WO2023179408A1 - 一种高速轴承 - Google Patents

一种高速轴承 Download PDF

Info

Publication number
WO2023179408A1
WO2023179408A1 PCT/CN2023/081311 CN2023081311W WO2023179408A1 WO 2023179408 A1 WO2023179408 A1 WO 2023179408A1 CN 2023081311 W CN2023081311 W CN 2023081311W WO 2023179408 A1 WO2023179408 A1 WO 2023179408A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
bearing assembly
permanent magnet
rotating shaft
speed
Prior art date
Application number
PCT/CN2023/081311
Other languages
English (en)
French (fr)
Inventor
左大虎
Original Assignee
左大虎
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 左大虎 filed Critical 左大虎
Publication of WO2023179408A1 publication Critical patent/WO2023179408A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/08Rigid support of bearing units; Housings, e.g. caps, covers for spindles
    • F16C35/12Rigid support of bearing units; Housings, e.g. caps, covers for spindles with ball or roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings

Definitions

  • the present invention relates to the technical field of bearings, and in particular to a high-speed bearing.
  • Bearing is an important component in contemporary mechanical equipment. Its main function is to support the mechanical rotating body, reduce the friction coefficient during its movement, and ensure its rotation accuracy.
  • Rolling bearings generally consist of four parts: outer ring, inner ring, rolling elements and cage.
  • outer ring When the bearing rotates, there is rolling friction between the rolling elements and the outer ring and inner ring. The higher the speed, the greater the friction loss. Therefore, each bearing Each has its own speed limit. If the speed limit is exceeded, the life of the bearing will be greatly reduced, increasing the company's operating costs.
  • a bearing Since a bearing is affected by friction loss when rotating, there is an upper limit to the speed that each bearing can withstand.
  • the upper limit of the speed of a bearing is 90,000 rpm.
  • Two or more rings of bearings are connected in series. When the inner ring of one bearing rotates driven by the power mechanism, the other bearings are driven by friction to rotate in the same direction; if the input speed of the power input mechanism is 100,000 rpm, assuming The rotation speed of one bearing is 50,000 rpm, and the rotation speed of the other bearing is 50,000 rpm.
  • the rotation speeds of both bearings are within the tolerable range.
  • the present invention provides a high-speed bearing.
  • a high-speed bearing which includes a first rotating shaft, a first bearing assembly, a second bearing assembly and a bearing seat.
  • the inner ring of the first bearing assembly is provided on the first rotating shaft. Rotate synchronously with the first rotating shaft, the outer ring of the first bearing assembly rotates synchronously with the inner ring of the second bearing assembly, the outer ring of the second bearing assembly is fixedly connected to the bearing seat, and the first rotating shaft is evenly arranged along the circumferential direction.
  • any two adjacent first permanent magnets facing the same side have opposite polarities
  • the outer ring of the first bearing assembly is evenly provided with a plurality of second permanent magnets along the circumferential direction
  • any phase Two adjacent second permanent magnets have opposite polarities facing the same side
  • a plurality of first permanent magnets are evenly arranged along the circumferential direction on the inner wall of the bearing seat.
  • the outer ring of the bearing assembly is a magnetic conductor that rotates in the same direction as the first rotating shaft.
  • the magnetic conductor includes a U-shaped turning portion. One of the opposite side walls of the U-shaped turning portion corresponds to the position of the first permanent magnet. The other side wall corresponds to the position of the second permanent magnet.
  • a plurality of first permanent magnets are evenly arranged along the circumferential direction on the first rotating shaft, a plurality of second permanent magnets are evenly arranged along the circumferential direction on the outer ring of the first bearing assembly, and a plurality of second permanent magnets are evenly arranged along the circumferential direction on the bearing seat.
  • a plurality of long strip magnets are arranged circumferentially.
  • the first multi-level magnetic ring 9, the iron core 10 and the second multi-level magnetic ring 11 were arranged in sequence from left to right, and from left to right. Look, when the first multi-level magnetic ring 9 rotates clockwise, the second multi-level magnetic ring 11 rotates counterclockwise.
  • the second multi-level magnetic ring 11 moves with the bent end of the iron core 10, and when the first multi-level magnetic ring 9 rotates clockwise when viewed from left to right, The second multi-level magnetic ring 11 still rotates counterclockwise when viewed from bottom to top; further, when we bend the iron core 10 into a 180° U-shape, the second multi-level magnetic ring 11 still moves with the bent end of the iron core 10.
  • the first multi-level magnetic ring 9 rotates clockwise when viewed from left to right
  • the second multi-level magnetic ring 11 still rotates counterclockwise when viewed from right to left, but the second multi-level magnetic ring 11 rotates counterclockwise when viewed from left to right. turned into a clockwise rotation.
  • this application uses the U-shaped turning part of the magnetic conductor to divert the magnetic field, so that the inner ring of the second bearing assembly rotates in the same direction as the first rotating shaft; due to the increase in the rotation speed of the inner ring of the second bearing assembly, the workload of the first bearing assembly can be shared.
