WO2013138970A1 - 新型横向磁场的少极差磁场耦合式偏心磁性齿轮副 - Google Patents
新型横向磁场的少极差磁场耦合式偏心磁性齿轮副 Download PDFInfo
- Publication number
- WO2013138970A1 WO2013138970A1 PCT/CN2012/072496 CN2012072496W WO2013138970A1 WO 2013138970 A1 WO2013138970 A1 WO 2013138970A1 CN 2012072496 W CN2012072496 W CN 2012072496W WO 2013138970 A1 WO2013138970 A1 WO 2013138970A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- magnetic field
- stator
- eccentric
- gear pair
- magnetic
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K49/00—Dynamo-electric clutches; Dynamo-electric brakes
- H02K49/10—Dynamo-electric clutches; Dynamo-electric brakes of the permanent-magnet type
- H02K49/104—Magnetic couplings consisting of only two coaxial rotary elements, i.e. the driving element and the driven element
- H02K49/108—Magnetic couplings consisting of only two coaxial rotary elements, i.e. the driving element and the driven element with an axial air gap
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
Definitions
- the invention relates to a novel magnetic field coupling type eccentric magnetic gear pair with a transverse magnetic field, which is a variable speed transmission device which realizes high-speed small-torque mechanical energy and low-speed large-torque mechanical energy conversion by using a magnetic gear transmission technology, and can directly replace the conventional
- the mechanical gear transmission shifting system is widely used in wind power, hydropower, electric vehicles, ship drives and other industrial transmission fields that require direct drive.
- This magnetic gear structure based on magnetic field modulation technology has a characteristic that the magnetic field modulation principle is used to modulate the permanent magnetic fields of different pole numbers of the driving wheel and the driven wheel.
- the specific structural method is the driving wheel and the driven wheel.
- a conductive core with a directional fixed number is added as a guide The magnetic poles thus purposely isolate the two different poles of the drive wheel.
- the above magnetic gears designed based on magnetic field modulation technology have two fatal deficiencies from the theoretical principle to the structural scheme:
- the number of magnetic cores (tooth) of the magnetic permeable grid must meet the constraints. Therefore, less than half of the permanent magnets are in a magnetic field coupling state at any time during the operation of the magnetic gear, and more than half of the permanent magnet poles are in an idle uncoupled state, that is, the coupling degree theory of the rare earth permanent magnets Above, it is lower than 50%;
- the addition of the magnetic flux barrier core necessarily causes the magnetic gear pair to have two air gaps, which will inevitably consume a large amount of magnetomotive force of the rare earth permanent magnet, if the magnetic pole is not thickened The thickness will inevitably lead to a decrease in the magnetic flux of the permanent magnet in the coupled working state, thereby affecting the magnitude of the transmitted torque.
- the presence of the magnetic flux barrier core causes the air gap reluctance to oscillate with the magnetic potential, resulting in cyclic fluctuation of the torque. , not only affects the transmission accuracy, but also the mechanical torque of the magnetic flux guide core is large, and its structural strength also affects its life. major factor. Therefore, in order to reduce the cost of the magnetic gear transmission technology and further increase the torque transmitted by it, it is necessary to break the theoretical constraints of the magnetic field modulation technology from the principle, and jump out of the structural constraints of the double air gap from the structural design. Summary of the invention
- the object of the present invention is to provide a novel low-range magnetic field coupling type of the transverse magnetic field.
- New structure of eccentric magnetic gear pair The basic idea of the present invention is to learn from the principle of the novel small-tooth-tooth planetary gear transmission in the field of mechanical gear transmission, and to revolve the planetary gear input to the eccentric structure through the principle of coupling the N-pole and S-pole heteropolar coupling of the permanent magnet material. The rotation of the planetary gear is realized, and the planetary gear is rotated and outputted through the output structure, thereby realizing a power-variable transmission without mechanical contact and friction.
- ⁇ represents the inner diameter of the rotor permanent magnet 2
- 7 represents the input rotational speed and input torque of the eccentric input shaft 3
- ⁇ 2 represents the output rotational speed and output torque of the output shaft 10
- 2/3 ⁇ 4 represents the distribution pole of the stator permanent magnet 1.
- the number, 3 ⁇ 4 ⁇ represents the number of distributed poles of the rotor permanent magnet 2
- e represents the length of the plane air gap between the stator and the planetary rotor
- A represents the A-direction view code. It can be seen from the working principle topology diagram of Fig.
- the eccentric input shaft 3 drives the planetary wheel 5 around Rotation axis
- the rotor permanent magnet 2 on the eccentric revolutionary planetary rotor 5 and the stator permanent magnet 1 are driven by magnetic field to drive the planetary revolving wheel to rotate around its own axis, and then pass through the hole pin output mechanism 7 or the double shaft shown by the broken line in the figure.
- the pitch mechanism outputs the low speed rotation of the planetary runner.
- the single air gap magnetic field structure using the plane magnetic field reduces the air gap by the magnetic gear of the magnetic field modulation technology, so that the effect of the thickness of the permanent magnet can be greatly reduced under the condition of achieving the same magnetic flux;
- the single air gap structure The air gap reluctance changes continuously, and the rotating magnetic field also follows the continuous change during operation, which makes the torque transmission more stable, and completely eliminates the inevitable gear return trouble caused by the backlash and wear of the mechanical gear.
- the structural characteristics of the new type of transverse magnetic field with less pole difference magnetic field coupled eccentric magnetic gear pair are:
- the magnetic field coupled eccentric magnetic gear pair has a stator disk end cover 4 on which 3 ⁇ 4 ⁇ 4 stator permanent magnets 1 are distributed, and a disk shape on which 2 rotor permanent magnets 2 are distributed.
