WO2023179451A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2023179451A1
WO2023179451A1 PCT/CN2023/081921 CN2023081921W WO2023179451A1 WO 2023179451 A1 WO2023179451 A1 WO 2023179451A1 CN 2023081921 W CN2023081921 W CN 2023081921W WO 2023179451 A1 WO2023179451 A1 WO 2023179451A1
Authority
WO
WIPO (PCT)
Prior art keywords
bit
parameter group
group
dynamic transmission
bit groups
Prior art date
Application number
PCT/CN2023/081921
Other languages
English (en)
French (fr)
Inventor
蒋琦
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2023179451A1 publication Critical patent/WO2023179451A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • the present application relates to transmission methods and devices in wireless communication systems, and in particular, to transmission schemes and devices for multi-carrier scheduling in wireless communications.
  • Both LTE (Long-Term Evolution, Long-Term Evolution) and 5G wireless cellular communication network systems support scenarios in which multiple carriers are scheduled simultaneously.
  • the base station sends multiple DCI (Downlink Control Information) to Scheduling PDSCH (Physical Downlink Shared Channel) on multiple carriers to increase the transmission rate.
  • DCI Downlink Control Information
  • PDSCH Physical Downlink Shared Channel
  • One feature of multi-carrier scheduling is that each PDSCH requires a DCI for scheduling, and one DCI cannot schedule multiple PDSCHs located on multiple carriers at the same time.
  • a serving cell often includes multiple BWPs.
  • Each BWP can be configured with a different SCS (Subcarrier Spacing) or independently.
  • Configure DL (Downlink) SPS Semi-persistent Scheduling, semi-persistent scheduling
  • uplink grant type 2 scheduling Configured UL Grant Type 2scheduling.
  • the base station realizes activation (Activate) or release (Release) through DCI (Downlink Control Information)
  • DCI Downlink Control Information
  • Configured Grant The function of one or more DL SPS or upstream configuration authorization
  • a DCI When a DCI can schedule the transmission of PDSCH or PUSCH on multiple carriers, a DCI should also be able to activate or release DL SPS or uplink configuration authorization on multiple carriers, and then how to achieve the above based on the existing DCI format and protocol architecture Functions need to be studied and solved.
  • this application discloses a solution. It should be noted that in the description of this application, multi-carrier is only used as a typical application scenario or example; this application is also applicable to other scenarios facing similar problems, such as single-carrier scenarios, or for different technical fields, such as In addition to technical fields other than dynamic scheduling, such as measurement reporting field, control signaling sending and other non-dynamic scheduling fields, similar technical effects can be achieved. In addition, using a unified solution for different scenarios (including but not limited to multi-panel scenarios) can also help reduce hardware complexity and cost. In the case of no conflict, the embodiments and features in the embodiments of the first node device of the present application can be applied to the second node device, and vice versa.
  • This application discloses a method in a first node for wireless communication, including:
  • Receive first signaling the first signaling is used to determine K parameter group sets, where K is a positive integer greater than 1, and each parameter group set in the K parameter group sets respectively includes at least one A first type of parameter group, the first type of parameter group is used to configure non-dynamic transmission;
  • the first DCI includes K bit groups, and any bit group among the K bit groups includes at least one bit;
  • the K bit groups correspond to the K parameter group sets one-to-one; any one of the K bit groups is used to enable the validation (Validation) of the non-dynamic transmission, or to Enable the validation of the non-dynamic transmission; the given bit group is any bit group among the K bit groups, and the given bit group among the K bit groups is used to enable the non-dynamic transmission.
  • the validity of dynamic transmission or the disabling of non-dynamic transmission has nothing to do with the values of other bit groups other than the given bit group in the K bit groups; for the K bit groups, Given a bit group, when used to enable the activation of the non-dynamic transmission, at least one parameter group of the first type in the corresponding parameter group set is adopted, when used to disable the activation of the non-dynamic transmission. When , at least one first-type parameter group in the corresponding parameter group set is stopped from being used.
  • the above method is characterized by activating or releasing non-dynamic transmission on multiple serving cells through one DCI to improve system efficiency and reduce bandwidth consumption caused by control signaling.
  • another feature of the above method is to indicate non-dynamic transmission on multiple serving cells through multiple independent domains in a DCI to ensure flexibility of indication.
  • the first DCI includes a target bit group outside the K bit groups, and only when the K bit groups are used to disable the validation of the non-dynamic transmission When, the target bit group is used to disable the validation of the non-dynamic transmission.
  • the above method is characterized in that: when non-dynamic transmission in multiple serving cells indicated by the first DCI is released, the target bit group is used for the entire K bit group. takes effect, thereby saving the number of bits occupied by the first DCI and improving spectrum efficiency.
  • the payload of the first DCI is related to whether the K bit groups are used for the release of non-dynamic transmission of multiple serving cells at the same time, while ensuring flexibility Improve spectral efficiency without sacrificing performance.
  • the K bit groups included in the first DCI include a first bit group, the first bit group corresponds to the first parameter group set among the K parameter group sets, and the first bit group The group is used to enable non-dynamic transmission configured by at least one first type parameter group included in the first parameter group set, and the first type parameter group included in the first parameter group set is used to Configure the first signal.
  • the above method is characterized in that: there is one bit group for DL SPS activation among the K bit groups.
  • the K bit groups included in the first DCI include a second bit group, the second bit group corresponds to the second parameter group set among the K parameter group sets, and the second bit group The group is used to enable non-dynamic transmission configured by at least one first type parameter group included in the second parameter group set, and the first type parameter group included in the second parameter group set is used to Configure the second signal.
  • the above method is characterized in that: there is one bit group used for uplink configuration grant activation among the K bit groups.
  • the K parameter group sets respectively correspond to K BWPs in K serving cells, and the K BWPs all use the same subcarrier spacing.
  • the above method is characterized by: avoiding the problem of inconsistent validity time between different BWPs caused by different SCS (Subcarrier Spacing, subcarrier spacing).
  • the K BWPs are predefined in the K serving cells, or configured through RRC (Radio Resource Control, Radio Resource Control) signaling.
  • RRC Radio Resource Control, Radio Resource Control
  • the above method is characterized by configuring DL SPS or uplink configuration grant with the same characteristics for BWPs used for joint scheduling in multiple serving cells to facilitate joint activation or release.
  • the K serving cells respectively correspond to K scheduling indication values, and the K scheduling indication values are all the same.
  • This application discloses a method in a second node for wireless communication, including:
  • Send first signaling which is used to determine K parameter group sets, where K is a positive integer greater than 1, and each of the K parameter group sets includes at least one A first type of parameter group, the first type of parameter group is used to configure non-dynamic transmission;
  • the first DCI includes K bit groups, and any bit group among the K bit groups includes at least one bit;
  • the K bit groups correspond to the K parameter group sets one-to-one; any of the K bit groups is used to enable the non-dynamic transmission to take effect, or to disable all Validation of the non-dynamic transmission; the given bit group is any bit group among the K bit groups, and the given bit group among the K bit groups is used to enable the non-dynamic transmission.
  • Validate or disable the non-dynamic The validity of the transmission is independent of the values of other bit groups other than the given bit group in the K bit groups; for the given bit group in the K bit groups, when used to enable all When the non-dynamic transmission takes effect, at least one first-type parameter group in the corresponding parameter group set is adopted. When used to disable the non-dynamic transmission taking effect, at least one first-type parameter group in the corresponding parameter group set is used. Class parameter groups are discontinued.
  • the first DCI includes a target bit group outside the K bit groups, and only when the K bit groups are used to disable the validation of the non-dynamic transmission When, the target bit group is used to disable the validation of the non-dynamic transmission.
  • the K bit groups included in the first DCI include a first bit group, the first bit group corresponds to the first parameter group set among the K parameter group sets, and the first bit group The group is used to enable non-dynamic transmission configured by at least one first type parameter group included in the first parameter group set, and the first type parameter group included in the first parameter group set is used to Configure the first signal.
  • the K bit groups included in the first DCI include a second bit group, the second bit group corresponds to the second parameter group set among the K parameter group sets, and the second bit group The group is used to enable non-dynamic transmission configured by at least one first type parameter group included in the second parameter group set, and the first type parameter group included in the second parameter group set is used to Configure the second signal.
  • the K parameter group sets respectively correspond to K BWPs in K serving cells, and the K BWPs all use the same subcarrier spacing.
  • the K BWPs are predefined in the K serving cells or configured through RRC signaling.
  • the K serving cells respectively correspond to K scheduling indication values, and the K scheduling indication values are all the same.
  • This application discloses a first node for wireless communication, including:
  • the first receiver receives the first signaling.
  • the first signaling is used to determine K parameter group sets.
  • the K is a positive integer greater than 1.
  • Each parameter group in the K parameter group sets The sets respectively include at least one first-type parameter group, and the first-type parameter group is used to configure non-dynamic transmission;
  • the first transceiver receives the first DCI, the first DCI includes K bit groups, and any bit group among the K bit groups includes at least one bit;
  • the K bit groups correspond to the K parameter group sets one-to-one; any of the K bit groups is used to enable the non-dynamic transmission to take effect, or to disable all Validation of the non-dynamic transmission; the given bit group is any bit group among the K bit groups, and the given bit group among the K bit groups is used to enable the non-dynamic transmission.
  • Validating or disabling the non-dynamic transmission has nothing to do with the values of other bit groups other than the given bit group in the K bit groups; for the given bits in the K bit groups When used to enable the non-dynamic transmission to take effect, at least one first-type parameter group in the corresponding parameter group set is adopted. When used to disable the non-dynamic transmission to take effect, the corresponding At least one first-type parameter group in the set of parameter groups is discontinued.
  • This application discloses a second node for wireless communication, including:
  • the first transmitter sends first signaling.
  • the first signaling is used to determine K parameter group sets, where K is a positive integer greater than 1.
  • K is a positive integer greater than 1.
  • Each parameter group in the K parameter group sets The sets respectively include at least one first-type parameter group, and the first-type parameter group is used to configure non-dynamic transmission;
  • the second transceiver transmits the first DCI, the first DCI includes K bit groups, and any bit group among the K bit groups includes at least one bit;
  • the K bit groups correspond to the K parameter group sets one-to-one; any one of the K bit groups is used to use Enable the non-dynamic transmission to take effect, or disable the non-dynamic transmission to take effect;
  • the given bit group is any bit group in the K bit groups, and the given bit group in the K bit groups A certain bit group is used to enable the non-dynamic transmission to take effect or to disable the non-dynamic transmission to take effect, regardless of the values of other bit groups other than the given bit group in the K bit groups;
  • For said given bit group among said K bit groups when used to enable the validation of said non-dynamic transmission, at least one first type parameter group in the corresponding set of parameter groups is adopted, when used When the non-dynamic transmission is disabled, at least one first-type parameter group in the corresponding parameter group set is stopped from being used.
  • the benefit of the solution in this application is to flexibly activate or release one or more DL SPS or uplink configuration grants in multiple serving cells through one DCI to improve spectrum efficiency and reduce signaling overhead.
  • Figure 1 shows a processing flow chart of a first node according to an embodiment of the present application
  • Figure 2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • Figure 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • Figure 4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • Figure 5 shows a flow chart of first signaling according to an embodiment of the present application
  • Figure 6 shows a flow chart of a first signal according to an embodiment of the present application
  • Figure 7 shows a flow chart of a second signal according to an embodiment of the present application.
  • Figure 8 shows a schematic diagram of K parameter group sets according to an embodiment of the present application.
  • Figure 9 shows a schematic diagram of K bit groups according to an embodiment of the present application.
  • Figure 10 shows a schematic diagram of a target bit group according to an embodiment of the present application.
  • Figure 11 shows a schematic diagram of non-dynamic transmission according to an embodiment of the present application.
  • Figure 12 shows a structural block diagram of a processing device in a first node device according to an embodiment of the present application
  • Figure 13 shows a structural block diagram of a processing device in a second node device according to an embodiment of the present application.
  • Embodiment 1 illustrates a processing flow chart of a first node, as shown in Figure 1.
  • each block represents a step.
  • the first node in this application receives the first signaling in step 101.
  • the first signaling is used to determine K parameter group sets, where K is a positive integer greater than 1, so
  • K is a positive integer greater than 1
  • Each parameter group set among the K parameter group sets respectively includes at least one first-type parameter group, and the first-type parameter group is used to configure non-dynamic transmission; in step 102, the first DCI is received, and the first DCI is received.
  • a DCI includes K bit groups, and any one of the K bit groups includes at least one bit.
  • the K bit groups correspond to the K parameter group sets one-to-one; any of the K bit groups is used to enable the non-dynamic transmission to take effect, or to enable the non-dynamic transmission. Enable the validation of the non-dynamic transmission; the given bit group is any bit group among the K bit groups, and the given bit group among the K bit groups is used to enable the non-dynamic transmission.
  • the validity of dynamic transmission or the disabling of non-dynamic transmission has nothing to do with the values of other bit groups other than the given bit group in the K bit groups; for the K bit groups, Given a bit group, when used to enable the activation of the non-dynamic transmission, at least one parameter group of the first type in the corresponding parameter group set is adopted, when used to disable the activation of the non-dynamic transmission. When , at least one first-type parameter group in the corresponding parameter group set is stopped from being used.
  • the first signaling includes higher layer signaling.
  • the first signaling includes RRC signaling.
  • the first signaling includes RRC signaling ConfiguredGrantConfig IE (Information Elements, One or more fields (Field) in an information unit.
  • RRC signaling ConfiguredGrantConfig IE Information Elements, One or more fields (Field) in an information unit.
  • the first signaling includes one or more fields in the RRC signaling SPS-Config IE.
  • the first signaling includes one or more fields in RRC signaling BWP-DownlinkDedicated.
  • the first signaling includes one or more fields in RRC signaling BWP-UplinkDedicated.
