WO2023179752A1 - Dmrs传输方法、装置及相关设备 - Google Patents

Dmrs传输方法、装置及相关设备 Download PDF

Info

Publication number
WO2023179752A1
WO2023179752A1 PCT/CN2023/083604 CN2023083604W WO2023179752A1 WO 2023179752 A1 WO2023179752 A1 WO 2023179752A1 CN 2023083604 W CN2023083604 W CN 2023083604W WO 2023179752 A1 WO2023179752 A1 WO 2023179752A1
Authority
WO
WIPO (PCT)
Prior art keywords
ports
type
dmrs
data
occupied
Prior art date
Application number
PCT/CN2023/083604
Other languages
English (en)
French (fr)
Inventor
郑凯立
塔玛拉卡拉盖施
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023179752A1 publication Critical patent/WO2023179752A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • This application belongs to the field of communication technology, and specifically relates to a DMRS transmission method, device and related equipment.
  • DMRS Demodulation Reference Signal
  • DMRS configuration type 1 supports a maximum of 4 ports
  • DMRS configuration type 2 supports a maximum of 8 ports
  • DMRS configuration type 2 supports a maximum of 6 ports
  • a dual-symbol structure supports a maximum of 12 ports.
  • the ports supported by DMRS on the data channel are relatively fixed, which limits the number of terminals that can perform collaborative transmission and the number of data streams that the data channel can transmit simultaneously.
  • Embodiments of the present application provide a DMRS transmission method, device and related equipment, which can solve the problem that the DMRS supported ports of the data channel are relatively fixed, limiting the number of terminals that can perform collaborative transmission, and the number of data streams that can be transmitted simultaneously by the data channel. .
  • a DMRS transmission method which method includes:
  • the terminal sends or receives a demodulation reference signal DMRS.
  • the DMRS includes X DMRS ports.
  • the X DMRS ports are ports among the N ports supported by the DMRS.
  • the N ports include a first type port and a first type port. Two types of ports.
  • the first type of port is based on a frequency domain orthogonal cover code (FD-OCC) sequence of length 2.
  • the second type port is mapped based on the FD-OCC sequence of length 4, and X and N are both positive integers.
  • FD-OCC frequency domain orthogonal cover code
  • a DMRS transmission device in a second aspect, includes:
  • the DMRS includes X DMRS ports, the X DMRS ports are ports among the N ports supported by the DMRS, the N ports include the first Type port and second type port, the first type port is mapped based on the frequency domain orthogonal cover code FD-OCC sequence of length 2, and the second type port is mapped based on the FD-OCC sequence of length 4, X and N are both positive integers.
  • a DMRS transmission method which method includes:
  • the network side device sends or receives a demodulation reference signal DMRS.
  • the DMRS includes X DMRS ports.
  • the X DMRS ports are ports among N ports supported by the DMRS.
  • the N ports include first type ports. and a second type port.
  • the first type port performs mapping based on a frequency domain orthogonal cover code FD-OCC sequence with a length of 2.
  • the second type port performs mapping based on a FD-OCC sequence with a length of 4.
  • X, N are all positive integers.
  • a DMRS transmission device in a fourth aspect, includes:
  • the DMRS includes X DMRS ports, the X DMRS ports are ports among the N ports supported by the DMRS, the N ports include the first Type port and second type port, the first type port is mapped based on the frequency domain orthogonal cover code FD-OCC sequence of length 2, and the second type port is mapped based on the FD-OCC sequence of length 4, X and N are both positive integers.
  • a terminal in a fifth aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are executed by the processor, the following implementations are implemented: The steps of the method described in one aspect.
  • a terminal including a processor and a communication interface, wherein the communication interface is used to send or receive a demodulation reference signal DMRS, the DMRS includes X DMRS ports, and the X DMRS ports are A port among the N ports supported by the DMRS.
  • the N ports include a first type port and a second type port.
  • the first type port is based on a frequency domain orthogonal coverage code FD-OCC sequence of length 2. Mapping, the second type port is mapped based on the FD-OCC sequence with a length of 4, and X and N are both positive integers.
  • a network side device in a seventh aspect, includes a processor and a memory.
  • the memory stores programs or instructions that can be run on the processor.
  • the program or instructions are executed by the processor.
  • a network side device including a processor and a communication interface, wherein the communication interface is used to send or receive a demodulation reference signal DMRS, the DMRS includes X DMRS ports, and the X DMRS
  • the port is a port among the N ports supported by the DMRS.
  • the N ports include a first type port and a second type port.
  • the first type port is based on the frequency domain orthogonal coverage code FD-OCC with a length of 2.
  • the second type port is mapped based on the FD-OCC sequence with a length of 4, and both X and N are positive integers.
  • a ninth aspect provides a communication system, including: a terminal and a network side device.
  • the terminal can be used to perform the steps of the DMRS transmission method as described in the first aspect.
  • the network side device can be used to perform the steps of the DMRS transmission method as described in the third aspect. The steps of the DMRS transmission method.
  • a readable storage medium In a tenth aspect, a readable storage medium is provided. Programs or instructions are stored on the readable storage medium. When the programs or instructions are executed by a processor, the steps of the method described in the first or third aspect are implemented. .
  • a chip in an eleventh aspect, includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the first aspect or the third aspect. The steps of the method described in this aspect.
  • a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the first aspect or the second aspect.
  • the terminal sends or receives DMRS.
  • the DMRS includes X DMRS ports.
  • the X DMRS ports are ports among the N ports supported by the DMRS.
  • the N ports include the first type. port and a second type port.
  • the first type port is mapped based on the FD-OCC sequence of length 2
  • the second type port is mapped based on the FD-OCC sequence of length 4.
  • X and N are both positive integers. .
  • the number of ports that DMRS can support can be increased, so that the number of data streams that can be transmitted simultaneously by the data channel is increased.
  • multiple users, multiple inputs and multiple outputs can be added. Multiple Input Multiple Output, MU-MIMO) user multiplexing number.
  • Figure 1 is a block diagram of a wireless communication system applicable to the embodiment of the present application.
  • Figure 2 is one of the flow charts of the DMRS transmission method provided by the embodiment of the present application.
  • Figure 3 is the second flow chart of the DMRS transmission method provided by the embodiment of the present application.
  • Figures 4-1 to 4-22 are schematic diagrams of DMRS ports provided by embodiments of this application.
  • Figure 5 is one of the structural diagrams of the DMRS transmission device provided by the embodiment of the present application.
  • Figure 6 is the second structural diagram of the DMRS transmission device provided by the embodiment of the present application.
  • Figure 7 is a structural diagram of a communication device provided by an embodiment of the present application.
  • Figure 8 is a structural diagram of a terminal provided by an embodiment of the present application.
  • Figure 9 is a structural diagram of a network-side device provided by an embodiment of the present application.
  • first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and “second” are distinguished objects It is usually one type, and the number of objects is not limited.
  • the first object can be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced, LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA single-carrier frequency division multiple access
  • NR New Radio
  • FIG. 1 shows a block diagram of a wireless communication system to which embodiments of the present application are applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, or a super mobile personal computer.
  • Tablet Personal Computer Tablet Personal Computer
  • laptop computer laptop computer
  • PDA Personal Digital Assistant
  • PDA Personal Digital Assistant
  • UMPC ultra-mobile personal computer
  • UMPC mobile Internet device
  • MID mobile Internet Device
  • AR augmented reality
  • VR virtual reality
  • robots wearable devices
  • WUE Vehicle User Equipment
  • PUE Pedestrian User Equipment
  • smart home home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.
  • game consoles personal computers (personal computer, PC), teller machine or self-service machine and other terminal-side devices.
  • Wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets, smart rings, smart necklaces, smart anklets) bracelets, smart anklets, etc.), smart wristbands, smart clothing, etc.
  • the network side device 12 may include an access network device or a core network device, where the access network device may also be called a radio access network device, a radio access network (Radio Access Network, RAN), a radio access network function or a wireless access network unit.
  • Access network equipment may include a base station, a Wireless Local Area Network (WLAN) access point or a WiFi node, etc.
  • WLAN Wireless Local Area Network
  • the base station may be called a Node B, an Evolved Node B (eNB), an access point, a base transceiver station ( Base Transceiver Station (BTS), radio base station, radio transceiver, Basic Service Set (BSS), Extended Service Set (ESS), home B-node, home evolved B-node, transmitting and receiving point ( Transmitting Receiving Point (TRP) or some other appropriate term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms, it needs to be said It should be noted that in the embodiment of this application, only the base station in the NR system is used as an example for introduction, and the specific type of the base station is not limited.
  • this embodiment of the present application provides a DMRS transmission method, which includes the following steps:
  • Step 201 The terminal sends or receives a demodulation reference signal (DMRS).
  • the DMRS includes X DMRS ports.
  • the X DMRS ports are ports among the N ports supported by the DMRS.
  • the N The ports include a first type port and a second type port.
  • the first type port is mapped based on a Frequency Domain Orthogonal Cover Code (FD-OCC) sequence of length 2.
  • the second type port is mapped based on a frequency domain orthogonal cover code (FD-OCC) sequence of length 2.
  • the port is mapped based on the FD-OCC sequence of length 4, and X and N are both positive integers.
  • FD-OCC Frequency Domain Orthogonal Cover Code
  • FD-OCC frequency domain orthogonal cover code
  • the X DMRS ports are ports among the N ports supported by the DMRS.
  • the N ports include first type ports and second type ports. At least one item.
  • the first type port can be a port that continues to use related technologies, and the second type port can be understood as a new port based on the first type port.
  • DMRS can be added by making the N ports include the first type port and the second type port. Number of supported ports. N can be understood as the maximum number of ports supported by the DMRS.
  • the terminal sends or receives DMRS.
  • the DMRS includes X DMRS ports.
  • the X DMRS ports are ports among N ports supported by the DMRS.
  • the N ports include first type ports and A second type port.
  • the first type port is mapped based on a FD-OCC sequence of length 2.
  • the second type port is mapped based on a FD-OCC sequence of length 4.
  • X and N are both positive integers.
  • the configuration type of DMRS may be a first configuration type, and the first configuration type is related to DMRS configuration type 1, which may be DMRS configuration type 1 or enhanced DMRS configuration type 1; or it may be a second configuration type, and the The second configuration type is related to DMRS configuration type 2, which may be DMRS configuration type 2 or enhanced DMRS configuration type 2.
  • the configuration type of the DMRS is the first configuration type, so Y DMRS ports among the X DMRS ports include the first type port and the second type port, and the Y DMRS ports belong to the same code division multiplexing (Code Division Multiplexing, CDM) group
  • CDM Code Division Multiplexing
  • the resource elements (Resource Element, RE) occupied by the first type port and the second type port included in the Y DMRS ports satisfy the first mapping rule
  • Y is a positive integer less than or equal to X.
  • the first mapping rule includes any of the following:
  • the REs occupied by the second type port are the same as the REs occupied by the first type port.
  • the first type port and the second type port occupies 6 REs in each mapped resource block (RB).
  • the DMRS is granular with G RBs. Degree mapping, where G is a positive even number.
  • the REs occupied by the second type port are a subset of the REs occupied by the first type port.
  • the first type port occupies 6 RBs in each mapped RB.
  • the second type port occupies 4 REs in each mapped RB.
  • the 4 REs occupied by the second type port are target REs among the 6 REs occupied by the first type port.
  • the target RE includes any of the following:
  • the relative index is the index of the 6 REs occupied by the first type port.
  • the above method of determining the target RE can make the channel estimation processing corresponding to the first type port more flexible, and can improve the channel estimation performance of the terminal.
  • the configuration type of the DMRS is the second configuration type
  • Y DMRS ports among the X DMRS ports include the first type port and the second type port
  • the REs occupied by the first type ports and the second type ports included in the Y DMRS ports satisfy the second mapping rule, and Y is less than or equal to A positive integer of X.
  • the second mapping rule includes: REs occupied by the second type port among the X DMRS ports are the same as REs occupied by the first type port.
  • the first type port and the second type port belonging to the same CDM group among the N ports satisfy: the length of the FD corresponding to the first type port is 2 -OCC sequence is [+1, +1] and/or [+1, -1], and the FD-OCC sequence of length 4 corresponding to the second type port is [+1, +1, -1, -1] and/or [+1, -1, -1, +1].
  • a CDM group includes two ports of the first type and two ports of the second type.
  • the two first-type ports respectively correspond to the FD-OCC sequences of length 2 [+1, +1] and [+1, -1]
  • the two second-type ports respectively correspond to the FD-OCC sequences of length 4
  • the FD-OCC sequences are [+1, +1, -1, -1] and [+1, -1, -1, +1].
  • the method further includes:
  • the terminal receives cooperation indication information and/or channel estimation hypothesis information; wherein the cooperation indication information is used to indicate whether the X DMRS ports and the indicated DMRS ports of other terminals that coordinate transmission with the terminal are all the A type one port or a second type port; the channel estimation hypothesis information is used to indicate that the channel estimation of the terminal uses a FD-OCC sequence of length 2 as the channel estimation hypothesis, or uses a FD-OCC sequence of length 4 as the channel Estimate assumptions.
  • the method further includes:
  • the X DMRS ports are all the first type ports, and the cooperation indication information indicates that the X DMRS ports and the DMRS ports indicated by other terminals that cooperate with the terminal for transmission are all the first type ports.
  • the terminal uses an FD-OCC sequence of length 2 as a channel estimation hypothesis to perform channel estimation on the X DMRS ports;
  • the X DMRS ports are all the second type ports, and the cooperation indication information indicates that the X DMRS ports and other terminals that transmit in cooperation with the terminal are instructed.
  • the terminal uses an FD-OCC sequence of length 4 as a channel estimation hypothesis to perform channel estimation on the X DMRS ports.
  • the method further includes:
  • the terminal uses an FD-OCC sequence of length 2 as a channel estimation hypothesis to perform channel estimation on the first type port;
  • the terminal's channel estimation uses an FD-OCC sequence of length 4 as the channel estimation hypothesis
  • the terminal Using the FD-OCC sequence of length 4 as a channel estimation hypothesis channel estimation is performed on the first type port.
  • the method further includes:
  • the terminal receives indication information sent by a network side device, where the indication information is used to indicate the X DMRS ports, where the X DMRS ports include at least one of the first type port and the second type port. item.
  • the configuration type of the DMRS is the first configuration type
  • the maximum symbol length of the DMRS is 1
  • the number of codewords occupied by the data transmission corresponding to the DMRS is 1 or the
  • the indication information indicates the first information of the X DMRS ports, and the first information includes any one of the following:
  • the number of CDM groups occupied by no data is 1, and the X DMRS ports include 1 second type port;
  • the number of CDM groups occupied by no data is 1, and the X DMRS ports include 2 of the second type ports;
  • the number of CDM groups occupied by no data is 2, and the X DMRS ports include 1 second type port;
  • the number of CDM groups occupied by no data is 2, and the X DMRS ports include 2 of the second type ports;
  • the number of CDM groups occupied by no data is 2, and the X DMRS ports include 2 of the first type ports and 1 of the second type port.
  • the number of CDM groups occupied by no data is 2, and the X DMRS ports include 2 of the first type ports and 1 of the second type port.
  • the first information may include a variety of situations, so that the DMRS ports that the terminal can use are more abundant, and the flexibility of the terminal in cooperative transmission (MU-MIMO transmission) is increased.
  • the configuration type of the DMRS is the first configuration type
  • the maximum symbol length of the DMRS is 1
  • the number of codewords occupied by the data transmission corresponding to the DMRS is 2 or the
  • the indication information indicates the second information of the X DMRS ports, and the second information includes any one of the following:
  • the number of CDM groups occupied by no data is 2, and the X DMRS ports include 4 of the first type ports and 1 of the second type port;
  • the number of CDM groups occupied by no data is 2, and the X DMRS ports include 4 of the first type ports and 2 of the second type ports;
  • the number of CDM groups occupied by no data is 2, and the X DMRS ports include 4 of the first type ports and 3 of the second type ports;
  • the number of CDM groups occupied by no data is 2, and the X DMRS ports include 4 of the first type ports and 4 of the second type ports.
  • the second information may include a variety of situations, so that the DMRS ports that the terminal can use are more abundant, and the flexibility of the terminal in cooperative transmission (MU-MIMO transmission) is increased.
  • MU-MIMO transmission MU-MIMO transmission
  • data transmission with a number of data streams of 5 to 8 can also be performed.
  • the configuration type of the DMRS is the first configuration type
  • the maximum symbol length of the DMRS is 2
  • the number of codewords occupied by the data transmission corresponding to the DMRS is 1 or the
  • the indication information indicates the third information of the X DMRS ports, and the third information includes any one of the following:
  • the port includes 1 port of the second type;
  • the number of CDM groups occupied by no data is 1, the number of preamble symbols is 1, and the X DMRS ports include 2 of the second type ports;
  • the number of CDM groups occupied by no data is 1, the number of preamble symbols is 1, and the X DMRS ports include 2 of the first type ports and 1 of the second type ports;
  • the number of CDM groups occupied by no data is 1, the number of prefix symbols is 1, and the X DMRS ports include 2 of the first type ports and 2 of the second type ports;
  • the number of CDM groups occupied by no data is 2, the number of prefix symbols is 1, and the X DMRS ports include 1 second type port;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 1, and the X DMRS ports include 2 of the second type ports;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 1, and the X DMRS ports include 2 of the first type ports and 1 of the second type port;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 1, and the X DMRS ports include 2 of the first type ports and 2 of the second type ports;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 1, and the X DMRS ports include 3 of the first type ports and 1 of the second type port;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 2, and the X DMRS ports include 1 second type port;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 2, and the X DMRS ports include 2 of the second type ports;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 2, and the X DMRS ports include 2 of the first type ports and 1 of the second type port;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 2, and the X DMRS ports include 2 of the first type ports and 2 of the second type ports.
  • the third information may include a variety of situations, so that the DMRS ports that the terminal can use are more abundant, and the flexibility of the terminal in cooperative transmission (MU-MIMO transmission) is increased.
  • the configuration type of the DMRS is the first configuration type
  • the maximum symbol length of the DMRS is 2
  • the number of code words occupied by the data transmission corresponding to the DMRS When the number of data streams is 1 or the number of data streams corresponding to the DMRS transmission is 5 to 8, the indication information indicates the fourth information of the X DMRS ports, and the fourth information includes any one of the following:
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 1, and the X DMRS ports include 4 of the first type ports and 1 of the second type port;
  • the number of CDM groups occupied by no data is 2, the number of prefix symbols is 1, and the X DMRS ports include 4 of the first type ports and 2 of the second type ports;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 1, and the X DMRS ports include 4 of the first type ports and 3 of the second type ports;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 1, and the X DMRS ports include 4 of the first type ports and 4 of the second type ports;
  • the number of CDM groups occupied by no data is 1, the number of preamble symbols is 2, and the X DMRS ports include 3 of the first type ports and 2 of the second type ports;
  • the number of CDM groups occupied by no data is 1, the number of preamble symbols is 2, and the X DMRS ports include 4 of the first type ports and 2 of the second type ports;
  • the number of CDM groups occupied by no data is 1, the number of preamble symbols is 2, and the X DMRS ports include 4 of the first type ports and 3 of the second type ports;
  • the number of CDM groups occupied by no data is 1, the number of preamble symbols is 2, and the X DMRS ports include 4 of the first type ports and 4 of the second type ports;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 2, and the X DMRS ports include 3 of the first type ports and 2 of the second type ports;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 2, and the X DMRS ports include 4 of the first type ports and 2 of the second type ports;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 2, and the X DMRS ports include 4 of the first type ports and 3 of the second type ports;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 2, and the X DMRS ports include 4 of the first type ports and 4 of the second type ports.
  • the fourth information may include a variety of situations, so that the DMRS ports that the terminal can use are more abundant, and the flexibility of the terminal in cooperative transmission (MU-MIMO transmission) is increased. Additionally, making When the DMRS used by the terminal has a single symbol structure, data transmission with a number of data streams of 5 to 8 can also be performed.
  • this embodiment of the present application provides a DMRS transmission method, which includes the following steps:
  • Step 301 The network side device sends or receives a demodulation reference signal DMRS.
  • the DMRS includes X DMRS ports.
  • the X DMRS ports are ports among the N ports supported by the DMRS.
  • the N ports include the A first type port and a second type port.
  • the first type port is mapped based on the frequency domain orthogonal cover code FD-OCC sequence of length 2
  • the second type port is mapped based on the FD-OCC sequence of length 4.
  • X and N are both positive integers.
  • the X DMRS ports are ports among the N ports supported by the DMRS.
  • the N ports include first type ports and second type ports. At least one item.
  • the first type port can be a port that continues to use related technologies, and the second type port can be understood as a new port based on the first type port.
  • DMRS can be added by making the N ports include the first type port and the second type port. Number of supported ports. N can be understood as the maximum number of ports supported by the DMRS.
  • the network side device sends or receives DMRS.
  • the DMRS includes X DMRS ports.
  • the X DMRS ports are ports among the N ports supported by the DMRS.
  • the N ports include the first type. port and a second type port.
  • the first type port is mapped based on the FD-OCC sequence of length 2
  • the second type port is mapped based on the FD-OCC sequence of length 4.
  • X and N are both positive integers. .
  • the number of ports that DMRS can support can be increased, so that the number of data streams that can be transmitted simultaneously by the data channel is increased.
  • the number of user multiplexing of MU-MIMO can also be increased.
  • the X DMRS ports include at least one of the first type port and the second type port.
  • the method further includes:
  • the network side device sends indication information, where the indication information is used to indicate the X DMRS ports, where the X DMRS ports include at least one of the first type port and the second type port.
  • the configuration type of the DMRS is a first configuration type
  • Y DMRS ports among the X DMRS ports include the first type port and the second type port.
  • Type ports, and the Y DMRS ports belong to the same code division multiplexing CDM group, the resource units RE occupied by the first type ports and the second type ports included in the Y DMRS ports satisfy
  • the first mapping rule is that Y is a positive integer less than or equal to X.
  • the first mapping rule includes any of the following:
  • the REs occupied by the second type port are the same as the REs occupied by the first type port;
  • the REs occupied by the second type port are a subset of the REs occupied by the first type port.
  • the RE occupied by the second type port is the same as the RE occupied by the first type port
  • the RE occupied by the second type port is the same as the RE occupied by the first type port.
  • the first type port and the second type port occupy the same 6 REs in each mapped resource block RB.
  • the DMRS Mapping is performed with G RBs as the granularity, where G is a positive even number.
  • the first type port when the REs occupied by the second type port are a subset of the REs occupied by the first type port, on the same OFDM symbol, the first type port Each mapped RB occupies 6 REs, and the second type port occupies 4 REs in each mapped RB.