  • the upper limit of the power input speed that the bearing as a whole can withstand has also been increased, and the bearing life will not be reduced.
  • a connecting body is provided between the outer ring of the first bearing assembly and the inner ring of the second bearing assembly.
  • the inner ring of the second bearing assembly is sleeved on the outer ring of the first bearing assembly.
  • outer ring of the first bearing assembly and the inner ring of the second bearing assembly have an integrated structure.
  • one of the side walls has a clearance fit with the first permanent magnet side wall, and the other side wall has a clearance fit with the second permanent magnet side wall.
  • the magnetic conductor adopts a single U-shaped structure, which is easy to process and has low production cost.
  • the magnetic conductor further includes a first extension section and a second extension section, and the first extension section and the second extension section are respectively fixedly connected to one end of the two side walls of the U-shaped turning part away from the bottom wall, and the The first extension section is gap-fitted with the outer peripheral wall of the first permanent magnet, and the second The extension section is gap-fitted with the outer peripheral wall of the second permanent magnet.
  • the magnetic conductor passes through the first extension section and the second extension section to get closer to the first permanent magnet and the second permanent magnet without contacting the permanent magnet. The magnetic conduction effect is good and the response is sensitive.
  • the magnetic conductor further includes a third extension section, the third extension section is fixedly connected to an end of any side wall of the U-shaped turning part away from the bottom wall, and the third extension section is connected to the first permanent
  • the outer peripheral wall of the magnet or the second permanent magnet has a clearance fit
  • the other side wall of the U-shaped turning portion has a clearance fit with the side wall of the second permanent magnet or the first permanent magnet.
  • the magnetic conductor passes through the third extension section and is closer to the first permanent magnet or the second permanent magnet without contacting the permanent magnet.
  • the magnetic conductor has good magnetic conduction effect and is responsive.
  • the plurality of magnetic conductive bodies are twisted and tilted circumferentially along the inner wall surface of the bearing seat. Because there is a gap between the magnets, the second bearing assembly will feel frustrated when rotating. After the magnets are twisted, the magnetization effect is better, and the inner ring of the second bearing assembly rotates more smoothly.
  • first permanent magnets and/or the second permanent magnets are twisted and tilted along the axial direction of the first rotation axis. After the first permanent magnet and/or the second permanent magnet are twisted and tilted, they can cooperate more smoothly with the twisted and tilted magnet conductor, resulting in better magnetic conductivity, and the inner ring of the second bearing assembly rotates more smoothly.
  • the inner ring of the second bearing assembly is connected to the second rotating shaft.
  • the inner ring of the second bearing assembly is connected to the second rotating shaft, and the second rotating shaft is powered.
  • the second rotating shaft rotates
  • the second permanent magnet rotates synchronously
  • the magnetic field is diverted through the magnetic conductor, so that the first permanent magnet and the second permanent magnet rotate in the same direction.
  • the power output is based on the speed ratio of the first rotating shaft.
  • Existing brushless drives can only complete 250,000 commutations per minute, which is 250,000 revolutions per minute.
  • an acceleration function is also added, which allows existing drives or Frequency converter The speed breaks through the upper limit and can reach 350,000 rpm.
  • the high-speed bearing provided by the present invention uses the U-shaped turning part of the magnetic conductor to turn the magnetic field, so that the inner ring of the second bearing assembly rotates in the same direction as the first rotating shaft; because the inner ring of the second bearing assembly Increasing the rotational speed can share the workload of the first bearing assembly, and the upper limit of the power input rotational speed that the bearing as a whole can withstand is also increased.
  • the bearing life will not be reduced, the production cost is low, and the application range is wide.
  • Figure 1 is a schematic structural diagram of the first embodiment of the present invention
  • Figure 2 is a schematic diagram of the internal structure of the first embodiment of the present invention after removing the bearing seat;
  • Figure 3 is a schematic structural diagram of the magnetizer according to the first embodiment of the present invention.
  • Figure 4 is a schematic structural diagram of the first permanent magnet
  • Figure 5 is a schematic structural diagram of the second permanent magnet
  • Figure 6 is a schematic structural diagram of Embodiment 2.
  • Figure 7 is a schematic diagram of the internal structure of the second embodiment after removing the bearing seat
  • Figure 8 is a schematic structural diagram of the magnet conductor in the second embodiment
  • Figure 9 is a schematic structural diagram of Embodiment 3.
  • Figure 10 is a schematic diagram of the internal structure of the third embodiment after removing the bearing seat
  • Figure 11 is a schematic structural diagram of the three conductive magnets in the embodiment.
  • Figure 12 is a schematic structural diagram of Embodiment 4.
