WO2023177155A1 - 전자식 브레이크 시스템 및 이의 작동방법 - Google Patents

전자식 브레이크 시스템 및 이의 작동방법 Download PDF

Info

Publication number
WO2023177155A1
WO2023177155A1 PCT/KR2023/003291 KR2023003291W WO2023177155A1 WO 2023177155 A1 WO2023177155 A1 WO 2023177155A1 KR 2023003291 W KR2023003291 W KR 2023003291W WO 2023177155 A1 WO2023177155 A1 WO 2023177155A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic pressure
hydraulic
supply device
pressure supply
inlet
Prior art date
Application number
PCT/KR2023/003291
Other languages
English (en)
French (fr)
Inventor
김석종
Original Assignee
에이치엘만도 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에이치엘만도 주식회사 filed Critical 에이치엘만도 주식회사
Publication of WO2023177155A1 publication Critical patent/WO2023177155A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • B60T17/22Devices for monitoring or checking brake systems; Signal devices
    • B60T17/221Procedure or apparatus for checking or keeping in a correct functioning condition of brake systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/662Electrical control in fluid-pressure brake systems characterised by specified functions of the control system components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/68Electrical control in fluid-pressure brake systems by electrically-controlled valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/66Electrical control in fluid-pressure brake systems
    • B60T13/68Electrical control in fluid-pressure brake systems by electrically-controlled valves
    • B60T13/686Electrical control in fluid-pressure brake systems by electrically-controlled valves in hydraulic systems or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • B60T13/745Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive acting on a hydraulic system, e.g. a master cylinder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T17/00Component parts, details, or accessories of power brake systems not covered by groups B60T8/00, B60T13/00 or B60T15/00, or presenting other characteristic features
    • B60T17/18Safety devices; Monitoring
    • B60T17/22Devices for monitoring or checking brake systems; Signal devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/40Failsafe aspects of brake control systems
    • B60T2270/404Brake-by-wire or X-by-wire failsafe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2306/00Other features of vehicle sub-units
    • B60Y2306/13Failsafe arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/81Braking systems

Definitions

  • the present invention relates to an electronic brake system and operating method, and more specifically, to an electronic brake system and operating method that generates braking force using an electrical signal corresponding to the displacement of the brake pedal.
  • Vehicles are essentially equipped with a brake system to perform braking, and various types of brake systems are being proposed to ensure the safety of drivers and passengers.
  • Conventional brake systems mainly use a method that supplies hydraulic pressure necessary for braking to wheel cylinders using a mechanically connected booster when the driver presses the brake pedal.
  • a pedal displacement sensor that detects the displacement of the brake pedal.
  • Electronic braking systems that receive a signal and operate the first hydraulic pressure supply device based on this signal to supply hydraulic pressure necessary for braking to the wheel cylinder are becoming widely used.
  • the electronic brake system enters an abnormal operation mode when a component fails or is out of control, and in this case, a mechanism is required in which the driver's brake pedal operation is directly linked to the wheel cylinder.
  • the hydraulic pressure necessary for braking must be immediately generated and transmitted directly to the wheel cylinder.
  • This embodiment seeks to provide an electronic braking system and operating method that can effectively implement braking in various operating situations.
  • This embodiment seeks to provide an electronic brake system and operating method with improved performance and operational reliability.
  • This embodiment seeks to provide an electronic brake system and operating method that can stably generate and transmit braking pressure even in emergencies such as failure of various components.
  • a first hydraulic pressure supply device that generates hydraulic pressure by an electrical signal output in response to the displacement of the brake pedal;
  • a hydraulic control unit including a first hydraulic circuit for controlling the hydraulic pressure of the first wheel cylinder and the second wheel cylinder, and a second hydraulic circuit for controlling the hydraulic pressure of the third wheel cylinder and the fourth wheel cylinder;
  • a second hydraulic pressure connected between the first and second wheel cylinders and the first hydraulic circuit, and generating hydraulic pressure by the electrical signal when at least one of the first hydraulic pressure supply device and the hydraulic control unit is inoperable.
  • a main hydraulic passage connecting the first hydraulic pressure supply device and the hydraulic control unit; and is provided in the main hydraulic passage to control the flow of pressurized medium, and is closed in a first fallback mode that allows inoperability of the first hydraulic pressure supply device and normal operation of the hydraulic control unit, and is provided from the second hydraulic pressure supply device. It may be provided including a main isolation valve that prevents the hydraulic pressure of the pressurized medium from leaking to the first hydraulic pressure supply device.
  • the first hydraulic circuit is provided with first and second inlet passages branched and connected to the first and second wheel cylinders from the downstream of the main hydraulic passage, respectively, and provided in the first and second inlet passages, respectively, to supply pressurized medium. It includes first and second inlet valves that control flow, and the second hydraulic pressure supply device may be connected to at least one of the first inlet flow path and the second inlet flow path.
  • the second hydraulic circuit is provided in third and fourth inlet passages branched and connected to the third and fourth wheel cylinders from the downstream of the main hydraulic passage, respectively, and in the third and fourth inlet passages, respectively, to supply pressurized medium. It includes third and fourth inlet valves that control flow, wherein the first to fourth inlet valves are opened in the first fallback mode to transfer the hydraulic pressure of the pressurized medium provided from the second hydraulic pressure supply device to the first to fourth inlet valves. All can be transmitted to the fourth wheel cylinder.
  • first support passage connecting the second hydraulic pressure supply device and the first inlet passage
  • second support passage connecting the second hydraulic pressure supply device and the second inlet passage
  • a first sub-isolation valve that prevents the hydraulic pressure of the pressurized medium provided from the hydraulic pressure supply device from leaking into the hydraulic control unit; And is provided between the point where the second support flow path joins on the second inlet flow path and the second inlet valve to control the flow of pressurized medium, and is closed in the second fallback mode to provide pressure from the second hydraulic pressure supply device. It may further include a second sub-isolation valve that prevents the hydraulic pressure of the pressurized medium from leaking toward the hydraulic control unit.
  • first support valve provided in the first support passage to control the flow of pressurized medium
  • second support valve provided in the second support passage to control the flow of pressurized medium
  • first hydraulic circuit includes first and second outlet passages connecting the first and second wheel cylinders and the reservoir, respectively, and the first and second outlet passages. It further includes first and second outlet valves respectively provided in and controlling the flow of the pressurized medium, wherein the second hydraulic circuit has third and fourth outlet passages connecting the third and fourth wheel cylinders and the reservoir, respectively. It may further include third and fourth outlet valves provided in the third and fourth outlet passages, respectively, to control the flow of pressurized medium.
  • a reservoir in which the pressurized medium is stored A first dump passage connecting the first wheel cylinder and the reservoir; And it may be provided further including a second dump passage connecting the second wheel cylinder and the reservoir.
  • a first discharge valve provided in the first dump passage to control the flow of pressurized medium; and a second discharge valve provided in the second dump passage to control the flow of pressurized medium.