  • the four REs occupied by the second type port are target REs among the six REs occupied by the first type port.
  • the target RE includes any of the following:
  • the relative index is the index of the 6 REs occupied by the first type port.
  • the configuration type of the DMRS is the second configuration type
  • Y DMRS ports among the X DMRS ports include the first type port and the second type port
  • Y is a positive integer less than or equal to X.
  • the second mapping rule includes:
  • the REs occupied by the second type port are the same as the REs occupied by the first type port.
  • the first type port and the second type port belonging to the same CDM group among the N ports satisfy: the length of the FD corresponding to the first type port is 2 -OCC sequence is [+1, +1] and/or [+1, -1], and the FD-OCC sequence of length 4 corresponding to the second type port is [+1, +1, -1, -1] and/or [+1, -1, -1, +1].
  • the method further includes:
  • the network side device sends cooperation indication information and/or channel estimation hypothesis information; wherein the cooperation indication information is used to indicate whether the X DMRS ports and the indicated DMRS ports of other terminals that cooperate with the terminal for transmission are all It is a first type port or a second type port; the channel estimation assumption information is used to indicate that the channel estimation of the terminal uses an FD-OCC sequence of length 2 as the channel estimation assumption, or uses an FD-OCC sequence of length 4 Assumptions for channel estimation.
  • the method further includes:
  • the X DMRS ports are all the first type ports, and the cooperation indication information indicates that the X DMRS ports and the DMRS ports indicated by other terminals that cooperate with the terminal for transmission are all the first type ports.
  • the terminal uses an FD-OCC sequence of length 2 as a channel estimation hypothesis to perform channel estimation on the X DMRS ports;
  • the X DMRS ports are all the second type ports, and the cooperation indication information indicates that the X DMRS ports and the DMRS ports indicated by other terminals that cooperate with the terminal for transmission are all second type ports.
  • the terminal uses an FD-OCC sequence of length 4 as a channel estimation hypothesis to perform channel estimation on the X DMRS ports.
  • the method further includes:
  • the terminal uses the FD-OCC sequence of length 2 as the channel estimation hypothesis, and performs the first Type port performs channel estimation;
  • the terminal's channel estimation uses an FD-OCC sequence of length 4 as the channel estimation hypothesis
  • the terminal Using the FD-OCC sequence of length 4 as a channel estimation hypothesis channel estimation is performed on the first type port.
  • the configuration type of the DMRS is the first configuration type
  • the maximum symbol length of the DMRS is 1
  • the number of codewords occupied by the data transmission corresponding to the DMRS is 1 or the
  • the indication information indicates the first information of the X DMRS ports, and the first information includes any one of the following:
  • the number of CDM groups occupied by no data is 1, and the X DMRS ports include 1 second type port;
  • the number of CDM groups occupied by no data is 1, and the X DMRS ports include 2 of the second type ports;
  • the number of CDM groups occupied by no data is 2, and the X DMRS ports include 1 second type port;
  • the number of CDM groups occupied by no data is 2, and the X DMRS ports include 2 of the second type ports;
  • the number of CDM groups occupied by no data is 2, and the X DMRS ports include 2 of the first type ports and 1 of the second type port.
  • the number of CDM groups occupied by no data is 2, and the X DMRS ports include 2 of the first type ports and 1 of the second type port.
  • the configuration type of the DMRS is the first configuration type
  • the maximum symbol length of the DMRS is 1
  • the number of codewords occupied by the data transmission corresponding to the DMRS is 2 or the
  • the indication information indicates the second information of the X DMRS ports, and the second information includes any one of the following:
  • the number of CDM groups occupied by no data is 2, and the X DMRS ports include 4 of the first type ports and 1 of the second type port;
  • the number of CDM groups occupied by no data is 2, and the X DMRS ports include 4 of the first type ports and 2 of the second type ports;
  • the number of CDM groups occupied by no data is 2, and the X DMRS ports include 4 of the first type ports and 3 of the second type ports;
  • the number of CDM groups occupied by no data is 2, and the X DMRS ports include 4 of the first type ports and 4 of the second type ports.
  • the configuration type of the DMRS is the first configuration type
  • the maximum symbol length of the DMRS is 2
  • the number of codewords occupied by the data transmission corresponding to the DMRS is 1 or the
  • the indication information indicates the third information of the X DMRS ports, and the third information includes any one of the following:
  • the number of CDM groups occupied by no data is 1, the number of prefix symbols is 1, and the X DMRS ports include 1 second type port;
  • the number of CDM groups occupied by no data is 1, the number of preamble symbols is 1, and the X DMRS ports include 2 of the second type ports;
  • the number of CDM groups occupied by no data is 1, the number of preamble symbols is 1, and the X DMRS ports include 2 of the first type ports and 1 of the second type port;
  • the number of CDM groups occupied by no data is 1, the number of prefix symbols is 1, and the X DMRS ports include 2 of the first type ports and 2 of the second type ports;
  • the number of CDM groups occupied by no data is 2, the number of prefix symbols is 1, and the X DMRS ports include 1 second type port;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 1, and the X DMRS ports include 2 of the second type ports;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 1, and the X DMRS ports include 2 of the first type ports and 1 of the second type port;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 1, and the X DMRS ports include 2 of the first type ports and 2 of the second type ports;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 1, and the X DMRS ports include 3 of the first type ports and 1 of the second type port;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 2, and the X DMRS ports include 1 second type port;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 2, and the X DMRS ports include 2 of the second type ports;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 2, and the X DMRS ports include 2 of the first type ports and 1 of the second type port;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 2, and the X DMRS ports include 2 of the first type ports and 2 of the second type ports.
  • the configuration type of the DMRS is the first configuration type
  • the maximum symbol length of the DMRS is 2
  • the number of codewords occupied by the data transmission corresponding to the DMRS is 1 or the
  • the indication information indicates the fourth information of the X DMRS ports, and the fourth information includes any one of the following:
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 1, and the X DMRS ports include 4 of the first type ports and 1 of the second type port;
  • the number of CDM groups occupied by no data is 2, the number of prefix symbols is 1, and the X DMRS ports include 4 of the first type ports and 2 of the second type ports;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 1, and the X DMRS ports include 4 of the first type ports and 3 of the second type ports;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 1, and the X DMRS ports include 4 of the first type ports and 4 of the second type ports;
  • the number of CDM groups occupied by no data is 1, the number of preamble symbols is 2, and the X DMRS ports include 3 of the first type ports and 2 of the second type ports;
  • the number of CDM groups occupied by no data is 1, the number of preamble symbols is 2, and the X DMRS ports include 4 of the first type ports and 2 of the second type ports;
  • the number of CDM groups occupied by no data is 1, the number of preamble symbols is 2, and the X DMRS ports include 4 of the first type ports and 3 of the second type ports;
  • the number of CDM groups occupied by no data is 1, the number of preamble symbols is 2, and the X DMRS ports include 4 of the first type ports and 4 of the second type ports;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 2, and the X DMRS ports include 3 of the first type ports and 2 of the second type ports;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 2, and the X DMRS ports include 4 of the first type ports and 2 of the second type ports;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 2, and the X DMRS ports include 4 of the first type ports and 3 of the second type ports;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 2, and the X DMRS ports include 4 of the first type ports and 4 of the second type ports.
  • mapping patterns of 8 DMRS ports are shown in Figure 4-1 to Figure 4-8, and FD-
  • OCC sequence is as follows:
  • Ports 0, 1, 8, and 9 belong to a CDM group, and ports 2, 3, 10, and 11 belong to a CDM group.
  • Ports 0, 1, 2, and 3 are the first type ports, and ports 8, 9, 10, and 11 are the second type ports.
  • the FD-OCC sequence [+1+1] with a length of 2 is mapped on ports 0 and 2
  • the FD-OCC sequence [+1-1] with a length of 2 is mapped on ports 1 and 3
  • the FD-OCC sequence [+1-1] with a length of 2 is mapped on ports 8 and 10.
  • the FD-OCC sequence of length 4 [+1+1-1-1] is mapped to the FD-OCC sequence of length 4 [+1-1-1+1] on ports 9 and 11.
  • two consecutive FD-OCC sequences of length 2 on the first type port can be regarded as one FD-OCC sequence of length 4.
  • two consecutive FD-lengths of 2 on ports 0 and 1 or ports 2 and 3
  • the OCC sequence can be regarded as an FD-OCC sequence of length 4.
  • two consecutive FD-OOC sequences [+1+1] and [+1,+1] on port 0 are regarded as the FD-OCC sequence [+1+1+1+1] with a length of 4.
  • mapping patterns of 12 DMRS ports are shown in Figures 4-9 to 4-20, and FD-OCC
  • the sequence is as follows:
  • Ports 0, 1, 12, and 13 belong to a CDM group
  • ports 2, 3, 14, and 15 belong to a CDM group
  • ports 4, 5, 16, and 17 belong to a CDM group.
  • Ports 0, 1, 2, 3, 4, and 5 are first type ports, and ports 12, 13, 14, 15, 16, and 17 are second type ports.
  • the FD-OCC sequence of length 2 [+1+1] is mapped on ports 0, 2, and 4, and the FD-OCC sequence [+1-1] of length 2 is mapped on ports 1, 3, and 5.
  • Port 12 the FD-OCC sequence of length 4 [+1+1-1-1] is mapped on ports 14 and 16, and the FD-OCC sequence of length 4 is mapped on ports 13, 15 and 17 [+1-1-1+1 ].
  • two consecutive FD-OCC sequences of length 2 on the first type port can be regarded as one FD-OCC sequence of length 4.
  • ports 0 and 1 or ports 2 and 3, or Two consecutive FD-OCC sequences of length 2 on ports 4 and 5
  • two consecutive FD-OOC sequences [+1+1] and [+1,+1] on port 0 are regarded as the FD-OCC sequence [+1+1+1+1] with a length of 4.
  • DMRS configuration type 1 the first configuration type (DMRS configuration type 1, or enhanced DMRS configuration type 1) as an example:
  • the four REs corresponding to the second type port are the target REs among the six REs corresponding to the first type port, and may also be:
  • the relevant information of the X DMRS ports indicated by the first indication information includes the information in any row of the following indication table 1, namely Number of DMRS CDM group(s)without data and DMRS port(s):
  • Ports 0, 1, 8, and 9 belong to CDM group 0, and ports 2, 3, 10, and 11 belong to CDM group 1.
  • the relevant information of the X DMRS ports indicated by the first indication information includes the information in any row of the following indication table 2, namely Number of DMRS CDM group(s)without data and DMRS port(s):
  • the relevant information of the X DMRS ports indicated by the first indication information includes the information in any row of the following indication table 3, namely Number of DMRS CDM group(s)without data, DMRS port(s) and number of front-load symbols Number of front-load symbols:
  • Ports 0, 1, 4, 5, 8, 9, 12, and 13 belong to CDM group 0, and ports 2, 3, 6, 7, 10, 11, 14, and 15 belong to CDM group 1.
  • the relevant information of the X DMRS ports indicated by the first indication information includes the following indication table The information in any row of 4, namely Number of DMRS CDM group(s) without data, DMRS port(s) and Number of front-load symbols:
  • Ports 0, 1, 4, 5, 8, 9, 12, and 13 belong to CDM group 0, and ports 2, 3, 6, 7, 10, 11, 14, and 15 belong to CDM group 1.
  • DMRS with DMRS configuration type 1 can have a maximum of 16 ports
  • DMRS with DMRS configuration type 2 can have a maximum of 24 ports.
  • FIG. 5 shows a DMRS transmission device provided by an embodiment of the present application, in which the DMRS transmission device 500 includes:
  • Transmission module 501 used to send or receive demodulation reference signal DMRS, the DMRS includes X DMRS ports, the X DMRS ports are ports among the N ports supported by the DMRS, the N ports include the A first type port and a second type port.
  • the first type port is mapped based on the frequency domain orthogonal cover code FD-OCC sequence of length 2
  • the second type port is mapped based on the FD-OCC sequence of length 4.
  • X and N are both positive integers.
  • the X DMRS ports include at least one of the first type port and the second type port.
  • the device also includes:
  • a first receiving module configured to receive indication information sent by a network side device, where the indication information is used to indicate the X DMRS ports, where the X DMRS ports include the first type port and the second type port. at least one of them.
  • Y DMRS ports among the X DMRS ports include the first type port and the second type port, and the Y DMRS ports
  • the resource units RE occupied by the first type port and the second type port included in the Y DMRS ports satisfy the first mapping rule, and Y is less than or A positive integer equal to X.
  • the first mapping rule includes any of the following:
  • the REs occupied by the second type port are the same as the REs occupied by the first type port;
  • the REs occupied by the second type port are a subset of the REs occupied by the first type port.
  • the first type port and the RE occupied by the first type port occupies the same 6 REs in each mapped resource block RB.
  • the DMRS takes G RBs as Granularity is mapped, where G is a positive even number.
  • the first type port is 6 REs are occupied in the RB, and the second type port occupies 4 REs in each mapped RB.
  • the 4 REs occupied by the second type port are target REs among the 6 REs occupied by the first type port.
  • the target RE includes any of the following:
  • the relative index is the index of the 6 REs occupied by the first type port.
  • Y DMRS ports among the X DMRS ports include the first type port and the second type port, and the Y DMRS ports
  • the ports belong to the same CDM group the REs occupied by the first type ports and the second type ports included in the Y DMRS ports satisfy the second mapping rule, and Y is a positive integer less than or equal to X.
  • the second mapping rule includes:
  • the REs occupied by the second type port are the same as the REs occupied by the first type port.
  • the first type port and the second type port belonging to the same CDM group among the N ports satisfy: the FD-OCC sequence of length 2 corresponding to the first type port is [ +1, +1] and/or [+1, -1], the FD-OCC sequence of length 4 corresponding to the second type port is [+1, +1, -1, -1] and/ or [+1, -1, -1, +1].
  • the device also includes:
  • a second receiving module configured to receive coordination indication information and/or channel estimation hypothesis information
  • the cooperation indication information is used to indicate whether the X DMRS ports and the indicated DMRS ports of other terminals cooperating with the terminal for transmission are all first type ports or second type ports;
  • the channel estimation hypothesis information It is used to indicate that the channel estimation of the terminal uses an FD-OCC sequence with a length of 2 as a channel estimation hypothesis, or uses a FD-OCC sequence with a length of 4 as a channel estimation hypothesis.
  • the device further includes a first channel estimation module, configured to configure the X DMRS ports to be the first type ports, and the collaboration indication information indicates the X DMRS ports and the When the DMRS ports indicated by other terminals for cooperative transmission by the terminal are all the first type ports, use the FD-OCC sequence of length 2 as the channel estimation hypothesis to perform channel estimation on the X DMRS ports;
  • the X DMRS ports are all the second type ports, and the cooperation indication information indicates that the X DMRS ports and other terminals that transmit in cooperation with the terminal are instructed.
  • the terminal uses an FD-OCC sequence of length 4 as a channel estimation hypothesis to perform channel estimation on the X DMRS ports.
  • the device further includes a second channel estimation module, configured to use the X DMRS ports as the first type ports, and the channel estimation hypothesis information indicates that the terminal’s channel estimation is When the FD-OCC sequence of length 2 is the channel estimation hypothesis, the terminal uses the FD-OCC sequence of length 2 as the channel estimation hypothesis to perform channel estimation on the first type port;
  • the terminal's channel estimation uses an FD-OCC sequence of length 4 as the channel estimation hypothesis
  • the terminal Using the FD-OCC sequence of length 4 as a channel estimation hypothesis channel estimation is performed on the first type port.
  • the indication information indicates the first information of the X DMRS ports, and the first information includes any one of the following:
  • the number of CDM groups occupied by no data is 1, and the X DMRS ports include 1 second type port;
  • the number of CDM groups occupied by no data is 1, and the X DMRS ports include 2 of the second type ports;
  • the number of CDM groups occupied by no data is 2, and the X DMRS ports include 1 second type port;
  • the number of CDM groups occupied by no data is 2, and the X DMRS ports include 2 of the second type ports;
  • the number of CDM groups occupied by no data is 2, and the X DMRS ports include 2 of the first type ports and 1 of the second type port.
  • the number of CDM groups occupied by no data is 2, and the X DMRS ports include 2 of the first type ports and 1 of the second type port.
  • the indication information indicates The second information of the X DMRS ports, the second information includes any one of the following:
  • the number of CDM groups occupied by no data is 2, and the X DMRS ports include 4 of the first type ports and 1 of the second type port;
  • the number of CDM groups occupied by no data is 2, and the X DMRS ports include 4 of the first type ports and 2 of the second type ports;
  • the number of CDM groups occupied by no data is 2, and the X DMRS ports include 4 of the first type ports and 3 of the second type ports;
  • the number of CDM groups occupied by no data is 2, and the X DMRS ports include 4 of the first type ports and 4 of the second type ports.
  • the indication information indicates the third information of the X DMRS ports, and the third information includes any one of the following:
  • the number of CDM groups occupied by no data is 1, the number of prefix symbols is 1, and the X DMRS ports include 1 second type port;
  • the number of CDM groups occupied by no data is 1, the number of preamble symbols is 1, and the X DMRS ports include 2 of the second type ports;
  • the number of CDM groups occupied by no data is 1, the number of preamble symbols is 1, and the X DMRS ports include 2 of the first type ports and 1 of the second type port;
  • the number of CDM groups occupied by no data is 1, the number of prefix symbols is 1, and the X DMRS ports include 2 of the first type ports and 2 of the second type ports;
  • the number of CDM groups occupied by no data is 2, the number of prefix symbols is 1, and the X DMRS ports include 1 second type port;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 1, and the X DMRS ports include 2 of the second type ports;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 1, and the X DMRS ports include 2 of the first type ports and 1 of the second type port;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 1, and the X DMRS ports include 2 of the first type ports and 2 of the second type ports;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 1, and the X DMRS ports include 3 of the first type ports and 1 of the second type port;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 2, and the X DMRS ports include 1 second type port;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 2, and the X DMRS ports include 2 of the second type ports;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 2, and the X DMRS ports include 2 of the first type ports and 1 of the second type port;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 2, and the X DMRS ports include 2 of the first type ports and 2 of the second type ports.
  • the indication information indicates the fourth information of the X DMRS ports, and the fourth information includes any one of the following:
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 1, and the X DMRS ports include 4 of the first type ports and 1 of the second type port;
  • the number of CDM groups occupied by no data is 2, the number of prefix symbols is 1, and the X DMRS ports include 4 of the first type ports and 2 of the second type ports;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 1, and the X DMRS ports include 4 of the first type ports and 3 of the second type ports;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 1, and the X DMRS ports include 4 of the first type ports and 4 of the second type ports;
  • the number of CDM groups occupied by no data is 1, the number of preamble symbols is 2, and the X DMRS ports include 3 of the first type ports and 2 of the second type ports;
  • the number of CDM groups occupied by no data is 1, the number of preamble symbols is 2, and the X DMRS ports include 4 of the first type ports and 2 of the second type ports;
  • the number of CDM groups occupied by no data is 1, the number of preamble symbols is 2, and the X DMRS ports include 4 of the first type ports and 3 of the second type ports;
  • the number of CDM groups occupied by no data is 1, the number of prefix symbols is 2, and the X DMRS
  • the ports include 4 of the first type ports and 4 of the second type ports;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 2, and the X DMRS ports include 3 of the first type ports and 2 of the second type ports;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 2, and the X DMRS ports include 4 of the first type ports and 2 of the second type ports;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 2, and the X DMRS ports include 4 of the first type ports and 3 of the second type ports;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 2, and the X DMRS ports include 4 of the first type ports and 4 of the second type ports.
  • the DMRS transmission device 500 provided by the embodiment of the present application can implement each process implemented by the method embodiment in Figure 2 and achieve the same technical effect. To avoid duplication, the details will not be described here.
  • FIG. 6 shows a DMRS transmission device provided by an embodiment of the present application.
  • the DMRS transmission device 600 includes:
  • Transmission module 601 used to send or receive demodulation reference signal DMRS, the DMRS includes X DMRS ports, the X DMRS ports are ports among the N ports supported by the DMRS, the N ports include the A first type port and a second type port.
  • the first type port is mapped based on the frequency domain orthogonal cover code FD-OCC sequence of length 2
  • the second type port is mapped based on the FD-OCC sequence of length 4.
  • X and N are both positive integers.
  • the X DMRS ports include at least one of the first type port and the second type port.
  • the device further includes a first sending module, configured to send indication information, where the indication information is used to indicate the X DMRS ports, where the X DMRS ports include the first type port and the first type port. At least one of the two types of ports.
  • Y DMRS ports among the X DMRS ports include the first type port and the second type port, and the Y DMRS ports When they belong to the same code division multiplexing CDM group, the resource units RE occupied by the first type port and the second type port included in the Y DMRS ports satisfy the first mapping rule, and Y is less than or equal to A positive integer of X.
  • the first mapping rule includes any of the following:
  • the REs occupied by the second type port are the same as the REs occupied by the first type port;
  • the REs occupied by the second type port are a subset of the REs occupied by the first type port.
  • the first type port and the RE occupied by the first type port occupies the same 6 REs within each mapped resource block RB.
  • the DMRS is granular with G RBs. Degree mapping, where G is a positive even number.
  • the first type port in each mapped RB occupies 6 REs in each mapped RB.
  • the 4 REs occupied by the second type port are target REs among the 6 REs occupied by the first type port.
  • target RE includes any of the following:
  • the relative index is the index of the 6 REs occupied by the first type port.
  • Y DMRS ports among the X DMRS ports include the first type port and the second type port, and the Y DMRS ports When they belong to the same CDM group, the REs occupied by the first type ports and the second type ports included in the Y DMRS ports satisfy the second mapping rule, and Y is a positive integer less than or equal to X.
  • the second mapping rule includes:
  • the REs occupied by the second type port are the same as the REs occupied by the first type port.
  • the first type ports belonging to the same CDM group and The second type port satisfies: the FD-OCC sequence of length 2 corresponding to the first type port is [+1, +1] and/or [+1, -1], and the second type port
  • the corresponding FD-OCC sequence of length 4 is [+1, +1, -1, -1] and/or [+1, -1, -1, +1].
  • the device further includes a second sending module, configured to send collaboration indication information and/or channel estimation hypothesis information;
  • the cooperation indication information is used to indicate whether the X DMRS ports and the indicated DMRS ports of other terminals cooperating with the terminal for transmission are all first type ports or second type ports;
  • the channel estimation hypothesis information It is used to indicate that the channel estimation of the terminal uses an FD-OCC sequence with a length of 2 as a channel estimation hypothesis, or uses a FD-OCC sequence with a length of 4 as a channel estimation hypothesis.
  • the device further includes a first channel estimation module, configured to configure the X DMRS ports to be the first type ports, and the cooperation indication information indicates that the X DMRS ports and the terminal If the DMRS ports indicated by other terminals for collaborative transmission are all the first type ports, use the FD-OCC sequence of length 2 as the channel estimation hypothesis to perform channel estimation on the X DMRS ports;
  • the X DMRS ports are all the second type ports, and the cooperation indication information indicates that the X DMRS ports and the DMRS ports indicated by other terminals that cooperate with the terminal for transmission are all second type ports.
  • channel estimation is performed on the X DMRS ports using an FD-OCC sequence of length 4 as a channel estimation hypothesis.