  • Figure 13 is a schematic diagram of the internal structure shown after removing the bearing seat in Embodiment 4.
  • Figure 14 is a schematic structural diagram of the four-conducting magnet according to the embodiment.
  • Figure 15 is a schematic structural diagram of Embodiment 5.
  • Figure 16 is a simplified diagram of the experiment.
  • First rotating shaft 2. First bearing assembly, 3. Second bearing assembly, 4. Bearing seat, 5. Second rotating shaft, 6. First permanent magnet, 7. Second permanent magnet, 8. Magnetic conductor, 801. U-shaped turning part, 802. First extension section, 803. Second extension section, 804. Third extension section, 9. First multi-stage magnetic ring, 10. Iron core, 11. Second number Grade magnetic ring.
  • FIG. 1 is a simplified schematic diagram that only illustrates the basic structure of the present invention in a schematic manner, so it only shows the structures related to the present invention.
  • a high-speed bearing of the present invention includes a first rotating shaft 1, a first bearing assembly 2, a second bearing assembly 3 and a bearing seat 4.
  • the inner ring of the first bearing assembly 2 is located on the third A rotating shaft 1 rotates synchronously with the first rotating shaft 1, the outer ring of the first bearing assembly 2 rotates synchronously with the inner ring of the second bearing assembly 3, the outer ring of the second bearing assembly 3 is fixedly connected to the bearing seat 4, and the A plurality of first permanent magnets 6 are evenly arranged on the first rotating shaft 1 along the circumferential direction. Any two adjacent first permanent magnets 6 have opposite polarities facing the same side.
  • the upper edge of the outer ring of the first bearing assembly 2 is A plurality of second permanent magnets 7 are evenly arranged in the circumferential direction. Any two adjacent second permanent magnets 7 facing the same side have opposite polarities. A plurality of first permanent magnets 7 are evenly arranged on the inner wall of the bearing seat 4 along the circumferential direction.
  • the outer ring of the bearing assembly 2 is a magnetic conductor 8 that rotates in the same direction as the first rotating shaft 1,
  • the magnetizer 8 includes a U-shaped turning portion 801. One of the opposite side walls of the U-shaped turning portion 801 corresponds to the position of the first permanent magnet 6, and the other side wall corresponds to the position of the second permanent magnet 7. correspond.
  • the magnetic conductor 8 can be made of silicon steel.
  • a connecting body is provided between the outer ring of the first bearing assembly 2 and the inner ring of the second bearing assembly 3.
  • the U-shaped turning portion 801 has opposite side walls, one of which is in clearance fit with the side wall of the first permanent magnet 6 , and the other side wall is in clearance fit with the side wall of the second permanent magnet 7 .
  • the first rotating shaft 1 is driven to rotate by the power mechanism.
  • the first permanent magnet 6 rotates synchronously, and the magnetic field is diverted through the magnetic conductor 8, so that the second permanent magnet 7 and the first permanent magnet 6 rotate in the same direction, so the second permanent magnet 7 rotates in the same direction as the first permanent magnet 6.
  • the first rotating shaft 1 rotates at high speed, it can drive the inner ring of the second bearing assembly 3 to rotate in the same direction.
  • the magnetic conductor 8 also includes a first extension section 802 and a second extension section 803.
  • the first extension section 802 and the second extension section The extension section 803 is fixedly connected to one end of the two side walls of the U-shaped turning portion 801 away from the bottom wall.
  • the first extension section 802 is in clearance fit with the outer peripheral wall of the first permanent magnet 6.
  • the second extension section 803 is in clearance fit with the outer peripheral wall of the first permanent magnet 6.
  • the outer peripheral walls of the two permanent magnets 7 are spaced together.
  • Embodiment 1 the difference between this embodiment and Embodiment 1 is that the plurality of magnetic conductors 8 are twisted and tilted along the inner wall surface of the bearing seat 4 in the circumferential direction.
  • the plurality of first permanent magnets 6 and/or the second permanent magnets 7 are twisted and tilted along the first rotation axis 1 .
  • Embodiment 4 is a diagrammatic representation of Embodiment 4:
  • the difference between this embodiment and the first embodiment is that the magnetic conductor 8 also includes a third extension section 804, and the third extension section 804 is connected to the U-shaped turning part 801. One end of any side wall away from the bottom wall is fixedly connected.
  • the third extension section 804 is clearance-fitted with the outer peripheral wall of one of the first permanent magnet 6 or the second permanent magnet 7 .
  • the U-shaped turning part 801 The other side wall is gap-fitted with the side wall of the other permanent magnet.
  • Embodiment 1 the difference between this embodiment and Embodiment 1 is that the inner ring of the second bearing assembly 3 is connected to the second rotating shaft 5 .
  • the second rotating shaft 5 is driven to rotate by the power mechanism.
  • the second permanent magnet 7 rotates synchronously.
  • the magnetic field is diverted through the magnetic conductor 8 so that the first permanent magnet 6 and the second permanent magnet 7 rotate in the same direction. According to the rotation speed Compared with the first rotating axis 1, it has the effect of speed up or deceleration.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