  • the first signaling includes one or more fields in the RRC signaling ServingCellConfig IE.
  • the first signaling includes one or more fields in the RRC signaling CellGroupConfig IE.
  • the first signaling includes multiple ServingCellConfig IEs.
  • the first signaling includes K ServingCellConfig IEs, and the K ServingCellConfig IEs respectively correspond to K serving cells.
  • the first signaling includes K ServingCellConfig IEs, and the K ServingCellConfig IEs respectively correspond to K CCs (Component Carriers, component carriers).
  • the K parameter group sets correspond to K serving cells respectively.
  • the K parameter group sets respectively correspond to K component carriers.
  • the K parameter group sets correspond to K BWPs respectively.
  • the K parameter group sets respectively include K DL SPS sets, and any DL SPS set among the K DL SPS sets includes at least one DL SPS corresponding to SPS-Config.
  • the K DL SPS sets correspond to K serving cells respectively.
  • the K DL SPS sets respectively correspond to K component carriers.
  • the K parameter group sets respectively include K ConfiguredGrantConfig sets, and any ConfiguredGrantConfig set among the K ConfiguredGrantConfig sets includes at least one UL configuration grant corresponding to ConfiguredGrantConfig.
  • the K ConfiguredGrantConfig sets respectively correspond to K serving cells.
  • the K ConfiguredGrantConfig sets respectively correspond to K component carriers.
  • the K parameter group sets respectively include K non-dynamic transmission sets, and the K non-dynamic transmission sets include at least one given non-dynamic transmission set, and the given non-dynamic transmission set includes at least The DL SPS corresponding to one SPS-Config and the UL configuration grant corresponding to at least one ConfiguredGrantConfig.
  • the first type of parameter group is for an SPS-Config IE.
  • the first type of parameter group corresponds to an sps-ConfigIndex.
  • the first type of parameter group is for a ConfiguredGrantConfig IE.
  • the first type of parameter group corresponds to a configuredGrantConfigIndex.
  • the first type of parameter group refers to a configuredGrantConfigIndexMAC.
  • the non-dynamic transmission includes multiple transmissions.
  • the non-dynamic transmission is performed periodically.
  • the non-dynamic transmission is activated through dynamic signaling.
  • the non-dynamic transmission is disabled or released through dynamic signaling.
  • the non-dynamic transmission includes multiple transmissions, and at least one of the multiple transmissions does not need to be indicated by dynamic signaling.
  • the non-dynamic transmission includes SPS.
  • the non-dynamic transmission includes Configured Grant.
  • the non-dynamic transmission includes DL SPS.
  • the non-dynamic transmission includes Configured UL Grant Type 2 scheduling.
  • the first DCI is a DCI.
  • the first DCI is a PDCCH (Physical Downlink Control Channel).
  • the first DCI is transmitted in only one CC.
  • the first DCI is transmitted only in one serving cell.
  • the first DCI is used to schedule multiple serving cells.
  • the CRC (Cyclic Redundancy Check, cyclic redundancy check) included in the PDCCH occupied by the first DCI is scrambled by CS-RNTI (Configured Scheduling RNTI, configuration scheduling wireless network temporary identifier).
  • CS-RNTI Configured Scheduling RNTI, configuration scheduling wireless network temporary identifier
  • the enabling includes Activate.
  • the enabling includes Trigger.
  • the disabling includes Deactivate.
  • the disabling includes releasing.
  • the validation includes Validation.
  • the validation includes confirmation (Confirmation).
  • any one of the K bit groups is used to indicate one or more first-type parameter groups included in the corresponding parameter group set among the K parameter group sets.
  • At least two bit groups among the K bit groups are respectively used to enable and disable at least one first-type parameter group in the corresponding parameter group set.
  • the K bit groups include a first candidate bit group and a second candidate bit group, and the first candidate bit group and the second candidate bit group respectively correspond to the K parameter group sets.
  • a first candidate parameter set set and a second candidate parameter set set the first candidate bit set is used to enable the corresponding non-dynamic transmission in the first candidate parameter set set
  • the second candidate bit set is Used to disable non-dynamic transmission corresponding to the second candidate parameter group set.
  • the first candidate parameter group set includes K1 first-type parameter groups, and the first candidate bit group is used to indicate K2 among the K1 first-type parameter groups.
  • a first type parameter group the K1 is a positive integer
  • the K2 is a positive integer not greater than the K1
  • the first candidate bit group is used to enable the K2 first type parameter group corresponding to K2 non-dynamic transfers.
  • the second candidate parameter group set includes Q1 second type parameter groups, and the second candidate bit group is used to indicate Q2 among the Q1 first type parameter groups.
  • the K parameter group sets are respectively allocated to K BWPs, and the K bit groups are respectively used to indicate the K BWPs.
  • the K parameter group sets are respectively allocated to K serving cells, and the K bit groups are respectively used to indicate the K serving cells.
  • the K parameter group sets are respectively allocated to K carriers, and the K bit groups are respectively used to indicate the K carriers.
  • the given bit group among the K bit groups is used to enable the non-dynamic transmission to take effect or to disable the non-dynamic transmission to take effect with the K bit groups.
  • the meaning that the values of other bit groups other than the given bit group are independent include: the K bit groups are used to independently enable or disable the non-dynamic parameters included in the K parameter group sets. Effectiveness of transmission.
  • the given bit group among the K bit groups is used to enable the non-dynamic transmission to take effect or to disable the non-dynamic transmission to take effect with the K bit groups.
  • the benefits of being independent of the values of other bit groups other than the given bit group described in include: being able to flexibly enable or disable the transmission of DL SPS or Configured UL Grant Type 2 scheduling in different carriers, and for different carriers Multiple bit groups do not affect each other to improve accuracy.
  • the given bit group among the K bit groups is used to enable the non-dynamic transmission to take effect or to disable the non-dynamic transmission to take effect with the K bit groups.
  • the benefits of being independent of the values of other bit groups other than the given bit group include: being able to independently enable or disable non-dynamic transmission on multiple serving cells or BWPs, and the bit groups for one serving cell or BWP are not Will be affected by bit groups targeting other serving cells or BWPs to improve independence.
  • the meaning that at least one first-type parameter group in the above-mentioned corresponding parameter group set is adopted includes: the corresponding parameter group set includes a given first-type parameter group, and the given first-type parameter group Including multiple parameters, the multiple parameters include HARQ (Hybrid Automatic Repeat reQuest, hybrid automatic repeat request) process number, PUCCH (Physical Uplink Control Channel, physical uplink control channel) resource indication, MCS (Modulation Coding Scheme, modulation coding mode) table, HRAQ process number offset, period configuration, HARQ codebook identification, and aggregation factor, at least one of the plurality of parameters is used to determine the given first type parameter group. Corresponding non-dynamic transmission data reception.
  • HARQ Hybrid Automatic Repeat reQuest, hybrid automatic repeat request
  • PUCCH Physical Uplink Control Channel, physical uplink control channel
  • MCS Modulation Coding Scheme, modulation coding mode
  • the non-dynamic transmission corresponds to a DL SPS.
  • the number of HARQ processes is used to determine the number of HARQ processes (Number of HARQ Process) occupied by the non-dynamic transmission.
  • the number of HARQ processes corresponds to the nrofHARQ-Processes field in the SPS-Config IE.
  • the PUCCH resource indication is used to determine the PUCCH occupied by the HARQ resource for the non-dynamic transmission.
  • the PUCCH resource indication corresponds to the n1PUCCH-AN domain in the SPS-Config IE.
  • the MCS table is used to determine the MCS table used for the non-dynamic transmission.
  • the MCS table corresponds to the mcs-Table field in the SPS-Config IE.
  • the HRAQ process number offset is used to indicate an offset value used to obtain the HARQ process number (HARQ Process ID) of the non-dynamic transmission.
  • the HRAQ process number offset corresponds to the harq-ProcID-Offset field in the SPS-Config IE.
  • the period configuration is used to indicate the period of the non-dynamic transmission.
  • the periodic configuration corresponds to the periodicity domain in the SPS-Config IE.
  • the periodic configuration corresponds to the periodicityExt field in SPS-Config IE.
  • the HARQ codebook identifier is used to indicate the HARQ-ACK codebook index (index) of the HARQ-ACK codebook (Codebook) used in the non-dynamic transmission.
  • the HARQ codebook identifier corresponds to the harq-CodebookID field in the SPS-Config IE.
  • the aggregation factor is used to indicate the number of repeated transmissions of the SPS PDSCH used in the non-dynamic transmission.
  • the aggregation factor corresponds to the pdsch-AggregationFactor field in SPS-Config IE.
  • the meaning that at least one first-type parameter group in the corresponding parameter group set is stopped is: the corresponding parameter group set includes a given first-type parameter group, and the given first-type parameter
  • the group includes multiple parameters, and the multiple parameters include at least one of the number of HARQ processes, PUCCH resource indication, MCS table, HRAQ process number offset, period configuration, HARQ codebook identification, and aggregation factor.
  • the multiple parameters At least one of them is used to determine that the reception of non-dynamically transmitted data corresponding to the given first type parameter group is stopped.
  • the number of HARQ processes is used to determine that the number of HARQ processes occupied by the non-dynamic transmission is no longer occupied.
  • the PUCCH resource indication is used to determine that the PUCCH occupied by the HARQ resource for the non-dynamic transmission is no longer occupied.
  • the periodic configuration is used to indicate that the periodic time domain resources occupied by the non-dynamic transmission are no longer occupied.
  • the HARQ codebook identifier is used to indicate that the HARQ-ACK codebook under the HARQ-ACK codebook index (index) used for the non-dynamic transmission is no longer occupied.
  • the meaning that at least one first-type parameter group in the above-mentioned corresponding parameter group set is adopted includes: the corresponding parameter group set includes a given first-type parameter group, and the given first-type parameter group Including multiple parameters, the multiple parameters include at least one field in the ConfiguredGrantConfig IE, at least one of the multiple parameters is used to determine the non-dynamically transmitted data corresponding to the given first type parameter group send.
  • At least one parameter among the multiple parameters is used to determine the frequency domain resources occupied by the non-dynamic transmission, and the frequency domain resources include RB (Resource Block, resource block) , RB set or at least one of RBG (Resource Block Group).
  • RB Resource Block, resource block
  • RBG Resource Block Group
  • At least one parameter among the plurality of parameters is used to determine the time domain resources occupied by the non-dynamic transmission, and the time domain resources include time slots (slots) or OFDM symbols. (symbols) at least one.
  • At least one parameter among the plurality of parameters is used to determine whether the non-dynamic transmission is occupied by The number of HARQ processes.
  • At least one parameter among the plurality of parameters is used to determine the HARQ process number occupied by the non-dynamic transmission.
  • At least one parameter among the plurality of parameters is used to determine the antenna port occupied by the non-dynamic transmission.
  • At least one parameter among the plurality of parameters is used to determine the DMRS configuration adopted for the non-dynamic transmission.
  • At least one parameter among the plurality of parameters is used to determine the period adopted by the non-dynamic transmission.
  • At least one parameter among the plurality of parameters is used to determine the priority adopted by the non-dynamic transmission.
  • At least one parameter among the plurality of parameters is used to determine the power control parameter used for the non-dynamic transmission.
  • At least one parameter among the plurality of parameters is used to determine the number of repetitions used for the non-dynamic transmission.
  • At least one parameter among the plurality of parameters is used to determine the RV Sequence used for the non-dynamic transmission.
  • At least one parameter among the plurality of parameters is used to determine the SRS (Sounding Reference Signal) resource used for the non-dynamic transmission.
  • the meaning that at least one first-type parameter group in the above-mentioned corresponding parameter group set is adopted includes: the corresponding parameter group set includes a given first-type parameter group, and the given first-type parameter group Including multiple parameters, the multiple parameters include at least one field in the ConfiguredGrantConfig IE, at least one of the multiple parameters is used to determine the non-dynamically transmitted data corresponding to the given first type parameter group Sending is stopped.
  • At least one parameter among the multiple parameters is used to determine that the frequency domain resources occupied by the non-dynamic transmission are no longer occupied, and the frequency domain resources include RB, RB set Or at least one of the RBGs.
  • At least one parameter among the plurality of parameters is used to determine that the time domain resources occupied by the non-dynamic transmission are no longer occupied, and the time domain resources include time slots (slots). ) or at least one of OFDM symbols.
  • At least one parameter among the plurality of parameters is used to determine that the number of HARQ processes occupied by the non-dynamic transmission is no longer occupied.
  • At least one parameter among the plurality of parameters is used to determine that the HARQ process number occupied by the non-dynamic transmission is no longer occupied.
  • At least one parameter among the plurality of parameters is used to determine that the antenna port occupied by the non-dynamic transmission is no longer occupied.
  • At least one parameter among the plurality of parameters is used to determine whether the DMRS resource corresponding to the DMRS (Demodulation Reference Signal) configuration used in the non-dynamic transmission is occupied again.
  • DMRS Demodulation Reference Signal
  • At least one parameter among the plurality of parameters is used to determine that the time domain resource corresponding to the period used for the non-dynamic transmission is no longer occupied.
  • At least one parameter among the plurality of parameters is used to determine that the SRS resource used for the non-dynamic transmission is no longer occupied.
  • Embodiment 2 illustrates a schematic diagram of the network architecture, as shown in Figure 2.
  • FIG. 2 illustrates a diagram of the network architecture 200 of 5G NR, LTE (Long-Term Evolution, Long Term Evolution) and LTE-A (Long-Term Evolution Advanced, Enhanced Long Term Evolution) systems.
  • the 5G NR or LTE network architecture 200 may be called EPS (Evolved Packet System) 200 or some other suitable term.
  • EPS 200 may include a UE (User Equipment) 201, NR-RAN (Next Generation Radio Access Network) 202, EPC (Evolved Packet Core)/5G-CN (5G-Core Network, 5G Core) Network) 210, HSS (Home Subscriber Server, home subscriber server) 220 and Internet Services 230.
  • UE User Equipment
  • NR-RAN Next Generation Radio Access Network
  • EPC Evolved Packet Core
  • 5G-CN 5G-Core Network, 5G Core
  • HSS Home Subscriber Server, home subscriber server
  • Internet Services 230 Internet Services
  • NR-RAN includes NR Node B (gNB) 203 and other gNBs 204.
  • gNB 203 provides user and control plane protocol termination towards UE 201.
  • gNB 203 may connect to other gNBs 204 via the Xn interface (eg, backhaul).
  • gNB 203 may also be called a base station, base transceiver station, radio base station, radio transceiver, transceiver function, Basic Service Set (BSS), Extended Service Set (ESS), TRP, or some other suitable terminology.
  • BSS Basic Service Set
  • ESS Extended Service Set
  • TRP TRP
  • Examples of UE 201 include cellular phones, smartphones, Session Initiation Protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radio, non-terrestrial base station communications, satellite mobile communications, global positioning systems, multimedia devices , video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, narrowband IoT devices, machine type communications devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • SIP Session Initiation Protocol
  • PDAs personal digital assistants
  • satellite radio non-terrestrial base station communications