  • the device further includes a second channel estimation module, used for:
  • the FD-OCC sequence of 2 is a channel estimation hypothesis, and channel estimation is performed on the first type port;
  • the channel estimation hypothesis information indicates that the channel estimation of the terminal uses an FD-OCC sequence with a length of 4 as the channel estimation hypothesis
  • the FD-OCC sequence of 4 is a channel estimation hypothesis, and channel estimation is performed on the first type port.
  • the indication information indicates the X
  • the first information of the DMRS port includes any of the following:
  • the number of CDM groups occupied by no data is 1, and the X DMRS ports include 1 second type port;
  • the number of CDM groups occupied by no data is 1, and the X DMRS ports include 2 of the second type ports;
  • the number of CDM groups occupied by no data is 2, and the X DMRS ports include 1 second type port;
  • the number of CDM groups occupied by no data is 2, and the X DMRS ports include 2 of the second type ports;
  • the number of CDM groups occupied by no data is 2, and the X DMRS ports include 2 of the first type ports and 1 of the second type port.
  • the number of CDM groups occupied by no data is 2, and the X DMRS ports include 2 of the first type ports and 1 of the second type port.
  • the indication information indicates the second information of the X DMRS ports, and the second information includes any one of the following:
  • the number of CDM groups occupied by no data is 2, and the X DMRS ports include 4 of the first type ports and 1 of the second type port;
  • the number of CDM groups occupied by no data is 2, and the X DMRS ports include 4 of the first type ports and 2 of the second type ports;
  • the number of CDM groups occupied by no data is 2, and the X DMRS ports include 4 of the first type ports and 3 of the second type ports;
  • the number of CDM groups occupied by no data is 2, and the X DMRS ports include 4 of the first type ports and 4 of the second type ports.
  • the indication information indicates the third information of the X DMRS ports, and the third information includes any one of the following:
  • the number of CDM groups occupied by no data is 1, the number of prefix symbols is 1, and the X DMRS ports include 1 second type port;
  • the number of CDM groups occupied by no data is 1, the number of preamble symbols is 1, and the X DMRS ports include 2 of the second type ports;
  • the number of CDM groups occupied by no data is 1, the number of preamble symbols is 1, and the X DMRS ports include 2 of the first type ports and 1 of the second type ports;
  • the number of CDM groups occupied by no data is 1, the number of prefix symbols is 1, and the X DMRS ports include 2 of the first type ports and 2 of the second type ports;
  • the number of CDM groups occupied by no data is 2, the number of prefix symbols is 1, and the X DMRS ports include 1 second type port;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 1, and the X DMRS ports include 2 of the second type ports;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 1, and the X DMRS ports include 2 of the first type ports and 1 of the second type port;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 1, and the X DMRS ports include 2 of the first type ports and 2 of the second type ports;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 1, and the X DMRS ports include 3 of the first type ports and 1 of the second type port;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 2, and the X DMRS ports include 1 second type port;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 2, and the X DMRS ports include 2 of the second type ports;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 2, and the X DMRS ports include 2 of the first type ports and 1 of the second type port;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 2, and the X DMRS ports include 2 of the first type ports and 2 of the second type ports.
  • the fourth information of the DMRS port includes any one of the following:
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 1, and the X DMRS ports include 4 of the first type ports and 1 of the second type port;
  • the number of CDM groups occupied by no data is 2, the number of prefix symbols is 1, and the X DMRS ports include 4 of the first type ports and 2 of the second type ports;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 1, and the X DMRS ports include 4 of the first type ports and 3 of the second type ports;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 1, and the X DMRS ports include 4 of the first type ports and 4 of the second type ports;
  • the number of CDM groups occupied by no data is 1, the number of preamble symbols is 2, and the X DMRS ports include 3 of the first type ports and 2 of the second type ports;
  • the number of CDM groups occupied by no data is 1, the number of preamble symbols is 2, and the X DMRS ports include 4 of the first type ports and 2 of the second type ports;
  • the number of CDM groups occupied by no data is 1, the number of preamble symbols is 2, and the X DMRS ports include 4 of the first type ports and 3 of the second type ports;
  • the number of CDM groups occupied by no data is 1, the number of preamble symbols is 2, and the X DMRS ports include 4 of the first type ports and 4 of the second type ports;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 2, and the X DMRS ports include 3 of the first type ports and 2 of the second type ports;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 2, and the X DMRS ports include 4 of the first type ports and 2 of the second type ports;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 2, and the X DMRS ports include 4 of the first type ports and 3 of the second type ports;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 2, and the X DMRS ports include 4 of the first type ports and 4 of the second type ports.
  • the DMRS transmission device 600 provided by the embodiment of the present application can implement each process implemented by the method embodiment in Figure 3 and achieve the same technical effect. To avoid duplication, details will not be described here.
  • the device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
  • the electronic device may be a terminal or other devices other than the terminal.
  • terminals may include but are not limited to the types of terminals 11 listed above, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiment of this application.
  • NAS Network Attached Storage
  • this embodiment of the present application also provides a communication device 700, which includes a processor 701 and a memory 702.
  • the memory 702 stores programs or instructions that can be run on the processor 701, for example.
  • the communication device 700 is a terminal, when the program or instruction is executed by the processor 701, each step of the method embodiment in Figure 2 is implemented, and the same technical effect can be achieved.
  • the communication device 700 is a network-side device, when the program or instruction is executed by the processor 701, each step of the method embodiment shown in FIG. 3 is implemented, and the same technical effect can be achieved. To avoid duplication, the details will not be described here.
  • An embodiment of the present application also provides a terminal, including a processor and a communication interface.
  • the communication interface is used to send or receive a demodulation reference signal DMRS.
  • the DMRS includes X DMRS ports, and the X DMRS ports are the A port among the N ports supported by DMRS, the N ports include a first type port and a second type port, and the first type port is mapped based on a frequency domain orthogonal coverage code FD-OCC sequence of length 2, The second type port is mapped based on the FD-OCC sequence with a length of 4, and X and N are both positive integers.
  • This terminal embodiment corresponds to the above-mentioned terminal-side method embodiment shown in Figure 2. Each implementation process and implementation method of the above-mentioned method embodiment can be applied to this terminal embodiment, and can achieve the same technical effect.
  • FIG. 8 is a schematic diagram of the hardware structure of a terminal that implements an embodiment of the present application.
  • the terminal 1000 includes but is not limited to: a radio frequency unit 1001, a network module 1002, an audio output unit 1003, an input unit 1004, a sensor 1005, a display unit 1006, a user input unit 1007, an interface unit 1008, a memory 1009, a processor 1010, etc. At least some parts.
  • the terminal 1000 may also include a power supply (such as a battery) that supplies power to various components.
  • the power supply may be logically connected to the processor 1010 through a power management system, thereby managing charging, discharging, and power consumption through the power management system. Management and other functions.
  • the terminal structure shown in FIG. 8 does not constitute a limitation on the terminal.
  • the terminal may include more or fewer components than shown in the figure, or some components may be combined or arranged differently, which will not be described again here.
  • the input unit 1004 may include a graphics processing unit (Graphics Processing Unit, GPU) 10041 and a microphone 10042.
  • the graphics processor 10041 is responsible for the image capture device (GPU) in the video capture mode or the image capture mode. Process the image data of still pictures or videos obtained by cameras (such as cameras).
  • the display unit 1006 may include a display panel 10061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1007 includes at least one of a touch panel 10071 and other input devices 10072 .
  • Touch panel 10071 also known as touch screen.
  • the touch panel 10071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 10072 may include but are not limited to physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
  • the radio frequency unit 1001 after receiving downlink data from the network side device, can transmit it to the processor 1010 for processing; in addition, the radio frequency unit 1001 can send uplink data to the network side device.
  • the radio frequency unit 1001 includes, but is not limited to, an antenna, an amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, etc.
  • Memory 1009 may be used to store software programs or instructions as well as various data.
  • the memory 1009 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required for at least one function (such as a sound playback function, Image playback function, etc.) etc.
  • memory 1009 may include volatile memory or nonvolatile memory, or memory 1009 may include both volatile and nonvolatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory. Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (Synch link DRAM) , SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
  • RAM Random Access Memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM Double Data Rate SDRAM
  • DDRSDRAM double data rate synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM enhanced synchronous dynamic random access memory
  • Synch link DRAM synchronous link dynamic random access memory
  • SLDRAM direct
  • the processor 1010 may include one or more processing units; optionally, the processor 1010 integrates an application processor and a modem processor, where the application processor mainly handles operations related to the operating system, user interface, application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the above modem processor may not be integrated into the processor 1010.
  • the radio frequency unit 1001 is used to send or receive the demodulation reference signal DMRS.
  • the DMRS includes X DMRS ports.
  • the X DMRS ports are ports among the N ports supported by the DMRS.
  • the N ports It includes a first type port and a second type port.
  • the first type port is mapped based on the frequency domain orthogonal cover code FD-OCC sequence with a length of 2.
  • the second type port is based on the FD-OCC sequence with a length of 4.
  • X and N are both positive integers.
  • the X DMRS ports include at least one of the first type port and the second type port.
  • the radio frequency unit 1001 is configured to receive indication information sent by a network side device, where the indication information is used to indicate the X DMRS ports, where the X DMRS ports include the first type port and the second type port. At least one of the type ports.
  • Y DMRS ports among the X DMRS ports include the first type port and the second type port, and the Y DMRS ports When they belong to the same code division multiplexing CDM group, the resource units RE occupied by the first type port and the second type port included in the Y DMRS ports satisfy the first mapping rule, and Y is less than or equal to A positive integer of X.
  • the first mapping rule includes any of the following:
  • the REs occupied by the second type port are the same as the REs occupied by the first type port;
  • the REs occupied by the second type port are a subset of the REs occupied by the first type port.
  • the first type port and the RE occupied by the first type port occupies the same 6 resources in each mapped resource block RB. RE.
  • the DMRS is granular with G RBs. Degree mapping, where G is a positive even number.
  • the first type port in each mapped RB occupies 6 REs in each mapped RB.
  • the 4 REs occupied by the second type port are target REs among the 6 REs occupied by the first type port.
  • target RE includes any of the following:
  • the relative index is the index of the 6 REs occupied by the first type port.
  • Y DMRS ports among the X DMRS ports include the first type port and the second type port, and the Y DMRS ports When they belong to the same CDM group, the REs occupied by the first type ports and the second type ports included in the Y DMRS ports satisfy the second mapping rule, and Y is a positive integer less than or equal to X.
  • the second mapping rule includes:
  • the REs occupied by the second type port are the same as the REs occupied by the first type port.
  • the first type port and the second type port belonging to the same CDM group among the N ports satisfy: the FD-OCC sequence of length 2 corresponding to the first type port is [+ 1, +1] and/or [+1, -1], the FD-OCC sequence of length 4 corresponding to the second type port is [+1, +1, -1, -1] and/or [+1,-1,-1,+1].
  • radio frequency unit 1001 is configured to receive collaboration indication information and/or channel estimation hypothesis information
  • the cooperation indication information is used to indicate whether the X DMRS ports and the indicated DMRS ports of other terminals cooperating with the terminal for transmission are all first type ports or second type ports. type port; the channel estimation hypothesis information is used to indicate that the channel estimation of the terminal uses an FD-OCC sequence of length 2 as the channel estimation hypothesis, or uses the FD-OCC sequence of length 4 as the channel estimation hypothesis.
  • the radio frequency unit 1001 is configured to use the X DMRS ports as the first type ports, and the collaboration indication information indicates that the X DMRS ports and other terminals that transmit in collaboration with the terminal are instructed.
  • the DMRS ports are all the first type ports, use the FD-OCC sequence of length 2 as the channel estimation hypothesis to perform channel estimation on the X DMRS ports;
  • the X DMRS ports are all the second type ports, and the cooperation indication information indicates that the X DMRS ports and the DMRS ports indicated by other terminals that cooperate with the terminal for transmission are all second type ports.
  • channel estimation is performed on the X DMRS ports using an FD-OCC sequence of length 4 as a channel estimation hypothesis.
  • the radio frequency unit 1001 is configured to use the FD-OCC sequence of length 2 as the channel estimation hypothesis information of the terminal when the X DMRS ports are all the first type ports.
  • the channel estimation hypothesis information indicates that the channel estimation of the terminal uses an FD-OCC sequence with a length of 4 as the channel estimation hypothesis
  • the FD-OCC sequence of 4 is a channel estimation hypothesis, and channel estimation is performed on the first type port.
  • the indication information indicates the first information of the X DMRS ports, and the first information includes any one of the following:
  • the number of CDM groups occupied by no data is 1, and the X DMRS ports include 1 second type port;
  • the number of CDM groups occupied by no data is 1, and the X DMRS ports include 2 of the second type ports;
  • the number of CDM groups occupied by no data is 2, and the X DMRS ports include 1 The second type of port;
  • the number of CDM groups occupied by no data is 2, and the X DMRS ports include 2 of the second type ports;
  • the number of CDM groups occupied by no data is 2, and the X DMRS ports include 2 of the first type ports and 1 of the second type port.
  • the number of CDM groups occupied by no data is 2, and the X DMRS ports include 2 of the first type ports and 1 of the second type port.
  • the indication information indicates the second information of the X DMRS ports, and the second information includes any one of the following:
  • the number of CDM groups occupied by no data is 2, and the X DMRS ports include 4 of the first type ports and 1 of the second type port;
  • the number of CDM groups occupied by no data is 2, and the X DMRS ports include 4 of the first type ports and 2 of the second type ports;
  • the number of CDM groups occupied by no data is 2, and the X DMRS ports include 4 of the first type ports and 3 of the second type ports;
  • the number of CDM groups occupied by no data is 2, and the X DMRS ports include 4 of the first type ports and 4 of the second type ports.
  • the indication information indicates the third information of the X DMRS ports, and the third information includes any one of the following:
  • the number of CDM groups occupied by no data is 1, the number of prefix symbols is 1, and the X DMRS ports include 1 second type port;
  • the number of CDM groups occupied by no data is 1, the number of preamble symbols is 1, and the X DMRS ports include 2 of the second type ports;
  • the number of CDM groups occupied by no data is 1, the number of preamble symbols is 1, and the X DMRS ports include 2 of the first type ports and 1 of the second type port;
  • the number of CDM groups occupied by no data is 1, the number of prefix symbols is 1, and the X DMRS ports include 2 of the first type ports and 2 of the second type ports;
  • the number of CDM groups occupied by no data is 2, the number of prefix symbols is 1, and the X DMRS ports include 1 second type port;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 1, and the X DMRS ports include 2 of the second type ports;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 1, and the X DMRS ports include 2 of the first type ports and 1 of the second type port;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 1, and the X DMRS ports include 2 of the first type ports and 2 of the second type ports;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 1, and the X DMRS ports include 3 of the first type ports and 1 of the second type port;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 2, and the X DMRS ports include 1 second type port;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 2, and the X DMRS ports include 2 of the second type ports;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 2, and the X DMRS ports include 2 of the first type ports and 1 of the second type port;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 2, and the X DMRS ports include 2 of the first type ports and 2 of the second type ports.
  • the indication information indicates the fourth information of the X DMRS ports, and the fourth information includes any one of the following:
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 1, and the X DMRS ports include 4 of the first type ports and 1 of the second type port;
  • the number of CDM groups occupied by no data is 2, the number of prefix symbols is 1, and the X DMRS ports include 4 of the first type ports and 2 of the second type ports;
  • the number of CDM groups occupied by no data is 2, the number of prefix symbols is 1, and the X DMRS
  • the ports include 4 of the first type ports and 3 of the second type ports;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 1, and the X DMRS ports include 4 of the first type ports and 4 of the second type ports;
  • the number of CDM groups occupied by no data is 1, the number of preamble symbols is 2, and the X DMRS ports include 3 of the first type ports and 2 of the second type ports;
  • the number of CDM groups occupied by no data is 1, the number of preamble symbols is 2, and the X DMRS ports include 4 of the first type ports and 2 of the second type ports;
  • the number of CDM groups occupied by no data is 1, the number of preamble symbols is 2, and the X DMRS ports include 4 of the first type ports and 3 of the second type ports;
  • the number of CDM groups occupied by no data is 1, the number of preamble symbols is 2, and the X DMRS ports include 4 of the first type ports and 4 of the second type ports;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 2, and the X DMRS ports include 3 of the first type ports and 2 of the second type ports;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 2, and the X DMRS ports include 4 of the first type ports and 2 of the second type ports;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 2, and the X DMRS ports include 4 of the first type ports and 3 of the second type ports;
  • the number of CDM groups occupied by no data is 2, the number of preamble symbols is 2, and the X DMRS ports include 4 of the first type ports and 4 of the second type ports.
  • the terminal provided by the embodiment of the present application can implement each process implemented by the method embodiment in Figure 2 and achieve the same technical effect. To avoid duplication, details will not be described here.
  • An embodiment of the present application also provides a network side device, including a processor and a communication interface.
  • the communication interface is used to send or receive a demodulation reference signal DMRS.
  • the DMRS includes X DMRS ports, and the X DMRS ports are A port among the N ports supported by the DMRS.
  • the N ports include a first type port and a second type port.
  • the first type port is based on a frequency domain orthogonal coverage code FD-OCC sequence of length 2. Mapping, the second type port is mapped based on the FD-OCC sequence with a length of 4, and X and N are both positive integers.
  • This network-side device embodiment corresponds to the above-mentioned network-side device method embodiment.
  • Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this network-side device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a network side device.
  • the network side device 1100 includes: an antenna 111 , a radio frequency device 112 , a baseband device 113 , a processor 114 and a memory 115 .
  • the antenna 111 is connected to the radio frequency device 112 .
  • the radio frequency device 112 receives information through the antenna 111 and sends the received information to the baseband device 113 for processing.
  • the baseband device 113 processes the information to be sent and sends it to the radio frequency device 112.
  • the radio frequency device 112 processes the received information and then sends it out through the antenna 111.
  • the method performed by the network side device in the above embodiment can be implemented in the baseband device 113, which includes a baseband processor.
  • the baseband device 113 may include, for example, at least one baseband board on which multiple chips are disposed, as shown in FIG. 9 .
  • One of the chips is, for example, a baseband processor, which is connected to the memory 115 through a bus interface to call the Program to perform the network device operations shown in the above method embodiments.
  • the network side device may also include a network interface 116, which is, for example, a common public radio interface (CPRI).
  • a network interface 116 which is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network side device 1100 in this embodiment of the present invention also includes: instructions or programs stored in the memory 115 and executable on the processor 114.
  • the processor 114 calls the instructions or programs in the memory 115 to execute each of the steps shown in Figure 8. The method of module execution and achieving the same technical effect will not be described in detail here to avoid duplication.
  • Embodiments of the present application also provide a readable storage medium, with programs or instructions stored on the readable storage medium.
  • program or instructions When the program or instructions are executed by a processor, each process of the method embodiment shown in Figure 2 and Figure 3 is implemented. , and can achieve the same technical effect, so to avoid repetition, they will not be described again here.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
  • An embodiment of the present application further provides a chip.
  • the chip includes a processor and a communication interface.
  • the communication interface is coupled to the processor.
  • the processor is used to run programs or instructions to implement the above-mentioned Figures 2 and 3.
  • Each process of the method embodiment is shown, and the same technical effect can be achieved. To avoid repetition, the details will not be described here.
  • chip mentioned in the embodiment of this application can also be called a system-level chip, system chip, System-on-a-chip or system-on-chip, etc.
  • Embodiments of the present application further provide a computer program/program product.
  • the computer program/program product is stored in a storage medium.
  • the computer program/program product is executed by at least one processor to implement the above-mentioned Figures 2 and 3.
  • Each process of the method embodiment shown can achieve the same technical effect. To avoid repetition, it will not be described again here.
  • the embodiment of the present application also provides a communication system, including: a terminal and a network side device.
  • the terminal can be used to perform the steps of the method embodiment shown in Figure 2 above.
  • the network side device can be used to perform the steps shown in Figure 3 The steps of the method embodiment.
  • the disclosed devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in various embodiments of the present disclosure can be integrated into one processing unit, or each unit can exist physically alone, or two or more units can be integrated into a single processing unit. Yuanzhong.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present disclosure is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which can be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.
  • the program can be stored in a computer-readable storage medium.
  • the program can be stored in a computer-readable storage medium.
  • the process may include the processes of the embodiments of each of the above methods.
  • the storage medium can be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM) or a random access memory (Random Access Memory, RAM), etc.
  • the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
  • the technical solution of the present application essentially or the part that contributes to the existing technology can be used as a computer software product.
  • the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, optical disk) and includes a number of instructions to enable a terminal (which can be a mobile phone, computer, server, air conditioner, or network equipment etc.) to perform the methods described in various embodiments of this application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种DMRS传输方法、装置及相关设备,属于通信技术领域,本申请实施例的DMRS传输方法包括:终端发送或接收解调参考信号DMRS,所述DMRS包括X个DMRS端口,所述X个DMRS端口为所述DMRS支持的N个端口中的端口,所述N个端口包括第一类型端口和第二类型端口,所述第一类型端口基于长度为2的频域正交覆盖码FD-OCC序列进行映射,所述第二类型端口基于长度为4的FD-OCC序列进行映射,X、N均为正整数。

