WO2023179187A1 - 用于磁悬浮马达的定子组件、磁悬浮马达和体外离心式磁悬浮血泵 - Google Patents

用于磁悬浮马达的定子组件、磁悬浮马达和体外离心式磁悬浮血泵 Download PDF

Info

Publication number
WO2023179187A1
WO2023179187A1 PCT/CN2023/071775 CN2023071775W WO2023179187A1 WO 2023179187 A1 WO2023179187 A1 WO 2023179187A1 CN 2023071775 W CN2023071775 W CN 2023071775W WO 2023179187 A1 WO2023179187 A1 WO 2023179187A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
main side
magnetic levitation
stator teeth
circumferential surface
Prior art date
Application number
PCT/CN2023/071775
Other languages
English (en)
French (fr)
Inventor
徐嘉颢
唐斌
Original Assignee
心擎医疗(苏州)股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 心擎医疗(苏州)股份有限公司 filed Critical 心擎医疗(苏州)股份有限公司
Publication of WO2023179187A1 publication Critical patent/WO2023179187A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/845Constructional details other than related to driving of extracorporeal blood pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/104Extracorporeal pumps, i.e. the blood being pumped outside the patient's body
    • A61M60/109Extracorporeal pumps, i.e. the blood being pumped outside the patient's body incorporated within extracorporeal blood circuits or systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/205Non-positive displacement blood pumps
    • A61M60/216Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
    • A61M60/226Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller the blood flow through the rotating member having mainly radial components
    • A61M60/232Centrifugal pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/403Details relating to driving for non-positive displacement blood pumps
    • A61M60/422Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being electromagnetic, e.g. using canned motor pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/81Pump housings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/81Pump housings
    • A61M60/812Vanes or blades, e.g. static flow guides

