WO2023180007A1 - Zellmodul mit mehreren zellpaketen und hitzebeständiger barriere zwischen den zellpaketen - Google Patents

Zellmodul mit mehreren zellpaketen und hitzebeständiger barriere zwischen den zellpaketen Download PDF

Info

Publication number
WO2023180007A1
WO2023180007A1 PCT/EP2023/054773 EP2023054773W WO2023180007A1 WO 2023180007 A1 WO2023180007 A1 WO 2023180007A1 EP 2023054773 W EP2023054773 W EP 2023054773W WO 2023180007 A1 WO2023180007 A1 WO 2023180007A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
cell module
cover
packs
frame
Prior art date
Application number
PCT/EP2023/054773
Other languages
English (en)
French (fr)
Inventor
Robin Ruecker
Alexander Rheinfeld
Andreas Schleicher
Sebastian SPIRKL
Florian REDL
Simon LUX
Andre Heckert
Original Assignee
Bayerische Motoren Werke Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke Aktiengesellschaft filed Critical Bayerische Motoren Werke Aktiengesellschaft
Publication of WO2023180007A1 publication Critical patent/WO2023180007A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/293Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane

Definitions

  • the invention relates to a cell module for an electrical energy storage device in a motor vehicle.
  • the invention also relates to an electrical energy storage device.
  • electrical energy storage devices which are used in particular as traction batteries for electrically powered motor vehicles, i.e. hybrid or electric vehicles.
  • Such electrical energy storage usually has a large number of interconnected cell modules, which are arranged in a receiving space of a storage housing of the electrical energy storage.
  • the cell modules in turn have a large number of memory cells interconnected with one another.
  • a cell module according to the invention for an electrical energy storage device of a motor vehicle has at least two interconnected cell packs, each with a plurality of interconnected storage cells.
  • the cell module also includes a cell module frame with at least two frame sections arranged adjacent to one another for accommodating one cell packet in each case.
  • the cell module has a cover arranged on the cell module frame to cover the frame sections and at least one heat-resistant, firewall-like barrier. This barrier is arranged on the cover in an overlapping manner with a transition between the two cell packs and is designed to divide a free space adjacent to the cover into at least two fire compartments in order to prevent a hot gas from a cell pack flowing into the free space from spreading to an adjacent cell pack.
  • the invention also relates to an electrical energy storage device for a motor vehicle, comprising a storage housing and at least one cell module according to the invention.
  • the at least one cell module is arranged in a receiving space of the storage housing, with the at least one barrier extending from the cover to a housing wall of the storage housing and being supported on the housing wall.
  • the electrical energy storage is in particular a high-voltage energy storage and forms a traction battery for the electrified motor vehicle.
  • the cell module has at least two cell packs which are interconnected. Each cell pack has several interconnected memory cells or battery cells, which can be designed, for example, as round cells, pouch cells or prismatic cells.
  • the memory cells are preferably designed as prismatic cells and stacked along a stacking direction to form a cell packet in the form of a cell stack or cell bar.
  • the stacking direction corresponds to a longitudinal direction of the cell stack.
  • At least two cell stacks are arranged next to one another in the transverse direction transverse to the stacking direction, so that the cell module is designed as a multi-row cell module.
  • the cell module preferably has two cell stacks arranged next to one another, so that the cell module is designed in double rows.
  • the prismatic cells have a flat cuboid cell housing with a cell housing front wall, a cell housing rear wall, cell housing side walls, a cell housing cover and a cell housing bottom.
  • the cell housing also has cell terminals or cell poles for contacting a galvanic element in the Cell housing.
  • the cell terminals are arranged, for example, on the cell housing cover.
  • the cell housing has a degassing element, for example a bursting membrane, which is designed to release hot gas that arises within the cell housing in the event of a fault to reduce pressure from the cell housing.
  • the degassing element can also be arranged on the cell housing cover, for example between the two cell terminals.
  • the cell packs are arranged in frame sections of a cell module frame.
  • the storage cells are also pressed in the stacking direction using the cell module frame.
  • the cell module frame has two pressure plates for each frame section for arranging on end faces of the cell stack that are opposite in the longitudinal direction and two tie rods connected to the pressure plates for arranging on side regions of the cell stack that are opposite in the transverse direction.
  • the two tie rods arranged on mutually facing inner side regions of the cell stacks are mechanically connected to one another to form the cell module frame.
  • the cell module frame has two pressure plates extending over the end faces of the cell stacks, which are arranged next to one another in the transverse direction, and three tie rods connected to the two pressure plates for arrangement on the side regions of the cell stacks.
  • a tie rod is arranged between the two cell stacks on the inner, mutually facing side regions of the cell stacks and two tie rods are arranged on the outer side regions of the cell stacks.
  • each cell stack is arranged in a cell stack frame, which forms the respective frame section and which has two pressure plates and two tie rods.
  • the two cell pack frames are then mechanically connected to the cell module frame, for example by gluing the two facing tie rods of the cell pack frames.
  • the two cell stacks share the two pressure plates and one of the tie rods, which extends between the two cell stacks and rests on the inner side areas of both cell stacks.
  • the cell module frame is thus divided into frame sections by the tie rod running centrally between the cell stacks.
  • the cell module frame is covered by a cover which, in particular, completely covers those sides of the cell stacks which have the degassing elements.
  • the cover can, for example, be formed from several layers and contain a plastic layer and a heat protection layer, for example made of mica. The cover is in particular attached to the cell module frame.
  • a cell contacting system is arranged between the cover and the cell packets for interconnecting the memory cells of the respective cell packets and for interconnecting the cell packets.
  • the cell contacting system can have an electrically insulating carrier, for example a plastic carrier, which is designed to hold electrical connectors or contact elements. These connectors are electrically and mechanically connected to the cell poles, for example welded.
  • the cell contacting system can have several cell connectors per cell pack for electrically connecting the memory cells and a pack connector for interconnecting the cell packs.
  • the interconnection in the double-row cell module can be done in such a way that the two cell stacks are interconnected by means of a connector running in the transverse direction over the transition between the cell stacks, which electrically connects a memory cell of one cell stack to a memory cell of the adjacent other cell stack.
