe) gas can be used.
  • nitrogen (N 2 ) gas argon (Ar) gas, helium (He) gas, neon (Ne) gas, or xenon (Xe) gas
  • argon (Ar) gas argon (Ar) gas
  • He helium
  • Ne neon
  • Xe xenon
  • the next steps 1 and 2 are executed sequentially.
  • the output of the heater 207 is adjusted so that the temperature of the wafer 200 is lower than or equal to the temperature of the wafer 200 during surface modification, preferably lower than the temperature of the wafer 200 during surface modification. maintain.
  • Step 1 Si and a halogen-containing gas as raw material gases and a catalyst are supplied to the wafer 200 in the processing chamber 201, that is, the wafer 200 after the surface of the base 200a has been selectively terminated with methyl groups. .
  • valves 243b and 243d are opened to flow the raw material gas into the gas supply pipe 232b and the catalyst into the gas supply pipe 232d, respectively.
  • the raw material gas and the catalyst are adjusted in flow rate by the MFCs 241b and 241d, respectively, and are supplied into the processing chamber 201 through the nozzles 249b and 249a, mixed after being supplied into the processing chamber 201, and exhausted from the exhaust port 231a.
  • raw material gas and catalyst are supplied to the wafer 200 (Si and halogen-containing gas+catalyst supply).
  • the valves 243e to 243g may be opened to supply inert gas into the processing chamber 201 through the nozzles 249a to 249c, respectively.
  • the raw material gas is It becomes possible to selectively (preferentially) adsorb Si contained in the base 200b to the surface of the base 200b.
  • a Si-containing layer containing C and Cl with a thickness of, for example, less than one atomic layer (one molecular layer) to several atomic layers (several molecular layers) is formed on the surface of the base 200b as a first layer.
  • the first layer is a layer containing Si--C bonds.
  • the Si-containing layer containing C and Cl is also simply referred to as a Si-containing layer containing C or a SiC layer.
  • the above-mentioned reaction can proceed in a non-plasma atmosphere and under low temperature conditions as described below.
  • the first layer in a non-plasma atmosphere and under low temperature conditions as described below, the methyl groups terminating the surface of the base 200a are eliminated from the surface of the base 200a. It becomes possible to maintain it without (detachment).
  • Si contained in the source gas may be adsorbed to a part of the surface of the base 200a, but the amount of adsorption depends on the adsorption of Si to the surface of the base 200b. It will be smaller than the quantity.
  • Such selective (preferential) adsorption is possible because the processing conditions in this step are such that the source gas is not decomposed in the gas phase within the processing chamber 201. This is also because the entire surface of the base 200a is terminated with methyl groups, whereas many areas of the surface of the base 200b are not terminated with methyl groups.
  • valves 243b and 243d are closed to stop the supply of the raw material gas and the catalyst into the processing chamber 201, respectively. Gas and the like remaining in the processing chamber 201 are then removed from the processing chamber 201 using the same processing procedure and processing conditions as those for purging in surface modification (purge).
  • the processing conditions in this step are: Raw material gas supply flow rate: 1 to 2000 sccm Catalyst supply flow rate: 1-2000sccm Inert gas supply flow rate (each gas supply pipe): 0 to 20000sccm Each gas supply time: 1 to 60 seconds Processing temperature: Room temperature to 120°C, preferably room temperature to 90°C Processing pressure: 133-1333Pa is exemplified.
  • a gas containing Si and halogen is used as the raw material gas.
  • Halogens include chlorine (Cl), fluorine (F), bromine (Br), iodine (I), and the like.
  • the Si and halogen-containing gas preferably contains halogen in the form of a chemical bond between Si and halogen.
  • the Si and halogen-containing gas may further contain C, in which case it is preferable to contain C in the form of a Si--C bond.
  • a silane gas containing Si, Cl and an alkylene group and having a Si--C bond that is, an alkylenechlorosilane gas can be used.
  • the alkylene group includes a methylene group, an ethylene group, a propylene group, a butylene group, and the like. It is preferable that the alkylenechlorosilane gas contains Cl in the form of a Si--Cl bond and C in the form of a Si--C bond.
  • Si and halogen-containing gas examples include bis(trichlorosilyl)methane ((SiCl 3 ) 2 CH 2 , abbreviation: BTCSM) gas, 1,2-bis(trichlorosilyl)ethane ((SiCl 3 ) 2 C 2 H 4 , Alkylenechlorosilane gas such as BTCSE) gas, 1,1,2,2-tetrachloro-1,2-dimethyldisilane ((CH 3 ) 2 Si 2 Cl 4 , TCDMDS) gas, 1,2 -Alkylchlorosilane gas such as dichloro-1,1,2,2-tetramethyldisilane ((CH 3 ) 4 Si 2 Cl 2 , abbreviation: DCTMDS), 1,1,3,3-tetrachloro-1 , 3-disilacyclobutane (C 2 H 4 Cl 4 Si 2 , abbreviation: TCDSCB) gas, which has a cyclic structure composed of Si and C, and
  • the Si and halogen-containing gases include tetrachlorosilane (SiCl 4 , abbreviation: STC) gas, hexachlorodisilane (Si 2 Cl 6 , abbreviation: HCDS) gas, and octachlorotrisilane (Si 3 Cl 8 , abbreviation: OCTS).
  • STC tetrachlorosilane
  • HCDS hexachlorodisilane
  • OCTS octachlorotrisilane
  • Inorganic chlorosilane gas such as gas can also be used. Note that even when an inorganic chlorosilane gas is used, the same reaction as described above can occur, except that the first layer does not contain C.
  • pyridine (C 5 H 5 N) gas As a catalyst, pyridine (C 5 H 5 N) gas, aminopyridine (C 5 H 6 N 2 ) gas, picoline (C 6 H 7 N) gas, lutidine (C 7 H 9 N) gas, piperazine (C 4 Cyclic amine gas such as H 10 N 2 ) gas, piperidine (C 5 H 11 N) gas, triethylamine ((C 2 H 5 ) 3 N, abbreviation: TEA) gas, diethylamine ((C 2 H 5 ) 2
  • TEA triethylamine
  • DEA diethylamine
  • Step 2 After the first layer is formed, an oxidizing gas and a catalyst are supplied to the first layer selectively formed on the surface of the wafer 200 in the processing chamber 201, that is, the base 200b.
  • valves 243c and 243d are opened to flow the oxidizing gas into the gas supply pipe 232c and the catalyst into the gas supply pipe 232d, respectively.
  • the oxidizing gas and the catalyst are adjusted in flow rate by the MFCs 241c and 241d, respectively, and are supplied into the processing chamber 201 through the nozzles 249c and 249a, mixed after being supplied into the processing chamber 201, and exhausted from the exhaust port 231a. .
  • oxidizing gas and catalyst are supplied to the wafer 200.
  • the valves 243e to 243g may be opened to supply inert gas into the processing chamber 201 through the nozzles 249a to 249c, respectively.
  • a Si-containing layer containing O and C is formed as a second layer on the surface of the base 200b, for example, with a thickness of less than one atomic layer (one molecular layer) to about several atomic layers (several molecular layers). .
  • a Si-containing layer containing O and C is formed as a second layer on the surface of the base 200b, for example, with a thickness of less than one atomic layer (one molecular layer) to about several atomic layers (several molecular layers).
  • the second layer becomes a layer containing Si--C bonds.
  • the Si-containing layer containing O and C is also simply referred to as a SiOC layer.
  • impurities such as Cl contained in the first layer form a gaseous substance containing at least Cl during the oxidation reaction process with H 2 O gas, and are discharged from the processing chamber 201. be done.
  • the second layer contains fewer impurities such as Cl than the first layer.
  • valves 243c and 243d are closed to stop the supply of oxidizing gas and catalyst into the processing chamber 201, respectively. . Gas and the like remaining in the processing chamber 201 are then removed from the processing chamber 201 using the same processing procedure and processing conditions as those for purging in surface modification (purge).
  • the processing conditions in this step are: Oxidizing gas supply flow rate: 1 to 2000 sccm Catalyst supply flow rate: 1-2000sccm Inert gas supply flow rate (each gas supply pipe): 0 to 20000sccm Each gas supply time: 1 to 60 seconds Processing temperature: Room temperature to 120°C, preferably room temperature to 100°C Processing pressure: 133-1333Pa is exemplified.
  • an O-containing gas containing an O--H bond such as water vapor (H 2 O gas) or hydrogen peroxide (H 2 O 2 ) gas
  • H 2 O gas water vapor
  • H 2 O 2 hydrogen peroxide
  • the oxidizing gas hydrogen (H 2 ) gas+oxygen (O 2 ) gas, H 2 gas+ozone (O 3 ) gas, or the like can be used.
  • the oxidizing gas one or more of these can be used.
  • the exposed surface of the wafer 200 is It becomes possible to selectively form a SiOC film on the surface of the base 200b of the bases 200a and 200b.
  • the above-described cycle is repeated multiple times. That is, the thickness of the second layer formed per cycle is made thinner than the desired film thickness, and the above-described process is continued until the thickness of the film formed by laminating the second layer reaches the desired film thickness. It is preferable to repeat this cycle multiple times.
  • the temperature in the processing chamber 201 that is, the temperature of the wafer 200 after the SiOC film is selectively formed on the surface of the base 200b, is set to be equal to or higher than the temperature of the wafer 200 during selective growth.
  • the output of the heater 207 is adjusted to be higher than the temperature of the wafer 200 during the selective growth, and post-processing is performed on the wafer 200 after the selective growth.
  • FIG. 7F it is possible to detach and remove the methyl group terminating the surface of the base 200a from the surface of the base 200a, or to nullify the function of this methyl group as an inhibitor. becomes.
  • this step may be performed while a gas (assist gas) that promotes the removal (elimination) of methyl groups, such as inert gas, H 2 gas, O 2 gas, etc., is supplied into the processing chamber 201; , the processing may be performed while the supply of assist gas into the processing chamber 201 is stopped.
  • a gas assistant gas
  • assist gas that promotes the removal (elimination) of methyl groups
  • the processing conditions in this step are: Assist gas supply flow rate: 0 to 50000sccm Processing gas supply time: 1 to 18000 seconds Processing temperature: 120 to 1000°C, preferably 120 to 200°C Processing pressure: 1-120000Pa is exemplified.
  • an inert gas as a purge gas is supplied into the processing chamber 201 from each of the nozzles 249a to 249c. , exhaust from the exhaust port 231a.
  • the inside of the processing chamber 201 is purged, and gases and reaction by-products remaining in the processing chamber 201 are removed from the inside of the processing chamber 201 (after purge).
  • the atmosphere inside the processing chamber 201 is replaced with an inert gas (inert gas replacement), and the pressure inside the processing chamber 201 is returned to normal pressure (atmospheric pressure return).
  • the wall surface of the processing container 210 facing the processing space 212 and the surface of the component 214 facing the processing space 212 are each covered with a fluorine-containing material.
  • the fluorine-containing material is selected depending on the processing temperature of the wafer 200.
  • the inner wall surface of the reaction tube 203 is covered with the fluorine-containing material F1
  • the inner wall surface of the manifold 209 is covered with the fluorine-containing material F2
  • the surface of the seal cap 219 is covered with the fluorine-containing material F4.
  • the surface of the boat 217 is covered with the fluorine-containing substance F5, and the surfaces of the nozzles 249a, 249b, and 249c are covered with the fluorine-containing substances F6, F7, and F8.
  • the surfaces of elements other than the substrate arranged in the processing space 212 are C-F terminated. It is possible to suppress adsorption of atoms and molecules of raw material gas, reformed gas, oxidizing gas, etching gas, etc. used in the above-mentioned substrate processing process.
  • gas residues used for processing the wafer 200 can be suppressed.
  • film adhesion to quartz members such as the reaction tube 203 is reduced, and it is expected that the exchange period of the reaction tube 203 and the cleaning period will be extended.
  • film adhesion to the component 214 is reduced, and it is expected that the replacement cycle and cleaning cycle of the component 214 will be extended.
  • the processed wafer 200 since adsorption of atoms and molecules of source gas, reformed gas, oxidizing gas, etching gas, etc. to the wall surface of the processing container 210 and the surface of the component member 214 is suppressed, the processed wafer 200 The occurrence of film thickness drops is suppressed. Further, fluctuations in the deposition rate due to the influence of moisture caused by film adhesion to the wall surface of the processing container 210 (requiring cleaning of the inside of the processing container 210) and fluctuations in the etching rate in the first pretreatment step are suppressed.
  • the inner wall surface of the processing container 210 and the surface of the component member 214 are configured to be covered with different fluorine-containing substances depending on the position of the wafer 200 placed in the processing space 212. According to this configuration, irrespective of the arrangement of the wafers 200, atoms and molecules of the source gas, etching gas, etc. Adsorption can be suppressed. This reduces film adhesion to quartz members such as the reaction tube 203, and can be expected to extend the reaction tube replacement cycle and cleaning cycle.
  • the fluorine-containing material F1 coated on the inner wall surface of the reaction tube 203 has higher infrared transmittance than the fluorine-containing material coated on the surface of the component 214 and the surface of the flange 203c. Therefore, the radiant heat from the heater 207 provided outside the processing container 210 can reach the wafer 200 without being affected by the fluorine-containing material F1, and the wafer 200 can be heated.
  • the portion of the boat 217 that does not face the processing space 212 is configured not to be covered with the fluorine-containing material F5.
  • the bottom plate 12, which is the lower end portion of the boat 217 is configured not to be coated with the fluorine-containing material F4.
  • the fluorine-containing material coated on the surface (upper surface) of the support pin 16, which is the part that contacts the wafer 200 has the largest coefficient of friction among the fluorine-containing materials.
  • the back surface (lower surface) of the support pin 16, which is a portion of the support pin 16 that does not come into contact with the wafer 200 is configured not to be coated with a fluorine-containing substance.
  • the processing temperature in the substrate processing step is configured to be lower than the allowable temperature limit of the fluorine-containing material. Therefore, the wafer 200 can be processed without being affected by the coating (fluorine-containing material).
  • the above description describes the formation of a SiOC film, the invention can be applied to any other film formation, for example, as long as it can be formed at a temperature lower than the allowable temperature limit of a fluorine-containing material.
  • the component 214 is made of a material with high thermal conductivity. With this configuration, heat can be efficiently applied to the wafers 200 supported by the boat 217, and the wafers 200 can be processed without being affected by the coating (fluorine-containing material).
  • the material of the boat 217 as the component 214 may be at least one metal selected from among Fe, Al, Au, Ag, Cu, Ni, Cr, Co, Zr, Hf, or an alloy thereof. good.
  • the boat 217 can have high thermal conductivity while ensuring its rigidity.
  • all the members constituting the boat 217 may be made of the same material or may be made of different materials. However, in this case, since metal contamination is a concern, it is preferable to coat not only the portion facing the processing space 212 but the entire boat 217 with a fluorine-containing material.
  • the nozzle 249a, the nozzle 249b, and the nozzle 249c may be made of a material with high thermal conductivity, similar to the boat 217.
  • the material of the nozzle 249a, the nozzle 249b, and the nozzle 249c is at least one metal selected from stainless steel, Fe, Al, Au, Ag, Cu, Ni, Cr, Co, Zr, Hf, or an alloy thereof. It may be used selectively.
  • the materials of the nozzle 249a, the nozzle 249b, and the nozzle 249c may be the same or different. However, in this case, since there is a concern about metal contamination, it is preferable to coat the entire nozzle 249, not just the portion facing the processing space 212, with a fluorine-containing substance.
  • the fluorine-containing materials include PTFE (polytetrafluoroethylene), PFA (perfluoroalkoxyalkane), ETFE (ethylene-tetrafluoroethylene copolymer), FEP (perfluoroethylene-propene copolymer), and PVDF (polyfluorinated
  • the fluororesin is selected from among (vinylidene), PCTFE (polychlorotrifluoroethylene), and ECTFE (ethylene-chlorotrifluoroethylene copolymer).
  • the inner wall surface of the reaction tube 203, the inner wall surface of the manifold 209, the surface of the seal cap 219, the surface of the boat 217, the surface of the nozzle 249a, the surface of the nozzle 249b, and the surface of the nozzle 249c can be improved. It can be coated with a fluorine-containing material.
  • CF carbon fluoride
  • atoms and molecules of the raw material gas, etching gas, etc. adsorption can be effectively suppressed.
  • the above-mentioned fluorine-containing film currently has a heat resistance temperature of about 300° C., it is preferable to use the film so that the temperature inside the processing container 210 does not exceed this heat resistance temperature.
  • the wall surface of the processing container 210 and the surface of the component member 214 are coated with a fluorine-based resin that is a fluorine-containing material, but the present disclosure is not limited thereto.
  • a fluorine-based passive film may be formed on the wall surface of the processing container 210 and the surface of the component member 214.
  • a fluorine-based passive film may be formed on the surface of the flange 203c of the reaction tube 203.
  • the fluorine-based passive film at least one of NiF (nickel fluoride) and CrF (chromium fluoride) fluorine passive film is selected.
  • the fluorine-containing material covering the wall surface of the processing container 210 and the surface of the component member 214 may be selected from a fluorine-based resin or a fluorine-based passive film.
  • the inner wall surface of the processing container 210 may be covered with a fluorine-based resin and a fluorine-based passive film may be formed on the surface of the component 214, or the inner wall surface of the processing container 210 may be covered with a fluorine-based passive film.
  • the surface of the component 214 may be covered with a fluororesin.
  • the reaction tube 203 of the processing furnace 202 was configured with one cylinder, but the present disclosure is not limited thereto.
  • an inner tube 334 in which a reaction tube 332 forms a processing space, an outer tube 336 provided outside the inner tube 334, and a lower portion of the inner tube 334 and the outer tube 336. It may also include flanges 334a, 336a provided at the flange 334a, 336a.
  • the inner surface of the reaction tube 332 facing the wafer 200 may be covered with a fluorine-containing material, or a fluorine-based passive film may be formed on the surface of the flange 334a. good.
  • the maintenance cycle can be expected to be extended.
  • the inner surface 334a of the inner tube 334 may be coated with a fluororesin, and the inner surface 336a of the outer tube 336 may not be coated with a fluororesin. In this way, by coating the inner tube 334 facing the wafer 200 with a fluororesin and not coating the outer tube 336 not facing the wafer 200 with a fluororesin, the maintenance cycle can be expected to be extended.
  • a film forming process in a semiconductor device is taken as an example of the process performed by the substrate processing apparatus, but the present disclosure is not limited thereto. That is, in addition to the film forming process, the process may be a process of forming an oxide film, a nitride film, or a process of forming a film containing metal. Further, the specific content of the substrate processing is not limited, and the present invention can be suitably applied not only to film formation processing but also to other substrate processing such as annealing processing, oxidation processing, nitriding processing, diffusion processing, and lithography processing.
  • the present disclosure is applicable to other substrate processing apparatuses such as annealing processing apparatuses, oxidation processing apparatuses, nitriding processing apparatuses, exposure apparatuses, coating apparatuses, drying apparatuses, heating apparatuses, processing apparatuses using plasma, etc. It can also be suitably applied. Further, in the present disclosure, these devices may be used together. Furthermore, the present disclosure may be applied not only to semiconductor manufacturing equipment but also to equipment that processes glass substrates, such as LCD equipment.
  • Substrate processing apparatus Wafer 203c Flange 210 Processing container 212 Processing space 214 Component 217 Boat

