WO2023179033A1 - 过滤网状态的检测方法及装置、存储介质、空气净化器 - Google Patents

过滤网状态的检测方法及装置、存储介质、空气净化器 Download PDF

Info

Publication number
WO2023179033A1
WO2023179033A1 PCT/CN2022/129226 CN2022129226W WO2023179033A1 WO 2023179033 A1 WO2023179033 A1 WO 2023179033A1 CN 2022129226 W CN2022129226 W CN 2022129226W WO 2023179033 A1 WO2023179033 A1 WO 2023179033A1
Authority
WO
WIPO (PCT)
Prior art keywords
judgment
filter
true
result
target speed
Prior art date
Application number
PCT/CN2022/129226
Other languages
English (en)
French (fr)
Inventor
林陆展
邓文泰
阮家俊
杨子灏
邓梦儒
贝梦超
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2023179033A1 publication Critical patent/WO2023179033A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/39Monitoring filter performance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • F24F8/108Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering using dry filter elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present disclosure relates to the technical field of air purifiers, and in particular to a method and device for detecting the status of a filter, a storage medium, and an air purifier.
  • the present disclosure provides a detection method for judging the status of the filter and a control device including the same, a readable storage medium and an air purifier, which are at least used to solve the problem in the related art that users forget to install the filter after removing the filter.
  • the first aspect of the present disclosure provides a detection method for determining the status of a filter, including:
  • the first judgment program determines whether the difference between the default PWM value at the target speed and the actual PWM value is greater than a set difference. When the default PWM value at the target speed and the actual PWM value When the difference is greater than the set difference, it is true; when the difference between the default PWM value and the actual PWM value at the target speed is less than or equal to the set difference, it is false;
  • the second judgment program determines whether the average value of the difference between the actual PWM value at the target speed and the default PWM value is greater than or equal to the allowable deviation value. When it is determined that the difference between the actual PWM value at the target speed and the default PWM value is It is true when the average value is greater than or equal to the allowable deviation value, and it is false when it is determined that the average value of the difference between the actual PWM value at the target speed and the default PWM value is less than the allowable deviation value.
  • the first judgment procedure is first executed at each target speed, and the second judgment procedure is executed when the first judgment procedure is false, including: the judgment result of the first judgment procedure when a target speed is satisfied.
  • the first judgment procedure of the next target speed is executed; when the judgment result of the first judgment procedure under satisfying a target speed is false, the second judgment procedure is executed; when the judgment result of the second judgment procedure under satisfying a target speed is
  • the first judgment procedure for the next target speed is executed.
  • the judgment result of the second judgment procedure under one target speed is false, the first judgment procedure for the next target speed is executed.
  • the judgment result of the first judgment procedure that satisfies at least two target speeds when it is judged that the air inlet is blocked and the judgment is ended, including: the result of the first judgment procedure at two target speeds is true. When it is judged that the air inlet is blocked, the judgment is ended, and a clear reminder is issued; when the judgment result of the second judgment program that meets at least two target speeds is true, it is judged that the filter is not installed, and the judgment is ended, including: two target speeds When the judgment result of the second judgment program is true, it is judged that the filter is not installed, the judgment is ended, and a fault reminder is performed; when the judgment result of the second judgment program that meets at least two target speeds is false, the filter is judged to be normal. Installation, end of judgment, including: when the judgment result of the second judgment program under the two target speeds is false, it is judged that the filter is installed normally, the judgment is ended, and normal operation is entered.
  • the target speed includes a medium speed, a medium-high speed and a high speed.
  • the motor speeds up to the target speed, it is maintained at the target speed for a preset time.
  • calculating the average value of the difference between the actual PWM value and the default PWM value at the target speed specifically includes recording the actual PWM value N times at the target speed, and calculating the difference to average.
  • the detection method also includes: under multiple target speeds, if the result of a first judgment procedure is true, the result of a second judgment procedure is true, and the result of a second judgment procedure is false, delay At this target speed, the air outlet is blocked again, and when the air outlet is not blocked, M times of sampling are performed to determine whether the filter is loaded; where M is greater than N.
  • a first judgment result when a first judgment result is true, it is judged that the air outlet is blocked; when a second judgment result is true, it is judged that the filter is not installed; and when a second judgment result is satisfied, it is judged that the filter is not installed.
  • the result is false, it is judged that the filter is installed normally, and the detection program is exited and normal work is entered.
  • a second aspect of the present disclosure provides a control device that includes one or more processors and a non-transitory computer-readable storage medium storing program instructions. When the one or more processors execute the program instructions When, the one or more processors are configured to implement the detection method for determining the status of the filter described in the first aspect.
  • a third aspect of the present disclosure provides a non-transitory computer-readable storage medium having program instructions stored thereon that when executed by one or more processors, the one or more processors are It is configured to implement the detection method for judging the status of the filter according to the first aspect.
  • a fourth aspect of the present disclosure provides an air purifier that adopts the detection method described in the first aspect, or includes the control device described in the second aspect, or has a non-transitory computer programmable method according to the third aspect. Read storage media.
  • This disclosure uses the detection stage after startup to detect the loading of the filter and the condition of the air outlet.
  • the fan adjusts from low speed to high speed. After stabilizing the low speed and low and medium speed, the fan reaches The factory default PWM (Pulse Width Modul, pulse width modulation) values corresponding to the medium speed, medium high speed and high speed are sampled and recorded.
  • PWM Pulse Width Modul, pulse width modulation
  • Figure 1 shows one of the flow charts of the detection method according to the embodiment of the present disclosure
  • Figure 2 shows the second flow chart of the detection method according to the embodiment of the present disclosure
  • Figure 3 shows the third flow chart of the detection method according to the embodiment of the present disclosure
  • Figure 4 shows the fourth flow chart of the detection method according to the embodiment of the present disclosure
  • Figure 5 shows the fifth flow chart of the detection method according to the embodiment of the present disclosure
  • Figure 6 shows a schematic diagram of the feedback speed detection circuit according to an embodiment of the present disclosure
  • Figure 7 shows a schematic diagram of detection of a loaded filter according to an embodiment of the present disclosure
  • Figure 8 shows a schematic diagram of detection without a filter installed according to the embodiment of the present disclosure
  • Figure 9 shows a schematic diagram of PWM values at different rotational speeds according to an embodiment of the present disclosure.
  • the first aspect of this embodiment provides a detection method for judging the status of the filter.
  • the filter needs to be replaced regularly. However, after the filter is replaced and cleaned, there is often a problem of forgetting to load the filter. The condition of the filter prevents the ideal purification effect from being achieved. Therefore, this embodiment proposes a detection method for judging the status of the filter.
  • the specific method includes:
  • the first judgment procedure is first executed.
  • the second judgment procedure is executed.
  • the first judgment program determines whether the difference between the default PWM value at the target speed and the actual PWM value is greater than the set difference. When the difference between the default PWM value at the target speed and the actual PWM value is greater than the set difference, it is true. If the difference between the default PWM value and the actual PWM value at the target speed is less than or equal to the set difference, it is false;
  • the second judgment program determines whether the average difference between the actual PWM value and the default PWM value at the target speed is greater than or equal to the allowable deviation value. When determining the average difference between the actual PWM value and the default PWM value at the target speed, It is true if it is greater than or equal to the allowable deviation value, and it is false when it is determined that the average difference between the actual PWM value at the target speed and the default PWM value is less than the allowable deviation value.
  • the first judgment program determines whether the difference between the default PWM value at the target speed and the actual PWM value is greater than the set difference.