  • the at least two cell packs, the cell module frame, the cover and the cell contacting system in particular form a ready-to-assemble assembly.
  • the cell module is designed as a structural unit which can be arranged in the receiving space of the storage housing of the electrical energy storage in an assembly step.
  • the at least one cell module is arranged in the receiving space, which is delimited by housing walls of the storage housing, in such a way that a free space is formed between the cover and a further storage component of the energy storage device located above the cell module in the vertical direction, for example one of the housing walls of the storage housing .
  • the housing wall adjacent to the free space can be, for example, a housing cover of the storage housing or an intermediate floor for dividing the receiving space into several levels lying one above the other in the vertical direction.
  • the at least one heat-resistant barrier which divides the free space above the cover in the area of the transition between the two cell packs into the fire sections or fire sections.
  • the barrier extends in the longitudinal direction, in particular over an entire length of the cell package and in the vertical direction starting from the cover to the further storage component of the energy storage device arranged above the cell module, for example the housing wall.
  • the barrier In the case of cell stacks, in which the degassing elements are arranged in a longitudinally extending strip-shaped area on the top of the respective cell stack, the barrier extends in the transverse direction at most up to the strip-shaped areas. The barrier therefore does not completely cover the cover, especially not in the area of the degassing elements of the storage cells underneath. The barrier thereby forms a firewall-like partition between the cell packs, which ensures, at least over a predetermined period of time, that the heat and particles remain in the respective fire section belonging to the cell pack with the degassing storage cell.
  • the heat-resistant barrier is preferably made of a compressible material and thus forms an auxiliary joining part for a press connection between the cover and the housing wall of the storage housing.
  • the barrier is therefore pressed between the housing wall of the storage housing and the cover and thus presses the cover onto the cell packs.
  • the barrier also presses the layers of the cover together, so that, for example, the heat protection layer can be prevented from peeling off.
  • the at least one barrier can be designed, for example, as a finished part which is attached to the cover.
  • the finished part can be a fire protection mat. This can be made, for example, from glass fiber or aramite fiber.
  • the finished part can also be a ceramic plate.
  • Such a finished part can be pre-assembled, for example glued, to the cover, so that the entire cell module including the barrier is designed as a ready-to-assemble assembly.
  • the at least one barrier can be designed as a solid foam wall, for example made of PU foam, which is only applied to the cover during the final assembly of the energy storage device, for example.
  • the cell module is arranged, for example, in the receiving space and the barrier is applied to the cover.
  • the cover is partially coated with the foam, for example sprayed.
  • the housing wall of the storage housing is then arranged above the cell module on the barrier.
  • FIG. 1 shows a perspective view of a cell module for an electrical energy storage device
  • Fig. 2 is a schematic representation of a top view of cell packages of the cell module.
  • the cell module 1 here has two cell packs 2a, 2b with several memory cells 3, 3 '.
  • the storage cells 3, 3' here are prismatic battery cells, so that the cell packs 2a, 2b are designed as cell stacks or cell bars.
  • the memory cells 3, 3' are stacked here in the longitudinal direction L, with insulation layers 4 being arranged between the memory cells 3, 3' for insulating metallic cell housings 5 of the memory cells 3, 3'.
  • the two cell packs 2a, 2b are arranged next to each other in the transverse direction Q.
  • the cell packs 2a, 2b are arranged in frame sections 6a, 6b of a cell module frame 6.
  • the cell module frame 6 has two pressure plates 7, which are arranged on opposite end faces of the cell packs 2a, 2b in the longitudinal direction L.
  • a pressure plate 7 is arranged on the front end faces of both cell packs 2a, 2b and a pressure plate 7 is arranged on the rear end faces of both cell packs 2a, 2b.
  • Each pressure plate 7 thus extends in the transverse direction Q over both cell packages 2a, 2b and thus over both frame sections 6a, 6b.
  • the cell module frame 6 here has three tie rods 8, which extend in the longitudinal direction L and are arranged on side regions 9, 10 of the cell packs 2a, 2b. Each tie rod 8 is mechanically connected to both pressure plates 7, for example welded.
  • a tie rod 8 is arranged on an outer side region 9 of the first cell pack 2a.
  • a tie rod 8 is arranged on an inner side region 10 of the first cell pack 2a and an inner side region 10 of the second cell pack 2b and thus runs centrally between the two cell packs 2a, 2b.
  • a tie rod 8 is arranged on an outer side region 9 of the second cell pack 2b.
  • the first frame section 6a is thus delimited by one half of the two pressure plates 7 and two tie rods 7 and the second frame section 6b is delimited by the second half of the two pressure plates 7 and two tie rods 7.
  • a cell contacting system can be arranged on top sides 11 of the cell packs 2a, 2b, on which cell terminals 12 of the memory cells 3, 3' are also located.
  • the cell contacting system is covered by a cover 13, which completely covers the top sides 11 of the cell packs 2a, 2b and thus the frame sections 6a, 6b.
  • the cover 13 is fastened here to the cell module frame 6 by means of screws 14.
  • the cell module 1 has a heat-resistant barrier 18, which extends from the cover 13 in the vertical direction H.
  • the barrier 18 extends in the vertical direction H up to a housing wall of a storage housing of the electrical energy storage device, which is arranged at a distance from the cover 13 and overlapping with the cover 13 when the cell module 1 is in the storage housing.
  • the barrier 18 is in particular made of a compressible material and is therefore pressed between the cover 13 and the housing wall.
  • the barrier 18 can be formed, for example, by a mat made of glass fiber or aramite fiber, a PU foam, a ceramic disc or even by means of a sprayable fire protection foam.
  • the barrier 18 extends at most up to Degassing elements 15 of the cell packs 2a, 2b.
  • the barrier 18 therefore does not completely cover the cover 13, but rather forms a kind of fire protection wall in the area of a transition 19 between the cell packs 2a, 2b.
  • the barrier 18 extends over an entire length of the cell module 1.
  • the barrier 18 divides the free space into two fire sections 20a, 20b, with the first fire section 20a being arranged above the first cell pack 2a and thus forming a degassing space for the storage cells 3 of the first cell pack 2a and with the second fire section 20b arranged above the second cell pack 2b is and thus forms a degassing space for the storage cells 3, 3 'of the second cell pack 2b.
  • the fire sections 20a, 20b are closed in such a way that they do not allow hot gas to pass from one fire section 20a, 20b into the other fire section 20b, 20a, at least for a predetermined period of time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Transportation (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