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

基板処理装置は、基板が処理される処理空間を内部に設ける処理容器と、前記処理空間内に配置される構成部材と、を備え、前記処理容器内に設けられる前記処理空間に面する壁面及び前記処理空間に面する前記構成部材の表面がそれぞれフッ素含有物で覆われるように構成され、前記フッ素含有物が前記基板の処理温度に応じて選定される。

Description

基板処理装置、処理容器、基板保持具及び半導体装置の製造方法
 本開示は、基板処理装置、処理容器、基板保持具及び半導体装置の製造方法に関する。
 半導体装置の製造工程の一工程として、基板上に膜を形成する処理が行われることがある(例えば、特開2020-155607号公報参照)。このような膜形成プロセスでは、基板に対してエッチング処理を含む前処理を施す場合がある(例えば、特開2009-27011号公報及び特開2007-243014号公報参照)。しかしながら、エッチング処理に用いられるガスの成分が基板含む処理室に残留し、この残留した成分(残渣とも呼ばれることがある)が、処理容器内に配置される構成部材や処理容器の内壁に付着し基板の品質に影響を与えることがある。
 本開示は、基板処理に用いられるガスの残渣を抑止することが可能な技術を提供する。
 本開示の一態様によれば、
 基板を処理する処理空間を内部に設ける処理容器と、前記処理空間に配置される構成部材と、を備え、前記処理容器の前記処理空間に面する壁面及び前記処理空間に面する前記構成部材の表面がそれぞれフッ素含有物で覆われるように構成され、前記フッ素含有物が前記基板の処理温度に応じて選定される
 技術が提供される。
 本開示によれば、基板処理に用いられるガスの残渣を抑止することが可能となる。
本開示の一実施形態に係る基板処理装置の概略構成図であり、処理炉を縦断面で示している。 本開示の一実施形態に係る基板処理装置の処理炉の拡大縦断面図である。 図2で示す処理炉の3X-3X線断面図である。 図1で示す基板処理装置で用いられる基板支持具を示す側面図である。 本開示の一実施形態に係る基板処理装置の制御装置の構成を示す図である。 本開示の一実施形態に係る基板処理工程のフローを示す図である。 表面に、シリコン酸化膜を含む下地及びシリコン窒化膜を含む下地がそれぞれ露出したウエハの表面における部分断面拡大図である。 炭化水素基含有ガスを供給することで、下地200aの表面を炭化水素基で終端させるように改質させた後のウエハ200の表面における断面部分拡大図である。 シリコン及びハロゲン含有ガスを供給することで、下地200bの表面にシリコンおよび炭素を含む第1層を選択的に形成した後のウエハ200の表面における断面部分拡大図である。 酸素及び水素含有ガスを供給することで、下地200bの表面に選択的に形成された第1層を酸化させてシリコン、酸素および炭素を含む第2層へ改質させた後のウエハ200の表面における断面部分拡大図である。 下地200bの表面にシリコン酸炭化膜を選択的に形成した後のウエハ200の表面における断面部分拡大図である。 図7Eに示すウエハ200に対して後処理することで、下地200aの表面を終端する炭化水素基を下地200aの表面から除去した後のウエハ200の表面における断面部分拡大図である。 本開示の他の実施形態に係る処理炉の概略構成図であり、処理炉を縦断面で示している。
<本開示の第1実施形態>
 以下、本開示の第1実施形態について、主に、図1~図7を参照しつつ説明する。なお、以下の説明において用いられる図面は、いずれも模式的なものであり、図面に示される、各要素の寸法の関係、各要素の比率等は、現実のものとは必ずしも一致していない。また、複数の図面の相互間においても、各要素の寸法の関係、各要素の比率等は必ずしも一致していない。
 まず、本開示の第1実施形態に係る基板処理装置100について説明する。
(1)基板処理装置の構成
 図1に示すように、第1実施形態に係る基板処理装置100は、処理炉202を有する。
 処理炉202は、加熱機構としてのヒータ207を有する。ヒータ207は、一例として円筒形状であり、保持板に支持されることにより垂直に据え付けられている。ヒータ207は、ガスを熱で活性化させる活性化機構としても機能する。
 ヒータ207の内側には、ヒータ207と同心円状に反応管203が配設されている。反応管203は、上端が閉塞し、下端が開口した筒形状(一例として円筒形状)に形成されている。反応管203は、例えば石英(SiO)又は炭化シリコン(SiC)等の耐熱性材料により構成されている。反応管203は、ヒータ207と同様に垂直に据え付けられている。
 反応管203の下方には、反応管203と同心円状に、マニホールド209が配設されている。マニホールド209は、上端及び下端が開口した筒形状(一例として円筒形状)に形成されている。マニホールド209は、例えばステンレス鋼(SUS)等の金属材料により構成されている。マニホールド209の上端部は、反応管203の下端部に係合しており、反応管203を支持するように構成されている。
 マニホールド209と反応管203との間には、シール部材としてのOリング220aが設けられている。
 本実施形態では、主に、反応管203とマニホールド209とにより処理容器210(言い換えると反応容器)が構成される。処理容器210の筒中空部には処理室201が形成される。処理室201は、基板としてのウエハ200を収容可能に構成されている。この処理室201でウエハ200に対する処理が行われる。
 処理室201には、第1供給部としてのノズル249a、第2供給部としてのノズル249b及び第3供給部としてのノズル249cが、マニホールド209の側壁を貫通するようにそれぞれ設けられている。ノズル249a、ノズル249b及びノズル249cを、それぞれ第1ノズル、第2ノズル及び第3ノズルとも称する。ノズル249a、249b及び249cはそれぞれ異なるノズルである。ノズル249a及び249cのそれぞれは、ノズル249bに隣接して設けられている。ノズル249a、249b及び249cは、例えば石英又はSiC等の耐熱性材料により構成されている。また、ノズル249aにはガス供給管232aが接続され、ノズル249bにはガス供給管232bが接続され、ノズル249cにはガス供給管232cが接続されている。
 ガス供給管232a~232cには、ガス流の上流側から順に、流量制御器(流量制御部)であるマスフローコントローラ(MFC)241a~241cおよび開閉弁であるバルブ243a~243cがそれぞれ設けられている。ガス供給管232aのバルブ243aよりも下流側には、ガス供給管232d,232eがそれぞれ接続されている。ガス供給管232b,232cのバルブ243b,243cよりも下流側には、ガス供給管232f,232g,232hがそれぞれ接続されている。ガス供給管232d~232hには、ガス流の上流側から順に、MFC241d~241hおよびバルブ243d~243hがそれぞれ設けられている。ガス供給管232a~232hは、例えば、SUS等の金属材料により構成されている。
 図3に示すように、ノズル249a、ノズル249b及びノズル249cは、反応管203の内壁とウエハ200との間における平面視において環状の空間に、反応管203の内壁の下部からウエハ200の配列方向上方に向かって立ち上がるようにそれぞれ設けられている。
 平面視において、ノズル249bは、処理室201内に搬入されるウエハ200の中心を挟んで後述する排気口231aと対向するように配置されている。ノズル249a及びノズル249cは、ノズル249bを、反応管203の内壁に沿って両側から挟み込むように配置されている。
 ノズル249aの側面には、ガスを供給するガス供給孔250aが設けられている。ガス供給孔250aは、平面視において排気口231aと対向(対面)するように開口しており、ウエハ200に向けてガスを供給することが可能となっている。ガス供給孔250aは、反応管203の下部から上部にわたって複数設けられている。
 ノズル249bの側面には、ガスを供給するガス供給孔250bが設けられている。ガス供給孔250bは、平面視において排気口231aと対向(対面)するように開口しており、ウエハ200に向けてガスを供給することが可能となっている。ガス供給孔250bは、反応管203の下部から上部にわたって複数設けられている。
 ノズル249cの側面には、ガスを供給するガス供給孔250cが設けられている。ガス供給孔250cは、平面視において排気口231aと対向(対面)するように開口しており、ウエハ200に向けてガスを供給することが可能となっている。ガス供給孔250cは、反応管203の下部から上部にわたって複数設けられている。
 ガス供給管232aからは、改質ガスが、MFC241a、バルブ243a、ノズル249aを介して処理室201へ供給される。
 ガス供給管232bからは、原料(原料ガス)が、MFC241b、バルブ243b、ノズル249bを介して処理室201へ供給される。
 ガス供給管232cからは、第1の反応ガスとしての酸化剤(酸化ガス)がMFC241c、バルブ243c、ノズル249cを介して処理室201へ供給される。
 ガス供給管232dからは、第2の反応ガスとしての触媒(触媒ガス)が、MFC241d、バルブ243d、ガス供給管232a、並びにノズル249aを介して処理室201へ供給される。
 ガス供給管232e~232gからは、不活性ガスが、それぞれ、MFC241e~241g、バルブ243e~243g、ガス供給管232a~232c、並びにノズル249a~249cを介して処理室201へ供給される。なお、不活性ガスは、パージガス、キャリアガス、希釈ガス等として作用する。
 ガス供給管232hからは、エッチングガスが、MFC241h、バルブ243h、ガス供給管232c、並びにノズル249cを介して処理室201へ供給される。
 主に、ガス供給管232a、MFC241a、バルブ243aにより、改質ガス供給系が構成される。主に、ガス供給管232b、MFC241b、バルブ243bにより、原料ガス供給系が構成される。主に、ガス供給管232c、MFC241c、バルブ243cにより、酸化ガス供給系が構成される。主に、ガス供給管232d、MFC241d、バルブ243dにより、触媒供給系が構成される。主に、ガス供給管232e~232g、MFC241e~241g、バルブ243e~243gにより、不活性ガス供給系が構成される。主に、ガス供給管232h、MFC241h、バルブ243hにより、エッチングガス供給系が構成される。
 上述の各種供給系のうち、いずれか、或いは、全ての供給系は、バルブ243a~243hやMFC241a~241h等が集積されてなる集積型供給システム248として構成されていてもよい。集積型供給システム248は、ガス供給管232a~232hのそれぞれに対して接続され、ガス供給管232a~232h内への各種ガスの供給動作、すなわち、バルブ243a~243hの開閉動作やMFC241a~241hによる流量調整動作等が、後述するコントローラ121によって制御されるように構成されている
 反応管203の側壁下方には、処理室201の雰囲気を排気する排気口231aが設けられている。図3に示すように、排気口231aは、平面視において、ウエハ200を挟んでノズル249a、ノズル249b及びノズル249cと対向する位置に設けられている。具体的には、ガス供給孔250a、ガス供給孔250b及びガス供給孔250cと対面する位置に設けられている。排気口231aには排気管231が接続されている。排気管231には、処理室201の圧力を検出する圧力検出器としての圧力センサ245及び圧力調整器としてのAPC(Auto Pressure Controller)バルブ244を介して、真空排気装置としての真空ポンプ246が接続されている。APCバルブ244は、真空ポンプ246を作動させた状態で弁を開閉することで、処理室201の真空排気及び真空排気停止を行うことができるように構成されている。更に、APCバルブ244は、真空ポンプ246を作動させた状態で、圧力センサ245により検出された圧力情報に基づいて弁開度を調節することで、処理室201の圧力を調整することができるように構成されている。
