WO2013138971A1 - 新型径向磁场的少极差磁场耦合式偏心磁性齿轮副 - Google Patents

新型径向磁场的少极差磁场耦合式偏心磁性齿轮副 Download PDF

Info

Publication number
WO2013138971A1
WO2013138971A1 PCT/CN2012/072497 CN2012072497W WO2013138971A1 WO 2013138971 A1 WO2013138971 A1 WO 2013138971A1 CN 2012072497 W CN2012072497 W CN 2012072497W WO 2013138971 A1 WO2013138971 A1 WO 2013138971A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
stator
eccentric
gear pair
planetary rotor
Prior art date
Application number
PCT/CN2012/072497
Other languages
English (en)
French (fr)
Inventor
卢敏
余虹锦
Original Assignee
Lu Min
Yu Hongjin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lu Min, Yu Hongjin filed Critical Lu Min
Priority to PCT/CN2012/072497 priority Critical patent/WO2013138971A1/zh
Priority to CN201280022553.6A priority patent/CN103582992A/zh
Publication of WO2013138971A1 publication Critical patent/WO2013138971A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/10Dynamo-electric clutches; Dynamo-electric brakes of the permanent-magnet type
    • H02K49/102Magnetic gearings, i.e. assembly of gears, linear or rotary, by which motion is magnetically transferred without physical contact
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the invention relates to a novel magnetic field non-polar magnetic field coupling type eccentric magnetic gear pair, which is a variable speed transmission device which realizes high-speed small-torque mechanical energy and low-speed large-torque mechanical energy conversion by using magnetic gear transmission technology, and can directly replace Conventional mechanical gear transmissions are widely used in wind power, hydropower, electric vehicles, ship drives and other industrial transmissions that require direct drive. Background technique
  • the basic form of mechanical gear transmission technology has not changed for a long time, that is, it is always driven by the meshing of the two gear teeth of the mechanical gear pair. This brings some inevitable problems to the gear transmission, such as mechanical fatigue, friction loss, vibration noise, etc.
  • grease lubrication technology can be used, the above problems can not be eradicated, resulting in extremely cumbersome maintenance, conventional high gear ratio machinery.
  • the gear shifting system has low transmission efficiency, high noise and poor reliability.
  • the mechanical gear pair drive with fixed transmission ratio makes the multi-stage and step-speed governing mechanism in the wider speed range complex, and can not adapt to more and more infinitely variable transmission technology requirements.
  • This magnetic gear structure based on magnetic field modulation technology has a characteristic that the magnetic field modulation principle is used to modulate the permanent magnetic fields of different pole numbers of the driving wheel and the driven wheel.
  • the specific structural method is the driving wheel and the driven wheel.
  • a conductive core with a directional fixed number is added as a guide The magnetic poles thus purposely isolate the two different poles of the drive wheel.
  • the above magnetic gears designed based on magnetic field modulation technology have two fatal deficiencies from the theoretical principle to the structural scheme:
  • the number of magnetic cores (tooth) of the magnetic permeable grid must meet the constraints. Therefore, less than half of the permanent magnets are in a magnetic field coupling state at any time during the operation of the magnetic gear, and more than half of the permanent magnet poles are in an idle uncoupled state, that is, the coupling degree theory of the rare earth permanent magnets Above, it is lower than 50%;
  • the addition of the magnetic flux barrier core necessarily causes the magnetic gear pair to have two air gaps, which will inevitably consume a large amount of magnetomotive force of the rare earth permanent magnet, if the magnetic pole is not thickened The thickness will inevitably lead to a decrease in the magnetic flux of the permanent magnet in the coupled working state, thereby affecting the magnitude of the transmitted torque.
  • the presence of the magnetic flux barrier core causes the air gap reluctance to oscillate with the magnetic potential, resulting in cyclic fluctuation of the torque. , not only affects the transmission accuracy, but also the mechanical torque of the magnetic flux guide core is large, and its structural strength also affects its life. major factor. Therefore, in order to reduce the cost of the magnetic gear transmission technology and further increase the torque transmitted by it, it is necessary to break the theoretical constraints of the magnetic field modulation technology from the principle, and jump out of the structural constraints of the double air gap from the structural design. Summary of the invention
  • the object of the present invention is to provide a novel magnetic field coupling with little difference magnetic field.
  • New structure of eccentric magnetic gear pair The basic idea of the present invention is to learn from the principle of the novel small-tooth-tooth planetary gear transmission in the field of mechanical gear transmission, and to revolve the planetary gear input to the eccentric structure through the principle of coupling the N-pole and S-pole heteropolar coupling of the permanent magnet material. The rotation of the planetary gear is realized, and the planetary gear is rotated and outputted through the output structure, thereby realizing a power-variable transmission without mechanical contact and friction.
  • Item 3 is the eccentric input shaft
  • item 4 is the front end cover
  • item 5 is the planetary rotor core
  • item 6 is the stator casing