  • satellite mobile communications global positioning systems
  • multimedia devices video devices
  • digital audio players e.g., MP3 players
  • cameras e.g., digital audio players
  • game consoles e.g., drones, aircraft, narrowband IoT devices, machine type communications devices, land vehicles, automobiles, wearable devices, or any Other similar functional devices.
  • UE 201 may also refer to UE 201 as a mobile station, subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, Mobile terminal, wireless terminal, remote terminal, handset, user agent, mobile client, client or some other suitable term.
  • gNB203 is connected to EPC/5G-CN 210 through S1/NG interface.
  • EPC/5G-CN 210 includes MME (Mobility Management Entity, mobility management entity)/AMF (Authentication Management Field, authentication management domain)/UPF (User Plane Function, user plane function) 211, other MME/AMF/UPF 214, S-GW (Service Gateway, Service Gateway) 212 and P-GW (Packet Date Network Gateway, Packet Data Network Gateway) 213.
  • MME/AMF/UPF 211 is the control node that handles signaling between UE 201 and EPC/5G-CN 210. Basically, MME/AMF/UPF211 provides bearer and connection management. All user IP (Internet Protocol) packets are transmitted through S-GW212, and S-GW212 itself is connected to P-GW213.
  • P-GW213 provides UE IP address allocation and other functions.
  • P-GW 213 is connected to Internet service 230.
  • the Internet service 230 includes the operator's corresponding Internet protocol service, which may specifically include the Internet, an intranet, IMS (IP Multimedia Subsystem, IP Multimedia Subsystem), and packet switching streaming services.
  • the UE201 corresponds to the first node in this application.
  • the UE 201 supports multiple carriers being scheduled by the same DCI.
  • the UE 201 supports multiple serving cells being scheduled by the same DCI.
  • the UE 201 supports cross-carrier scheduling.
  • the NR Node B corresponds to the second node in this application.
  • the NR Node B supports multiple carriers being scheduled by the same DCI.
  • the NR Node B supports multiple serving cells being scheduled by the same DCI.
  • the NR Node B supports cross-carrier scheduling.
  • the NR Node B is a base station.
  • the NR Node B is a cell.
  • the NR Node B includes multiple cells.
  • the NR Node B is used to determine transmissions on multiple serving cells.
  • the first node in this application corresponds to the UE201
  • the second node in this application corresponds to the NR Node B.
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG. 3 .
  • Figure 3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for user plane 350 and control plane 300
  • Figure 3 shows with three layers for a first communication node device (UE, gNB or RSU in V2X) and a second Radio protocol architecture for the control plane 300 between communicating node devices (gNB, UE or RSU in V2X): Layer 1, Layer 2 and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions. The L1 layer will be called PHY301 in this article.
  • Layer 2 (L2 layer) 305 is above the PHY 301 and is responsible for the link between the first communication node device and the second communication node device through the PHY 301.
  • L2 layer 305 includes MAC (Medium Access Control, media access control) sublayer 302, RLC (Radio Link Control, wireless link layer control protocol) sublayer 303 and PDCP (Packet Data Convergence Protocol, packet data convergence protocol) sublayer 304. These sub-layers terminate at the second communication node device.
  • PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, and the PDCP sublayer 304 also provides handoff support from a first communication node device to a second communication node device.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • MAC sublayer 302 provides multiplexing between logical and transport channels. The MAC sublayer 302 is also responsible for allocating various radio resources (eg, resource blocks) in a cell among first communication node devices. MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control, Radio Resource Control) sublayer 306 in layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (ie, radio bearers) and using the connection between the second communication node device and the first communication node device. Inter-RRC signaling is used to configure the lower layers.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the PDCP sublayer 354 in the layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355 are generally the same as the corresponding layers and sublayers in the control plane 300, but the PDCP sublayer 354 is also Provides header compression for upper layer packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes an SDAP (Service Data Adaptation Protocol, Service Data Adaptation Protocol) sublayer 356.
  • the SDAP sublayer 356 is responsible for the mapping between QoS flows and data radio bearers (DRB, Data Radio Bearer). , to support business diversity.
  • DRB Data Radio Bearer
  • the first communication node device may have several upper layers above the L2 layer 355, including a network layer (eg, IP layer) terminating at the P-GW on the network side and another terminating at the connection.
  • the application layer at one end (e.g., remote UE, server, etc.).
  • the wireless protocol architecture in Figure 3 is applicable to the first node in this application.
  • the wireless protocol architecture in Figure 3 is applicable to the second node in this application.
  • the PDCP 304 of the second communication node device is used to generate a schedule of the first communication node device.
  • the PDCP 354 of the second communication node device is used to generate a schedule of the first communication node device.
  • the first signaling is generated in the MAC 302 or MAC 352.
  • the first signaling is generated in the RRC306.
  • the first DCI is generated from the PHY301 or the PHY351.
  • the first DCI is generated from the MAC 302 or MAC 352.
  • the first signal is generated from the PHY301 or the PHY351.
  • the first signal is generated from the MAC302 or MAC352.
  • the first signal is generated from the RRC 306.
  • the second signal is generated from the PHY301 or the PHY351.
  • the second signal is generated from the MAC302 or MAC352.
  • the second signal is generated from the RRC 306.
  • the first node is a terminal.
  • the first node is a relay.
  • the second node is a relay.
  • the second node is a base station.
  • the second node is a gNB.
  • the second node is a TRP (Transmitter Receiver Point, Transmitter Receiver Point).
  • TRP Transmitter Receiver Point, Transmitter Receiver Point
  • the second node is used to manage multiple TRPs.
  • the second node is a node used to manage multiple cells.
  • the second node is a node used to manage multiple serving cells.
  • Embodiment 4 shows a schematic diagram of a first communication device and a second communication device according to the present application, as shown in FIG. 4 .
  • Figure 4 is a block diagram of a first communication device 450 and a second communication device 410 communicating with each other in the access network.
  • the first communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and antenna 452.
  • the second communication device 410 includes a controller/processor 475, a memory 476, a receive processor 470, a transmit processor 416, a multi-antenna receive processor 472, a multi-antenna transmit processor 471, a transmitter/receiver 418 and an antenna 420.
  • Controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet Segmentation and reordering, multiplexing between logical and transport channels, and allocation of radio resources to the first communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for retransmission of lost packets, and signaling to the first communications device 450 .
  • Transmit processor 416 and multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (ie, physical layer). Transmit processor 416 implements encoding and interleaving to facilitate forward error correction (FEC) at the second communications device 410, as well as based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift Mapping of signal clusters for M-phase shift keying (QPSK), M-phase shift keying (M-PSK), M-quadrature amplitude modulation (M-QAM)).
  • FEC forward error correction
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift Mapping of signal clusters for M-phase shift keying
  • M-PSK M-phase shift keying
  • M-QAM M-quadrature amplitude modulation
  • the multi-antenna transmit processor 471 performs digital spatial precoding on the coded and modulated symbols, including codebook-based precoding and non-codebook-based precoding, and beamforming processing to generate one or more spatial streams. Transmit processor 416 then maps each spatial stream to a subcarrier, multiplexes it with a reference signal (eg, a pilot) in the time and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate A physical channel carrying a stream of time-domain multi-carrier symbols. Then the multi-antenna transmit processor 471 performs transmit analog precoding/beamforming operations on the time domain multi-carrier symbol stream. Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream, which is then provided to a different antenna 420.
  • IFFT inverse fast Fourier transform
  • each receiver 454 receives the signal via its respective antenna 452 at the first communications device 450 .
  • Each receiver 454 recovers the information modulated onto the radio frequency carrier and converts the radio frequency stream into a baseband multi-carrier symbol stream that is provided to a receive processor 456 .
  • the receive processor 456 and the multi-antenna receive processor 458 implement various signal processing functions of the L1 layer.
  • Multi-antenna receive processor 458 performs receive analog precoding/beamforming operations on the baseband multi-carrier symbol stream from receiver 454.
  • the receive processor 456 converts the baseband multi-carrier symbol stream after the received analog precoding/beamforming operation from the time domain to the frequency domain using a Fast Fourier Transform (FFT).
  • FFT Fast Fourier Transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, where the reference signal will be used for channel estimation, and the data signal is recovered after multi-antenna detection in the multi-antenna receiving processor 458.
  • the first communication device 450 is any spatial stream that is the destination. The symbols on each spatial stream are demodulated and recovered in the receive processor 456, and soft decisions are generated.
  • the receive processor 456 then decodes and deinterleaves the soft decisions to recover upper layer data and control signals transmitted by the second communications device 410 on the physical channel.
  • Controller/processor 459 implements the functions of the L2 layer. Controller/processor 459 may be associated with memory 460 which stores program code and data. Memory 460 may be referred to as computer-readable media.
  • the controller/processor 459 In transmission from the second communication device 410 to the second communication device 450, the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer packets from the core network. The upper layer packets are then provided to all protocol layers above the L2 layer. Various control signals may also be provided to L3 for L3 processing.
  • a data source 467 is used to provide upper layer data packets to a controller/processor 459.
  • Data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements headers based on radio resource allocation Compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels, implement L2 layer functions for the user plane and control plane.
  • the controller/processor 459 is also responsible for retransmission of lost packets, and signaling to the second communications device 410 .
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beam forming processing, and then transmits
  • the processor 468 modulates the generated spatial stream into a multi-carrier/single-carrier symbol stream, which undergoes analog precoding/beamforming operations in the multi-antenna transmit processor 457 and then is provided to different antennas 452 via the transmitter 454.
  • Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmission processor 457 into a radio frequency symbol stream, and then provides it to the antenna 452.
  • each receiver 418 receives radio frequency signals through its corresponding antenna 420, converts the received radio frequency signals into baseband signals, and provides the baseband signals to multi-antenna receive processor 472 and receive processor 470.
  • the receiving processor 470 and the multi-antenna receiving processor 472 jointly implement the functions of the L1 layer.
  • Controller/processor 475 implements L2 layer functions. Controller/processor 475 may be associated with memory 476 that stores program code and data. Memory 476 may be referred to as computer-readable media.
  • the controller/processor 475 In transmission from the first communications device 450 to the second communications device 410, the controller/processor 475 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression , control signal processing to recover upper layer data packets from UE450. Upper layer packets from controller/processor 475 may be provided to the core network.
  • the first communication device 450 includes: at least one processor and at least one memory, and the At least one memory includes computer program code; the at least one memory and the computer program code are configured for use with the at least one processor, the first communication device 450 device at least: first receives the first signaling, the The first signaling is used to determine K parameter group sets, where K is a positive integer greater than 1, and each of the K parameter group sets includes at least one first type parameter group, so The first type parameter group is used to configure non-dynamic transmission; then the first DCI is received, the first DCI includes K bit groups, and any bit group among the K bit groups includes at least one bit; the K There is a one-to-one correspondence between the K bit groups and the K parameter group sets; any of the K bit groups is used to enable the non-dynamic transmission to take effect, or to disable the non-dynamic transmission.
  • the given bit group is any bit group among the K bit groups, and the given bit group among the K bit groups is used to enable or disable the non-dynamic transmission.
  • the validity of the non-dynamic transmission has nothing to do with the values of other bit groups other than the given bit group in the K bit groups; for the given bit group in the K bit groups, when used When enabling the non-dynamic transmission to take effect, at least one first type parameter group in the corresponding parameter group set is adopted. When used to disable the non-dynamic transmission to take effect, at least one of the first type parameter groups in the corresponding parameter group set is used. At least one type 1 parameter group has been discontinued.
  • the first communication device 450 includes: a memory that stores a program of computer-readable instructions that, when executed by at least one processor, generates actions, and the actions include: first receiving First signaling, the first signaling is used to determine K parameter group sets, where K is a positive integer greater than 1, and each of the K parameter group sets includes at least one parameter group set.
  • a type of parameter group the first type of parameter group is used to configure non-dynamic transmission; then the first DCI is received, the first DCI includes K bit groups, and any of the K bit groups includes at least One bit; the K bit groups correspond to the K parameter group sets one-to-one; any of the K bit groups is used to enable the non-dynamic transmission to take effect, or to disable it Validation of the non-dynamic transmission; the given bit group is any bit group among the K bit groups, and the given bit group among the K bit groups is used to enable the non-dynamic transmission
  • the validation or disabling of the non-dynamic transmission has nothing to do with the values of other bit groups other than the given bit group in the K bit groups; for the given in the K bit groups A bit group, when used to enable the validation of the non-dynamic transmission, at least one first type parameter group in the corresponding parameter group set is adopted, when used to disable the validation of the non-dynamic transmission, At least one parameter group of the first type in the corresponding set of parameter groups is deactivated.
  • the second communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to interact with the used with at least one of the above processors.
  • the second communication device 410 at least: first sends a first signaling, the first signaling is used to determine K parameter group sets, the K is a positive integer greater than 1, the K parameter group sets Each parameter group set in includes at least one first-type parameter group, which is used to configure non-dynamic transmission; then the first DCI is sent, and the first DCI includes K bit groups, so Any bit group among the K bit groups includes at least one bit; the K bit groups correspond to the K parameter group sets one-to-one; any bit group among the K bit groups is used to enable Validation of the non-dynamic transmission, or disabling the validation of the non-dynamic transmission; the given bit group is any one of the K bit groups, and the given bit group in the K bit group The bit group used to enable the non-dynamic transmission to take effect or to disable the
  • the second communication device 410 device includes: a memory that stores a program of computer-readable instructions.
  • the program of computer-readable instructions generates actions when executed by at least one processor.