 本実施形態では、主に、排気管231、APCバルブ244並びに圧力センサ245により、排気系が構成される。
 マニホールド209の下方には、マニホールド209の下端開口を気密に閉塞可能な炉口蓋体としてのシールキャップ219が設けられている。シールキャップ219は、円盤状に形成されている。シールキャップ219は、例えばSUS等の金属材料により構成されている。シールキャップ219の上面には、マニホールド209の下端と当接するシール部材としてのOリング220bが設けられている。シールキャップ219の下方には、後述するボート217を回転させる回転機構267が設置されている。回転機構267の回転軸255は、シールキャップ219を貫通してボート217に接続されている。回転機構267は、ボート217を回転させることでウエハ200を回転させるように構成されている。シールキャップ219は、反応管203の外部に設置された昇降機構としてのボートエレベータ115によって垂直方向に昇降されるように構成されている。ボートエレベータ115は、シールキャップ219を昇降させることで、ウエハ200を処理室201内外に搬送(搬入及び搬出)する搬送装置として構成されている。
 マニホールド209の下方には、シールキャップ219を降下させボート217を処理室201内から搬出した状態で、マニホールド209の下端開口を気密に閉塞可能な炉口蓋体としてのシャッタ219sが設けられている。シャッタ219sは、円盤状に形成されている。シャッタ219sは、例えばSUS等の金属材料により構成されている。シャッタ219sの上面には、マニホールド209の下端と当接するシール部材としてのOリング220cが設けられている。シャッタ219sの開閉動作(昇降動作や回動動作等)は、シャッタ開閉機構115sにより制御される。
 基板支持具としてのボート217は、複数枚、例えば25~200枚のウエハ200を、水平姿勢で、かつ、互いに中心を揃えた状態で垂直方向に整列させて多段に支持するように、すなわち、間隔を空けて配列させるように構成されている。ボート217は、例えば石英やSiC等の耐熱性材料により構成されている。また、SUS等の金属材料により構成してもよい。ボート217の下部には、例えば石英やSiC等の耐熱性材料により構成される断熱板218が多段に支持されている。具体的には、ボート217は、図4に示すように、二枚の平行な板としての底板12及び天板11と、底板12と天板11との間に略垂直に設けられた複数本、例えば3本の支柱15と、を有する。支柱15は、一例として円柱状をしている。3本の支柱15は、底板12に略半円状に配列され固定されている。天板11は、3本の支柱15の上端部に固定されている。図4に示すように、各支柱15には、複数のウエハ200を垂直方向に所定の間隔で配列させて略水平姿勢で支持(言い換えると、載置)することが可能な複数の支持部としての支持ピン16が多段に設けられる。支持ピン16は、例えば石英やSiC等の耐熱性材料により構成されている。また、支柱15と同じくステンレスにより構成してもよい。各支持ピン16は、一例として円柱状をしており、ボート217の内側に向かって突設される。すなわちボート217の中心(ウエハ200の中心)に向けて突設されている。この場合、支柱15には、それぞれ1つずつ支持ピン16を設ける。すなわち、1段に3つの支持ピン16が突設されている。この突設された3つの支持ピン16上に、ウエハ200の外周を支持させることにより、ウエハ200を支持するようになっている。
 反応管203内には、温度検出器としての温度センサ263が設置されている。温度センサ263により検出された温度情報に基づきヒータ207への通電具合を調整することで、処理室201内の温度が所望の温度分布となる。温度センサ263は、反応管203の内壁に沿って設けられている。
 図5に示すように、制御部としてのコントローラ121は、CPU(Central Processing Unit)121a、RAM(Random Access Memory)121b、記憶装置121c、I/Oポート121dを有するコンピュータとして構成されている。RAM121b、記憶装置121c、I/Oポート121dは、内部バス121eを介して、CPU121aとデータ交換可能なように構成されている。コントローラ121には、例えばタッチパネル等として構成された入出力装置122が接続されている。
 記憶装置121cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置121c内には、基板処理装置の動作を制御する制御プログラムや、後述する基板処理の手順や条件等が記載されたプロセスレシピ等が、読み出し可能に格納されている。プロセスレシピは、後述する基板処理における各手順をコントローラ121に実行させ、所定の結果を得ることができるように組み合わされたものであり、プログラムとして機能する。以下、プロセスレシピや制御プログラム等を総称して、単に、プログラムともいう。また、プロセスレシピを、単に、レシピともいう。本明細書においてプログラムという言葉を用いた場合は、レシピ単体のみを含む場合、制御プログラム単体のみを含む場合、又は、それらの両方を含む場合がある。RAM121bは、CPU121aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(言い換えると、ワークエリア)として構成されている。
 I/Oポート121dは、上述のMFC241a、241b、241c、241d、241e、241f、241g及び241h、バルブ243a、243b、243c、243d、243e、241f、241g及び241h、圧力センサ245、APCバルブ244、真空ポンプ246、温度センサ263、ヒータ207、回転機構267、ボートエレベータ115、並びにシャッタ開閉機構115s等に接続されている。
 CPU121aは、記憶装置121cから制御プログラムを読み出して実行すると共に、入出力装置122からの操作コマンドの入力等に応じて記憶装置121cからレシピを読み出すように構成されている。CPU121aは、読み出したレシピの内容に沿うように、MFC241a、241b、241c、241d、241e、241f、241g及び241hによる各種ガスの流量調整動作、バルブ243a、243b、243c、243d、243e、243f、243g及び243hの開閉動作、APCバルブ244の開閉動作及び圧力センサ245に基づくAPCバルブ244による圧力調整動作、真空ポンプ246の起動及び停止、温度センサ263に基づくヒータ207の温度調整動作、回転機構267によるボート217の回転及び回転速度調節動作、ボートエレベータ115によるボート217の昇降動作、並びにシャッタ開閉機構115sによるシャッタ219sの開閉動作等を制御するように構成されている。
 コントローラ121は、外部記憶装置123に格納された上述のプログラムを、コンピュータにインストールすることにより構成することができる。外部記憶装置123は、例えば、HDD等の磁気ディスク、CD等の光ディスク、MO等の光磁気ディスク、USBメモリ等の半導体メモリ等を含む。記憶装置121cや外部記憶装置123は、コンピュータ読み取り可能な記録媒体として構成されている。以下、これらを総称して、単に、記録媒体ともいう。本明細書において記録媒体という言葉を用いた場合は、記憶装置121c単体のみを含む場合、外部記憶装置123単体のみを含む場合、又は、それらの両方を含む場合がある。なお、コンピュータへのプログラムの提供は、外部記憶装置123を用いず、インターネットや専用回線等の通信手段を用いて行ってもよい。
(フッ素含有被覆物)
 本実施形態の基板処理装置100では、図2に示すように、処理容器210の処理空間212に面する壁面及び処理空間212に面する構成部材214の表面がそれぞれフッ素含有物で覆われるように構成されている。なお、本実施形態における構成部材214には、ボート217、ノズル249a、ノズル249b及びノズル249cが含まれるが、本開示はこれに限定されず、例えば、反応管203やマニホールド209も構成部材214に含むことができる。更に、図2ではフッ素含有物で覆われていないが、(ボート217の一部としての)回転軸255やシャッタ219s(特に、処理空間212に面する壁面側)も構成部材214としてフッ素含有物で覆われるように構成するのが好ましい。
 本実施形態では、反応管203とマニホールド209によって処理容器210が形成されている。すなわち、処理容器210の処理空間212は、反応管203の内部空間(処理室201)と、マニホールド209の内部空間とによって構成されている。
 図2に示すように、処理容器210を構成する反応管203の内壁面がフッ素含有物によって覆われている。一例として、本実施形態では、反応管203の内周面203a全体及び天井面203b全体がフッ素含有物F1によって覆われている。具体的には、フッ素含有物F1であるフッ素系の樹脂で、反応管203の内周面203a全体及び天井面203b全体を覆っている。なお、図2及び図3では、反応管203のフッ素含有物F1によって覆われた領域を二点鎖線で示している。
 処理容器210を構成するマニホールド209の内壁面がフッ素含有物によって覆われている。一例として、本実施形態では、マニホールド209の内周面209a全体がフッ素含有物F2によって覆われている。具体的には、フッ素含有物F2であるフッ素系の樹脂で、マニホールド209の内周面209a全体を覆っている。なお、図2では、マニホールド209のフッ素含有物F2によって覆われた領域を二点鎖線で示している。
 反応管203の下端部には、外方に張り出すフランジ203cが設けられている。このフランジ203cは、マニホールド209の上端部によって支持される。なお、前述のOリング220aは、反応管203のフランジ203cとマニホールド209の上端部との間に設けられている。フランジ203cの表面(図中下面)がフッ素含有物F3によって覆われている。具体的には、フッ素含有物F3であるフッ素系の樹脂で、フランジ203cの表面を覆っている。なお、図2では、フランジ203cのフッ素含有物F3によって覆われた領域を二点鎖線で示している。
 また、シールキャップ219の表面(上面)がフッ素含有物によって覆われている。一例として、本実施形態では、シールキャップ219の表面全体がフッ素含有物F4によって覆われている。具体的には、フッ素含有物F4であるフッ素系の樹脂で、シールキャップ219の表面全体を覆っている。なお、図2では、シールキャップ219のフッ素含有物F4によって覆われた領域を二点鎖線で示している。
 ボート217の表面がフッ素含有物によって覆われている。一方、ボート217において処理空間212に面する部分がフッ素含有物により被覆され、処理空間212に面していない部分がフッ素含有物により被覆されないよう構成してもよい。一例として、ボート217の支柱15の全体、底板12及び天板11の全体がフッ素含有物F5によって覆われる。一方、図4に示すように、ボート217の下端部(底板12)は、処理空間212に面していないという条件でフッ素含有物により被覆しないよう構成してもよいが、もちろん、フッ素含有物F5により被覆することが好ましい。また、支持ピン16の表面であってウエハ200と接触する部分は、ウエハ200により処理空間212と面することが無いため、フッ素含有物により被覆しないよう構成してもよい。なお、支持ピン16の表面に被覆されるフッ素含有物は、フッ素含有物のうち最も摩擦係数が大きく構成されていることが好ましい。なお、図4では、ボート217のフッ素含有物F5によって覆われた領域を二点鎖線で示している。
 また、ボート217は、熱伝導率が高い材質、例えば、金属で構成されていてもよい。但し、処理空間212に金属が露出すると金属汚染となってしまうため、処理空間212に面する部分は少なくともフッ素含有物F5で覆われている。