一种高速轴承,包括第一转轴(1)、第一轴承组件(2)、第二轴承组件(3)和轴承座(4),第一轴承组件(2)内圈与第一转轴(1)同步转动,第一轴承组件(2)外圈与第二轴承组件(3)内圈同步转动,第二轴承组件(3)外圈与轴承座(4)连接,第一转轴(1)上沿周向均匀设有多个第一永磁体(6),第一轴承组件(2)外圈上沿周向均匀设有多个第二永磁体(7),轴承座(4)内壁面上沿周向均匀设有多个导磁体(8),导磁体(8)包括U形转向部(801),U形转向部(801)相对设置的两侧壁中其中一个侧壁与第一永磁体(6)位置对应,另一侧壁与第二永磁体(7)位置对应。这种高速轴承,采用导磁体(8)的U形转向部(801)将磁场转向,使第二轴承组件(3)内圈与第一转轴(1)同向旋转,轴承所能承受的动力输入转速上限也得到提高,寿命也不会减少生产成本低,应用范围广。

Description

一种高速轴承 技术领域
本发明涉及轴承技术领域,特别是涉及一种高速轴承。
背景技术
轴承(Bearing)是当代机械设备中一种重要零部件。它的主要功能是支撑机械旋转体,降低其运动过程中的摩擦系数,并保证其回转精度。
滚动轴承一般由外圈、内圈、滚动体和保持架四部分组成,轴承转动时,滚动体与外圈和内圈之间具有滚动摩擦力,转速越高,摩擦损耗越大,因此每个轴承都有它的转速上限,超过转速上限轴承的寿命就会大大降低,增加企业的使用成本。
由于一个轴承旋转时受摩擦损耗的影响,使得每个轴承所能承受的转速有上限,这里假设一个轴承的转速上限为9万转/每分钟。采用两圈或多圈轴承串联,当其中一个轴承内圈在动力机构的带动下转动时,其余轴承受摩擦力的带动同向旋转;如果动力输入机构输入转速为10万转/每分钟,假设一个轴承的转速为5万转/每分钟,则另一个轴承的转速为5万转/每分钟,两个轴承的转速都在可承受范围内,与单级轴承相比,将一个轴承承受的10万转/每分钟的负荷分摊到两个或多个轴承上,减少了轴承的损耗,所能承受的动力输入转速上限得到提高。但是,受摩擦力带动的轴承转速不稳定,有可能出现与动力机构连接的轴承转速快,而其余轴承转速非常慢的情况,这样 实际在工作的其实还是一个轴承,高速旋转的轴承会因为转速过快迅速升温,轴承的使用寿命大大减少,甚至会出现瞬间卡死的现象,两级或多极轴承的性能无法得到全部发挥。
申请号201922190470.X的专利中公开了一种高速轴承,采用两圈或多圈轴承串联,采用独立动力源驱动每级轴承,提高各级轴承的转速,使得高速轴承整体所能承受的转速上限得到了提到,但是由于需要多个驱动装置带动各级轴承高速转动,成本比较高,不利于推广。
因此,如何在低成本的前提下,提高轴承的转速上限,延长轴承使用寿命,使轴承可以应用于更多高速工作的环境,是本领域技术人员急需解决的问题。
发明内容
本发明所要解决的技术问题是:为了克服现有技术中的不足,本发明提供一种高速轴承。
本发明解决其技术问题所要采用的技术方案是:一种高速轴承,包括第一转轴、第一轴承组件、第二轴承组件和轴承座,所述第一轴承组件内圈设于第一转轴上与第一转轴同步转动,所述第一轴承组件外圈与第二轴承组件内圈同步转动,所述第二轴承组件外圈与轴承座固定连接,所述第一转轴上沿周向均匀设有多个第一永磁体,任意相邻两所述第一永磁体朝向同一侧的极性相反,所述第一轴承组件外圈上沿周向均匀设有多个第二永磁体,任意相邻两所述第二永磁体朝向同一侧的极性相反,所述轴承座内壁面上沿周向均匀设有多个使第一 轴承组件外圈与第一转轴同向转动的导磁体,所述导磁体包括U形转向部,所述U形转向部相对设置的两侧壁中其中一个侧壁与第一永磁体位置对应,另一侧壁与第二永磁体位置对应。
根据硕士电子期刊2014年第4期出版的,林佳2012年7月在哈尔滨工业大学的硕士学位论文:《磁场调制型磁性齿轮的研究》,其中2.2-磁性齿轮工作原理的解析分析,提到了磁性齿轮结构示意图,四种工作模式中的第一种工作模式,内转子与外转子保持旋转,调磁环静止;3.3-磁性齿轮的稳态转矩特性研究,提到了以第一种工作模式为例进行说明,当内转子以Ω1的速度逆时针正向旋转,外转子以4*Ω1/11的速度顺时针负向旋转。