Description

DMRS传输方法、装置及相关设备
相关申请的交叉引用
本申请主张在2022年3月24日在中国提交的中国专利申请No.202210302774.4的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种DMRS传输方法、装置及相关设备。
背景技术
解调参考信号(Demodulation Reference Signal,DMRS)用于信道估计,对数据信道的DMRS来说,按照DMRS的配置类型可分为DMRS配置类型1和DMRS配置类型2,并且两种DMRS配置类型均支持单符号和双符号的结构。其中,DMRS配置类型1的单符号结构最大支持4个端口,双符号结构最大支持8个端口;DMRS配置类型2单符号结构最大支持6个端口,双符号结构最大支持12个端口。
目前,数据信道的DMRS支持的端口较为固定,限制了可以进行协同传输的终端数目,以及数据信道可同时传输的数据流数。
发明内容
本申请实施例提供一种DMRS传输方法、装置及相关设备,能够解决数据信道的DMRS支持的端口较为固定,限制了可以进行协同传输的终端数目,以及数据信道可同时传输的数据流数的问题。
第一方面,提供了一种DMRS传输方法,该方法包括:
终端发送或接收解调参考信号DMRS,所述DMRS包括X个DMRS端口,所述X个DMRS端口为所述DMRS支持的N个端口中的端口,所述N个端口包括第一类型端口和第二类型端口,所述第一类型端口基于长度为2的频域正交覆盖码(Frequency Domain Orthogonal Cover Code,FD-OCC)序 列进行映射,所述第二类型端口基于长度为4的FD-OCC序列进行映射,X、N均为正整数。
第二方面,提供了一种DMRS传输装置,所述装置包括:
传输模块,用于发送或接收解调参考信号DMRS,所述DMRS包括X个DMRS端口,所述X个DMRS端口为所述DMRS支持的N个端口中的端口,所述N个端口包括第一类型端口和第二类型端口,所述第一类型端口基于长度为2的频域正交覆盖码FD-OCC序列进行映射,所述第二类型端口基于长度为4的FD-OCC序列进行映射,X、N均为正整数。
第三方面,提供了一种DMRS传输方法,该方法包括:
网络侧设备发送或接收解调参考信号DMRS,所述DMRS包括X个DMRS端口,所述X个DMRS端口为所述DMRS支持的N个端口中的端口,所述N个端口包括第一类型端口和第二类型端口,所述第一类型端口基于长度为2的频域正交覆盖码FD-OCC序列进行映射,所述第二类型端口基于长度为4的FD-OCC序列进行映射,X、N均为正整数。
第四方面,提供了一种DMRS传输装置,所述装置包括:
传输模块,用于发送或接收解调参考信号DMRS,所述DMRS包括X个DMRS端口,所述X个DMRS端口为所述DMRS支持的N个端口中的端口,所述N个端口包括第一类型端口和第二类型端口,所述第一类型端口基于长度为2的频域正交覆盖码FD-OCC序列进行映射,所述第二类型端口基于长度为4的FD-OCC序列进行映射,X、N均为正整数。
第五方面,提供了一种终端,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种终端,包括处理器及通信接口,其中,所述通信接口用于发送或接收解调参考信号DMRS,所述DMRS包括X个DMRS端口,所述X个DMRS端口为所述DMRS支持的N个端口中的端口,所述N个端口包括第一类型端口和第二类型端口,所述第一类型端口基于长度为2的频域正交覆盖码FD-OCC序列进行映射,所述第二类型端口基于长度为4的FD-OCC序列进行映射,X、N均为正整数。
第七方面,提供了一种网络侧设备,该网络侧设备包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第三方面所述的方法的步骤。
第八方面,提供了一种网络侧设备,包括处理器及通信接口,其中,所述通信接口用于发送或接收解调参考信号DMRS,所述DMRS包括X个DMRS端口,所述X个DMRS端口为所述DMRS支持的N个端口中的端口,所述N个端口包括第一类型端口和第二类型端口,所述第一类型端口基于长度为2的频域正交覆盖码FD-OCC序列进行映射,所述第二类型端口基于长度为4的FD-OCC序列进行映射,X、N均为正整数。
第九方面,提供了一种通信系统,包括:终端及网络侧设备,所述终端可用于执行如第一方面所述的DMRS传输方法的步骤,所述网络侧设备可用于执行如第三方面所述的DMRS传输方法的步骤。
第十方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面或第三方面所述的方法的步骤。
第十一方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面或第三方面所述的方法的步骤。
第十二方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面或第三方面所述的方法的步骤。
在本申请实施例中,终端发送或接收DMRS,所述DMRS包括X个DMRS端口,所述X个DMRS端口为所述DMRS支持的N个端口中的端口,所述N个端口包括第一类型端口和第二类型端口,所述第一类型端口基于长度为2的FD-OCC序列进行映射,所述第二类型端口基于长度为4的FD-OCC序列进行映射,X、N均为正整数。上述中,通过对DMRS支持的N个端口进行扩展,可提高DMRS可支持的端口的数量,使得数据信道可同时传输的数据流数增多,另外,还能增加多用户多输入多输出(Multiple User Multiple Input Multiple Output,MU-MIMO)的用户复用数目。
附图说明
图1是本申请实施例可应用的一种无线通信系统的框图;
图2是本申请实施例提供的DMRS传输方法的流程图之一;
图3是本申请实施例提供的DMRS传输方法的流程图之二;
图4-1至图4-22是本申请实施例提供的DMRS端口示意图;
图5是本申请实施例提供的DMRS传输装置的结构图之一;
图6是本申请实施例提供的DMRS传输装置的结构图之二;
图7是本申请实施例提供的通信设备的结构图;
图8是本申请实施例提供的终端的结构图;
图9是本申请实施例提供的网络侧设备的结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency  Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、无线局域网(Wireless Local Area Network,WLAN)接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说 明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的方法进行详细地说明。
如图2所示,本申请实施例提供了一种DMRS传输方法,包括如下步骤:
步骤201、终端发送或接收解调参考信号(Demodulation Reference Signal,DMRS),所述DMRS包括X个DMRS端口,所述X个DMRS端口为所述DMRS支持的N个端口中的端口,所述N个端口包括第一类型端口和第二类型端口,所述第一类型端口基于长度为2的频域正交覆盖码(Frequency Domain Orthogonal Cover Code,FD-OCC)序列进行映射,所述第二类型端口基于长度为4的FD-OCC序列进行映射,X、N均为正整数。
具体的,X个DMRS端口为所述DMRS支持的N个端口中的端口,N个端口包括第一类型端口和第二类型端口,X个DMRS端口包括第一类型端口和第二类型端口中的至少一项。第一类型端口可为沿用相关技术的端口,第二类型端口可理解为在第一类型的端口基础上新增的端口,通过使得N个端口包括第一类型端口和第二类型端口可增加DMRS支持的端口数量。N可理解为所述DMRS支持的最大端口数量。
本实施例中,终端发送或接收DMRS,所述DMRS包括X个DMRS端口,所述X个DMRS端口为所述DMRS支持的N个端口中的端口,所述N个端口包括第一类型端口和第二类型端口,所述第一类型端口基于长度为2的FD-OCC序列进行映射,所述第二类型端口基于长度为4的FD-OCC序列进行映射,X、N均为正整数。上述中,通过对DMRS支持的N个端口进行扩展,可提高DMRS可支持的端口的数量,使得数据信道可同时传输的数据流数增多,另外,还能增加MU-MIMO的用户复用数目。
DMRS的配置类型可以为第一配置类型,所述第一配置类型与DMRS配置类型1相关,其可以为DMRS配置类型1或者增强型的DMRS配置类型1;或者可以为第二配置类型,所述第二配置类型与DMRS配置类型2相关,其可以为DMRS配置类型2或者增强型的DMRS配置类型2。
在本申请一种实施例中,在所述DMRS的配置类型为第一配置类型,所 述X个DMRS端口中的Y个DMRS端口包括所述第一类型端口和所述第二类型端口,且所述Y个DMRS端口属于同一个码分复用(Code Division Multiplexing,CDM)组的情况下,所述Y个DMRS端口包括的所述第一类型端口和所述第二类型端口占用的资源单元(Resource Element,RE)满足第一映射规则,Y为小于或等于X的正整数。
其中,所述第一映射规则包括如下任意一项:
(1)在同一个正交频分复用(Orthogonal frequency division multiplex,OFDM)符号上,所述第二类型端口占用的RE与所述第一类型端口占用的RE相同。
在同一个OFDM符号上,所述第二类型端口占用的RE与所述第一类型端口占用的RE相同的情况下,在同一个OFDM符号上,所述第一类型端口和所述第二类型端口分别在所映射的每个资源块(Resource Block,RB)内占用6个RE。
进一步地,在同一个OFDM符号上,在所述第一类型端口和所述第二类型端口分别在所映射的每个RB内占用6个RE的情况下,所述DMRS以G个RB为颗粒度进行映射,其中G为正偶数。
(2)在同一个OFDM符号上,所述第二类型端口占用的RE为所述第一类型端口占用的RE的子集。
在所述第二类型端口占用的RE为所述第一类型端口占用的RE的子集的情况下,在同一个OFDM符号上,所述第一类型端口在所映射的每个RB内占用6个RE,第二类型端口在所映射的每个RB内占用4个RE。进一步地,所述第二类型端口占用的4个RE为所述第一类型端口占用的6个RE中的目标RE。
其中,所述目标RE包括如下任意一项:
相对索引由小到大排序的前4个RE;
相对索引由小到大排序的后4个RE;
其中,所述相对索引为第一类型端口占用的6个RE的索引。
上述中目标RE的确定方式,可以使得第一类型端口对应的信道估计处理更为灵活,可以提升终端的信道估计性能。
在本申请一种实施例中,在所述DMRS的配置类型为第二配置类型,所述X个DMRS端口中的Y个DMRS端口包括所述第一类型端口和所述第二类型端口,且所述Y个DMRS端口属于同一个CDM组的情况下,所述Y个DMRS端口包括的所述第一类型端口和所述第二类型端口占用的RE满足第二映射规则,Y为小于或等于X的正整数。
其中,所述第二映射规则包括:所述X个DMRS端口中第二类型端口占用的RE与第一类型端口占用的RE相同。
在本申请一种实施例中,所述N个端口中属于同一个CDM组的所述第一类型端口和所述第二类型端口满足:所述第一类型端口所对应的长度为2的FD-OCC序列为[+1,+1]和/或[+1,-1],所述第二类型端口所对应的长度为4的FD-OCC序列为[+1,+1,-1,-1]和/或[+1,-1,-1,+1]。
例如,一个CDM组中包括两个所述第一类型端口和两个所述第二类型端口。其中,两个所述第一类型端口分别对应长度为2的FD-OCC序列为[+1,+1]和[+1,-1],两个所述第二类型端口分别对应长度为4的FD-OCC序列为[+1,+1,-1,-1]和[+1,-1,-1,+1]。
在本申请一种实施例中,所述方法还包括:
所述终端接收协同指示信息和/或信道估计假设信息;其中,所述协同指示信息用于指示所述X个DMRS端口以及与所述终端协同传输的其他终端被指示的DMRS端口是否均为第一类型端口或者第二类型端口;所述信道估计假设信息用于指示所述终端的信道估计以长度为2的FD-OCC序列为信道估计假设,或者以长度为4的FD-OCC序列为信道估计假设。
在本申请一种实施例中,在所述终端接收协同指示信息之后,所述方法还包括:
在所述X个DMRS端口均为所述第一类型端口,且所述协同指示信息指示所述X个DMRS端口以及与所述终端协同传输的其他终端被指示的DMRS端口均为所述第一类型端口的情况下,所述终端以长度为2的FD-OCC序列为信道估计假设,对所述X个DMRS端口进行信道估计;
或者,在所述X个DMRS端口均为所述第二类型端口,且所述协同指示信息指示所述X个DMRS端口以及与所述终端协同传输的其他终端被指示的 DMRS端口均为第二类型端口的情况下,所述终端以长度为4的FD-OCC序列为信道估计假设,对所述X个DMRS端口进行信道估计。
在本申请一种实施例中,在所述终端接收信道估计假设信息之后,所述方法还包括:
在所述X个DMRS端口均为所述第一类型端口,且在所述信道估计假设信息指示所述终端的信道估计以长度为2的FD-OCC序列为信道估计假设的情况下,所述终端以长度为2的FD-OCC序列为信道估计假设,对所述第一类型端口进行信道估计;
或者,在所述X个DMRS端口均为所述第一类型端口,且所述信道估计假设信息指示终端的信道估计以长度为4的FD-OCC序列为信道估计假设的情况下,所述终端以长度为4的FD-OCC序列为信道估计假设,对所述第一类型端口进行信道估计。
在本申请一种实施例中,所述方法还包括:
所述终端接收网络侧设备发送的指示信息,所述指示信息用于指示所述X个DMRS端口,所述X个DMRS端口包括所述第一类型端口和所述第二类型端口中的至少一项。
在本申请一种实施例中,在所述DMRS的配置类型为第一配置类型,所述DMRS的符号最大长度为1,所述DMRS对应的数据传输所占用的码字数目为1或者所述DMRS对应的数据传输的数据流数目为1至4的情况下,所述指示信息指示所述X个DMRS端口的第一信息,所述第一信息包括如下任意一项:
没有数据占用的CDM组的数量为1,所述X个DMRS端口包括1个所述第二类型端口;
没有数据占用的CDM组的数量为1,所述X个DMRS端口包括2个所述第二类型端口;
没有数据占用的CDM组的数量为2,所述X个DMRS端口包括1个所述第二类型端口;
没有数据占用的CDM组的数量为2,所述X个DMRS端口包括2个所述第二类型端口;
没有数据占用的CDM组的数量为2,所述X个DMRS端口包括2个所述第一类型端口和1个所述第二类型端口。
没有数据占用的CDM组的数量为2,所述X个DMRS端口包括2个所述第一类型端口和1个所述第二类型端口。
上述中,第一信息可包括多种情况,使得终端可以使用的DMRS端口更加丰富,增加终端进行协同传输(MU-MIMO传输)的灵活性。
在本申请一种实施例中,在所述DMRS的配置类型为第一配置类型,所述DMRS的符号最大长度为1,所述DMRS对应的数据传输所占用的码字数目为2或者所述DMRS对应的数据传输的数据流数目为5至8的情况下,所述指示信息指示所述X个DMRS端口的第二信息,所述第二信息包括如下任意一项:
没有数据占用的CDM组的数量为2,所述X个DMRS端口包括4个所述第一类型端口和1个所述第二类型端口;
没有数据占用的CDM组的数量为2,所述X个DMRS端口包括4个所述第一类型端口和2个所述第二类型端口;
没有数据占用的CDM组的数量为2,所述X个DMRS端口包括4个所述第一类型端口和3个所述第二类型端口;
没有数据占用的CDM组的数量为2,所述X个DMRS端口包括4个所述第一类型端口和4个所述第二类型端口。
上述中,第二信息可包括多种情况,使得终端可以使用的DMRS端口更加丰富,增加终端进行协同传输(MU-MIMO传输)的灵活性。另外,使得终端使用的DMRS为单符号结构的情况下,也可以进行数据流数目为5至8的数据传输。
在本申请一种实施例中,在所述DMRS的配置类型为第一配置类型,所述DMRS的符号最大长度为2,所述DMRS对应的数据传输所占用的码字数目为1或者所述DMRS对应的数据传输的数据流数目为1至4的情况下,所述指示信息指示所述X个DMRS端口的第三信息,所述第三信息包括如下任意一项:
没有数据占用的CDM组的数量为1,前置符号数为1,所述X个DMRS 端口包括1个所述第二类型端口;
没有数据占用的CDM组的数量为1,前置符号数为1,所述X个DMRS端口包括2个所述第二类型端口;
没有数据占用的CDM组的数量为1,前置符号数为1,所述X个DMRS端口包括2个所述第一类型端口和1个所述第二类型端口;
没有数据占用的CDM组的数量为1,前置符号数为1,所述X个DMRS端口包括2个所述第一类型端口和2个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括1个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括2个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括2个所述第一类型端口和1个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括2个所述第一类型端口和2个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括3个所述第一类型端口和1个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为2,所述X个DMRS端口包括1个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为2,所述X个DMRS端口包括2个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为2,所述X个DMRS端口包括2个所述第一类型端口和1个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为2,所述X个DMRS端口包括2个所述第一类型端口和2个所述第二类型端口。
上述中,第三信息可包括多种情况,使得终端可以使用的DMRS端口更加丰富,增加终端进行协同传输(MU-MIMO传输)的灵活性。
在本申请一种实施例中,在所述DMRS的配置类型为第一配置类型,所述DMRS的符号最大长度为2,所述DMRS对应的数据传输所占用的码字数 目为1或者所述DMRS对应的数据传输的数据流数目为5至8的情况下,所述指示信息指示所述X个DMRS端口的第四信息,所述第四信息包括如下任意一项:
没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括4个所述第一类型端口和1个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括4个所述第一类型端口和2个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括4个所述第一类型端口和3个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括4个所述第一类型端口和4个所述第二类型端口;