Definitions

  • This application relates to the field of medical devices, specifically to a stator assembly for a magnetic levitation motor, a magnetic levitation motor and an extracorporeal centrifugal magnetic levitation blood pump.
  • a blood pump can be used to replace the heart to help maintain blood circulation in the human body.
  • Extracorporeal blood pumps usually include magnetic levitation motors, pump heads, and pipelines.
  • the motor is used to drive the impeller to rotate
  • the pipeline is used to achieve blood communication between the pump head and the patient.
  • the magnetic levitation motor drives the impeller in the pump head to rotate through magnetic coupling.
  • the impeller promotes the flow of blood through rotation or other mechanical movements that push the liquid, thereby assisting or replacing the heart to maintain blood circulation.
  • the motor is a reusable device, and the pump head and tubing are disposable items that come into contact with blood. They need to be replaced with new pump heads and tubing every time they are used.
  • the stator of a magnetic levitation motor usually includes an annular stator yoke 21 and a plurality of stator teeth 211 arranged on the stator yoke 21 along the circumferential direction.
  • the stator teeth 211 and the rotor 22 are both made of magnetically conductive materials.
  • the stator teeth 211 include a vertical part and a horizontal part that are perpendicular to each other and are in an inverted "L" shape.
  • the copper coil 212 is wound around the vertical part to provide radial electromagnetic force to the rotor 22 to levitate the rotor 22 .
  • the inner and outer surfaces of the stator teeth are both curved surfaces, and the inner straight surface and the outer curved surface are used in combination. Insulated skeleton. This results in a large air gap easily forming between the inner surface of the stator teeth and the inner surface of the insulating frame, weakening the power density.
  • the existing stator yoke 21 in order to smooth the magnetic circuit and facilitate processing, the existing stator yoke 21 usually adopts an integral circular ring structure.
  • the inner surface of the stator teeth 211 is attached to the arc surface design of the stator yoke 21 to match the arc surface.
  • the inner surface of the stator yoke 21 makes a smooth transition.
  • a stator assembly for a magnetic levitation motor including: an insulating frame wound with coils and a stator.
  • the stator includes: a stator yoke with an annular structure, at least one pair of stator teeth provided on the stator yoke, and the pairs of stator teeth are arranged oppositely on the stator yoke.
  • the stator teeth include perpendicular horizontal parts and vertical parts.
  • the lower end of the vertical part is carried on the upper surface of the stator yoke, and the insulating frame is set outside the vertical part.
  • the vertical portion has a first main side and a second main side opposite to each other in the radial direction, and the first main side is closer to the rotor than the second main side.
  • the first main side is a plane or an arc surface with a smaller curvature than the second main side, and the horizontal portion protrudes from the first main side in the radial direction.
  • the curvature of the first main side is less than half of the curvature of the second main side.
  • the stator yoke is a circumferentially continuous structure extending continuously in the circumferential direction.
  • the stator teeth and the stator yoke have a separate structure, and the lower end surface of the stator teeth is in contact with the upper surface of the stator yoke.
  • the stator yoke is an integral structure, and the stator teeth are an integral structure.
  • the stator yoke has an inner circumferential surface and an outer circumferential surface, and the vertical portion is closer to the side of the inner circumferential surface and the outer circumferential surface adjacent to the rotor.
  • the entire axial projection of the vertical portion is located on the upper surface of the stator yoke.
  • the vertical portion is closer to the inner circumferential surface of the stator yoke than to the outer circumferential surface of the stator yoke.
  • the stator assembly is configured to be disposed outside the rotor, and the stator has two pairs of stator teeth arranged circumferentially along the stator yoke.
  • the first main side is the inner side of the vertical part, and the second main side is an arc surface protruding outward in the radial direction.
  • the vertical part also has parallel first end surfaces and second end surfaces in the circumferential direction.
  • the inner peripheral surface of the stator yoke has a mating surface that is substantially flush with the first main side surface, and the mating surface is a flat surface.
  • the stator yoke is a square ring frame as a whole, and the corners of the square ring frame are provided with transitional rounded corners.
  • the four stator teeth are centered on the four sides of the square ring frame.
  • the first end surface and the second end surface are respectively perpendicular to the first main side of the plane.
  • the radial width of the vertical portion at the middle position in the circumferential direction is greater than the radial width of the first or second end surface.
  • the insulating frame has an inner cavity inserted into the vertical part, and the inner cavity has a first inner side facing the first main side.
  • the first inner side is a plane, and the distance between the first inner side and the first main side is less than 0.562mm. Further, the first inner side surface and the first main side surface are in contact with each other.
  • the inner cavity has a second inner side facing the second main side, and the second inner side has an arc surface with the same curvature as the second main side.
  • the distance between the second inner side and the second main side is less than 0.984 mm. Further, the second inner side and the second main side are in contact with each other.
  • the horizontal part has an inner circumferential surface facing the rotor and an outer circumferential surface facing away from the inner circumferential surface.
  • the curvature radius of the outer circumferential surface is greater than the curvature radius of the inner circumferential surface, and the curvature radius of the inner circumferential surface is 1.087 times to 1.872 times the radius of the rotor. .
  • the sum of the central angles corresponding to the inner circumferential surfaces of the horizontal portions of the plurality of stator teeth (all stator teeth) is greater than 180 degrees.
  • both ends of the horizontal portion in the circumferential direction have parallel end sides.
  • the end side is flat and has a narrowing surface between it and the inner peripheral surface of the horizontal part.
  • the radial length of the end side surface is at least 0.5 times the radial distance between the inner circumferential surface and the outer circumferential surface of the horizontal portion. Further, the radial length of the end side surface is greater than 0.65 times the radial distance between the inner circumferential surface and the outer circumferential surface of the horizontal portion. Furthermore, the radial length of the end side surface is greater than 0.831 times the radial distance between the inner circumferential surface and the outer circumferential surface of the horizontal portion.
  • a magnetic levitation motor includes: a motor housing and a stator assembly as described in any one of the above.
  • the stator assembly is located in the motor housing.
  • An extracorporeal centrifugal magnetic levitation blood pump includes: a magnetic levitation motor as described above, and a pump head detachably coupled with the magnetic levitation motor.
  • the pump head includes: a pump casing and an impeller contained in the pump casing. The impeller is suspended in the pump casing and driven to rotate by a magnetic levitation motor.
  • the straight or nearly straight surface design of the inner side of the vertical part can reduce the distance between the coil and the iron core (stator teeth), which is beneficial to reducing the use of ineffective materials and improving energy density.
  • the vertical part of the stator can be increased under the same outer diameter of the motor, and this design is also conducive to reducing the outer diameter of the motor to achieve miniaturization.
  • the straight or nearly straight surface design of the inner side of the vertical part under the same outer diameter of the motor can increase the volume of the stator core, thereby reducing the control current, reducing heat generation, and increasing the safety of the motor.
  • Figure 1 is a perspective view of the magnetic levitation motor structure in the prior art
  • Figure 2 is a perspective view of the structure of a magnetic levitation motor provided by an embodiment of the present disclosure
  • Figure 3 is a schematic structural diagram of Figure 2 after removing the rotor
  • Figure 4 is a top view of Figure 2;
  • FIG. 5 is a schematic diagram of the stator structure of Figure 2;
  • Figure 6 is an exploded view of the coil and stator teeth of Figure 5;
  • Figure 7 is a cross-sectional view of Figure 5;
  • Figure 8 is a cross-sectional view of the vertical portion of the stator teeth and the coil
  • Figure 9 is a top view of the stator yoke of Figure 2.
  • Figure 10 is a three-dimensional exploded view of an extracorporeal centrifugal magnetic levitation blood pump according to an embodiment of the present invention.
  • FIG. 11 is an exploded perspective view of the pump head in FIG. 10 .
  • the extracorporeal centrifugal magnetic levitation blood pump of this embodiment includes a magnetic levitation motor 100 and a pump head 101 detachably coupled with the magnetic levitation motor 100 .
  • the operable connection between the pump head 101 and the motor 100 may adopt or comply with the existing technologies or technical features described in the announcement numbers CN209187707U, CN209204247U, and CN209204246U, which will not be described in detail here.
  • the pump head 101 includes a pump housing 102 and an impeller 113 accommodated in the pump housing 102 .
  • the impeller 113 can be suspended in the pump housing 102 and can be driven by the motor 100 to rotate around the axis A to pump blood from the blood inlet connector 106 of the pump housing 102 to the blood outlet connector 107 .
  • the suspension of the impeller 113 in the pump casing 102 can be achieved with the help of known embodiments provided with announcement numbers CN111561519B or CN112546425B, which will not be described again here.
  • the impeller 113 can be driven by magnetic coupling. Specifically: as shown in Figure 4, Figure 9 and Figure 10, the output shaft of the motor 100 is provided with a shaft sleeve 263, and a plurality of arc-shaped active magnets 262 are provided outside the shaft sleeve 263. The plurality of active magnets 262 are arranged in an The tubular wrapper 300 is fixed.
  • the pump housing 102 includes an annular receiving cavity 109, and the impeller 113 includes an impeller housing 150 located in the annular receiving cavity 109 and a plurality of blades 103 provided on the impeller housing 150.
  • the impeller housing 150 is provided with a rotor 22, and the rotor 22 Contains a plurality of arc-shaped passive magnets 261.
  • the output shaft of the motor 100 is inserted into the pump casing 102 of the pump head 101.
  • the active and passive magnets 261 and 262 are coupled through magnetic force, and then the rotation of the motor 100 can be transmitted to the impeller 113 to realize the impeller. 113 rotary drive.
  • the pump housing 102 includes an upper cover 104 and a lower cover 105.
  • the upper cover 104 is fixedly covered with the lower cover 105 to form the pump housing 102.
  • the blood inlet connector 106 is located on the upper cover 104, and most of the blood outlet connector 107 is located on the lower cover 105.
  • the magnetic levitation motor 100 includes a stator assembly fixed in the motor housing 108 .
  • the stator assembly mainly includes an insulating frame 1 and a stator 20 (which can also be called a stator core).
  • the stator 20 includes: a stator yoke 21 with an annular structure, and at least a pair of stator teeth 211 provided on the stator yoke 21 .
  • the rotor 22 may be disk-shaped and rotatable about the rotation axis A. Ideally, the stator 21 and the rotor 22 are coaxial.
  • the stator teeth 211 are made of magnetically permeable material, such as ferromagnetic material.
  • the stator teeth 211 are at least one pair, and two stator teeth 211 in each pair of stator teeth 211 are arranged opposite to each other along the radial direction.
  • the specific number of pairs of stator teeth 211 can be arranged as needed.
  • the preferred number of stator teeth 211 is two pairs, which facilitates mirror-symmetrical arrangement.
  • the stator teeth 211 are wound with a coil 212 via the insulating frame 1 . Therefore, the insulating frame 1 and the stator teeth 211 may be nested, and the insulating frame 1 is made of insulating material, and the specific material is not limited.
  • the stator teeth 211 comprise vertical portions 32 and horizontal portions 32 which are perpendicular to each other. Part 31, inverted "L" shape.
  • the stator teeth 211 are an integral structure, that is, the horizontal part 31 and the vertical part 32 are an integral structure. More specifically, the stator teeth 211 are an integral structure made of pure iron.
  • the horizontal portion 31 of the stator teeth 211 and the rotor 22 may have the same thickness, and ideally, the horizontal portion 31 of the stator teeth 211 and the rotor 22 are at the same height, and between the horizontal portion 31 of the stator teeth 211 and the rotor 22 There are gaps or air gaps.