  • the second judgment program determines whether the average value of the difference between the actual PWM value at the target speed and the default PWM value is greater than or equal to the allowable deviation value.
  • the default PWM value at the target speed is the factory default PWM value of the motor at the target speed.
  • the factory default PWM value is experimentally measured on the air purifier used normally by the original factory. It is also That is to say, the factory default PWM value is the value obtained by testing the air purifier with the air outlet not blocked and the filter normally loaded.
  • the default PWM value at different target speeds is the air purifier normally used in the original factory. The value measured at the target speed. The actual PWM value is detected by the air purifier to be detected. After the air purifier is turned on, it enters the detection stage.
  • the motor feedback signal is stepped down through the optocoupler through the feedback speed detection circuit. , after capacitor filtering, it is fed back to the chip detection port speed, and the PWM value at each target speed is detected, which is the PWM value at that speed.
  • the detection result is that the air outlet is blocked at medium and high rotation speeds (the situation of air outlet blocking at this rotation speed is only to detect the air outlet sealing). Blocking one of all situations) flow diagram.
  • S11 Control the motor speed to increase to medium speed and execute S12;
  • the detection result is that the filter is not installed normally at medium and high speeds (the filter is not installed normally at this rotation speed, which is only to detect the filter. Flowchart of one of all cases of improper installation).
  • S21 Control the motor speed to increase to medium speed and execute S22;
  • the detection result is that the filter is installed normally at medium and high speeds (the filter is not installed normally at this rotation speed, which only detects that the filter is normal. Flow chart for one of all situations in installation).
  • S31 Control the motor speed to increase to medium speed and execute S32;
  • S34 The filter is installed normally and executes S35;
  • the motor speed is controlled to increase step by step to multiple different target speeds.
  • the first judgment program is first executed, and when the first judgment program is false, the second judgment program is executed. That is to say, the first judgment program is executed first and then Execute the second judgment procedure.
  • this disclosure is a detection method for the status of the filter, but in air purification During the actual use of the device, the air outlet may be blocked. The blocking of the air outlet will affect the normal logical judgment of filter loading and cause misjudgment in filter detection. Therefore, this disclosure first performs the first judgment procedure. And when the judgment result of the first judgment program under at least two target rotation speeds is true, it is judged that the air inlet is blocked, and the judgment ends.
  • the end of judgment refers to the end of the judgment of filter status detection.
  • the program can also perform other tests.
  • the end judgment refers to the detection and judgment of the status of the filter. After the program ends, other programs or detection programs for other items can be carried out. There are no specific limitations here. The same principle applies when the results of two second judgment programs are false.
  • the first judgment procedure is first executed at each target speed, and the second judgment procedure is executed when the first judgment procedure is false, including: the first judgment procedure is performed when a target speed is satisfied.
  • the first judgment program of the next target speed is executed; when the judgment result of the first judgment program under a target speed is false, the second judgment program is executed; when the second judgment program under a target speed is satisfied,
  • the judgment result of the judgment program is true, the first judgment program for the next target speed is executed.
  • a target speed is satisfied and the judgment result of the second judgment program is false, the first judgment program for the next target speed is executed.
  • the first judgment procedure of the next target speed is performed. If the first judgment procedure of the target speed is still true, it is judged that the air outlet is blocked. ;
  • the second judgment procedure is carried out, and when the result of the second judgment procedure is true or false, the next target speed is carried out (herein referred to as the second target speed), when the first judgment procedure of the second target speed is true, it is judged that the air outlet is blocked, and when the first judgment procedure of the second target speed is false, the second judgment procedure is performed, And when at least two identical second judgment program results appear, the corresponding detection results are corresponding. If at least two identical second judgment program results do not appear, the next target speed is performed (recorded as the third target speed).
  • the first judgment program similarly, when at least two identical first judgment program results or second judgment program results appear, the corresponding detection results are corresponding, and the detection ends.
  • judging that the air inlet is blocked when the judgment results of the first judgment procedure at at least two target speeds are true, and ending the judgment include: judging when the results of the first judgment procedure at two target speeds are true. The air inlet is blocked, the judgment is ended, and a clear reminder is issued; when the judgment result of the second judgment program under at least two target speeds is true, it is judged that the filter is not installed, and the judgment is ended, including: the second judgment procedure under two target speeds is true.
  • the target rotation speed includes medium rotation speed, medium high rotation speed and high rotation speed.
  • this disclosure detects the rotation speed above the medium rotation speed. It can be understood that according to the experimental data, at low and low-medium rotation speeds, whether the filter is loaded or not has little impact on the PWM value, so low and medium rotation speeds. The low and medium speed is the stable stage, which makes the motor work stably. Experimental data analysis of medium, medium and high speeds can more efficiently and accurately judge whether the filter is loaded normally.
  • the detection result is that the air outlet is blocked at high rotation speed (the situation of air outlet blocking at this rotation speed is only to detect that the air outlet is blocked. Flow diagram for one of all situations).
  • S41 Control the motor speed to increase to medium speed and execute S42;
  • S44 Control the motor speed to increase to medium to high speed, and execute S45;
  • calculating the average value of the difference between the actual PWM value and the default PWM value at the target speed includes recording the actual PWM value N times at the target speed, and calculating the difference to average.
  • the judgment of whether the filter is installed is entered.
  • the PWM value at this time is recorded, analyzed N times, and the difference is Calculation of the average value is performed, and N times of sampling are used to calculate the average value d.
  • PWM is the default PWM value at the target speed
  • PWM is the actual PWM value
  • the average value of the difference between the multiple actual PWM values obtained by N sampling and the default PWM value at the target speed is calculated. Compare the allowable deviation d.
  • dactual ⁇ dmedium it is determined that the filter may not be loaded.
  • This sampling analysis algorithm is also performed for medium-high and high speeds.
  • S511 Control the motor speed to increase to medium speed and execute S512;
  • S513 Determine that the air outlet is suspected to be blocked, and execute S514;
  • S514 Control the motor speed to increase to medium to high speed, and execute S515;
  • S515 Execute the first judgment program, and when the first judgment program is false, execute S516;
  • S517 Control the motor speed to increase to a high speed and execute S518;
  • Figure 7 and Figure 8 are schematic diagrams before and after installing the filter. It can be seen that two filters are installed in Figure 7, the first filter 3 and the second filter 4, the fan 2 and the air outlet 1. It can be seen that the direction of airflow is from bottom to top.
  • Figure 8 is a schematic diagram without the first filter 3 and the second filter 4 being installed.
  • a second aspect of this embodiment provides a control device, including one or more processors and a non-transitory computer-readable storage medium storing program instructions.
  • the one or more processors execute the program instructions, one or more A plurality of processors are configured to implement the detection method for determining filter status according to the first aspect. Therefore, it has all the beneficial technical effects of the detection method for judging the status of the filter introduced in the first aspect, which will not be described again here.
  • a third aspect of this embodiment provides a non-transitory computer-readable storage medium on which program instructions are stored.
  • the program instructions are executed by one or more processors, the one or more processors are configured to Implement the detection method for judging the status of the filter introduced in the first aspect. Therefore, it has all the beneficial technical effects of the first aspect of the detection method for judging the status of the filter, which will not be described again here.
  • the fourth aspect of this embodiment provides an air purifier that adopts the method described in the first aspect, or includes the control device described in the second aspect, or has a non-transitory computer according to the third aspect
  • the readable storage medium therefore has all the beneficial technical effects of the first aspect, the second aspect, or the third aspect, which will not be described again here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