  • It may further include a first electronic control unit that controls the operation of at least one of the first hydraulic pressure supply device, the hydraulic control unit, and the main isolation valve.
  • the hydraulic control unit may further include a second electronic control unit that controls at least one operation.
  • a first hydraulic pressure supply device that generates hydraulic pressure by an electrical signal output in response to the displacement of the brake pedal, a hydraulic control unit that controls the hydraulic pressure of the first to fourth wheel cylinders, respectively, the first hydraulic pressure supply device and the A method of operating an electronic brake system including a second hydraulic pressure supply device that generates hydraulic pressure by the electrical signal when at least one of the hydraulic control units is inoperable and is connected to at least one of the first to fourth wheel cylinders.
  • the first hydraulic pressure supply device is inoperable but the hydraulic control unit includes a first fallback mode in which the hydraulic control unit can operate normally, and the first fallback mode is a main control unit connecting the first hydraulic pressure supply device and the hydraulic control unit.
  • the hydraulic control unit includes a first hydraulic circuit for controlling the hydraulic pressure of the first wheel cylinder and the second wheel cylinder, and a second hydraulic circuit for controlling the hydraulic pressure of the third wheel cylinder and the fourth wheel cylinder, and the first hydraulic circuit
  • the fallback mode can transmit all of the hydraulic pressure of the pressurized medium provided from the second hydraulic pressure supply device to the first to fourth wheel cylinders.
  • the first hydraulic circuit is provided with first and second inlet passages branched and connected to the first and second wheel cylinders from the downstream of the main hydraulic passage, respectively, and provided in the first and second inlet passages, respectively, to supply pressurized medium. It includes first and second inlet valves that control flow, and the second hydraulic pressure supply device is connected to at least one of the first inlet flow path and the second inlet flow path to transmit the hydraulic pressure of the pressurized medium.
  • the second hydraulic circuit is provided in third and fourth inlet passages branched and connected to the third and fourth wheel cylinders from the downstream of the main hydraulic passage, respectively, and in the third and fourth inlet passages, respectively, to supply pressurized medium. It includes third and fourth inlet valves that control flow, and the first fallback mode opens the first to fourth inlet valves to supply hydraulic pressure of the pressurized medium provided from the second hydraulic pressure supply device to the first to fourth inlet valves. All can be transmitted to the fourth wheel cylinder.
  • a sub-isolation valve is provided in at least one of the first inlet flow path and the second inlet flow path, and further includes a second fallback mode in which the hydraulic control unit is inoperable, and the second fallback mode is the sub-isolation valve. can be closed to prevent the hydraulic pressure of the pressurized medium provided from the second hydraulic pressure supply device from leaking toward the hydraulic control unit.
  • a first sub-isolation valve is provided between a point where the second hydraulic pressure supply device is connected on the first inlet flow path and the first inlet valve, and a point where the second hydraulic pressure supply device is connected on the second inlet flow path and the first inlet valve.
  • a second sub-isolation valve is provided between the two inlet valves, and further includes a second fallback mode in which the hydraulic control unit is inoperable, and the second fallback mode closes and operates the first and second sub-isolation valves. , it is possible to prevent the hydraulic pressure of the pressurized medium provided from the second hydraulic pressure supply device from leaking toward the hydraulic control unit.
  • a first support valve is provided in a first support passage connecting the second hydraulic pressure supply device and the first inlet passage
  • a second support valve is provided in the second support passage connecting the second hydraulic pressure supply device and the second inlet passage.
  • Support valves are provided, and the first and second fallback modes can open and operate the first and second support valves to allow the flow of pressurized medium provided from the second hydraulic pressure supply device.
  • the hydraulic pressure of the pressurized medium can be transmitted to the first and second wheel cylinders.
  • the first and second support valves are closed and operated to prevent the hydraulic pressure of the pressurized medium provided from the first hydraulic pressure supply device from leaking toward the second hydraulic pressure supply device.
  • the electronic brake system and operating method according to this embodiment can stably and effectively implement braking in various operating situations of the vehicle.
  • the electronic brake system and operating method according to this embodiment can improve product performance and operational reliability.
  • the electronic brake system and operating method according to this embodiment can stably provide braking pressure even when a component element fails.
  • 1 is a hydraulic circuit diagram showing an electronic brake system according to this embodiment.
  • Figure 2 is a hydraulic circuit diagram showing a state in which the electronic brake system according to this embodiment is in normal mode.
  • Figure 3 is a hydraulic circuit diagram showing a state in which the electronic brake system according to this embodiment performs the first fallback mode.
  • Figure 4 is a hydraulic circuit diagram showing a state in which the electronic brake system according to this embodiment performs active braking in the first fallback mode.
  • Figure 5 is a hydraulic circuit diagram showing a state in which the electronic brake system according to this embodiment performs the second fallback mode.
  • Figure 1 is a hydraulic circuit diagram showing the electronic brake system 1000 according to this embodiment.
  • the electronic brake system 1000 receives the driver's intention to brake as an electrical signal by a pedal displacement sensor 20 that detects the displacement of the brake pedal 10 inside, and transmits it to an electric machine.
  • a first hydraulic pressure supply device 1100 that generates hydraulic pressure of the pressurized medium through direct operation
  • a hydraulic control unit 1200 that controls the hydraulic pressure delivered to the wheel cylinders 31, 32, 33, and 34
  • a first hydraulic pressure supply device A main hydraulic passage 1300 connecting the 1100 and the hydraulic control unit 1200, a main isolation valve 1310 provided in the main hydraulic passage 1300 to control the flow of the pressurized medium, and a first hydraulic pressure supply device 1100.
  • a reservoir 1900 that stores pressurized medium such as brake oil, It includes at least one electronic control unit (ECU1, ECU2) that controls the operation of each component element based on hydraulic pressure information and pedal displacement information.
  • ECU1, ECU2 electronice control unit
  • the first hydraulic pressure supply device 1100 receives the driver's intention to brake as an electrical signal from the pedal displacement sensor 20, which detects the displacement of the brake pedal 10, and generates electricity based on this. It is provided to generate hydraulic pressure of the pressurized medium through mechanical operation.
  • the first hydraulic pressure supply device 1100 operates a hydraulic piston (not shown) based on an electrical signal from the pedal displacement sensor 20, and pressurizes the pressurized medium contained in the pressure chamber by the displacement of the hydraulic piston to produce hydraulic pressure. It can be provided as a device for forming.
  • the first hydraulic pressure supply device 1100 may have pressure chambers at the front and rear of the hydraulic piston, and the hydraulic piston may perform a reciprocating motion to form hydraulic pressure of the pressurized medium through the two pressure chambers.
  • the second hydraulic pressure supply device 1100 is not limited to the corresponding device, and as long as it operates electromechanically to form hydraulic pressure of the pressurized medium, it should be understood equally even if it is composed of devices of various structures and methods.