  • the horizontal portion 31 includes an upper surface 2111, a lower surface 2112, an arc-shaped inner peripheral surface 2113 and an outer peripheral surface 2114.
  • the outer peripheral surface 2114 is substantially concentric with the inner peripheral surface 2113, and the curvature of the outer peripheral surface 2114 is smaller than the curvature of the inner peripheral surface 2113.
  • the vertical portion 32 has the same cross-section at different heights and is vertically installed on the upper surface of the stator yoke 21 .
  • the vertical portion 32 has a first main side 321 and a second main side 322 opposite to each other in the radial direction.
  • the first main side 321 is closer to the rotor 22 than the second main side 322 and faces the rotor 22 .
  • the curvatures of the first main side 321 and the second main side 322 are different.
  • the first main side 321 is a plane (also called a straight surface) or its curvature is smaller than the curvature of the second main side 322 .
  • the curvature of the first main side 321 is less than half of the curvature of the second main side 322 .
  • the side (first main side 321 ) of the vertical portion 32 close to the rotor 22 has a planar or quasi-planar design.
  • the first main side 321 is the inner side of the vertical part 32
  • the second main side 322 is the outer side of the vertical part 32
  • the second main side 322 and the outer peripheral surface 2114 of the horizontal part 31 are arranged coplanarly, and both have arc structures.
  • the first main side 321 is coplanar and flush with the inner surface of the stator yoke 21 .
  • the first main side 321 is perpendicular to the lower surface of the horizontal part 31 .
  • the first main side surface 321 is a plane, and the first main side surfaces 321 of the paired stator teeth are arranged in parallel.
  • the first main side is the outer side of the vertical part 32 and the second main side is the inner side of the vertical part 32 .
  • This circumferential direction F1 can be regarded as the extending direction of the annular stator yoke 21 .
  • Both the first end surface 324a and the second end surface 324b are flat surfaces and are vertical flat surfaces.
  • the first end surface 324a and the second end surface 324b are respectively substantially perpendicular to the first main side surface 321.
  • the radial distance between the second main side 322 and the first main side 321 is the radial width.
  • the radial width of the vertical portion 32 at the middle position in the circumferential direction F1 is greater than the radial width of its two ends (first end surface, second end surface).
  • the vertical portion 32 has a maximum radial width at an intermediate position in the circumferential direction F1.
  • the vertical portion 32 has a minimum radial width at both ends in the circumferential direction F1.
  • the horizontal part 31 has one end (outer end) coupled to the vertical part 32 and an inner end having an inner peripheral surface 2113 .
  • One end of the horizontal portion 31 having the inner peripheral surface 2113 protrudes from the vertical portion 32 in the radial direction F2 and protrudes toward the rotor 22 .
  • the horizontal part 31 protrudes from the first main side 321 of the vertical part 32 in the radial direction F2.
  • the horizontal portion 31 has an inner peripheral surface 2113 facing the rotor 22 and an outer peripheral surface 2114 facing away from the inner peripheral surface 2113 .
  • the radius of curvature of the outer peripheral surface 2114 of the horizontal portion 31 is greater than the radius of curvature of the inner peripheral surface 2113 of the horizontal portion 31 .
  • the radius of curvature of the inner peripheral surface 2113 of the horizontal portion 31 is 1.087 times to 1.872 times the radius of the rotor 22 .
  • the sum of the central angles corresponding to the inner peripheral surfaces 2113 of the horizontal portions 31 of all stator teeth 211 is greater than 180 degrees.
  • the sum of the central angles of the inner circumferential surfaces 2113 of the four horizontal parts 31 is greater than 180 degrees, that is, the central angle of the inner circumferential surfaces 2113 of each horizontal part 31 is greater than 45 degrees.
  • any numerical value in this disclosure includes all values from the lower value to the upper value in one-unit increments between the lower value and the upper value, and between any lower value and any higher value there is at least Just two units apart.
  • the multiples of the curvature radius R1 of the inner peripheral surface 2113 are 1.087 times to 1.872 times, further 1.101 times to 1.79 times, further 1.125 times to 1.35 times, for the purpose of explaining the above not explicitly listed, such as 1.112 times, 1.113 times, 1.115 times, 1.127 times, 1.129 times, 1.132 times, 1.136 times, etc.
  • the two ends of the horizontal part 31 in the circumferential direction F1 have parallel end side surfaces 2115, and the end side surfaces 2115 are flat.
  • first end side surfaces 2115a and second end side surfaces 2115b between the inner peripheral surface 2113 and the outer peripheral surface 2114 of the horizontal portion 31 .
  • the first end side surface 2115a and the second end side surface 2115b are respectively located on both sides of the horizontal portion 31 in the circumferential direction F1.
  • the first end side surface 2115a and the second end side surface 2115b are coplanar with the first end surface 324a and the second end surface 324b respectively.
  • the first end side 2115 and the second end side 2115 are also flat.
  • a narrowing surface 2116 is provided between the end side surface 2115 and the inner peripheral surface 2113 of the horizontal portion 31 .
  • the radial length of the end side surface 2115 (the length along the radial direction F2, is also the inner peripheral surface 2113 and the outer peripheral surface of the end side surface 2115 2114) is more than 0.5 times the radial distance between the inner circumferential surface 2113 and the outer circumferential surface 2114 of the horizontal portion 31.
  • the radial length of the end side surface 2115 is greater than 0.65 times the radial distance between the inner circumferential surface 2113 and the outer circumferential surface 2114 of the horizontal portion 31 .
  • the radial length of the end side surface 2115 is greater than 0.831 times the radial distance between the inner peripheral surface 2113 and the outer peripheral surface 2114 of the horizontal portion 31 .
  • the coils 212 (212a, 212b, 212c, 212d) are looped around the vertical portion 32, and the vertical portion 32 forms a core surrounded by the coils 212.
  • the straight or nearly straight surface design of the inner side 321 of the vertical part 32 can reduce the distance between the coil 212 and the iron core (stator teeth 211), which is beneficial to reducing ineffective material usage and improving energy density.
  • the vertical part 32 facing the peripheral surface 321 of the rotor 22 can be increased under the same outer diameter of the motor.
  • such a design is conducive to reducing the outer diameter of the motor and achieving a compact size. transformation purpose.
  • the straight or nearly straight surface design of the inner side 321 of the vertical portion 32 under the same outer diameter of the motor can increase the volume of the stator core 20, thereby reducing the control current, reducing heat generation, and increasing the safety of the motor.
  • stator teeth 211 When the stator teeth 211 have an arc of curvature, it is difficult to process, and the machining accuracy is difficult to guarantee.
  • the assembly accuracy with the insulating frame 1 is poor.
  • the inner straight surface 321 can improve the processability of the stator teeth 211.
  • the straight surface shape can achieve higher machining accuracy while ensuring Assembly accuracy with insulating skeleton 1.
  • stator teeth 211 When the inside of the stator teeth 211 is a curved surface or a straight surface, it will affect the area that can conduct magnetic flux, and this difference will become larger with the angle of the stator teeth 211 relative to the entire circle. That is to say, the smaller the outer diameter of the motor, the greater the area difference between the straight surface and the curved surface that can be used in the motor. In the same way, when the radius is smaller, the usable area becomes larger. The same principle applies to arc-like designs. The radius of curvature and included angle will affect the size of the usable area when choosing a straight or curved surface. As for the small-diameter magnetic levitation motor 100 , the stator teeth 211 designed to face directly can significantly improve the area of conductive magnetic flux, which is beneficial to miniaturization of the equipment.
  • the rotor 22 includes an upper surface 221 , a lower surface 222 , and a circumferential outer peripheral surface 223 .
  • the upper surface 2111 of the horizontal portion 31 of the stator teeth 211 is flush with the upper surface 221 of the rotor 22
  • the lower surface 2112 of the horizontal portion 31 of the stator teeth 211 is flush with the lower surface 222 of the rotor 22
  • the stator teeth are flush with each other.
  • the coil 212 is wound around the vertical portion 32 of the stator teeth 211 for providing a radial F2 electromagnetic force (attraction or repulsion) to the rotor 22 to levitate the rotor 22 .
  • a radial F2 electromagnetic force attraction or repulsion
  • an electromagnetic field is generated on the stator teeth 211 .
  • the radial F2 electromagnetic force attraction or repulsion
  • the rotor 22 can float in the radial F2 plane (Fig. 2 and Fig. 3) in the XY plane.
  • the stator 21 includes four stator teeth 211 (211a, 211b, 211c, 211d), which exist in two pairs, and each stator tooth 211 is provided with a coil 212.
  • the four stator teeth 211 are evenly distributed along the circumferential direction (stator yoke extension direction) F1, and thus can be divided into two pairs of stator teeth (211a, 211c), (211b, 211d), each pair of stator teeth (211a, 211c)/(211b , 211d), the two stator teeth are arranged opposite to each other along the radial direction F2.
  • a pair of stator teeth 211b, d are arranged oppositely along the X-axis, and another pair of stator teeth 211a, c are arranged oppositely along the Y-axis.
  • more pairs of stator teeth may be provided (such as three or four pairs of stator teeth) without departing from this disclosure.
  • the coils 212 on each pair of stator teeth 211 can generate electromagnetic forces on the rotor 22 in the same direction or in opposite directions.
  • the coils 212 of each pair of stator teeth 211 generate electromagnetic forces in opposite directions on the rotor 22, so that the rotor 22 can be stably suspended in the radial F2 plane without moving along the radial plane F2.
  • Radial F2 displacement occurs on the X-axis or Y-axis.
  • each pair of stator teeth 211 The coil 212 generates an electromagnetic force in the same direction on the rotor 22, and the resultant direction of the electromagnetic force is opposite to the direction of the radial F2 deflection of the rotor 22, thus helping to quickly return the rotor 22 to the central equilibrium position.
  • the magnitude and/or direction of the electromagnetic force generated can be changed by individually adjusting the magnitude and/or direction of the current flowing through the corresponding one or more coils 212, through the so-called "push-pull" generated by it.
  • the effect causes the rotor 22 to move in the opposite radial direction F2, so that it quickly returns to a central equilibrium position that can stabilize the suspension.
  • the coil 212 on one pair of stator teeth 211 can control the displacement of the rotor 22 on the X axis
  • the coil 212 on the other pair of stator teeth 211 can control the displacement of the rotor 22 on the Y axis.
  • the displacement on the shaft makes it possible to adjust the position of the rotor 22 relative to the stator 21 in the radial F2 plane.
  • the magnetic levitation motor 100 is also provided with a stiffness gain mechanism composed of the rotor permanent magnet 231 and the stator permanent magnet 232 and carried on the base.
  • the setting method of the stiffness gain mechanism can be referred to the disclosure of CN111561519A, which will not be described again.
  • the stator yoke 21 is an annular structure, which extends continuously along the circumferential direction F1 and has no discontinuous connection parts. That is, the stator yoke 21 is a circumferential continuous structure extending continuously along the circumferential direction F1, and is not formed by splicing multiple substructures along the circumferential direction F1. It should be noted that the annular structure of the stator yoke 21 is not limited to a circular ring structure, and may also be an elliptical ring structure or a square structure. The annular structure is essentially a circumferential structure. Of course, the outer peripheral surface of the stator yoke 21 can still be arc-shaped.
  • stator yoke 21 is provided with two pairs of stator teeth 211 .
  • the stator yoke 21 is a square ring frame as a whole, and the corners of the square ring frame are provided with transition fillets 217.
  • the four stator teeth 211 are respectively centered on the four sides of the square ring frame.
  • the stator yoke 21 is made of pure iron. In order to facilitate magnetic transmission, the stator yoke 21 has an integrated structure. Of course, ring-shaped silicon steel sheets can also be stacked.
  • the stator teeth 211 and the stator yoke 21 have a separate structure.