本公开提供一种判断过滤网状态的检测方法及装置、存储介质、空气净化器,检测方法包括:控制电机转速逐级增速至多个不同目标转速,每个目标转速下先执行第一判断程序,在第一判断程序的结果为假时执行第二判断程序;当至少两个目标转速下的第一判断程序的判断结果为真时判断进风口封堵;当至少两个目标转速下的第二判断程序的判断结果为真时判断过滤网未安装;当至少两个目标转速下的第二判断程序的判断结果为假时判断过滤网正常安装。本公开能够在判断出风口未封堵的情况下进行过滤网是否安装的检测,从而排出了风口封堵对滤网判断的误判,提高了对滤网的检测精度。

Description

过滤网状态的检测方法及装置、存储介质、空气净化器
本公开要求于2022年03月25日提交中国专利局、申请号为202210307323.X、发明名称为“过滤网状态的检测方法及装置、存储介质、空气净化器”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及空气净化器技术领域,尤其涉及一种过滤网状态的检测方法及装置、存储介质、空气净化器。
背景技术
随着生活质量的不断提升,人们对空气质量的要求也越来越高,空气净化设备成为改善空气环境不可或缺的一部分。空气净化设备的使用中,由于滤网的净化能力会随着使用时间逐渐降低,因此需要定期更换滤网,但用户更换滤网并对滤网清理后,往往存在忘记装载滤网情况,导致空气净化设备在无滤网情况下工作,直接影响了净化效果,给用户带来不好的使用体验。
发明内容
鉴于此,本公开提供一种判断过滤网状态的检测方法及包括其的控制装置、可读存储介质和空气净化器,至少用于解决相关技术中存在的用户在拆除滤网后忘记安装滤网导致净化效果较差的技术问题。
本公开为实现上述的目标,采用的技术方案是:
本公开第一方面提供一种判断过滤网状态的检测方法,包括:
控制电机转速逐级增速至多个不同目标转速,每个目标转速下先执行第一判断程序,在第一判断程序的结果为假时执行第二判断程序;
当至少两个目标转速下的第一判断程序的判断结果均为真时判断进风口封堵;当至少两个目标转速下的第二判断程序的判断结果均为真时判断过滤网未装载;当至少两个目标转速下的第二判断程序的判断结果均为假时判断过滤网正常安装。
在一些实施方式中,所述第一判断程序判定所述目标转速下的默认PWM值与实际PWM值的差值是否大于设定差值,当所述目标转速下的默认PWM值与实际PWM值的差值大于设定差值为真,当所述目标转速下的默认PWM值与实际PWM值的差值小于等于设定差值为假;
所述第二判断程序判定所述目标转速下的实际PWM值与默认PWM值的差值的平均值是否大于等于允许偏差值,当判定目标转速下的实际PWM值与默认PWM值的差值的平均值大于等于允许偏差值为真,当判定目标转速下的实际PWM值与默认PWM值的差值的平均值小于允许偏差值为假。
在一些实施方式中,所述每个目标转速下先执行第一判断程序,在第一判断程序为假时执行第二判断程序,包括:在满足一个目标转速下的第一判断程序的判断结果为真时执行下一目标转速的第一判断程序;在满足一个目标转速下的第一判断程序的判断结果为假时执行第二判断程序;在满足一个目标转速下的第二判断程序的判断结果为真时执行下一目标转速的第一判断程序,在满足一个目标转速下的第二判断程序的判断结果为假时执行下一目标转速的第一判断程序。
在一些实施方式中,所述满足至少两个目标转速下的第一判断程序的判断结果为真时判断进风口封堵,结束判断,包括:两个目标转速下的第一判断程序结果为真时判断进风口封堵,结束判断,并进行清除提醒;所述满足至少两个目标转速下的第二判断程序的判断结果为真时判断过滤网未安装,结束判断,包括:两个目标转速下的第二判断程序的判断结果为真时判断过滤网未安装,结束判断,并进行故障提醒;所述满足至少两 个目标转速下的第二判断程序的判断结果为假时判断滤网正常安装,结束判断,包括:两个目标转速下的第二判断程序的判断结果为假时判断滤网正常安装,结束判断,进入正常工作运行。
在一些实施方式中,所述目标转速包括中转速、中高转速和高转速,当所述电机增速到所述目标转速时,维持在该目标转速下运行预设时间。
在一些实施方式中,所述计算目标转速下实际PWM值与默认PWM值的差值的平均值具体包括,在该目标转速下N次取样记录实际PWM值,并计算差值求平均值。
在一些实施方式中,检测方法还包括,多个目标转速下,若满足一个第一判断程序的结果为真,一个第二判断程序结果为真,一个第二判断程序结果为假时,延时该目标转速,重新进行所述出风口封堵的判断,并在所述出风口未封堵时,进行M次取样,判断所述滤网是否装载;其中,M大于N。
在一些实施方式中,满足一个第一判断程序结果为真时,则判断所述出风口堵转;满足一个第二判断结果为真时,则判断所述滤网未安装;满足一个第二判断结果为假时,则判断过滤网正常安装,并退出检测程序,进入正常工作。
本公开的第二方面提供了一种控制装置,其包括一个或多个处理器以及存储有程序指令的非暂时性计算机可读存储介质,当所述一个或多个处理器执行所述程序指令时,所述一个或多个处理器被设置为实现第一方面所述的判断过滤网状态的检测方法。
本公开的第三方面提供了一种非暂时性计算机可读存储介质,其上存储有程序指令,当所述程序指令被一个或多个处理器执行时,所述一个或多个处理器被设置为实现根据第一方面所述判断过滤网状态的检测方法。
本公开的第四方面提供了一种空气净化器,其采用第一方面所述的检测方法,或包括第二方面所述的控制装置,或具有根据第三方面所述的非暂时性计算机可读存储介质。