  • the first hydraulic pressure supply device 1100 may be controlled by the first electronic control unit (ECU1), and operates in normal mode, which is a state in which general and normal braking is possible, to operate the plurality of wheel cylinders 31 and 32. , 33, 34), the hydraulic pressure of the pressurized medium for braking can be formed and provided to the hydraulic control unit 1200 through the main hydraulic passage 1300, which will be described later.
  • ECU1 first electronic control unit
  • the brake pedal 10 is connected to a master cylinder or a pedal simulator, so that a reaction force according to the pedal force of the brake pedal 10 is generated to provide a pedal feel to the driver.
  • the hydraulic control unit 1200 is provided between the first hydraulic pressure supply device 1100 and the wheel cylinders 31, 32, 33, and 34, and its operation may be controlled by the first electronic control unit (ECU1).
  • ECU1 first electronic control unit
  • the hydraulic control unit 1200 includes a first hydraulic circuit 1210 that controls the flow of hydraulic pressure delivered to the first and second wheel cylinders 31 and 32 among the four wheel cylinders, and a third and fourth wheel cylinder. It may be provided with a second hydraulic circuit 1220 that controls the flow of hydraulic pressure delivered to (33, 34), and a plurality of hydraulic oil channels and Includes solenoid valve.
  • the first hydraulic circuit 1210 controls the hydraulic pressure of the first and second wheel cylinders 31 and 32, which are two wheel cylinders among the four wheels (RR, RL, FR, FL), and the second hydraulic circuit 1220 ) can control the hydraulic pressure of the other two wheel cylinders, the third and fourth wheel cylinders 33 and 34.
  • the first and second hydraulic circuits 1210 and 1220 are first to fourth inlets branched and connected to the first to fourth wheel cylinders 31, 32, 33, and 34, respectively, from the main hydraulic passage 1300, which will be described later. May include euros (1211, 1212, 1221, 1222).
  • the first to fourth inlet passages (1211, 1212, 1221, and 1222) have upstream ends connected to each other, but may be connected to the downstream side of the main hydraulic passage (1300), and each inlet passage (1211, 1212, 1221) , 1222) may be connected to the first to fourth wheel cylinders 31, 32, 33, and 34, respectively.
  • First to fourth inlet valves 1211a, 1212a, 1221a, and 1222a may be provided in the first to fourth inlet passages 1211, 1212, 1221, and 1222, respectively.
  • the first to fourth inlet valves (1211a, 1212a, 1221a, and 1222a) control the flow of pressurized medium generated from the first hydraulic pressure supply device (1100) and delivered to each wheel cylinder (31, 32, 33, and 34).
  • the flow of the pressurized medium generated and delivered from the second hydraulic pressure supply device 1500 can be adjusted in the first fallback mode, which will be described later.
  • the first to fourth inlet valves (1211a, 1212a, 1221a, and 1222a) are normally open and are normally open so that the valves are closed when an electrical signal is received from the first or second electronic control unit (ECU1, ECU2). It can be provided as a solenoid valve of the Normal Open type.
  • the first to fourth inlet valves 1211a, 1212a, 1221a, and 1222a are controlled to be open in the normal mode, which is a normal operating state, to hydraulically control the hydraulic pressure of the pressurized medium generated and provided by the first hydraulic pressure supply device 1100.
  • the hydraulic pressure of the pressurized medium provided may be provided to the first to fourth wheel cylinders 31, 32, 33, and 34. A detailed description of this will be provided later with reference to FIGS. 2 and 3.
  • the first and second inlet flow paths 1211 and 1212 may be connected to each other to join the first and second support flow paths 1610 and 1620, which will be described later, and the first and second support flow paths 1610 and 1620 are joined.
  • First and second sub-isolation valves 1510 and 1520 which will be described later, may be provided on the upstream side of the point, respectively. A detailed explanation of this will be provided later.
  • first and second hydraulic circuits 1210 and 1220 are connected in parallel to the first to fourth inlet valves 1211a, 1212a, 1221a, and 1222a, respectively.
  • 4 Check valves may be included.
  • the first to fourth check valves are bypasses connecting the front and rear of the first to fourth inlet valves (1211a, 1212a, 1221a, 1222a) on the first to fourth inlet passages (1211, 1212, 1221, and 1222). It can be provided in the flow path, allowing only the flow of pressurized medium discharged from each wheel cylinder (31, 32, 33, 34), and blocking the flow of pressurized medium toward each wheel cylinder (31, 32, 33, 34). there is.
  • the hydraulic pressure of the pressurized medium applied to each wheel cylinder (31, 32, 33, 34) can be quickly released when the brake is released by the first to fourth check valves, and the first to fourth inlet valves (1211a, 1212a, Even when 1221a and 1222a) do not operate normally, the hydraulic pressure of the pressurized medium applied to the wheel cylinders 31, 32, 33, and 34 can be smoothly discharged.
  • the first and second hydraulic circuits 1210 and 1220 have first to fourth outlet passages 1213 and 1214 respectively connected from the first to fourth wheel cylinders 31, 32, 33, and 34 to the reservoir 1900. 1223, 1224) may be further included.
  • the reservoir 1900 can accommodate a pressurized medium such as brake oil therein, and the first to fourth outlet passages 1213, 1214, 1223, and 1224 have upstream ends each of the wheel cylinders 31, 32, 33, 34), and the downstream end is connected to the reservoir 1900, so that the pressurized medium applied to each wheel cylinder (31, 32, 33, 34) when the brake is released is connected to each outlet passage (1213, 1214, 1223, 1224). It can be discharged into the reservoir 1900 through .
  • First to fourth outlet valves 1213a, 1214a, 1223a, and 1224a may be provided in the first to fourth outlet passages 1213, 1214, 1223, and 1224, respectively.
  • the first to fourth outlet valves (1213a, 1214a, 1223a, and 1224a) can control the flow of pressurized medium discharged from the first to fourth wheel cylinders (31, 32, 33, and 34) to the reservoir (1900),
  • active braking such as ABS Anti-lock Brake System (ABS) mode or TCS (Traction Control System) mode
  • the hydraulic pressure of the pressurized medium applied to each wheel cylinder (31, 32, 33, 34) can be individually reduced. .
  • the first to fourth outlet valves (1213a, 1214a, 1223a, and 1224a) are normally closed and operate to open when receiving an electrical signal from the first or second electronic control unit (ECU1, ECU2). It can be provided as a normally closed type solenoid valve.
  • the main hydraulic passage 1300 is provided to transmit the hydraulic pressure of the pressurized medium formed in the first hydraulic pressure supply device 1100 to the hydraulic control unit 1200.
  • the main hydraulic passage 1300 has an inlet end connected to the first hydraulic pressure supply device 1100, an outlet end connected to the hydraulic control unit 1200, and the first to fourth wheel cylinders 31 and 32. , 33, 34) may be branched and connected to the first to fourth inlet channels (1211, 1212, 1221, 1222).
  • the main hydraulic passage 1300 may be provided with a main isolation valve 1310 that controls the flow of pressurized medium.