- the planetary wheel 5, and the eccentric input shaft 3, the bearing 1112, and the bearing III13 constitute a pair of magnetic gear pairs, and the permanent magnetic fields of the two permanent magnets are coupled to each other through a plane air gap between the stator and the planetary wheel to form a magnetic gear.
- the secondary transverse magnetic field the difference between the number of poles of the stator permanent magnet 1 and the number of poles of the permanent magnet 2 of the rotor is 3 ⁇ 4 ⁇ , and the pole pair /3 ⁇ 4 sum is a positive integer pair of each other, and satisfies the following Relationship constraint: Ps>p r , and l ⁇ p s -p r ⁇ 4 ;
- the new transverse magnetic field of the low-pole magnetic field coupled eccentric magnetic gear pair of the stator disk end cover 4 and the planetary wheel 5 is eccentric distributed structure, the eccentric input shaft 3 with the bearing 1112, bearing III 13 will have less difference
- the magnetic gear pair is connected in an eccentric structure; wherein, the eccentricity a of the planetary wheel 5 and the stator disk end cover 4, the outer diameter Z? sl and the inner diameter D s2 of the stator permanent magnet 1, the outer diameter and the inner diameter of the rotor permanent magnet 2 2 , and the pole log 3 ⁇ 4 and satisfy the following structural relationship constraints:
- the new type of transverse magnetic field has few poles.
- the magnetic field coupled eccentric magnetic gear pair is fastened by bolts to the stator disk end cover 4, the rear end cover 11 and the stator casing 6 as a whole structure, and the torque and the rotational speed are input on the eccentric input shaft 3.
- the output structure is divided into two types: one is the stator casing 6 fixed and the output shaft 10 rotates the output torque T 2 and the speed / 1 ⁇ 2.
- the novel differential magnetic field coupling type eccentric magnetic gear pair of the novel transverse magnetic field has the following obvious advantages:
- High energy (torque) density The combination of low-pole magnetic field coupling technology and transverse magnetic field structure doubles the torque density per unit volume of magnetic material (10 times that of ordinary motors). This series of new rare earth magnetic transmission gears The transmitted torque density is higher than lOOkN.m/m 3 ; it lays a foundation for the application of magnetic gear transmission technology in the field of industrial power transmission and precision transmission requiring large torque.
- Fig. 1 is a topological view of the working principle of a novel magnetic field coupled eccentric magnetic gear pair with a novel transverse magnetic field.
- Figure 2 is a schematic diagram of the magnetic field coupling of a novel magnetic field coupled eccentric magnetic gear pair with a novel transverse magnetic field.
- Fig. 3 is a full-sectional view showing the planar structure of a novel magnetic field coupling type eccentric magnetic gear pair with a novel transverse magnetic field.
- Fig. 4 is a perspective view showing the structure of a stator disk of a novel magnetic field coupling type eccentric magnetic gear pair of a novel transverse magnetic field.
- Fig. 5 is a perspective view showing the structure of a planetary rotor disk of a novel magnetic field coupling type eccentric magnetic gear pair of a novel transverse magnetic field.
- N indicates a permanent magnet of polarity N
- S indicates polarity
- ⁇ represents the eccentricity of the planetary runner 5 and the stator disk end cover 4
- D sl represents the outer diameter of the stator permanent magnet 1
- 11 ⁇ 2 represents the inner diameter of the stator permanent magnet 1
- ⁇ 3 ⁇ 4 represents the outer diameter of the rotor permanent magnet 2.
- FIG. 1 is a schematic diagram showing the working principle of a novel magnetic field coupling type eccentric magnetic gear pair of a novel transverse magnetic field
- FIG. 1 is a schematic diagram showing the working principle of a novel magnetic field coupling type eccentric magnetic gear pair of a novel transverse magnetic field
- FIG. 2 is a novel pole of a novel transverse magnetic field.
- Schematic diagram of the magnetic field coupling of the differential magnetic field coupled eccentric magnetic gear pair Fig. 3 is a full cross-sectional view of the planar structure of the new magnetic field coupled with the eccentric magnetic gear pair of the new transverse magnetic field, and Fig. 4 is the magnetic field coupling of the new transverse magnetic field with less differential magnetic field
- FIG. 5 is a perspective structural view of a stator disk of a eccentric magnetic gear pair
- FIG. 5 is a perspective view of a planetary rotor disk of a novel magnetic field coupling type eccentric magnetic gear pair. 1. It can be seen from Fig. 1 and Fig.
- the eccentric input shaft 3 drives the planetary wheel 5 to revolve around the rotation axis, and the eccentric revolutionary planetary wheel 5
- the rotor permanent magnet 2 and the stator permanent magnet 1 drive the planetary wheel 5 to rotate around its own axis by magnetic field coupling, and then the low speed of the planetary wheel is passed through the hole pin output mechanism 7 or the double universal joint mechanism shown by the broken line in the figure.
- the A-direction view shadow cover portion shown in Fig. 2 shows the size of the region of the magnetic gear pair whose permanent magnets are heteropolarly coupled.
- the eccentric input shaft 3, the bearing 1112, and the bearing III13 constitute a pair of magnetic gear pairs.
- the permanent magnetic fields of the two permanent magnets are coupled to each other through a plane air gap between the stator and the planetary wheel to form a lateral direction of the magnetic gear pair.