因此,根据磁性齿轮的原理,第一转轴上沿周向均匀设有多个第一永磁体,第一轴承组件外圈上沿周向均匀设有多个第二永磁体,在轴承座上沿周向设置多个长条形导磁体,当第一转轴转动时,第一轴承组件外圈则会朝相反方向按比例转动一定圈数,因此当第一转轴旋转时,第一轴承组件外圈会反向旋转。但是由于第一轴承组件外圈反向旋转会给整个高速轴承运转带来阻力,影响高速轴承的使用效果,因此需要改变第一轴承组件外圈的转向,使得第一轴承组件外圈与第一转轴同向高速旋转,使得高速轴承可以承受的转速上限得到最大提升。
如简图16所示,为此以磁性齿轮的原理为基础进行实验,将第一多级磁环9、铁芯10和第二多级磁环11从左向右依次设置,从左向右看,当第一多级磁环9顺时针旋转时,第二多级磁环11逆时针 旋转;当我们将铁芯10向上弯折90°成L形,第二多级磁环11随铁芯10弯折端移动,第一多级磁环9从左向右看顺时针旋转时,第二多级磁环11从下向上看仍是逆时针旋转;进一步,当我们将铁芯10弯曲成180°的U形,第二多级磁环11仍随铁芯10弯折端移动,第一多级磁环9从左向右看顺时针旋转时,第二多级磁环11从右向左看仍是逆时针旋转,但是第二多级磁环11从左向右看却是变成了顺时针旋转。
因此本申请通过导磁体的U形转向部将磁场转向,使第二轴承组件内圈与第一转轴同向旋转;由于第二轴承组件内圈转速提高则可以分担第一轴承组件的工作负荷,轴承整体所能承受的动力输入转速上限也得到提高,轴承寿命也不会减少。
进一步,所述第一轴承组件外圈与第二轴承组件内圈之间设有连接体。
进一步,所述第二轴承组件内圈套设于所述第一轴承组件外圈上。
进一步,所述第一轴承组件外圈与第二轴承组件内圈为一体化结构。
进一步,所述U形转向部相对设置的两侧壁,其中一个侧壁与第一永磁体侧壁间隙配合,另一个侧壁与第二永磁体侧壁间隙配合。导磁体采用单一的U形结构,易于加工,生产成本低。
进一步,所述导磁体还包括第一延伸段和第二延伸段,所述第一延伸段和第二延伸段分别与所述U形转向部两侧壁远离底壁的一端固定连接,所述第一延伸段与第一永磁体外周壁间隙配合,所述第二 延伸段与第二永磁体外周壁间隙配合。导磁体通过第一延伸段和第二延伸段在以不接触永磁体的前提下更加靠近第一永磁体和第二永磁体,导磁效果好,反应灵敏。
进一步,所述导磁体还包括第三延伸段,所述第三延伸段与所述U形转向部中任一侧壁的远离底壁的一端固定连接,所述第三延伸段与第一永磁体或第二永磁体的外周壁间隙配合,所述U形转向部另一侧壁则与第二永磁体或第一永磁体的侧壁间隙配合。导磁体通过第三延伸段在以不接触永磁体的前提下,更加靠近第一永磁体或第二永磁体,导磁效果好,反应灵敏。
进一步,多个所述导磁体沿轴承座内壁面周向扭转倾斜。因为导磁体之间具有间隙,所以第二轴承组件旋转时会有顿挫感,将导磁体扭转设置后,导磁效果更好,第二轴承组件内圈转动时更加顺滑。
进一步,多个所述第一永磁体和/或第二永磁体沿所述第一转轴轴向扭转倾斜。第一永磁体和/或第二永磁体扭转倾斜后可以与扭转倾斜后的导磁体配合更加流畅,导磁效果更好,第二轴承组件内圈转动时更加顺滑。
进一步,所述第二轴承组件内圈与第二转轴连接。第二轴承组件内圈与第二转轴连接,第二转轴动力输入,第二转轴转动时第二永磁体同步转动,通过导磁体将磁场转向,使得第一永磁体与第二永磁体同向转动,对第一转轴根据转速比动力输出。现有的无刷驱动器每分钟只能完成每分钟25万次换向,也就是每分钟25万转,利用多圈轴承的高速优势,还附加了一个加速的功能,能让现有的驱动或变频器 转速突破上限,可达到35万转/每分钟。
本发明的有益效果是:本发明提供的一种高速轴承,采用导磁体的U形转向部将磁场转向,使第二轴承组件内圈与第一转轴同向旋转;由于第二轴承组件内圈转速提高则可以分担第一轴承组件的工作负荷,轴承整体所能承受的动力输入转速上限也得到提高,轴承寿命也不会减少生产成本低,应用范围广。
附图说明
下面结合附图和实施例对本发明作进一步说明。
图1是本发明第一实施例的结构示意图;
图2是本发明第一实施例去除轴承座后显示的内部结构示意图;
图3是本发明第一实施例导磁体的结构示意图;
图4是第一永磁体的结构示意图;
图5是第二永磁体的结构示意图;