Die Erfindung betrifft ein Zellmodul (1) für einen elektrischen Energiespeicher eines Kraftfahrzeugs, aufweisend: - zumindest zwei miteinander verschaltete Zellpakete (2a, 2b) mit jeweils mehreren, miteinander verschalteten Speicherzellen (3, 3'), - einen Zellmodulrahmen (6) mit zumindest zwei, benachbart zueinander angeordneten Rahmenabschnitten (6a, 6b) zum Aufnehmen von jeweils einem Zellpaket (2a, 2b), - eine an dem Zellmodulrahmen (6) angeordnete Abdeckung (13) zum Abdecken der Rahmenabschnitte (6a, 6b), und - zumindest eine hitzebeständige, brandwandartige Barriere (18), welche an der Abdeckung (13) überlappend mit einem Übergang (19) zwischen den zwei Zellpaketen (2a, 2b) angeordnet ist und dazu ausgelegt ist, einen an die Abdeckung (13) angrenzenden Freiraum in zumindest zwei Brandabschnitte (20a, 20b) zum Verhindern einer Ausbreitung eines in den Freiraum strömenden Heißgases (17) eines Zellpakets (2b) auf ein benachbartes Zellpaket (2a) zu unterteilen.

Description

Zellmodul mit mehreren Zellpaketen und hitzebeständiger Barriere zwischen den Zellpaketen
Die Erfindung betrifft ein Zellmodul für einen elektrischen Energiespeicher eines Kraftfahrzeugs. Die Erfindung betrifft außerdem einen elektrischen Energiespeicher.
Vorliegend richtet sich das Interesse auf elektrische Energiespeicher, welche insbesondere als Traktionsbatterien für elektrisch antreibbare Kraftfahrzeuge, also Hybrid- oder Elektrofahrzeuge, verwendet werden. Solche elektrischen Energiespeicher weisen üblicherweise eine Vielzahl von miteinander verschalteten Zellmodulen auf, welche in einem Aufnahmeraum eines Speichergehäuses des elektrischen Energiespeichers angeordnet sind. Die Zellmodule weisen wiederum eine Vielzahl von miteinander verschalteten Speicherzellen auf.
Dabei kann es vorkommen, dass eine fehlerhafte Speicherzelle aufgrund von einem thermischen Ereignis, beispielsweise einem zellinternen Kurzschluss, entgast und dadurch Hitze und Partikel in den Aufnahmeraum einbringt. Diese Partikel können sich an kritischen Stellen, beispielsweise an anderen Speicherzellen, ablagern und dort zu Isolationsfehlern, Lichtbögen und Kurzschlüssen führen. Um dies zu verhindern, ist es beispielsweise aus der DE 10 2018 213 066 A1 bekannt, ein brandhemmendes und elektrisch isolierendes Dichtmittel durch eine Injektionsöffnung in das geschlossene Speichergehäuse einzubringen, bis im Speichergehäuse vorhandene Zwischenräume vom Dichtmittel umgeben sind. Das komplette Auffüllen des Speichergehäuses mit einem solchen Dichtmittel erschwert eine Wartung und ein Recycling des elektrischen Energiespeichers.
Es ist Aufgabe der vorliegenden Erfindung, eine besonders einfache und wartungsfreundliche Lösung zum Schutz von Speicherzellen eines elektrischen Energiespeichers bereitzustellen.
Diese Aufgabe wird erfindungsgemäß durch ein Zellmodul sowie einen elektrischen Energiespeicher mit den Merkmalen gemäß den jeweiligen unabhängigen Patentansprüchen gelöst. Vorteilhafte Ausführungen der Erfindung sind Gegenstand der abhängigen Patentansprüche, der Beschreibung sowie der Figuren.
Ein erfindungsgemäßes Zellmodul für einen elektrischen Energiespeicher eines Kraftfahrzeugs weist zumindest zwei miteinander verschaltete Zellpakete mit jeweils mehreren, miteinander verschalteten Speicherzellen auf. Auch umfasst das Zellmodul einen Zellmodulrahmen mit zumindest zwei, benachbart zueinander angeordneten Rahmenabschnitten zum Aufnehmen von jeweils einem Zellpaket auf. Außerdem weist das Zellmodul eine an dem Zellmodulrahmen angeordnete Abdeckung zum Abdecken der Rahmenabschnitte und zumindest eine hitzebeständige, brandwandartige Barriere auf. Diese Barriere ist an der Abdeckung überlappend mit einem Übergang zwischen den zwei Zellpaketen angeordnet und dazu ausgelegt, einen an die Abdeckung angrenzenden Freiraum in zumindest zwei Brandabschnitte zum Verhindern einer Ausbreitung eines in den Freiraum strömenden Heißgases eines Zellpakets auf ein benachbartes Zellpaket zu unterteilen.
Die Erfindung betrifft außerdem einen elektrischen Energiespeicher für ein Kraftfahrzeug aufweisend ein Speichergehäuse und zumindest ein erfindungsgemäßes Zellmodul. Das zumindest eine Zellmodul ist in einem Aufnahmeraum des Speichergehäuses angeordnet, wobei sich die zumindest eine Barriere ausgehend von der Abdeckung bis zu einer Gehäusewand des Speichergehäuses erstreckt und sich an der Gehäusewand abstützt. Der elektrische Energiespeicher ist insbesondere ein Hochvoltenergiespeicher und bildet eine Traktionsbatterie für das elektrifizierte Kraftfahrzeug aus. Das Zellmodul weist die zumindest zwei Zellpakete auf, welche miteinander verschaltet sind. Jedes Zellpaket weist mehrere miteinander verschaltete Speicherzellen bzw. Batteriezellen auf, welche beispielsweise als Rundzellen, Pouchzellen oder prismatische Zellen ausgebildet sein können. Vorzugsweise sind die Speicherzellen als prismatische Zellen ausgebildet und entlang einer Stapelrichtung zu einem Zellpaket in Form von einem Zellstapel bzw. Zellriegel gestapelt. Die Stapelrichtung entspricht dabei einer Längsrichtung des Zellstapels. In Querrichtung quer zur Stapelrichtung sind zumindest zwei Zellstapel nebeneinander angeordnet, sodass das Zellmodul als ein mehrreihiges Zellmodul ausgebildet ist. Vorzugsweise weist das Zellmodul zwei nebeneinander angeordnete Zellstapel auf, sodass das Zellmodul doppelreihig ausgebildet ist.