  • the lower end surface 323 of the stator teeth 211 is in contact with the upper surface 215 of the stator yoke 21 to facilitate magnet transmission between the two.
  • the motor housing 108 is provided with an installation structure for assembling and positioning the stator teeth 211 and the stator yoke 21 so that the stator teeth 211 and the stator yoke 21 are relatively fixed and keep the stator yoke 21 and the stator teeth 211 in close contact.
  • the stator yoke 21 has an (annular) inner circumferential surface 218 and an (annular) outer circumferential surface 216 , the vertical portion 32 being closer to the side of the inner circumferential surface 218 and the outer circumferential surface 216 adjacent to the rotor 22 . In this way, the air gap between the horizontal part 31 and the rotor 22 can be reduced, thereby effectively increasing the control efficiency.
  • the vertical portion 32 is located closer to the inner circumferential surface 218 of the stator yoke 21 than to the outer circumferential surface 216 of the stator yoke 21 .
  • the entire axial projection of the vertical portion 32 is located on the upper surface 215 of the stator yoke 21 .
  • the stator teeth 211 are carried on the upper surface of the stator yoke 21 .
  • the lower end surface 323 of the stator teeth 211 is a flat surface, and the lower end surface 323 is in contact with the upper surface of the stator yoke 21 .
  • the second main side surface 322 is located inside the outer peripheral surface 216 of the stator yoke 21 in the radial direction F2. The second main side surface 322 does not protrude from the outer peripheral surface 216 of the stator yoke 21 .
  • the partial inner peripheral surface 218 of the position is designed to have the same curvature or plane as the first main side 321 of the vertical portion 32 .
  • the inner peripheral surface 218 of this part is a mating surface 2119 that is substantially flush with the first main side 321 .
  • the mating surface 2119 is a flat surface (straight surface).
  • the mating surface 2119 of the stator yoke 21 may not be a plane, or may be an arc surface with a small curvature, as long as the first main side surface 321 and the mating surface 2119 of the stator yoke 21 have a high probability of coincidence.
  • the stator yoke 21 has a rectangular frame structure as a whole, more specifically a square frame structure, and the corners of the stator yoke 21 are provided with rounded corner transition structures 217 .
  • the side edges of each stator yoke 21 correspond to the stator teeth 211 one-to-one.
  • the stator teeth 211 are located centrally on the sides of the stator yoke 21 .
  • the first main side 321 of the stator teeth 211 is flush with the mating surface 2119 (inner peripheral surface 218) of the stator yoke 21.
  • the planar design of the mating surface 2119 of the stator yoke 21 also improves the machinability of the stator iron ring. sex.
  • the insulating frame 1 includes a first baffle 12 and a second baffle 17 that are substantially parallel, and an insulating body 11 located between the first baffle 12 and the second baffle 17 .
  • the insulating frame 1 is roughly in an "I" shape, and the coil 212 is wound transversely between the first baffle 12 and the second baffle 17 .
  • the insulating frame 1 and the stator are both accommodated in the housing of the magnetic levitation motor 100 .
  • the insulating body 11 has an opposite first end (upper end) and a second end (lower end) in the axial direction.
  • the first end is provided with a first baffle 12 and the second end is provided with a second baffle 17.
  • the stator teeth 211 are The vertical portion 32 sequentially extends along the axial direction (Z-axis direction) Passed through the first baffle 12 , the insulating body 11 and the second baffle 17 .
  • the horizontal portion 31 of the stator teeth 211 is close to the first baffle 12 and may be separated by a gap.
  • the projections of the outer contours of the first baffle 12 and the second baffle 17 can overlap, and the insulating body 11 is located outside the first baffle 12 and the second baffle 17.
  • the interior of the contour projection may not protrude from the outer contours of the first baffle 12 and the second baffle 17 .
  • the portion of the insulating body 11 around which the coil 212 is wound will not exceed the maximum outer contour edges of the first baffle 12 and the second baffle 17 .
  • the insulating frame 1 and the stator teeth 211 can be assembled together.
  • the insulating frame 1 and the stator teeth 211 can be assembled separately after being formed separately.
  • the two baffles of the insulating frame 1 are provided with openings for inserting the stator teeth 211, and the insulating body 11 of the insulating frame 1 has a hollow structure.
  • the stator teeth 211 are installed into the insulating frame 1, there is a certain gap between the outer surface of the stator teeth 211 and the hollow structure of the insulating body 11. If the wall thickness of the insulating body 11 is too small, when the coil 212 is tightly wound, the insulating frame will 1Due to its low strength, it is prone to damage.
  • the insulating body 11 needs to have a certain thickness. An increase in the thickness of the insulating body 11 will result in a smaller winding space for the coils 212, which is not conducive to maximum density stacking of coils.
  • the insulating frame 1 and the stator teeth 211 can also be assembled using an interference fit. Installation in this way also requires the insulating frame 1 and the stator teeth 211 to be formed separately and then assembled.
  • the two baffles of the insulating frame 1 are provided with openings for inserting the stator teeth 211, and the insulating body 11 of the insulating frame 1 has a hollow structure.
  • the stator teeth 211 are installed into the insulating frame 1 , there is no gap between the outer surface of the stator teeth 211 and the hollow structure of the insulating body 11 .
  • the insulating body 11 needs to have a certain thickness. However, an increase in the thickness of the insulating body 11 will result in a smaller winding space for the coils 212, which is not conducive to maximum density stacking of coils.
  • the insulating frame 1 and the vertical portion 32 of the stator teeth 211 can also be integrated through an adhesive portion.
  • a filler can be provided between the insulating frame 1 and the stator teeth 211 after they are separately formed. The filler forms an adhesive portion so that the insulating frame 1 and the stator teeth 211 are in close contact with each other. There is no gap between them.
  • the vertical portion 32 of the stator teeth 211 is an arc-shaped strip structure protruding outward along the radial direction F2.
  • the insulating body 11 of the insulating frame 1 includes side walls surrounding the first baffle 12 and the second baffle 17 .
  • the side walls of the insulating frame 1 surround the vertical portion 32 of the stator teeth 211 , and the side walls include: opposite first main side walls 111 and second main side walls 112 , and two other opposite ones.
  • the insulating frame 1 has an inner cavity 214 that is inserted into the vertical portion 32 .
  • the cross-section of the lumen 214 matches the cross-section of the vertical portion 32 .
  • the inner cavity 214 has a first inner side 115 opposite to the first main side 321 and a second inner side 116 opposite to the second main side 322 .
  • the first inner side 115 is flat.
  • the first main side 321 can form a guide surface to facilitate assembly with the insulating frame.
  • the first inner side 115 and the first main side 321 are in contact with each other.
  • the second inner side 116 is in contact with the second main side 322 .
  • the inner cavity 214 also has parallel end side surfaces 118 and 119, which are parallel to the first end surface 324a and the second end surface 324b respectively.
  • the first inner side 115 serves as the mating surface of the first main side 321 and also adopts a planar design, which can also reduce the processing difficulty of the insulating frame 1 .
  • the gap distance between the first inner side surface 115 and the first main side surface 321 is less than 0.562 mm.
  • the gap distance between the second inner side 116 and the second main side 322 is less than 0.984 mm.
  • the binding effect of the coils 212 will further reduce the gap between the plastic frame 1 and the vertical part 32, making the two transitionally fit (similar to interference fit), and the position of the plastic frame in the vertical part 32 will be further fixed.
  • the vertical portion 32 extends in the axial direction.
  • the horizontal part 31 is provided at one end of the vertical part 32, and the other end of the vertical part 32 is the insertion end.
  • the stator teeth 211 are inserted through the plastic frame 1 from the upper port of the plastic frame 1 through the insertion end of the vertical part 32 (the lower end of the vertical part 32 ), so that the plastic frame 1 is sleeved outside the vertical part 32 .
  • the first inner side 115 of the planar structure provides a fitting guide for the vertical portion 32 to facilitate insertion and positioning.
  • the end surface 323 of the insertion end (the lower end of the vertical portion 32 ) is flat and serves as the fitting surface of the stator yoke 21 .
  • the insertion end passes through the plastic frame 1, and its end surface 323 extends from the plastic frame 1 to fit the upper surface of the stator yoke 21.
  • the vertical portion 32 of the stator teeth 211 can be inserted into the insulating frame 1 through the lower end from the port of the insulating frame 1 (the upper port of the inner cavity 214) for matching.
  • the side (first main side 321 ) of the vertical portion 32 of the stator teeth 211 facing the annular inner peripheral surface 218 is designed to be an arc surface with the same curvature as the stator yoke 21 .
  • the first main side 321 of the planar structure of the stator teeth 211 may be flush with the partial annular inner peripheral surface 2119 of the planar structure of the stator yoke 21 .
  • the outer wall surface 119 of the first main side wall 111 adopts a flat design, while its inner surface (the first inner surface 115) adopts a curved surface design, which requires greater processing requirements.
  • the assembly requirements for the insulating frame 1 and the stator teeth 211 are relatively high.
  • the structural strength of the insulating frame 1 is improved to ensure that the strength requirements are met after the winding is completed.
  • the first main side wall 111 and the second main side wall 112 of the insulating body 11 are located between the first baffle 12 and the second baffle 17 and are located in the radial direction F2 of the stator yoke 21
  • the two front and rear wall panels are used to wind the coil 212 laterally.
  • the coil 212 is wound around the first main side wall 111 and the second main side wall 112, and is connected with the first main side wall 111 and the second main side wall 112.
  • the wall 111 and the second main side wall 112 are in close contact with each other.
  • the first main side wall 111 may be designed as a flat wall plate.
  • the outer surface 119 of the first main side wall 111 is a flat surface (straight surface), which is not easy to break when winding the coil 212, and is neatly arranged, and is not prone to breakage, misalignment, etc.
  • the second main side wall 112 is an arc surface 116 that protrudes outward away from the first main side wall 111 .
  • the second main side wall 112 protrudes toward the side away from the rotor 22 in the radial direction F2 (projects outward in the radial direction F2 ), so that when the housing is installed outside the stator assembly, the motor structure can be made more compact without unnecessary gaps.
  • the second main side wall 112 has the same curvature as the second main side surface 322 .
  • the second main side wall 112 of the insulating body 11 has the same curvature as the second main side 322 of the vertical portion 32 , in particular, both the inner and outer side surfaces of the second main side wall 112 have the same curvature as the second main side surface 322 . That is to say, the curvature of the outer arc surface of the insulating body 11 remains consistent with the stator teeth 211 , and the inner surface (second inner surface 116 ) of the second main side wall 112 of the insulating body 11 and the second main side surface 322 of the stator teeth 211 can be maintained. Fits snugly and saves space.
  • the first main side surface 321 of the stator teeth 211 is in close contact with the inner surface (first inner side surface 115 ) of the first main side wall 111 of the insulating body 11 , forming a planar fit.
  • the straight surface is a flat surface without obvious concave and convex portions.
  • the first main side 321 and the first inner side 115 are two parallel planes. Viewed from the side of the stator teeth 211, the first main side 321 is a flat surface and the second main side 322 is a convex surface. , and the first inner side 115 that is in contact with the first main side 321 is a straight surface (flat surface).
  • the first main side wall 111 of the insulating body 11 is a planar plate structure with both inner and outer surfaces being flat, which not only reduces the difficulty of processing, but also ensures that the coil 212 wound on the insulating body 11 is in contact with the outer wall surface of the first main side wall 111 119 fits tightly and is not prone to wire breakage, misalignment, etc., thus meeting the winding conditions.
  • the first main side wall 111 has a planar plate structure, which can avoid interference between the coil 212 and the rotor 22 and ensure a certain gap between the two.