  • item 7 is the hole pin output mechanism
  • item 8 is the output rotating disk
  • item 9 is the bearing I
  • item 10 is the output shaft
  • item 11 is the rear end cover
  • item 12 is the bearing II
  • item 13 is the bearing ⁇
  • symbol in the figure: N indicates a permanent magnet of polarity N
  • S indicates a permanent magnet of polarity S
  • Indicates the eccentricity of the planetary rotor core 5 and the stator casing 6, 1) 8 represents the inner diameter of the stator permanent magnet 1, represents the outer diameter of the rotor permanent magnet 2, and m, 7] represents the input rotational speed and input torque of the eccentric input shaft 3.
  • ⁇ 2 , ⁇ 2 denote the output rotational speed and output torque of the output shaft 10
  • 3 ⁇ 43 ⁇ 4 denotes the number of distributed poles of the stator permanent magnet 1
  • 2 / ⁇ denotes the number of distributed poles of the permanent magnet 2 of the rotor
  • e denotes between the stator and the planetary rotor The length of the minimum air gap.
  • the eccentric input shaft 3 drives the planetary rotor core 5 revolutions
  • the axis revolving, the rotor permanent magnet 2 on the eccentric revolutionary planetary rotor core 5 and the stator permanent magnet 1 drive the planetary rotor core 5 to rotate around its own axis by magnetic field coupling, and then pass through the hole pin output mechanism 7 or the dotted line in the figure.
  • the double gimbal mechanism shown rotates the low speed of the planetary rotor core 5 at a low speed. From the schematic diagram of the coupling of the radial structure and the magnetic field in Fig.
  • the concept of coupling of the magnetic field with little difference is theoretically breaking the constraint of the magnetic field modulation technology, and the magnetic core of the magnetic flux grid is eliminated, so that the magnetic gear based on the magnetic field modulation technology is smaller than
  • the 50% heteropolar pole coupling area is increased to about 70%, and theoretically it can reach 75%.
  • the single air gap magnetic field structure using the radial magnetic field reduces the air gap by the magnetic gear of the magnetic field modulation technology, thereby greatly reducing the effect of the thickness of the permanent magnet under the condition of achieving the same magnetic flux.
  • the single air gap makes the air gap reluctance continuously change, and the rotating magnetic field also follows the continuous change during operation, which makes the torque transmission more stable, and completely eliminates the inevitable gear return trouble caused by the backlash and wear of the mechanical gear.
  • the structural characteristics of the new type of radial magnetic field with less pole difference magnetic field coupled eccentric magnetic gear pair are:
  • a new type of radial magnetic field with a low range magnetic field coupled eccentric magnetic gear pair consisting of a stator with 3 ⁇ 4 ⁇ 4 stator permanent magnets 1 distributed thereon, a planetary rotor with 2/4 rotor permanent magnets 2 distributed thereon, and an eccentric input
  • the shaft 3, the bearing II 12, and the bearing III 13 constitute a pair of magnetic gear pairs, and the permanent magnetic fields of the two permanent magnets are coupled to each other through a radial air gap between the stator and the planetary rotor to form a radial magnetic field of the magnetic gear pair;
  • the difference between the number of poles of the stator permanent magnet 1 and the number of poles of the rotor permanent magnet 2 is 2/ ⁇ , and the pole pairs / 3 ⁇ 4 and / ⁇ are mutually positive integer pairs, and satisfy the following relationship. Constraint: P& >p r , and 1$3 ⁇ 4 ⁇ 4;
  • the new radial magnetic field has less pole difference magnetic field coupled eccentric magnetic gear pair front end cover 4 and planetary rotor core 5 are eccentric distributed structure, the eccentric input shaft 3 with bearing II 12, bearing III 13 will be less pole
  • the poor magnetic gear pair is connected in an eccentric structure; wherein, the eccentricity ⁇ of the planetary rotor core 5 and the stator casing 6, the length of the minimum air gap between the stator and the planetary rotor, the inner diameter D s of the stator permanent magnet 1, and the rotor
  • the eccentric magnetic gear pair is fastened and assembled by the bolt to the front end cover 4, the rear end cover 11 and the stator casing 6 as an integral structure.
  • the output structure is divided into two.
  • the stator casing 6 is fixed and the output shaft 10 rotates the output torque T 2 and the speed / 3 ⁇ 4.
  • the novel differential magnetic field coupling type eccentric magnetic gear pair of the novel radial magnetic field has the following obvious advantages:
  • High energy (torque) density The low-pole magnetic field coupling technology makes the magnetic field of the permanent magnets more polar-coupled than the magnetic gear of the magnetic-magnetic modulation structure, which increases the torque density per unit volume of the magnetic material.
  • the torque density transmitted by the series of new rare earth magnetic transmission gears is higher than 60kN.m/m 3 ; it lays a foundation for the application of magnetic gear transmission technology in the field of industrial power transmission and precision transmission requiring large torque.
  • Figure 1 is a topological view of the working principle of a small-pole magnetic field coupled eccentric magnetic gear pair with a new radial magnetic field.
  • Fig. 2 is a radial structure and magnetic field coupling diagram of a low-radius magnetic field coupled eccentric magnetic gear pair of a novel radial magnetic field.