Die prismatischen Zellen weisen dabei ein flachquaderförmiges Zellgehäuse mit einer Zellgehäusefrontwand, einer Zellgehäuserückwand, Zellgehäuseseitenwänden, einem Zellgehäusedeckel und einem Zellgehäuseboden auf. Das Zellgehäuse weist außerdem Zellterminals bzw. Zellpole zum Kontaktieren eines galvanischen Elementes in dem Zellgehäuse auf. Die Zellterminals sind beispielsweise an dem Zellgehäusedeckel angeordnet. Außerdem weist das Zellgehäuse ein Entgasungselement, beispielsweise eine Berstmembran auf, welche dazu ausgelegt ist, ein in Fehlerfall innerhalb des Zellgehäuses entstehendes Heißgas zum Druckabbau aus dem Zellgehäuse auszulassen. Das Entgasungselement kann ebenfalls an dem Zellgehäusedeckel, beispielsweise zwischen den zwei Zellterminals, angeordnet sein.
Die Zellpakete sind dabei in Rahmenabschnitten eines Zellmodulrahmens angeordnet. Im Falle von Pouchzellen oder prismatischen Zellen werden die Speicherzellen mittels des Zellmodulrahmens außerdem in Stapelrichtung verpresst. Dazu weist der Zellmodulrahmen in einer ersten Variante für jeden Rahmenabschnitt zwei Druckplatten zum Anordnen an in Längsrichtung gegenüberliegenden Stirnseiten des Zellstapels und zwei mit den Druckplatten verbundene Zuganker zum Anordnen an in Querrichtung gegenüberliegenden Seitenbereichen des Zellstapels auf. Die zwei, an einander zugewandten inneren Seitenbereichen der Zellstapel angeordneten Zuganker sind zum Ausbilden des Zellmodulrahmens mechanisch miteinander verbunden. In einer zweiten Variante weist der Zellmodulrahmen zwei sich über die in Querrichtung nebeneinander angeordneten Stirnseiten der Zellstapel erstreckende Druckplatten und drei, mit den zwei Druckplatten verbundene Zuganker zum Anordnen an den Seitenbereichen der Zellstapel auf. Dabei ist ein Zuganker zwischen den zwei Zellstapeln an den inneren, einander zugewandten Seitenbereichen der Zellstapel angeordnet und zwei Zuganker sind an den äußeren Seitenbereichen der Zellstapel angeordnet sind.
Die Stirnseiten des Zellstapels werden dabei durch die Zellgehäusefrontwand einer ersten Speicherzelle in dem Zellstapel sowie die Zellgehäuserückwand einer letzten Speicherzelle in dem Zellstapel ausgebildet. Seitenbereiche des Zellstapels werden durch die Zellgehäuseseitenwände der Speicherzellen gebildet. Eine Oberseite des Zellstapels wird durch die Zellgehäusedeckel der Speicherzellen gebildet und eine Unterseite des Zellstapels wird durch die Zellgehäuseböden der Speicherzellen gebildet. In der ersten Variante wird dabei jeder Zellstapel in einem Zellpaketrahmen angeordnet, welcher den jeweiligen Rahmenabschnitt ausbildet und welcher zwei Druckplatten und zwei Zugankern aufweist. Die zwei Zellpaketrahmen werden dann mechanisch zu dem Zellmodulrahmen verbunden, beispielsweise indem die zwei einander zugewandten Zuganker der Zellpaketrahmen verklebt werden. In der zweiten Variante teilen sich die zwei Zellstapel die zwei Druckplatten sowie einen der Zuganker, welcher sich zwischen den zwei Zellstapeln erstreckt und an den innenliegenden Seitenbereichen beider Zellstapel anliegt. Der Zellmodulrahmen wird somit durch den mittig zwischen den Zellstapeln verlaufenden Zuganker in die Rahmenabschnitte unterteilt. Der Zellmodulrahmen wird dabei von einer Abdeckung abgedeckt, welche insbesondere diejenigen Seiten der Zellstapel vollständig überdeckt, welche die Entgasungselemente aufweisen. Die Abdeckung kann beispielsweise aus mehreren Schichten gebildet sein und eine Kunststoffschicht sowie eine Hitzeschutzschicht, beispielsweise aus Glimmer, enthalten. Die Abdeckung ist insbesondere an dem Zellmodulrahmen befestigt.
Zum Verschalten der Speicherzellen der jeweiligen Zellpakete sowie zum Verschalten der Zellpakete ist zwischen der Abdeckung und den Zellpaketen ein Zellkontaktiersystem angeordnet. Das Zellkontaktiersystem kann einen elektrisch isolierenden Träger, beispielsweise einen Kunststoffträger, aufweisen, welcher zum Halten von elektrischen Verbindern bzw. Kontaktelementen ausgebildet ist. Diese Verbinder sind mit dem Zellpolen elektrisch und mechanisch verbunden, beispielsweise verschweißt. Beispielsweise kann das Zellkontaktiersystem mehrere Zellverbinder pro Zellpaket zum elektrischen Verbinden der Speicherzellen und einen Paketverbinder zum Verschalten der Zellpakete aufweisen. Beispielsweise kann die Verschaltung in dem doppelreihigen Zellmodul derart erfolgen, dass die zwei Zellstapel mittels einem in Querrichtung über den Übergang zwischen den Zellstapeln verlaufenden Verbinder, welcher eine Speicherzelle des einen Zellstapels mit einer Speicherzelle des benachbarten anderen Zellstapels elektrisch verbindet, verschaltet sind.