  • the main isolation valve 1310 may be a normally open type solenoid valve that is normally open and operates to close when a closing signal is received from the electronic control unit.
  • the main isolation valve 1310 is controlled to be open in the normal mode, which is a normal operating state, and transmits the hydraulic pressure of the pressurized medium generated and provided by the first hydraulic pressure supply device 1100 to the hydraulic control unit 1200, and Although the hydraulic pressure supply device 1100 is unable to operate normally, the hydraulic control unit 1200 is closed in the first fallback mode in which normal operation is possible, thereby preventing leakage of the pressurized medium into the first hydraulic pressure supply device 1100. there is. A detailed description of this will be provided later with reference to FIGS. 2 to 4.
  • the second hydraulic pressure supply device 1500 is connected to one of the first and second hydraulic circuits 1210 and 1220, and is connected to at least one of the first hydraulic pressure supply device 1100 and the hydraulic control unit 1200. In case of inoperability due to failure, etc., it can generate and provide hydraulic pressure required for at least one of the first to fourth wheel cylinders 31, 32, 33, and 34.
  • a state in which the first hydraulic supply device 1100 is inoperable but the hydraulic control unit 1200 can operate normally is referred to as a first fallback mode
  • a state in which the hydraulic control unit 1200 is inoperable is referred to as a second fallback mode.
  • the second fallback mode includes a state in which not only the hydraulic control unit 1200 but also the first hydraulic pressure supply device 1100 is inoperable.
  • the second hydraulic pressure supply device 1500 receives the driver's intention to brake as an electrical signal from the pedal displacement sensor 20 that detects the displacement of the brake pedal 10, and based on this Thus, hydraulic pressure of the pressurized medium can be generated through electromechanical operation.
  • the second hydraulic pressure supply device 1500 receives power based on an electrical signal from the pedal displacement sensor 20 to operate a motor (not shown), which drives a pump (not shown) to supply pressurized media. It may be provided as a device for forming hydraulic pressure. However, the second hydraulic pressure supply device 1500 is not limited to the corresponding device, and of course, it can be composed of devices of various structures and methods as long as it can operate electromechanically to create hydraulic pressure of the pressurized medium.
  • the second hydraulic pressure supply device 1500 may be controlled by a second electronic control unit (ECU2), and operates in the first and second fallback modes to control one of the plurality of wheel cylinders 31, 32, 33, and 34. Hydraulic pressure for braking can be provided to at least one wheel cylinder.
  • ECU2 electronice control unit
  • the first and second support passages 1610 and 1620 are provided to transmit the hydraulic pressure of the pressurized medium formed in the second hydraulic pressure supply device 1500 to the wheel cylinder.
  • the inlet side end of the first support passage 1610 is connected to the second hydraulic pressure supply device 1500, and the outlet end joins the downstream side of the first inlet valve 1211a on the first inlet passage 1211. It can be connected to do so.
  • the second support passage 1620 has its inlet end connected to the second hydraulic pressure supply device 1500, and its outlet end joins the downstream side of the second inlet valve 1212a on the second inlet passage 1212. can be connected
  • the first and second support passages (1610, 1620) may be connected to the third and fourth inlet passages (1221, 1222) of the second hydraulic circuit (1220). there is.
  • the first and second sub-isolation valves 1510 and 1520 are provided to prevent the hydraulic pressure of the pressurized medium formed by the second hydraulic pressure supply device 1500 from leaking toward the hydraulic control unit 1200 in the second fallback mode.
  • the first sub-isolation valve 1510 is provided between the point where the first support passage 1610 joins on the first inlet passage 1211 and the first inlet valve 1211a
  • the second sub-isolation valve 1520 is It may be provided between the point where the second support passage 1620 joins the second inlet passage 1212 and the second inlet valve 1212a.
  • the first and second sub-isolation valves 1510 and 1520 are opened in the normal mode and the first fallback mode, so that the pressurized medium formed by the first hydraulic pressure supply device 1100 or the second hydraulic pressure supply device 1500 Hydraulic pressure is allowed to be transmitted to the wheel cylinder or the hydraulic control unit 1200, but in the second fallback mode when the hydraulic control unit 1200 is inoperable, the hydraulic pressure of the pressurized medium formed by the second hydraulic pressure supply device 1500 is closed. Leakage toward the hydraulic control unit 1200 can be prevented.
  • the opening and closing operations of the first and second sub-isolation valves 1510 and 1520 can be controlled by the second electronic control unit (ECU2), and are normally open and then closed by the second electronic control unit (ECU2). It can be provided as a normally open type solenoid valve that operates to close the valve when it receives an electrical signal from.
  • a first support valve 1611 may be provided in the first support passage 1610 to control the flow of pressurized medium provided from the second hydraulic pressure supply device 1500 to the first inlet passage 1211.
  • the opening and closing operation of the first support valve 1611 can be controlled by the second electronic control unit (ECU2), and is normally closed, but when it receives an electrical signal from the second electronic control unit (ECU2), the valve opens and closes. It can be provided as a normally closed type solenoid valve that operates to open.
  • the second electronic control unit (ECU2) uses a first support valve (1611) so that the hydraulic pressure of the pressurized medium provided from the second hydraulic pressure supply device (1500) is provided to the wheel cylinder. can be opened.
  • a second support valve 1621 may be provided in the second support passage 1620 to control the flow of pressurized medium provided from the second hydraulic pressure supply device 1500 to the second inlet passage 1212.
  • the opening and closing operation of the second support valve 1621 can be controlled by the second electronic control unit (ECU2). It is normally closed and opens when it receives an electrical signal from the second electronic control unit (ECU2). It can be provided as a normally closed type solenoid valve that operates to open.
  • the second electronic control unit (ECU2) uses a second support valve (1621) so that the hydraulic pressure of the pressurized medium provided from the second hydraulic pressure supply device (1500) is provided to the wheel cylinder. can be opened.
  • the pressurized medium applied to the first wheel cylinder 31 may be discharged to the reservoir 1900 through the first dump passage 1630.
  • one end of the first dump passage 1630 is connected to the first wheel cylinder 31 or the downstream side of the first support valve 1611 of the first support passage 1610, and the other end is connected to the reservoir 1900.
  • the first dump passage 1630 is provided with a first discharge valve 1631 that controls the flow of pressurized medium discharged from the first wheel cylinder 31 to the reservoir 1900.
  • the opening and closing operation of the first discharge valve 1631 can be controlled by the second electronic control unit (ECU2), and is normally closed, but opens when an electrical signal is received from the second electronic control unit (ECU2). It can be provided as a normally closed type solenoid valve that operates to open.
  • the pressurized medium applied to the second wheel cylinder 32 may be discharged to the reservoir 1900 through the second dump passage 1640.
  • one end of the second dump passage 1640 is connected to the second wheel cylinder 32 side or the downstream side of the second support valve 1621 of the second support passage 1620, and the other end is connected to the reservoir 1900.
  • the second dump passage 1640 is provided with a second discharge valve 1641 that controls the flow of pressurized medium discharged from the second wheel cylinder 32 to the reservoir 1900.