  • Fig. 3 is a full-sectional view showing the planar structure of a small-pole magnetic field coupled eccentric magnetic gear pair of a novel radial magnetic field.
  • stator permanent magnet 2. rotor permanent magnet, 3. eccentric input shaft, 4. front end cover, 5. planetary rotor core, 6. stator casing, 7. hole pin output mechanism, 8. output Rotating disc, 9. Bearing I, 10. Output shaft, 11. Rear end cover, 12. Bearing II, 13.
  • denotes a permanent magnet with a polarity of
  • S denotes a permanent magnet of polarity S
  • denotes an eccentricity of the planetary rotor core 5 and the front end cover 4
  • 8 denotes a stator
  • the inner diameter of the permanent magnet 1 represents the outer diameter of the rotor permanent magnet 2
  • 7 represents the input rotational speed and input torque of the eccentric input shaft 3
  • ⁇ 2 represents the output rotational speed and output torque of the output shaft 10
  • 3 ⁇ 43 ⁇ 4 represents the stator permanent magnet 1
  • the distribution pole number, 2/ ⁇ represents the number of poles of the rotor permanent magnet 2
  • e represents the length of the minimum air gap between the stator and the planet rotor.
  • Fig. 1 is a schematic diagram showing the working principle of a novel magnetic field non-polar magnetic field coupled eccentric magnetic gear pair
  • Fig. 2 is a novel radial magnetic field.
  • Fig. 3 is a full sectional view of the plane structure of the eccentric magnetic gear pair with less magnetic field coupling of the new radial magnetic field. 1. It can be seen from Fig. 1 and Fig.
  • a new type of radial magnetic field with less differential magnetic field coupled eccentric magnetic gear pair consisting of a stator with a stator permanent magnet 1 distributed thereon, a planetary rotor with 2/ ⁇ rotor permanent magnets 2 distributed thereon, and an eccentric input shaft 3.
  • Bearing II 12, bearing III 13 constitute a pair of magnetic gear pairs, the permanent magnetic fields of the two permanent magnets are coupled to each other through a radial air gap between the stator and the planetary rotor to form a radial magnetic field of the magnetic gear pair;
  • the difference between the number of poles of the permanent magnet 1 and the number of poles of the permanent magnet 2 of the rotor 2 is smaller, and the number of pole pairs / 3 ⁇ 4 and / ⁇ are mutually positive integer pairs, and the following relationship constraints are satisfied. : Ps>p r , and l ⁇ Ps-p r ⁇ 4;
  • the front end cover 4 of the new radial magnetic field has a eccentric distribution structure of the eccentric magnetic gear pair and the planetary rotor core 5, and the eccentric input shaft 3 of the bearing II 12 and the bearing III 13 will have a few poles.
  • the poor magnetic gear pair is connected in an eccentric structure; wherein, the eccentricity ⁇ of the planetary rotor core 5 and the stator casing 6, the length of the minimum air gap between the stator and the planetary rotor, the inner diameter D s of the stator permanent magnet 1, and the rotor
  • the eccentric magnetic gear pair is bolted to the front end cover 4 and the rear end cover 11
  • the stator casing 6 is fastened and assembled into a whole structure.
  • the output structure manner is divided into two types: one is the stator casing 6 fixed and the output shaft 10 rotates the output torque.
  • the structure of the planetary rotor of the new type of radial magnetic field with less pole difference magnetic field coupled eccentric magnetic gear pair is:
  • the planetary rotor that is eccentric and revolves around the central axis of rotation is active
  • the wheel is composed of 2/ ⁇ rotor permanent magnets 2 and planetary rotor cores 5;
  • the rotor permanent magnets 2 are formed of arc-shaped tile magnet structures by well-known permanent magnet materials, and are arranged at intervals of N poles and S poles.
  • the method is fastened to the outer circular arc surface of the planetary rotor core 5, and the planetary rotor core 5 is formed into a punched shape by a conventional stamping process by a magnetically conductive silicon steel plate, and then laminated and welded as a whole, in the planetary rotor
  • the yoke portion of the iron core 5 is machined with a circumferential uniform pin hole required for the hole pin output mechanism 7 that converts its rotation to the rotation center of the output shaft 10.
  • the new radial magnetic field of the low-pole magnetic field coupled eccentric magnetic gear pair of the stator is characterized by:
  • the driven mechanism that drives the eccentric revolutionary planetary rotor to rotate at the same time is the stator, which consists of 3 ⁇ 4 ⁇ 4 stator permanent magnets 1, stator casing 6;
  • the stator permanent magnet 1 is made of a known permanent magnet material, and is formed by an arc-shaped tile magnet structure, and is fastened to the inner circular arc surface of the stator casing 6 in a manner of N-pole S-pole spacing arrangement, the stator
  • the casing 6 is made of a magnetically conductive steel pipe by conventional mechanical cutting.
  • the above description is only a preferred embodiment of the present invention, and those skilled in the art can also make several structural modifications and improvements without departing from the principles of the present invention (such as the magnetic body to which the present invention relates)
  • the multi-step shifting transmission system can be constructed by the gear pair performing multi-pole direct-axis series connection. These should also be regarded as the protection scope of the present invention, and these will not affect the effects and practicability of the implementation of the present invention.