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Mechanical Engineering (AREA)
  • Anesthesiology (AREA)
  • Cardiology (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

一种用于磁悬浮马达(100)的定子组件、磁悬浮马达(100)和包括磁悬浮马达(100)的体外离心式磁悬浮血泵。定子组件包括缠绕有线圈(212)的绝缘骨架(1)和定子(20)。定子(20)包括呈环状结构的定子轭(21)、设在定子轭(21)上的至少一对定子齿(211),成对的定子齿(211)在定子轭(21)上相对设置。定子齿(211)包括相垂直的水平部分(31)和竖直部分(32),竖直部分(32)的下端承载于定子轭(21)的上表面。绝缘骨架(1)套设于竖直部分(32)外,竖直部分(32)在径向上具有相背对的第一主侧面(321)和第二主侧面(322),第一主侧面(321)相对于第二主侧面(322)更靠近转子(22)。第一主侧面(321)为平面或者为曲率相对于第二主侧面(322)更小的弧面,水平部分(31)在径向上凸出第一主侧面(321)。

Description

用于磁悬浮马达的定子组件、磁悬浮马达和体外离心式磁悬浮血泵
交叉参考相关引用
本申请要求2022年3月22日递交的申请号为202210288482.X、发明名称为“用于磁悬浮马达的定子组件、磁悬浮马达和体外离心式磁悬浮血泵”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及医疗器械领域,具体涉及一种用于磁悬浮马达的定子组件、磁悬浮马达和体外离心式磁悬浮血泵。
背景技术
在心脏失去泵血功能的情况下(例如心脏停跳手术、急性心源性休克等),可以使用血泵来代替心脏,以便辅助维持人体血液循环。
体外式血泵通常包括磁悬浮马达、泵头以及管路等。泵头的内部设有叶轮,马达用于驱动叶轮转动,管路用于实现泵头与患者之间的血液连通。其中,磁悬浮马达通过磁耦合的方式驱动泵头内的叶轮旋转,叶轮通过转动或者其他推动液体的机械运动来促进血液的流动,从而辅助或者代替心脏来维持血液的循环。马达属于可重复使用的设备,泵头和管路属于接触血液的一次性用品,每次使用时需要更换新的泵头和管路。
现有技术中,如图1所示,与传统马达相比,磁悬浮马达的转子22与定子之间没有物理接触,且转子22和定子之间可以具有较大间隙,这使得磁悬浮马达具有显著优势。一方面,没有物理接触会消除磁悬浮马达的各部件的机械磨损;另一方面,较大的间隙会使得流过间隙的流体经受较小的剪切应力,对于血液来说,这有利于减小对血液细胞的伤害,从而有助于改善血液的相容性。
作为磁悬浮马达的定子通常包括圆环状的定子轭21和沿着圆周方向布置在定子轭21上的多个定子齿211,定子齿211和转子22均由导磁性材料制成。定子齿211包括彼此垂直的竖直部分和水平部分,呈倒“L”型,铜线圈212缠绕在竖直部分上,用于向转子22提供径向电磁力,以便使转子22悬浮起来。
以CN112421811A、CN112421909B、CN213402592U、CN111561519A为例的已知实施例,采用的定子齿的内侧和外侧表面均为弧面,再配合使用内侧直面、外侧弧面的 绝缘骨架。这导致定子齿的内侧面与绝缘骨架内侧面之间易形成较大的空气间隙,削弱能力密度。
发明内容
发明人研究发现,现有定子齿的竖直部分的设计尤其内侧面的弧面设计是沿用定子轭21的设计。参见图1所示,为磁路通顺以及便于加工,现有定子轭21的通常采用整体圆环结构,为避免漏磁,定子齿211的内表面依附于定子轭21的弧面设计,以与定子轭21的内表面进行平滑过渡。
一种用于磁悬浮马达的定子组件,包括:缠绕有线圈的绝缘骨架、定子。其中,定子包括:呈环状结构的定子轭、设在定子轭上的至少一对定子齿,成对的定子齿在定子轭上相对设置。定子齿包括相垂直的水平部分和竖直部分,竖直部分的下端承载于定子轭的上表面,绝缘骨架套设于竖直部分外。竖直部分在径向上具有相背对的第一主侧面和第二主侧面,第一主侧面相对于第二主侧面更靠近转子。第一主侧面为平面或者为曲率相对于第二主侧面更小的弧面,水平部分在径向上凸出所述第一主侧面。
优选的,第一主侧面的曲率在第二主侧面的曲率的一半以下。
优选的,定子轭为沿周向连续延伸的周向连续结构。定子齿与定子轭为分体结构,定子齿的下端面与定子轭的上表面接触贴合。进一步地,定子轭为一体结构,定子齿为一体结构。
优选的,定子轭具有内周面和外周面,竖直部分更靠近内周面和外周面中邻近转子的侧面。
优选的,竖直部分沿轴向的投影全部位于定子轭的上表面。相对于定子轭的外周面,竖直部分更靠近定子轭的内周面。
优选的,定子组件用于配设于转子外,定子具有两对沿定子轭周向布置的定子齿。第一主侧面为竖直部分的内侧面,第二主侧面为沿径向向外凸出的弧面。竖直部分在周向上还具有相平行的第一端面和第二端面。
优选的,定子轭的内周面具有与第一主侧面大致齐平的配合面,配合面为平面。
优选的,定子轭整体为正方形环框,正方形环框的边角处设有过渡圆角。四个定子齿分别居中位于正方形环框的四个侧边。
优选的,第一端面和第二端面分别与平面的第一主侧面相垂直。
优选的,竖直部分在周向上中间位置的径向宽度大于第一或第二端面的径向宽度。
优选的,绝缘骨架具有套入竖直部分的内腔,内腔具有与第一主侧面相面对的第一内侧面。第一内侧面为平面,第一内侧面和第一主侧面之间的间距在0.562mm以下。进一步地,第一内侧面和第一主侧面贴合。
优选的,内腔具有与第二主侧面相面对的第二内侧面,第二内侧面与第二主侧面相同曲率的弧面。第二内侧面和第二主侧面之间的间距在0.984mm以下。进一步地,第二内侧面和第二主侧面贴合。
优选的,水平部分具有朝向转子的内周面以及背对内周面的外周面,外周面的曲率半径大于内周面的曲率半径,内周面的曲率半径为转子半径的1.087倍-1.872倍。
优选的,多个定子齿(所有定子齿)的水平部分的内周面所对应的圆心角之和大于180度。
优选的,水平部分在周向上的两端具有相平行的端侧面。端侧面为平面,并与水平部分的内周面之间设有收窄面。端侧面的径向长度在0.5倍的水平部分的内周面和外周面之间的径向间距以上。进一步地,端侧面的径向长度在0.65倍的水平部分的内周面和外周面之间的径向间距以上。更进一步地,端侧面的径向长度在0.831倍的水平部分的内周面和外周面之间的径向间距以上。
一种磁悬浮马达,包括:马达壳体、如上任意一项所述的定子组件。定子组件设在马达壳体内。
一种体外离心式磁悬浮血泵,包括:如上所述的磁悬浮马达、与磁悬浮马达可拆卸接合的泵头。泵头包括:泵壳、容纳于泵壳内的叶轮,叶轮悬浮于泵壳内并被磁悬浮马达驱动旋转。
本公开的磁悬浮马达用定子组件中,竖直部分的内侧面的直面或近直面设计可以减少线圈与铁芯(定子齿)之间的距离,有利于减少无效的材料使用,提高能量密度。而且,相同马达外径下能够增加定子的竖直部分,进而如此设计也有利于缩小马达外径,达到小型化的目的。
若维持马达外部形状,也即同样马达外径下竖直部分的内侧面的直面或近直面设计可以增加定子铁心的体积,进而降低控制电流,减少热量产生,增加马达安全性。
附图说明
图1是现有技术中的磁悬浮马达结构立体图;
图2是本公开一个实施例提供的磁悬浮马达结构立体图;
图3是图2的移出转子后的结构示意图;
图4是图2的俯视图;
图5是图2的定子结构示意图;
图6是图5的线圈与定子齿分解图;
图7是图5的剖面视图;
图8是定子齿的竖直部分及线圈的横截面图;
图9是图2的定子轭俯视图;
图10是本发明实施例的体外离心式磁悬浮血泵的立体分解图;
图11是图10中泵头的立体分解图。
具体实施方式
为了使本技术领域的人员更好地理解本发明中的技术方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,当元件被称为“设在”另一个元件,它可以直接在另一个元件上或者也可以存在居中的另一个元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中另一个元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
出于描述的目的,术语“上”、“下”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“横向”、“纵向”以及它们的派生词均与本公开的附图中的取向有关。然而应该理解的是,本公开可以采用各种替代性的变型,除非明确相反地说明。
说明书使用的单数形式“一”、“所述”和“该”除非清楚指明,均包含复数形式。说明书使用的用辞“包括”、“包含”和“含有”表示存在所声称的特征,但并不排斥 存在一个或多个其它特征。说明书使用的用辞“和/或”包括相关列出项中的一个或多个的任意和全部组合。
如图10和图11,本实施例的体外离心式磁悬浮血泵包括磁悬浮马达100、以及与磁悬浮马达100可拆卸接合的泵头101。泵头101与马达100之间的可操作地接合可采用或符合公告号为CN209187707U、CN209204247U、CN209204246U描述的现有技或技术特征,在此不作赘述。
泵头101包括泵壳102、容纳于泵壳102内的叶轮113。叶轮113可悬浮于泵壳102内,并可被马达100驱动而围绕轴线A旋转,以将血液从泵壳102的血液入口接头106向血液出口接头107泵输。
叶轮113在泵壳102内的悬浮,可借助公告号为CN111561519B或者CN112546425B提供的已知实施例实现,在此不作赘述。
叶轮113的驱动可借助磁耦合的方式实现。具体为:结合图4、图9和图10所示,马达100的输出轴上设有轴套263,轴套263外设有多个呈弧形的主动磁体262,多个主动磁体262被呈筒状的包裹件300固定。泵壳102包含环形容纳腔109,叶轮113包含设在环形容纳腔109中的叶轮壳体150以及设在叶轮壳体150上的多个叶片103,叶轮壳体150中设有转子22,转子22包含多个呈弧形的被动磁体261。泵头101接合至马达100上后,马达100的输出轴插入到泵头101的泵壳102中,主被动磁体261、262通过磁力实现耦合,进而马达100的旋转可传递给叶轮113,实现叶轮113的旋转驱动。
泵壳102包括上盖体104和下盖体105,上盖体104固定盖合在下盖体105构成泵壳102。血液入口接头106位于上盖体104,血液出口接头107大部分位于下盖体105。