本公开利用开机后的检测阶段,对滤网的装载以及出风口的情况进行检测,在开机运行后,风机从低转速向高转速调节,在经过低转速及低中转速的稳定后,对达到中转速、中高转速和高转速对应的出厂默认的PWM(Pulse Width Modul,脉冲宽度调制)值进行采样记录,每达到一个目标转速,执行第一判断程序,并在第一判断程序为真时,出风口可能存在封堵情况,并在满足两次第一判断程序为真时的情况下,判断出风口封堵,从而避免出风口封堵对检测滤网的误判。并在判断出风口未封堵的情况下,存在两次第二判断程序为真时,确定滤网未装载,需要故障提醒,存在两次第二判断程序为假时,确定滤网正常装载,则退出检测阶段,进入正常工作。本公开排除出风口封堵对滤网判断的误判,提高了对滤网的检测精度。
附图说明
通过参照附图详细描述其示例实施例,本公开的上述和其它目标、特征及优点将变得更加显而易见。下面描述的附图仅仅是本公开的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出本公开实施例的检测方法流程图之一;
图2示出本公开实施例的检测方法流程图之二;
图3示出本公开实施例的检测方法流程图之三;
图4示出本公开实施例的检测方法流程图之四;
图5示出本公开实施例的检测方法流程图之五;
图6示出本公开实施例反馈转速检测电路示意图;
图7示出本公开实施例有装载过滤网的检测示意图;
图8示出本公开实施例未装载过滤网的检测示意图;
图9示出本公开实施例不同转速下PWM值示意图。
图中:
1出风口、2风机、3第一过滤网、4第二过滤网、5光耦。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
在本公开实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义,“多种”一般包含至少两种,但是不排除包含至少一种的情况。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的商品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种商品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的商品或者系统中还存在另外的相同要素。
本实施例第一方面提供了一种判断过滤网状态的检测方法,在对空气净化器的使用过程中,需要定期更换滤网,但在更换滤网并对滤网清洗后,往往存在忘记装载滤网的情况,导致不能达到理想的净化效果,因此,本实施例提出一种判断过滤网状态的检测方法,具体地方法包括:
控制电机转速逐级增速至多个不同目标转速,每个目标转速下先执 行第一判断程序,在第一判断程序的结果为假时执行第二判断程序,
当至少两个目标转速下的第一判断程序的判断结果均为真时判断进风口封堵;当至少两个目标转速下的第二判断程序的判断结果均为真时判断过滤网未装载;当至少两个目标转速下的第二判断程序的判断结果均为假时判断过滤网正常安装。
第一判断程序判定目标转速下的默认PWM值与实际PWM值的差值是否大于设定差值,当目标转速下的默认PWM值与实际PWM值的差值大于设定差值为真,当目标转速下的默认PWM值与实际PWM值的差值小于等于设定差值为假;
第二判断程序判定所述目标转速下的实际PWM值与默认PWM值的差值的平均值是否大于等于允许偏差值,当判定目标转速下实际PWM值的与默认PWM值的差值的平均值大于等于允许偏差值为真,当判定目标转速下的实际PWM值与默认PWM值的差值的平均值小于允许偏差值为假。
本实施例中存在两种判断程序,第一判断程序和第二判断程序。其中第一判断程序判定目标转速下的默认PWM值与实际PWM值的差值是否大于设定差值。
第二判断程序判定目标转速下的实际PWM值与默认PWM值的差值的平均值是否大于等于允许偏差值。
其中,目标转速下的默认PWM值是在该目标转速下的电机出厂默认的PWM值,可以理解的是,出厂默认的PWM值是对原厂正常使用的空气净化器进行实验测得的,也就是说,出厂默认的PWM值是对出风口未封堵而且滤网正常装载的空气净化器进行检测得到的数值,不同目标转速下的默认PWM值就是在原厂正常使用的空气净化器,在不同的目标转速下测量得到的数值。实际PWM值是对待检测空气净化器进行检测,在空气净化器开机工作后,进入检测阶段,在多个不同的目标转速的调节过程中,通过反馈转速检测电路将电机反馈信号通过光耦降压,经过电容滤波,反馈到芯片检测口转速,检测到达每一个目标转速下的PWM值,即为该转速下的 PWM值。
如图6所示,为反馈转速检测电路。
在一个具体的实施例,举例介绍本公开的检测方式,如图1所示,为在中高转速时检测结果为出风口封堵的情况(该转速下出风口封堵情况仅为检测出风口封堵所有情况的其中一种)的流程示意图。
S11:控制电机转速增速至中转速,并执行S12;
S12;执行第一判断程序,并在第一判断程序为真时,则执行S13;
S13:判断出风口疑似封堵,并执行S14;
S14:控制电机转速增速至中高转速,并执行S15;
S15:执行第一判断程序,并在第一判断程序为真时,执行S16;
S16:判断出风口封堵。
在一个具体的实施例,举例介绍本公开的检测方式,如图2所示,为在中高速时检测结果为过滤网未正常安装的情况(该转速下过滤网未正常安装仅为检测过滤网未正常安装中所有情况的其中一种)的流程示意图。