Abstract

新型径向磁场的少极差磁场耦合式偏心磁性齿轮副,可广泛应用于风力发电、电动汽车、船舰驱动等工业传动领域,其特征是:由定子机壳(6)的内孔分布有2ps个定子永磁体(1)的定子、行星转子铁芯(5)的外圆上分布有2pr个转子永磁体(2)的行星转子构成一对磁性传动齿轮副,极对数ps与pr间数差较小且互素,磁性齿轮副上的永磁体通过径向偏心的气隙磁场耦合,并由套装有轴承II(12)、轴承III(13)的偏心输入轴(3)将少极差的定子与行星转子连成偏心结构,偏心输入轴(3)带动行星转子铁芯(5)绕旋转轴线公转,偏心公转的行星转子永磁体(2)与定子永磁体(1)通过径向磁场耦合驱使行星转子绕自身轴线反向自转,通过孔销输出机构(7)将行星转子的低速自转输出。

Description

新型径向磁场的少极差磁场耦合式偏心磁性齿轮副
技术领域
本发明是一种新型径向磁场的少极差磁场耦合式偏心磁性齿轮副, 是利用磁性齿轮传动 技术来实现高转速小力矩机械能与低转速大力矩机械能相互转换的变速传动装置, 可直接取 代常规的机械齿轮传动变速系统, 广泛应用于风力发电、 水力发电、 电动汽车、 船舰驱动及 其它需要直接驱动的工业传动领域。 背景技术
在工业应用的许多传动领域往往需要实现低转速大力矩的机械能与高转速低力矩机械能 的相互转换, 比如: 风力发电和水力发电领域需要将极低转速且可变的风能、 水的势能转换 成高转速的发电用机械动能, 电动汽车和潜艇驱动领域又需要将驱动电机的高速机械功率变 换成转速很低而力矩很大的机械功率。 按现有常规的设计技术, 极低转速和大力矩会使得电 机体积庞大, 增加电机单位千瓦数的材料消耗并使得工程量巨大; 为此, 现有公知的普遍方 法是借助机械齿轮变速传动技术来实现低转速、 大力矩的输出和恒功率调速范围的要求, 长 期以来机械齿轮传动技术的基本形式没有变化, 即始终是依靠机械式齿轮副的两轮齿的啮合 进行传动。 这就给齿轮传动带来了一些不可消除的问题, 如机械疲劳、 摩擦损耗、 震动噪音 等, 尽管可以采用油脂润滑技术, 但以上问题依旧无法根除, 导致使用维护极其繁琐, 常规 高变速比的机械齿轮变速系统传动效率低、 噪声大、 可靠性差。 固定传动速比的机械式齿轮 副传动使得需要在更宽转速范围的多级、 分档调速机构结构复杂, 无法适应越来越多的无级 变速的传动技术要求。
中国是世界上稀土永磁材料最丰富的国家, 大力发展稀土材料的应用有现实的意义。 随 着控制技术的进步, 稀土永磁材料在电驱动领域已经得到广泛应用, 稀土永磁材料做成的各 类电机产品, 其单位体积材料传送的力矩密度大, 能源利用效率高而能耗小, 显示出其稀土 材料巨大的优越性。 近年来, 随着风力发电、 电动汽车等新能源应用领域的发展需求, 国内 外开始在新型磁性传动技术上实现对机械传动的技术突破, 2004年英国和丹麦学者提出了磁 场调制技术理论及其传动结构, 并从实践上完成了一种新型径向磁场调制式磁性齿轮的设计 及样机验证工作, 克服了以往永磁齿轮传动扭矩较小的缺点, 这给永磁材料在机械传动领域 的应用开辟了一个重要的研究方向和未来的应用领域。 这种基于磁场调制技术的磁性齿轮结 构有一个特点,即是采用磁场调制原理来对主动轮和从动轮的不同极数的永久磁场进行调制, 具体在结构上的方法就是在主动轮和从动轮之间加设了一个具有定向定数的导磁栅铁心做导 磁极, 从而有目的地隔离两个不同极数的传动轮。
以上基于磁场调制技术而设计的磁性齿轮从理论原理到结构方案上存在两大致命的不 足: 第一, 从理论上看, 起磁场调制作用的导磁栅铁心极 (齿)数必须满足约束条件, 从而导 致磁性齿轮在运转传动的任意时刻都只有不到一半的永磁体处于相互磁场耦合的工作状态, 有一半以上的永磁体磁极处于闲置的非耦合状态, 即稀土永磁体磁极的耦合度理论上就低于 50%; 第二, 从结构上看, 加设导磁栅铁心必然使磁性齿轮副具有了两个气隙, 将必然消耗稀 土永磁体的大量磁动势, 如果不加厚磁极厚度则必然导致处于耦合工作状态的永磁体磁通量 降低, 从而影响所传递的转矩大小; 第三, 导磁栅铁心的存在使得气隙磁阻与磁势交变脉动, 导致转矩周期性波动, 不仅影响传动精度, 而且导磁栅铁心所受的机械转矩大, 其结构强度 也是影响其寿命的主要因素。 所以, 要降低磁性齿轮传动技术的成本并进一步提高其传递的 力矩, 就必须从原理上突破磁场调制技术的理论约束, 并且从结构设计上跳出双气隙的结构 制约。 发明内容
针对现有机械式齿轮传动技术存在的问题以及目前公知的、 基于磁场调制技术的磁性传 动齿轮副的两大致命缺陷, 本技术发明的目的在于提供一种新型径向磁场的少极差磁场耦合 式偏心磁性齿轮副新结构。 本发明的基本构思是, 借鉴机械齿轮传动领域的新型少齿差行星 齿轮传动的原理, 将输入给偏心结构的行星轮的公转通过永磁材料 N极与 S极异极性耦合吸 引的原理来实现行星轮的自转, 经输出结构将行星轮自转输出, 从而实现了无机械接触、 无 摩擦的动力变速传动。