  • the actions include: firstly Send first signaling, which is used to determine K parameter group sets, where K is a positive integer greater than 1, and each of the K parameter group sets includes at least one The first type of parameter group, the first type of parameter group is used to configure non-dynamic transmission; then the first DCI is sent, the first DCI includes K bit groups, any one of the K bit groups includes At least one bit; the K bit groups correspond to the K parameter group sets one-to-one; any of the K bit groups is used to enable the non-dynamic transmission to take effect, or to enable enable the non-dynamic transmission; the given bit group is any bit group among the K bit groups, and the given bit group among the K bit groups is used to enable the non-dynamic transmission.
  • the validation of transmission or the validation of disabling the non-dynamic transmission has nothing to do with the values of other bit groups other than the given bit group in the K bit groups; for the given bit group in the K bit groups A fixed bit group, when used to enable the non-dynamic transmission to take effect, at least one first type parameter group in the corresponding parameter group set is adopted, when used to disable the non-dynamic transmission to take effect , at least one first-type parameter group in the corresponding parameter group set is stopped from being used.
  • the first communication device 450 corresponds to the first node in this application.
  • the second communication device 410 corresponds to the second node in this application.
  • the first communication device 450 is a UE.
  • the first communication device 450 is a terminal.
  • the first communication device 450 is a relay.
  • the second communication device 410 is a base station.
  • the second communication device 410 is a relay.
  • the second communication device 410 is a network device.
  • the second communication device 410 is a serving cell.
  • the second communication device 410 is a TRP.
  • At least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 are used to receive First signaling; at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, and the controller/processor 475 are used to transmit First signaling.
  • At least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 are used to receive First DCI; at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, and the controller/processor 475 are used to transmit First DCI.
  • At least the first four of the antenna 452, the receiver 454, the multi-antenna receiving processor 458, the receiving processor 456, and the controller/processor 459 are used to receive The first signal; at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmit processor 471, the transmit processor 416, and the controller/processor 475 are used to transmit The first signal.
  • At least the first four of the antenna 452, the transmitter 454, the multi-antenna transmit processor 457, the transmit processor 468, and the controller/processor 459 are used to transmit the third Two signals; at least the first four of the antenna 420, the receiver 418, the multi-antenna reception processor 472, the reception processor 470, and the controller/processor 475 are used to receive the second Signal.
  • Embodiment 5 illustrates a flow chart of the first signaling, as shown in Figure 5.
  • the first node U1 and the second node N2 communicate through a wireless link.
  • the sequence in this embodiment does not limit the signal transmission sequence and implementation sequence in this application.
  • the embodiments, sub-embodiments and subsidiary embodiments in Embodiment 5 can be applied to Embodiment 6 or 7; conversely, in the case of no conflict, any of the embodiments in Embodiment 6 or 7 can be applied to Embodiment 6 or 7.
  • An embodiment, sub-embodiment and subsidiary embodiment can be applied to Embodiment 5.
  • the first signaling is received in step S10; the first DCI is received in step S11.
  • the first signaling is sent in step S20; the first DCI is sent in step S21.
  • the first signaling is used to determine K parameter group sets, where K is a positive integer greater than 1, and each of the K parameter group sets includes at least one parameter group set.
  • a type of parameter group the first type of parameter group is used to configure non-dynamic transmission;
  • the first DCI includes K bit groups, and any bit group among the K bit groups includes at least one bit;
  • the K There is a one-to-one correspondence between the K bit groups and the K parameter group sets; any of the K bit groups is used to enable the non-dynamic transmission to take effect, or to disable the non-dynamic transmission.
  • Validation; the given bit group is any bit group among the K bit groups, and the given bit group among the K bit groups is used to enable or disable the non-dynamic transmission.
  • the validity of the non-dynamic transmission has nothing to do with the values of other bit groups other than the given bit group in the K bit groups; for the given bit group in the K bit groups, when used When enabling the non-dynamic transmission to take effect, at least one first type parameter group in the corresponding parameter group set is adopted. When used to disable the non-dynamic transmission to take effect, at least one of the first type parameter groups in the corresponding parameter group set is used. At least one type 1 parameter group has been discontinued.
  • the first DCI includes a target bit group outside the K bit groups, and only when the K bit groups are used to disable the validation of the non-dynamic transmission, the A target set of bits is used to disable the validation of the non-dynamic transmission.
  • the K parameter group sets are allocated to K carriers respectively, and the target bit group is applied to the K carriers.
  • the K parameter group sets are allocated to K serving cells respectively, and the target bit group is applied to the K serving cells. community.
  • the K parameter group sets are respectively allocated to K BWPs in K serving cells, and the target bit group is applied to the K BWPs.
  • the target bit group includes a Frequency domain resource assignment field.
  • the target bit group includes Modulation and coding scheme fields.
  • the target bit group includes a Frequency domain resource assignment domain and a Modulation and coding scheme domain.
  • the target bit group includes a HARQ process number field.
  • the target bit group includes a Redundancy version field.
  • the K parameter group sets respectively correspond to K BWPs in K serving cells, and the K BWPs all use the same subcarrier spacing.
  • the K BWPs all adopt the first subcarrier spacing.
  • only one BWP among multiple BWPs included in any one of the K serving cells adopts the first subcarrier spacing.
  • the K BWPs are predefined in the K serving cells, or configured through RRC signaling.
  • the values of K BWP-IDs corresponding to the K BWPs are fixed.
  • the K BWP-ID values corresponding to the K BWPs are the same.
  • the values of K BWP-IDs corresponding to the K BWPs are predefined.
  • the K BWP-ID values corresponding to the K BWPs are configured through RRC signaling.
  • the K serving cells respectively correspond to K scheduling indication values, and the K scheduling indication values are all the same.
  • the K scheduling indication values are K cif-InSchedulingCell respectively.
  • the K scheduling indicator values are K CIF (Carrier Indicator Field, carrier indicator field) values respectively.
  • the K scheduling indication values are all equal to the first value.
  • the first value is equal to 0.
  • the first value is equal to 8.
  • the first value is configured through RRC signaling.
  • Embodiment 6 illustrates a flow chart of the first signal, as shown in FIG. 6 .
  • the first node U3 and the second node N4 communicate through a wireless link.
  • the sequence in this embodiment does not limit the signal transmission sequence and implementation sequence in this application.
  • the embodiments, sub-embodiments and subsidiary embodiments in Embodiment 6 can be applied to Embodiment 5 or 7; conversely, in the case of no conflict, any of the embodiments in Embodiment 5 or 7 can be applied to Embodiment 5 or 7.
  • An embodiment, sub-embodiment and subsidiary embodiment can be applied to Embodiment 6.
  • the first signal is received in step S30.
  • the first signal is sent in step S40.
  • the K bit groups included in the first DCI include a first bit group, and the first bit group corresponds to the first parameter group set among the K parameter group sets, and the The first bit group is used to enable non-dynamic transmission configured by at least one first type parameter group included in the first parameter group set, and the first type parameter group included in the first parameter group set is used to configure the first signal.
  • the first type of parameter group included in the first parameter group set is used to determine the frequency domain resources occupied by the first signal.
  • the first type of parameter group included in the first parameter group set is used to determine the time domain resource occupied by the first signal.
  • the first type of parameter group included in the first parameter group set is used to determine the HARQ process number occupied by the first signal.
  • the first type of parameter group included in the first parameter group set is used to determine the MCS adopted by the first signal.
  • the first signal is generated by a TB (Transport Block).
  • the physical layer channel occupied by the first signal includes PDSCH.
  • the transmission channel occupied by the first signal includes DL-SCH (Downlink Shared Channel).
  • DL-SCH Downlink Shared Channel
  • step S30 is located after step S11 in embodiment 5.
  • step S40 is located after step S21 in embodiment 5.
  • Embodiment 7 illustrates a flow chart of the second signal, as shown in FIG. 7 .
  • the first node U5 and the second node N6 communicate through a wireless link.
  • the sequence in this embodiment does not limit the signal transmission sequence and implementation sequence in this application.
  • the embodiments, sub-embodiments and subsidiary embodiments in Embodiment 7 can be applied to Embodiment 5 or 6; conversely, in the case of no conflict, any of the embodiments in Embodiment 5 or 6 can be applied to Embodiment 5 or 6.
  • An embodiment, sub-embodiment and subsidiary embodiment can be applied to Embodiment 7.
  • a second signal is sent in step S50.
  • a second signal is received in step S60.
  • the K bit groups included in the first DCI include a second bit group, and the second bit group corresponds to the second parameter group set among the K parameter group sets, and the The second bit group is used to enable non-dynamic transmission configured by at least one first type parameter group included in the second parameter group set, and the first type parameter group included in the second parameter group set is used to configure the second signal.
  • the first type of parameter group included in the second parameter group set is used to determine the frequency domain resources occupied by the second signal.
  • the first type of parameter group included in the second parameter group set is used to determine the time domain resource occupied by the second signal.
  • the first type of parameter group included in the second parameter group set is used to determine the HARQ process number occupied by the second signal.
  • the first type of parameter group included in the second parameter group set is used to determine the MCS adopted by the second signal.
  • the second signal is generated by a TB.
  • the physical layer channel occupied by the second signal includes PUSCH (Physical Uplink Shared Channel).
  • PUSCH Physical Uplink Shared Channel
  • the transmission channel occupied by the second signal includes UL-SCH (Uplink Shared Channel).
  • UL-SCH Uplink Shared Channel
  • step S50 is located after step S11 in embodiment 5.
  • step S60 is located after step S21 in embodiment 5.
  • Embodiment 8 illustrates a schematic diagram of a set of K parameter groups, as shown in FIG. 8 .
  • the K parameter group sets respectively correspond to parameter group set #0 to parameter group set #(K-1) in the figure, and the parameter group set #0 to parameter group set #(K Any set of parameter groups in -1) includes at least one parameter group of the first type.
  • At least one parameter group set among the parameter group set #0 to the parameter group set #(K-1) includes multiple first-type parameter groups.
  • any parameter group set among the parameter group set #0 to the parameter group set #(K-1) includes a plurality of first-type parameter groups.
  • the parameter group set #0 to the parameter group set #(K-1) respectively correspond to the serving cell #0 to the serving cell #(K-1).
  • the first type of parameter group corresponds to some or all parameters in an SPS-Config IE.
  • the first type of parameter group corresponds to some or all parameters in a ConfiguredGrantConfig IE.
  • Embodiment 9 illustrates a schematic diagram of a K bit group, as shown in FIG. 9 .
  • the K bit groups included in the first DCI correspond one-to-one to the K parameter group sets respectively.
  • any one of the K bit groups includes multiple bits.
  • the total number of bits occupied by the K bit groups is related to the bandwidth of the K BWPs corresponding to the K serving cells.
  • any two bit groups among the K bit groups occupy the same number of bits.
  • the given bit group is any bit group among the K bit groups, and the given bit group corresponds to a given parameter group set among the K parameter group sets.
  • the given bit group Group is used to indicate one or more non-dynamic transmissions corresponding to one or more first-type parameter groups included in the given parameter group set.
  • the positions of the K bit groups in the first DCI are fixed.
  • any one of the K bit groups includes at least one of the following fields:
  • any one of the K bit groups includes at least the following fields:
  • Embodiment 10 illustrates a schematic diagram of a target bit group, as shown in FIG. 10 .
  • the first DCI includes K bit groups and a target bit group. Only when the K bit groups are used to disable the validation of the non-dynamic transmission, the target A set of bits is used to disable the validation of the non-dynamic transmission.
  • the target bit group is used to disable the validation of non-dynamic transmission corresponding to all first-type parameter groups indicated by the K bit groups.
  • the number of bits occupied by the target bit group has nothing to do with the number of bits included in any of the K bit groups.
  • the number of bits occupied by the target bit group is fixed.
  • Embodiment 11 illustrates a schematic diagram of non-dynamic transmission, as shown in Figure 11.
  • the non-dynamic transmission includes M1 wireless signals, the M1 wireless signals occupy M1 time-frequency resource sets, and the M1 is a positive integer greater than 1.
  • the M1 wireless signals are respectively generated by M1 different TBs.
  • the M1 wireless signals are generated by at least two wireless signals from the same TB.
  • the M1 time-frequency resource sets are periodically divided.
  • the M1 wireless signals correspond to the same DL SPS.
  • the M1 wireless signals correspond to the same UL Configured Grant.
  • Embodiment 12 illustrates a structural block diagram in a first node, as shown in Figure 12.
  • the first node 1200 includes a first receiver 1201 and a first transceiver 1202.
  • the first receiver 1201 receives the first signaling, which is used to determine K parameter group sets, where K is a positive integer greater than 1, and each parameter in the K parameter group sets
  • the group sets respectively include at least one first-type parameter group, and the first-type parameter group is used to configure non-dynamic transmission;
  • the first transceiver 1202 receives the first DCI, the first DCI includes K bit groups, and any bit group among the K bit groups includes at least one bit;
  • the K bit groups correspond to the K parameter group sets one-to-one; any of the K bit groups is used to enable the non-dynamic transmission to take effect, or to enable the non-dynamic transmission. Enable the validation of the non-dynamic transmission; the given bit group is any bit group among the K bit groups, and the given bit group among the K bit groups is used to enable the non-dynamic transmission.
  • the validity of dynamic transmission or the disabling of non-dynamic transmission has nothing to do with the values of other bit groups other than the given bit group in the K bit groups; for the K bit groups, Given a bit group, when used to enable the activation of the non-dynamic transmission, at least one parameter group of the first type in the corresponding parameter group set is adopted, when used to disable the activation of the non-dynamic transmission. When , at least one first-type parameter group in the corresponding parameter group set is stopped from being used.
  • the first DCI includes a target bit group outside the K bit groups, and only when the K bit groups are all used to disable the validation of the non-dynamic transmission, The target set of bits is used to disable the validation of the non-dynamic transmission.
  • the first transceiver 1202 receives a first signal; the K bit groups included in the first DCI include a first bit group, and the first bit group corresponds to the K bit groups.
  • a first parameter group set in the parameter group set, the first bit group is used to enable non-dynamic transmission configured by at least one first type parameter group included in the first parameter group set, the first The first type of parameter group included in the parameter group set is used to configure the first signal.
  • the first transceiver 1202 sends a second signal;
  • the K bit groups included in the first DCI include a second bit group, and the second bit group corresponds to the K bit groups.