 ノズル249a、ノズル249b及びノズル249cの表面がフッ素含有物によって覆われている。具体的には、ノズル249aの処理空間212に面する部分、言い換えるとノズル249aの処理空間212内にある部分の表面がフッ素含有物F6により被覆されている。すなわち、フッ素含有物F6であるフッ素系の樹脂で、ノズル249aの表面を覆っている。なお、図2及び図3では、ノズル249aのフッ素含有物F6によって覆われた領域を二点鎖線で示している。ノズル249aと同様に、ノズル249bの処理空間212に面する部分、言い換えるとノズル249bの処理空間212内にある部分の表面がフッ素含有物F7により被覆されている。なお、図2及び図3では、ノズル249bのフッ素含有物F7によって覆われた領域を二点鎖線で示している。ノズル249aと同様に、ノズル249cの処理空間212に面する部分、言い換えるとノズル249cの処理空間212に面した部分の表面がフッ素含有物F8により被覆されている。なお、図2及び図3では、ノズル249cのフッ素含有物F8によって覆われた領域を二点鎖線で示している。
 なお、本実施形態では、処理容器210の壁面及びボート217、ノズル249a、ノズル249b及びノズル249cの各々の表面を、基板処理装置100で用いられる上述のフッ素含有物F1、F2、F3、F4、F5、F6、F7及びF8で被覆されていることを、以後、C-F終端(フッ化炭素含有物で終端)されていることとして扱う場合がある。そして、C-F終端された表面には化学的に活性な部位が無く、またF(フッ素)の高い電気陰性度により分散力も小さいため、いかなる処理ガス(エッチングガスや原料ガス等)の分子の化学吸着も物理吸着も起こりにくい。したがい、処理容器210の壁面等に被覆されるフッ素含有物により、ウエハ200以外で処理ガスが反応することは極めて低い。更に、膜種やプロセスによらず、処理ガスとの反応(分子の化学吸着も物理吸着)も起きにくい。但し、例えば、フッ素含有物としてのPTFE(ポリテトラフルオロエチレン)の推奨使用温度は260℃以下なので、処理容器210内の温度がこの推奨使用温度以下になることが好ましい。
 基板処理装置100で用いられるフッ素含有物F1、F2、F3、F4、F5、F6、F7及びF8(以下、適宜「フッ素含有物F」と省略していう)は、例えば、ウエハ200の処理温度に応じて選定される。
 本実施形態では、処理容器210の壁面及びボート217、ノズル249a、ノズル249b及びノズル249cの各々の表面と、処理空間212内に配置されたウエハ200との位置に応じて、各部位が異なるフッ素含有物で覆われるように構成されている。具体的には、反応管203の内壁面に被覆されるフッ素含有物F1は、ボート217、ノズル249a、ノズル249b及びノズル249cの各々の表面に被覆されるフッ素含有物F5、F6、F7及びF8より、赤外線の透過率が高い。
 また、本実施形態の基板処理装置100では、ウエハ200の処理温度がフッ素含有物の耐熱温度よりも低くなるように設定されている。具体的には、後述する基板処理工程における処理温度において、もっとも高い温度が、上述のフッ素含有物の耐熱温度よりも低くなるように設定されている。
 次に、本開示の一実施形態に係る基板処理工程について説明する。
(2)基板処理工程
 上述の基板処理装置100を用い、半導体装置の製造工程の一工程を説明する。以下の説明において、基板処理装置100を構成する各部の動作はコントローラ121により制御される。
(ウエハチャージ及びボートロード)
 複数枚のウエハ200がボート217に装填(ウエハチャージ)されると、シャッタ開閉機構115sによりシャッタ219sが移動させられて、マニホールド209の下端開口が開放される。その後、図1に示すように、複数枚のウエハ200を支持したボート217は、ボートエレベータ115によって持ち上げられて処理室201へ搬入(ボートロード)される。シールキャップ219は、Oリング220bを介してマニホールド209の下端をシールした状態となる。
(第1前処理工程)
 次に、ウエハ200の自然酸化膜を除去する。ウエハ200の自然酸化膜の除去には、エッチングガスを用いる。バルブ243hを開き、エッチングガスをガス供給管232bからノズル249bに流入させ、ノズル249hを介して処理室201へ供給する。第1前処理工程では、処理室201を予め真空排気しておくとともに、処理室201を所定の温度(一例として100℃)に加熱しておき、バルブ243hを開いた状態でエッチングガスを処理室201に供給する。
 一定時間が経過するごとにバルブ243hを開閉させ(一定時間ごとにバルブ243hの開閉を繰り返し)、ウエハ200の自然酸化膜をエッチングガスでエッチングする。エッチングが終了したら、バルブ243h及びバルブ243gを閉じて処理室201を真空引きし、その後バルブ243gを開けて処理室201を不活性ガスでパージする。
 なお、エッチングガスとしては、フッ化水素(HF)ガス、三フッ化アンモニウム(NF)ガス、三フッ化塩素(ClF)ガス等のF含有ガスを用いてもよいし、三塩化ホウ素(BCl)ガス等のCl含有ガスを用いてもよい。なお、本工程(第1前処理工程)は必須ではなく自然酸化膜の影響を無視できるプロセスであれば、本工程を省略できる。
(第2前処理工程)
 次に、一部の領域をOH終端する工程について説明する。本実施形態では、ウエハ200からエッチングガスを除去する。エッチングガスの除去には、酸化剤(酸化ガス)として、酸素(O)及びH含有ガスを用いる。例えば、水蒸気発生装置(図示省略)を介して上述の酸化ガス供給系から水蒸気(HOガス)を処理室201へ供給し、排気管231から排気する。水蒸気(HOガス)はハロゲン種と接触して反応し廃棄されるため、ハロゲン種が除去される。第2前処理工程では、処理室201を所定の温度(一例として200℃)に加熱しておき、水蒸気を処理室201に供給する。水蒸気によるパージが終了したら、処理室201を真空引きし、その後バルブ243fを開けて処理室201を不活性ガスでパージする。なお、本工程(第2前処理工程)も、第1前処理工程と同様に必須ではないが、対象とするプロセス次第(例えば、酸化膜等)では、本工程を行うのが好ましい。
(第3前処理工程)
 図7Aに示すように、第1前処理工程及び第2前処理工程によって、ウエハ200の表面は、複数種類の下地、ここでは一例として、酸素(O)含有膜すなわち酸化膜としてのSiO膜を含む下地200aと、O非含有膜すなわち非酸化膜(例えば、窒化膜としてのSiN膜)を含む下地200bと、が露出した状態となっている。下地200aは、全域(全面)にわたり、水酸基(OH)終端(以後、OH終端と称する)された表面を有している。下地200bは、多くの領域がOH終端されていない表面、すなわち、一部の領域がOH終端された表面を有している。
 処理室201、すなわち、ウエハ200が存在する空間が所望の圧力(真空度)となるように、真空ポンプ246によって真空排気される。この際、処理室201の圧力は圧力センサ245で測定され、この測定された圧力情報に基づきAPCバルブ244がフィードバック制御される。また、処理室201のウエハ200が所望の処理温度となるように、ヒータ207によって加熱される。この際、処理室201が所望の温度分布となるように、温度センサ263が検出した温度情報に基づきヒータ207への通電具合がフィードバック制御される。また、回転機構267によるウエハ200の回転を開始する。処理室201の排気、ウエハ200の加熱及び回転は、いずれも、少なくともウエハ200に対する処理が終了するまでの間は継続して行われる。
 次に、表面に下地200aと下地200bとが露出したウエハ200に対して改質ガスとしての炭化水素基含有ガスを供給する。
 バルブ243aを開き、ガス供給管232a内へ改質ガスを流す。改質ガスは、MFC241aにより流量調整され、ノズル249aを介して処理室201内へ供給され、排気口231aより排気される。このとき、ウエハ200に対して改質が供給される(炭化水素基含有ガス供給)。このとき、バルブ243e~243gを開き、ノズル249a~249cのそれぞれを介して処理室201内へ不活性ガスを供給するようにしてもよい。
 後述する処理条件下でウエハ200に対して改質ガスを供給することにより、下地200a,200bのうち下地200aの表面を選択的に(優先的に)改質させることが可能となる。具体的には、下地200bの表面への改質ガスに含まれるSiの吸着を抑制しつつ、下地200aの表面を終端するOH基と改質ガスとを反応させ、下地200aの表面に、改質ガスに含まれるSiを選択的に(優先的に)吸着させることが可能となる。これにより、下地200aの表面を、例えば、改質ガスに含まれるメチル基(Me)により終端させることが可能となる。具体的には、図7Bに示すように、下地200aの表面を、改質ガスに含まれるトリメチルシリル基(Si-Me)により終端させることが可能となる。下地200aの表面を終端したメチル基(トリメチルシリル基)は、後述する選択成長において、下地200aの表面への原料ガス(Si及びハロゲン含有ガス)の吸着を防ぎ、下地200aの表面上での成膜反応の進行を阻害する吸着抑制剤(インヒビター)として作用する。
 下地200aの表面を改質させた後、バルブ243aを閉じ、処理室201への改質ガスの供給を停止する。そして、処理室201を真空排気し、処理室201に残留するガス等を処理室201から排除する。このとき、バルブ243e~243gを開き、ノズル249a~249cを介して処理室201へ不活性ガスを供給する。ノズル249a~249cより供給される不活性ガスは、パージガスとして作用し、これにより、処理室201内がパージされる(パージ)。
 改質ガス供給における処理条件としては、
 改質ガス供給流量:1sccm~3000sccm、好ましくは1~500sccm
 改質ガス供給時間:1秒~120分、好ましくは30秒~60分
 不活性ガス供給流量(ガス供給管毎):0~20000sccm
 処理温度:室温(25℃)~500℃、好ましくは室温~250℃、更に、好ましくは室温~200℃
 処理圧力:5~1000Pa
が例示される。
 パージにおける処理条件としては、
 不活性ガス供給流量(ガス供給管毎):500~20000sccm
 不活性ガス供給時間:10~30秒
 処理圧力:1~30Pa
が例示される。
 なお、本明細書における「5~1000Pa」のような数値範囲の表記は、下限値および上限値がその範囲に含まれることを意味する。よって、例えば、「5~1000Pa」とは「5Pa以上1000Pa以下」を意味する。他の数値範囲についても同様である。
 改質ガスとしての炭化水素基含有ガスとしては、例えば、アルキル基を含むガスを用いることができる。アルキル基を含むガスとしては、例えば、シリコン(Si)にアルキル基が配位したアルキルシリル基を含むガス、すなわち、アルキルシラン系ガスを用いることができる。アルキル基とは、アルカン(一般式C2n+2であらわされる鎖式飽和炭化水素)から水素(H)原子を1個除いた残りの原子団の総称であり、一般式C2n+1であらわされる官能基のことである。アルキル基には、メチル基、エチル基、プロピル基、ブチル基等が含まれる。アルキル基は、アルキルシラン分子の中心原子であるSiに結合していることから、アルキルシランにおけるアルキル基を、リガンド(配位子)またはアルキルリガンドと称することもできる。
 炭化水素基含有ガスは、更に、アミノ基を含んでいてもよい。炭化水素基及びアミノ基含有ガスとしては、例えば、アルキルアミノシラン系ガスを用いることができる。アミノ基とは、1つの窒素(N)原子に、1つ以上の炭素(C)原子を含む炭化水素基が1つまたは2つ配位した官能基(NHで表されるアミノ基のHの一方または両方を1つ以上のC原子を含む炭化水素基で置換した官能基)のことである。アミノ基の一部を構成する炭化水素基が1つのNに2つ配位している場合は、その2つが同一の炭化水素基であってもよいし、異なる炭化水素基であってもよい。炭化水素基は、アルキル基のように単結合を含んでいてもよく、二重結合や三重結合等の不飽和結合を含んでいてもよい。