以下结合图 1、 图 2来说明这种新型径向磁场的少极差磁场耦合式偏心磁性齿轮副的工 作原理及结构特征, 图中: 项 1为定子永磁体, 项 2为转子永磁体, 项 3为偏心输入轴, 项 4为前端盖, 项 5为行星转子铁芯, 项 6为定子机壳, 项 7为孔销输出机构, 项 8为输出转 动盘, 项 9为轴承 I, 项 10为输出轴, 项 11为后端盖, 项 12为轴承 II, 项 13为轴承 ΠΙ ; 图中符号标识: N表示极性为 N的永磁体, S表示极性为 S的永磁体, α表示行星转子铁芯 5 与定子机壳 6的偏心距, 1)8表示定子永磁体 1的内径, 表示转子永磁体 2的外径, m、 7] 表示偏心输入轴 3的输入转速和输入力矩, η2、 Γ2表示输出轴 10的输出转速和输出力矩, ¾¾ 表示定子永磁体 1的分布极数, 2 /^表示转子永磁体 2的分布极数, e表示定子与行星转子之 间的最小气隙的长度。 从图 1 的工作原理拓扑图可知, 新型径向磁场的少极差磁场耦合式偏心磁性齿轮副的工 作原理与机械式的 K-H-V型少齿差行星齿轮类似: 偏心输入轴 3带动行星转子铁芯 5绕旋转 轴线公转, 偏心公转的行星转子铁芯 5上的转子永磁体 2与定子永磁体 1通过磁场耦合驱使 行星转子铁芯 5绕自身轴线反向自转, 再通过孔销输出机构 7或图中虚线所示的双万向节机 构将行星转子铁芯 5的低速自转输出。 从图 2的径向结构与磁场耦合示意图可知: 第一, 少 极差磁场耦合概念从理论上突破了磁场调制技术的约束, 取消了导磁栅铁心, 从而把基于磁 场调制技术的磁性齿轮小于 50%的异极性磁极耦合面积提高到了 70%左右, 理论上可以达到 75%。 第二, 采用径向磁场的单气隙磁场结构, 比磁场调制技术的磁性齿轮减少一个气隙, 从而在达到相同磁通量的条件下可大大减小永磁体厚度的效果; 第三, 单气隙结构使得气隙 磁阻连续变化, 运转时旋转磁场也跟随连续变化, 使其力矩传递更平稳, 也彻底消除了机械 齿轮因齿隙和磨损而引起的不可避免的齿轮回差困扰。 新型径向磁场的少极差磁场耦合式偏心磁性齿轮副的结构特征是:
一、 新型径向磁场的少极差磁场耦合式偏心磁性齿轮副由其上分布有 ¾¾个定子永磁体 1 的 定子、其上分布有 2/^个转子永磁体 2的行星转子、以及偏心输入轴 3、轴承 II 12、轴承 III 13 构成一对磁性齿轮副, 两种永磁体的永久磁场穿过定子和行星转子之间的径向气隙而相互耦 合, 形成磁性齿轮副的径向磁场; 定子永磁体 1 的分布极数 ¾¾与转子永磁体 2的分布极数 2/^之间极数差较小, 极对数/ ¾和/^为彼此互素的正整数对, 并满足以下关系约束: P&>pr , 且 1$¾ <4;
二、 新型径向磁场的少极差磁场耦合式偏心磁性齿轮副的前端盖 4与行星转子铁芯 5呈偏心 分布结构, 由套装有轴承 II 12、 轴承 III 13的偏心输入轴 3将少极差的磁性齿轮副连接成偏 心结构; 其中, 行星转子铁芯 5与定子机壳 6的偏心距 α、 定子与行星转子之间的最小气隙 的长度^ 定子永磁体 1的内径 Ds、转子永磁体 2的外径 D、 以及极对数/ ¾和/^满足以下结 构关系约束: ^^ , a = -l D - D - 2e) ; 三、 新型径向磁场的少极差磁场耦合式偏心磁性齿轮副由螺栓将前端盖 4、 后端盖 11与定子 机壳 6紧固装配为整体结构,在偏心输入轴 3输入力矩 ^和转速 ηι的输入状态下,其输出结 构方式分为两种: 一为定子机壳 6固定而输出轴 10旋转输出力矩 T2和转速 /¾, 此时, 磁性 齿轮副的传动满足约束: = = -~ ^, ^与 ^彼此反向; 二为输出轴 10固定而定子机 、 Ps - Pr 壳 6旋转输出力矩 T2和转速 /¾,此时,磁性齿轮副的传动满足约束: = = _^, 与 n2
Ά «2 ps - pr 彼此同向。 采用上述技术方案所达到的技术经济效果:
与普通机械式齿轮传动副相比, 本发明涉及的新型径向磁场的少极差磁场耦合式偏心磁 性齿轮副具有如下明显的优势:
① 高效节能、 低炭环保: 由于消除了普通机械式齿轮传动的接触摩擦, 传动损耗仅仅包括一 些铁心损耗, 理论上最高传动效率可达到 96%, 比机械齿轮传动普遍提高 8%, 属于高效节 能型产品, 符合低炭环保经济特点, 广泛推广应用可极大地节省能源, 降低碳排放。
② 能量 (力矩)密度较高: 少极差磁场耦合技术使得永磁体的磁场异极性耦合程度比磁场调制 式结构的磁性齿轮提高很多, 使磁性材料单位体积传送的转矩密度得到提高, 本系列新型 稀土磁性传动齿轮所传送的转矩密度高于 60kN.m/m3; 为磁性齿轮传动技术应用于需要大 力矩的工业化动力传动及精密传动领域奠定了基础。
③ 无回差、 无磨损, 可靠性高、 寿命长: 由于无机械接触摩损, 不仅消除了机械齿轮因齿隙 和磨损而引起的不可避免的齿轮回差困扰, 而且大大提高了传动机构的寿命极限, 对于定 位精度要求极高且频繁正反转的雷达伺服跟踪系统、工业机器人伺服驱动机构等领域有现 实的应用价值。
④ 无污染、低噪音: 不存在机械齿轮传动时因齿部啮合接触而产生的震动噪音, 且无需润滑 油脂, 清洁、 无油污、 防尘、 防水等, 对于噪音要求极高的领域如长期水下航行的核潜艇 降低本体噪音具有潜在的军事应用价值。
⑤ 传动平稳、 过载保护: 转速传动比恒定, 转速的动态瞬时稳定度高, 运行平稳; 在过载时 因主、 从动轮滑转而随时切断传动关系, 不会损坏负载或者原动机。
⑥ 传动比大、 结构简单: 由于没有磁场调制式磁性齿轮的导磁栅铁芯的机械强度制约, 少极 差偏心磁性齿轮的传动比可实现更大的传动比; 少极差磁场耦合使磁性齿轮结构更简单、 更紧凑。