Die zumindest zwei Zellpakete, der Zellmodulrahmen, die Abdeckung und das Zellkontaktiersystem bilden dabei insbesondere eine montagefertige Baugruppe aus. Anders ausgedrückt ist das Zellmodul als eine konstruktive Einheit ausgebildet, welche in einem Montageschritt in dem Aufnahmeraum des Speichergehäuses des elektrischen Energiespeichers angeordnet werden kann. Das zumindest eine Zellmodul ist dabei derart in dem Aufnahmeraum, welcher durch Gehäusewände des Speichergehäuses begrenzt ist, angeordnet, dass ein Freiraum zwischen der Abdeckung und einer sich in Hochrichtung oberhalb des Zellmoduls befindlichen weiteren Speicherkomponente des Energiespeichers, beispielsweise einer der Gehäusewände des Speichergehäuses, gebildet wird. Die an den Freiraum angrenzende Gehäusewand kann beispielsweise ein Gehäusedeckel des Speichergehäuses oder ein Zwischenboden zum Unterteilen des Aufnahmeraums in mehrere, in Hochrichtung übereinander liegende Ebenen sein.
Dabei kann es vorkommen, dass eine Speicherzelle eines der Zellpakete fehlerbedingt entgast und dadurch Heißgas durch die Abdeckung hindurch in den sich über der Abdeckung befindlichen Freiraum des Speichergehäuses auslässt. Um zu verhindern, dass Hitze und Partikel, welche durch das Heißgas transportiert werden, das benachbarte Zellpaket schädigen, ist die zumindest eine hitzebeständige Barriere vorgesehen, welche den Freiraum oberhalb der Abdeckung im Bereich des Übergangs zwischen den zwei Zellpaketen in die Brandabschnitte bzw. Brandsektionen unterteilt. Die Barriere erstreckt sich dabei in Längsrichtung insbesondere über eine gesamte Länge des Zellpakets und in Hochrichtung ausgehend von der Abdeckung bis zu der über dem Zellmodul angeordneten weiteren Speicherkomponente des Energiespeichers, beispielsweise der Gehäusewand. Im Falle der Zellstapel, bei welchen die Entgasungselemente in jeweils einem sich in Längsrichtung erstreckenden streifenförmigen Bereich an der Oberseite des jeweiligen Zellstapels angeordnet sind, erstreckt sich die Barriere in Querrichtung höchstens bis zu den streifenförmigen Bereichen. Die Barriere bedeckt also die Abdeckung nicht vollständig, insbesondere nicht im Bereich der Entgasungselemente der darunter liegenden Speicherzellen. Dadurch bildet die Barriere eine brandmauerartige Trennwand zwischen der Zellpaketen aus, durch welche, zumindest über einen vorbestimmten Zeitraum, gewährleistet wird, dass die Hitze und Partikel in der jeweiligen, zu dem Zellpaket mit der entgasenden Speicherzelle gehörigen Brandsektion verbleiben.
Die hitzebeständige Barriere ist vorzugsweise aus einem kompressiblen Material ausgebildet und bildet somit ein Hilfsfügeteil für eine Pressverbindung zwischen der Abdeckung und der Gehäusewand des Speichergehäuses aus. Die Barriere wird also zwischen der Gehäusewand des Speichergehäuses und der Abdeckung eingepresst und drückt somit die Abdeckung an die Zellpakete an. Dadurch verpresst die Barriere zusätzlich auch die Schichten der Abdeckung, sodass beispielsweise verhindert werden kann, dass sich die Hitzeschutzschicht ablöst.
Die zumindest eine Barriere kann beispielsweise als ein Fertigteil ausgebildet sein, welches an der Abdeckung befestigt ist. Beispielsweise kann das Fertigteil eine Brandschutzmatte sein. Diese kann beispielsweise aus Glasfaser oder Aramitfaser gebildet sein. Auch kann das Fertigteil eine Keramikplatte sein. Ein solches Fertigteil kann an der Abdeckung vormontiert, beispielsweise angeklebt, sein, sodass das gesamte Zellmodul inklusive Barriere als eine montagefertige Baugruppe ausgebildet ist. Alternativ dazu kann die zumindest eine Barriere als eine feste Schaumwand, beispielsweise aus einem PU-Schaum, ausgebildet sein, welche beispielsweise erst bei der Endmontage des Energiespeichers auf die Abdeckung aufgebracht wird. Dazu wird das Zellmodul beispielsweise in dem Aufnahmeraum angeordnet und die Barriere wird auf die Abdeckung aufgebracht. Beispielsweise wird die Abdeckung dazu partiell mit dem Schaum beschichtet, beispielsweise besprüht. Anschließend wird die Gehäusewand des Speichergehäuses über dem Zellmodul an der Barriere angeordnet. Die mit Bezug auf das erfindungsgemäße Zellmodul vorgestellten Ausführungsformen und deren Vorteile gelten entsprechend für den erfindungsgemäßen elektrischen Energiespeicher.
Weitere Merkmale der Erfindung ergeben sich aus den Ansprüchen, der Figuren und der Figurenbeschreibung. Die vorstehend in der Beschreibung genannten Merkmale und Merkmalskombinationen sowie die nachfolgend in der Figurenbeschreibung genannten und/oder in den Figuren alleine gezeigten Merkmale und Merkmalskombinationen sind nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar.
Die Erfindung wird nun anhand eines bevorzugten Ausführungsbeispiels sowie unter Bezugnahme auf die Zeichnungen näher erläutert.
Es zeigen:
Fig. 1 eine Perspektivdarstellung eines Zellmoduls für einen elektrischen Energiespeicher; und
Fig. 2 eine schematische Darstellung einer Draufsicht auf Zellpakete des Zellmoduls.
In den Figuren sind gleiche sowie funktionsgleiche Elemente mit den gleichen Bezugszeichen versehen.