 炭化水素基含有ガスとしては、ジメチルアミノトリメチルシラン((CHNSi(CH、略称:DMATMS)ガスガスの他、例えば、下記一般式[1]で表されるアミノシラン系ガスを用いることができる。
 SiA[(NB(4-x)]  [1]
 式[1]中、Aは、水素原子、メチル基、エチル基、プロピル基、ブチル基等のアルキル基、または、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等のアルコキシ基を示す。アルキル基は、直鎖状アルキル基だけでなく、イソプロピル基、イソブチル基、セカンダリブチル基、ターシャリブチル基等の分岐状アルキル基であってもよい。アルコキシ基は、直鎖状アルコキシ基だけでなく、イソプロポキシ基、イソブトキシ基等の分岐状アルコキシ基であってもよい。Bは、水素原子、または、メチル基、エチル基、プロピル基、ブチル基等のアルキル基を示す。アルキル基は、直鎖状アルキル基だけでなく、イソプロピル基、イソブチル基、セカンダリブチル基、ターシャリブチル基等の分岐状アルキル基であってもよい。複数のAは、同一であっても異なっていてもよく、2つのBは同一であっても異なっていてもよい。xは1~3の整数である。
 不活性ガスとしては、窒素(N)ガスや、アルゴン(Ar)ガス、ヘリウム(He)ガス、ネオン(Ne)ガス、キセノン(Xe)ガス等の希ガスを用いることができる。不活性ガスとしては、これらのうち1以上を用いることができる。この点は、後述する各ステップにおいても同様である。
 (本処理工程)
 その後、次のステップ1,2を順次実行する。なお、これらのステップでは、ヒータ207の出力を調整し、ウエハ200の温度を、表面改質におけるウエハ200の温度以下とした状態、好ましくは、表面改質におけるウエハ200の温度よりも低くした状態を維持する。
 [ステップ1]
 このステップでは、処理室201内のウエハ200、すなわち、下地200aの表面を選択的にメチル基で終端させた後のウエハ200に対して、原料ガスとしてのSi及びハロゲン含有ガスおよび触媒を供給する。
 具体的には、バルブ243b,243dを開き、ガス供給管232b内へ原料ガスを、ガス供給管232d内へ触媒をそれぞれ流す。原料ガス、触媒は、それぞれ、MFC241b,241dにより流量調整され、ノズル249b,249aを介して処理室201内へ供給され、処理室201内に供給された後に混合し、排気口231aより排気される。このとき、ウエハ200に対して原料ガスおよび触媒が供給される(Si及びハロゲン含有ガス+触媒供給)。このとき、バルブ243e~243gを開き、ノズル249a~249cのそれぞれを介して処理室201内へ不活性ガスを供給するようにしてもよい。
 後述する処理条件下でウエハ200に対して原料ガスと触媒とを供給することにより、図7Cに示すように、原料ガスに含まれるSiの下地200aの表面への吸着を抑制しつつ、原料ガスに含まれるSiを下地200bの表面に選択的(優先的)に吸着させることが可能となる。これにより、下地200bの表面に、第1層として、例えば1原子層(1分子層)未満から数原子層(数分子層)程度の厚さのC及びClを含むSi含有層が形成される。第1層は、Si-C結合を含む層となる。本明細書では、C及びClを含むSi含有層を、単に、Cを含むSi含有層、或いは、SiC層とも称する。
 本ステップでは、例えば、触媒を原料ガスとともに供給することにより、上述の反応を、ノンプラズマの雰囲気下で、また、後述するような低い温度条件下で進行させることが可能となる。このように、第1層の形成を、ノンプラズマの雰囲気下で、また、後述するような低い温度条件下で行うことにより、下地200aの表面を終端するメチル基を、下地200aの表面から消滅(脱離)させることなく維持することが可能となる。
 なお、本ステップでは、第1層を形成する際、下地200aの表面の一部に原料ガスに含まれるSiが吸着することもあるが、その吸着量は、下地200bの表面へのSiの吸着量よりも少量となる。このような選択的(優先的)な吸着が可能となるのは、本ステップにおける処理条件を、処理室201内において原料ガスが気相分解しない条件としているためである。また、下地200aの表面が全域にわたりメチル基で終端されているのに対し、下地200bの表面の多くの領域がメチル基で終端されていないためである。本ステップでは、処理室201内において原料ガスが気相分解しないことから、下地200a,200bの表面には、原料ガスに含まれるSiが多重堆積することはなく、原料ガスに含まれるSiは下地200bの表面に選択的に吸着することとなる。
 下地200bの表面に第1層を選択的に形成した後、バルブ243b,243dを閉じ、処理室201内への原料ガス、触媒の供給をそれぞれ停止する。そして、表面改質におけるパージと同様の処理手順、処理条件により、処理室201内に残留するガス等を処理室201内から排除する(パージ)。
 本ステップにおける処理条件としては、
 原料ガス供給流量:1~2000sccm
 触媒供給流量:1~2000sccm
 不活性ガス供給流量(ガス供給管毎):0~20000sccm
 各ガス供給時間:1~60秒
 処理温度:室温~120℃、好ましくは室温~90℃
 処理圧力:133~1333Pa
が例示される。
原料ガスとして、Si及びハロゲン含有ガスが用いられる。ハロゲンには、塩素(Cl)、フッ素(F)、臭素(Br)、ヨウ素(I)等が含まれる。Si及びハロゲン含有ガスは、ハロゲンを、Siとハロゲンとの化学結合の形で含むことが好ましい。Si及びハロゲン含有ガスは、更に、Cを含んでいてもよく、その場合、CをSi-C結合の形で含むことが好ましい。Si及びハロゲン含有ガスとしては、例えば、Si、Clおよびアルキレン基を含み、Si-C結合を有するシラン系ガス、すなわち、アルキレンクロロシラン系ガスを用いることができる。アルキレン基には、メチレン基、エチレン基、プロピレン基、ブチレン基等が含まれる。アルキレンクロロシラン系ガスは、ClをSi-Cl結合の形で含み、CをSi-C結合の形で含むことが好ましい。
 Si及びハロゲン含有ガスとしては、ビス(トリクロロシリル)メタン((SiClCH、略称:BTCSM)ガス、1,2-ビス(トリクロロシリル)エタン((SiCl、略称:BTCSE)ガス等のアルキレンクロロシラン系ガスや、1,1,2,2-テトラクロロ-1,2-ジメチルジシラン((CHSiCl、略称:TCDMDS)ガス、1,2-ジクロロ-1,1,2,2-テトラメチルジシラン((CHSiCl、略称:DCTMDS)ガス等のアルキルクロロシラン系ガスや、1,1,3,3-テトラクロロ-1,3-ジシラシクロブタン(CClSi、略称:TCDSCB)ガス等のSiとCとで構成される環状構造およびハロゲンを含むガスを用いることができる。また、Si及びハロゲン含有ガスとしては、テトラクロロシラン(SiCl、略称:STC)ガス、ヘキサクロロジシラン(SiCl、略称:HCDS)ガス、オクタクロロトリシラン(SiCl、略称:OCTS)ガス等の無機クロロシラン系ガスを用いることもできる。なお、無機系クロロシラン系ガスを用いる場合も、第1層がCを含まない点以外は、上述と同様の反応を生じさせることができる。
 触媒としては、ピリジン(CN)ガス、アミノピリジン(C)ガス、ピコリン(CN)ガス、ルチジン(CN)ガス、ピペラジン(C10)ガス、ピペリジン(C11N)ガス等の環状アミン系ガスや、トリエチルアミン((CN、略称:TEA)ガス、ジエチルアミン((CNH、略称:DEA)ガス等の鎖状アミン系ガスを用いることもできる。この点は、後述するステップ2においても同様である。
 [ステップ2]
 第1層が形成された後、処理室201内のウエハ200、すなわち、下地200bの表面に選択的に形成された第1層に対して、酸化ガスおよび触媒を供給する。
 具体的には、バルブ243c,243dを開き、ガス供給管232c内へ酸化ガスを、ガス供給管232d内へ触媒をそれぞれ流す。酸化ガス、触媒は、それぞれ、MFC241c,241dにより流量調整され、ノズル249c,249aを介して処理室201内へ供給され、処理室201内に供給された後に混合し、排気口231aより排気される。このとき、ウエハ200に対して酸化ガスおよび触媒が供給される。このとき、バルブ243e~243gを開き、ノズル249a~249cのそれぞれを介して処理室201内へ不活性ガスを供給するようにしてもよい。
 後述する処理条件下でウエハ200に対して酸化ガスと触媒とを供給することにより、図7Dに示すように、ステップ1で下地200bの表面に形成された第1層の少なくとも一部を酸化させることが可能となる。これにより、下地200bの表面に、第2層として、例えば1原子層(1分子層)未満から数原子層(数分子層)程度の厚さのO及びCを含むSi含有層が形成される。第2層を形成する際、第1層中に含まれるSi-C結合の少なくとも一部を、切断させることなく保持させ、第2層中にそのまま取り込ませる(残存させる)。これにより、第2層は、Si-C結合を含む層となる。本明細書では、O及びCを含むSi含有層を、単に、SiOC層とも称する。第2層を形成する際、第1層に含まれていたCl等の不純物は、HOガスによる酸化反応の過程において、少なくともClを含むガス状物質を構成し、処理室201内から排出される。第2層は、第1層に比べてCl等の不純物が少ない層となる。
 本ステップでは、触媒を酸化ガスとともに供給することにより、上述の反応を、ノンプラズマの雰囲気下で、また、後述するような低い温度条件下で進行させることが可能となる。このように、第2層の形成を、ノンプラズマの雰囲気下で、また、後述するような低い温度条件下で行うことにより、下地200aの表面を終端するメチル基を、下地200aの表面から消滅(脱離)させることなく維持することが可能となる。
 下地200bの表面に形成された第1層を酸化させて第2層へ変化(変換)させた後、バルブ243c,243dを閉じ、処理室201内への酸化ガス、触媒の供給をそれぞれ停止する。そして、表面改質におけるパージと同様の処理手順、処理条件により、処理室201内に残留するガス等を処理室201内から排除する(パージ)。
 本ステップにおける処理条件としては、
 酸化ガス供給流量:1~2000sccm
 触媒供給流量:1~2000sccm
 不活性ガス供給流量(ガス供給管毎):0~20000sccm
 各ガス供給時間:1~60秒
 処理温度:室温~120℃、好ましくは室温~100℃
 処理圧力:133~1333Pa
が例示される。
 酸化ガスとしては、例えば、水蒸気(HOガス)、過酸化水素(H)ガス等のO-H結合を含むO含有ガスを用いることができる。また、酸化ガスとしては、水素(H)ガス+酸素(O)ガス、Hガス+オゾン(O)ガス等を用いることができる。酸化ガスとしては、これらのうち1以上を用いることができる。
  [所定回数実施]
 上述したステップ1,2を非同時に、すなわち、同期させることなく行うサイクルを所定回数(n回、nは1以上の整数)行うことにより、図7Eに示すように、ウエハ200の表面に露出した下地200a,200bのうち下地200bの表面に、SiOC膜を選択的に形成することが可能となる。上述のサイクルは、複数回繰り返すのが好ましい。すなわち、1サイクルあたりに形成される第2層の厚さを所望の膜厚よりも薄くし、第2層を積層することで形成される膜の膜厚が所望の膜厚になるまで、上述のサイクルを複数回繰り返すのが好ましい。
 選択成長が終了した後、処理室201内の温度、すなわち、下地200bの表面に選択的にSiOC膜が形成された後のウエハ200の温度を、選択成長におけるウエハ200の温度以上とするように、好ましくは、選択成長におけるウエハ200の温度よりも高くするように、ヒータ207の出力を調整し、選択成長後のウエハ200に対して後処理を行う。これにより、図7Fに示すように、下地200aの表面を終端するメチル基を下地200aの表面から脱離させて除去するか、もしくは、このメチル基におけるインヒビターとしての機能を無効化することが可能となる。これにより、下地200aの表面状態をリセットさせ、その後の工程で、下地200aの表面上への成膜処理等を進行させることが可能となる。なお、このステップを、処理室201内へ不活性ガス、Hガス、Oガス等のメチル基の除去(脱離)を促すガス(アシストガス)を供給した状態で行ってもよく、また、処理室201内へのアシストガスの供給を停止した状態で行ってもよい。