  • a second parameter group set in the parameter group set, the second bit group is used to enable non-dynamic transmission configured by at least one first type parameter group included in the second parameter group set, the second The first type of parameter group included in the parameter group set is used to configure the second signal.
  • the K parameter group sets respectively correspond to K BWPs in K serving cells, and the K BWPs all use the same subcarrier spacing.
  • the K BWPs are predefined in the K serving cells or configured through RRC signaling.
  • the K serving cells respectively correspond to K scheduling indication values, and the K scheduling indication values are all the same.
  • the first receiver 1201 includes at least the first four of the antenna 452, receiver 454, multi-antenna receiving processor 458, receiving processor 456, and controller/processor 459 in Embodiment 4.
  • the first transceiver 1202 includes the antenna 452, receiver 454, transmitter 454, multi-antenna transmit processor 457, transmit processor 468, multi-antenna receive processor 458, and receive processor in Embodiment 4. At least the first six of the controller 456 and the controller/processor 459.
  • the first signaling includes RRC signaling, and the first signaling is used to determine K parameter group sets, and each of the K parameter group sets includes at least one
  • the first type parameter group is used to configure non-dynamic transmission; the first type parameter group corresponds to a DL SPS configuration parameter group, or the first type parameter group corresponds to a UL Configured Grant configuration parameter group, and the first type parameter group corresponds to a UL Configured Grant configuration parameter group.
  • a DCI includes K bit groups; the K bit groups correspond to the K parameter group sets one-to-one; any of the K bit groups is used to enable the non-dynamic transmission to take effect Or disable the validation of the non-dynamic transmission; a given bit group among the K bit groups is used to enable the validation of the non-dynamic transmission or disable the validation of the non-dynamic transmission and the The values of other bit groups among the K bit groups other than the given bit group are irrelevant.
  • Embodiment 13 illustrates a structural block diagram in the second node, as shown in Figure 13.
  • the second node 1300 includes a first transmitter 1301 and a second transceiver 1302.
  • the first transmitter 1301 sends first signaling, which is used to determine K parameter group sets, where K is a positive integer greater than 1, and each parameter in the K parameter group sets
  • the group sets respectively include at least one first-type parameter group, and the first-type parameter group is used to configure non-dynamic transmission;
  • the second transceiver 1302 sends the first DCI, the first DCI includes K bit groups, and any bit group among the K bit groups includes at least one bit;
  • the K bit groups correspond to the K parameter group sets one-to-one; any one of the K bit groups is used to enable the non-dynamic transmission, or to enable the non-dynamic transmission. Enable the validation of the non-dynamic transmission; the given bit group is any bit group among the K bit groups, and the given bit group among the K bit groups is used to enable the non-dynamic transmission.
  • the validity of dynamic transmission or the disabling of non-dynamic transmission has nothing to do with the values of other bit groups other than the given bit group in the K bit groups; for the K bit groups, A given bit group, when used to enable the validation of said non-dynamic transmission, is at least one of the corresponding parameter group sets.
  • a first-type parameter group is adopted, and when used to disable the activation of the non-dynamic transmission, at least one first-type parameter group in the corresponding set of parameter groups is stopped from being used.
  • the first DCI includes a target bit group outside the K bit groups, and only when the K bit groups are all used to disable the validation of the non-dynamic transmission, The target set of bits is used to disable the validation of the non-dynamic transmission.
  • the second transceiver 1302 sends a first signal;
  • the K bit groups included in the first DCI include a first bit group, and the first bit group corresponds to the K parameters.
  • a first parameter group set in the group set, the first bit group is used to enable non-dynamic transmission configured by at least one first type parameter group included in the first parameter group set, the first parameter The first type parameter group included in the group set is used to configure the first signal.
  • the second transceiver 1302 receives the second signal;
  • the K bit groups included in the first DCI include a second bit group, and the second bit group corresponds to the K parameters.
  • a second parameter group set in the group set, the second bit group is used to enable non-dynamic transmission configured by at least one first type parameter group included in the second parameter group set, the second parameter group
  • the first type parameter group included in the group set is used to configure the second signal.
  • the K parameter group sets respectively correspond to K BWPs in K serving cells, and the K BWPs all use the same subcarrier spacing.
  • the K BWPs are predefined in the K serving cells or configured through RRC signaling.
  • the K serving cells respectively correspond to K scheduling indication values, and the K scheduling indication values are all the same.
  • the first transmitter 1301 includes at least the first four of the antenna 420, the transmitter 418, the multi-antenna transmission processor 471, the transmission processor 414, and the controller/processor 475 in Embodiment 4.
  • the second transceiver 1302 includes the antenna 420, receiver 418, multi-antenna reception processor 472, reception processor 470, transmitter 418, multi-antenna transmission processor 471, and transmission processing in Embodiment 4. At least the first six of the controller 414 and the controller/processor 475.
  • the first signaling includes RRC signaling, and the first signaling is used to determine K parameter group sets, and each of the K parameter group sets includes at least one
  • the first type parameter group is used to configure non-dynamic transmission; the first type parameter group corresponds to a DL SPS configuration parameter group, or the first type parameter group corresponds to a UL Configured Grant configuration parameter group, and the first type parameter group corresponds to a UL Configured Grant configuration parameter group.
  • a DCI includes K bit groups; the K bit groups correspond to the K parameter group sets one-to-one; any of the K bit groups is used to enable the non-dynamic transmission to take effect Or disable the validation of the non-dynamic transmission; a given bit group among the K bit groups is used to enable the validation of the non-dynamic transmission or disable the validation of the non-dynamic transmission and the The values of other bit groups among the K bit groups other than the given bit group are irrelevant.
  • the first node in this application includes but is not limited to mobile phones, tablets, laptops, Internet cards, low-power devices, eMTC devices, NB-IoT devices, in-vehicle communication devices, transportation vehicles, vehicles, RSUs, aircraft, aircraft, none Human-machine, remote control aircraft and other wireless communication equipment.
  • the second node in this application includes but is not limited to macro cell base station, micro cell base station, small cell base station, home base station, relay base station, eNB, gNB, transmission and reception node TRP, GNSS, relay satellite, satellite base station, air base station , RSU, UAV, test equipment, such as transceiver device or signaling tester that simulates some functions of the base station, and other wireless communication equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。节点首先接收第一信令,所述第一信令被用于确定K个参数组集合,所述K个参数组集合中的每个参数组集合分别包括至少一个第一类参数组被用于配置非动态传输;随后接收第一DCI,所述第一DCI包括K个比特组;所述K个比特组与所述K个参数组集合一一对应;所述K个比特组中的任一比特组被用于使能所述非动态传输的生效或者去使能所述非动态传输的生效;所述K个比特组中的给定比特组被用于使能所述非动态传输的生效或者去使能所述非动态传输的生效与所述K个比特组中所述给定比特组之外的其他比特组的值无关。本申请改进非动态传输在多载波调度下的激活或释放,以提高系统灵活性。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及无线通信中多载波调度的传输方案和装置。
背景技术
LTE(Long-Term Evolution,长期演进)和5G无线蜂窝通信网络系统均支持多个载波被同时调度的场景,多载波调度场景下,基站通过发送多个DCI(Downlink Control Information,下行控制信息)去调度多个载波上的PDSCH(Physical Downlink Shared Channel,物理下行共享信道),以提高传输速率。多载波调度中的一个特点在于,每个PDSCH都需要一个DCI进行调度,一个DCI不能同时调度位于多个载波上的多个PDSCH。
在NR R17的讨论中,基于一个DCI调度多个载波上的PDSCH或PUSCH(Physical Uplink Shared Channel,物理上行共享信道)的课题被立项,相应的,如何通过一个DCI调度多个载波上的PDSCH或PUSCH的解决方案需要被研究和讨论。
发明内容
5G NR中一个重要的增强就是引入了BWP(Bandwidth Part,带宽部分)的概念,一个服务小区往往包括多个BWP,每个BWP可以配置不同的SCS(Subcarrier Spacing,子载波间隔),也可以独立的配置DL(Downlink)SPS(Semi-persistent Scheduling,半持续调度)或配置上行授权类型2调度(Configured UL Grant Type 2scheduling),基站通过DCI(Downlink Control Information)实现激活(Activate)或者释放(Release)一个或多个DL SPS或者上行配置授权(Configured Grant)的功能。
当一个DCI能够调度多个载波上的PDSCH或者PUSCH的传输时,一个DCI也应该能够激活或者释放多个载波上的DL SPS或者上行配置授权,进而如何基于现有的DCI格式和协议架构实现上述功能,是需要被研究和解决的。
针对上述多载波调度的场景,本申请公开了一种解决方案。需要说明的是,在本申请的描述中,只是将多载波作为一个典型应用场景或者例子;本申请也同样适用于面临相似问题的其它场景,例如单载波场景,或者针对不同的技术领域,比如除了动态调度之外的技术领域,例如测量上报领域,控制信令发送等其它非动态调度领域以取得类似的技术效果。此外,不同场景(包括但不限于多面板的场景)采用统一解决方案还有助于降低硬件复杂度和成本。在不冲突的情况下,本申请的第一节点设备中的实施例和实施例中的特征可以应用到第二节点设备中,反之亦然。特别的,对本申请中的术语(Terminology)、名词、函数、变量的解释(如果未加特别说明)可以参考3GPP的规范协议TS(Technical Specification,技术规范)36系列、TS38系列、TS37系列中的定义。
本申请公开了一种用于无线通信的第一节点中的方法,包括:
接收第一信令,所述第一信令被用于确定K个参数组集合,所述K是大于1的正整数,所述K个参数组集合中的每个参数组集合分别包括至少一个第一类参数组,所述第一类参数组被用于配置非动态传输;
接收第一DCI,所述第一DCI包括K个比特组,所述K个比特组中任一比特组包括至少一个比特;
其中,所述K个比特组与所述K个参数组集合一一对应;所述K个比特组中的任一比特组被用于使能所述非动态传输的生效(Validation),或者去使能所述非动态传输的生效;给定比特组是所述K个比特组中的任一比特组,所述K个比特组中的所述给定比特组被用于使能所述非动态传输的生效或者去使能所述非动态传输的生效与所述K个比特组中所述给定比特组之外的其它比特组的值无关;对于所述K个比特组中的所述给定比特组,当被用于使能所述非动态传输的生效时,相应参数组集合中的至少一个第一类参数组被采用,当被用于去使能所述非动态传输的生效时,相应参数组集合中的至少一个第一类参数组被停止采用。
作为一个实施例,上述方法的特征在于:通过一个DCI激活或者释放多个服务小区上的非动态传输,以提高系统效率,降低控制信令所带来的带宽消耗。
作为一个实施例,上述方法的另一个特征在于:通过一个DCI中的独立的多个域去指示多个服务小区上的非动态传输,以保证指示的灵活性。
根据本申请的一个方面,所述第一DCI包括所述K个比特组之外的目标比特组,仅当所述K个比特组都被用于去使能所述非动态传输的所述生效时,所述目标比特组被用于去使能所述非动态传输的所述生效。
作为一个实施例,上述方法的特征在于:当所述第一DCI所指示的多个服务小区中的非动态传输都释放时,所述目标比特组被用于所述K个比特组的整体的生效,进而节约所述第一DCI所占用的比特数,提高频谱效率。
作为一个实施例,上述方法的另一个特征在于:所述第一DCI的载荷(Payload)与所述K个比特组是否同时被用于多个服务小区的非动态传输的释放有关,在保证灵活性的前提下提高频谱效率。
根据本申请的一个方面,包括:
接收第一信号;
其中,所述第一DCI所包括的所述K个比特组中包括第一比特组,所述第一比特组对应所述K个参数组集合中的第一参数组集合,所述第一比特组被用于使能所述第一参数组集合所包括的至少一个第一类参数组所配置的非动态传输,所述第一参数组集合所包括的所述第一类参数组被用于配置所述第一信号。
作为一个实施例,上述方法的特征在于:所述K个比特组中存在一个用于DL SPS激活的比特组。
根据本申请的一个方面,包括:
发送第二信号;
其中,所述第一DCI所包括的所述K个比特组中包括第二比特组,所述第二比特组对应所述K个参数组集合中的第二参数组集合,所述第二比特组被用于使能所述第二参数组集合所包括的至少一个第一类参数组所配置的非动态传输,所述第二参数组集合所包括的所述第一类参数组被用于配置所述第二信号。
作为一个实施例,上述方法的特征在于:所述K个比特组中存在一个用于上行配置授予激活的比特组。
根据本申请的一个方面,所述K个参数组集合分别对应K个服务小区中的K个BWP,所述K个BWP都采用相同的子载波间隔。
作为一个实施例,上述方法的特征在于:避免不同的SCS(Subcarrier Spacing,子载波间隔)所带来的不同BWP之间生效时间不统一的问题。
根据本申请的一个方面,所述K个BWP在所述K个服务小区中是预定义的,或者是通过RRC(Radio Resource Control,无线资源控制)信令配置的。
作为一个实施例,上述方法的特征在于:为多个服务小区中用于联合调度的BWP配置特性相同的DL SPS或上行配置授予,以便于联合激活或者释放。
根据本申请的一个方面,所述K个服务小区分别对应K个调度指示值,所述K个调度指示值都相同。
本申请公开了一种用于无线通信的第二节点中的方法,包括:
发送第一信令,所述第一信令被用于确定K个参数组集合,所述K是大于1的正整数,所述K个参数组集合中的每个参数组集合分别包括至少一个第一类参数组,所述第一类参数组被用于配置非动态传输;
发送第一DCI,所述第一DCI包括K个比特组,所述K个比特组中任一比特组包括至少一个比特;
其中,所述K个比特组与所述K个参数组集合一一对应;所述K个比特组中的任一比特组被用于使能所述非动态传输的生效,或者去使能所述非动态传输的生效;给定比特组是所述K个比特组中的任一比特组,所述K个比特组中的所述给定比特组被用于使能所述非动态传输的生效或者去使能所述非动态 传输的生效与所述K个比特组中所述给定比特组之外的其它比特组的值无关;对于所述K个比特组中的所述给定比特组,当被用于使能所述非动态传输的生效时,相应参数组集合中的至少一个第一类参数组被采用,当被用于去使能所述非动态传输的生效时,相应参数组集合中的至少一个第一类参数组被停止采用。
根据本申请的一个方面,所述第一DCI包括所述K个比特组之外的目标比特组,仅当所述K个比特组都被用于去使能所述非动态传输的所述生效时,所述目标比特组被用于去使能所述非动态传输的所述生效。
根据本申请的一个方面,包括:
发送第一信号;
其中,所述第一DCI所包括的所述K个比特组中包括第一比特组,所述第一比特组对应所述K个参数组集合中的第一参数组集合,所述第一比特组被用于使能所述第一参数组集合所包括的至少一个第一类参数组所配置的非动态传输,所述第一参数组集合所包括的所述第一类参数组被用于配置所述第一信号。
根据本申请的一个方面,包括:
接收第二信号;
其中,所述第一DCI所包括的所述K个比特组中包括第二比特组,所述第二比特组对应所述K个参数组集合中的第二参数组集合,所述第二比特组被用于使能所述第二参数组集合所包括的至少一个第一类参数组所配置的非动态传输,所述第二参数组集合所包括的所述第一类参数组被用于配置所述第二信号。
根据本申请的一个方面,所述K个参数组集合分别对应K个服务小区中的K个BWP,所述K个BWP都采用相同的子载波间隔。
根据本申请的一个方面,所述K个BWP在所述K个服务小区中是预定义的,或者是通过RRC信令配置的。
根据本申请的一个方面,所述K个服务小区分别对应K个调度指示值,所述K个调度指示值都相同。
本申请公开了一种用于无线通信的第一节点,包括:
第一接收机,接收第一信令,所述第一信令被用于确定K个参数组集合,所述K是大于1的正整数,所述K个参数组集合中的每个参数组集合分别包括至少一个第一类参数组,所述第一类参数组被用于配置非动态传输;
第一收发机,接收第一DCI,所述第一DCI包括K个比特组,所述K个比特组中任一比特组包括至少一个比特;
其中,所述K个比特组与所述K个参数组集合一一对应;所述K个比特组中的任一比特组被用于使能所述非动态传输的生效,或者去使能所述非动态传输的生效;给定比特组是所述K个比特组中的任一比特组,所述K个比特组中的所述给定比特组被用于使能所述非动态传输的生效或者去使能所述非动态传输的生效与所述K个比特组中所述给定比特组之外的其它比特组的值无关;对于所述K个比特组中的所述给定比特组,当被用于使能所述非动态传输的生效时,相应参数组集合中的至少一个第一类参数组被采用,当被用于去使能所述非动态传输的生效时,相应参数组集合中的至少一个第一类参数组被停止采用。
本申请公开了一种用于无线通信的第二节点,包括:
第一发射机,发送第一信令,所述第一信令被用于确定K个参数组集合,所述K是大于1的正整数,所述K个参数组集合中的每个参数组集合分别包括至少一个第一类参数组,所述第一类参数组被用于配置非动态传输;
第二收发机,发送第一DCI,所述第一DCI包括K个比特组,所述K个比特组中任一比特组包括至少一个比特;
其中,所述K个比特组与所述K个参数组集合一一对应;所述K个比特组中的任一比特组被用于使 能所述非动态传输的生效,或者去使能所述非动态传输的生效;给定比特组是所述K个比特组中的任一比特组,所述K个比特组中的所述给定比特组被用于使能所述非动态传输的生效或者去使能所述非动态传输的生效与所述K个比特组中所述给定比特组之外的其它比特组的值无关;对于所述K个比特组中的所述给定比特组,当被用于使能所述非动态传输的生效时,相应参数组集合中的至少一个第一类参数组被采用,当被用于去使能所述非动态传输的生效时,相应参数组集合中的至少一个第一类参数组被停止采用。
作为一个实施例,本申请中的方案的好处在于:通过一个DCI灵活激活或者释放多个服务小区中的一个或多个DL SPS或上行配置授予,以提高频谱效率,降低信令开销。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一节点的处理流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的第一信令的流程图;
图6示出了根据本申请的一个实施例的第一信号的流程图;
图7示出了根据本申请的一个实施例的第二信号的流程图;
图8示出了根据本申请的一个实施例的K个参数组集合的示意图;
图9示出了根据本申请的一个实施例的K个比特组的示意图;
图10示出了根据本申请的一个实施例的目标比特组的示意图;
图11示出了根据本申请的一个实施例的非动态传输的示意图;
图12示出了根据本申请的一个实施例的第一节点设备中的处理装置的结构框图;
图13示出了根据本申请的一个实施例的第二节点设备中的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了一个第一节点的处理流程图,如附图1所示。在附图1所示的100中,每个方框代表一个步骤。在实施例1中,本申请中的第一节点在步骤101中接收第一信令,所述第一信令被用于确定K个参数组集合,所述K是大于1的正整数,所述K个参数组集合中的每个参数组集合分别包括至少一个第一类参数组,所述第一类参数组被用于配置非动态传输;在步骤102中接收第一DCI,所述第一DCI包括K个比特组,所述K个比特组中任一比特组包括至少一个比特。
实施例1中,所述K个比特组与所述K个参数组集合一一对应;所述K个比特组中的任一比特组被用于使能所述非动态传输的生效,或者去使能所述非动态传输的生效;给定比特组是所述K个比特组中的任一比特组,所述K个比特组中的所述给定比特组被用于使能所述非动态传输的生效或者去使能所述非动态传输的生效与所述K个比特组中所述给定比特组之外的其它比特组的值无关;对于所述K个比特组中的所述给定比特组,当被用于使能所述非动态传输的生效时,相应参数组集合中的至少一个第一类参数组被采用,当被用于去使能所述非动态传输的生效时,相应参数组集合中的至少一个第一类参数组被停止采用。
作为一个实施例,所述第一信令包括更高层信令。
作为一个实施例,所述第一信令包括RRC信令。
作为一个实施例,所述第一信令包括RRC信令ConfiguredGrantConfig IE(Information Elements, 信息单元)中的一个或多个域(Field)。
作为一个实施例,所述第一信令包括RRC信令SPS-Config IE中的一个或多个域。
作为一个实施例,所述第一信令包括RRC信令BWP-DownlinkDedicated中的一个或多个域。
作为一个实施例,所述第一信令包括RRC信令BWP-UplinkDedicated中的一个或多个域。
作为一个实施例,所述第一信令包括RRC信令ServingCellConfig IE中的一个或多个域。
作为一个实施例,所述第一信令包括RRC信令CellGroupConfig IE中的一个或多个域。
作为一个实施例,所述第一信令包括多个ServingCellConfig IE。
作为一个实施例,所述第一信令包括K个ServingCellConfig IE,所述K个ServingCellConfig IE分别对应K个服务小区。
作为一个实施例,所述第一信令包括K个ServingCellConfig IE,所述K个ServingCellConfig IE分别对应K个CC(Component Carrier,分量载波)。
作为一个实施例,所述K个参数组集合分别对应K个服务小区。
作为一个实施例,所述K个参数组集合分别对应K个分量载波。
作为一个实施例,所述K个参数组集合分别对应K个BWP。
作为一个实施例,所述K个参数组集合分别包括K个DL SPS集合,所述K个DL SPS集合中的任一DL SPS集合包括至少一个SPS-Config所对应的DL SPS。
作为该实施例的一个子实施例,所述K个DL SPS集合分别对应K个服务小区。
作为该实施例的一个子实施例,所述K个DL SPS集合分别对应K个分量载波。
作为一个实施例,所述K个参数组集合分别包括K个ConfiguredGrantConfig集合,所述K个ConfiguredGrantConfig集合中的任一ConfiguredGrantConfig集合包括至少一个ConfiguredGrantConfig所对应的UL配置授予。
作为该实施例的一个子实施例,所述K个ConfiguredGrantConfig集合分别对应K个服务小区。
作为该实施例的一个子实施例,所述K个ConfiguredGrantConfig集合分别对应K个分量载波。
作为一个实施例,所述K个参数组集合分别包括K个非动态传输集合,所述K个非动态传输集合中至少包括一个给定非动态传输集合,所述给定非动态传输集合包括至少一个SPS-Config所对应的DL SPS以及至少一个ConfiguredGrantConfig所对应的UL配置授予。
作为一个实施例,所述第一类参数组针对一个SPS-Config IE。
作为一个实施例,所述第一类参数组针对一个sps-ConfigIndex。
作为一个实施例,所述第一类参数组针对一个ConfiguredGrantConfig IE。
作为一个实施例,所述第一类参数组针对一个configuredGrantConfigIndex。
作为一个实施例,所述第一类参数组针对一个configuredGrantConfigIndexMAC。
作为一个实施例,所述非动态传输包括多次发送。
作为一个实施例,所述非动态传输被周期性的执行。
作为一个实施例,所述非动态传输通过动态信令被激活。
作为一个实施例,所述非动态传输通过动态信令被去使能,或被释放。
作为一个实施例,所述非动态传输包括多次传输,且所述多次传输中的至少一次传输不需要通过动态信令指示。
作为一个实施例,所述非动态传输包括SPS。
作为一个实施例,所述非动态传输包括Configured Grant。
作为一个实施例,所述非动态传输包括DL SPS。
作为一个实施例,所述非动态传输包括Configured UL Grant Type 2 scheduling。
作为一个实施例,所述第一DCI是一个DCI。
作为一个实施例,所述第一DCI是一个PDCCH(Physical Downlink Control Channel,物理下行控制信道)。
作为一个实施例,所述第一DCI仅在一个CC中被传输。
作为一个实施例,所述第一DCI仅在一个服务小区中被传输。
作为一个实施例,所述第一DCI被用于调度多个服务小区。
作为一个实施例,所述第一DCI所占用的PDCCH所包括的CRC(Cyclic Redundancy Check,循环冗余校验)通过CS-RNTI(Configured Scheduling RNTI,配置调度无线网络临时标识)加扰。
作为一个实施例,所述使能包括Activate。
作为一个实施例,所述使能包括Trigger。
作为一个实施例,所述去使能包括Deactivate。
作为一个实施例,所述去使能包括释放(Release)。
作为一个实施例,所述生效包括Validation。
作为一个实施例,所述生效包括确认(Confirmation)。
作为一个实施例,所述K个比特组中的任一比特组被用于指示所述K个参数组集合中对应的参数组集合所包括的一个或多个第一类参数组。
典型的,所述K个比特组中的至少两个比特组分别被用于使能和去使能相应的参数组集合中的至少一个第一类参数组。
作为一个实施例,所述K个比特组包括第一候选比特组和第二候选比特组,所述第一候选比特组和所述第二候选比特组分别对应所述K个参数组集合中的第一候选参数组集合和第二候选参数组集合,所述第一候选比特组被用于使能所述第一候选参数组集合中所对应的非动态传输,所述第二候选比特组被用于去使能所述第二候选参数组集合所对应的非动态传输。
作为该实施例的一个子实施例,所述第一候选参数组集合包括K1个第一类参数组,所述第一候选比特组被用于指示所述K1个第一类参数组中的K2个第一类参数组,所述K1是正整数,所述K2是不大于所述K1的正整数,所述第一候选比特组被用于使能所述K2个第一类参数组所对应的K2个非动态传输。
作为该实施例的一个子实施例,所述第二候选参数组集合包括Q1个第二类参数组,所述第二候选比特组被用于指示所述Q1个第一类参数组中的Q2个第一类参数组,所述Q1是正整数,所述Q2是不大于所述Q1的正整数,所述第二候选比特组被用于去使能所述Q2个第一类参数组所对应的Q2个非动态传输。
典型的,所述K个参数组集合分别被分配给K个BWP,所述K个比特组分别被用于指示所述K个BWP。
典型的,所述K个参数组集合分别被分配给K个服务小区,所述K个比特组分别被用于指示所述K个服务小区。
典型的,所述K个参数组集合分别被分配给K个载波,所述K个比特组分别被用于指示所述K个载波。
作为一个实施例,上述所述K个比特组中的所述给定比特组被用于使能所述非动态传输的生效或者去使能所述非动态传输的生效与所述K个比特组中所述给定比特组之外的其它比特组的值无关的意思包括:所述K个比特组被用于分别独立使能或去使能所述K个参数组集合中所包括的非动态传输的生效。
作为一个实施例,上述所述K个比特组中的所述给定比特组被用于使能所述非动态传输的生效或者去使能所述非动态传输的生效与所述K个比特组中所述给定比特组之外的其它比特组的值无关的好处包括:能够灵活的使能或者去使能不同载波中的DL SPS或Configured UL Grant Type 2 scheduling的传输,且针对不同载波的多个比特组不会彼此影响,以提高准确性。
作为一个实施例,上述所述K个比特组中的所述给定比特组被用于使能所述非动态传输的生效或者去使能所述非动态传输的生效与所述K个比特组中所述给定比特组之外的其它比特组的值无关的好处包括:能够独立使能或去使能多个服务小区或BWP上非动态传输,且针对一个服务小区或BWP的比特组不会被针对别的服务小区或BWP的比特组影响,以提高独立性。
作为一个实施例,上述相应参数组集合中的至少一个第一类参数组被采用的意思包括:所述相应参数组集合包括一个给定第一类参数组,所述给定第一类参数组包括多个参数,所述多个参数包括HARQ(Hybrid Automatic Repeat reQuest,混合自动重传请求)进程数、PUCCH(Physical Uplink Control Channel,物理上行控制信道)资源指示、MCS(Modulation Coding Scheme,调制编码方式)表格、HRAQ进程号偏移、周期配置、HARQ码本标识、聚合因子中的至少之一,所述多个参数中的至少之一被用于确定所述给定第一类参数组所对应的非动态传输的数据接收。
作为该实施例的一个子实施例,所述非动态传输对应一个DL SPS。
作为该实施例的一个子实施例,所述HARQ进程数被用于确定所述非动态传输所占用的HARQ进程数(Number of HARQ Process)。
作为该实施例的一个子实施例,所述HARQ进程数对应SPS-Config IE中的nrofHARQ-Processes域。
作为该实施例的一个子实施例,所述PUCCH资源指示被用于确定针对所述非动态传输的HARQ资源所占用PUCCH。
作为该实施例的一个子实施例,所述PUCCH资源指示对应SPS-Config IE中的n1PUCCH-AN域。
作为该实施例的一个子实施例,所述MCS表格被用于确定所述非动态传输所采用的MCS表格。
作为该实施例的一个子实施例,所述MCS表格对应SPS-Config IE中的mcs-Table域。
作为该实施例的一个子实施例,所述HRAQ进程号偏移被用于指示用于获得所述非动态传输的HARQ进程号(HARQ Process ID)的偏移值。