  • the opening and closing of the second discharge valve 1641 can be controlled by the second electronic control unit (ECU2), and is normally closed, but opens when an electrical signal is received from the second electronic control unit (ECU2). It can be provided as a normally closed type solenoid valve that operates to open.
  • the electronic brake system 1000 has a normal mode in which it operates normally without malfunctions or abnormalities in various devices and valves, and a normal mode in which the hydraulic control unit 1200 is operated when the first hydraulic pressure supply device 1100 is inoperable.
  • a first fallback mode in which the second hydraulic pressure supply device 1500 intervenes to provide hydraulic pressure of the pressurized medium to all of the first to fourth wheel cylinders 31, 32, 33, and 34, and a hydraulic control unit ( 1200) is inoperable
  • the second hydraulic pressure supply device 1500 intervenes to perform a second fallback mode in which the hydraulic pressure of the pressurized medium is provided to some wheel cylinders (first and second wheel cylinders based on the drawing).
  • the second fallback mode includes a case in which only the hydraulic control unit 1200 is inoperable, as well as a case in which both the first hydraulic pressure supply device 1100 and the hydraulic control unit 1200 are inoperable.
  • FIG. 2 is a hydraulic circuit diagram showing the normal mode of the electronic brake system 1000 according to this embodiment.
  • the first electronic control unit ECU1 detects the brake pedal by the pedal displacement sensor 20.
  • the first hydraulic pressure supply device 1100 is operated based on the displacement information in (10).
  • the hydraulic piston of the first hydraulic pressure supply device 1100 moves forward or backward to form hydraulic pressure of the pressurized medium, which is transmitted to the hydraulic control unit 1200 through the main hydraulic passage 1300.
  • the main isolation valve 1310 is maintained in an open state so that the hydraulic pressure of the pressurized medium generated by the first hydraulic pressure supply device 1100 is transmitted to the hydraulic control unit ( 1200), and the second hydraulic pressure supply device 1500 does not operate.
  • the first and second sub-isolation valves 1510 and 1520 are maintained in an open state, so that the hydraulic pressure provided from the first hydraulic pressure supply device 1100 flows through the first to fourth inlet passages 1211, 1212, 1221, It can be smoothly supplied to the first to fourth wheel cylinders 21, 22, 23, and 24 via 1222).
  • the first to fourth inlet valves 1211a, 1212a, 1221a, and 1222a remain open.
  • the outlet valve provided in the specific wheel cylinder requiring decompression is controlled to be selectively opened, At least a portion of the applied hydraulic pressure may be discharged to the reservoir 1900 through the outlet passage.
  • the electronic brake system 1000 according to this embodiment can be switched to the first fallback mode shown in FIGS. 3 and 4 when the first hydraulic pressure supply device 1100 is in an inoperable state such as failure or leakage of pressurized medium. there is.
  • Figure 3 is a hydraulic circuit diagram showing a state in which the electronic brake system 1000 according to this embodiment performs the first fallback mode.
  • the hydraulic control unit (1200) determines that normal operation is possible, it may enter the first fallback mode. there is.
  • the second electronic control unit (ECU2) responds to the displacement information of the brake pedal 10 detected by the pedal displacement sensor 20. Based on this, the second hydraulic pressure supply device 1500 is operated and intervened.
  • the motor or pump of the second hydraulic pressure supply device 1500 operates to form hydraulic pressure of the pressurized medium, which is transmitted to the first hydraulic circuit 1210 through the first and second support passages 1610 and 1620. At this time, the first and second support valves (1611, 1621) is converted to an open state.
  • the hydraulic control unit 1200 is capable of normal opening and closing operation, and the second electronic air unit (ECU2) controls the first and second sub-isolation valves 1510 and 1520 to open, 2
  • ECU2 controls the first and second sub-isolation valves 1510 and 1520 to open, 2
  • the hydraulic pressure of the pressurized medium generated in the hydraulic pressure supply device 1500 and supplied through the first and second support passages 1610 and 1620 is transmitted to the hydraulic control unit 1200.
  • the hydraulic pressure of the pressurized medium provided from the second hydraulic pressure supply device 1500 leaks toward the first hydraulic pressure supply device 1100, there is a risk that the piston or sealing member may be deformed or damaged due to the hydraulic pressure.
  • the first electronic control unit (ECU1) or the second electronic control unit (ECU2) adjusts the hydraulic pressure of the pressurized medium provided from the second hydraulic pressure supply device 1500 to the first hydraulic pressure supply device 1100.
  • the main isolation valve 1310 provided in the main hydraulic oil passage 1300 is closed and operated to prevent leakage.
  • the first electronic control unit (ECU1) or the second electronic control unit (ECU2) controls the first to fourth inlet valves (1211a, 1212a, 1221a, and 1222a) to be open, thereby opening the second
  • the hydraulic pressure of the pressurized medium provided from the hydraulic pressure supply device 1500 through the first and second inlet passages 1211 and 1212 may be transmitted to the third and fourth inlet passages 1221 and 1222, thereby causing the first fallback.
  • the hydraulic pressure of the pressurized medium is transmitted to all of the first to fourth wheel cylinders 31, 32, 33, and 34, thereby enabling stable braking of the vehicle.
  • the electronic brake system 1000 is provided to enable active braking even in the first fallback mode in which the first hydraulic pressure supply device 1100 is inoperable.
  • Figure 4 is a hydraulic circuit diagram showing a state in which the electronic brake system 100 according to this embodiment performs active braking in the first fallback mode.
  • the first to fourth inlet valves 1211a, 1212a, 1221a, and 1222a of the hydraulic control unit 1200 are provided in an open state, so that despite the fallback mode in an emergency operation state, And the hydraulic pressure of the pressurized medium can be stably transmitted to all of the first to fourth wheel cylinders 31, 32, 33, and 34.
  • the second electronic control unit ECU2 selectively opens the outlet valve provided in the specific wheel cylinder requiring decompression. You can control it. For example, as shown in FIG.
  • the second electronic control unit opens the first outlet valve 1213a and the third outlet valve 1223a to transfer at least a portion of the hydraulic pressure of the pressurized medium applied to the first wheel cylinder 31 and the third wheel cylinder 33 to the reservoir 1900. can be discharged.
  • the electronic brake system 1000 determines whether the hydraulic control unit 1200 can be normally operated even in the emergency operation state fallback mode, and enters the first fallback mode, through which some wheels are operated.
  • the hydraulic pressure of the pressurized medium By transmitting the hydraulic pressure of the pressurized medium to all of the first to fourth wheel cylinders 31, 32, 33, and 34 rather than the cylinders, stable braking of the vehicle can be achieved.
  • active braking such as ABS mode or TCS mode can be performed through control of a specific outlet valve, thereby ensuring the safety of the driver and passengers in response to various operating situations of the vehicle. It can be promoted.
  • the electronic brake system 1000 can switch to the second fallback mode shown in FIG. 5 when the hydraulic control unit 1200 is in an inoperable state, such as failure or leakage of pressurized medium.