图6是实施例二的结构示意图;
图7是实施例二去除轴承座后显示的内部结构示意图;
图8是实施例二导磁体的结构示意图;
图9是实施例三的结构示意图;
图10是实施例三去除轴承座后显示的内部结构示意图;
图11是实施例三导磁体的结构示意图;
图12是实施例四的结构示意图;
图13是实施例四去除轴承座后显示的内部结构示意图;
图14是实施例四导磁体的结构示意图;
图15是实施例五的结构示意图;
图16为实验简图。
图中:1、第一转轴,2、第一轴承组件,3、第二轴承组件,4、轴承座,5、第二转轴,6、第一永磁体,7、第二永磁体,8、导磁体,801、U形转向部,802、第一延伸段,803、第二延伸段,804、第三延伸段,9、第一多级磁环,10、铁芯,11、第二多级磁环。
具体实施方式
现在结合附图对本发明作详细的说明。此图为简化的示意图,仅以示意方式说明本发明的基本结构,因此其仅显示与本发明有关的构成。
实施例一:
如图1-5所示,本发明的一种高速轴承,包括第一转轴1、第一轴承组件2、第二轴承组件3和轴承座4,所述第一轴承组件2内圈设于第一转轴1上与第一转轴1同步转动,所述第一轴承组件2外圈与第二轴承组件3内圈同步转动,所述第二轴承组件3外圈与轴承座4固定连接,所述第一转轴1上沿周向均匀设有多个第一永磁体6,任意相邻两所述第一永磁体6朝向同一侧的极性相反,所述第一轴承组件2外圈上沿周向均匀设有多个第二永磁体7,任意相邻两所述第二永磁体7朝向同一侧的极性相反,所述轴承座4内壁面上沿周向均匀设有多个使第一轴承组件2外圈与第一转轴1同向转动的导磁体8, 所述导磁体8包括U形转向部801,所述U形转向部801相对设置的两侧壁中其中一个侧壁与第一永磁体6位置对应,另一侧壁与第二永磁体7位置对应。导磁体8可以采用硅钢制成。
所述第一轴承组件2外圈与第二轴承组件3内圈之间设有连接体。
所述U形转向部801相对设置的两侧壁,其中一个侧壁与第一永磁体6侧壁间隙配合,另一个侧壁与第二永磁体7侧壁间隙配合。
工作过程:
通过动力机构带动第一转轴1转动,第一转轴1转动时第一永磁体6同步转动,通过导磁体8将磁场转向,使得第二永磁体7与第一永磁体6同向转动,所以第一转轴1高速旋转时,可以带动第二轴承组件3内圈同向旋转。
实施例二:
如图6-8所示,本实施例与实施例一的不同之处在于,所述导磁体8还包括第一延伸段802和第二延伸段803,所述第一延伸段802和第二延伸段803分别与所述U形转向部801两侧壁远离底壁的一端固定连接,所述第一延伸段802与第一永磁体6外周壁间隙配合,所述第二延伸段803与第二永磁体7外周壁间隙配合。
实施例三:
如图9-11所示,本实施例与实施例一的不同之处在于,多个所述导磁体8沿轴承座4内壁面周向扭转倾斜。多个所述第一永磁体6和/或第二永磁体7沿所述第一转轴1轴向扭转倾斜。
实施例四:
如图12-14所示,本实施例与实施例一的不同之处在于,所述导磁体8还包括第三延伸段804,所述第三延伸段804与所述U形转向部801中任一侧壁的远离底壁的一端固定连接,所述第三延伸段804与第一永磁体6或第二永磁体7中的一个永磁体的外周壁间隙配合,所述U形转向部801另一侧壁则与另一永磁体的侧壁间隙配合。
实施例五:
如图15所示,本实施例与实施例一的不同之处在于,所述第二轴承组件3内圈与第二转轴5连接。
工作过程:
通过动力机构带动第二转轴5转动,第二转轴5转动时第二永磁体7同步转动,通过导磁体8将磁场转向,使得第一永磁体6与第二永磁体7同向转动,根据转速比对第一转轴1起增速或减速效果。
本发明中方向和参照(例如,上、下、左、右、等等)可以仅用于帮助对附图中的特征的描述。因此,并非在限制性意义上采用以下具体实施方式,并且仅仅由所附权利要求及其等同形式来限定所请求保护的主题的范围。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关的工作人员完全可以在不偏离本发明的范围内,进行多样的变更以及修改。本项发明的技术范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (10)