S21:控制电机转速增速至中转速,并执行S22;
S22:执行第一判断程序,并在第一判断程序为假时,则执行S23;
S23:执行第二判断程序,并在第二判断程序为真时,执行S24:
S24:过滤网疑似未正常安装,并执行S25;
S25:控制电机转速增速至中高转速,并执行S26:
S26:执行第一判断程序,并在第一判断程序为假时,则执行S27
S27:执行第二判断程序,并在第二判断程序为真时,执行S28;
S28:判断过滤网未正常安装。
在一个具体的实施例,举例介绍本公开的检测方式,如图3所示,为在中高速时检测结果为过滤网正常安装的情况(该转速下过滤网未正常安装仅为检测过滤网正常安装中所有情况的其中一种)的流程示意图。
S31:控制电机转速增速至中转速,并执行S32;
S32:执行第一判断程序,并在第一判断程序为假时,则执行S33;
S33:执行第二判断程序,并在第二判断程序为假时,执行S34:
S34:过滤网正常安装,并执行S35;
S35:控制电机转速增速至中高转速,并执行S36:
S36:执行第一判断程序,并在第一判断程序为假时,则执行S37
S37:执行第二判断程序,并在第二判断程序为假时,执行S38;
S38:判断过滤网正常安装。
控制电机转速逐级增速至多个不同目标转速,每个目标转速下先执行第一判断程序,在第一判断程序为假时执行第二判断程序,也就是说,先执行第一判断程序再执行第二判断程序。
具体地,在满足出现两个第一判断程序为真时,判断出风口出现封堵情况,这也先进行第一判断程序的原因,本公开是对滤网状态的检测方法,但是在空气净化器的实际使用过程中可能出现出风口封堵的情况,出风口的封堵会影响正常的滤网装载的逻辑判断,会对滤网检测造成误判,所以本公开先进行第一判断程序,并在满足至少两个目标转速下的第一判断程序的判断结果为真时判断进风口封堵,结束判断。而在满足至少两个目标转速下的第二判断程序的判断结果为真时判断过滤网未安装,结束判断,从而避免了出风口封堵对滤网检测造成的误判。并在满足至少两个目标转速下的第二判断程序的判断结果为假时判断滤网正常安装,结束判断,退出检测程序,控制空气净化器正常运行。
值得注意的是,本实施例中介绍的在出现两个第一判断程序的结果为真时,结束判断是指对滤网状态检测的判断结束,在实际的应用中,虽然滤网的状态检测结束,该程序还可进行其他方面的检测,同样的,在出现两个第二判断程序的结果为真时,判断过滤网未安装,结束判断,其中结束判断是指对于过滤网状态的检测判断程序结束,接下来可以进行其他程序或者其他项目的检测程序,在此不做具体限定,在出现两个第二判断程序结果为假时,道理相同。
在一些实施方式中,在本实施例中,每个目标转速下先执行第一判断 程序,在第一判断程序为假时执行第二判断程序,包括:在满足一个目标转速下的第一判断程序的判断结果为真时执行下一目标转速的第一判断程序;在满足一个目标转速下的第一判断程序的判断结果为假时执行第二判断程序;在满足一个目标转速下的第二判断程序的判断结果为真时执行下一目标转速的第一判断程序,在满足一个目标转速下的第二判断程序的判断结果为假时执行下一目标转速的第一判断程序。
也就是说,在满足一个目标转速下的第一判断结果为真或者为假时,并不满足结束判断的条件,而是向下进行对应的判断程序,第二判断程序同样的道理。
例如,在第一目标转速执行第一判断程序且结果为真时,则进行下一目标转速的第一判断程序,如果该目标转速的第一判断程序还为真时,则判断出风口封堵;
在第一目标转速执行第一判断程序结果为假时,则进行第二判断程序,并在第二判断程序无论结果为真或为假时,均进行下一目标转速(此处记做第二目标转速)的第一判断程序,在第二目标转速的第一判断程序为真时,判断出风口封堵,在第二目标转速第一判断程序为假时,进行第二判断程序的判断,并在出现至少两个相同的第二判断程序结果时,对应相应的检测结果,如果没有出现至少两个相同的第二判断程序结果,则进行再下一个目标转速(记做第三目标转速)的第一判断程序,同样的,出现至少两个相同的第一判断程序结果或者第二判断程序结果时对应相应的检测结果,并结束检测。
在一些实施方式中,满足至少两个目标转速下的第一判断程序的判断结果为真时判断进风口封堵,结束判断,包括:两个目标转速下的第一判断程序结果为真时判断进风口封堵,结束判断,并进行清除提醒;满足至少两个目标转速下的第二判断程序的判断结果为真时判断过滤网未安装,结束判断,包括:两个目标转速下的第二判断程序的判断结果为真时判断过滤网未安装,结束判断,并进行故障提醒;满足至少两个目标转速下的 第二判断程序的判断结果为假时判断滤网正常安装,结束判断,包括:两个目标转速下的第二判断程序的判断结果为假时判断滤网正常安装,结束判断,进入正常工作运行。
也就是说,在满足两个相同的判断结果时,对应相对应的检测结果,并结束判断,可以理解的是,如果没有出现两个相同的判断结果,则进行下一目标的判断程序(先第一判断程序,后第二判断程序的顺序)
在一些实施方式中,目标转速包括中转速、中高转速和高转速。也就是说,本公开是对中转速以上的转速进行检测,可以理解的是,根据实验数据可得,在低、低中转速下,有无装载滤网对PWM值得影响不大,所以低、低中转速下为稳定阶段,使电机工作稳定,对中、中高、高转速进行实验数据分析,能够较为高效和精准的判断滤网是否正常装载。