- the stator magnetic disk end cover 4 of the new transverse magnetic field and the magnetic field coupling type eccentric magnetic gear pair are eccentrically distributed, and the eccentric input shaft 3 with the bearing 1112 and the bearing cymbal 13 will have less difference.
- Magnetic gear pair connection An eccentric structure; wherein, an eccentricity a of the planetary runner 5 and the stator disk end cover 4, an outer diameter sl and an inner diameter D s2 of the stator permanent magnet 1, an outer diameter and an inner diameter 2 of the rotor permanent magnet 2 , and a pole pair number; 3 ⁇ 4 and ⁇ satisfy the following structural relationship constraints:
- the magnetic field coupling type eccentric magnetic gear pair of the new transverse magnetic field is fastened by the bolt to the stator disk end cover 4, the rear end cover 11 and the stator casing 6 as a whole structure, and the torque L and the input shaft 3 are input.
- the output structure is divided into two types: one is the stator casing 6 fixed and the output shaft 10 rotates the output torque T 2 and the speed " 2 ".
- the transmission of the magnetic gear pair satisfies the constraint: H - ⁇ ⁇ , / ⁇ are opposite to each other; the second is fixed for the output shaft 10, P S ⁇ Pr
- the sub-housing 6 rotates the output torque T 2 and the rotational speed. At this time, the transmission of the magnetic gear pair satisfies the constraint: H ⁇ ,
- the structural characteristics of the planetary rotor of the magnetic field coupling type eccentric magnetic gear pair of the new transverse magnetic field are:
- the disc-shaped planetary rotor that is eccentric and revolves around the central axis of rotation is the driving wheel. It is composed of 3 ⁇ 4 ⁇ rotor permanent magnets 2 and planetary reels 5; the rotor permanent magnets 2 are formed in the form of fan-shaped planar magnets by well-known permanent magnet materials, and are mounted and fastened to the planetary revolutions according to the arrangement of the N poles and S poles.
- the planetary wheel 5 On the circular plane of the wheel 5, the planetary wheel 5 is made of a magnetically permeable steel plate by conventional mechanical cutting, and a hole pin output for rotating the rotation of the rotating shaft to the center of rotation of the output shaft 10 is processed on the back surface of the planetary wheel 5.
- the circumference of the mechanism 7 is required to be a uniform pin hole.
- the driven mechanism that drives the eccentric revolutionary planetary wheel 5 to simultaneously rotate is a disc-shaped stator disk, which is composed of a stator forever
- the magnet 1 and the stator disk end cover 4 are composed;