作为该实施例的一个子实施例,所述HRAQ进程号偏移对应SPS-Config IE中的harq-ProcID-Offset域。
作为该实施例的一个子实施例,所述周期配置被用于指示所述非动态传输的周期。
作为该实施例的一个子实施例,所述周期配置对应SPS-Config IE中的periodicity域。
作为该实施例的一个子实施例,所述周期配置对应SPS-Config IE中的periodicityExt域。
作为该实施例的一个子实施例,所述HARQ码本标识被用于指示所述非动态传输所采用的HARQ-ACK码本(Codebook)的HARQ-ACK码本索引(index)。
作为该实施例的一个子实施例,所述HARQ码本标识对应SPS-Config IE中的harq-CodebookID域。
作为该实施例的一个子实施例,所述聚合因子被用于指示所述非动态传输所采用的SPS PDSCH的重复传输次数。
作为该实施例的一个子实施例,所述聚合因子对应SPS-Config IE中的pdsch-AggregationFactor域。
作为一个实施例,上述相应参数组集合中的至少一个第一类参数组被停止采用的意思包括:所述相应参数组集合包括一个给定第一类参数组,所述给定第一类参数组包括多个参数,所述多个参数包括HARQ进程数、PUCCH资源指示、MCS表格、HRAQ进程号偏移、周期配置、HARQ码本标识、聚合因子中的至少之一,所述多个参数中的至少之一被用于确定所述给定第一类参数组所对应的非动态传输的数据接收被停止。
作为该实施例的一个子实施例,所述HARQ进程数被用于确定所述非动态传输所占用的HARQ进程数不再被占用。
作为该实施例的一个子实施例,所述PUCCH资源指示被用于确定针对所述非动态传输的HARQ资源所占用PUCCH不再被占用。
作为该实施例的一个子实施例,所述周期配置被用于指示所述非动态传输所占用的周期性时域资源不再被占用。
作为该实施例的一个子实施例,所述HARQ码本标识被用于指示所述非动态传输所采用的HARQ-ACK码本索引(index)下的HARQ-ACK码本不再被占用。
作为一个实施例,上述相应参数组集合中的至少一个第一类参数组被采用的意思包括:所述相应参数组集合包括一个给定第一类参数组,所述给定第一类参数组包括多个参数,所述多个参数包括ConfiguredGrantConfig IE中的至少一个域,所述多个参数中的至少之一被用于确定所述给定第一类参数组所对应的非动态传输的数据发送。
作为该实施例的一个子实施例,所述多个参数中的至少一个参数被用于确定所述非动态传输所占用的频域资源,所述频域资源包括RB(Resource Block,资源块)、RB集合或RBG(Resource Block Group,资源块组)中的至少之一。
作为该实施例的一个子实施例,所述多个参数中的至少一个参数被用于确定所述非动态传输所占用的时域资源,所述时域资源包括时隙(slots)或OFDM符号(symbols)中的至少之一。
作为该实施例的一个子实施例,所述多个参数中的至少一个参数被用于确定所述非动态传输所占用 的HARQ进程数。
作为该实施例的一个子实施例,所述多个参数中的至少一个参数被用于确定所述非动态传输所占用的HARQ进程号。
作为该实施例的一个子实施例,所述多个参数中的至少一个参数被用于确定所述非动态传输所占用的天线端口。
作为该实施例的一个子实施例,所述多个参数中的至少一个参数被用于确定所述非动态传输所采用的DMRS配置。
作为该实施例的一个子实施例,所述多个参数中的至少一个参数被用于确定所述非动态传输所采用的周期。
作为该实施例的一个子实施例,所述多个参数中的至少一个参数被用于确定所述非动态传输所采用的优先级。
作为该实施例的一个子实施例,所述多个参数中的至少一个参数被用于确定所述非动态传输所采用的功控参数。
作为该实施例的一个子实施例,所述多个参数中的至少一个参数被用于确定所述非动态传输所采用的重复次数。
作为该实施例的一个子实施例,所述多个参数中的至少一个参数被用于确定所述非动态传输所采用的RV Sequence。
作为该实施例的一个子实施例,所述多个参数中的至少一个参数被用于确定所述非动态传输所采用的SRS(Sounding Reference Signal,探测参考信号)资源。
作为一个实施例,上述相应参数组集合中的至少一个第一类参数组被采用的意思包括:所述相应参数组集合包括一个给定第一类参数组,所述给定第一类参数组包括多个参数,所述多个参数包括ConfiguredGrantConfig IE中的至少一个域,所述多个参数中的至少之一被用于确定所述给定第一类参数组所对应的非动态传输的数据发送被停止。
作为该实施例的一个子实施例,所述多个参数中的至少一个参数被用于确定所述非动态传输所占用的频域资源不再被占用,所述频域资源包括RB、RB集合或RBG中的至少之一。
作为该实施例的一个子实施例,所述多个参数中的至少一个参数被用于确定所述非动态传输所占用的时域资源不再被占用,所述时域资源包括时隙(slots)或OFDM符号(symbols)中的至少之一。
作为该实施例的一个子实施例,所述多个参数中的至少一个参数被用于确定所述非动态传输所占用的HARQ进程数不再被占用。
作为该实施例的一个子实施例,所述多个参数中的至少一个参数被用于确定所述非动态传输所占用的HARQ进程号不再被占用。
作为该实施例的一个子实施例,所述多个参数中的至少一个参数被用于确定所述非动态传输所占用的天线端口不再被占用。
作为该实施例的一个子实施例,所述多个参数中的至少一个参数被用于确定所述非动态传输所采用的DMRS(Demodulation Reference Signal,解调参考信号)配置所对应的DMRS资源不再被占用。
作为该实施例的一个子实施例,所述多个参数中的至少一个参数被用于确定所述非动态传输所采用的周期所对应的时域资源不再被占用。
作为该实施例的一个子实施例,所述多个参数中的至少一个参数被用于确定所述非动态传输所采用的SRS资源不再被占用。
实施例2
实施例2示例了网络架构的示意图,如附图2所示。
图2说明了5G NR,LTE(Long-Term Evolution,长期演进)及LTE-A(Long-Term Evolution Advanced,增强长期演进)系统的网络架构200的图。5G NR或LTE网络架构200可称为EPS(Evolved Packet System,演进分组系统)200某种其它合适术语。EPS 200可包括一个UE(User Equipment,用户设备)201,NR-RAN(下一代无线接入网络)202,EPC(Evolved Packet Core,演进分组核心)/5G-CN(5G-Core Network,5G核心网)210,HSS(Home Subscriber Server,归属签约用户服务器)220和 因特网服务230。EPS可与其它接入网络互连,但为了简单未展示这些实体/接口。如图所示,EPS提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到提供电路交换服务的网络或其它蜂窝网络。NR-RAN包括NR节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP或某种其它合适术语。gNB203为UE201提供对EPC/5G-CN 210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、非地面基站通信、卫星移动通信、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物联网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到EPC/5G-CN 210。EPC/5G-CN 210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/UPF(User Plane Function,用户平面功能)211、其它MME/AMF/UPF214、S-GW(Service Gateway,服务网关)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)213。MME/AMF/UPF211是处理UE201与EPC/5G-CN 210之间的信令的控制节点。大体上,MME/AMF/UPF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW212传送,S-GW212自身连接到P-GW213。P-GW213提供UE IP地址分配以及其它功能。P-GW213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网、内联网、IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换串流服务。
作为一个实施例,所述UE201对应本申请中的所述第一节点。
作为一个实施例,所述UE201支持多个载波被同一个DCI调度。
作为一个实施例,所述UE201支持多个服务小区被同一个DCI调度。
作为一个实施例,所述UE201支持跨载波调度。
作为一个实施例,所述NR节点B对应本申请中的所述第二节点。
作为一个实施例,所述NR节点B支持多个载波被同一个DCI调度。
作为一个实施例,所述NR节点B支持多个服务小区被同一个DCI调度。
作为一个实施例,所述NR节点B支持跨载波调度。
作为一个实施例,所述NR节点B是一个基站。
作为一个实施例,所述NR节点B是一个小区。
作为一个实施例,所述NR节点B包括多个小区。
作为一个实施例,所述NR节点B被用于确定多个服务小区上的传输。
作为一个实施例,本申请中的所述第一节点对应所述UE201,本申请中的所述第二节点对应所述NR节点B。
实施例3
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一通信节点设备(UE,gNB或V2X中的RSU)和第二通信节点设备(gNB,UE或V2X中的RSU)之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,且负责通过PHY301在第一通信节点设备与第二通信节点设备之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二通信节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,PDCP子层304还提供第一通信节点设备对第二通信节点设备的越区移动支持。 RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB,Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一通信节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,所述第二通信节点设备的PDCP304被用于生成所述第一通信节点设备的调度。
作为一个实施例,所述第二通信节点设备的PDCP354被用于生成所述第一通信节点设备的调度。
作为一个实施例,所述第一信令生成于所述MAC302或者MAC352。
作为一个实施例,所述第一信令生成于所述RRC306。
作为一个实施例,所述第一DCI生成于所述PHY301或者所述PHY351。
作为一个实施例,所述第一DCI生成于所述MAC302或者MAC352。
作为一个实施例,所述第一信号生成于所述PHY301或者所述PHY351。
作为一个实施例,所述第一信号生成于所述MAC302或者MAC352。
作为一个实施例,所述第一信号生成于所述RRC306。
作为一个实施例,所述第二信号生成于所述PHY301或者所述PHY351。
作为一个实施例,所述第二信号生成于所述MAC302或者MAC352。
作为一个实施例,所述第二信号生成于所述RRC306。
作为一个实施例,所述第一节点是一个终端。
作为一个实施例,所述第一节点是一个中继。
作为一个实施例,所述第二节点是一个中继。
作为一个实施例,所述第二节点是一个基站。
作为一个实施例,所述第二节点是一个gNB。
作为一个实施例,所述第二节点是一个TRP(Transmitter Receiver Point,发送接收点)。
作为一个实施例,所述第二节点被用于管理多个TRP。
作为一个实施例,所述第二节点是用于管理多个小区的节点。
作为一个实施例,所述第二节点是用于管理多个服务小区的节点。
实施例4
实施例4示出了根据本申请的第一通信设备和第二通信设备的示意图,如附图4所示。图4是在接入网络中相互通信的第一通信设备450以及第二通信设备410的框图。
第一通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
第二通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第二通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在从所述第二通信设备410到所述第一通信设备450的传输中,控制器/处理器475提供标头压缩、加密、包 分段和重排序、逻辑与输送信道之间的多路复用,以及基于各种优先级量度对所述第一通信设备450的无线电资源分配。控制器/处理器475还负责丢失包的重新发射,和到所述第一通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进所述第二通信设备410处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的信号群集的映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个空间流。发射处理器416随后将每一空间流映射到子载波,在时域和/或频域中与参考信号(例如,导频)多路复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第二通信设备410到所述第一通信设备450的传输中,在所述第一通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以所述第一通信设备450为目的地的任何空间流。每一空间流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由所述第二通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在从所述第二通信设备410到所述第二通信设备450的传输中,控制器/处理器459提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。
在从所述第一通信设备450到所述第二通信设备410的传输中,在所述第一通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述所述第二通信设备410处的发送功能,控制器/处理器459基于无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与输送信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责丢失包的重新发射,和到所述第二通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的空间流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第一通信设备450到所述第二通信设备410的传输中,所述第二通信设备410处的功能类似于在从所述第二通信设备410到所述第一通信设备450的传输中所描述的所述第一通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。在从所述第一通信设备450到所述第二通信设备410的传输中,控制器/处理器475提供输送与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自UE450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。
作为一个实施例,所述第一通信设备450装置包括:至少一个处理器以及至少一个存储器,所述至 少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用,所述第一通信设备450装置至少:首先接收第一信令,所述第一信令被用于确定K个参数组集合,所述K是大于1的正整数,所述K个参数组集合中的每个参数组集合分别包括至少一个第一类参数组,所述第一类参数组被用于配置非动态传输;随后接收第一DCI,所述第一DCI包括K个比特组,所述K个比特组中任一比特组包括至少一个比特;所述K个比特组与所述K个参数组集合一一对应;所述K个比特组中的任一比特组被用于使能所述非动态传输的生效,或者去使能所述非动态传输的生效;给定比特组是所述K个比特组中的任一比特组,所述K个比特组中的所述给定比特组被用于使能所述非动态传输的生效或者去使能所述非动态传输的生效与所述K个比特组中所述给定比特组之外的其它比特组的值无关;对于所述K个比特组中的所述给定比特组,当被用于使能所述非动态传输的生效时,相应参数组集合中的至少一个第一类参数组被采用,当被用于去使能所述非动态传输的生效时,相应参数组集合中的至少一个第一类参数组被停止采用。
作为一个实施例,所述第一通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:首先接收第一信令,所述第一信令被用于确定K个参数组集合,所述K是大于1的正整数,所述K个参数组集合中的每个参数组集合分别包括至少一个第一类参数组,所述第一类参数组被用于配置非动态传输;随后接收第一DCI,所述第一DCI包括K个比特组,所述K个比特组中任一比特组包括至少一个比特;所述K个比特组与所述K个参数组集合一一对应;所述K个比特组中的任一比特组被用于使能所述非动态传输的生效,或者去使能所述非动态传输的生效;给定比特组是所述K个比特组中的任一比特组,所述K个比特组中的所述给定比特组被用于使能所述非动态传输的生效或者去使能所述非动态传输的生效与所述K个比特组中所述给定比特组之外的其它比特组的值无关;对于所述K个比特组中的所述给定比特组,当被用于使能所述非动态传输的生效时,相应参数组集合中的至少一个第一类参数组被采用,当被用于去使能所述非动态传输的生效时,相应参数组集合中的至少一个第一类参数组被停止采用。
作为一个实施例,所述第二通信设备410装置包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备410装置至少:首先发送第一信令,所述第一信令被用于确定K个参数组集合,所述K是大于1的正整数,所述K个参数组集合中的每个参数组集合分别包括至少一个第一类参数组,所述第一类参数组被用于配置非动态传输;随后发送第一DCI,所述第一DCI包括K个比特组,所述K个比特组中任一比特组包括至少一个比特;所述K个比特组与所述K个参数组集合一一对应;所述K个比特组中的任一比特组被用于使能所述非动态传输的生效,或者去使能所述非动态传输的生效;给定比特组是所述K个比特组中的任一比特组,所述K个比特组中的所述给定比特组被用于使能所述非动态传输的生效或者去使能所述非动态传输的生效与所述K个比特组中所述给定比特组之外的其它比特组的值无关;对于所述K个比特组中的所述给定比特组,当被用于使能所述非动态传输的生效时,相应参数组集合中的至少一个第一类参数组被采用,当被用于去使能所述非动态传输的生效时,相应参数组集合中的至少一个第一类参数组被停止采用。
作为一个实施例,所述第二通信设备410装置包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:首先发送第一信令,所述第一信令被用于确定K个参数组集合,所述K是大于1的正整数,所述K个参数组集合中的每个参数组集合分别包括至少一个第一类参数组,所述第一类参数组被用于配置非动态传输;随后发送第一DCI,所述第一DCI包括K个比特组,所述K个比特组中任一比特组包括至少一个比特;所述K个比特组与所述K个参数组集合一一对应;所述K个比特组中的任一比特组被用于使能所述非动态传输的生效,或者去使能所述非动态传输的生效;给定比特组是所述K个比特组中的任一比特组,所述K个比特组中的所述给定比特组被用于使能所述非动态传输的生效或者去使能所述非动态传输的生效与所述K个比特组中所述给定比特组之外的其它比特组的值无关;对于所述K个比特组中的所述给定比特组,当被用于使能所述非动态传输的生效时,相应参数组集合中的至少一个第一类参数组被采用,当被用于去使能所述非动态传输的生效时,相应参数组集合中的至少一个第一类参数组被停止采用。
作为一个实施例,所述第一通信设备450对应本申请中的第一节点。
作为一个实施例,所述第二通信设备410对应本申请中的第二节点。
作为一个实施例,所述第一通信设备450是一个UE。
作为一个实施例,所述第一通信设备450是一个终端。
作为一个实施例,所述第一通信设备450是一个中继。
作为一个实施例,所述第二通信设备410是一个基站。
作为一个实施例,所述第二通信设备410是一个中继。
作为一个实施例,所述第二通信设备410是一个网络设备。
作为一个实施例,所述第二通信设备410是一个服务小区。
作为一个实施例,所述第二通信设备410是一个TRP。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于接收第一信令;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少前四者被用于发送第一信令。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于接收第一DCI;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少前四者被用于在发送第一DCI。
作为一个实施例,所述天线452,所述接收器454,所述多天线接收处理器458,所述接收处理器456,所述控制器/处理器459中的至少前四者被用于接收第一信号;所述天线420,所述发射器418,所述多天线发射处理器471,所述发射处理器416,所述控制器/处理器475中的至少前四者被用于在发送第一信号。
作为一个实施,所述天线452,所述发射器454,所述多天线发射处理器457,所述发射处理器468,所述控制器/处理器459中的至少前四者被用于发送第二信号;所述天线420,所述接收器418,所述多天线接收处理器472,所述接收处理器470,所述控制器/处理器475中的至少前四者被用于接收第二信号。
实施例5
实施例5示例了一个第一信令的流程图,如附图5所示。在附图5中,第一节点U1与第二节点N2之间通过无线链路进行通信。特别说明的是本实施例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。在不冲突的情况下,实施例5中的实施例、子实施例和附属实施例能够被应用到实施例6或7中;反之,在不冲突的情况下,实施例6或7中的任一实施例、子实施例和附属实施例能够被应用到实施例5中。
对于第一节点U1,在步骤S10中接收第一信令;在步骤S11中接收第一DCI。
对于第二节点N2,在步骤S20中发送第一信令;在步骤S21中发送第一DCI。
实施例5中,所述第一信令被用于确定K个参数组集合,所述K是大于1的正整数,所述K个参数组集合中的每个参数组集合分别包括至少一个第一类参数组,所述第一类参数组被用于配置非动态传输;所述第一DCI包括K个比特组,所述K个比特组中任一比特组包括至少一个比特;所述K个比特组与所述K个参数组集合一一对应;所述K个比特组中的任一比特组被用于使能所述非动态传输的生效,或者去使能所述非动态传输的生效;给定比特组是所述K个比特组中的任一比特组,所述K个比特组中的所述给定比特组被用于使能所述非动态传输的生效或者去使能所述非动态传输的生效与所述K个比特组中所述给定比特组之外的其它比特组的值无关;对于所述K个比特组中的所述给定比特组,当被用于使能所述非动态传输的生效时,相应参数组集合中的至少一个第一类参数组被采用,当被用于去使能所述非动态传输的生效时,相应参数组集合中的至少一个第一类参数组被停止采用。
典型的,所述第一DCI包括所述K个比特组之外的目标比特组,仅当所述K个比特组都被用于去使能所述非动态传输的所述生效时,所述目标比特组被用于去使能所述非动态传输的所述生效。
典型的,所述K个参数组集合分别被分配给K个载波,所述目标比特组被应用于所述K个载波。
典型的,所述K个参数组集合分别被分配给K个服务小区,所述目标比特组被应用于所述K个服务 小区。
典型的,所述K个参数组集合分别被分配给K个服务小区中的K个BWP,所述目标比特组被应用于所述K个BWP。
作为一个实施例,所述目标比特组包括Frequency domain resource assignment域。
作为一个实施例,所述目标比特组包括Modulation and coding scheme域。
作为一个实施例,所述目标比特组包括Frequency domain resource assignment域和Modulation and coding scheme域。
作为一个实施例,所述目标比特组包括HARQ process number域。
作为一个实施例,所述目标比特组包括Redundancy version域。
典型的,所述K个参数组集合分别对应K个服务小区中的K个BWP,所述K个BWP都采用相同的子载波间隔。
作为一个实施例,所述K个BWP都采用第一子载波间隔。
作为该实施例的一个子实施例,所述K个服务小区中的任一服务小区所包括的多个BWP中仅一个BWP采用所述第一子载波间隔。
典型的,所述K个BWP在所述K个服务小区中是预定义的,或者是通过RRC信令配置的。
作为一个实施例,所述K个BWP所对应的K个BWP-ID的值是固定的。
作为一个实施例,所述K个BWP所对应的K个BWP-ID的值是相同的。
作为一个实施例,所述K个BWP所对应的K个BWP-ID的值是预定义的。
作为一个实施例,所述K个BWP所对应的K个BWP-ID的值是通过RRC信令配置的。
典型的,所述K个服务小区分别对应K个调度指示值,所述K个调度指示值都相同。
作为一个实施例,所述K个调度指示值分别是K个cif-InSchedulingCell。
作为一个实施例,所述K个调度指示值分别是K个CIF(Carrier Indicator Field,载波指示域)值。
作为一个实施例,所述K个调度指示值都等于第一数值。
作为该实施例的一个子实施例,所述第一数值等于0。
作为该实施例的一个子实施例,所述第一数值等于8。
作为该实施例的一个子实施例,所述第一数值通过RRC信令配置。
实施例6
实施例6示例了一个第一信号的流程图,如附图6所示。在附图6中,第一节点U3与第二节点N4之间通过无线链路进行通信。特别说明的是本实施例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。在不冲突的情况下,实施例6中的实施例、子实施例和附属实施例能够被应用到实施例5或7中;反之,在不冲突的情况下,实施例5或7中的任一实施例、子实施例和附属实施例能够被应用到实施例6中。
对于第一节点U3,在步骤S30中接收第一信号。
对于第二节点N4,在步骤S40中发送第一信号。
实施例6中,所述第一DCI所包括的所述K个比特组中包括第一比特组,所述第一比特组对应所述K个参数组集合中的第一参数组集合,所述第一比特组被用于使能所述第一参数组集合所包括的至少一个第一类参数组所配置的非动态传输,所述第一参数组集合所包括的所述第一类参数组被用于配置所述第一信号。
作为一个实施例,所述第一参数组集合所包括的所述第一类参数组被用于确定所述第一信号所占用的频域资源。
作为一个实施例,所述第一参数组集合所包括的所述第一类参数组被用于确定所述第一信号所占用的时域资源。
作为一个实施例,所述第一参数组集合所包括的所述第一类参数组被用于确定所述第一信号所占用的HARQ进程号。
作为一个实施例,所述第一参数组集合所包括的所述第一类参数组被用于确定所述第一信号所采用的MCS。
作为一个实施例,所述第一信号由一个TB(Transport Block,传输块)生成。
作为一个实施例,所述第一信号所占用的物理层信道包括PDSCH。
作为一个实施例,所述第一信号所占用的传输信道包括DL-SCH(Downlink Shared Channel,下行共享信道)。
作为一个实施例,所述步骤S30位于实施例5中步骤S11之后。
作为一个实施例,所述步骤S40位于实施例5中步骤S21之后。
实施例7
实施例7示例了一个第二信号的流程图,如附图7所示。在附图7中,第一节点U5与第二节点N6之间通过无线链路进行通信。特别说明的是本实施例中的顺序并不限制本申请中的信号传输顺序和实施的顺序。在不冲突的情况下,实施例7中的实施例、子实施例和附属实施例能够被应用到实施例5或6中;反之,在不冲突的情况下,实施例5或6中的任一实施例、子实施例和附属实施例能够被应用到实施例7中。
对于第一节点U5,在步骤S50中发送第二信号。
对于第二节点N6,在步骤S60中接收第二信号。
实施例7中,所述第一DCI所包括的所述K个比特组中包括第二比特组,所述第二比特组对应所述K个参数组集合中的第二参数组集合,所述第二比特组被用于使能所述第二参数组集合所包括的至少一个第一类参数组所配置的非动态传输,所述第二参数组集合所包括的所述第一类参数组被用于配置所述第二信号。
作为一个实施例,所述第二参数组集合所包括的所述第一类参数组被用于确定所述第二信号所占用的频域资源。
作为一个实施例,所述第二参数组集合所包括的所述第一类参数组被用于确定所述第二信号所占用的时域资源。
作为一个实施例,所述第二参数组集合所包括的所述第一类参数组被用于确定所述第二信号所占用的HARQ进程号。
作为一个实施例,所述第二参数组集合所包括的所述第一类参数组被用于确定所述第二信号所采用的MCS。
作为一个实施例,所述第二信号由一个TB生成。
作为一个实施例,所述第二信号所占用的物理层信道包括PUSCH(Physical Uplink Shared Channel,物理上行共享信道)。
作为一个实施例,所述第二信号所占用的传输信道包括UL-SCH(Uplink Shared Channel,上行共享信道)。
作为一个实施例,所述步骤S50位于实施例5中步骤S11之后。
作为一个实施例,所述步骤S60位于实施例5中步骤S21之后。
实施例8
实施例8示例了一个K个参数组集合的示意图,如附图8所示。在附图8中,所述K个参数组集合分别对应图中的参数组集合#0至参数组集合#(K-1),所述参数组集合#0至所述参数组集合#(K-1)中的任一参数组集合包括至少一个第一类参数组。
作为一个实施例,所述参数组集合#0至所述参数组集合#(K-1)中至少存在一个参数组集合包括多个第一类参数组。
作为一个实施例,所述参数组集合#0至所述参数组集合#(K-1)中的任一参数组集合包括多个第一类参数组。
作为一个实施例,所述参数组集合#0至所述参数组集合#(K-1)分别对应服务小区#0至服务小区#(K-1)。
作为一个实施例,所述第一类参数组对应一个SPS-Config IE中的部分或所有参数。
作为一个实施例,所述第一类参数组对应一个ConfiguredGrantConfig IE中的部分或所有参数。
实施例9
实施例9示例了一个K个比特组的示意图,如附图9所示。在附图9中,所述第一DCI所包括的所述K个比特组分别与所述K个参数组集合一一对应。
作为一个实施例,所述K个比特组中的任一比特组包括多个比特。
作为一个实施例,所述K个比特组所占用的总的比特数与所述K个服务小区所对应的K个BWP的带宽有关。
作为一个实施例,所述K个比特组中任意两个比特组所占用的比特数均相同。
作为一个实施例,给定比特组是所述K个比特组中的任一比特组,所述给定比特组对应所述K个参数组集合中的给定参数组集合,所述给定比特组被用于指示所述给定参数组集合所包括的一个或多个第一类参数组所对应的一个或多个非动态传输。
作为一个实施例,所述K个比特组在所述第一DCI中的位置是固定的。
作为一个实施例,所述K个比特组中的任一比特组至少包括以下域中的至少之一:
-Frequency domain resource assignment域;
-Modulation and coding scheme域;
-HARQ process number域;
-Redundancy version域。
作为一个实施例,所述K个比特组中的任一比特组至少包括以下域:
-Frequency domain resource assignment域;
-Modulation and coding scheme域;
-HARQ process number域;
-Redundancy version域。
实施例10
实施例10示例了一个目标比特组的示意图,如附图10所示。在附图10中,所述第一DCI包括K个比特组和目标比特组,仅当所述K个比特组都被用于去使能所述非动态传输的所述生效时,所述目标比特组被用于去使能所述非动态传输的所述生效。
作为一个实施例,所述目标比特组被用于去使能所述K个比特组所指示的所有第一类参数组所对应的非动态传输的所述生效。
作为一个实施例,所述目标比特组所占用的比特的数量与所述K个比特组中任一比特组所包括的比特数无关。
作为一个实施例,所述目标比特组所占用的比特的数量是固定的。
实施例11
实施例11示例了一个非动态传输的示意图,如附图11所示。在附图11中,所述非动态传输包括M1个无线信号,所述M1个无线信号占用M1个时频资源集合,所述M1是大于1的正整数。
作为一个实施例,所述M1个无线信号分别由M1个不同的TB生成。
作为一个实施例,所述M1个无线信号至少由两个无线信号由同一个TB生成。
作为一个实施例,所述M1个时频资源集合是周期分部的。
作为一个实施例,所述M1个无线信号对应同一个DL SPS。
作为一个实施例,所述M1个无线信号对应同一个UL Configured Grant。
实施例12
实施例12示例了一个第一节点中的结构框图,如附图12所示。附图12中,第一节点1200包括第一接收机1201和第一收发机1202。
第一接收机1201,接收第一信令,所述第一信令被用于确定K个参数组集合,所述K是大于1的正整数,所述K个参数组集合中的每个参数组集合分别包括至少一个第一类参数组,所述第一类参数组被用于配置非动态传输;
第一收发机1202,接收第一DCI,所述第一DCI包括K个比特组,所述K个比特组中任一比特组包括至少一个比特;
实施例12中,所述K个比特组与所述K个参数组集合一一对应;所述K个比特组中的任一比特组被用于使能所述非动态传输的生效,或者去使能所述非动态传输的生效;给定比特组是所述K个比特组中的任一比特组,所述K个比特组中的所述给定比特组被用于使能所述非动态传输的生效或者去使能所述非动态传输的生效与所述K个比特组中所述给定比特组之外的其它比特组的值无关;对于所述K个比特组中的所述给定比特组,当被用于使能所述非动态传输的生效时,相应参数组集合中的至少一个第一类参数组被采用,当被用于去使能所述非动态传输的生效时,相应参数组集合中的至少一个第一类参数组被停止采用。
作为一个实施例,所述第一DCI包括所述K个比特组之外的目标比特组,仅当所述K个比特组都被用于去使能所述非动态传输的所述生效时,所述目标比特组被用于去使能所述非动态传输的所述生效。
作为一个实施例,所述第一收发机1202,接收第一信号;所述第一DCI所包括的所述K个比特组中包括第一比特组,所述第一比特组对应所述K个参数组集合中的第一参数组集合,所述第一比特组被用于使能所述第一参数组集合所包括的至少一个第一类参数组所配置的非动态传输,所述第一参数组集合所包括的所述第一类参数组被用于配置所述第一信号。
作为一个实施例,所述第一收发机1202,发送第二信号;所述第一DCI所包括的所述K个比特组中包括第二比特组,所述第二比特组对应所述K个参数组集合中的第二参数组集合,所述第二比特组被用于使能所述第二参数组集合所包括的至少一个第一类参数组所配置的非动态传输,所述第二参数组集合所包括的所述第一类参数组被用于配置所述第二信号。
作为一个实施例,所述K个参数组集合分别对应K个服务小区中的K个BWP,所述K个BWP都采用相同的子载波间隔。
作为一个实施例,所述K个BWP在所述K个服务小区中是预定义的,或者是通过RRC信令配置的。
作为一个实施例,所述K个服务小区分别对应K个调度指示值,所述K个调度指示值都相同。
作为一个实施例,所述第一接收机1201包括实施例4中的天线452、接收器454、多天线接收处理器458、接收处理器456、控制器/处理器459中的至少前4者。
作为一个实施例,所述第一收发机1202包括实施例4中的天线452、接收器454、发射器454、多天线发射处理器457、发射处理器468、多天线接收处理器458、接收处理器456、控制器/处理器459中的至少前6者。
作为一个实施例,所述第一信令包括RRC信令,所述第一信令被用于确定K个参数组集合,所述K个参数组集合中的每个参数组集合分别包括至少一个第一类参数组被用于配置非动态传输;所述第一类参数组对应一个DL SPS的配置参数组,或者所述第一类参数组对应一个UL Configured Grant的配置参数组,所述第一DCI包括K个比特组;所述K个比特组与所述K个参数组集合一一对应;所述K个比特组中的任一比特组被用于使能所述非动态传输的生效或者去使能所述非动态传输的生效;所述K个比特组中的给定比特组被用于使能所述非动态传输的生效或者去使能所述非动态传输的生效与所述K个比特组中所述给定比特组之外的其它比特组的值无关。
实施例13
实施例13示例了一个第二节点中的结构框图,如附图13所示。附图13中,第二节点1300包括第一发射机1301和第二收发机1302。
第一发射机1301,发送第一信令,所述第一信令被用于确定K个参数组集合,所述K是大于1的正整数,所述K个参数组集合中的每个参数组集合分别包括至少一个第一类参数组,所述第一类参数组被用于配置非动态传输;
第二收发机1302,发送第一DCI,所述第一DCI包括K个比特组,所述K个比特组中任一比特组包括至少一个比特;
实施例13中,所述K个比特组与所述K个参数组集合一一对应;所述K个比特组中的任一比特组被用于使能所述非动态传输的生效,或者去使能所述非动态传输的生效;给定比特组是所述K个比特组中的任一比特组,所述K个比特组中的所述给定比特组被用于使能所述非动态传输的生效或者去使能所述非动态传输的生效与所述K个比特组中所述给定比特组之外的其它比特组的值无关;对于所述K个比特组中的所述给定比特组,当被用于使能所述非动态传输的生效时,相应参数组集合中的至少 一个第一类参数组被采用,当被用于去使能所述非动态传输的生效时,相应参数组集合中的至少一个第一类参数组被停止采用。
作为一个实施例,所述第一DCI包括所述K个比特组之外的目标比特组,仅当所述K个比特组都被用于去使能所述非动态传输的所述生效时,所述目标比特组被用于去使能所述非动态传输的所述生效。
作为一个实施例,所述第二收发机1302发送第一信号;所述第一DCI所包括的所述K个比特组中包括第一比特组,所述第一比特组对应所述K个参数组集合中的第一参数组集合,所述第一比特组被用于使能所述第一参数组集合所包括的至少一个第一类参数组所配置的非动态传输,所述第一参数组集合所包括的所述第一类参数组被用于配置所述第一信号。
作为一个实施例,所述第二收发机1302接收第二信号;所述第一DCI所包括的所述K个比特组中包括第二比特组,所述第二比特组对应所述K个参数组集合中的第二参数组集合,所述第二比特组被用于使能所述第二参数组集合所包括的至少一个第一类参数组所配置的非动态传输,所述第二参数组集合所包括的所述第一类参数组被用于配置所述第二信号。
作为一个实施例,所述K个参数组集合分别对应K个服务小区中的K个BWP,所述K个BWP都采用相同的子载波间隔。
作为一个实施例,所述K个BWP在所述K个服务小区中是预定义的,或者是通过RRC信令配置的。
作为一个实施例,所述K个服务小区分别对应K个调度指示值,所述K个调度指示值都相同。
作为一个实施例,所述第一发射机1301包括实施例4中的天线420、发射器418、多天线发射处理器471、发射处理器414、控制器/处理器475中的至少前4者。
作为一个实施例,所述第二收发机1302包括实施例4中的天线420、接收器418、多天线接收处理器472、接收处理器470、发射器418、多天线发射处理器471、发射处理器414、控制器/处理器475中的至少前6者。
作为一个实施例,所述第一信令包括RRC信令,所述第一信令被用于确定K个参数组集合,所述K个参数组集合中的每个参数组集合分别包括至少一个第一类参数组被用于配置非动态传输;所述第一类参数组对应一个DL SPS的配置参数组,或者所述第一类参数组对应一个UL Configured Grant的配置参数组,所述第一DCI包括K个比特组;所述K个比特组与所述K个参数组集合一一对应;所述K个比特组中的任一比特组被用于使能所述非动态传输的生效或者去使能所述非动态传输的生效;所述K个比特组中的给定比特组被用于使能所述非动态传输的生效或者去使能所述非动态传输的生效与所述K个比特组中所述给定比特组之外的其它比特组的值无关。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的第一节点包括但不限于手机,平板电脑,笔记本,上网卡,低功耗设备,eMTC设备,NB-IoT设备,车载通信设备,交通工具,车辆,RSU,飞行器,飞机,无人机,遥控飞机等无线通信设备。本申请中的第二节点包括但不限于宏蜂窝基站,微蜂窝基站,小蜂窝基站,家庭基站,中继基站,eNB,gNB,传输接收节点TRP,GNSS,中继卫星,卫星基站,空中基站,RSU,无人机,测试设备、例如模拟基站部分功能的收发装置或信令测试仪,等无线通信设备。
本领域的技术人员应当理解,本发明可以通过不脱离其核心或基本特点的其它指定形式来实施。因此,目前公开的实施例无论如何都应被视为描述性而不是限制性的。发明的范围由所附的权利要求而不是前面的描述确定,在其等效意义和区域之内的所有改动都被认为已包含在其中。