没有数据占用的CDM组的数量为1,前置符号数为2,所述X个DMRS端口包括3个所述第一类型端口和2个所述第二类型端口;
没有数据占用的CDM组的数量为1,前置符号数为2,所述X个DMRS端口包括4个所述第一类型端口和2个所述第二类型端口;
没有数据占用的CDM组的数量为1,前置符号数为2,所述X个DMRS端口包括4个所述第一类型端口和3个所述第二类型端口;
没有数据占用的CDM组的数量为1,前置符号数为2,所述X个DMRS端口包括4个所述第一类型端口和4个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为2,所述X个DMRS端口包括3个所述第一类型端口和2个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为2,所述X个DMRS端口包括4个所述第一类型端口和2个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为2,所述X个DMRS端口包括4个所述第一类型端口和3个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为2,所述X个DMRS端口包括4个所述第一类型端口和4个所述第二类型端口。
上述中,第四信息可包括多种情况,使得终端可以使用的DMRS端口更加丰富,增加终端进行协同传输(MU-MIMO传输)的灵活性。另外,使得 终端使用的DMRS为单符号结构的情况下,也可以进行数据流数目为5至8的数据传输。
如图3所示,本申请实施例提供了一种DMRS传输方法,包括如下步骤:
步骤301、网络侧设备发送或接收解调参考信号DMRS,所述DMRS包括X个DMRS端口,所述X个DMRS端口为所述DMRS支持的N个端口中的端口,所述N个端口包括第一类型端口和第二类型端口,所述第一类型端口基于长度为2的频域正交覆盖码FD-OCC序列进行映射,所述第二类型端口基于长度为4的FD-OCC序列进行映射,X、N均为正整数。
具体的,X个DMRS端口为所述DMRS支持的N个端口中的端口,N个端口包括第一类型端口和第二类型端口,X个DMRS端口包括第一类型端口和第二类型端口中的至少一项。第一类型端口可为沿用相关技术的端口,第二类型端口可理解为在第一类型的端口基础上新增的端口,通过使得N个端口包括第一类型端口和第二类型端口可增加DMRS支持的端口数量。N可理解为所述DMRS支持的最大端口数量。
本实施例中,网络侧设备发送或接收DMRS,所述DMRS包括X个DMRS端口,所述X个DMRS端口为所述DMRS支持的N个端口中的端口,所述N个端口包括第一类型端口和第二类型端口,所述第一类型端口基于长度为2的FD-OCC序列进行映射,所述第二类型端口基于长度为4的FD-OCC序列进行映射,X、N均为正整数。上述中,通过对DMRS支持的N个端口进行扩展,可提高DMRS可支持的端口的数量,使得数据信道可同时传输的数据流数增多,另外,还能增加MU-MIMO的用户复用数目。
在本申请一种实施例中,所述X个DMRS端口包括所述第一类型端口和第二类型端口中的至少一项。
在本申请一种实施例中,所述方法还包括:
所述网络侧设备发送指示信息,所述指示信息用于指示所述X个DMRS端口,所述X个DMRS端口包括所述第一类型端口和所述第二类型端口中的至少一项。
在本申请一种实施例中,在所述DMRS的配置类型为第一配置类型,所述X个DMRS端口中的Y个DMRS端口包括所述第一类型端口和所述第二 类型端口,且所述Y个DMRS端口属于同一个码分复用CDM组的情况下,所述Y个DMRS端口包括的所述第一类型端口和所述第二类型端口占用的资源单元RE满足第一映射规则,Y为小于或等于X的正整数。
其中,所述第一映射规则包括如下任意一项:
在同一个正交频分复用OFDM符号上,所述第二类型端口占用的RE与所述第一类型端口占用的RE相同;
在同一个OFDM符号上,所述第二类型端口占用的RE为所述第一类型端口占用的RE的子集。
在本申请一种实施例中,在同一个OFDM符号上,所述第二类型端口占用的RE与所述第一类型端口占用的RE相同的情况下,在同一个OFDM符号上,所述第一类型端口和所述第二类型端口在所映射的每个资源块RB内占用相同的6个RE。
在本申请一种实施例中,在同一个OFDM符号上,在所述第一类型端口和所述第二类型端口分别在所映射的每个RB内占用6个RE的情况下,所述DMRS以G个RB为颗粒度进行映射,其中G为正偶数。
在本申请一种实施例中,在所述第二类型端口占用的RE为所述第一类型端口占用的RE的子集的情况下,在同一个OFDM符号上,所述第一类型端口在所映射的每个RB内占用6个RE,第二类型端口在所映射的每个RB内占用4个RE。
在本申请一种实施例中,所述第二类型端口占用的4个RE为所述第一类型端口占用的6个RE中的目标RE。
其中,所述目标RE包括如下任意一项:
相对索引由小到大排序的前4个RE;
相对索引由小到大排序的后4个RE;
其中,所述相对索引为第一类型端口占用的6个RE的索引。
在本申请一种实施例中,在所述DMRS的配置类型为第二配置类型,所述X个DMRS端口中的Y个DMRS端口包括所述第一类型端口和所述第二类型端口,且所述Y个DMRS端口属于同一个CDM组的情况下,所述Y个DMRS端口包括的所述第一类型端口和所述第二类型端口占用的RE满足第 二映射规则,Y为小于或等于X的正整数。
其中,所述第二映射规则包括:
在同一个OFDM符号上,所述第二类型端口占用的RE与所述第一类型端口占用的RE相同。
在本申请一种实施例中,所述N个端口中属于同一个CDM组的所述第一类型端口和所述第二类型端口满足:所述第一类型端口所对应的长度为2的FD-OCC序列为[+1,+1]和/或[+1,-1],所述第二类型端口所对应的长度为4的FD-OCC序列为[+1,+1,-1,-1]和/或[+1,-1,-1,+1]。
在本申请一种实施例中,所述方法还包括:
所述网络侧设备发送协同指示信息和/或信道估计假设信息;其中,所述协同指示信息用于指示所述X个DMRS端口以及与所述终端协同传输的其他终端被指示的DMRS端口是否均为第一类型端口或者第二类型端口;所述信道估计假设信息用于指示所述终端的信道估计以长度为2的FD-OCC序列为信道估计假设,或者以长度为4的FD-OCC序列为信道估计假设。
在本申请一种实施例中,在所述终端接收协同指示信息之后,所述方法还包括:
在所述X个DMRS端口均为所述第一类型端口,且所述协同指示信息指示所述X个DMRS端口以及与所述终端协同传输的其他终端被指示的DMRS端口均为所述第一类型端口的情况下,所述终端以长度为2的FD-OCC序列为信道估计假设,对所述X个DMRS端口进行信道估计;
或者,在所述X个DMRS端口均为所述第二类型端口,且所述协同指示信息指示所述X个DMRS端口以及与所述终端协同传输的其他终端被指示的DMRS端口均为第二类型端口的情况下,所述终端以长度为4的FD-OCC序列为信道估计假设,对所述X个DMRS端口进行信道估计。
在本申请一种实施例中,在所述终端接收信道估计假设信息之后,所述方法还包括:
在所述X个DMRS端口均为所述第一类型端口,且在所述信道估计假设信息指示所述终端的信道估计以长度为2的FD-OCC序列为信道估计假设的情况下,所述终端以长度为2的FD-OCC序列为信道估计假设,对所述第一 类型端口进行信道估计;
或者,在所述X个DMRS端口均为所述第一类型端口,且所述信道估计假设信息指示终端的信道估计以长度为4的FD-OCC序列为信道估计假设的情况下,所述终端以长度为4的FD-OCC序列为信道估计假设,对所述第一类型端口进行信道估计。
在本申请一种实施例中,在所述DMRS的配置类型为第一配置类型,所述DMRS的符号最大长度为1,所述DMRS对应的数据传输所占用的码字数目为1或者所述DMRS对应的数据传输的数据流数目为1至4的情况下,所述指示信息指示所述X个DMRS端口的第一信息,所述第一信息包括如下任意一项:
没有数据占用的CDM组的数量为1,所述X个DMRS端口包括1个所述第二类型端口;
没有数据占用的CDM组的数量为1,所述X个DMRS端口包括2个所述第二类型端口;
没有数据占用的CDM组的数量为2,所述X个DMRS端口包括1个所述第二类型端口;
没有数据占用的CDM组的数量为2,所述X个DMRS端口包括2个所述第二类型端口;
没有数据占用的CDM组的数量为2,所述X个DMRS端口包括2个所述第一类型端口和1个所述第二类型端口。
没有数据占用的CDM组的数量为2,所述X个DMRS端口包括2个所述第一类型端口和1个所述第二类型端口。
在本申请一种实施例中,在所述DMRS的配置类型为第一配置类型,所述DMRS的符号最大长度为1,所述DMRS对应的数据传输所占用的码字数目为2或者所述DMRS对应的数据传输的数据流数目为5至8的情况下,所述指示信息指示所述X个DMRS端口的第二信息,所述第二信息包括如下任意一项:
没有数据占用的CDM组的数量为2,所述X个DMRS端口包括4个所述第一类型端口和1个所述第二类型端口;
没有数据占用的CDM组的数量为2,所述X个DMRS端口包括4个所述第一类型端口和2个所述第二类型端口;
没有数据占用的CDM组的数量为2,所述X个DMRS端口包括4个所述第一类型端口和3个所述第二类型端口;
没有数据占用的CDM组的数量为2,所述X个DMRS端口包括4个所述第一类型端口和4个所述第二类型端口。
在本申请一种实施例中,在所述DMRS的配置类型为第一配置类型,所述DMRS的符号最大长度为2,所述DMRS对应的数据传输所占用的码字数目为1或者所述DMRS对应的数据传输的数据流数目为1至4的情况下,所述指示信息指示所述X个DMRS端口的第三信息,所述第三信息包括如下任意一项:
没有数据占用的CDM组的数量为1,前置符号数为1,所述X个DMRS端口包括1个所述第二类型端口;
没有数据占用的CDM组的数量为1,前置符号数为1,所述X个DMRS端口包括2个所述第二类型端口;
没有数据占用的CDM组的数量为1,前置符号数为1,所述X个DMRS端口包括2个所述第一类型端口和1个所述第二类型端口;
没有数据占用的CDM组的数量为1,前置符号数为1,所述X个DMRS端口包括2个所述第一类型端口和2个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括1个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括2个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括2个所述第一类型端口和1个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括2个所述第一类型端口和2个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括3个所述第一类型端口和1个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为2,所述X个DMRS端口包括1个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为2,所述X个DMRS端口包括2个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为2,所述X个DMRS端口包括2个所述第一类型端口和1个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为2,所述X个DMRS端口包括2个所述第一类型端口和2个所述第二类型端口。
在本申请一种实施例中,在所述DMRS的配置类型为第一配置类型,所述DMRS的符号最大长度为2,所述DMRS对应的数据传输所占用的码字数目为1或者所述DMRS对应的数据传输的数据流数目为5至8的情况下,所述指示信息指示所述X个DMRS端口的第四信息,所述第四信息包括如下任意一项:
没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括4个所述第一类型端口和1个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括4个所述第一类型端口和2个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括4个所述第一类型端口和3个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括4个所述第一类型端口和4个所述第二类型端口;
没有数据占用的CDM组的数量为1,前置符号数为2,所述X个DMRS端口包括3个所述第一类型端口和2个所述第二类型端口;
没有数据占用的CDM组的数量为1,前置符号数为2,所述X个DMRS端口包括4个所述第一类型端口和2个所述第二类型端口;
没有数据占用的CDM组的数量为1,前置符号数为2,所述X个DMRS端口包括4个所述第一类型端口和3个所述第二类型端口;
没有数据占用的CDM组的数量为1,前置符号数为2,所述X个DMRS端口包括4个所述第一类型端口和4个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为2,所述X个DMRS端口包括3个所述第一类型端口和2个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为2,所述X个DMRS端口包括4个所述第一类型端口和2个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为2,所述X个DMRS端口包括4个所述第一类型端口和3个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为2,所述X个DMRS端口包括4个所述第一类型端口和4个所述第二类型端口。
以下对本申请提供的DMRS传输方法进行如下举例说明。
实施例一
以第一配置类型(DMRS配置类型1,或增强型的DMRS配置类型1)的单符号结构为例,8个DMRS端口的映射图案如图4-1至图4-8所示,以及FD-OCC序列如下:
端口0,1,8,9属于一个CDM组,端口2,3,10,11属于一个CDM组。
端口0,1,2,3为第一类型端口,端口8,9,10,11为第二类型端口。
其中,端口0和2上映射长度为2的FD-OCC序列[+1+1],端口1和3上映射长度为2的FD-OCC序列[+1-1],端口8和10上映射长度为4的FD-OCC序列[+1+1-1-1],端口9和11上映射长度为4的FD-OCC序列[+1-1-1+1]。
端口0,1,2,3在一个RB内的OFDM符号#2上映射6个RE,端口8,9,10,11在一个RB内的OFDM符号#2上映射4个RE(以选取前4个RE为例),另外两个RE(即对应子载波#8和#10)不进行DMRS的映射。
需要注意的是,在一些情况下,第一类型端口上两份连续的长度为2的FD-OCC序列可以视作一个长度为4的FD-OCC序列。例如,当端口0,1,8,9(或者端口2,3,10,11)进行CDM复用时,端口0和1(或者端口2和3)上两份连续的长度为2的FD-OCC序列可以视作一个长度为4的FD-OCC序列。例如,端口0上的两份连续的FD-OOC序列[+1+1]和[+1,+1]视作长度为4的FD-OCC序列[+1+1+1+1]。
以第二配置类型(DMRS配置类型2,或增强型的DMRS配置类型2)的单符号结构为例,12个DMRS端口的映射图案如图4-9至4-20所示,以及FD-OCC序列如下:
端口0,1,12,13属于一个CDM组,端口2,3,14,15属于一个CDM组,端口4,5,16,17属于一个CDM组。
端口0,1,2,3,4,5为第一类型端口,端口12,13,14,15,16,17为第二类型端口。
其中,端口0,2,4上映射长度为2的FD-OCC序列[+1+1],端口1,3,5上映射长度为2的FD-OCC序列[+1-1],端口12,14,16上映射长度为4的FD-OCC序列[+1+1-1-1],端口13,15,17上映射长度为4的FD-OCC序列[+1-1-1+1]。
需要注意的是,在一些情况下,第一类型端口上两份连续的长度为2的FD-OCC序列可以视作一个长度为4的FD-OCC序列。例如,当端口0,1,12,13(或者端口2,3,14,15,或者端口4,5,16,17)进行CDM复用时,端口0和1(或者端口2和3,或者端口4和5)上两份连续的长度为2的FD-OCC序列可以视作一个长度为4的FD-OCC序列。例如,端口0上的两份连续的FD-OOC序列[+1+1]和[+1,+1]视作长度为4的FD-OCC序列[+1+1+1+1]。
实施例二
以DMRS的类型为第一配置类型(DMRS配置类型1,或增强型的DMRS配置类型1)的单符号结构为例:
相对索引由小到大的前4个RE(即对应OFDM符号#2上的子载波#0,2,4,6)如图4-21所示。需要注意的是,在OFDM符号#2的子载波#8,10上,第二类型端口和传输数据均不占用对应的RE。
相对索引由小到大的后4个RE(即对应OFDM符号#2上的子载波#4,6,8,10)如图4-22所示。需要注意的是,在OFDM符号#2的子载波#0,2上,第二类型端口和传输数据均不占用对应的RE。
第二类型端口对应的所述4个RE为第一类型端口对应的所述6个RE中的目标RE,还可以是:
a)相对索引最大的前2个RE和索引最小的前2个RE;
b)相对索引由小到大的前3个RE中,相对索引由小到大的前2个RE,以及相对索引由小到大的后3个RE中,相对索引由小到大的前2个RE;
c)相对索引由小到大的前3个RE中,相对索引由小到大的后2个RE,以及相对索引由小到大的后3个RE中,相对索引由小到大的后2个RE;
d)相对索引由小到大的前3个RE中,相对索引最小的1个RE和相对索引最大的1个RE,以及相对索引由小到大的后3个RE中,相对索引最小的1个RE和相对索引最大的1个RE;
e)相对索引由小到大的前3个RE中,相对索引由小到大的后2个RE,以及相对索引由小到大的后3个RE中,相对索引由小到大的前2个RE。
实施例三
当DMRS的配置类型为第一配置类型(DMRS配置类型1,或增强型的DMRS配置类型1),DMRS的符号最大长度(maxLength)为1,所述DMRS对应的数据传输所占用的码字数目为1或者所述DMRS对应的数据传输的数据流数目为1~4时,所述第一指示信息指示的X个DMRS端口的相关信息,包括如下指示表1中的任意一行中的信息,即无数据的DMRS CDM组数量(Number of DMRS CDM group(s)without data)和DMRS端口(port)(s):
表1

端口0、1、8和9属于CDM组0,端口2、3、10和11属于CDM组1。
实施例四
当DMRS的配置类型为第一配置类型(DMRS配置类型1,或增强型的DMRS配置类型1),DMRS的符号最大长度(maxLength)为1,所述DMRS对应的数据传输所占用的码字数目为2或者所述DMRS对应的数据传输的数据流数目为5~8时,所述第一指示信息指示的X个DMRS端口的相关信息,包括如下指示表2中的任意一行中的信息,即Number of DMRS CDM group(s)without data和DMRS port(s):
表2