- the stator permanent magnet 1 is formed in the form of a fan-shaped planar magnet by a known permanent magnet material, and is mounted in a circle fastened to the stator disk end cover 4 in a manner of N-pole S-pole arrangement.
- the stator disk end cover 4 is made of a magnetically permeable steel plate by conventional mechanical cutting, and the stator disk end cover 4 is also used as an end cover to be fastened and integrated with the stator casing 6.
- the above description is only a preferred embodiment of the present invention, and those skilled in the art can also make several structural modifications and improvements without departing from the principles of the present invention (such as the magnetic body to which the present invention relates)
- the multi-step shifting transmission system can be constructed by the gear pair performing multi-pole direct-axis series connection. These should also be regarded as the protection scope of the present invention, and these will not affect the effects and practicability of the implementation of the present invention.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Retarders (AREA)
- Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)
Abstract
新型横向磁场的少极差磁场耦合式偏心磁性齿轮副,可广泛应用于风力发电、电动汽车、船舰驱动及其它需要直接驱动的工业传动领域。其特征是:由其上分布有2 P
s个定子永磁体1的圆盘形状的定子磁盘、其上分布有2 Pr 个转子永磁体2的圆盘形状的行星转子构成一对磁性齿轮副,极对数Ps与Pr之间数差较小且互素,永磁体通过定子和行星转子间的气隙横向磁场而耦合,并由套装有轴承II12、轴承III13的偏心输入轴3将少极差的磁齿轮副连接成偏心结构,偏心输入轴3带动行星转轮5绕旋转轴线公转,偏心公转的转子永磁体2与定子永磁体1通过磁场耦合驱使行星转子绕自身轴线反向自转,再通过孔销输出机构7将行星转轮5的低速自转输出。
Description
新型横向磁场的少极差磁场耦合式偏心磁性齿轮副 技术领域
本发明是一种新型横向磁场的少极差磁场耦合式偏心磁性齿轮副, 是利用磁性齿轮传动 技术来实现高转速小力矩机械能与低转速大力矩机械能相互转换的变速传动装置, 可直接取 代常规的机械齿轮传动变速系统, 广泛应用于风力发电、 水力发电、 电动汽车、 船舰驱动及 其它需要直接驱动的工业传动领域。
说
背景技术
在工业应用的许多传动领域往往需要实现低转速大力矩的机械能与高转速低力矩机械能 的相互转换, 比如: 风力发电和水力发电领域需要将极低转速且可变的风能、 水的势能转换 成高转速的发电用机械动能, 电动汽车和潜艇驱动领域又需要将驱动电机的高速机械功率变 书
换成转速很低而力矩很大的机械功率。 按现有常规的设计技术, 极低转速和大力矩会使得电 机体积庞大, 增加电机单位千瓦数的材料消耗并使得工程量巨大; 为此, 现有公知的普遍方 法是借助机械齿轮变速传动技术来实现低转速、 大力矩的输出和恒功率调速范围的要求, 长 期以来机械齿轮传动技术的基本形式没有变化, 即始终是依靠机械式齿轮副的两轮齿的啮合 进行传动。 这就给齿轮传动带来了一些不可消除的问题, 如机械疲劳、 摩擦损耗、 震动噪音 等, 尽管可以采用油脂润滑技术, 但以上问题依旧无法根除, 导致使用维护极其繁琐, 常规 高变速比的机械齿轮变速系统传动效率低、 噪声大、 可靠性差。 固定传动速比的机械式齿轮 副传动使得需要在更宽转速范围的多级、 分档调速机构结构复杂, 无法适应越来越多的无级 变速的传动技术要求。
中国是世界上稀土永磁材料最丰富的国家, 大力发展稀土材料的应用有现实的意义。 随 着控制技术的进步, 稀土永磁材料在电驱动领域已经得到广泛应用, 稀土永磁材料做成的各 类电机产品, 其单位体积材料传送的力矩密度大, 能源利用效率高而能耗小, 显示出其稀土 材料巨大的优越性。 近年来, 随着风力发电、 电动汽车等新能源应用领域的发展需求, 国内 外开始在新型磁性传动技术上实现对机械传动的技术突破, 2004年英国和丹麦学者提出了磁 场调制技术理论及其传动结构, 并从实践上完成了一种新型径向磁场调制式磁性齿轮的设计 及样机验证工作, 克服了以往永磁齿轮传动扭矩较小的缺点, 这给永磁材料在机械传动领域 的应用开辟了一个重要的研究方向和未来的应用领域。 这种基于磁场调制技术的磁性齿轮结 构有一个特点,即是采用磁场调制原理来对主动轮和从动轮的不同极数的永久磁场进行调制, 具体在结构上的方法就是在主动轮和从动轮之间加设了一个具有定向定数的导磁栅铁心做导
磁极, 从而有目的地隔离两个不同极数的传动轮。