Fig. 1 und Fig. 2 zeigen ein Zellmodul 1 für einen elektrischen Energiespeicher eines Kraftfahrzeugs. Das Zellmodul 1 weist hier zwei Zellpakete 2a, 2b mit mehreren Speicherzellen 3, 3‘ auf. Die Speicherzellen 3, 3‘ sind hier prismatische Batteriezellen, sodass die Zellpakete 2a, 2b als Zellstapel bzw. Zellriegel ausgebildet sind. Die Speicherzellen 3, 3‘ sind hier in Längsrichtung L gestapelt, wobei hier Isolationsschichten 4 zwischen den Speicherzellen 3, 3‘ zum Isolieren von metallischen Zellgehäusen 5 der Speicherzellen 3, 3‘ angeordnet sind. Die zwei Zellpakete 2a, 2b sind in Querrichtung Q nebeneinander angeordnet. Die Zellpakete 2a, 2b sind in Rahmenabschnitten 6a, 6b eines Zellmodulrahmens 6 angeordnet. Hier weist der Zellmodulrahmen 6 zwei Druckplatten 7 auf, welche an in Längsrichtung L gegenüberliegenden Stirnseiten der Zellpakete 2a, 2b angeordnet sind. Dabei wird eine Druckplatte 7 an den vorderen Stirnseiten beider Zellpakete 2a, 2b angeordnet und eine Druckplatte 7 wird an den hinteren Stirnseiten beider Zellpakete 2a, 2b angeordnet. Jede Druckplatte 7 erstreckt sich somit in Querrichtung Q über beide Zellpakete 2a, 2b und somit über beide Rahmenabschnitte 6a, 6b. Außerdem weist der Zellmodulrahmen 6 hier drei Zuganker 8 auf, welche sich in Längsrichtung L erstrecken und an Seitenbereichen 9, 10 der Zellpakete 2a, 2b angeordnet sind. Jeder Zuganker 8 ist mit beiden Druckplatten 7 mechanisch verbunden, beispielsweise verschweißt. Hier ist ein Zuganker 8 an einem äußeren Seitenbereich 9 des ersten Zellpakets 2a angeordnet. Ein Zuganker 8 ist an einem inneren Seitenbereich 10 des ersten Zellpakets 2a und einem inneren Seitenbereich 10 des zweiten Zellpakets 2b angeordnet und verläuft somit mittig zwischen den zwei Zellpaketen 2a, 2b. Ein Zuganker 8 ist an einem äußeren Seitenbereich 9 des zweiten Zellpakets 2b angeordnet. Der erste Rahmenabschnitt 6a wird somit durch die eine Hälfte der beiden Druckplatten 7 sowie zwei Zuganker 7 begrenzt und der zweite Rahmenabschnitt 6b wird durch die zweite Hälfte der beiden Druckplatten 7 sowie zwei Zuganker 7 begrenzt.
Zum Verschalten der Speicherzellen 3, 3‘ des jeweiligen Zellpakets 2a, 2b kann ein hier nicht gezeigtes Zellkontaktiersystem auf Oberseiten 11 der Zellpakete 2a, 2b angeordnet sein, an welcher sich auch Zellterminals 12 der Speicherzellen 3, 3‘ befinden. Das Zellkontaktiersystem ist von einer Abdeckung 13 bedeckt, welche die Oberseiten 11 der Zellpakete 2a, 2b und damit die Rahmenabschnitte 6a, 6b vollständig abdeckt. Die Abdeckung 13 ist hier mittels Schrauben 14 an dem Zellmodulrahmen 6 befestigt. Außerdem befinden sich an den Oberseiten 11 der Zellpakete 2a, 2b Entgasungselemente 15 der Speicherzellen 3, 3, über welche im Fehlerfall 16, wie anhand der Speicherzelle 3‘ des zweiten Zellpakets 2b gezeigt, ein Heißgas 17 aus dem Zellgehäuse 5 der Speicherzelle 3‘ entweichen kann. Dieses Heißgas 17, welches die Abdeckung 13 durchdringt, transportiert Hitze und Partikel aus dem Zellgehäuse 5 in einen Freiraum über der Abdeckung 13.
Um zu verhindern, dass das Heißgas 17 der fehlerhaften Speicherzelle 3‘ des zweiten Zellpakets 2b das erste Zellpaket 2a schädigt, beispielsweise indem die Partikel Kurzschlüsse zwischen den Speicherzellen 3, 3‘ der beiden Zellpakete 2a, 2b verursachen, weist das Zellmodul 1 eine hitzebeständige Barriere 18 auf, welche sich ausgehend von der Abdeckung 13 in Hochrichtung H erstreckt. Insbesondere erstreckt sich die Barriere 18 in Hochrichtung H bis zu einer Gehäusewand eines Speichergehäuses des elektrischen Energiespeichers, welche beabstandet zu der Abdeckung 13 und überlappend mit der Abdeckung 13 angeordnet ist, wenn sich das Zellmodul 1 in dem Speichergehäuse befindet. Die Barriere 18 ist insbesondere aus einem kompressiblen Material ausgebildet und ist somit zwischen den Abdeckung 13 und die Gehäusewand eingepresst. Die Barriere 18 kann beispielsweise eine Matte aus Glasfaser oder Aramitfaser, ein PU-Schaum, eine Keramikscheibe oder auch mittels eines sprühfähigen Brandschutzschaums ausgebildet sein. In Querrichtung Q erstreckt sich die Barriere 18 höchstens bis zu den Entgasungselementen 15 der Zellpakete 2a, 2b. Die Barriere 18 überdeckt also die Abdeckung 13 nicht vollständig, sondern bildet eine Art Brandschutzmauer im Bereich eines Übergangs 19 zwischen den Zellpaketen 2a, 2b. In Längsrichtung L erstreckt sich die Barriere 18 über eine gesamte Länge der Zellmoduls 1.
Die Barriere 18 unterteilt den Freiraum in zwei Brandabschnitte 20a, 20b, wobei der erste Brandabschnitt 20a oberhalb des ersten Zellpakets 2a angeordnet ist und somit einen Entgasungsraum für die Speicherzellen 3 des ersten Zellpakets 2a ausbildet und wobei der zweite Brandabschnitt 20b oberhalb des zweiten Zellpakets 2b angeordnet ist und somit einen Entgasungsraum für die Speicherzellen 3, 3‘ des zweiten Zellpakets 2b ausbildet. Die Brandabschnitte 20a, 20b sind dabei derart abgeschlossen, dass sie, zumindest für einen vorbestimmten Zeitraum keinen Heißgasübertritt von dem einen Brandabschnitt 20a, 20b in den jeweils anderen Brandabschnitt 20b, 20a zulassen.