实施例五
当DMRS的配置类型为第一配置类型(DMRS配置类型1,或增强型的DMRS配置类型1),DMRS的符号最大长度(maxLength)为2,所述DMRS对应的数据传输所占用的码字数目为1或者所述DMRS对应的数据传输的数据流数目为1~4时,所述第一指示信息指示的X个DMRS端口的相关信息,包括如下指示表3中的任意一行中的信息,即Number of DMRS CDM group(s)without data,DMRS port(s)和前置符号的数量Number of front-load symbols:
表3


端口0、1、4、5、8、9、12和13属于CDM组0,端口2、3、6、7、10、11、14和15属于CDM组1。
实施例六
当DMRS的配置类型为第一配置类型(DMRS配置类型1,或增强型的DMRS配置类型1),DMRS的符号最大长度(maxLength)为2,所述DMRS 对应的数据传输所占用的码字数目为2或者所述DMRS对应的数据传输的数据流数目为5~8时,所述第一指示信息指示的X个DMRS端口的相关信息,包括如下指示表4中的任意一行中的信息,即Number of DMRS CDM group(s)without data,DMRS port(s)和Number of front-load symbols:
表4
端口0、1、4、5、8、9、12和13属于CDM组0,端口2、3、6、7、10、11、14和15属于CDM组1。
上述中的DMRS端口映射方法,可以扩展DMRS端口的数目,例如,使得DMRS配置类型1的DMRS可以达到最大16个端口,DMRS配置类型2的DMRS可以达到最大24个端口。
如图5所示为本申请实施例提供的一种DMRS传输装置,其中DMRS传输装置500包括:
传输模块501,用于发送或接收解调参考信号DMRS,所述DMRS包括X个DMRS端口,所述X个DMRS端口为所述DMRS支持的N个端口中的端口,所述N个端口包括第一类型端口和第二类型端口,所述第一类型端口基于长度为2的频域正交覆盖码FD-OCC序列进行映射,所述第二类型端口基于长度为4的FD-OCC序列进行映射,X、N均为正整数。
可选地,所述X个DMRS端口包括所述第一类型端口和第二类型端口中的至少一项。
可选地,所述装置还包括:
第一接收模块,用于接收网络侧设备发送的指示信息,所述指示信息用于指示所述X个DMRS端口,所述X个DMRS端口包括所述第一类型端口和所述第二类型端口中的至少一项。
可选地,在所述DMRS的配置类型为第一配置类型,所述X个DMRS端口中的Y个DMRS端口包括所述第一类型端口和所述第二类型端口,且所述Y个DMRS端口属于同一个码分复用CDM组的情况下,所述Y个DMRS端口包括的所述第一类型端口和所述第二类型端口占用的资源单元RE满足第一映射规则,Y为小于或等于X的正整数。
可选地,所述第一映射规则包括如下任意一项:
在同一个正交频分复用OFDM符号上,所述第二类型端口占用的RE与所述第一类型端口占用的RE相同;
在同一个OFDM符号上,所述第二类型端口占用的RE为所述第一类型端口占用的RE的子集。
可选地,在同一个OFDM符号上,所述第二类型端口占用的RE与所述第一类型端口占用的RE相同的情况下,在同一个OFDM符号上,所述第一类型端口和所述第二类型端口在所映射的每个资源块RB内占用相同的6个RE。
可选地,在同一个OFDM符号上,在所述第一类型端口和所述第二类型端口分别在所映射的每个RB内占用6个RE的情况下,所述DMRS以G个RB为颗粒度进行映射,其中G为正偶数。
可选地,在所述第二类型端口占用的RE为所述第一类型端口占用的RE的子集的情况下,在同一个OFDM符号上,所述第一类型端口在所映射的每个RB内占用6个RE,第二类型端口在所映射的每个RB内占用4个RE。
可选地,所述第二类型端口占用的4个RE为所述第一类型端口占用的6个RE中的目标RE。
可选地,所述目标RE包括如下任意一项:
相对索引由小到大排序的前4个RE;
相对索引由小到大排序的后4个RE;
其中,所述相对索引为第一类型端口占用的6个RE的索引。
可选地,在所述DMRS的配置类型为第二配置类型,所述X个DMRS端口中的Y个DMRS端口包括所述第一类型端口和所述第二类型端口,且所述Y个DMRS端口属于同一个CDM组的情况下,所述Y个DMRS端口包括的所述第一类型端口和所述第二类型端口占用的RE满足第二映射规则,Y为小于或等于X的正整数。
可选地,所述第二映射规则包括:
在同一个OFDM符号上,所述第二类型端口占用的RE与所述第一类型端口占用的RE相同。
可选地,所述N个端口中属于同一个CDM组的所述第一类型端口和所述第二类型端口满足:所述第一类型端口所对应的长度为2的FD-OCC序列为[+1,+1]和/或[+1,-1],所述第二类型端口所对应的长度为4的FD-OCC序列为[+1,+1,-1,-1]和/或[+1,-1,-1,+1]。
可选地,所述装置还包括:
第二接收模块,用于接收协同指示信息和/或信道估计假设信息;
其中,所述协同指示信息用于指示所述X个DMRS端口以及与所述终端协同传输的其他终端被指示的DMRS端口是否均为第一类型端口或者第二类型端口;所述信道估计假设信息用于指示所述终端的信道估计以长度为2的FD-OCC序列为信道估计假设,或者以长度为4的FD-OCC序列为信道估计假设。
可选地,所述装置还包括第一信道估计模块,用于在所述X个DMRS端口均为所述第一类型端口,且所述协同指示信息指示所述X个DMRS端口以及与所述终端协同传输的其他终端被指示的DMRS端口均为所述第一类型端口的情况下,以长度为2的FD-OCC序列为信道估计假设,对所述X个DMRS端口进行信道估计;
或者,在所述X个DMRS端口均为所述第二类型端口,且所述协同指示信息指示所述X个DMRS端口以及与所述终端协同传输的其他终端被指示的 DMRS端口均为第二类型端口的情况下,所述终端以长度为4的FD-OCC序列为信道估计假设,对所述X个DMRS端口进行信道估计。
可选地,所述装置还包括第二信道估计模块,用于在所述X个DMRS端口均为所述第一类型端口,且在所述信道估计假设信息指示所述终端的信道估计以长度为2的FD-OCC序列为信道估计假设的情况下,所述终端以长度为2的FD-OCC序列为信道估计假设,对所述第一类型端口进行信道估计;
或者,在所述X个DMRS端口均为所述第一类型端口,且所述信道估计假设信息指示终端的信道估计以长度为4的FD-OCC序列为信道估计假设的情况下,所述终端以长度为4的FD-OCC序列为信道估计假设,对所述第一类型端口进行信道估计。
可选地,在所述DMRS的配置类型为第一配置类型,所述DMRS的符号最大长度为1,所述DMRS对应的数据传输所占用的码字数目为1或者所述DMRS对应的数据传输的数据流数目为1至4的情况下,所述指示信息指示所述X个DMRS端口的第一信息,所述第一信息包括如下任意一项:
没有数据占用的CDM组的数量为1,所述X个DMRS端口包括1个所述第二类型端口;
没有数据占用的CDM组的数量为1,所述X个DMRS端口包括2个所述第二类型端口;
没有数据占用的CDM组的数量为2,所述X个DMRS端口包括1个所述第二类型端口;
没有数据占用的CDM组的数量为2,所述X个DMRS端口包括2个所述第二类型端口;
没有数据占用的CDM组的数量为2,所述X个DMRS端口包括2个所述第一类型端口和1个所述第二类型端口。
没有数据占用的CDM组的数量为2,所述X个DMRS端口包括2个所述第一类型端口和1个所述第二类型端口。
可选地,在所述DMRS的配置类型为第一配置类型,所述DMRS的符号最大长度为1,所述DMRS对应的数据传输所占用的码字数目为2或者所述DMRS对应的数据传输的数据流数目为5至8的情况下,所述指示信息指示 所述X个DMRS端口的第二信息,所述第二信息包括如下任意一项:
没有数据占用的CDM组的数量为2,所述X个DMRS端口包括4个所述第一类型端口和1个所述第二类型端口;
没有数据占用的CDM组的数量为2,所述X个DMRS端口包括4个所述第一类型端口和2个所述第二类型端口;
没有数据占用的CDM组的数量为2,所述X个DMRS端口包括4个所述第一类型端口和3个所述第二类型端口;
没有数据占用的CDM组的数量为2,所述X个DMRS端口包括4个所述第一类型端口和4个所述第二类型端口。
可选地,在所述DMRS的配置类型为第一配置类型,所述DMRS的符号最大长度为2,所述DMRS对应的数据传输所占用的码字数目为1或者所述DMRS对应的数据传输的数据流数目为1至4的情况下,所述指示信息指示所述X个DMRS端口的第三信息,所述第三信息包括如下任意一项:
没有数据占用的CDM组的数量为1,前置符号数为1,所述X个DMRS端口包括1个所述第二类型端口;
没有数据占用的CDM组的数量为1,前置符号数为1,所述X个DMRS端口包括2个所述第二类型端口;
没有数据占用的CDM组的数量为1,前置符号数为1,所述X个DMRS端口包括2个所述第一类型端口和1个所述第二类型端口;
没有数据占用的CDM组的数量为1,前置符号数为1,所述X个DMRS端口包括2个所述第一类型端口和2个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括1个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括2个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括2个所述第一类型端口和1个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括2个所述第一类型端口和2个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括3个所述第一类型端口和1个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为2,所述X个DMRS端口包括1个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为2,所述X个DMRS端口包括2个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为2,所述X个DMRS端口包括2个所述第一类型端口和1个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为2,所述X个DMRS端口包括2个所述第一类型端口和2个所述第二类型端口。
可选地,在所述DMRS的配置类型为第一配置类型,所述DMRS的符号最大长度为2,所述DMRS对应的数据传输所占用的码字数目为1或者所述DMRS对应的数据传输的数据流数目为5至8的情况下,所述指示信息指示所述X个DMRS端口的第四信息,所述第四信息包括如下任意一项:
没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括4个所述第一类型端口和1个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括4个所述第一类型端口和2个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括4个所述第一类型端口和3个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括4个所述第一类型端口和4个所述第二类型端口;
没有数据占用的CDM组的数量为1,前置符号数为2,所述X个DMRS端口包括3个所述第一类型端口和2个所述第二类型端口;
没有数据占用的CDM组的数量为1,前置符号数为2,所述X个DMRS端口包括4个所述第一类型端口和2个所述第二类型端口;
没有数据占用的CDM组的数量为1,前置符号数为2,所述X个DMRS端口包括4个所述第一类型端口和3个所述第二类型端口;
没有数据占用的CDM组的数量为1,前置符号数为2,所述X个DMRS 端口包括4个所述第一类型端口和4个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为2,所述X个DMRS端口包括3个所述第一类型端口和2个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为2,所述X个DMRS端口包括4个所述第一类型端口和2个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为2,所述X个DMRS端口包括4个所述第一类型端口和3个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为2,所述X个DMRS端口包括4个所述第一类型端口和4个所述第二类型端口。
本申请实施例提供的DMRS传输装置500能够实现图2的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
如图6所示为本申请实施例提供的一种DMRS传输装置,DMRS传输装置600包括:
传输模块601,用于发送或接收解调参考信号DMRS,所述DMRS包括X个DMRS端口,所述X个DMRS端口为所述DMRS支持的N个端口中的端口,所述N个端口包括第一类型端口和第二类型端口,所述第一类型端口基于长度为2的频域正交覆盖码FD-OCC序列进行映射,所述第二类型端口基于长度为4的FD-OCC序列进行映射,X、N均为正整数。
进一步地,所述X个DMRS端口包括所述第一类型端口和第二类型端口中的至少一项。
进一步地,所述装置还包括第一发送模块,用于发送指示信息,所述指示信息用于指示所述X个DMRS端口,所述X个DMRS端口包括所述第一类型端口和所述第二类型端口中的至少一项。
进一步地,在所述DMRS的配置类型为第一配置类型,所述X个DMRS端口中的Y个DMRS端口包括所述第一类型端口和所述第二类型端口,且所述Y个DMRS端口属于同一个码分复用CDM组的情况下,所述Y个DMRS端口包括的所述第一类型端口和所述第二类型端口占用的资源单元RE满足第一映射规则,Y为小于或等于X的正整数。
进一步地,所述第一映射规则包括如下任意一项:
在同一个正交频分复用OFDM符号上,所述第二类型端口占用的RE与所述第一类型端口占用的RE相同;
在同一个OFDM符号上,所述第二类型端口占用的RE为所述第一类型端口占用的RE的子集。
进一步地,在同一个OFDM符号上,所述第二类型端口占用的RE与所述第一类型端口占用的RE相同的情况下,在同一个OFDM符号上,所述第一类型端口和所述第二类型端口在所映射的每个资源块RB内占用相同的6个RE。
进一步地,在同一个OFDM符号上,在所述第一类型端口和所述第二类型端口分别在所映射的每个RB内占用6个RE的情况下,所述DMRS以G个RB为颗粒度进行映射,其中G为正偶数。
进一步地,在所述第二类型端口占用的RE为所述第一类型端口占用的RE的子集的情况下,在同一个OFDM符号上,所述第一类型端口在所映射的每个RB内占用6个RE,第二类型端口在所映射的每个RB内占用4个RE。
进一步地,所述第二类型端口占用的4个RE为所述第一类型端口占用的6个RE中的目标RE。
进一步地,所述目标RE包括如下任意一项:
相对索引由小到大排序的前4个RE;
相对索引由小到大排序的后4个RE;
其中,所述相对索引为第一类型端口占用的6个RE的索引。
进一步地,在所述DMRS的配置类型为第二配置类型,所述X个DMRS端口中的Y个DMRS端口包括所述第一类型端口和所述第二类型端口,且所述Y个DMRS端口属于同一个CDM组的情况下,所述Y个DMRS端口包括的所述第一类型端口和所述第二类型端口占用的RE满足第二映射规则,Y为小于或等于X的正整数。
进一步地,所述第二映射规则包括:
在同一个OFDM符号上,所述第二类型端口占用的RE与所述第一类型端口占用的RE相同。
进一步地,所述N个端口中属于同一个CDM组的所述第一类型端口和 所述第二类型端口满足:所述第一类型端口所对应的长度为2的FD-OCC序列为[+1,+1]和/或[+1,-1],所述第二类型端口所对应的长度为4的FD-OCC序列为[+1,+1,-1,-1]和/或[+1,-1,-1,+1]。
进一步地,所述装置还包括第二发送模块,用于发送协同指示信息和/或信道估计假设信息;
其中,所述协同指示信息用于指示所述X个DMRS端口以及与所述终端协同传输的其他终端被指示的DMRS端口是否均为第一类型端口或者第二类型端口;所述信道估计假设信息用于指示所述终端的信道估计以长度为2的FD-OCC序列为信道估计假设,或者以长度为4的FD-OCC序列为信道估计假设。
进一步地,所述装置还包括第一信道估计模块,用于在所述X个DMRS端口均为所述第一类型端口,且所述协同指示信息指示所述X个DMRS端口以及与所述终端协同传输的其他终端被指示的DMRS端口均为所述第一类型端口的情况下,以长度为2的FD-OCC序列为信道估计假设,对所述X个DMRS端口进行信道估计;
或者,在所述X个DMRS端口均为所述第二类型端口,且所述协同指示信息指示所述X个DMRS端口以及与所述终端协同传输的其他终端被指示的DMRS端口均为第二类型端口的情况下,以长度为4的FD-OCC序列为信道估计假设,对所述X个DMRS端口进行信道估计。
进一步地,所述装置还包括第二信道估计模块,用于:
在所述X个DMRS端口均为所述第一类型端口,且在所述信道估计假设信息指示所述终端的信道估计以长度为2的FD-OCC序列为信道估计假设的情况下,以长度为2的FD-OCC序列为信道估计假设,对所述第一类型端口进行信道估计;
或者,在所述X个DMRS端口均为所述第一类型端口,且所述信道估计假设信息指示终端的信道估计以长度为4的FD-OCC序列为信道估计假设的情况下,以长度为4的FD-OCC序列为信道估计假设,对所述第一类型端口进行信道估计。
进一步地,在所述DMRS的配置类型为第一配置类型,所述DMRS的符 号最大长度为1,所述DMRS对应的数据传输所占用的码字数目为1或者所述DMRS对应的数据传输的数据流数目为1至4的情况下,所述指示信息指示所述X个DMRS端口的第一信息,所述第一信息包括如下任意一项:
没有数据占用的CDM组的数量为1,所述X个DMRS端口包括1个所述第二类型端口;
没有数据占用的CDM组的数量为1,所述X个DMRS端口包括2个所述第二类型端口;
没有数据占用的CDM组的数量为2,所述X个DMRS端口包括1个所述第二类型端口;
没有数据占用的CDM组的数量为2,所述X个DMRS端口包括2个所述第二类型端口;
没有数据占用的CDM组的数量为2,所述X个DMRS端口包括2个所述第一类型端口和1个所述第二类型端口。
没有数据占用的CDM组的数量为2,所述X个DMRS端口包括2个所述第一类型端口和1个所述第二类型端口。
进一步地,在所述DMRS的配置类型为第一配置类型,所述DMRS的符号最大长度为1,所述DMRS对应的数据传输所占用的码字数目为2或者所述DMRS对应的数据传输的数据流数目为5至8的情况下,所述指示信息指示所述X个DMRS端口的第二信息,所述第二信息包括如下任意一项:
没有数据占用的CDM组的数量为2,所述X个DMRS端口包括4个所述第一类型端口和1个所述第二类型端口;
没有数据占用的CDM组的数量为2,所述X个DMRS端口包括4个所述第一类型端口和2个所述第二类型端口;
没有数据占用的CDM组的数量为2,所述X个DMRS端口包括4个所述第一类型端口和3个所述第二类型端口;
没有数据占用的CDM组的数量为2,所述X个DMRS端口包括4个所述第一类型端口和4个所述第二类型端口。
进一步地,在所述DMRS的配置类型为第一配置类型,所述DMRS的符号最大长度为2,所述DMRS对应的数据传输所占用的码字数目为1或者所 述DMRS对应的数据传输的数据流数目为1至4的情况下,所述指示信息指示所述X个DMRS端口的第三信息,所述第三信息包括如下任意一项:
没有数据占用的CDM组的数量为1,前置符号数为1,所述X个DMRS端口包括1个所述第二类型端口;
没有数据占用的CDM组的数量为1,前置符号数为1,所述X个DMRS端口包括2个所述第二类型端口;
没有数据占用的CDM组的数量为1,前置符号数为1,所述X个DMRS端口包括2个所述第一类型端口和1个所述第二类型端口;
没有数据占用的CDM组的数量为1,前置符号数为1,所述X个DMRS端口包括2个所述第一类型端口和2个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括1个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括2个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括2个所述第一类型端口和1个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括2个所述第一类型端口和2个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括3个所述第一类型端口和1个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为2,所述X个DMRS端口包括1个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为2,所述X个DMRS端口包括2个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为2,所述X个DMRS端口包括2个所述第一类型端口和1个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为2,所述X个DMRS端口包括2个所述第一类型端口和2个所述第二类型端口。
进一步地,在所述DMRS的配置类型为第一配置类型,所述DMRS的符 号最大长度为2,所述DMRS对应的数据传输所占用的码字数目为1或者所述DMRS对应的数据传输的数据流数目为5至8的情况下,所述指示信息指示所述X个DMRS端口的第四信息,所述第四信息包括如下任意一项:
没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括4个所述第一类型端口和1个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括4个所述第一类型端口和2个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括4个所述第一类型端口和3个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括4个所述第一类型端口和4个所述第二类型端口;
没有数据占用的CDM组的数量为1,前置符号数为2,所述X个DMRS端口包括3个所述第一类型端口和2个所述第二类型端口;
没有数据占用的CDM组的数量为1,前置符号数为2,所述X个DMRS端口包括4个所述第一类型端口和2个所述第二类型端口;
没有数据占用的CDM组的数量为1,前置符号数为2,所述X个DMRS端口包括4个所述第一类型端口和3个所述第二类型端口;
没有数据占用的CDM组的数量为1,前置符号数为2,所述X个DMRS端口包括4个所述第一类型端口和4个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为2,所述X个DMRS端口包括3个所述第一类型端口和2个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为2,所述X个DMRS端口包括4个所述第一类型端口和2个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为2,所述X个DMRS端口包括4个所述第一类型端口和3个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为2,所述X个DMRS端口包括4个所述第一类型端口和4个所述第二类型端口。
本申请实施例提供的DMRS传输装置600能够实现图3的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例中的装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
可选的,如图7所示,本申请实施例还提供一种通信设备700,包括处理器701和存储器702,存储器702上存储有可在所述处理器701上运行的程序或指令,例如,该通信设备700为终端时,该程序或指令被处理器701执行时实现上述图2方法实施例的各个步骤,且能达到相同的技术效果。该通信设备700为网络侧设备时,该程序或指令被处理器701执行时实现上述图3所示方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,所述通信接口用于发送或接收解调参考信号DMRS,所述DMRS包括X个DMRS端口,所述X个DMRS端口为所述DMRS支持的N个端口中的端口,所述N个端口包括第一类型端口和第二类型端口,所述第一类型端口基于长度为2的频域正交覆盖码FD-OCC序列进行映射,所述第二类型端口基于长度为4的FD-OCC序列进行映射,X、N均为正整数。该终端实施例与上述图2所示终端侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。
具体地,图8为实现本申请实施例的一种终端的硬件结构示意图。
该终端1000包括但不限于:射频单元1001、网络模块1002、音频输出单元1003、输入单元1004、传感器1005、显示单元1006、用户输入单元1007、接口单元1008、存储器1009以及处理器1010等中的至少部分部件。
本领域技术人员可以理解,终端1000还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1010逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图8中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1004可以包括图形处理单元(Graphics Processing Unit,GPU)10041和麦克风10042,图形处理器10041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1006可包括显示面板10061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板10061。用户输入单元1007包括触控面板10071以及其他输入设备10072中的至少一种。触控面板10071,也称为触摸屏。触控面板10071可包括触摸检测装置和触摸控制器两个部分。其他输入设备10072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1001接收来自网络侧设备的下行数据后,可以传输给处理器1010进行处理;另外,射频单元1001可以向网络侧设备发送上行数据。通常,射频单元1001包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1009可用于存储软件程序或指令以及各种数据。存储器1009可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1009可以包括易失性存储器或非易失性存储器,或者,存储器1009可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施 例中的存储器1009包括但不限于这些和任意其它适合类型的存储器。
处理器1010可包括一个或多个处理单元;可选的,处理器1010集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1010中。
其中,射频单元1001,用于发送或接收解调参考信号DMRS,所述DMRS包括X个DMRS端口,所述X个DMRS端口为所述DMRS支持的N个端口中的端口,所述N个端口包括第一类型端口和第二类型端口,所述第一类型端口基于长度为2的频域正交覆盖码FD-OCC序列进行映射,所述第二类型端口基于长度为4的FD-OCC序列进行映射,X、N均为正整数。
进一步地,所述X个DMRS端口包括所述第一类型端口和第二类型端口中的至少一项。
进一步地,射频单元1001,用于接收网络侧设备发送的指示信息,所述指示信息用于指示所述X个DMRS端口,所述X个DMRS端口包括所述第一类型端口和所述第二类型端口中的至少一项。
进一步地,在所述DMRS的配置类型为第一配置类型,所述X个DMRS端口中的Y个DMRS端口包括所述第一类型端口和所述第二类型端口,且所述Y个DMRS端口属于同一个码分复用CDM组的情况下,所述Y个DMRS端口包括的所述第一类型端口和所述第二类型端口占用的资源单元RE满足第一映射规则,Y为小于或等于X的正整数。
进一步地,所述第一映射规则包括如下任意一项:
在同一个正交频分复用OFDM符号上,所述第二类型端口占用的RE与所述第一类型端口占用的RE相同;
在同一个OFDM符号上,所述第二类型端口占用的RE为所述第一类型端口占用的RE的子集。
进一步地,在同一个OFDM符号上,所述第二类型端口占用的RE与所述第一类型端口占用的RE相同的情况下,在同一个OFDM符号上,所述第一类型端口和所述第二类型端口在所映射的每个资源块RB内占用相同的6 个RE。
进一步地,在同一个OFDM符号上,在所述第一类型端口和所述第二类型端口分别在所映射的每个RB内占用6个RE的情况下,所述DMRS以G个RB为颗粒度进行映射,其中G为正偶数。
进一步地,在所述第二类型端口占用的RE为所述第一类型端口占用的RE的子集的情况下,在同一个OFDM符号上,所述第一类型端口在所映射的每个RB内占用6个RE,第二类型端口在所映射的每个RB内占用4个RE。
进一步地,所述第二类型端口占用的4个RE为所述第一类型端口占用的6个RE中的目标RE。
进一步地,所述目标RE包括如下任意一项:
相对索引由小到大排序的前4个RE;
相对索引由小到大排序的后4个RE;
其中,所述相对索引为第一类型端口占用的6个RE的索引。
进一步地,在所述DMRS的配置类型为第二配置类型,所述X个DMRS端口中的Y个DMRS端口包括所述第一类型端口和所述第二类型端口,且所述Y个DMRS端口属于同一个CDM组的情况下,所述Y个DMRS端口包括的所述第一类型端口和所述第二类型端口占用的RE满足第二映射规则,Y为小于或等于X的正整数。
进一步地,所述第二映射规则包括:
在同一个OFDM符号上,所述第二类型端口占用的RE与所述第一类型端口占用的RE相同。
进一步地,所述N个端口中属于同一个CDM组的所述第一类型端口和所述第二类型端口满足:所述第一类型端口所对应的长度为2的FD-OCC序列为[+1,+1]和/或[+1,-1],所述第二类型端口所对应的长度为4的FD-OCC序列为[+1,+1,-1,-1]和/或[+1,-1,-1,+1]。
进一步地,射频单元1001,用于接收协同指示信息和/或信道估计假设信息;
其中,所述协同指示信息用于指示所述X个DMRS端口以及与所述终端协同传输的其他终端被指示的DMRS端口是否均为第一类型端口或者第二类 型端口;所述信道估计假设信息用于指示所述终端的信道估计以长度为2的FD-OCC序列为信道估计假设,或者以长度为4的FD-OCC序列为信道估计假设。
进一步地,射频单元1001,用于在所述X个DMRS端口均为所述第一类型端口,且所述协同指示信息指示所述X个DMRS端口以及与所述终端协同传输的其他终端被指示的DMRS端口均为所述第一类型端口的情况下,以长度为2的FD-OCC序列为信道估计假设,对所述X个DMRS端口进行信道估计;
或者,在所述X个DMRS端口均为所述第二类型端口,且所述协同指示信息指示所述X个DMRS端口以及与所述终端协同传输的其他终端被指示的DMRS端口均为第二类型端口的情况下,以长度为4的FD-OCC序列为信道估计假设,对所述X个DMRS端口进行信道估计。
进一步地,射频单元1001,用于在所述X个DMRS端口均为所述第一类型端口,且在所述信道估计假设信息指示所述终端的信道估计以长度为2的FD-OCC序列为信道估计假设的情况下,以长度为2的FD-OCC序列为信道估计假设,对所述第一类型端口进行信道估计;
或者,在所述X个DMRS端口均为所述第一类型端口,且所述信道估计假设信息指示终端的信道估计以长度为4的FD-OCC序列为信道估计假设的情况下,以长度为4的FD-OCC序列为信道估计假设,对所述第一类型端口进行信道估计。
进一步地,在所述DMRS的配置类型为第一配置类型,所述DMRS的符号最大长度为1,所述DMRS对应的数据传输所占用的码字数目为1或者所述DMRS对应的数据传输的数据流数目为1至4的情况下,所述指示信息指示所述X个DMRS端口的第一信息,所述第一信息包括如下任意一项:
没有数据占用的CDM组的数量为1,所述X个DMRS端口包括1个所述第二类型端口;
没有数据占用的CDM组的数量为1,所述X个DMRS端口包括2个所述第二类型端口;
没有数据占用的CDM组的数量为2,所述X个DMRS端口包括1个所 述第二类型端口;
没有数据占用的CDM组的数量为2,所述X个DMRS端口包括2个所述第二类型端口;
没有数据占用的CDM组的数量为2,所述X个DMRS端口包括2个所述第一类型端口和1个所述第二类型端口。
没有数据占用的CDM组的数量为2,所述X个DMRS端口包括2个所述第一类型端口和1个所述第二类型端口。
进一步地,在所述DMRS的配置类型为第一配置类型,所述DMRS的符号最大长度为1,所述DMRS对应的数据传输所占用的码字数目为2或者所述DMRS对应的数据传输的数据流数目为5至8的情况下,所述指示信息指示所述X个DMRS端口的第二信息,所述第二信息包括如下任意一项:
没有数据占用的CDM组的数量为2,所述X个DMRS端口包括4个所述第一类型端口和1个所述第二类型端口;
没有数据占用的CDM组的数量为2,所述X个DMRS端口包括4个所述第一类型端口和2个所述第二类型端口;
没有数据占用的CDM组的数量为2,所述X个DMRS端口包括4个所述第一类型端口和3个所述第二类型端口;
没有数据占用的CDM组的数量为2,所述X个DMRS端口包括4个所述第一类型端口和4个所述第二类型端口。
进一步地,在所述DMRS的配置类型为第一配置类型,所述DMRS的符号最大长度为2,所述DMRS对应的数据传输所占用的码字数目为1或者所述DMRS对应的数据传输的数据流数目为1至4的情况下,所述指示信息指示所述X个DMRS端口的第三信息,所述第三信息包括如下任意一项:
没有数据占用的CDM组的数量为1,前置符号数为1,所述X个DMRS端口包括1个所述第二类型端口;
没有数据占用的CDM组的数量为1,前置符号数为1,所述X个DMRS端口包括2个所述第二类型端口;
没有数据占用的CDM组的数量为1,前置符号数为1,所述X个DMRS端口包括2个所述第一类型端口和1个所述第二类型端口;
没有数据占用的CDM组的数量为1,前置符号数为1,所述X个DMRS端口包括2个所述第一类型端口和2个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括1个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括2个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括2个所述第一类型端口和1个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括2个所述第一类型端口和2个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括3个所述第一类型端口和1个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为2,所述X个DMRS端口包括1个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为2,所述X个DMRS端口包括2个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为2,所述X个DMRS端口包括2个所述第一类型端口和1个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为2,所述X个DMRS端口包括2个所述第一类型端口和2个所述第二类型端口。
进一步地,在所述DMRS的配置类型为第一配置类型,所述DMRS的符号最大长度为2,所述DMRS对应的数据传输所占用的码字数目为1或者所述DMRS对应的数据传输的数据流数目为5至8的情况下,所述指示信息指示所述X个DMRS端口的第四信息,所述第四信息包括如下任意一项:
没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括4个所述第一类型端口和1个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括4个所述第一类型端口和2个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS 端口包括4个所述第一类型端口和3个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括4个所述第一类型端口和4个所述第二类型端口;
没有数据占用的CDM组的数量为1,前置符号数为2,所述X个DMRS端口包括3个所述第一类型端口和2个所述第二类型端口;
没有数据占用的CDM组的数量为1,前置符号数为2,所述X个DMRS端口包括4个所述第一类型端口和2个所述第二类型端口;
没有数据占用的CDM组的数量为1,前置符号数为2,所述X个DMRS端口包括4个所述第一类型端口和3个所述第二类型端口;
没有数据占用的CDM组的数量为1,前置符号数为2,所述X个DMRS端口包括4个所述第一类型端口和4个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为2,所述X个DMRS端口包括3个所述第一类型端口和2个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为2,所述X个DMRS端口包括4个所述第一类型端口和2个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为2,所述X个DMRS端口包括4个所述第一类型端口和3个所述第二类型端口;
没有数据占用的CDM组的数量为2,前置符号数为2,所述X个DMRS端口包括4个所述第一类型端口和4个所述第二类型端口。
本申请实施例提供的终端能够实现图2的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,所述通信接口用于发送或接收解调参考信号DMRS,所述DMRS包括X个DMRS端口,所述X个DMRS端口为所述DMRS支持的N个端口中的端口,所述N个端口包括第一类型端口和第二类型端口,所述第一类型端口基于长度为2的频域正交覆盖码FD-OCC序列进行映射,所述第二类型端口基于长度为4的FD-OCC序列进行映射,X、N均为正整数。该网络侧设备实施例与上述网络侧设备方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种网络侧设备。如图9所示,该网络侧设备1100包括:天线111、射频装置112、基带装置113、处理器114和存储器115。天线111与射频装置112连接。在上行方向上,射频装置112通过天线111接收信息,将接收的信息发送给基带装置113进行处理。在下行方向上,基带装置113对要发送的信息进行处理,并发送给射频装置112,射频装置112对收到的信息进行处理后经过天线111发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置113中实现,该基带装置113包括基带处理器。
基带装置113例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图9所示,其中一个芯片例如为基带处理器,通过总线接口与存储器115连接,以调用存储器115中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口116,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本发明实施例的网络侧设备1100还包括:存储在存储器115上并可在处理器114上运行的指令或程序,处理器114调用存储器115中的指令或程序执行图8所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述图2、图3所示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述图2、图3所示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片, 芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述图2、图3所示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种通信系统,包括:终端及网络侧设备,所述终端可用于执行如上图2所示的方法实施例的步骤,所述网络侧设备可用于执行图3所示的方法实施例的步骤。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单 元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来控制相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的 形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (43)