在一个具体的实施例,举例介绍本公开的检测方式,如图4所示,为高转速时检测结果为出风口封堵的情况(该转速下出风口封堵情况仅为检测出风口封堵所有情况的其中一种)的流程示意图。
S41:控制电机转速增速至中转速,并执行S42;
S42;执行第一判断程序,并在第一判断程序为真时,则执行S43;
S43:判断出风口疑似封堵,并执行S44;
S44:控制电机转速增速至中高转速,并执行S45;
S45:执行第一判断程序,并在第一判断程序为假时,执行S46;
S46:执行第二判断程序,并在第二判断程序为真时,执行S47:
S47:控制电机转速增速至高转速,并执行S48;
S48:执行第一判断程序,并在第一判断程序为真时,则执行S49;
S49:判断出风口封堵。
在一些实施方式中,计算目标转速下实际PWM值与默认PWM值的差值的平均值的包括在该目标转速下N次取样记录实际PWM值,并计算差值求平均值。
具体地,当目标转速下默认PWM值小于等于实际的PWM值时,进入滤网是否安装的判定,当反馈口检测到中转速后,记录此时的PWM值,进行 N次分析,对差值的进行求平均值的计算,N次取样求平均值d实,
Figure PCTCN2022129226-appb-000001
其中PWM 为目标转速下默认PWM值,PWM 为实际的PWM值,并将N次取样求得的多个PWM 与目标转速下默认的PWM值之间的差值的平均值与中转速的允许偏差d中比较,当d ≥d ,则判定为滤网可能未装载,同样对中高、高转速进行此采样分析算法,当d ≥d ,d ≥d 中高,d ≥d 有两个满足,则确定为滤网未装载,进行故障提醒,若有两次条件不满足,则判定为正常装载滤网,退出检测阶段,进入正常工作状态。
如图5所示,在对中、中高和高转速检测过程中,如果出现一个第一判断程序的结果为真,一个第二判断程序结果为真,一个第二判断程序结果为假时,不符合上述判断结果,在此情况下,延时最高转速下采样次数M,其中M大于等于N,并重新对最高转速下进行出风口封堵进行判断,并在出风口未封堵时,判断滤网是否正常装载。
S511:控制电机转速增速至中转速,并执行S512;
S512;执行第一判断程序,并在第一判断程序为真时,则执行S513;
S513:判断出风口疑似封堵,并执行S514;
S514:控制电机转速增速至中高转速,并执行S515;
S515:执行第一判断程序,并在第一判断程序为假时,执行S516;
S516:执行第二判断程序,并在第二判断程序为真时,执行S517:
S517:控制电机转速增速至高转速,并执行S518;
S518:执行第一判断程序,并在第一判断程序为假时,则执行S519;
S519:执行第二判断程序,并在第二判断程序为假时,执行S520;
S520:延时最高转速下采样次数,并执行S521:
S521:执行第一判断程序,并在第一判断程序为真时,执行S522, 在第一判断程序为假时,执行S523:
S522:判断出风口封堵:
S523:执行第二判断程序,并在第二判断程序为真时,执行S524,并在第二判断程序为假时,执行S525:
S524:判断过滤网未安装;
S525:判断过滤网正常安装。
值得注意的是,本公开中一个第一判断程序的结果为真,一个第二判断程序结果为真,一个第二判断程序结果为假的限定条件并非限定了上述条件的产生顺序,而是产生结果的个数的表述。其中,图5为第一个判断结果为第一判断程序的结果为真,第二个判断结果为第二判断程序的结果为真,第三个判断结果为第二判断程序的结果为假的情况进行的举例说明。
在上述判断过程中,在一些实施方式中,满足一个第一判断程序的结果为真时,则判断所述出风口堵转;满足一个第二判断程序的结果为真时,则判断所述滤网未安装;满足一个第二判断程序的结果为假时,则判断过滤网正常安装,并退出检测程序,进入正常工作。
如图7和图8所示,为安装过滤网前后示意图,可以看出,图7中安装了两个滤网,第一过滤网3和第二过滤网4,风机2和出风口1,可以看出气流的走向是从下向上的。图8中为未安装第一过滤网3和第二过滤网4的示意图。
如图9所示,为不同转速下的PWM值的分布情况。
值得注意的是,图7和图8中安装了两个过滤网,并不代表本公开的方法仅仅适用两个滤网的空气净化器,而是本公开能够检测设置多个滤网的空气净化器的滤网安装情况,其中不同数量滤网的下检测到PWM值不同,因此,滤网的数量并不会影响本公开的检测结果。
本实施例的第二方面提供了一种控制装置,包括一个或多个处理器以及存储有程序指令的非暂时性计算机可读存储介质,当一个或多个处理器执行程序指令时,一个或多个处理器被设置为实现根据第一方面所 述的判断过滤网状态的检测方法。因此具有第一方面介绍的判断过滤网状态的检测方法的全部有益技术效果,在此不再赘述。
本实施例的第三方面提供了一种非暂态性计算机可读存储介质,其上存储有程序指令,当程序指令被一个或多个处理器执行时,一个或多个处理器被设置为实现根据第一方面介绍的判断过滤网状态的检测方法。因此具有第一方面判断过滤网状态的检测方法的全部有益技术效果,在此不再赘述。
本实施例的第四方面提供给了一种空气净化器,其采用第一方面所述的方法,或包括第二方面所述的控制装置,或具有根据第三方面所述的非暂时性计算机可读存储介质,因此具有第一方面或第二方面或第三方面的全部有益技术效果,在此不再赘述。
以上具体地示出和描述了本公开的示例性实施例。应可理解的是,本公开不限于这里描述的详细结构、设置方式或实现方法;相反,本公开意图涵盖包含在所附权利要求的精神和范围内的各种修改和等效设置。