Claims

Patentansprüche Zellmodul (1) für einen elektrischen Energiespeicher eines Kraftfahrzeugs, aufweisend:
- zumindest zwei miteinander verschaltete Zellpakete (2a, 2b) mit jeweils mehreren, miteinander verschalteten Speicherzellen (3, 3‘),
- einen Zellmodulrahmen (6) mit zumindest zwei, benachbart zueinander angeordneten Rahmenabschnitten (6a, 6b) zum Aufnehmen von jeweils einem Zellpaket (2a, 2b),
- eine an dem Zellmodulrahmen (6) angeordnete Abdeckung (13) zum Abdecken der Rahmenabschnitte (6a, 6b), und
- zumindest eine hitzebeständige, brandwandartige Barriere (18), welche an der Abdeckung (13) überlappend mit einem Übergang (19) zwischen den zwei Zellpaketen (2a, 2b) angeordnet ist und dazu ausgelegt ist, einen an die Abdeckung (13) angrenzenden Freiraum in zumindest zwei Brandabschnitte (20a, 20b) zum Verhindern einer Ausbreitung eines in den Freiraum strömenden Heißgases (17) eines Zellpakets (2b) auf ein benachbartes Zellpaket (2a) zu unterteilen. Zellmodul (1) nach Anspruch 1, dadurch gekennzeichnet, dass zwischen der Abdeckung (13) und den Zellpaketen (2a, 2b) ein Zellkontaktiersystem zum Verschalten der Speicherzellen (3, 3‘) der Zellpakte (2a, 2b) sowie zum Verschalten der Zellpakete (2a, 2b) angeordnet ist. Zellmodul (1) nach Anspruch 2, dadurch gekennzeichnet, dass die zumindest zwei Zellpakete (2a, 2b), der Zellmodulrahmen (6), die Abdeckung (13) und das Zellkontaktiersystem eine montagefertige Baugruppe ausbilden. Zellmodul (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass jedes Zellpaket (2a, 2b) als ein Zellstapel aus entlang einer Längsrichtung (L) aneinander gestapelten, insbesondere prismatischen, Speicherzellen (3, 3‘) ausgebildet ist, wobei zumindest zwei Zellstapel zum Ausbilden eines mehrreihigen Zellmoduls (1) in einer Querrichtung (Q) nebeneinander angeordnet sind. Zellmodul (1) nach Anspruch 4, dadurch gekennzeichnet, dass der Zellmodulrahmen (6) für jeden Rahmenabschnitt (6a, 6b) zwei Druckplatten (7) zum Anordnen an in Längsrichtung (L) gegenüberliegenden Stirnseiten des jeweiligen Zellstapels und zwei mit den Druckplatten (7) verbundene Zuganker (8) zum Anordnen an in Querrichtung (Q) gegenüberliegenden Seitenbereichen (9, 10) des jeweiligen Zellstapels aufweist, wobei die zwei, an den einander zugewandten inneren Seitenbereichen (10) der Zellstapel angeordneten Zuganker (8) zum Ausbilden des Zellmodulrahmens (6) mechanisch miteinander verbunden sind. Zellmodul (1) nach Anspruch 4, dadurch gekennzeichnet, dass der Zellmodulrahmen (6) zwei sich über die zwei Rahmenabschnitte (6a, 6b) erstreckende Druckplatten (7) zum Anordnen an in Längsrichtung (L) gegenüberliegenden Stirnseiten der Zellstapel und drei, mit den zwei Druckplatten (7) verbundene Zuganker (8) zum Anordnen an in Querrichtung (Q) gegenüberliegenden Seitenbereichen (9, 10) der Zellstapel aufweist, von welchen ein Zuganker (8) zwischen zwei Zellstapeln an den inneren, einander zugewandten Seitenbereichen (10) der Zellstapel angeordnet ist und zwei Zuganker (8) an den äußeren Seitenbereichen (9) der Zellstapel angeordnet sind. Zellmodul (1) nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass die Speicherzellen (3, 3‘) jeweils ein Entgasungselement (15) aufweisen, welche an einer der Abdeckung (13) zugewandten Seite des jeweiligen Zellstapels in einem sich entlang der Längsrichtung (L) erstreckenden streifenförmigen Bereich angeordnet sind, wobei sich die zumindest eine Barriere (18) in Querrichtung (Q) höchstens bis zu den streifenförmigen Bereichen und in Längsrichtung (L) über eine gesamte Länge der Zellstapel erstreckt. Zellmodul (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die hitzebeständige Barriere (18) aus einem kompressiblen Material ausgebildet ist und ein Hilfsfügeteil für eine Pressverbindung zwischen der Abdeckung (13) und einer Gehäusewand eines Speichergehäuses des elektrischen Energiespeichers ausbildet. Zellmodul (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die zumindest eine Barriere (18) als ein Fertigteil ausgebildet ist, welches an der Abdeckung (13) befestigt ist. Zellmodul (1) nach Anspruch 9, dadurch gekennzeichnet, dass das Fertigteil eine Brandschutzmatte ist. Zellmodul (1) nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die zumindest eine Barriere (18) als eine feste Schaumwand ausgebildet ist. Elektrischer Energiespeicher für ein Kraftfahrzeug aufweisend ein Speichergehäuse und zumindest ein Zellmodul (1) nach einem der vorhergehenden Ansprüche, wobei das zumindest eine Zellmodul (1) in dem Speichergehäuse angeordnet ist und sich die zumindest eine Barriere (18) ausgehend von der Abdeckung (13) bis zu einer Gehäusewand des Speichergehäuses erstreckt und sich an der Gehäusewand abstützt.
PCT/EP2023/054773 2022-03-25 2023-02-27 Zellmodul mit mehreren zellpaketen und hitzebeständiger barriere zwischen den zellpaketen WO2023180007A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102022107099.9 2022-03-25
DE102022107099.9A DE102022107099B4 (de) 2022-03-25 2022-03-25 Elektrischer Energiespeicher aufweisend zumindest ein Zellmodul mit mehreren Zellpaketen und hitzebeständiger Barriere zwischen den Zellpaketen

Publications (1)

Publication Number Publication Date
WO2023180007A1 true WO2023180007A1 (de) 2023-09-28

Family

ID=85384490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/054773 WO2023180007A1 (de) 2022-03-25 2023-02-27 Zellmodul mit mehreren zellpaketen und hitzebeständiger barriere zwischen den zellpaketen

Country Status (2)