⑦加工方便、 工艺简单: 无需昂贵的机械齿轮加工和检测设备, 也不存在机械齿轮在设计 加工上常常需要变位修正的设计加工繁琐, 一次性设备投资少, 主要为装配作业, 便于 组织大规模流水线生产。 附图说明
图 1是新型径向磁场的少极差磁场耦合式偏心磁性齿轮副的工作原理拓扑图。
图 2是新型径向磁场的少极差磁场耦合式偏心磁性齿轮副的径向结构与磁场耦合图。
图 3是新型径向磁场的少极差磁场耦合式偏心磁性齿轮副的平面结构全剖面图。
以上图中: 1.定子永磁体, 2.转子永磁体, 3.偏心输入轴, 4.前端盖, 5.行星转子铁芯, 6.定子机壳, 7.孔销输出机构, 8.输出转动盘, 9.轴承 I, 10.输出轴, 11.后端盖, 12.轴承 II, 13.轴承 ΠΙ ; 图中符号标识: Ν表示极性为 Ν的永磁体, S表示极性为 S的永磁体, α表示 行星转子铁芯 5与前端盖 4的偏心距, 1)8表示定子永磁体 1内径, 表示转子永磁体 2的外 径, 、 7 表示偏心输入轴 3的输入转速和输入力矩, η2、 Γ2表示输出轴 10的输出转速和输 出力矩, ¾¾表示定子永磁体 1的分布极数, 2/^表示转子永磁体 2的分布极数, e表示定子与 行星转子之间的最小气隙的长度。 具体实施方式 下面结合附图及具体实施方式对本发明做进一步的说明: 图 1是新型径向磁场的少极差 磁场耦合式偏心磁性齿轮副的工作原理拓扑图, 图 2是新型径向磁场的少极差磁场耦合式偏 心磁性齿轮副的径向结构与磁场耦合图, 图 3是新型径向磁场的少极差磁场耦合式偏心磁性 齿轮副的平面结构全剖面图。 一、从图 1与图 2可知新型径向磁场的少极差磁场耦合式偏心磁性齿轮副的工作原理为: 偏心输入轴 3带动行星转子铁芯 5绕旋转轴线公转, 偏心公转的行星转子铁芯 5上的转子永 磁体 2与定子永磁体 1通过磁场耦合驱使行星转子铁芯 5绕自身轴线反向自转, 再通过孔销 输出机构 7或图中虚线所示的双万向节机构将行星转子铁芯 5的低速自转输出; 图 2展示出 磁性齿轮副的永磁体异极性耦合的情况;
从图 2、图 3可以看出新型径向磁场的少极差磁场耦合式偏心磁性齿轮副的内部结构特征 如下:
二、 新型径向磁场的少极差磁场耦合式偏心磁性齿轮副由其上分布有 个定子永磁体 1 的定子、 其上分布有 2/^个转子永磁体 2的行星转子、 以及偏心输入轴 3、 轴承 II 12、 轴承 III 13构成一对磁性齿轮副,两种永磁体的永久磁场穿过定子和行星转子之间的径向气隙而相 互耦合, 形成磁性齿轮副的径向磁场; 定子永磁体 1 的分布极数 ¾¾与转子永磁体 2的分布 极数 2/^之间极数差较小, 极对数/ ¾和 /^为彼此互素的正整数对, 并满足以下关系约束: Ps>pr, 且 l≤Ps-pr<4;
三、 新型径向磁场的少极差磁场耦合式偏心磁性齿轮副的前端盖 4与行星转子铁芯 5呈 偏心分布结构, 由套装有轴承 II 12、 轴承 III 13的偏心输入轴 3将少极差的磁性齿轮副连接 成偏心结构; 其中, 行星转子铁芯 5与定子机壳 6的偏心距 α、 定子与行星转子之间的最小 气隙的长度^ 定子永磁体 1的内径 Ds、转子永磁体 2的外径 D、 以及极对数/ ¾和/^满足以 下结构关系约束: ^^ , a = -l D - D - 2e) ; 四、 新型径向磁场的少极差磁场耦合式偏心磁性齿轮副由螺栓将前端盖 4、 后端盖 11与 定子机壳 6紧固装配为整体结构,在偏心输入轴 3输入力矩 ^和转速 ηι的输入状态下,其输 出结构方式分为两种: 一为定子机壳 6固定而输出轴 10旋转输出力矩 T2和转速 η2 , 此时, 磁性齿轮副的传动满足约束: = = -~ ^与 ^彼此反向; 二为输出轴 10固定而定 、 Ps - Pr 子机壳 6旋转输出力矩 T2和转速 /¾, 此时, 磁性齿轮副的传动满足约束: ZL = = ^^,
Ά «2 ps - pr 与 彼此同向; 五、 新型径向磁场的少极差磁场耦合式偏心磁性齿轮副的行星转子的结构特征是: 偏心 且绕旋转中心轴线公转的行星转子是主动轮,它由 2/^个转子永磁体 2、行星转子铁芯 5组成; 转子永磁体 2用公知的永磁材料制成弧形的瓦片磁体结构, 且按 N极 S极间隔排列分布的方 式安装紧固于行星转子铁芯 5的外圆弧面上, 行星转子铁芯 5由导磁的硅钢板经常规的冲压 加工制成冲片形再经叠压焊接为一整体, 在行星转子铁芯 5的磁轭部位加工有将其自转转换 到输出轴 10旋转中心转动的孔销输出机构 7所需要的圆周均布销孔。 六、 新型径向磁场的少极差磁场耦合式偏心磁性齿轮副的定子的特征是: 驱使偏心公转 的行星转子同时自转的从动机构是定子, 它由 ¾¾个定子永磁体 1、 定子机壳 6组成; 定子永 磁体 1用公知的永磁材料制成弧形的瓦片磁体结构, 且按 N极 S极间隔排列分布的方式安装 紧固于定子机壳 6的内圆弧面上, 定子机壳 6由导磁的钢管经常规的机械切削加工制成。 以上所述的仅是本技术发明的优选实施方式, 对于本领域的技术人员来说, 在不脱离本 技术发明原理的前提下, 还可以作出若干结构变形和改进 (如将本发明涉及的磁性齿轮副进行 多极直轴串联即可构成多级变速传动系统), 这些也应该视为本技术发明的保护范围, 这些都 不会影响本技术发明实施的效果和实用性。