 本ステップにおける処理条件としては、
 アシストガス供給流量:0~50000sccm
 処理ガス供給時間:1~18000秒
 処理温度:120~1000℃、好ましくは120~200℃
 処理圧力:1~120000Pa
が例示される。
(アフターパージおよび大気圧復帰)
 下地200bの表面へのSiOC膜の選択的な形成が完了し、下地200aの表面状態のリセットが完了した後、ノズル249a~249cのそれぞれからパージガスとしての不活性ガスを処理室201内へ供給し、排気口231aより排気する。これにより、処理室201内がパージされ、処理室201内に残留するガスや反応副生成物が処理室201内から除去される(アフターパージ)。その後、処理室201内の雰囲気が不活性ガスに置換され(不活性ガス置換)、処理室201内の圧力が常圧に復帰される(大気圧復帰)。
(ボートアンロードおよびウエハディスチャージ)
 その後、ボートエレベータ115によりシールキャップ219が下降され、マニホールド209の下端が開口される。そして、処理済のウエハ200が、ボート217に支持された状態でマニホールド209の下端から反応管203の外部に搬出(ボートアンロード)される。ボートアンロードの後は、シャッタ219sが移動させられ、マニホールド209の下端開口がOリング220cを介してシャッタ219sによりシールされる(シャッタクローズ)。処理済のウエハ200は、反応管203の外部に搬出された後、ボート217より取り出される(ウエハディスチャージ)。
(3)本実施形態の効果
 本実施形態によれば、以下に示す効果が得られる。
 本実施形態では、処理容器210の処理空間212に面する壁面及び処理空間212に面する構成部材214の表面がそれぞれフッ素含有物で覆われるように構成されている。そして、フッ素含有物はウエハ200の処理温度に応じて選定されている。具体的には、反応管203の内壁面がフッ素含有物F1で覆われ、マニホールド209の内壁面がフッ素含有物F2で覆われ、シールキャップ219の表面がフッ素含有物F4で覆われている。また、ボート217の表面がフッ素含有物F5で覆われ、ノズル249a、ノズル249b及びノズル249cの表面がフッ素含有物F6、F7、F8によって覆われている。つまり、処理空間212内に配置される基板以外の要素(処理容器210の内壁面、ボート217、シールキャップ219、ノズル249a、ノズル249b及びノズル249c等)の表面がC-F終端されているので、上述の基板処理工程で使用される原料ガス、改質ガス、酸化ガス、エッチングガス等の原子、分子の吸着を抑えることができる。すなわち、処理空間212において、ウエハ200の処理に用いられるガスの残渣を抑止することができる。これにより、反応管203等の石英部材への膜付着が低減され、反応管203の交換周期の延伸やクリーニング周期の延伸が期待できる。同様に、構成部材214への膜付着が低減され、構成部材214の交換周期の延伸やクリーニング周期の延伸が期待できる。
 また、本実施形態では、処理容器210の壁面及び構成部材214の表面への原料ガス、改質ガス、酸化ガス、エッチングガス等の原子、分子の吸着が抑えられるため、処理済みのウエハ200の膜厚ドロップの発生が抑制される。さらに、処理容器210の壁面への膜付着により生じる水分影響によるデポレートの変動(処理容器210内のクリーニングが必要になる)及び第1前処理工程におけるエッチングレートの変動が抑制される。
 本実施形態では、処理容器210の内壁面及び構成部材214の表面と、処理空間212内に配置されるウエハ200との位置に応じて、異なるフッ素含有物で覆われるように構成されている。この構成によれば、ウエハ200の配置に関係なく、処理空間212内に配置されるウエハ200以外の処理容器210の壁面及び構成部材214の表面に、原料ガス、エッチングガス等の原子、分子の吸着を抑えることができる。これにより、反応管203等の石英部材への膜付着が低減され、反応管の交換周期の延伸やクリーニング周期の延伸が期待できる。
 本実施形態では、反応管203の内壁面に被覆されるフッ素含有物F1は、構成部材214の表面及びフランジ203cの表面に被覆されるフッ素含有物より、赤外線の透過率が高い。このため、処理容器210の外部に設けられるヒータ207からの輻射熱をフッ素含有物F1により影響を受けることなくウエハ200に到達させて、ウエハ200を加熱することができる。
 本実施形態では、ボート217の処理空間212に面していない部分がフッ素含有物F5により被覆しないよう構成されている。一例として、ボート217の下端部分である底板12をフッ素含有物F4により被覆しないよう構成されている。また、ウエハ200と接触する部分である支持ピン16の表面(上面)に被覆されるフッ素含有物を、フッ素含有物のうち最も摩擦係数が大きいものとしている。一方、支持ピン16のウエハ200と接触しない部分である支持ピン16の裏面(下面)にはフッ素含有物を被覆しないよう構成されている。このような構成により、被覆物(フッ素含有物)により影響を受けることなく、ウエハ200を支持ピン16に載置することができるので、ウエハ200の移載を精度よく実行することができる。
 本実施形態では、基板処理工程における処理温度がフッ素含有物の耐熱温度よりも低く構成される。このため、被覆物(フッ素含有物)により影響を受けることなく、ウエハ200を処理することができる。上述では、SiOC膜の形成について説明したが、フッ素含有物の耐熱温度よりも低い温度で形成できるのであれば、例えば、他のいかなる成膜にも適用できる。
 本実施形態では、構成部材214が、熱伝導率が高い材質で構成される。このような構成により、ボート217に支持されるウエハ200に熱を効率よく加えることができ、被覆物(フッ素含有物)により影響を受けることなく、ウエハ200を処理することができる。
 本実施形態では、構成部材214としてのボート217の材質として、Fe、Al、Au、Ag、Cu、Ni、Cr、Co、Zr、Hf又はこれらの合金のうち少なくとも一つの金属が選択されてもよい。このような材質で構成することにより、ボート217の剛性を確保しつつ、高い熱伝導率を得ることができる。なお、ボート217を構成する部材は、すべて同じ材料でもよいし、異なる材料でもよい。但し、この場合、金属汚染が懸念されるため、処理空間212に面する部分だけでなく、ボート217全体をフッ素含有物により被覆するのが好ましい。
 また、ノズル249a、ノズル249b及びノズル249cは、ボート217と同様に、熱伝導率が高い材質で構成してもよい。具体的には、ノズル249a、ノズル249b及びノズル249cの材質としては、ステンレス、Fe,Al,Au,Ag,Cu,Ni,Cr,Co,Zr,Hf又はこれらの合金のうち少なくとも一つの金属を選択して用いてもよい。なお、ノズル249a、ノズル249b及びノズル249cの材料は、同じでも異なっていてもよい。但し、この場合、金属汚染が懸念されるため、処理空間212に面する部分だけでなく、ノズル249全体をフッ素含有物により被覆するのが好ましい。
 本実施形態では、フッ素含有物として、PTFE(ポリテトラフルオロエチレン)、PFA(パーフルオロアルコキシアルカン)、ETFE(エチレン-テトラフルオロエチレンコポリマー)、FEP(パーフルオロエチレン-プロペンコポリマー)、PVDF(ポリフッ化ビニリデン)、PCTFE(ポリクロロトリフルオロエチレン)、ECTFE(エチレン-クロロトリフロオロエチレンコポリマー)のうちいずれか一つのフッ素系樹脂が選択される。このようなフッ素含有物を用いることにより、反応管203の内壁面、マニホールド209の内壁面、シールキャップ219の表面、ボート217の表面、ノズル249aの表面、ノズル249bの表面及びノズル249cの表面をフッ素含有物で被覆することができる。本実施形態では、特に、フッ化炭素(C-F)で終端することができため、基板処理工程において、処理容器210の壁面及び構成部材214の表面に原料ガス、エッチングガス等の原子、分子の吸着を効果的に抑えることができる。但し、上述のフッ素含有膜の耐熱温度が、現状は約300℃であるため、処理容器210内の温度がこの耐熱温度を超えないように使用するのが好ましい。
<本開示の他の実施形態>
 以上、本開示の一実施形態を具体的に説明した。しかしながら、本開示は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。例えば、前述の実施形態では、フッ素含有物であるフッ素系の樹脂を処理容器210の壁面及び構成部材214の表面に被覆しているが、本開示はこれに限定されない。フッ素系の樹脂の代わりに、フッ素系の不動態膜を処理容器210の壁面及び構成部材214の表面に形成してもよい。さらに、反応管203のフランジ203cの表面にフッ素系の不動態膜を形成してもよい。また、フッ素系の不働態膜としては、NiF(フッ化ニッケル)、CrF(フッ化クロム)のフッ素不働態膜のうち少なくとも一つが選択される。
 さらに、ウエハ200からの位置に応じて、処理容器210の壁面や構成部材214の表面を覆うフッ素含有物を、フッ素系の樹脂あるいはフッ素系の不働態膜から選択してもよい。例えば、処理容器210の内壁面はフッ素系の樹脂で覆い、構成部材214の表面にフッ素系の不働態膜を形成してもよいし、処理容器210の内壁面にフッ素系の不働態膜を形成し、構成部材214の表面をフッ素系の樹脂で覆ってもよい。
 上述の実施形態では、処理炉202の反応管203が一つの筒体で構成されたが本開示はこれに限定されない。例えば、図8に示す処理炉302のように反応管332が処理空間を内部に形成する内管334と、内管334の外側に設けられる外管336と、内管334と外管336の下方に設けられるフランジ334a、336aとを備えていてもよい。ここで、ウエハ200と対向する反応管332の内面、一例として、内管334の内面334aがフッ素含有物で覆われてもよいし、フランジ334aの表面にフッ素系不働態膜が形成されてもよい。このようにウエハ200と対向する反応管332にフッ素系樹脂をコーティングし、ウエハ200と対向しないフランジ334aに不働態膜を形成することで、メンテナンス周期の延伸が期待できる。さらに、内管334の内面334aにフッ素系樹脂をコーティングし、外管336の内面336aには、フッ素系樹脂をコーティングしないように構成してもよい。このようにウエハ200と対向する内管334にはフッ素系樹脂をコーティングし、ウエハ200と対向しない外管336にはフッ素系樹脂をコーティングしないことにより、メンテナンス周期の延伸が期待できる。
 また、例えば、上述した各実施形態では、基板処理装置が行う処理として半導体装置における成膜処理を例にあげたが、本開示がこれに限定されることはない。すなわち、成膜処理の他、酸化膜、窒化膜を形成する処理、金属を含む膜を形成する処理であってもよい。また、基板処理の具体的内容は不問であり、成膜処理だけでなく、アニール処理、酸化処理、窒化処理、拡散処理、リソグラフィ処理等の他の基板処理にも好適に適用できる。
 さらに、本開示は、他の基板処理装置、例えばアニール処理装置、酸化処理装置、窒化処理装置、露光装置、塗布装置、乾燥装置、加熱装置、プラズマを利用した処理装置等の他の基板処理装置にも好適に適用できる。また、本開示は、これらの装置が混在していてもよい。
 さらに、本開示は、半導体製造装置だけでなくLCD装置のようなガラス基板を処理する装置に適用してもよい。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
 100   基板処理装置
 200   ウエハ
 203c  フランジ
 210   処理容器
 212   処理空間
 214   構成部材
 217   ボート