以上基于磁场调制技术而设计的磁性齿轮从理论原理到结构方案上存在两大致命的不 足: 第一, 从理论上看, 起磁场调制作用的导磁栅铁心极 (齿)数必须满足约束条件, 从而导 致磁性齿轮在运转传动的任意时刻都只有不到一半的永磁体处于相互磁场耦合的工作状态, 有一半以上的永磁体磁极处于闲置的非耦合状态, 即稀土永磁体磁极的耦合度理论上就低于 50%; 第二, 从结构上看, 加设导磁栅铁心必然使磁性齿轮副具有了两个气隙, 将必然消耗稀 土永磁体的大量磁动势, 如果不加厚磁极厚度则必然导致处于耦合工作状态的永磁体磁通量 降低, 从而影响所传递的转矩大小; 第三, 导磁栅铁心的存在使得气隙磁阻与磁势交变脉动, 导致转矩周期性波动, 不仅影响传动精度, 而且导磁栅铁心所受的机械转矩大, 其结构强度 也是影响其寿命的主要因素。 所以, 要降低磁性齿轮传动技术的成本并进一步提高其传递的 力矩, 就必须从原理上突破磁场调制技术的理论约束, 并且从结构设计上跳出双气隙的结构 制约。 发明内容
针对现有机械式齿轮传动技术存在的问题以及目前公知的、 基于磁场调制技术的磁性传 动齿轮副的两大致命缺陷, 本技术发明的目的在于提供一种新型横向磁场的少极差磁场耦合 式偏心磁性齿轮副新结构。 本发明的基本构思是, 借鉴机械齿轮传动领域的新型少齿差行星 齿轮传动的原理, 将输入给偏心结构的行星轮的公转通过永磁材料 N极与 S极异极性耦合吸 引的原理来实现行星轮的自转, 经输出结构将行星轮自转输出, 从而实现了无机械接触、 无 摩擦的动力变速传动。
以下结合图 1、 图 2来说明这种新型横向磁场的少极差磁场耦合式偏心磁性齿轮副的工 作原理及结构特征, 图中: 项 1为定子永磁体, 项 2为转子永磁体, 项 3为偏心输入轴, 项 4为定子磁盘端盖, 项 5为行星转轮, 项 6为定子机壳, 项 7为孔销输出机构, 项 8为输出 转动盘,项 9为轴承 I,项 10为输出轴,项 11为后端盖, 项 12为轴承 II,项 13为轴承 ΠΙ ; 图中符号标识: N表示极性为 N的永磁体, S表示极性为 S的永磁体, a表示行星转轮 5与 定子磁盘端盖 4的偏心距, !^表示定子永磁体 1的外径, 1½表示定子永磁体 1的内径, Dri 表示转子永磁体 2的外径, !^表示转子永磁体 2的内径, 、 7 表示偏心输入轴 3的输入转 速和输入力矩, η2、 Γ2表示输出轴 10的输出转速和输出力矩, 2/¾表示定子永磁体 1的分布 极数, ¾^表示转子永磁体 2的分布极数, e表示定子与行星转子之间的平面气隙的长度, A 表示 A向视图代号。 从图 1 的工作原理拓扑图可知, 新型横向磁场的少极差磁场耦合式偏心磁性齿轮副的工 作原理与机械式的 K-H-V型少齿差行星齿轮类似:偏心输入轴 3带动行星转轮 5绕旋转轴线
公转, 偏心公转的行星转轮 5上的转子永磁体 2与定子永磁体 1通过磁场耦合驱使行星转轮 绕自身轴线反向自转, 再通过孔销输出机构 7或图中虚线所示的双万向节机构将行星转轮的 低速自转输出。 从图 2的磁场耦合示意图可知: 第一, 少极差磁场耦合概念从理论上突破了 磁场调制技术的约束, 取消了导磁栅铁心, 从而把基于磁场调制技术的磁性齿轮小于 50%的 异极性磁极耦合面积提高到了 70%左右, 理论上可以达到 75%; 图 2所示的 A向视图阴影遮 盖部分展示出磁性齿轮副的永磁体异极性耦合的区域大小。 第二, 采用平面磁场的单气隙磁 场结构, 比磁场调制技术的磁性齿轮减少一个气隙, 从而在达到相同磁通量的条件下可大大 减小永磁体厚度的效果; 第三, 单气隙结构使得气隙磁阻连续变化, 运转时旋转磁场也跟随 连续变化, 使其力矩传递更平稳, 也彻底消除了机械齿轮因齿隙和磨损而引起的不可避免的 齿轮回差困扰。 新型横向磁场的少极差磁场耦合式偏心磁性齿轮副的结构特征是:
一、 新型横向磁场的少极差磁场耦合式偏心磁性齿轮副由其上分布有 ¾¾个定子永磁体 1 的 定子磁盘端盖 4、 其上分布有 2;^个转子永磁体 2的圆盘形行星转轮 5、 以及偏心输入轴 3、 轴承 1112、轴承 III13构成一对磁性齿轮副, 两种永磁体的永久磁场穿过定子和行星转轮之间 的平面气隙而相互耦合, 形成磁性齿轮副的横向磁场; 定子永磁体 1 的分布极数 与转子 永磁体 2的分布极数 ¾ ^之间极数差较小, 极对数 /¾和 为彼此互素的正整数对, 并满足以 下关系约束: Ps>pr, 且 l≤ps-pr<4 ;
二、 新型横向磁场的少极差磁场耦合式偏心磁性齿轮副的定子磁盘端盖 4与行星转轮 5呈偏 心分布结构, 由套装有轴承 1112、轴承 III 13的偏心输入轴 3将少极差的磁性齿轮副连接成偏 心结构; 其中, 行星转轮 5与定子磁盘端盖 4的偏心距 a、 定子永磁体 1的外径 Z?sl与内径 Ds2、 转子永磁体 2的外径 与内径 2、 以及极对数 ¾和 满足以下结构关系约束:
D '、― Dsl = Dr、― Drl , = , a = (D , -D = (D 2 - D 2) ;
Drl + Dr2 Pr 2 2
三、 新型横向磁场的少极差磁场耦合式偏心磁性齿轮副由螺栓将定子磁盘端盖 4、 后端盖 11 与定子机壳 6紧固装配为整体结构,在偏心输入轴 3输入力矩 和转速 "】的输入状态下,其 输出结构方式分为两种: 一为定子机壳 6固定而输出轴 10旋转输出力矩 T2和转速 /½,此时, 磁性齿轮副的传动满足约束: = = -~ 与 彼此反向; 二为输出轴 10固定而定 、 Ρ, ~ Pr
子机壳 6旋转输出力矩 T2和转速 2, 此时, 磁性齿轮副的传动满足约束: = = ^^, 、 Ps ~ Pr
«1与《2彼此同向。
采用上述技术方案所达到的技术经济效果:
与普通机械式齿轮传动副相比, 本发明涉及的新型横向磁场的少极差磁场耦合式偏心磁 性齿轮副具有如下明显的优势:
① 高效节能、 低炭环保: 由于消除了普通机械式齿轮传动的接触摩擦, 传动损耗仅仅包括一 些铁心损耗, 理论上最高传动效率可达到 98%, 比机械齿轮传动普遍提高 10%, 完全属于 高效节能型产品,符合低炭环保经济特点,广泛推广应用可极大地节省能源,降低碳排放。
② 能量 (力矩)密度高: 少极差磁场耦合技术与横向磁场结构的结合使磁性材料单位体积传送 的转矩密度成倍提高 (为普通电机的 10倍), 本系列新型稀土磁性传动齿轮所传送的转矩密 度高于 lOOkN.m/m3;为磁性齿轮传动技术应用于需要大力矩的工业化动力传动及精密传动 领域奠定了基础。