  • Figure 5 is a hydraulic circuit diagram showing a state in which the electronic brake system 1000 according to this embodiment performs the second fallback mode.
  • the second electronic control unit determines that the hydraulic control unit 1200 is in a state in which normal operation is impossible, it may enter the second fallback mode.
  • the second electronic control unit (ECU2) responds to the displacement information of the brake pedal 10 detected by the pedal displacement sensor 20. Based on this, the second hydraulic pressure supply device 1500 is operated and intervened.
  • the motor or pump of the second hydraulic pressure supply device 1500 operates to form hydraulic pressure of the pressurized medium, which is transmitted to the first hydraulic circuit 1210 through the first and second support passages 1610 and 1620.
  • the first and second support valves (1611, 1621) is converted to an open state.
  • the hydraulic pressure of the pressurized medium provided from the second hydraulic pressure supply device 1500 sequentially passes through the first and second support passages (1610, 1620) and the first and second inlet passages (1211, 1212) to the first and second hydraulic passages (1211, 1212). It is transmitted to the second wheel cylinders 31 and 32 to perform emergency braking.
  • the hydraulic control unit 1200 is in a state in which normal opening and closing operation is impossible, so when the hydraulic pressure of the pressurized medium provided from the second hydraulic pressure supply device 1500 leaks to the hydraulic control unit 1200, There is a risk of safety accidents due to delayed braking response of the vehicle due to poor hydraulic pressure control of the pressurized medium. Accordingly, the first electronic control unit (ECU1) or the second electronic control unit (ECU2) controls the first and second sub-isolation valves (1510, 1520) to close in the second fallback mode, so that the second hydraulic pressure supply device ( The hydraulic pressure of the pressurized medium generated in 1500 and supplied through the first and second support passages 1610 and 1620 is prevented from leaking toward the hydraulic control unit 1200.
  • ECU1 or the second electronic control unit (ECU2) controls the first and second sub-isolation valves (1510, 1520) to close in the second fallback mode, so that the second hydraulic pressure supply device ( The hydraulic pressure of the pressurized medium generated in 1500 and supplied through the first and second support passages 1610
  • the second electronic control unit uses the first and second discharge valves (1631, 1641) provided in the first and second dump passages (1630, 1640), respectively. By opening, the pressurized medium applied to the first and second wheel cylinders 31 and 32 is discharged into the reservoir 1900, thereby releasing the vehicle's brakes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Regulating Braking Force (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)

Abstract

전자식 브레이크 시스템 및 이의 작동방법이 개시된다. 본 실시 예에 의한 전자식 브레이크 시스템은 브레이크 페달의 변위에 대응하여 출력되는 전기적 신호에 의해 액압을 발생시키는 제1 액압 공급장치, 제1 휠 실린더 및 제2 휠 실린더의 액압을 제어하는 제1 유압서킷과, 제3 휠 실린더 및 제4 휠 실린더의 액압을 제어하는 제2 유압서킷을 포함하는 유압 제어유닛, 제1 및 제2 휠 실린더와 제1 유압서킷 사이에 연결되고, 제1 액압 공급장치 및 유압 제어유닛 중 적어도 어느 하나의 작동 불능 시 전기적 신호에 의해 액압을 발생시키는 제2 액압 공급장치를 포함하여 제공될 수 있다.

Description

전자식 브레이크 시스템 및 이의 작동방법
본 발명은 전자식 브레이크 시스템 및 작동방법에 관한 것으로서, 보다 상세하게는 브레이크 페달의 변위에 대응하는 전기적 신호를 이용하여 제동력을 발생시키는 전자식 브레이크 시스템 및 작동방법에 관한 것이다.
차량에는 제동을 수행하기 위한 브레이크 시스템이 필수적으로 장착되며, 운전자 및 승객의 안전을 위해 다양한 방식의 브레이크 시스템이 제안되고 있다.
종래의 브레이크 시스템은 운전자가 브레이크 페달을 밟으면 기계적으로 연결된 부스터를 이용하여 휠 실린더에 제동에 필요한 액압을 공급하는 방식이 주로 이용되었다. 그러나 차량의 운용 환경에 세밀하게 대응하여 다양한 제동 기능을 구현하고자 하는 시장의 요구가 증대됨에 따라, 최근에는 운전자가 브레이크 페달을 밟으면 브레이크 페달의 변위를 감지하는 페달 변위센서로부터 운전자의 제동의지를 전기적 신호로 전달받고, 이에 근거하여 제1 액압 공급장치를 작동시켜 제동에 필요한 액압을 휠 실린더로 공급하는 전자식 브레이크 시스템이 널리 보급되고 있다.
이와 같은 전자식 브레이크 시스템은 정상 작동모드 시 운전자의 브레이크 페달 작동이 전기적 신호로 발생 및 제공되고, 이에 근거하여 제1 액압 공급장치가 전기적으로 작동 및 제어됨으로써 제동에 필요한 액압을 형성하여 휠 실린더로 전달한다. 이와 같이, 이러한 전자식 브레이크 시스템 및 작동방법은 전기적으로 작동 및 제어되는 바 복잡하면서도 다양한 제동 작용을 구현할 수 있기는 하지만, 전장 부품요소에 기술적 문제점이 발생하는 경우 제동에 필요한 액압이 안정적으로 형성되지 않아 승객의 안전을 위협할 우려가 있다.
따라서 전자식 브레이크 시스템은 일 부품요소가 고장나거나 제어 불능의 상태에 해당하는 경우 비정상 작동모드에 돌입하게 되며, 이 때는 운전자의 브레이크 페달 작동이 휠 실린더로 직접 연동되어야 하는 메커니즘이 요구된다. 즉, 전자식 브레이크 시스템의 비정상 작동모드에서는 운전자가 브레이크 페달에 답력을 가함에 따라 제동에 필요한 액압을 곧바로 형성하고, 이를 휠 실린더로 직접 전달될 수 있어야 한다.
본 실시 예는 다양한 운용상황에서도 제동을 효과적으로 구현할 수 있는 전자식 브레이크 시스템 및 작동방법을 제공하고자 한다.
본 실시 예는 성능 및 작동 신뢰성이 향상된 전자식 브레이크 시스템 및 작동방법을 제공하고자 한다.
본 실시 예는 각종 부품요소의 고장 등 비상 시에도 제동압력을 안정적으로 발생 및 전달할 수 있는 전자식 브레이크 시스템 및 작동방법을 제공하고자 한다.