Claims

权 利 要 求 书
1. 新型径向磁场的少极差磁场耦合式偏心磁性齿轮副, 其特征是:
新型径向磁场的少极差磁场耦合式偏心磁性齿轮副由其上分布有 2ps个定子永磁体 (1)的 定子、 其上分布有 2/^个转子永磁体 (2)的行星转子、 以及偏心输入轴 (3)、 轴承 11(12)、 轴 承 111(13)构成一对磁性齿轮副, 两种永磁体的永久磁场穿过定子和行星转子之间的径向 气隙而相互耦合,形成磁性齿轮副的径向磁场; 定子永磁体 (1)的分布极数 ¾¾与转子永磁 体 (2)的分布极数 2/^之间极数差较小, 极对数/ ¾和/^为彼此互素的正整数对, 并满足以 下关系约束: p pr, 且 l≤ps-pr<4 ;
新型径向磁场的少极差磁场耦合式偏心磁性齿轮副的前端盖 (4)与行星转子铁芯 (5)呈偏心 分布结构, 由套装有轴承 11(12)、轴承 111(13)的偏心输入轴 (3)将少极差的磁性齿轮副连接 成偏心结构; 其中, 行星转子铁芯 (5)与定子机壳 (6)的偏心距 a、 定子与行星转子之间的 最小气隙的长度 e、 定子永磁体 (1)的内径 Ds、 转子永磁体 (2)的外径 Dr、 以及极对数 /¾ 和/ ^满足以下结构关系约束: ¾^ = , a = ^ x (D - D - 2e) ; 新型径向磁场的少极差磁场耦合式偏心磁性齿轮副由螺栓将前端盖 (4)、后端盖 (11)与定子 机壳 (6)紧固装配为整体结构, 在偏心输入轴 (3)输入力矩 Ti和转速 的输入状态下, 其 输出结构方式分为两种: 一为定子机壳 (6)固定而输出轴 (10)旋转输出力矩 T2和转速 η2, 此时,磁性齿轮副的传动满足约束: = = -_ ^与 彼此反向; 二为输出轴 (10) 、 Ps ~ Pr
固定而定子机壳 (6)旋转输出力矩 T2和转速 η2 , 此时, 磁性齿轮副的传动满足约束: I = H = ^ , WlW2彼此同向。
T、 n2 ps - pr
2. 根据权利要求 1 所述的一种新型径向磁场的少极差磁场耦合式偏心磁性齿轮副, 其特征 是: 偏心且绕旋转中心轴线公转的行星转子是主动轮, 它由 个转子永磁体 (2)、行星转 子铁芯 (5)组成; 转子永磁体 (2)用公知的永磁材料制成弧形的瓦片磁体结构, 且按 N极 S 极间隔排列分布的方式安装紧固于行星转子铁芯 (5)的外圆弧面上, 行星转子铁芯 (5)由导 磁的硅钢板经常规的冲压加工制成冲片形再经叠压焊接为一整体, 在行星转子铁芯 (5)的 磁轭部位加工有将其自转转换到输出轴 (10)旋转中心转动的孔销输出机构 (7)所需要的圆 周均布销孔。
3. 根据权利要求 1所述的一种新型径向磁场的少极差磁场耦合式偏心磁性齿轮副, 其特征 是: 驱使偏心公转的行星转子同时自转的从动机构是定子, 它由 个定子永磁体 (1)、定 子机壳 (6)组成; 定子永磁体 (1)用公知的永磁材料制成弧形的瓦片磁体结构, 且按 N极 S 极间隔排列分布的方式安装紧固于定子机壳 (6)的内圆弧面上, 定子机壳 (6)由导磁的钢管 经常规的机械切削加工制成。
PCT/CN2012/072497 2012-03-17 2012-03-17 新型径向磁场的少极差磁场耦合式偏心磁性齿轮副 WO2013138971A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2012/072497 WO2013138971A1 (zh) 2012-03-17 2012-03-17 新型径向磁场的少极差磁场耦合式偏心磁性齿轮副
CN201280022553.6A CN103582992A (zh) 2012-03-17 2012-03-17 新型径向磁场的少极差磁场耦合式偏心磁性齿轮副