  1. 一种DMRS传输方法,包括:
    终端发送或接收解调参考信号DMRS,所述DMRS包括X个DMRS端口,所述X个DMRS端口为所述DMRS支持的N个端口中的端口,所述N个端口包括第一类型端口和第二类型端口,所述第一类型端口基于长度为2的频域正交覆盖码FD-OCC序列进行映射,所述第二类型端口基于长度为4的FD-OCC序列进行映射,X、N均为正整数。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述终端接收网络侧设备发送的指示信息,所述指示信息用于指示所述X个DMRS端口,所述X个DMRS端口包括所述第一类型端口和所述第二类型端口中的至少一项。
  3. 根据权利要求1所述的方法,其中,在所述DMRS的配置类型为第一配置类型,所述X个DMRS端口中的Y个DMRS端口包括所述第一类型端口和所述第二类型端口,且所述Y个DMRS端口属于同一个码分复用CDM组的情况下,所述Y个DMRS端口包括的所述第一类型端口和所述第二类型端口占用的资源单元RE满足第一映射规则,Y为小于或等于X的正整数。
  4. 根据权利要求3所述的方法,其中,所述第一映射规则包括如下任意一项:
    在同一个正交频分复用OFDM符号上,所述第二类型端口占用的RE与所述第一类型端口占用的RE相同;
    在同一个OFDM符号上,所述第二类型端口占用的RE为所述第一类型端口占用的RE的子集。
  5. 根据权利要求4所述的方法,其中,在同一个OFDM符号上,所述第二类型端口占用的RE与所述第一类型端口占用的RE相同的情况下,在同一个OFDM符号上,所述第一类型端口和所述第二类型端口在所映射的每个资源块RB内占用相同的6个RE。
  6. 根据权利要求5所述的方法,其中,在同一个OFDM符号上,在所述第一类型端口和所述第二类型端口分别在所映射的每个RB内占用6个RE的 情况下,所述DMRS以G个RB为颗粒度进行映射,其中G为正偶数。
  7. 根据权利要求4所述的方法,其中,在所述第二类型端口占用的RE为所述第一类型端口占用的RE的子集的情况下,在同一个OFDM符号上,所述第一类型端口在所映射的每个RB内占用6个RE,第二类型端口在所映射的每个RB内占用4个RE。
  8. 根据权利要求7所述的方法,其中,所述第二类型端口占用的4个RE为所述第一类型端口占用的6个RE中的目标RE。
  9. 根据权利要求8所述的方法,其中,所述目标RE包括如下任意一项:
    相对索引由小到大排序的前4个RE;
    相对索引由小到大排序的后4个RE;
    其中,所述相对索引为第一类型端口占用的6个RE的索引。
  10. 根据权利要求1所述的方法,其中,在所述DMRS的配置类型为第二配置类型,所述X个DMRS端口中的Y个DMRS端口包括所述第一类型端口和所述第二类型端口,且所述Y个DMRS端口属于同一个CDM组的情况下,所述Y个DMRS端口包括的所述第一类型端口和所述第二类型端口占用的RE满足第二映射规则,Y为小于或等于X的正整数。
  11. 根据权利要求10所述的方法,其中,所述第二映射规则包括:
    在同一个OFDM符号上,所述第二类型端口占用的RE与所述第一类型端口占用的RE相同。
  12. 根据权利要求1所述的方法,其中,所述N个端口中属于同一个CDM组的所述第一类型端口和所述第二类型端口满足:所述第一类型端口所对应的长度为2的FD-OCC序列为[+1,+1]和/或[+1,-1],所述第二类型端口所对应的长度为4的FD-OCC序列为[+1,+1,-1,-1]和/或[+1,-1,-1,+1]。
  13. 根据权利要求1所述的方法,其中,所述方法还包括:
    所述终端接收协同指示信息和/或信道估计假设信息;
    其中,所述协同指示信息用于指示所述X个DMRS端口以及与所述终端协同传输的其他终端被指示的DMRS端口是否均为第一类型端口或者第二类型端口;所述信道估计假设信息用于指示所述终端的信道估计以长度为2的FD-OCC序列为信道估计假设,或者以长度为4的FD-OCC序列为信道估计 假设。
  14. 根据权利要求13所述的方法,其中,在所述终端接收协同指示信息之后,所述方法还包括:
    在所述X个DMRS端口均为所述第一类型端口,且所述协同指示信息指示所述X个DMRS端口以及与所述终端协同传输的其他终端被指示的DMRS端口均为所述第一类型端口的情况下,所述终端以长度为2的FD-OCC序列为信道估计假设,对所述X个DMRS端口进行信道估计;
    或者,在所述X个DMRS端口均为所述第二类型端口,且所述协同指示信息指示所述X个DMRS端口以及与所述终端协同传输的其他终端被指示的DMRS端口均为第二类型端口的情况下,所述终端以长度为4的FD-OCC序列为信道估计假设,对所述X个DMRS端口进行信道估计。
  15. 根据权利要求13所述的方法,其中,在所述终端接收信道估计假设信息之后,所述方法还包括:
    在所述X个DMRS端口均为所述第一类型端口,且在所述信道估计假设信息指示所述终端的信道估计以长度为2的FD-OCC序列为信道估计假设的情况下,所述终端以长度为2的FD-OCC序列为信道估计假设,对所述第一类型端口进行信道估计;
    或者,在所述X个DMRS端口均为所述第一类型端口,且所述信道估计假设信息指示终端的信道估计以长度为4的FD-OCC序列为信道估计假设的情况下,所述终端以长度为4的FD-OCC序列为信道估计假设,对所述第一类型端口进行信道估计。
  16. 根据权利要求2所述的方法,其中,在所述DMRS的配置类型为第一配置类型,所述DMRS的符号最大长度为1,所述DMRS对应的数据传输所占用的码字数目为1或者所述DMRS对应的数据传输的数据流数目为1至4的情况下,所述指示信息指示所述X个DMRS端口的第一信息,所述第一信息包括如下任意一项:
    没有数据占用的CDM组的数量为1,所述X个DMRS端口包括1个所述第二类型端口;
    没有数据占用的CDM组的数量为1,所述X个DMRS端口包括2个所 述第二类型端口;
    没有数据占用的CDM组的数量为2,所述X个DMRS端口包括1个所述第二类型端口;
    没有数据占用的CDM组的数量为2,所述X个DMRS端口包括2个所述第二类型端口;
    没有数据占用的CDM组的数量为2,所述X个DMRS端口包括2个所述第一类型端口和1个所述第二类型端口;
    没有数据占用的CDM组的数量为2,所述X个DMRS端口包括2个所述第一类型端口和1个所述第二类型端口。
  17. 根据权利要求2所述的方法,其中,在所述DMRS的配置类型为第一配置类型,所述DMRS的符号最大长度为1,所述DMRS对应的数据传输所占用的码字数目为2或者所述DMRS对应的数据传输的数据流数目为5至8的情况下,所述指示信息指示所述X个DMRS端口的第二信息,所述第二信息包括如下任意一项:
    没有数据占用的CDM组的数量为2,所述X个DMRS端口包括4个所述第一类型端口和1个所述第二类型端口;
    没有数据占用的CDM组的数量为2,所述X个DMRS端口包括4个所述第一类型端口和2个所述第二类型端口;
    没有数据占用的CDM组的数量为2,所述X个DMRS端口包括4个所述第一类型端口和3个所述第二类型端口;
    没有数据占用的CDM组的数量为2,所述X个DMRS端口包括4个所述第一类型端口和4个所述第二类型端口。
  18. 根据权利要求2所述的方法,其中,在所述DMRS的配置类型为第一配置类型,所述DMRS的符号最大长度为2,所述DMRS对应的数据传输所占用的码字数目为1或者所述DMRS对应的数据传输的数据流数目为1至4的情况下,所述指示信息指示所述X个DMRS端口的第三信息,所述第三信息包括如下任意一项:
    没有数据占用的CDM组的数量为1,前置符号数为1,所述X个DMRS端口包括1个所述第二类型端口;
    没有数据占用的CDM组的数量为1,前置符号数为1,所述X个DMRS端口包括2个所述第二类型端口;
    没有数据占用的CDM组的数量为1,前置符号数为1,所述X个DMRS端口包括2个所述第一类型端口和1个所述第二类型端口;
    没有数据占用的CDM组的数量为1,前置符号数为1,所述X个DMRS端口包括2个所述第一类型端口和2个所述第二类型端口;
    没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括1个所述第二类型端口;
    没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括2个所述第二类型端口;
    没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括2个所述第一类型端口和1个所述第二类型端口;
    没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括2个所述第一类型端口和2个所述第二类型端口;
    没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括3个所述第一类型端口和1个所述第二类型端口;
    没有数据占用的CDM组的数量为2,前置符号数为2,所述X个DMRS端口包括1个所述第二类型端口;
    没有数据占用的CDM组的数量为2,前置符号数为2,所述X个DMRS端口包括2个所述第二类型端口;
    没有数据占用的CDM组的数量为2,前置符号数为2,所述X个DMRS端口包括2个所述第一类型端口和1个所述第二类型端口;
    没有数据占用的CDM组的数量为2,前置符号数为2,所述X个DMRS端口包括2个所述第一类型端口和2个所述第二类型端口。
  19. 根据权利要求2所述的方法,其中,在所述DMRS的配置类型为第一配置类型,所述DMRS的符号最大长度为2,所述DMRS对应的数据传输所占用的码字数目为1或者所述DMRS对应的数据传输的数据流数目为5至8的情况下,所述指示信息指示所述X个DMRS端口的第四信息,所述第四信息包括如下任意一项:
    没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括4个所述第一类型端口和1个所述第二类型端口;
    没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括4个所述第一类型端口和2个所述第二类型端口;
    没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括4个所述第一类型端口和3个所述第二类型端口;
    没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括4个所述第一类型端口和4个所述第二类型端口;
    没有数据占用的CDM组的数量为1,前置符号数为2,所述X个DMRS端口包括3个所述第一类型端口和2个所述第二类型端口;
    没有数据占用的CDM组的数量为1,前置符号数为2,所述X个DMRS端口包括4个所述第一类型端口和2个所述第二类型端口;
    没有数据占用的CDM组的数量为1,前置符号数为2,所述X个DMRS端口包括4个所述第一类型端口和3个所述第二类型端口;
    没有数据占用的CDM组的数量为1,前置符号数为2,所述X个DMRS端口包括4个所述第一类型端口和4个所述第二类型端口;
    没有数据占用的CDM组的数量为2,前置符号数为2,所述X个DMRS端口包括3个所述第一类型端口和2个所述第二类型端口;
    没有数据占用的CDM组的数量为2,前置符号数为2,所述X个DMRS端口包括4个所述第一类型端口和2个所述第二类型端口;
    没有数据占用的CDM组的数量为2,前置符号数为2,所述X个DMRS端口包括4个所述第一类型端口和3个所述第二类型端口;
    没有数据占用的CDM组的数量为2,前置符号数为2,所述X个DMRS端口包括4个所述第一类型端口和4个所述第二类型端口。
  20. 一种DMRS传输方法,包括:
    网络侧设备发送或接收解调参考信号DMRS,所述DMRS包括X个DMRS端口,所述X个DMRS端口为所述DMRS支持的N个端口中的端口,所述N个端口包括第一类型端口和第二类型端口,所述第一类型端口基于长度为2的频域正交覆盖码FD-OCC序列进行映射,所述第二类型端口基于长 度为4的FD-OCC序列进行映射,X、N均为正整数。
  21. 根据权利要求20所述的方法,其中,所述方法还包括:
    所述网络侧设备发送指示信息,所述指示信息用于指示所述X个DMRS端口,所述X个DMRS端口包括所述第一类型端口和所述第二类型端口中的至少一项。
  22. 根据权利要求20所述的方法,其中,在所述DMRS的配置类型为第一配置类型,所述X个DMRS端口中的Y个DMRS端口包括所述第一类型端口和所述第二类型端口,且所述Y个DMRS端口属于同一个码分复用CDM组的情况下,所述Y个DMRS端口包括的所述第一类型端口和所述第二类型端口占用的资源单元RE满足第一映射规则,Y为小于或等于X的正整数。
  23. 根据权利要求22所述的方法,其中,所述第一映射规则包括如下任意一项:
    在同一个正交频分复用OFDM符号上,所述第二类型端口占用的RE与所述第一类型端口占用的RE相同;
    在同一个OFDM符号上,所述第二类型端口占用的RE为所述第一类型端口占用的RE的子集。
  24. 根据权利要求23所述的方法,其中,在同一个OFDM符号上,所述第二类型端口占用的RE与所述第一类型端口占用的RE相同的情况下,在同一个OFDM符号上,所述第一类型端口和所述第二类型端口在所映射的每个资源块RB内占用相同的6个RE。
  25. 根据权利要求24所述的方法,其中,在同一个OFDM符号上,在所述第一类型端口和所述第二类型端口分别在所映射的每个RB内占用6个RE的情况下,所述DMRS以G个RB为颗粒度进行映射,其中G为正偶数。
  26. 根据权利要求23所述的方法,其中,在所述第二类型端口占用的RE为所述第一类型端口占用的RE的子集的情况下,在同一个OFDM符号上,所述第一类型端口在所映射的每个RB内占用6个RE,第二类型端口在所映射的每个RB内占用4个RE。
  27. 根据权利要求26所述的方法,其中,所述第二类型端口占用的4个RE为所述第一类型端口占用的6个RE中的目标RE。
  28. 根据权利要求27所述的方法,其中,所述目标RE包括如下任意一项:
    相对索引由小到大排序的前4个RE;
    相对索引由小到大排序的后4个RE;
    其中,所述相对索引为第一类型端口占用的6个RE的索引。
  29. 根据权利要求20所述的方法,其中,在所述DMRS的配置类型为第二配置类型,所述X个DMRS端口中的Y个DMRS端口包括所述第一类型端口和所述第二类型端口,且所述Y个DMRS端口属于同一个CDM组的情况下,所述Y个DMRS端口包括的所述第一类型端口和所述第二类型端口占用的RE满足第二映射规则,Y为小于或等于X的正整数。
  30. 根据权利要求29所述的方法,其中,所述第二映射规则包括:
    在同一个OFDM符号上,所述第二类型端口占用的RE与所述第一类型端口占用的RE相同。
  31. 根据权利要求20所述的方法,其中,所述N个端口中属于同一个CDM组的所述第一类型端口和所述第二类型端口满足:所述第一类型端口所对应的长度为2的FD-OCC序列为[+1,+1]和/或[+1,-1],所述第二类型端口所对应的长度为4的FD-OCC序列为[+1,+1,-1,-1]和/或[+1,-1,-1,+1]。
  32. 根据权利要求20所述的方法,其中,所述方法还包括:
    所述网络侧设备发送协同指示信息和/或信道估计假设信息;
    其中,所述协同指示信息用于指示所述X个DMRS端口以及与终端协同传输的其他终端被指示的DMRS端口是否均为第一类型端口或者第二类型端口;所述信道估计假设信息用于指示所述终端的信道估计以长度为2的FD-OCC序列为信道估计假设,或者以长度为4的FD-OCC序列为信道估计假设。
  33. 根据权利要求32所述的方法,其中,在所述终端接收协同指示信息之后,所述方法还包括:
    在所述X个DMRS端口均为所述第一类型端口,且所述协同指示信息指示所述X个DMRS端口以及与所述终端协同传输的其他终端被指示的DMRS端口均为所述第一类型端口的情况下,所述终端以长度为2的FD-OCC序列为信道估计假设,对所述X个DMRS端口进行信道估计;
    或者,在所述X个DMRS端口均为所述第二类型端口,且所述协同指示信息指示所述X个DMRS端口以及与所述终端协同传输的其他终端被指示的DMRS端口均为第二类型端口的情况下,所述终端以长度为4的FD-OCC序列为信道估计假设,对所述X个DMRS端口进行信道估计。
  34. 根据权利要求32所述的方法,其中,在所述终端接收信道估计假设信息之后,所述方法还包括:
    在所述X个DMRS端口均为所述第一类型端口,且在所述信道估计假设信息指示所述终端的信道估计以长度为2的FD-OCC序列为信道估计假设的情况下,所述终端以长度为2的FD-OCC序列为信道估计假设,对所述第一类型端口进行信道估计;
    或者,在所述X个DMRS端口均为所述第一类型端口,且所述信道估计假设信息指示终端的信道估计以长度为4的FD-OCC序列为信道估计假设的情况下,所述终端以长度为4的FD-OCC序列为信道估计假设,对所述第一类型端口进行信道估计。
  35. 根据权利要求21所述的方法,其中,在所述DMRS的配置类型为第一配置类型,所述DMRS的符号最大长度为1,所述DMRS对应的数据传输所占用的码字数目为1或者所述DMRS对应的数据传输的数据流数目为1至4的情况下,所述指示信息指示所述X个DMRS端口的第一信息,所述第一信息包括如下任意一项:
    没有数据占用的CDM组的数量为1,所述X个DMRS端口包括1个所述第二类型端口;
    没有数据占用的CDM组的数量为1,所述X个DMRS端口包括2个所述第二类型端口;
    没有数据占用的CDM组的数量为2,所述X个DMRS端口包括1个所述第二类型端口;
    没有数据占用的CDM组的数量为2,所述X个DMRS端口包括2个所述第二类型端口;
    没有数据占用的CDM组的数量为2,所述X个DMRS端口包括2个所述第一类型端口和1个所述第二类型端口;
    没有数据占用的CDM组的数量为2,所述X个DMRS端口包括2个所述第一类型端口和1个所述第二类型端口。
  36. 根据权利要求21所述的方法,其中,在所述DMRS的配置类型为第一配置类型,所述DMRS的符号最大长度为1,所述DMRS对应的数据传输所占用的码字数目为2或者所述DMRS对应的数据传输的数据流数目为5至8的情况下,所述指示信息指示所述X个DMRS端口的第二信息,所述第二信息包括如下任意一项:
    没有数据占用的CDM组的数量为2,所述X个DMRS端口包括4个所述第一类型端口和1个所述第二类型端口;
    没有数据占用的CDM组的数量为2,所述X个DMRS端口包括4个所述第一类型端口和2个所述第二类型端口;
    没有数据占用的CDM组的数量为2,所述X个DMRS端口包括4个所述第一类型端口和3个所述第二类型端口;
    没有数据占用的CDM组的数量为2,所述X个DMRS端口包括4个所述第一类型端口和4个所述第二类型端口。
  37. 根据权利要求21所述的方法,其中,在所述DMRS的配置类型为第一配置类型,所述DMRS的符号最大长度为2,所述DMRS对应的数据传输所占用的码字数目为1或者所述DMRS对应的数据传输的数据流数目为1至4的情况下,所述指示信息指示所述X个DMRS端口的第三信息,所述第三信息包括如下任意一项:
    没有数据占用的CDM组的数量为1,前置符号数为1,所述X个DMRS端口包括1个所述第二类型端口;
    没有数据占用的CDM组的数量为1,前置符号数为1,所述X个DMRS端口包括2个所述第二类型端口;
    没有数据占用的CDM组的数量为1,前置符号数为1,所述X个DMRS端口包括2个所述第一类型端口和1个所述第二类型端口;
    没有数据占用的CDM组的数量为1,前置符号数为1,所述X个DMRS端口包括2个所述第一类型端口和2个所述第二类型端口;
    没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS 端口包括1个所述第二类型端口;
    没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括2个所述第二类型端口;
    没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括2个所述第一类型端口和1个所述第二类型端口;
    没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括2个所述第一类型端口和2个所述第二类型端口;
    没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括3个所述第一类型端口和1个所述第二类型端口;
    没有数据占用的CDM组的数量为2,前置符号数为2,所述X个DMRS端口包括1个所述第二类型端口;
    没有数据占用的CDM组的数量为2,前置符号数为2,所述X个DMRS端口包括2个所述第二类型端口;
    没有数据占用的CDM组的数量为2,前置符号数为2,所述X个DMRS端口包括2个所述第一类型端口和1个所述第二类型端口;
    没有数据占用的CDM组的数量为2,前置符号数为2,所述X个DMRS端口包括2个所述第一类型端口和2个所述第二类型端口。
  38. 根据权利要求21所述的方法,其中,在所述DMRS的配置类型为第一配置类型,所述DMRS的符号最大长度为2,所述DMRS对应的数据传输所占用的码字数目为1或者所述DMRS对应的数据传输的数据流数目为5至8的情况下,所述指示信息指示所述X个DMRS端口的第四信息,所述第四信息包括如下任意一项:
    没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括4个所述第一类型端口和1个所述第二类型端口;
    没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括4个所述第一类型端口和2个所述第二类型端口;
    没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS端口包括4个所述第一类型端口和3个所述第二类型端口;
    没有数据占用的CDM组的数量为2,前置符号数为1,所述X个DMRS 端口包括4个所述第一类型端口和4个所述第二类型端口;
    没有数据占用的CDM组的数量为1,前置符号数为2,所述X个DMRS端口包括3个所述第一类型端口和2个所述第二类型端口;
    没有数据占用的CDM组的数量为1,前置符号数为2,所述X个DMRS端口包括4个所述第一类型端口和2个所述第二类型端口;
    没有数据占用的CDM组的数量为1,前置符号数为2,所述X个DMRS端口包括4个所述第一类型端口和3个所述第二类型端口;
    没有数据占用的CDM组的数量为1,前置符号数为2,所述X个DMRS端口包括4个所述第一类型端口和4个所述第二类型端口;
    没有数据占用的CDM组的数量为2,前置符号数为2,所述X个DMRS端口包括3个所述第一类型端口和2个所述第二类型端口;
    没有数据占用的CDM组的数量为2,前置符号数为2,所述X个DMRS端口包括4个所述第一类型端口和2个所述第二类型端口;
    没有数据占用的CDM组的数量为2,前置符号数为2,所述X个DMRS端口包括4个所述第一类型端口和3个所述第二类型端口;
    没有数据占用的CDM组的数量为2,前置符号数为2,所述X个DMRS端口包括4个所述第一类型端口和4个所述第二类型端口。
  39. 一种DMRS传输装置,包括:
    传输模块,用于发送或接收解调参考信号DMRS,所述DMRS包括X个DMRS端口,所述X个DMRS端口为所述DMRS支持的N个端口中的端口,所述N个端口包括第一类型端口和第二类型端口,所述第一类型端口基于长度为2的频域正交覆盖码FD-OCC序列进行映射,所述第二类型端口基于长度为4的FD-OCC序列进行映射,X、N均为正整数。
  40. 根据权利要求39所述的装置,其中,所述X个DMRS端口包括所述第一类型端口和第二类型端口中的至少一项。
  41. 一种终端,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至19中任一项所述的DMRS传输方法的步骤。
  42. 一种网络侧设备,包括处理器和存储器,所述存储器存储可在所述 处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求20至38中任一项所述的DMRS传输方法的步骤。
  43. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1-38中任一项所述的方法的步骤。
PCT/CN2023/083604 2022-03-24 2023-03-24 Dmrs传输方法、装置及相关设备 WO2023179752A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210302774.4A CN116846523A (zh) 2022-03-24 2022-03-24 Dmrs传输方法、装置及相关设备
CN202210302774.4 2022-03-24