Claims (21)

  1.  基板が処理される処理空間を内部に設ける処理容器と、
     前記処理空間内に配置される構成部材と、
     を備え、
     前記処理容器内に設けられる前記処理空間に面する壁面及び前記処理空間に面する前記構成部材の表面がそれぞれフッ素含有物で覆われるように構成され、
     前記フッ素含有物が前記基板の処理温度に応じて選定される基板処理装置。
  2.  前記処理容器の壁面及び前記処理空間に面する前記構成部材の表面と前記処理空間内に配置される基板との位置に応じて、異なるフッ素含有物で覆われるように構成される請求項1に記載の基板処理装置。
  3.  前記処理容器は、反応管と、該反応管の下方に設けられるフランジを備え、
     前記反応管の表面に被覆されるフッ素含有物は、前記構成部材の表面及び前記フランジの表面に被覆されるフッ素含有物より、赤外線の透過率が高く構成される請求項2に記載の基板処理装置。
  4.  前記構成部材は、基板を支持可能な支持具を有し、
     前記支持具の前記処理空間に面していない部分は、前記フッ素含有物により被覆しないよう構成される請求項1に記載の基板処理装置。
  5.  前記支持具の下端部分は、前記フッ素含有物により被覆しないよう構成される請求項4に記載の基板処理装置。
  6.  前記支持具は、前記基板が載置される載置部を有し、
     前記載置部の表面に被覆されるフッ素含有物は、前記フッ素含有物のうち最も摩擦係数が大きく構成される請求項4に記載の基板処理装置。
  7.  前記支持具は、前記基板が載置される載置部を有し、
     前記載置部の表面であって前記基板と接触する部分は、前記フッ素含有物により被覆しないよう構成される請求項4に記載の基板処理装置。
  8.  前記フッ素含有物の耐熱温度は、前記処理温度よりも高く構成される請求項1に記載の基板処理装置。
  9.  前記構成部材は、熱伝導率が高い材質で構成される請求項1に記載の基板処理装置。
  10.  前記構成部材の材質は、Fe,Al,Au,Ag,Cu,Ni,Cr,Co,Zr,Hf又はこれらの合金のうち少なくとも一つの金属が選択される請求項1又は請求項9記載の基板処理装置。
  11.  前記フッ素含有物は、PTFE(ポリテトラフルオロエチレン),PFA(パーフルオロアルコキシアルカン),ETFE(エチレン-テトラフルオロエチレンコポリマー),FEP(パーフルオロエチレン-プロペンコポリマー),PVDF(ポリフッ化ビニリデン),PCTFE(ポリクロロトリフルオロエチレン),ECTFE(エチレン-クロロトリフロオロエチレンコポリマー)のうちいずれか一つのフッ素系樹脂が選択される請求項1に記載の基板処理装置。
  12.  前記処理容器の壁面及び前記処理空間に面する前記構成部材の表面が、C-F終端されるよう構成されている請求項2に記載の基板処理装置。
  13.  前記フッ素含有物は、フッ素系の樹脂をコーティングする、あるいは、フッ素系の不動態膜を形成することにより生成されるように構成されている請求項2に記載の基板処理装置。
  14.  前記処理容器は、反応管と、該反応管の下方に設けられるフランジを備え、
     前記フランジの表面に前記不動態膜を形成することが可能に構成される請求項13に記載の基板処理装置。
  15.  前記処理容器は、前記処理空間を内部に形成する内管と、前記内管の外側に設けられる外管と、前記内管と前記外管の下方に設けられるフランジを備え、
     前記フランジの表面に前記不動態膜を形成することが可能に構成される請求項13に記載の基板処理装置。
  16.  前記内管には、フッ素系樹脂をコーティングし、
     前記外管には、フッ素系樹脂をコーティングしないように構成される請求項15に記載の基板処理装置。
  17.  基板が処理される処理空間を内部に設ける処理容器であって、
     前記処理容器内に設けられる前記処理空間に面する壁面及び前記処理空間内に配置される構成部材の表面がそれぞれフッ素含有物で覆われるように構成され、
     前記フッ素含有物が前記基板の処理温度に応じて選定される処理容器。
  18.  基板が処理される処理空間を内部に設ける処理容器であって、
     前記処理容器内に設けられる前記処理空間に面する壁面及び前記処理空間内に配置される構成部材の表面がそれぞれフッ素含有物で覆われるように構成され、
     前記フッ素含有物が前記基板の処理温度に応じて選定される処理容器内に前記基板を配置する工程と、前記処理容器内に配置された前記基板を処理する工程と、
     を有する半導体装置の製造方法。
  19.  基板を処理する処理空間に配置される基板保持具であって、
     前記処理空間に面する部分がフッ素含有物で覆われるように構成され、
     前記フッ素含有物が前記基板の処理温度に応じて選定される基板保持具。
  20.  基板を処理する処理空間に配置される基板保持具であって、前記処理空間に面する部分がフッ素含有物で覆われるように構成され、前記フッ素含有物が前記基板の処理温度に応じて選定される前記基板保持具を備える基板処理装置。
  21.  基板を処理する処理空間に配置される基板保持具であって、前記処理空間に面する部分がフッ素含有物で覆われるように構成され、前記フッ素含有物が前記基板の処理温度に応じて選定される前記基板保持具に、前記基板が保持された状態で前記基板を処理する工程 を有する半導体装置の製造方法。
PCT/JP2022/014647 2022-03-25 2022-03-25 基板処理装置、処理容器、基板保持具及び半導体装置の製造方法 WO2023181405A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/014647 WO2023181405A1 (ja) 2022-03-25 2022-03-25 基板処理装置、処理容器、基板保持具及び半導体装置の製造方法
TW112102337A TW202343570A (zh) 2022-03-25 2023-01-18 基板處理裝置,處理容器,基板保持具及半導體裝置的製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/014647 WO2023181405A1 (ja) 2022-03-25 2022-03-25 基板処理装置、処理容器、基板保持具及び半導体装置の製造方法