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/072497 WO2013138971A1 (zh) 2012-03-17 2012-03-17 新型径向磁场的少极差磁场耦合式偏心磁性齿轮副

Publications (1)

Publication Number Publication Date
WO2013138971A1 true WO2013138971A1 (zh) 2013-09-26

Family

ID=49221775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/072497 WO2013138971A1 (zh) 2012-03-17 2012-03-17 新型径向磁场的少极差磁场耦合式偏心磁性齿轮副

Country Status (2)

Country Link
CN (1) CN103582992A (zh)
WO (1) WO2013138971A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019145397A1 (de) * 2018-01-26 2019-08-01 Stahl Cranesystems Gmbh Skalierbare hysteresekupplung

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108270339A (zh) * 2018-03-22 2018-07-10 大连交通大学 一种同轴摆线式永磁齿轮传动装置
CN109039013B (zh) * 2018-09-27 2023-06-20 深圳超磁机器人科技有限公司 一种双摆轮径向结构磁能减速机
CN111308343B (zh) * 2020-03-18 2022-06-17 华北电力大学(保定) 模拟轴-径向三维气隙混合偏心故障的动模实验机组

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB409501A (en) * 1933-04-05 1934-05-03 William Frederic Cleaver Electro magnetic gears
EP1353436A2 (en) * 2002-04-13 2003-10-15 ROLLS-ROYCE plc A compact electrical machine
CN101267152A (zh) * 2008-04-21 2008-09-17 上海大学 磁场调制式磁性齿轮
CN101499710A (zh) * 2008-02-03 2009-08-05 满永奎 磁性齿轮变速器
US20110215668A1 (en) * 2010-03-03 2011-09-08 Industrial Technology Research Institute Magnetic transmission assembly

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2390994A1 (en) * 2010-05-26 2011-11-30 Delphi Technologies, Inc. Magnetic gear and power split transmission using such
CN102420549A (zh) * 2010-09-27 2012-04-18 东元总合科技(杭州)有限公司 磁性齿轮及磁性传动装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB409501A (en) * 1933-04-05 1934-05-03 William Frederic Cleaver Electro magnetic gears
EP1353436A2 (en) * 2002-04-13 2003-10-15 ROLLS-ROYCE plc A compact electrical machine
CN101499710A (zh) * 2008-02-03 2009-08-05 满永奎 磁性齿轮变速器
CN101267152A (zh) * 2008-04-21 2008-09-17 上海大学 磁场调制式磁性齿轮
US20110215668A1 (en) * 2010-03-03 2011-09-08 Industrial Technology Research Institute Magnetic transmission assembly

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019145397A1 (de) * 2018-01-26 2019-08-01 Stahl Cranesystems Gmbh Skalierbare hysteresekupplung
US11557955B2 (en) 2018-01-26 2023-01-17 Stahl Cranesystems Gmbh Scalable hysteresis clutch

Also Published As

Publication number Publication date
CN103582992A (zh) 2014-02-12

Similar Documents

Publication Publication Date Title
CN103378711B (zh) 双机械端口磁导谐波式电磁齿轮复合永磁电机
CN202334126U (zh) 直驱式磁性传动与双定子结构的复合永磁电机
CN101938199B (zh) 径向-径向磁场调制型无刷复合结构电机
CN206807260U (zh) 一种新型磁齿轮装置
CN202488331U (zh) 新型径向磁场的少极差磁场耦合式磁性传动偏心齿轮副
CN102957260A (zh) 直驱式磁性传动与双定子结构的复合永磁电机
CN202602458U (zh) 双机械端口磁导谐波式电磁齿轮复合永磁电机
CN101667768B (zh) 无刷馈电爪极复合电机
WO2013138971A1 (zh) 新型径向磁场的少极差磁场耦合式偏心磁性齿轮副
CN101951088B (zh) 径向-轴径向磁场调制型无刷复合结构电机
CN102510191A (zh) 横向-轴径向磁通结构无刷复合式永磁电机
CN102857069B (zh) 轴向平面磁场的少极差磁导谐波式磁性齿轮副
CN103107676B (zh) 径向磁场的少极差磁场耦合式磁性传动偏心齿轮副
CN102611280B (zh) 径向磁场的少极差磁导谐波式磁性齿轮副
WO2013138970A1 (zh) 新型横向磁场的少极差磁场耦合式偏心磁性齿轮副
CN202349148U (zh) 新型横向磁场的少极差磁性传动偏心盘形齿轮副
CN202301828U (zh) 径向磁场的少极差磁场感应式磁性传动偏心齿轮副
CN202616967U (zh) 新型径向磁场的少极差电磁式偏心磁性齿轮副
CN102996752B (zh) 横向磁场的少极差磁性传动偏心盘形齿轮副
CN103016676B (zh) 横向磁场的异步感应式少极差磁性传动偏心齿轮副
CN104377916A (zh) 径向-轴径向磁场电磁行星齿轮功率分配器
CN202906721U (zh) 轴向平面磁场的少极差磁导谐波式磁性齿轮副
CN102624196B (zh) 一种径向磁场的少极差电磁式偏心磁性齿轮副
CN102361380B (zh) 横向-径向磁通结构无刷复合式永磁电机
CN202602516U (zh) 径向磁场的少极差磁导谐波式磁性齿轮副

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12872254

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12872254

Country of ref document: EP

Kind code of ref document: A1