Claims (10)

  1. 一种用于无线通信中的第一节点,其特征在于包括:
    第一接收机,接收第一信令,所述第一信令被用于确定K个参数组集合,所述K是大于1的正整数,所述K个参数组集合中的每个参数组集合分别包括至少一个第一类参数组,所述第一类参数组被用于配置非动态传输;
    第一收发机,接收第一DCI,所述第一DCI包括K个比特组,所述K个比特组中任一比特组包括至少一个比特;
    其中,所述K个比特组与所述K个参数组集合一一对应;所述K个比特组中的任一比特组被用于使能所述非动态传输的生效,或者去使能所述非动态传输的生效;给定比特组是所述K个比特组中的任一比特组,所述K个比特组中的所述给定比特组被用于使能所述非动态传输的生效或者去使能所述非动态传输的生效与所述K个比特组中所述给定比特组之外的其它比特组的值无关;对于所述K个比特组中的所述给定比特组,当被用于使能所述非动态传输的生效时,相应参数组集合中的至少一个第一类参数组被采用,当被用于去使能所述非动态传输的生效时,相应参数组集合中的至少一个第一类参数组被停止采用。
  2. 根据权利要求1所述的第一节点,其特征在于,所述第一DCI包括所述K个比特组之外的目标比特组,仅当所述K个比特组都被用于去使能所述非动态传输的所述生效时,所述目标比特组被用于去使能所述非动态传输的所述生效。
  3. 根据权利要求1或2所述的第一节点,其特征在于包括:
    所述第一收发机,接收第一信号;
    其中,所述第一DCI所包括的所述K个比特组中包括第一比特组,所述第一比特组对应所述K个参数组集合中的第一参数组集合,所述第一比特组被用于使能所述第一参数组集合所包括的至少一个第一类参数组所配置的非动态传输,所述第一参数组集合所包括的所述第一类参数组被用于配置所述第一信号。
  4. 根据权利要求1至3中任一权利要求所述的第一节点,其特征在于包括:
    所述第一收发机,发送第二信号;
    其中,所述第一DCI所包括的所述K个比特组中包括第二比特组,所述第二比特组对应所述K个参数组集合中的第二参数组集合,所述第二比特组被用于使能所述第二参数组集合所包括的至少一个第一类参数组所配置的非动态传输,所述第二参数组集合所包括的所述第一类参数组被用于配置所述第二信号。
  5. 根据权利要求1至4中任一权利要求所述的第一节点,其特征在于,所述K个参数组集合分别对应K个服务小区中的K个BWP,所述K个BWP都采用相同的子载波间隔。
  6. 根据权利要求5所述的第一节点,其特征在于,所述K个BWP在所述K个服务小区中是预定义的,或者是通过RRC信令配置的。
  7. 根据权利要求5或6所述的第一节点,其特征在于,所述K个服务小区分别对应K个调度指示值,所述K个调度指示值都相同。
  8. 一种用于无线通信中的第二节点,其特征在于包括:
    第一发射机,发送第一信令,所述第一信令被用于确定K个参数组集合,所述K是大于1的正整数,所述K个参数组集合中的每个参数组集合分别包括至少一个第一类参数组,所述第一类参数组被用于配置非动态传输;
    第二收发机,发送第一DCI,所述第一DCI包括K个比特组,所述K个比特组中任一比特组包括至少一个比特;
    其中,所述K个比特组与所述K个参数组集合一一对应;所述K个比特组中的任一比特组被用于使能所述非动态传输的生效,或者去使能所述非动态传输的生效;给定比特组是所述K个比特组中的任一比特组,所述K个比特组中的所述给定比特组被用于使能所述非动态传输的生效或者去使能所述非动态传输的生效与所述K个比特组中所述给定比特组之外的其它比特组的值无关;对于所述K个比特组中的所述给定比特组,当被用于使能所述非动态传输的生效时,相应参数组集合中的至少一个第一类参数组被采用,当被用于去使能所述非动态传输的生效时,相应参数组集合中的至少一个第一类参数组被停止采用。
  9. 一种用于无线通信中的第一节点中的方法,其特征在于包括:
    接收第一信令,所述第一信令被用于确定K个参数组集合,所述K是大于1的正整数,所述K 个参数组集合中的每个参数组集合分别包括至少一个第一类参数组,所述第一类参数组被用于配置非动态传输;
    接收第一DCI,所述第一DCI包括K个比特组,所述K个比特组中任一比特组包括至少一个比特;
    其中,所述K个比特组与所述K个参数组集合一一对应;所述K个比特组中的任一比特组被用于使能所述非动态传输的生效,或者去使能所述非动态传输的生效;给定比特组是所述K个比特组中的任一比特组,所述K个比特组中的所述给定比特组被用于使能所述非动态传输的生效或者去使能所述非动态传输的生效与所述K个比特组中所述给定比特组之外的其它比特组的值无关;对于所述K个比特组中的所述给定比特组,当被用于使能所述非动态传输的生效时,相应参数组集合中的至少一个第一类参数组被采用,当被用于去使能所述非动态传输的生效时,相应参数组集合中的至少一个第一类参数组被停止采用。
  10. 一种用于无线通信中的第二节点中的方法,其特征在于包括:
    发送第一信令,所述第一信令被用于确定K个参数组集合,所述K是大于1的正整数,所述K个参数组集合中的每个参数组集合分别包括至少一个第一类参数组,所述第一类参数组被用于配置非动态传输;
    发送第一DCI,所述第一DCI包括K个比特组,所述K个比特组中任一比特组包括至少一个比特;
    其中,所述K个比特组与所述K个参数组集合一一对应;所述K个比特组中的任一比特组被用于使能所述非动态传输的生效,或者去使能所述非动态传输的生效;给定比特组是所述K个比特组中的任一比特组,所述K个比特组中的所述给定比特组被用于使能所述非动态传输的生效或者去使能所述非动态传输的生效与所述K个比特组中所述给定比特组之外的其它比特组的值无关;对于所述K个比特组中的所述给定比特组,当被用于使能所述非动态传输的生效时,相应参数组集合中的至少一个第一类参数组被采用,当被用于去使能所述非动态传输的生效时,相应参数组集合中的至少一个第一类参数组被停止采用。
PCT/CN2023/081921 2022-03-21 2023-03-16 一种被用于无线通信的节点中的方法和装置 WO2023179451A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210276725.8 2022-03-21
CN202210276725.8A CN116846521A (zh) 2022-03-21 2022-03-21 一种被用于无线通信的节点中的方法和装置