본 발명의 일 측면에 의하면, 브레이크 페달의 변위에 대응하여 출력되는 전기적 신호에 의해 액압을 발생시키는 제1 액압 공급장치; 제1 휠 실린더 및 제2 휠 실린더의 액압을 제어하는 제1 유압서킷과, 제3 휠 실린더 및 제4 휠 실린더의 액압을 제어하는 제2 유압서킷을 포함하는 유압 제어유닛; 상기 제1 및 제2 휠 실린더와 상기 제1 유압서킷 사이에 연결되고, 상기 제1 액압 공급장치 및 상기 유압 제어유닛 중 적어도 어느 하나의 작동 불능 시 상기 전기적 신호에 의해 액압을 발생시키는 제2 액압 공급장치; 상기 제1 액압 공급장치와 상기 유압 제어유닛을 연결하는 메인 유압유로; 및 상기 메인 유압유로에 마련되어 가압매체의 흐름을 제어하되, 상기 제1 액압 공급장치의 작동 불능 및 상기 유압 제어유닛의 정상 작동이 가능한 제1 폴백모드에서 폐쇄되어 상기 제2 액압 공급장치로부터 제공되는 가압매체의 액압이 상기 제1 액압 공급장치 측으로 누설되는 것을 방지하는 메인 격리밸브를 포함하여 제공될 수 있다.
상기 제1 유압서킷은 상기 메인 유압유로의 하류로부터 상기 제1 및 제2 휠 실린더로 각각 분기되어 연결되는 제1 및 제2 인렛유로와, 상기 제1 및 제2 인렛유로에 각각 마련되어 가압매체의 흐름을 제어하는 제1 및 제2 인렛밸브를 포함하고, 상기 제2 액압 공급장치는 상기 제1 인렛유로 및 상기 제2 인렛유로 중 적어도 어느 하나에 연결될 수 있다.
상기 제2 유압서킷은 상기 메인 유압유로의 하류로부터 상기 제3 및 제4 휠 실린더로 각각 분기되어 연결되는 제3 및 제4 인렛유로와, 상기 제3 및 제4 인렛유로에 각각 마련되어 가압매체의 흐름을 제어하는 제3 및 제4 인렛밸브를 포함하며, 상기 제1 내지 제4 인렛밸브는 상기 제1 폴백모드에서 개방되어 상기 제2 액압 공급장치로부터 제공되는 가압매체의 액압을 상기 제1 내지 제4 휠 실린더로 모두 전달할 수 있다.
상기 제1 인렛유로 및 상기 제2 인렛유로 중 적어도 어느 하나와 상기 제2 액압 공급장치를 연결하는 지원유로 및 상기 제1 인렛유로 및 상기 제2 인렛유로 중 적어도 어느 하나에 마련되되, 상기 유압 제어유닛의 작동 불능인 제2 폴백모드에서 폐쇄되어 상기 제2 액압 공급장치로부터 제공되는 가압매체의 액압이 상기 유압 제어유닛 측으로 누설되는 것을 방지하는 서브 격리밸브를 더 포함하여 제공될 수 있다.
상기 제2 액압 공급장치와 상기 제1 인렛유로를 연결하는 제1 지원유로; 상기 제2 액압 공급장치와 상기 제2 인렛유로를 연결하는 제2 지원유로; 상기 제1 인렛유로 상에서 상기 제1 지원유로가 합류한 지점과 상기 제1 인렛밸브 사이에 마련되어 가압매체의 흐름을 제어하되, 상기 유압 제어유닛의 작동 불능인 제2 폴백모드에서 폐쇄되어 상기 제2 액압 공급장치로부터 제공되는 가압매체의 액압이 상기 유압 제어유닛 측으로 누설되는 것을 방지하는 제1 서브 격리밸브; 및 상기 제2 인렛유로 상에서 상기 제2 지원유로가 합류한 지점과 상기 제2 인렛밸브 사이에 마련되어 가압매체의 흐름을 제어하되, 상기 제2 폴백모드에서 폐쇄되어 상기 제2 액압 공급장치로부터 제공되는 가압매체의 액압이 상기 유압 제어유닛 측으로 누설되는 것을 방지하는 제2 서브 격리밸브를 더 포함하여 제공될 수 있다.
상기 제1 지원유로에 마련되어 가압매체의 흐름을 제어하는 제1 지원밸브; 및 상기 제2 지원유로에 마련되어 가압매체의 흐름을 제어하는 제2 지원밸브를 더 포함하여 제공될 수 있다.
가압매체가 저장되는 리저버;를 더 포함하고, 상기 제1 유압서킷은 상기 제1 및 제2 휠 실린더와 상기 리저버를 각각 연결하는 제1 및 제2 아웃렛유로와, 상기 제1 및 제2 아웃렛유로에 각각 마련되어 가압매체의 흐름을 제어하는 제1 및 제2 아웃렛밸브를 더 포함하고, 상기 제2 유압서킷은 상기 제3 및 제4 휠 실린더와 상기 리저버를 각각 연결하는 제3 및 제4 아웃렛유로와, 상기 제3 및 제4 아웃렛유로에 각각 마련되어 가압매체의 흐름을 제어하는 제3 및 제4 아웃렛밸브를 더 포함하여 제공될 수 있다.
가압매체가 저장되는 리저버; 상기 제1 휠 실린더와 상기 리저버를 연결하는 제1 덤프유로; 및 상기 제2 휠 실린더와 상기 리저버를 연결하는 제2 덤프유로를 더 포함하여 제공될 수 있다.
상기 제1 덤프유로에 마련되어 가압매체의 흐름을 제어하는 제1 배출밸브; 및 상기 제2 덤프유로에 마련되어 가압매체의 흐름을 제어하는 제2 배출밸브를 더 포함하여 제공될 수 있다.
제1 액압 공급장치와, 상기 유압 제어유닛과, 상기 메인 격리밸브 중 적어도 어느 하나의 작동을 제어하는 제1 전자제어유닛을 더 포함하여 제공될 수 있다.
상기 제2 액압 공급장치와, 상기 유압 제어유닛과, 상기 메인 격리밸브와, 상기 제1 및 제2 서브 격리밸브와, 상기 제1 및 제2 지원밸브와, 상기 제1 및 제2 배출밸브 중 적어도 어느 하나의 작동을 제어하는 제2 전자제어유닛을 더 포함하여 제공될 수 있다.
브레이크 페달의 변위에 대응하여 출력되는 전기적 신호에 의해 액압을 발생시키는 제1 액압 공급장치와, 제1 내지 제4 휠 실린더의 액압을 각각 제어하는 유압 제어유닛과, 상기 제1 액압 공급장치 및 상기 유압 제어유닛 중 적어도 어느 하나의 작동 불능 시 상기 전기적 신호에 의해 액압을 발생시키고 상기 제1 내지 제4 휠 실린더 중 적어도 어느 하나에 연결되는 제2 액압 공급장치를 포함하는 전자식 브레이크 시스템의 작동방법에 있어서, 상기 제1 액압 공급장치은 작동 불능이되, 상기 유압 제어유닛은 정상 작동 가능한 제1 폴백모드를 포함하고, 상기 제1 폴백모드는 상기 제1 액압 공급장치와 상기 유압 제어유닛을 연결하는 메인 유압유로에 마련되어 가압매체의 흐름을 제어하는 메인 격리밸브를 폐쇄 작동시켜, 상기 제2 액압 공급장치로부터 제공되는 가압매체의 액압이 상기 제1 액압 공급장치 측으로 누설되는 것을 방지할 수 있다.