如图2至图9,磁悬浮马达100包括固定于马达壳体108内的定子组件。定子组件主要包括绝缘骨架1和定子20(也可以称为定子铁芯)。定子20包括:呈环状结构的定子轭21、设在定子轭21上的至少一对定子齿211。转子22可以呈圆盘状并且能够围绕转动轴A转动。理想情况下,定子21和转子22同轴。
定子齿211由导磁性材料制成,比如由铁磁材料制成。定子齿211至少为一对,每对定子齿211中的两个定子齿211沿着径向方向彼此相对地布置。定子齿211的具体对数可以根据需要进行布置,较佳的定子齿211为两对,便于镜像对称配置。定子齿211隔着绝缘骨架1缠绕有线圈212。从而,绝缘骨架1与定子齿211可以是嵌套设置,绝缘骨架1为绝缘材质制成,具体材质不作限定。
在根据图2至图7所示的实施例中,定子齿211包括彼此垂直的竖直部分32和水平 部分31,呈倒“L”形。较佳的,定子齿211为一体结构,也即水平部分31和竖直部分32为一体结构,更具体的,定子齿211为纯铁材质的一体结构。
定子齿211的水平部分31与转子22可以具有相同的厚度,并且在理想情况下,定子齿211的水平部分31与转子22处于相同的高度,且定子齿211的水平部分31与转子22之间存在间隙或气隙。具体而言,水平部分31包括上表面2111、下表面2112、呈弧形的内周面2113和外周面2114。外周面2114与内周面2113大致同心设置,且外周面2114的曲率小于内周面2113的曲率。
竖直部分32不同高度的横截面相同,并垂直安装于定子轭21的上表面。竖直部分32沿径向具有相背对的第一主侧面321和第二主侧面322,第一主侧面321相对于第二主侧面322更靠近转子22,并朝向转子22。第一主侧面321和第二主侧面322的曲率不同,进一步地,第一主侧面321为平面(也称为直面)或者其曲率小于第二主侧面322的曲率。更进一步地,第一主侧面321的曲率在第二主侧面322的曲率的一半以下。此时,竖直部分32靠近转子22的侧面(第一主侧面321)为平面或类平面设计。
本实施例作为内转子的实施例,第一主侧面321为竖直部分32的内侧面,第二主侧面322为竖直部分32的外侧面。为避免漏磁,第二主侧面322与水平部分31的外周面2114共面设置,均为弧面结构。第一主侧面321与定子轭21的内表面共面,保持齐平。第一主侧面321垂直于水平部分31的下表面。本实施例中,第一主侧面321为平面,成对的定子齿的第一主侧面321相平行设置。
在作为外转子的实施例中,相对于定子轭21的径向而言,第一主侧面为竖直部分32的外侧面,第二主侧面为竖直部分32的内侧面。
参见图6、图7、图8所示,竖直部分32沿周向F1的两端还具有相平行的第一端面324(a)和第二端面324(b)。该周向F1可以视为环状的定子轭21的延伸方向。第一端面324a和第二端面324b均为平面,为竖直平面。第一端面324a和第二端面324b分别与第一主侧面321大致垂直。
第二主侧面322和第一主侧面321之间的径向距离(沿径向F2之间的间距)为径向宽度。竖直部分32在周向F1上的中间位置的径向宽度大于其两端(第一端面、第二端面)的径向宽度。具体的,竖直部分32在周向F1上的中间位置具有最大径向宽度。竖直部分32在周向F1上的两端具有最小径向宽度。
水平部分31具有配接竖直部分32的一端(外端)以及具有内周面2113的内端。水平部分31具有内周面2113的一端沿径向F2凸出于竖直部分32,并朝向转子22凸出。 水平部分31在径向F2上凸出竖直部分32的第一主侧面321。
水平部分31具有朝向转子22的内周面2113以及背对内周面2113的外周面2114。水平部分31的外周面2114的曲率半径大于水平部分31的内周面2113的曲率半径。水平部分31的内周面2113的曲率半径为转子22半径的1.087倍-1.872倍。为更好的约束转子22,使转子22稳定悬浮,所有定子齿211的水平部分31的内周面2113所对应的圆心角之和大于180度。在本实施例中,四个水平部分31的内周面2113的圆心角之和大于180度,也即,每个水平部分31的内周面2113的圆心角大于45度。
值得注意的是,本公开中的任何数值都包括从下限值到上限值之间以一个单位递增的下值和上值的所有值,在任何下值和任何更高值之间存在至少两个单位的间隔即可。
举例来说,阐述的内周面2113的曲率半径R1的倍数1.087倍-1.872倍,进一步地为1.101倍-1.79倍,进一步地为1.125倍-1.35倍,目的是为说明上述未明确列举的诸如1.112倍、1.113倍、1.115倍、1.127倍、1.129倍、1.132倍、1.136倍等值。
如上述,以0.001为间隔单位的示例范围,并不能排除以适当的单位例如0.01、0.02、0.03、0.04、0.05等数值单位为间隔的增长。这些仅仅是想要明确表达的示例,可以认为在最低值和最高值之间列举的数值的所有可能组合都是以类似方式在该说明书明确地阐述了的。
除非另有说明,所有范围都包括端点以及端点之间的所有数字。与范围一起使用的“大约”或“近似”适合于该范围的两个端点。因而,“大约20到30”旨在覆盖“大约20到大约30”,至少包括指明的端点。
本文中出现的其他关于数值范围的限定说明,可参照上述描述,不再赘述。
承接上文描述,水平部分31在周向F1上的两端具有相平行的端侧面2115,端侧面2115为平面。具体的,水平部分31的内周面2113和外周面2114之间具有相平行的第一端侧面2115a和第二端侧面2115b。第一端侧面2115a和第二端侧面2115b分别位于水平部分31的周向F1两侧。第一端侧面2115a和第二端侧面2115b分别与第一端面324a、第二端面324b共面。第一端侧面2115和第二端侧面2115同样为平面。
端侧面2115与水平部分31的内周面2113之间设有收窄面2116。为更稳定地传导电磁力,避免过多的收窄对磁力的不利影响,端侧面2115的径向长度(沿径向F2方向的长度,也为,端侧面2115在内周面2113和外周面2114之间延伸的长度)在0.5倍的水平部分31的内周面2113和外周面2114之间的径向间距以上。进一步地,端侧面2115的径向长度在0.65倍的水平部分31的内周面2113和外周面2114之间的径向间距以上。 更进一步地,端侧面2115的径向长度在0.831倍的水平部分31的内周面2113和外周面2114之间的径向间距以上。
线圈212(212a、212b、212c、212d)环套于竖直部分32外,竖直部分32构成被线圈212所围绕的芯体。竖直部分32的内侧面321的直面或近直面设计可以减少线圈212与铁芯(定子齿211)之间的距离,有利于减少无效的材料使用,提高能量密度。
并且,通过设置竖直部分32朝向转子22的周面321为平面(直面设计),同样马达外径下能够增加定子20的竖直部分32,相应的如此设计有利于缩小马达外径,达到小型化的目的。
若维持马达外部形状,也即同样马达外径下竖直部分32的内侧面321的直面或近直面设计可以增加定子铁心20的体积,进而降低控制电流,减少热量产生,增加马达安全性。
定子齿211为曲率圆弧的情况下加工难度大,加工精度难以保证,与绝缘骨架1装配精度差,内侧直面321可以提高定子齿211加工性,直面形状可以获得较高的加工精度,同时保证与绝缘骨架1的装配精度。
当定子齿211内部为弧面或直面,会影响到可以导通磁量的面积,而这个差异会随着定子齿211相对于整个圆的角度变大。也就是外径越小的马达,内部采用直面与弧面的面积差异占原本可以使用的面积比例变大。同理,当半径越小,也有使用面积变大的效果。针对类弧形的设计也是一样的原理,曲率半径和夹角会影响选择直面或弧面可使用面积的大小。而作为小直径的磁悬浮马达100,直面设计的定子齿211可以明显改善导通磁量的面积,进而有利于设备的小型化。
如图1、图2、图3所示,转子22包括上表面221、下表面222、以及呈圆周形的外周面223。在理想情况下,定子齿211的水平部分31的上表面2111与转子22的上表面221齐平、定子齿211的水平部分31的下表面2112与转子22的下表面222齐平、且定子齿211的水平部分31的内周面2113与转子22的外周面223之间具有相等的间隙或气隙G。
另外,线圈212缠绕在定子齿211的竖直部分32上,用于向转子22提供径向F2电磁力(吸力或斥力),以便使转子22悬浮起来。具体地,线圈212被电流激励后,在定子齿211上产生电磁场。通过定子齿211和转子22对磁场的导通,能够在定子齿211和转子22间产生径向F2电磁力(吸力或斥力),从而使转子22能够悬浮在径向F2平面(图2和图3中的X-Y平面)中。
在图2至图9所示的实施例中,定子21包括四个定子齿211(211a、211b、211c、211d),呈两对存在,每个定子齿211上均设有线圈212。四个定子齿211沿周向(定子轭延伸方向)F1均匀分布,从而可以被分成两对定子齿(211a、211c)、(211b、211d),每对定子齿(211a、211c)/(211b、211d)中的两个定子齿沿径向F2方向彼此相对地布置,比如,一对定子齿211b、d沿着X轴相对布置,而另外一对定子齿211a、c沿着Y轴相对布置。根据需要,也可以设置更多对定子齿(比如三对或四对定子齿)而不偏离本公开。
根据具体情况,每对定子齿211上的线圈212可以在转子22上产生方向相同或方向相反的电磁力。比如,在转子22稳定悬浮的理想情况下,每对定子齿211的线圈212在转子22上产生方向相反的电磁力,使得转子22能够稳定地悬浮于径向F2平面中,而不会沿着X轴或Y轴发生径向F2位移。而在一些情况下,比如当磁悬浮马达100由于受外力引发的振动而导致转子22径向F2偏移离开中心平衡位置时,为了使转子22更快地返回到中心平衡位置,每对定子齿211的线圈212在转子22上产生方向相同的电磁力,该电磁力的合力方向与转子22径向F2偏移的方向相反,从而有助于使转子22快速返回到中心平衡位置。此时,可以通过单独地调节流经相应的一个或多个线圈212上的电流大小和/或方向来改变其所产生的电磁力的大小和/或方向,通过产生的所谓“推-拉”效应来使转子22向相反的径向F2方向移动,从而使其快速返回到能够稳定悬浮的中心平衡位置中。在图2和图3所示的实施例中,一对定子齿211上的线圈212能够控制转子22在X轴上的位移,而另一对定子齿211上的线圈212能够控制转子22在Y轴上的位移,从而能够调节转子22在径向F2平面中相对于定子21的位置。
磁悬浮马达100中还设置转子永磁体231和定子永磁体232所构成的承载于基座上的刚度增益机构,刚度增益机构的设置方式可以参考CN111561519A的披露,不再赘述。