Publications (1)

Publication Number Publication Date
WO2023179752A1 true WO2023179752A1 (zh) 2023-09-28

Family

ID=88099981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/083604 WO2023179752A1 (zh) 2022-03-24 2023-03-24 Dmrs传输方法、装置及相关设备

Country Status (2)

Country Link
CN (1) CN116846523A (zh)
WO (1) WO2023179752A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108809609A (zh) * 2017-08-11 2018-11-13 华为技术有限公司 一种dmrs指示和接收方法,发射端和接收端
WO2021024330A1 (ja) * 2019-08-02 2021-02-11 株式会社Nttドコモ 端末及び無線通信方法
US20210281374A1 (en) * 2017-05-04 2021-09-09 Lg Electronics Inc. Method for transmitting/receiving reference signal in wireless communication system, and device therefor
CN114071723A (zh) * 2020-07-30 2022-02-18 华为技术有限公司 一种通信方法及装置
WO2023028737A1 (en) * 2021-08-30 2023-03-09 Qualcomm Incorporated Techniques for increased quantities of orthogonal dmrs ports

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210281374A1 (en) * 2017-05-04 2021-09-09 Lg Electronics Inc. Method for transmitting/receiving reference signal in wireless communication system, and device therefor
CN108809609A (zh) * 2017-08-11 2018-11-13 华为技术有限公司 一种dmrs指示和接收方法,发射端和接收端
WO2021024330A1 (ja) * 2019-08-02 2021-02-11 株式会社Nttドコモ 端末及び無線通信方法
CN114071723A (zh) * 2020-07-30 2022-02-18 华为技术有限公司 一种通信方法及装置
WO2023028737A1 (en) * 2021-08-30 2023-03-09 Qualcomm Incorporated Techniques for increased quantities of orthogonal dmrs ports

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TOUFIGH VAHAB, GHASSEMI PEDRAM: "Control and Stabilization of Fugitive Dust: Using Eco-Friendly and Sustainable Materials", INTERNATIONAL JOURNAL OF GEOMECHANICS, vol. 20, no. 9, 1 September 2020 (2020-09-01), pages 04020140 - 04020140-15, XP009548983, ISSN: 1532-3641, DOI: 10.1061/(ASCE)GM.1943-5622.0001762 *

Also Published As

Publication number Publication date
CN116846523A (zh) 2023-10-03

Similar Documents

Publication Publication Date Title
CN108809877B (zh) 一种解调参考信号的传输方法、装置、基站及终端
WO2023179752A1 (zh) Dmrs传输方法、装置及相关设备
WO2023186156A1 (zh) Dmrs端口信息的指示方法、终端及网络侧设备
WO2023160535A1 (zh) 解调参考信号信息确定方法、指示方法及相关设备
WO2023138633A1 (zh) 信息传输方法、装置、网络侧设备及终端
WO2023186158A1 (zh) 解调参考信号传输方法、装置、终端及网络侧设备
WO2023131288A1 (zh) 资源确定方法、装置、终端和网络侧设备
WO2023198106A1 (zh) 终端能力指示、调度方法、装置、终端及通信设备
WO2023198058A1 (zh) 信息传输方法、装置、终端及网络侧设备
WO2024032539A1 (zh) 中断传输指示方法、取消指示方法、终端及网络侧设备
WO2023143428A1 (zh) 信息传输方法、设备、终端及网络侧设备
WO2023179753A1 (zh) 波束信息指示方法、装置、终端及网络侧设备
WO2023143353A1 (zh) Dmrs生成方法、终端及网络侧设备
WO2023104025A1 (zh) Srs资源配置方法、装置、终端及网络侧设备
WO2023193678A1 (zh) 端口确定方法、装置、终端及可读存储介质
WO2023165395A1 (zh) 切换行为确定方法、参数信息配置方法、终端和设备
WO2023198173A1 (zh) 确定sl定位参考信号资源的方法、终端及网络侧设备
WO2023226849A1 (zh) Csi-rs资源配置方法、装置、设备及可读存储介质
WO2023061431A1 (zh) 资源配置方法和设备
WO2023207976A1 (zh) 物理随机接入信道传输资源确定方法、装置、终端和设备
WO2023208042A1 (zh) 预失真处理方法、装置及设备
WO2023231924A1 (zh) 信号发送方法、发送设备及接收设备
WO2023134585A1 (zh) 下行传输方法、终端及网络侧设备
WO2023116874A1 (zh) 通信资源确定方法、终端及网络侧设备
WO2023131316A1 (zh) 探测参考信号的端口映射方法和终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23773997

Country of ref document: EP

Kind code of ref document: A1