  1. 一种高速轴承,其特征在于:包括第一转轴(1)、第一轴承组件(2)、第二轴承组件(3)和轴承座(4),所述第一轴承组件(2)内圈设于第一转轴(1)上与第一转轴(1)同步转动,所述第一轴承组件(2)外圈与第二轴承组件(3)内圈同步转动,所述第二轴承组件(3)外圈与轴承座(4)固定连接,所述第一转轴(1)上沿周向均匀设有多个第一永磁体(6),任意相邻两所述第一永磁体(6)朝向同一侧的极性相反,所述第一轴承组件(2)外圈上沿周向均匀设有多个第二永磁体(7),任意相邻两所述第二永磁体(7)朝向同一侧的极性相反,所述轴承座(4)内壁面上沿周向均匀设有多个使第一轴承组件(2)外圈与第一转轴(1)同向转动的导磁体(8),所述导磁体(8)包括U形转向部(801),所述U形转向部(801)相对设置的两侧壁中其中一个侧壁与第一永磁体(6)位置对应,另一侧壁与第二永磁体(7)位置对应。
  2. 如权利要求1所述的一种高速轴承,其特征在于:所述第一轴承组件(2)外圈与第二轴承组件(3)内圈之间设有连接体。
  3. 如权利要求1所述的一种高速轴承,其特征在于:所述第二轴承组件(3)内圈套设于所述第一轴承组件(2)外圈上。
  4. 如权利要求1或2所述的一种高速轴承,其特征在于:所述第一轴承组件(2)外圈与第二轴承组件(3)内圈为一体化结构。
  5. 如权利要求1所述的一种高速轴承,其特征在于:所述U形转向部(801)相对设置的两侧壁,其中一个侧壁与第一永磁体(6)侧壁间隙配合,另一个侧壁与第二永磁体(7)侧壁间隙配合。
  6. 如权利要求1所述的一种高速轴承,其特征在于:所述导磁体(8)还包括第一延伸段(802)和第二延伸段(803),所述第一延伸段(802)和第二延伸段(803)分别与所述U形转向部(801)两侧壁远离底壁的一端固定连接,所述第一延伸段(802)与第一永磁体(6)外周壁间隙配合,所述第二延伸段(803)与第二永磁体(7)外周壁间隙配合。
  7. 如权利要求1所述的一种高速轴承,其特征在于:所述导磁体(8)还包括第三延伸段(804),所述第三延伸段(804)与所述U形转向部(801)中任一侧壁的远离底壁的一端固定连接,所述第三延伸段(804)与第一永磁体(6)或第二永磁体(7)的外周壁间隙配合,所述U形转向部(801)另一侧壁则与第二永磁体(7)或第一永磁体(6)的侧壁间隙配合。
  8. 如权利要求5-7任一项所述的一种高速轴承,其特征在于:多个所述导磁体(8)沿轴承座(4)内壁面周向扭转倾斜。
  9. 如权利要求8所述的一种高速轴承,其特征在于:多个所述第一永磁体(6)和/或第二永磁体(7)沿所述第一转轴(1)轴向扭转倾斜。
  10. 如权利要求8所述的一种高速轴承,其特征在于:所述第二轴承组件(3)内圈与第二转轴(5)连接。
PCT/CN2023/081311 2021-09-16 2023-03-14 一种高速轴承 WO2023179408A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111089255 2021-09-16
CN202122249696 2021-09-16
CN202210286703.XA CN114688172A (zh) 2021-09-16 2022-03-22 一种高速轴承
CN202210286703.X 2022-03-22