如图9所示,定子轭21为环状结构,其沿周向F1连续延伸,并不存在间断连接部位。也即,定子轭21为沿周向F1连续延伸的周向连续结构,并非是多个子结构沿周向F1拼接形成。需要说明的是,定子轭21的环状结构并不限定于圆环结构,也可以是椭圆环结构、可以是方形结构,该环状结构本质上是一种周向结构。当然,定子轭21的外周面依然可以为圆弧状。
承接上文描述,定子轭21上设有两对定子齿211。如图6、图9所示,定子轭21整体为正方形环框,正方形环框的边角处设有过渡圆角217。四个定子齿211分别居中位于正方形环框的四个侧边。
定子轭21为纯铁材质。为便于传磁,定子轭21为一体结构。当然,还可以采用环状的硅钢片进行堆叠形成。定子齿211与定子轭21为分体构造,定子齿211的下端面323贴合于定子轭21的上表面215,便于二者传磁。马达壳体108设有将定子齿211与定子轭21装配并进行定位的安装构造,使得定子齿211与定子轭21相对固定,并且保持定子轭21与定子齿211贴合。
定子轭21具有(环形)内周面218和(环形)外周面216,竖直部分32更靠近内周面218和外周面216中邻近转子22的侧面。如此,可减小水平部分31与转子22的气隙,进而能够有效增加控制效率。在内转子22的实施例中,相对于定子轭21的外周面216,竖直部分32更靠近定子轭21的内周面218设置。为避免漏磁,更好地传导磁场,竖直部分32沿轴向的投影全部位于定子轭21的上表面215。
定子齿211承载于定子轭21的上表面,定子齿211的下端面323为平面,下端面323与定子轭21的上表面接触贴合。第二主侧面322在径向F2上位于定子轭21的外周面216的内侧。第二主侧面322不凸出于定子轭21的外周面216。
由于定子轭21与定子齿211垂直连接,为了避免磁场在定子轭21与定子齿211交界处的磁场传递损失,使得磁场在铁磁元件中更好的传导,将定子轭21与定子齿211接合位置的部分内周面218设计成与竖直部分32的第一主侧面321相同的曲率或者平面。该部分内周面218为与第一主侧面321大致齐平的配合面2119。较佳的,配合面2119为平面(直面)。当然,定子轭21的配合面2119可以不为平面,也可以为曲率较小的弧面,只需满足第一主侧面321与定子轭21的配合面2119的高概率重合即可。
承接上文描述,定子轭21整体为矩形框体结构,更具体为正方形框体结构,定子轭21的边角设有圆角过渡结构217。每条定子轭21的侧边与定子齿211一一对应。定子齿211居中位于定子轭21的侧边。提高磁传导的有效性,定子齿211的第一主侧面321与定子轭21的配合面2119(内周面218)齐平,定子轭21的配合面2119的平面设计同样提高定子铁环可加工性。
如图2至图8所示,绝缘骨架1包括大致平行的第一挡板12和第二挡板17,以及位于第一挡板12和第二挡板17之间的绝缘本体11。整体上,绝缘骨架1大致呈“工”字型,第一挡板12与第二挡板17之间用于横向缠绕线圈212。
磁悬浮马达100在安装时,绝缘骨架1和定子均容纳于磁悬浮马达100的壳体中。绝缘本体11在轴向上具有相对的第一端(上端)和第二端(下端),第一端设有第一挡板12,第二端设有第二挡板17,定子齿211的竖直部分32沿着轴向(Z轴方向)依次 穿设于第一挡板12、绝缘本体11和第二挡板17。如图7所示,定子齿211的水平部分31与第一挡板12相靠近,可以间隔有间隙。
进一步的,沿平行于绝缘本体11的方向作投影,第一挡板12和第二挡板17的外轮廓投影可以相重合,绝缘本体11位于第一挡板12和第二挡板17的外轮廓投影的内部或者不凸出于第一挡板12和第二挡板17的外轮廓。为了避免线圈212与磁悬浮马达100的壳体相接触,绝缘本体11上缠绕线圈212的部分不会超出第一挡板12和第二挡板17的最大外轮廓边缘。
绝缘骨架1与定子齿211可以套设组装,绝缘骨架1与定子齿211单独成型后再进行组装。绝缘骨架1的两个挡板上设有用于插入定子齿211的开口,且绝缘骨架1的绝缘本体11为中空结构。当定子齿211装入绝缘骨架1后,定子齿211的外表面与绝缘本体11的中空结构之间具有一定的间隙,若绝缘本体11的壁厚太小,在紧密缠绕线圈212时,绝缘骨架1因强度较低容易发生损坏。因此,在该种组装方式的前提下,需要绝缘本体11具有一定的厚度。绝缘本体11的厚度增加会导致线圈212的缠绕空间较小,不利于最大密度的堆积线圈。
绝缘骨架1与定子齿211也可以采用过盈配合的方式组装。采用该种方式安装,同样需要绝缘骨架1与定子齿211单独成型后再组装。绝缘骨架1的两个挡板上设有用于装入定子齿211的开口,且绝缘骨架1的绝缘本体11为中空结构。当定子齿211装入绝缘骨架1后,定子齿211的外表面与绝缘本体11的中空结构之间没有间隙。采用该种组装方式,为了保证绝缘骨架1具有足够的强度装入定子齿211,需要绝缘本体11具有一定的厚度。而绝缘本体11的厚度增加会导致线圈212的缠绕空间较小,不利于最大密度的堆积线圈。
在其他实施例中,绝缘骨架1与定子齿211的竖直部分32之间还可以通过粘合部连为一体。在一些实施例中,可以在绝缘骨架1与定子齿211单独成型后在两者之间设置填充物,该填充物形成粘合部,使得绝缘骨架1与定子齿211之间紧贴,二者之间没有空隙。
整体上,该定子齿211的竖直部分32为沿径向F2向外凸起的弧形条状结构。与定子齿的结构相对应,绝缘骨架1的绝缘本体11包括围设在第一挡板12与第二挡板17之间的侧壁。如图8所示,绝缘骨架1的侧壁将定子齿211的竖直部分32围绕,该侧壁包括:相对的第一主侧壁111和第二主侧壁112,以及相对的另外两个周侧壁,其中,至少第二主侧壁112为弧形构造,且每个侧壁111、112具有内外表面。
在本实施例中,绝缘骨架1具有套入竖直部分32的内腔214。内腔214的横截面与竖直部分32的横截面相匹配。内腔214具有与第一主侧面321相对的第一内侧面115、和第二主侧面322相对的第二内侧面116。第一内侧面115为平面。在将绝缘骨架1与定子齿装配时,第一主侧面321可以形成导向面,方便与绝缘骨架装配。第一内侧面115和第一主侧面321贴合。进一步地,第二内侧面116与第二主侧面322贴合。内腔214还具有相平行的端侧面118、119,分别与第一端面324a和第二端面324b相平行。
第一内侧面115作为第一主侧面321的配合面,同样采用平面设计,如此同样可以降低绝缘骨架1的加工难度。第一内侧面115和第一主侧面321之间的间隙距离在0.562mm以下。第二内侧面116和第二主侧面322之间的间隙距离在0.984mm以下。线圈212绕线捆扎的束缚作用下会进一步缩减塑料骨架1和竖直部分32之间的间隙,使得二者过渡配合(类过盈配合),塑料骨架的位置在竖直部分32得以进一步固定。
在定子齿211中,竖直部分32沿轴向延伸。水平部分31设在竖直部分32的一端,竖直部分32的另一端为插入端。定子齿211借由竖直部分32的插入端(竖直部分32的下端)自塑料骨架1的上端口插入穿过塑料骨架1,使得塑料骨架1套设于竖直部分32外。在插入过程中,平面结构的第一内侧面115为竖直部分32提供贴合导向,方便插入定位。插入端(竖直部分32的下端)的端面323为平面,并作为定子轭21的贴合表面。插入端穿过塑料骨架1,将其端面323自塑料骨架1伸出,以贴合定子轭21的上表面。定子齿211的竖直部分32可通过下端自绝缘骨架1的端口(内腔214的上端口)插入到绝缘骨架1中进行配合。
现有技术中,将定子齿211的竖直部分32朝向环形内周面218的一面(第一主侧面321)设计成与定子轭21相同曲率的弧面。而在本实施例中,在将定子齿211安装在定子轭21上时,定子齿211的平面结构的第一主侧面321可以与定子轭21的平面结构的部分环形内周面2119相齐平。
通常,为避免线圈212缠绕时不易断线,第一主侧壁111的外壁面119采用平面设计,而其内侧面(第一内侧面115)如采用弧面设计,则对于加工的要求比较大,同时,由于绝缘骨架1和定子齿211的间隙保持难以保证,对于绝缘骨架1和定子齿211装配要求较高,同时提高绝缘骨架1结构强度,保证绕线完成后满足强度要求。
在本实施例的定子组件中,绝缘本体11的第一主侧壁111和第二主侧壁112位于第一挡板12和第二挡板17之间,且为位于定子轭21径向F2上的前后两个壁板,用于横向缠绕线圈212。线圈212缠绕于第一主侧壁111和第二主侧壁112上,并与第一主侧 壁111和第二主侧壁112相紧贴。为了使得线圈212紧贴于第一主侧壁111,第一主侧壁111可以为平面壁板设计。优选的,第一主侧壁111的外侧面119为平面(直面),在缠绕线圈212时不容易断线,排列整齐,不容易出现断线、错层等现象。
第二主侧壁112为背离第一主侧壁111向外凸出的弧面116,第二主侧壁112在径向F2上朝向远离转子22一侧凸出(沿径向F2向外凸出),从而在定子组件外部安装壳体时,能够使得马达结构更加紧凑,没有多余的空隙。第二主侧壁112与第二主侧面322的曲率相同。
在定子齿211的竖直部分32上制作绝缘骨架1时,为了使得定子组件的整体结构更加紧凑,绝缘本体11的第二主侧壁112与竖直部分32的第二主侧面322的曲率相同,尤其,第二主侧壁112的内外侧面均与第二主侧面322的曲率相同。也即,绝缘本体11外弧面的弧度保持与定子齿211一致,绝缘本体11的第二主侧壁112的内侧面(第二内侧面116)与定子齿211的第二主侧面322能够保持紧贴,节省空间。
定子齿211的第一主侧面321与绝缘本体11的第一主侧壁111的内表面(第一内侧面115)紧贴,形成平面贴合。当第一内侧面115为直面时,直面为表面没有明显凹凸部的平面。如图7、图8所示,第一主侧面321和第一内侧面115平行的两个平面,从定子齿211的侧向上看,第一主侧面321为平面,第二主侧面322为凸面,而与第一主侧面321贴合的第一内侧面115为直面(平面)。
绝缘本体11的第一主侧壁111为内外表面均为平面的平面板体结构,不仅能够降低加工难度,还能够保证缠绕在绝缘本体11上的线圈212与第一主侧壁111的外壁面119紧紧贴合,不容易出现断线、错层等现象,从而满足绕线条件。同时,第一主侧壁111为平面板体结构,可以避免线圈212与转子22之间产生干涉,二者之间保证一定的间隙。
应该理解,以上描述是为了进行图示说明而不是为了进行限制。通过阅读上述描述,在所提供的示例之外的许多实施方式和许多应用对本领域技术人员来说都将是显而易见的。因此,本教导的范围不应该参照上述描述来确定,而是应该参照所附权利要求以及这些权利要求所拥有的等价物的全部范围来确定。出于全面之目的,所有文章和参考包括专利申请和公告的公开都通过参考结合在本文中。在前述权利要求中省略这里公开的主题的任何方面并不是为了放弃该主体内容,也不应该认为发明人没有将该主题考虑为所公开的发明主题的一部分。