Claims (10)

  1. 一种判断过滤网状态的检测方法,所述检测方法包括:
    控制电机转速逐级增速至多个不同目标转速,每个目标转速下先执行第一判断程序,在第一判断程序的结果为假时执行第二判断程序;
    当至少两个目标转速下的第一判断程序的判断结果为真时判断进风口封堵;当至少两个目标转速下的第二判断程序的判断结果为真时判断过滤网未安装;当至少两个目标转速下的第二判断程序的判断结果为假时判断过滤网正常安装。
  2. 根据权利要求1所述的判断过滤网状态的检测方法,其中,
    所述第一判断程序判定所述目标转速下的默认PWM值与实际PWM值的差值是否大于设定差值,当所述目标转速下的默认PWM值与实际PWM值的差值大于设定差值为真,当所述目标转速下的默认PWM值与实际PWM值的差值小于等于设定差值为假;
    所述第二判断程序判定所述目标转速下的实际PWM值与默认PWM值的差值的平均值是否大于等于允许偏差值,当判定目标转速下的实际PWM值与默认PWM值的差值的平均值大于等于允许偏差值为真,当判定目标转速下的实际PWM值与默认PWM值的差值的平均值小于允许偏差值为假。
  3. 根据权利要求1所述的判断过滤网状态的检测方法,其中,所述每个目标转速下先执行第一判断程序,在第一判断程序为假时执行第二判断程序,包括:
    在满足一个目标转速下的第一判断程序的判断结果为真时执行下一目标转速的第一判断程序;在满足一个目标转速下的第一判断程序的判断结果为假时执行第二判断程序;
    在满足一个目标转速下的第二判断程序的判断结果为真时执行下一目标转速的第一判断程序,在满足一个目标转速下的第二判断程序的判断结果为假时执行下一目标转速的第一判断程序。
  4. 根据权利要求3所述的判断过滤网状态的检测方法,其中,
    所述满足至少两个目标转速下的第一判断程序的判断结果为真时判断进风口封堵,结束判断,包括:两个目标转速下的第一判断程序结果为真时判断进风口封堵,结束判断,并进行清除提醒;
    所述满足至少两个目标转速下的第二判断程序的判断结果为真时判断过滤网未安装,结束判断,包括:两个目标转速下的第二判断程序的判断结果为真时判断过滤网未安装,结束判断,并进行故障提醒;
    所述满足至少两个目标转速下的第二判断程序的判断结果为假时判断滤网正常安装,结束判断,包括:两个目标转速下的第二判断程序的判断结果为假时判断滤网正常安装,结束判断,进入正常工作运行。
  5. 根据权利要求2所述的判断过滤网状态的检测方法,其中,所述计算目标转速下实际PWM值与默认PWM值的差值的平均值具体包括,在该目标转速下N次取样记录实际PWM值,计算差值并求平均值。
  6. 根据权利要求5所述的判断过滤网状态的检测方法,其中,所述检测方法还包括:
    多个目标转速下,若满足一个第一判断程序的结果为真,一个第二判断程序结果为真,一个第二判断程序结果为假时,延时该目标转速,重新进行所述出风口封堵的判断,并在所述出风口未封堵时,进行M次取样,判断所述滤网是否装载;
    其中,M大于N。
  7. 根据权利要求6所述的判断过滤网状态的检测方法,其中,满足一个第一判断程序的结果为真时,则判断所述出风口堵转;
    满足一个第二判断程序的结果为真时,则判断所述滤网未安装;
    满足一个第二判断程序的结果为假时,则判断滤网正常安装,并退出检测程序,进入正常工作。
  8. 一种控制装置,其包括一个或多个处理器以及存储有程序指令的非暂时性计算机可读存储介质,当所述一个或多个处理器执行所述程序指 令时,所述一个或多个处理器被设置为实现根据权利要求1至7中任一项所述的判断过滤网状态的检测方法。
  9. 一种非暂时性计算机可读存储介质,其上存储有程序指令,当所述程序指令被一个或多个处理器执行时,所述一个或多个处理器被设置为实现根据权利要求1至7中任一项所述的判断过滤网状态的检测方法。
  10. 一种空气净化器,其采用权利要求1至7中任一项所述的方法,或包括权利要求8所述的控制装置,或具有根据权利要求9所述的非暂时性计算机可读存储介质。
PCT/CN2022/129226 2022-03-25 2022-11-02 过滤网状态的检测方法及装置、存储介质、空气净化器 WO2023179033A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210307323.X 2022-03-25
CN202210307323.XA CN114543260B (zh) 2022-03-25 2022-03-25 过滤网状态的检测方法及装置、存储介质、空气净化器