Publications (1)

Publication Number Publication Date
WO2023179451A1 true WO2023179451A1 (zh) 2023-09-28

Family

ID=88099873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/081921 WO2023179451A1 (zh) 2022-03-21 2023-03-16 一种被用于无线通信的节点中的方法和装置

Country Status (2)

Country Link
CN (1) CN116846521A (zh)
WO (1) WO2023179451A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111757521A (zh) * 2019-03-29 2020-10-09 北京三星通信技术研究有限公司 半静态调度方法、基站设备及用户设备
WO2021072610A1 (zh) * 2019-10-14 2021-04-22 华为技术有限公司 一种激活和释放非动态调度传输的方法及装置
US20210243782A1 (en) * 2020-04-21 2021-08-05 Honglei Miao Methods of enhanced sps transmission and harq feedback

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111757521A (zh) * 2019-03-29 2020-10-09 北京三星通信技术研究有限公司 半静态调度方法、基站设备及用户设备
WO2021072610A1 (zh) * 2019-10-14 2021-04-22 华为技术有限公司 一种激活和释放非动态调度传输的方法及装置
US20210243782A1 (en) * 2020-04-21 2021-08-05 Honglei Miao Methods of enhanced sps transmission and harq feedback

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LG ELECTRONICS: "Enhanced UL configured grant transmission for NR URLLC", 3GPP DRAFT; R1-1912401, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20191118 - 20191122, 9 November 2019 (2019-11-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051823406 *
VIVO: "Enhanced UL configured grant transmissions for URLLC", 3GPP DRAFT; R1-1910226_ENHANCED UL CONFIGURED GRANT TRANSMISSIONS FOR URLLC, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chongqing, China; 20191014 - 20191020, 4 October 2019 (2019-10-04), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051789031 *

Also Published As

Publication number Publication date
CN116846521A (zh) 2023-10-03

Similar Documents

Publication Publication Date Title
WO2019170057A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019174489A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
CN112333776B (zh) 一种被用于无线通信的节点中的方法和装置
WO2020088212A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2021052165A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020168907A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2022222765A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020103741A1 (zh) 一种被用于无线通信的用户设备、基站中的方法和装置
WO2022111491A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2021023037A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020192350A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023179451A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024022239A1 (zh) 一种用于无线通信的方法和装置
WO2024037474A1 (zh) 一种用于无线通信的方法和装置
WO2024032425A1 (zh) 一种用于无线通信的方法和装置
WO2023216894A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024027608A1 (zh) 一种用于无线通信的方法和装置
WO2024032520A1 (zh) 一种用于无线通信的方法和装置
WO2023151671A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023165344A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024002020A1 (zh) 一种用于无线通信的方法和装置
WO2022237709A1 (zh) 一种被用于无线通信的节点中的方法和装置
CN115314170B (zh) 一种被用于无线通信的节点中的方法和装置
WO2021129251A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023071862A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23773699

Country of ref document: EP

Kind code of ref document: A1