Claims (17)

  1. 一种用于磁悬浮马达的定子组件,包括:缠绕有线圈的绝缘骨架、定子;其中,
    所述定子包括:呈环状结构的定子轭、设在所述定子轭上的至少一对定子齿,成对的定子齿在所述定子轭上相对设置;所述定子齿包括相垂直的水平部分和竖直部分,所述竖直部分的下端承载于所述定子轭的上表面,所述绝缘骨架套设于所述竖直部分外;
    所述竖直部分在径向上具有相背对的第一主侧面和第二主侧面,所述第一主侧面相对于第二主侧面更靠近转子;所述第一主侧面为平面或者为曲率相对于第二主侧面更小的弧面,所述水平部分在径向上凸出所述第一主侧面。
  2. 如权利要求1所述的定子组件,其中,所述第一主侧面的曲率在第二主侧面的曲率的一半以下。
  3. 如权利要求1所述的定子组件,其中,所述定子轭为沿周向连续延伸的周向连续结构;所述定子齿与所述定子轭为分体结构,所述定子齿的下端面与所述定子轭的上表面接触贴合;进一步地,所述定子轭为一体结构,所述定子齿为一体结构。
  4. 如权利要求1所述的定子组件,其中,所述定子轭具有内周面和外周面,所述竖直部分更靠近所述内周面和外周面中邻近转子的侧面。
  5. 如权利要求4所述的定子组件,其中,所述竖直部分沿轴向的投影全部位于所述定子轭的上表面;相对于所述定子轭的外周面,所述竖直部分更靠近所述定子轭的内周面。
  6. 如权利要求1-5任一所述的定子组件,其中,所述定子组件用于配设于转子外,所述定子具有两对沿定子轭周向布置的定子齿;所述第一主侧面为所述竖直部分的内侧面,所述第二主侧面为沿径向向外凸出的弧面;所述竖直部分在周向上还具有相平行的第一端面和第二端面。
  7. 如权利要求6所述的定子组件,其中,所述定子轭的内周面具有与所述第一主侧面大致齐平的配合面,所述配合面为平面。
  8. 如权利要6所述的定子组件,其中,所述定子轭整体为正方形环框,正方形环框的边角处设有过渡圆角;四个所述定子齿分别居中位于所述正方形环框的四个侧边。
  9. 如权利要求6所述的定子组件,其中,所述第一端面和第二端面分别与平面的第一主侧面相垂直。
  10. 如权利要求6所述的定子组件,其中,所述竖直部分在周向上中间位置的径向宽度大于第一端面或第二端面的径向宽度。
  11. 如权利要求6所述的定子组件,其中,所述绝缘骨架具有套入所述竖直部分的内腔,所述内腔具有与所述第一主侧面相面对的第一内侧面;所述第一内侧面为平面,所述第一内侧面和所述第一主侧面之间的间距在0.562mm以下;进一步地,所述第一内侧面和所述第一主侧面贴合。
  12. 如权利要求11所述的定子组件,其中,所述内腔具有与所述第二主侧面相面对的第二内侧面,所述第二内侧面与所述第二主侧面相同曲率的弧面;所述第二内侧面和所述第二主侧面之间的间距在0.984mm以下;进一步地,所述第二内侧面和所述第二主侧面贴合。
  13. 如权利要求1所述的定子组件,其中,所述水平部分具有朝向转子的内周面以及背对所述内周面的外周面,所述外周面的曲率半径大于所述内周面的曲率半径,所述内周面的曲率半径为转子半径的1.087倍-1.872倍。
  14. 如权利要求13所述的定子组件,其中,所有所述定子齿的水平部分的内周面所对应的圆心角之和大于180度。
  15. 如权利要求13所述的定子组件,其中,所述水平部分在周向上的两端具有相平行的端侧面;所述端侧面为平面,并与所述水平部分的内周面之间设有收窄面;所述端侧面的径向长度在0.5倍的所述水平部分的内周面和外周面之间的径向间距以上;进一步地,所述端侧面的径向长度在0.65倍的所述水平部分的内周面和外周面之间的径向间距以上;更进一步地,所述端侧面的径向长度在0.831倍的所述水平部分的内周面和外周面之间的径向间距以上。
  16. 一种磁悬浮马达,包括:马达壳体、如权利要求1至15任意一项所述的定子组件;所述定子组件设在所述马达壳体内。
  17. 一种体外离心式磁悬浮血泵,包括:如权利要求16所述的磁悬浮马达、与所述磁悬浮马达可拆卸接合的泵头;所述泵头包括:泵壳、容纳于所述泵壳内的叶轮,所述叶轮悬浮于所述泵壳内并被所述磁悬浮马达驱动旋转。
PCT/CN2023/071775 2022-03-22 2023-01-11 用于磁悬浮马达的定子组件、磁悬浮马达和体外离心式磁悬浮血泵 WO2023179187A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210288482.XA CN114748788B (zh) 2022-03-22 2022-03-22 用于磁悬浮马达的定子组件、磁悬浮马达和体外离心式磁悬浮血泵
CN202210288482.X 2022-03-22

Publications (1)

Publication Number Publication Date
WO2023179187A1 true WO2023179187A1 (zh) 2023-09-28

Family

ID=82327205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/071775 WO2023179187A1 (zh) 2022-03-22 2023-01-11 用于磁悬浮马达的定子组件、磁悬浮马达和体外离心式磁悬浮血泵

Country Status (2)

Country Link
CN (1) CN114748788B (zh)
WO (1) WO2023179187A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114748788B (zh) * 2022-03-22 2023-04-21 苏州心擎医疗技术有限公司 用于磁悬浮马达的定子组件、磁悬浮马达和体外离心式磁悬浮血泵

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106165259A (zh) * 2014-04-08 2016-11-23 三菱电机株式会社 永磁体埋入型旋转电机
US20170237304A1 (en) * 2014-10-15 2017-08-17 Toyota Jidosha Kabushiki Kaisha Stator for rotary electric machine
CN107302294A (zh) * 2016-04-14 2017-10-27 莱维特朗尼克斯有限责任公司 电磁旋转驱动器和旋转装置
CN110585502A (zh) * 2019-09-03 2019-12-20 中国医学科学院阜外医院 一种体外用短中期磁悬浮离心血泵
JP2020010426A (ja) * 2018-07-03 2020-01-16 日本製鉄株式会社 モータ
CN112421811A (zh) * 2020-11-16 2021-02-26 苏州心擎医疗技术有限公司 磁悬浮马达用的定子机构以及血泵
CN114748788A (zh) * 2022-03-22 2022-07-15 苏州心擎医疗技术有限公司 用于磁悬浮马达的定子组件、磁悬浮马达和体外离心式磁悬浮血泵

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6463895B2 (ja) * 2014-02-28 2019-02-06 日本電産テクノモータ株式会社 モータ用ステータ及びその製造方法
EP3135933B1 (en) * 2015-08-25 2019-05-01 ReinHeart GmbH Active magnetic bearing
CN107026518A (zh) * 2016-01-29 2017-08-08 浙江三花汽车零部件有限公司 定子组件以及具有该定子组件的电机和电子泵
CN109661760B (zh) * 2016-08-29 2022-01-25 松下知识产权经营株式会社 表面磁体型马达
CN111561519B (zh) * 2019-02-14 2021-06-25 苏州心擎医疗技术有限公司 用于磁悬浮轴承的刚度增益机构、磁悬浮轴承和血泵
CN112953309A (zh) * 2021-03-17 2021-06-11 槃实科技(深圳)有限公司 永磁同步磁悬浮电机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106165259A (zh) * 2014-04-08 2016-11-23 三菱电机株式会社 永磁体埋入型旋转电机
US20170237304A1 (en) * 2014-10-15 2017-08-17 Toyota Jidosha Kabushiki Kaisha Stator for rotary electric machine
CN107302294A (zh) * 2016-04-14 2017-10-27 莱维特朗尼克斯有限责任公司 电磁旋转驱动器和旋转装置
JP2020010426A (ja) * 2018-07-03 2020-01-16 日本製鉄株式会社 モータ
CN110585502A (zh) * 2019-09-03 2019-12-20 中国医学科学院阜外医院 一种体外用短中期磁悬浮离心血泵
CN112421811A (zh) * 2020-11-16 2021-02-26 苏州心擎医疗技术有限公司 磁悬浮马达用的定子机构以及血泵
CN114748788A (zh) * 2022-03-22 2022-07-15 苏州心擎医疗技术有限公司 用于磁悬浮马达的定子组件、磁悬浮马达和体外离心式磁悬浮血泵

Also Published As

Publication number Publication date
CN114748788A (zh) 2022-07-15
CN114748788B (zh) 2023-04-21

Similar Documents

Publication Publication Date Title
EP3222301B1 (en) Blood pump
JP6585102B2 (ja) Papシステムブロワ
EP4268882A1 (en) Blood pump
WO2023179187A1 (zh) 用于磁悬浮马达的定子组件、磁悬浮马达和体外离心式磁悬浮血泵
CN106968970B (zh) 具有轴承管的鼓风机
CN106943638B (zh) 血泵
WO2011024470A2 (ja) 使い捨て磁気浮上式遠心ポンプ
JP2014524268A (ja) ブロワ
CN106512118B (zh) 一种全植入式磁液双悬浮轴流血泵
CN215025224U (zh) 血泵
CN215025223U (zh) 血泵
US20240149049A1 (en) Blood Pump And Driving Device Thereof
CN112587792A (zh) 血泵
CN215084231U (zh) 血泵
CN113037008A (zh) 一种磁悬浮泵
EP4299103A1 (en) Blood pump and driving device thereof
TW201024551A (en) Flat type micro pump
CN216356340U (zh) 一种磁悬浮泵
WO2024007791A1 (zh) 驱动装置和血泵
WO2023236850A1 (zh) 体外式磁悬浮血泵
JP7050534B2 (ja) ポンプ装置
US20210393941A1 (en) Extracorporeal blood pump assembly and methods of assembling same
US20080056883A1 (en) Axial-Flow Fluid Pressurizer
CN213547298U (zh) 一种多筒式永磁耦合器
JP2019154574A (ja) ポンプ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23773439

Country of ref document: EP

Kind code of ref document: A1