Country Link
DE (1) DE102022107099B4 (de)
WO (1) WO2023180007A1 (de)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011103986A1 (de) * 2011-06-10 2012-03-29 Daimler Ag Verfahren und Vorrichtung zur Herstellung einer elektrochemischen Batterie und elektrochemische Batterie
DE102017218752A1 (de) * 2017-10-20 2019-04-25 Bayerische Motoren Werke Aktiengesellschaft Abdeckeinrichtung für ein Batteriegehäuse einer Traktionsbatterie eines Kraftfahrzeugs, Batteriegehäuse, Traktionsbatterie sowie Kraftfahrzeug
DE102018213066A1 (de) 2018-08-03 2020-02-06 Audi Ag Verfahren zum Herstellen eines Batteriemoduls für eine Hochvoltbatterie eines Kraftfahrzeugs und Batteriemodul für eine Hochvoltbatterie eines Kraftfahrzeugs
DE102020115132A1 (de) * 2020-06-08 2021-12-09 Bayerische Motoren Werke Aktiengesellschaft Baugruppe für eine Traktionsbatterie mit Schutzeinheit, Traktionsbatterie sowie Kraftfahrzeug
DE102021122524A1 (de) * 2020-09-02 2022-03-03 Sk Innovation Co., Ltd. Batteriemodul umfassend einer wärmebarriere und ein batteriepaket
DE102020129566B3 (de) * 2020-11-10 2022-04-14 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Antriebsbatterie

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN210535737U (zh) 2019-10-29 2020-05-15 上海蔚来汽车有限公司 电池包的隔热组件
CN213124586U (zh) 2020-07-13 2021-05-04 远景动力技术(江苏)有限公司 一种电池包容纳装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011103986A1 (de) * 2011-06-10 2012-03-29 Daimler Ag Verfahren und Vorrichtung zur Herstellung einer elektrochemischen Batterie und elektrochemische Batterie
DE102017218752A1 (de) * 2017-10-20 2019-04-25 Bayerische Motoren Werke Aktiengesellschaft Abdeckeinrichtung für ein Batteriegehäuse einer Traktionsbatterie eines Kraftfahrzeugs, Batteriegehäuse, Traktionsbatterie sowie Kraftfahrzeug
DE102018213066A1 (de) 2018-08-03 2020-02-06 Audi Ag Verfahren zum Herstellen eines Batteriemoduls für eine Hochvoltbatterie eines Kraftfahrzeugs und Batteriemodul für eine Hochvoltbatterie eines Kraftfahrzeugs
DE102020115132A1 (de) * 2020-06-08 2021-12-09 Bayerische Motoren Werke Aktiengesellschaft Baugruppe für eine Traktionsbatterie mit Schutzeinheit, Traktionsbatterie sowie Kraftfahrzeug
DE102021122524A1 (de) * 2020-09-02 2022-03-03 Sk Innovation Co., Ltd. Batteriemodul umfassend einer wärmebarriere und ein batteriepaket
DE102020129566B3 (de) * 2020-11-10 2022-04-14 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Antriebsbatterie

Also Published As

Publication number Publication date
DE102022107099B4 (de) 2024-04-18
DE102022107099A1 (de) 2023-09-28

Similar Documents

Publication Publication Date Title
DE112014006058B4 (de) Batterieverdrahtungsmodul
WO2020259879A1 (de) Energiespeichereinrichtung für ein kraftfahrzeug, kraftfahrzeug sowie herstellungsverfahren
DE102011015622B4 (de) Batterie für ein Kraftfahrzeug
DE102014207403A1 (de) Batterieeinheit mit einer Aufnahmeeinrichtung und einer Mehrzahl von elektrochemischen Zellen sowie Batteriemodul mit einer Mehrzahl von solchen Batterieeinheiten
EP2593982B1 (de) Batteriezellenmodul, batterie und kraftfahrzeug
DE112014006079B4 (de) Verfahren zum Herstellen eines Batterieverdrahtungsmoduls
DE102020106780A1 (de) Batterie mit Modulhalterung zum Aufnehmen von Heißgas sowie Kraftfahrzeug
DE102018010029A1 (de) Montagevorrichtung und Verfahren zur Montage eines Zellblocks für eine Batterie, sowie eine entsprechender Zellblock für eine Batterie
DE102020119450A1 (de) Batteriemodul mit Kondensat- und Propagationsschutz, Traktionsbatterie sowie elektrifiziertes Kraftfahrzeug
WO2021254701A1 (de) Haltevorrichtung für batteriezellen
WO2020030651A1 (de) Batteriegehäuse, batteriesystem und montageverfahren für ein batteriesystem
WO2020078649A1 (de) Schutzeinheit für ein batteriemodul einer hochvoltbatterie, batteriemodul sowie hochvoltbatterie
DE102020202306A1 (de) Batteriemodul für ein Hochvolt-Batteriesystem
EP4070407B1 (de) Modulschicht und daraus aufgebautes batteriesystem
WO2020007569A1 (de) Heizeinrichtung für eine prismatische batteriezelle einer hochvoltbatterie eines kraftfahrzeugs, batteriezelle, batteriemodul, hochvoltbatterie sowie kraftfahrzeug
DE102021100369A1 (de) Batteriezellenanordnung mit einer wärmeleitenden, elektrisch isolierenden Isolierschicht, Kraftfahrzeug und Verfahren zum Bereitstellen einer Batteriezellenanordnung
DE102022107099B4 (de) Elektrischer Energiespeicher aufweisend zumindest ein Zellmodul mit mehreren Zellpaketen und hitzebeständiger Barriere zwischen den Zellpaketen
WO2012062397A1 (de) Batterie mit einem zellverbund
DE102012015910A1 (de) Batterie, insbesondere für ein Kraftfahrzeug, und Kraftfahrzeug
DE102015225405A1 (de) Energiebereitstellungszelle
DE102019131191A1 (de) Gehäusedeckel für ein Batteriegehäuse mit Partikelschutz und Hitzeschutz, Batteriegehäuse, Traktionsbatterie sowie Kraftfahrzeug
DE102022112678B3 (de) Vorrichtung und Verfahren zur thermischen Isolierung bei Zellstapeln
WO2022008167A1 (de) Batteriemodul mit schutzeinrichtung mit l-profil-blechen, traktionsbatterie sowie kraftfahrzeug
EP2347466B1 (de) Energiespeichereinheit
DE102022108757B3 (de) Akkumulatoranordnung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23707716

Country of ref document: EP

Kind code of ref document: A1