③无回差、 无磨损, 可靠性高、 寿命长: 由于无机械接触摩损, 不仅消除了机械齿轮因齿隙 和磨损而引起的不可避免的齿轮回差困扰, 而且大大提高了传动机构的寿命极限,对于定 位精度要求极高且频繁正反转的雷达伺服跟踪系统、工业机器人伺服驱动机构等领域有现 实的应用价值。
④无污染、低噪音: 不存在机械齿轮传动时因齿部啮合接触而产生的震动噪音, 且无需润滑 油脂, 清洁、 无油污、 防尘、 防水等, 对于噪音要求极高的领域如长期水下航行的核潜艇 降低本体噪音具有潜在的军事应用价值。
⑤传动平稳、 过载保护: 转速传动比恒定, 转速的动态瞬时稳定度高, 运行平稳; 在过载时 因主、 从动轮滑转而随时切断传动关系, 不会损坏负载或者原动机。
⑥传动比大、 结构简单: 由于没有磁场调制式磁性齿轮的导磁栅铁芯的机械强度制约, 少极 差偏心磁性齿轮的传动比可实现更大的传动比; 少极差磁场耦合使磁性齿轮结构更简单、 更紧凑。
⑦加工方便、 工艺简单: 无需昂贵的机械齿轮加工和检测设备, 也不存在机械齿轮在设计 加工上常常需要变位修正的设计加工繁琐, 一次性设备投资少, 主要为装配作业, 便于 组织大规模流水线生产。 附图说明
图 1是新型横向磁场的少极差磁场耦合式偏心磁性齿轮副的工作原理拓扑图。
图 2是新型横向磁场的少极差磁场耦合式偏心磁性齿轮副的磁场耦合示意图。
图 3是新型横向磁场的少极差磁场耦合式偏心磁性齿轮副的平面结构全剖面图。
图 4是新型横向磁场的少极差磁场耦合式偏心磁性齿轮副的定子磁盘立体结构图。
图 5是新型横向磁场的少极差磁场耦合式偏心磁性齿轮副的行星转子磁盘立体结构图。
以上图中: 1.定子永磁体, 2.转子永磁体, 3.偏心输入轴, 4.定子磁盘端盖, 5.行星转轮, 6.定子机壳, 7.孔销输出机构, 8.输出转动盘, 9.轴承 I, 10.输出轴, 11.后端盖, 12.轴承 II, 13.轴承 III ; 图中符号标识: N表示极性为 N的永磁体, S表示极性为 S的永磁体, β表示 行星转轮 5与定子磁盘端盖 4的偏心距, Dsl表示定子永磁体 1的外径, 1½表示定子永磁体 1的内径, Ζ¾表示转子永磁体 2的外径, 表示转子永磁体 2的内径, 、 表示偏心输入 轴 3的输入转速和输入力矩, ηι、 : Γ2表示输出轴 10的输出转速和输出力矩, 表示定子永 磁体 1的分布极数, 2 表示转子永磁体 2的分布极数, e表示定子与行星转子之间的平面气 隙的长度, A表示 A向视图代号。 具体实施方式 下面结合附图及具体实施方式对本发明做进一步的说明: 图 1是新型横向磁场的少极差 磁场耦合式偏心磁性齿轮副的工作原理拓扑图, 图 2是新型横向磁场的少极差磁场耦合式偏 心磁性齿轮副的磁场耦合示意图, 图 3是新型横向磁场的少极差磁场耦合式偏心磁性齿轮副 的平面结构全剖面图, 图 4是新型横向磁场的少极差磁场耦合式偏心磁性齿轮副的定子磁盘 立体结构图, 图 5是新型横向磁场的少极差磁场耦合式偏心磁性齿轮副的行星转子磁盘立体 结构图。 一、从图 1与图 2可知新型横向磁场的少极差磁场耦合式偏心磁性齿轮副的工作原理为: 偏心输入轴 3带动行星转轮 5绕旋转轴线公转, 偏心公转的行星转轮 5上的转子永磁体 2与 定子永磁体 1通过磁场耦合驱使行星转轮 5绕自身轴线反向自转, 再通过孔销输出机构 7或 图中虚线所示的双万向节机构将行星转轮的低速自转输出; 图 2所示的 A向视图阴影遮盖部 分展示出磁性齿轮副的永磁体异极性耦合的区域大小。
从图 3、图 4和图 5可以看出新型横向磁场的少极差磁场耦合式偏心磁性齿轮副的内部结 构特征如下:
二、 新型横向磁场的少极差磁场耦合式偏心磁性齿轮副由其上分布有 个定子永磁体 1 的定子磁盘端盖 4、其上分布有 2 个转子永磁体 2的圆盘形行星转轮 5、 以及偏心输入轴 3、 轴承 1112、轴承 III13构成一对磁性齿轮副, 两种永磁体的永久磁场穿过定子和行星转轮之间 的平面气隙而相互耦合, 形成磁性齿轮副的横向磁场; 定子永磁体 1 的分布极数 与转子 永磁体 2的分布极数 2A之间极数差较小, 极对数 和/ ^为彼此互素的正整数对, 并满足以 下关系约束: Ps>Pr, 且 l≤ps-pr<4 ;
三、 新型横向磁场的少极差磁场耦合式偏心磁性齿轮副的定子磁盘端盖 4与行星转轮 5 呈偏心分布结构, 由套装有轴承 1112、轴承 ΠΙ13的偏心输入轴 3将少极差的磁性齿轮副连接
成偏心结构; 其中, 行星转轮 5与定子磁盘端盖 4的偏心距 a、 定子永磁体 1的外径 sl与内 径 Ds2、 转子永磁体 2的外径 与内径 2、 以及极对数; ¾和 ^满足以下结构关系约束:
D、_ D, = D、 _D, , D'1 + D'2 = - , fl = ix(D ,— , ) =丄 χ ( ,— D , );
sl Λ Λ rl Drl + Dr2 Pr 2 " Λ 2
四、新型横向磁场的少极差磁场耦合式偏心磁性齿轮副由螺栓将定子磁盘端盖 4、后端盖 11与定子机壳 6紧固装配为整体结构,在偏心输入轴 3输入力矩 L和转速 的输入状态下, 其输出结构方式分为两种:一为定子机壳 6固定而输出轴 10旋转输出力矩 T2和转速《2,此时, 磁性齿轮副的传动满足约束: H -^^ , /^与 彼此反向; 二为输出轴 10固定而定 、 PS ~ Pr
Ml与《2彼此同向; 五、 新型横向磁场的少极差磁场耦合式偏心磁性齿轮副的行星转子的结构特征是: 偏心 且绕旋转中心轴线公转的圆盘形行星转子是主动轮, 它由 ¾^个转子永磁体 2、行星转轮 5组 成; 转子永磁体 2用公知的永磁材料制成扇形的平面磁体形式, 且按 N极 S极间隔排列分布 的方式安装紧固于行星转轮 5的圆环平面上, 行星转轮 5由导磁的钢板经常规的机械切削加 工制成,在行星转轮 5的背面加工有将其自转转换到输出轴 10旋转中心转动的孔销输出机构 7所需要的圆周均布销孔。
六、 新型横向磁场的少极差磁场耦合式偏心磁性齿轮副的定子的特征是: 驱使偏心公转 的行星转轮 5同时产生自转的从动机构是圆盘形状的定子磁盘, 它由 个定子永磁体 1、定 子磁盘端盖 4组成; 定子永磁体 1用公知的永磁材料制成扇形的平面磁体形式, 且按 N极 S 极间隔排列分布的方式安装紧固于定子磁盘端盖 4的圆环平面上, 定子磁盘端盖 4由导磁的 钢板经常规的机械切削加工制成, 定子磁盘端盖 4同时兼作为端盖与定子机壳 6紧固装配为 一体。