Publications (1)

Publication Number Publication Date
WO2023179408A1 true WO2023179408A1 (zh) 2023-09-28

Family

ID=82138532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/081311 WO2023179408A1 (zh) 2021-09-16 2023-03-14 一种高速轴承

Country Status (2)

Country Link
CN (1) CN114688172A (zh)
WO (1) WO2023179408A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114688172A (zh) * 2021-09-16 2022-07-01 左大虎 一种高速轴承

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08297258A (ja) * 1995-04-25 1996-11-12 Fuji Xerox Co Ltd 軸受装置
CN102545519A (zh) * 2011-03-30 2012-07-04 戴珊珊 交流连续转矩永磁开关磁阻电动机及其激励控制方法
WO2017036354A1 (zh) * 2015-08-28 2017-03-09 戴珊珊 外转子交流独立励磁的永磁磁阻电动机
US20200263729A1 (en) * 2017-09-08 2020-08-20 Atlas Copco Airpower, Naamloze Vennootschap Device provided with a bearing-in-bearing
JP2020150758A (ja) * 2019-03-15 2020-09-17 ミネベアミツミ株式会社 モータ、及び、モータの状態判定装置
CN113446312A (zh) * 2021-08-03 2021-09-28 左大虎 一种高速轴承
CN114688172A (zh) * 2021-09-16 2022-07-01 左大虎 一种高速轴承

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08297258A (ja) * 1995-04-25 1996-11-12 Fuji Xerox Co Ltd 軸受装置
CN102545519A (zh) * 2011-03-30 2012-07-04 戴珊珊 交流连续转矩永磁开关磁阻电动机及其激励控制方法
WO2017036354A1 (zh) * 2015-08-28 2017-03-09 戴珊珊 外转子交流独立励磁的永磁磁阻电动机
US20200263729A1 (en) * 2017-09-08 2020-08-20 Atlas Copco Airpower, Naamloze Vennootschap Device provided with a bearing-in-bearing
JP2020150758A (ja) * 2019-03-15 2020-09-17 ミネベアミツミ株式会社 モータ、及び、モータの状態判定装置
CN113446312A (zh) * 2021-08-03 2021-09-28 左大虎 一种高速轴承
CN114688172A (zh) * 2021-09-16 2022-07-01 左大虎 一种高速轴承

Also Published As

Publication number Publication date
CN114688172A (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
WO2023179408A1 (zh) 一种高速轴承
CN102324829B (zh) 一种可调式轴向异步磁力联轴器
CN101499710B (zh) 磁性齿轮变速器
CN208364446U (zh) 风扇
WO2018233173A1 (zh) 一种基于锥齿轮传动的盘式调速磁力耦合器
CN203457028U (zh) 一种采用聚磁式磁路结构的同轴套筒式永磁涡流联轴器
WO2019205683A1 (zh) 一种三相四自由度轴向分相磁悬浮飞轮电机
CN111810254B (zh) 一种引风机汽电双驱系统及其运行控制方法
CN114825856A (zh) 一种多组多盘式多气隙联动调节型磁力耦合器
WO2016086514A1 (zh) 一种固定磁隙的永磁调速器
CN202602444U (zh) 电动机
CN103471576B (zh) 一种框架驱动供电一体化组件
Man et al. A kind of magnetic gear with high speed ratio
CN101986523B (zh) 一种磁动力高反转扭矩直流电机
CN207218508U (zh) 一种永磁水密转矩传动装置
CN114471305A (zh) 一种消除轴向摩擦的磁力耦合搅拌机构
WO2013138970A1 (zh) 新型横向磁场的少极差磁场耦合式偏心磁性齿轮副
CN111049355B (zh) 一种轴向和径向磁通结合的无刷功率回馈型永磁调速装置
CN103490589A (zh) 一种采用聚磁式磁路结构的同轴套筒式永磁涡流联轴器
CN107579635B (zh) 一种转子式永磁水密转矩传动轴
CN105245084A (zh) 一种固定磁隙的永磁调速器
CN202978637U (zh) 一种双转结构无刷电机
CN221305564U (zh) 一种具有高齿槽效应的外转子电机
TWI814439B (zh) 減速機
CN210693680U (zh) 一种永磁直驱反应釜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23773656

Country of ref document: EP

Kind code of ref document: A1