Publications (1)

Publication Number Publication Date
WO2023179033A1 true WO2023179033A1 (zh) 2023-09-28

Family

ID=81665732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129226 WO2023179033A1 (zh) 2022-03-25 2022-11-02 过滤网状态的检测方法及装置、存储介质、空气净化器

Country Status (2)

Country Link
CN (1) CN114543260B (zh)
WO (1) WO2023179033A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114543260B (zh) * 2022-03-25 2023-03-28 珠海格力电器股份有限公司 过滤网状态的检测方法及装置、存储介质、空气净化器
CN115218348B (zh) * 2022-06-23 2024-01-16 珠海格力电器股份有限公司 一种滤网安装检测方法、检测装置和空气净化设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160117907A1 (en) * 2014-08-30 2016-04-28 Zhongshan Broad-Ocean Motor Co., Ltd. Device for detecting blockage of air filter mesh
CN105841295A (zh) * 2016-03-28 2016-08-10 海信(山东)空调有限公司 一种过滤网寿命检测方法及装置
CN108286772A (zh) * 2017-12-21 2018-07-17 珠海格力电器股份有限公司 空调控制方法、装置及空调
CN109028460A (zh) * 2018-08-17 2018-12-18 宁波奥克斯电气股份有限公司 一种空调器过滤网脏堵判定方法、装置及空调器
CN111156662A (zh) * 2019-12-31 2020-05-15 珠海格力电器股份有限公司 一种贯流风叶装配检测方法、计算机可读存储介质及空调
CN111272628A (zh) * 2020-02-17 2020-06-12 海信(山东)空调有限公司 空气净化设备及其过滤网寿命检测方法和检测装置
CN113865003A (zh) * 2021-09-28 2021-12-31 珠海格力电器股份有限公司 一种空气净化器及其滤网寿命检测方法、装置、存储介质
CN114543260A (zh) * 2022-03-25 2022-05-27 珠海格力电器股份有限公司 过滤网状态的检测方法及装置、存储介质、空气净化器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160117907A1 (en) * 2014-08-30 2016-04-28 Zhongshan Broad-Ocean Motor Co., Ltd. Device for detecting blockage of air filter mesh
CN105841295A (zh) * 2016-03-28 2016-08-10 海信(山东)空调有限公司 一种过滤网寿命检测方法及装置
CN108286772A (zh) * 2017-12-21 2018-07-17 珠海格力电器股份有限公司 空调控制方法、装置及空调
CN109028460A (zh) * 2018-08-17 2018-12-18 宁波奥克斯电气股份有限公司 一种空调器过滤网脏堵判定方法、装置及空调器
CN111156662A (zh) * 2019-12-31 2020-05-15 珠海格力电器股份有限公司 一种贯流风叶装配检测方法、计算机可读存储介质及空调
CN111272628A (zh) * 2020-02-17 2020-06-12 海信(山东)空调有限公司 空气净化设备及其过滤网寿命检测方法和检测装置
CN113865003A (zh) * 2021-09-28 2021-12-31 珠海格力电器股份有限公司 一种空气净化器及其滤网寿命检测方法、装置、存储介质
CN114543260A (zh) * 2022-03-25 2022-05-27 珠海格力电器股份有限公司 过滤网状态的检测方法及装置、存储介质、空气净化器

Also Published As

Publication number Publication date
CN114543260A (zh) 2022-05-27
CN114543260B (zh) 2023-03-28

Similar Documents

Publication Publication Date Title
WO2023179033A1 (zh) 过滤网状态的检测方法及装置、存储介质、空气净化器
US20180102973A1 (en) System detection and flow control
EP1376285B1 (en) Trouble detection method, trouble detection apparatus, and temperature controller
CN112665110B (zh) 一种空调器控制方法、设备及计算机可读存储介质
US10295952B2 (en) Image forming apparatus with dust and gas recovery
WO2022068638A1 (zh) 清洁设备中风道的堵塞确定方法、设备、装置及存储介质
US10221797B2 (en) Method and control device for monitoring pressure in a crankcase
US9316675B2 (en) Secondary plasma detection systems and methods
JP7491049B2 (ja) 異常検出方法、及び異常検出プログラム
US20210397169A1 (en) Information processing apparatus and monitoring method
JP5365550B2 (ja) パティキュレートフィルタの故障診断装置
JP5264438B2 (ja) 工場の稼働システムおよび稼働方法
CN118517726B (zh) 中央净化系统的控制方法、装置、中央净化系统及介质
CN107218702A (zh) 空调器及空调器频率调节方法和计算机可读存储介质
CN113028571B (zh) 机房空调的压缩机控制方法、装置、空调及介质
CN114341896A (zh) 用于检测过滤器脏污程度的系统和方法
WO2023226464A1 (zh) 空调积灰检测方法、装置、空调及电子设备
CN115047992B (zh) 一种基于web画板的图形绘制方法及系统
CN107533572B (zh) 处理工具监视
CN100557576C (zh) 操作系统故障检测的方法和装置
KR102109032B1 (ko) 플라즈마 전원장치의 전류감지를 이용한 회로이상 검출방법 및 그 장치
CN114661020A (zh) 炼化装置控制回路的故障诊断方法及装置
CN109951134A (zh) 一种电机的控制方法及装置
CN111426341B (zh) 一种油烟在线监测结果的检测方法及检测系统
JP2005331944A (ja) 印刷環境で統計的品質管理(spc)を実装する方法および装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22933084

Country of ref document: EP

Kind code of ref document: A1