以上所述的仅是本技术发明的优选实施方式, 对于本领域的技术人员来说, 在不脱离本 技术发明原理的前提下,还可以作出若干结构变形和改进 (如将本发明涉及的磁性齿轮副进行 多极直轴串联即可构成多级变速传动系统), 这些也应该视为本技术发明的保护范围, 这些都 不会影响本技术发明实施的效果和实用性。
Claims
权 利 要 求 书 、 新型横向磁场的少极差磁场耦合式偏心磁性齿轮副, 其特征是:
新型横向磁场的少极差磁场耦合式偏心磁性齿轮副由其上分布有 2ps个定子永磁体 (I)的 定子磁盘端盖4)、 其上分布有 2A个转子永磁体2)的圆盘形行星转轮 (;5)、 以及偏心输入 轴 (3)、轴承 11(12)、轴承 111(13)构成一对磁性齿轮副, 两种永磁体的永久磁场穿过定子和 行星转轮之间的平面气隙而相互耦合, 形成磁性齿轮副的横向磁场; 定子永磁体 1)的分 布极数 与转子永磁体 (2)的分布极数 2A之间极数差较小,极对数 /¾和 ^为彼此互素的 正整数对, 并满足以下关系约束: p >pr, 且 1¾¾ - ^ <4 ;
新型横向磁场的少极差磁场耦合式偏心磁性齿轮副的定子磁盘端盖 (4)与行星转轮 (5)呈偏 心分布结构, 由套装有轴承 11(12)、轴承 111(13)的偏心输入轴 (3)将少极差的磁性齿轮副连 接成偏心结构; 其中, 行星转轮 (5)与定子磁盘端盖 (4)的偏心距 、 定子永磁体 (1)的外径 sl与内径 Ds2、转子永磁体 (2)的外径 与内径 A2、以及极对数 ¾和 A满足以下结构关 系约束: D,、—W Drl , , a = (D , -D = (D 2 -D 2) ;
Drl + Dr2 pr 2 2
新型横向磁场的少极差磁场耦合式偏心磁性齿轮副由螺栓将定子磁盘端盖 (4)、后端盖 (11) 与定子机壳 (6)紧固装配为整体结构, 在偏心输入轴 (3)输入力矩 L和转速 的输入状态 下, 其输出结构方式分为两种: 一为定子机壳 (6)固定而输出轴 (10)旋转输出力矩 T2和转 速《2,此时, 磁性齿轮副的传动满足约束: = = -^^, 与 《2彼此反向; 二为输 出轴 (10)固定而定子机壳 (6)旋转输出力矩 T2和转速 , 此时, 磁性齿轮副的传动满足约 束: n ^^, 与 彼此同向。
、 P., - Pr 、 根据权利要求 1 所述的一种新型横向磁场的少极差磁场耦合式偏心磁性齿轮副, 其特征 是: 偏心且绕旋转中心轴线公转的圆盘形行星转子是主动轮, 它由 2A个转子永磁体 (2)、 行星转轮 (5)组成; 转子永磁体 (2)用公知的永磁材料制成扇形的平面磁体形式, 且按 N极 S 极间隔排列分布的方式安装紧固于行星转轮 (5)的圆环平面上, 行星转轮 (5)由导磁的钢 板经常规的机械切削加工制成, 在行星转轮 (5)的背面加工有将其自转转换到输出轴 (10) 旋转中心转动的孔销输出机构 (7)所需要的圆周均布销孔。 、 根据权利要求 1所述的一种新型横向磁场的少极差磁场耦合式偏心磁性齿轮副, 其特征 是: 驱使偏心公转的行星转轮 (5)同时产生自转的从动机构是圆盘形状的定子磁盘, 它由 2 s个定子永磁体 (1)、 定子磁盘端盖 (4)组成; 定子永磁体 (1)用公知的永磁材料制成扇形
的平面磁体形式, 且按 N极 S极间隔排列分布的方式安装紧固于定子磁盘端盖 (4)的圆环 平面上, 定子磁盘端盖 (4)由导磁的钢板经常规的机械切削加工制成, 定子磁盘端盖 (4)同 时兼作为端盖与定子机壳 (6)紧固装配为一体。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280022462.2A CN103562596A (zh) | 2012-03-17 | 2012-03-17 | 新型横向磁场的少极差磁场耦合式偏心磁性齿轮副 |
PCT/CN2012/072496 WO2013138970A1 (zh) | 2012-03-17 | 2012-03-17 | 新型横向磁场的少极差磁场耦合式偏心磁性齿轮副 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2012/072496 WO2013138970A1 (zh) | 2012-03-17 | 2012-03-17 | 新型横向磁场的少极差磁场耦合式偏心磁性齿轮副 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013138970A1 true WO2013138970A1 (zh) | 2013-09-26 |
Family
ID=49221774
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/072496 WO2013138970A1 (zh) | 2012-03-17 | 2012-03-17 | 新型横向磁场的少极差磁场耦合式偏心磁性齿轮副 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103562596A (zh) |
WO (1) | WO2013138970A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103697141A (zh) * | 2014-01-03 | 2014-04-02 | 哈尔滨理工大学 | 磁场调制式永磁齿轮 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108488351A (zh) * | 2017-02-17 | 2018-09-04 | 熵零技术逻辑工程院集团股份有限公司 | 一种传动装置 |
CN110336451B (zh) * | 2019-08-12 | 2020-07-14 | 上海微电机研究所(中国电子科技集团公司第二十一研究所) | 一种复合式偏心磁力谐波齿轮传动装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2526598Y (zh) * | 2002-01-10 | 2002-12-18 | 钱辉 | 感应星轮传动机构 |