Publications (1)

Publication Number Publication Date
WO2023181405A1 true WO2023181405A1 (ja) 2023-09-28

Family

ID=88100324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014647 WO2023181405A1 (ja) 2022-03-25 2022-03-25 基板処理装置、処理容器、基板保持具及び半導体装置の製造方法

Country Status (2)

Country Link
TW (1) TW202343570A (ja)
WO (1) WO2023181405A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07263370A (ja) * 1994-03-17 1995-10-13 Tokyo Electron Ltd 熱処理装置
JP2000100781A (ja) * 1998-09-18 2000-04-07 Miyazaki Oki Electric Co Ltd エッチング装置および半導体デバイスの製造方法
JP2007103959A (ja) * 2006-11-21 2007-04-19 Hitachi Kokusai Electric Inc 半導体装置の製造方法及び基板処理装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07263370A (ja) * 1994-03-17 1995-10-13 Tokyo Electron Ltd 熱処理装置
JP2000100781A (ja) * 1998-09-18 2000-04-07 Miyazaki Oki Electric Co Ltd エッチング装置および半導体デバイスの製造方法
JP2007103959A (ja) * 2006-11-21 2007-04-19 Hitachi Kokusai Electric Inc 半導体装置の製造方法及び基板処理装置

Also Published As

Publication number Publication date
TW202343570A (zh) 2023-11-01

Similar Documents

Publication Publication Date Title
TWI739263B (zh) 半導體裝置之製造方法、基板處理裝置及程式
JP7254044B2 (ja) 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム
JP6568508B2 (ja) 半導体装置の製造方法、基板処理装置、およびプログラム
JP7227122B2 (ja) 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム
KR101786889B1 (ko) 반도체 장치의 제조 방법, 기판 처리 장치 및 컴퓨터 프로그램
US11923193B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
WO2020016914A1 (ja) 半導体装置の製造方法、基板処理装置及びプログラム
KR102297247B1 (ko) 처리 용기 내의 부재를 클리닝하는 방법, 반도체 장치의 제조 방법, 기판 처리 장치, 및 프로그램
CN110551985A (zh) 清洗方法、半导体器件的制造方法、衬底处理装置及存储介质
JP7166431B2 (ja) 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム
WO2023047918A1 (ja) 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム
WO2023181405A1 (ja) 基板処理装置、処理容器、基板保持具及び半導体装置の製造方法
JP7431343B2 (ja) 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム
CN115110058A (zh) 半导体装置的制造方法、基板处理方法、记录介质和基板处理装置
KR20200035210A (ko) 클리닝 방법, 반도체 장치의 제조 방법, 기판 처리 장치, 및 프로그램
JP7426978B2 (ja) 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム
JP7186909B2 (ja) 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム
CN113355653B (zh) 清洁方法、半导体装置的制造方法、基板处理装置以及存储介质
WO2023112585A1 (ja) 基板処理方法、基板処理装置、およびプログラム
WO2024194953A1 (ja) エッチング方法、半導体装置の製造方法、処理装置、およびプログラム
US20240105443A1 (en) Method of processing substrate, method of manufacturing semiconductor device, substrate processing system, and recording medium
JP2019195106A (ja) 半導体装置の製造方法、基板処理装置、およびプログラム
JP2023184336A (ja) 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム
JP2024120206A (ja) 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム
CN113113284A (zh) 半导体器件的制造方法、衬底处理装置及记录介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22933542

Country of ref document: EP

Kind code of ref document: A1