WO2003107514A1 (de) * | 2002-06-13 | 2003-12-24 | Küster Automotive Door Systems GmbH | Elektromotorischer antrieb mit einem stator und einem rotor in kombination mit einem exzentergetriebe |
WO2007144556A1 (en) * | 2006-06-16 | 2007-12-21 | Magnomatics Limited | Magnetic gear |
CN202158160U (zh) * | 2011-05-30 | 2012-03-07 | 余虹锦 | 一种新型横向磁场的磁性传动齿轮副 |
CN202349148U (zh) * | 2011-09-19 | 2012-07-25 | 余虹锦 | 新型横向磁场的少极差磁性传动偏心盘形齿轮副 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102996752B (zh) * | 2011-09-19 | 2015-04-01 | 余虹锦 | 横向磁场的少极差磁性传动偏心盘形齿轮副 |
-
2012
- 2012-03-17 WO PCT/CN2012/072496 patent/WO2013138970A1/zh active Application Filing
- 2012-03-17 CN CN201280022462.2A patent/CN103562596A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2526598Y (zh) * | 2002-01-10 | 2002-12-18 | 钱辉 | 感应星轮传动机构 |
WO2003107514A1 (de) * | 2002-06-13 | 2003-12-24 | Küster Automotive Door Systems GmbH | Elektromotorischer antrieb mit einem stator und einem rotor in kombination mit einem exzentergetriebe |
WO2007144556A1 (en) * | 2006-06-16 | 2007-12-21 | Magnomatics Limited | Magnetic gear |
CN202158160U (zh) * | 2011-05-30 | 2012-03-07 | 余虹锦 | 一种新型横向磁场的磁性传动齿轮副 |
CN202349148U (zh) * | 2011-09-19 | 2012-07-25 | 余虹锦 | 新型横向磁场的少极差磁性传动偏心盘形齿轮副 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103697141A (zh) * | 2014-01-03 | 2014-04-02 | 哈尔滨理工大学 | 磁场调制式永磁齿轮 |
Also Published As
Publication number | Publication date |
---|---|
CN103562596A (zh) | 2014-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103378711B (zh) | 双机械端口磁导谐波式电磁齿轮复合永磁电机 | |
CN202602458U (zh) | 双机械端口磁导谐波式电磁齿轮复合永磁电机 | |
CN202334126U (zh) | 直驱式磁性传动与双定子结构的复合永磁电机 | |
CN202091437U (zh) | 一种新型的行星减速器及减速电机 | |
CN202488331U (zh) | 新型径向磁场的少极差磁场耦合式磁性传动偏心齿轮副 | |
CN101364759A (zh) | 双转子行星差速发电机 | |
CN102957260A (zh) | 直驱式磁性传动与双定子结构的复合永磁电机 | |
CN110336451A (zh) | 一种复合式偏心磁力谐波齿轮传动装置 | |
WO2013138971A1 (zh) | 新型径向磁场的少极差磁场耦合式偏心磁性齿轮副 | |
CN113489184A (zh) | 一种单层气隙的磁齿轮复合电机 | |
CN101951088B (zh) | 径向-轴径向磁场调制型无刷复合结构电机 | |
CN102510191A (zh) | 横向-轴径向磁通结构无刷复合式永磁电机 | |
WO2013138970A1 (zh) | 新型横向磁场的少极差磁场耦合式偏心磁性齿轮副 | |
CN102611280B (zh) | 径向磁场的少极差磁导谐波式磁性齿轮副 | |
CN201260120Y (zh) | 行星内置式双转子风力发电机 | |
CN103107676B (zh) | 径向磁场的少极差磁场耦合式磁性传动偏心齿轮副 | |
CN102857069A (zh) | 轴向平面磁场的少极差磁导谐波式磁性齿轮副 | |
CN202405975U (zh) | 一种用于低速大转矩的永磁游标电机 | |
CN102996752B (zh) | 横向磁场的少极差磁性传动偏心盘形齿轮副 | |
CN202349148U (zh) | 新型横向磁场的少极差磁性传动偏心盘形齿轮副 | |
CN103016676B (zh) | 横向磁场的异步感应式少极差磁性传动偏心齿轮副 | |
CN202616967U (zh) | 新型径向磁场的少极差电磁式偏心磁性齿轮副 | |
CN202301828U (zh) | 径向磁场的少极差磁场感应式磁性传动偏心齿轮副 | |
CN202906721U (zh) | 轴向平面磁场的少极差磁导谐波式磁性齿轮副 | |
CN102624196B (zh) | 一种径向磁场的少极差电磁式偏心磁性齿轮副 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12872009 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12872009 Country of ref document: EP Kind code of ref document: A1 |