상기 유압 제어유닛은 제1 휠 실린더 및 제2 휠 실린더의 액압을 제어하는 제1 유압서킷과, 제3 휠 실린더 및 제4 휠 실린더의 액압을 제어하는 제2 유압서킷을 포함하고, 상기 제1 폴백모드는 상기 제2 액압 공급장치로부터 제공되는 가압매체의 액압을 상기 제1 내지 제4 휠 실린더로 모두 전달할 수 있다.
상기 제1 유압서킷은 상기 메인 유압유로의 하류로부터 상기 제1 및 제2 휠 실린더로 각각 분기되어 연결되는 제1 및 제2 인렛유로와, 상기 제1 및 제2 인렛유로에 각각 마련되어 가압매체의 흐름을 제어하는 제1 및 제2 인렛밸브를 포함하고, 상기 제2 액압 공급장치는 상기 제1 인렛유로 및 상기 제2 인렛유로 중 적어도 어느 하나에 연결되어 가압매체의 액압을 전달할 수 있다.
상기 제2 유압서킷은 상기 메인 유압유로의 하류로부터 상기 제3 및 제4 휠 실린더로 각각 분기되어 연결되는 제3 및 제4 인렛유로와, 상기 제3 및 제4 인렛유로에 각각 마련되어 가압매체의 흐름을 제어하는 제3 및 제4 인렛밸브를 포함하며, 상기 제1 폴백모드는 상기 제1 내지 제4 인렛밸브를 개방시켜 상기 제2 액압 공급장치로부터 제공되는 가압매체의 액압을 상기 제1 내지 제4 휠 실린더로 모두 전달할 수 있다.
상기 제1 인렛유로 및 상기 제2 인렛유로 중 적어도 어느 하나에 서브 격리밸브가 마련되고, 상기 유압 제어유닛이 작동 불능인 제2 폴백모드를 더 포함하고, 상기 제2 폴백모드는 상기 서브 격리밸브를 폐쇄 작동시켜, 상기 제2 액압 공급장치로부터 제공되는 가압매체의 액압이 상기 유압 제어유닛 측으로 누설되는 것을 방지할 수 있다.
상기 제1 인렛유로 상에서 상기 제2 액압 공급장치가 연결된 지점과 상기 제1 인렛밸브 사이에 제1 서브 격리밸브가 마련되고, 상기 제2 인렛유로 상에서 상기 제2 액압 공급장치가 연결된 지점과 상기 제2 인렛밸브 사이에 제2 서브 격리밸브가 마련되며, 상기 유압 제어유닛이 작동 불능인 제2 폴백모드를 더 포함하고, 상기 제2 폴백모드는 상기 제1 및 제2 서브 격리밸브를 폐쇄 작동시켜, 상기 제2 액압 공급장치로부터 제공되는 가압매체의 액압이 상기 유압 제어유닛 측으로 누설되는 것을 방지할 수 있다.
상기 제2 액압 공급장치와 상기 제1 인렛유로를 연결하는 제1 지원유로에 제1 지원밸브가 마련되고, 상기 제2 액압 공급장치와 상기 제2 인렛유로를 연결하는 제2 지원유로에 제2 지원밸브가 마련되며, 상기 제1 및 제2 폴백모드는 상기 제1 및 제2 지원밸브를 개방 작동시켜, 상기 제2 액압 공급장치로부터 제공되는 가압매체의 흐름을 허용할 수 있다.
상기 제1 액압 공급장치 및 상기 유압 제어유닛이 모두 정상 작동 가능한 노말모드를 더 포함하고, 상기 노말모드는 상기 제1 및 제2 서브 격리밸브를 개방 작동시켜, 상기 제1 액압 공급장치로부터 제공되는 가압매체의 액압을 상기 제1 및 제2 휠 실린더로 전달할 수 있다.
상기 노말모드는 상기 제1 및 제2 지원밸브는 폐쇄 작동시켜, 상기 제1 액압 공급장치로부터 제공되는 가압매체의 액압이 상기 제2 액압 공급장치 측으로 누설되는 것을 방지할 수 있다.
본 실시 예에 의한 전자식 브레이크 시스템 및 작동방법은 차량의 다양한 운용상황에서 제동을 안정적이고 효과적으로 구현할 수 있다.
본 실시 예에 의한 전자식 브레이크 시스템 및 작동방법은 제품의 성능 및 작동 신뢰성이 향상될 수 있다.
본 실시 예에 의한 전자식 브레이크 시스템 및 작동방법은 부품요소의 고장 시에도 제동압력을 안정적으로 제공할 수 있다.
도 1은 본 실시 예에 의한 전자식 브레이크 시스템을 나타내는 유압회로도이다.
도 2는 본 실시 예에 의한 전자식 브레이크 시스템이 노말모드를 수행하는 상태를 나타내는 유압회로도이다.
도 3은 본 실시 예에 의한 전자식 브레이크 시스템이 제1 폴백모드를 수행하는 상태를 나타내는 유압회로도이다.
도 4는 본 실시 예에 의한 전자식 브레이크 시스템이 제1 폴백모드에서 능동 제동을 수행하는 상태를 나타내는 유압회로도이다.
도 5는 본 실시 예에 의한 전자식 브레이크 시스템이 제2 폴백모드를 수행하는 상태를 나타내는 유압회로도이다.
이하에서는 본 발명의 실시 예를 첨부 도면을 참조하여 상세히 설명한다. 이하의 실시 예는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 본 발명의 사상을 충분히 전달하기 위해 제시하는 것이다. 본 발명은 여기서 제시한 실시 예만으로 한정되지 않고 다른 형태로 구체화될 수도 있다. 도면은 본 발명을 명확히 하기 위해 설명과 관계 없는 부분의 도시를 생략하고, 이해를 돕기 위해 구성요소의 크기를 다소 과장하여 표현할 수 있다.
도 1은 본 실시 예에 의한 전자식 브레이크 시스템(1000)을 나타내는 유압회로도이다.
도 1을 참조하면, 본 실시 예에 의한 전자식 브레이크 시스템(1000)은 내부에 브레이크 페달(10)의 변위를 감지하는 페달 변위센서(20)에 의해 운전자의 제동의지를 전기적 신호로 전달받아 전기 기계적인 작동을 통해 가압매체의 액압을 발생시키는 제1 액압 공급장치(1100), 휠 실린더(31, 32, 33, 34)로 전달되는 액압을 제어하는 유압 제어유닛(1200), 제1 액압 공급장치(1100)와 유압 제어유닛(1200)을 연결하는 메인 유압유로(1300), 메인 유압유로(1300)에 마련되어 가압매체의 흐름을 제어하는 메인 격리밸브(1310), 제1 액압 공급장치(1100) 및 유압 제어유닛(1200) 중 적어도 어느 하나가 작동 불능 시 전기적 신호를 전달받아 가압매체의 액압을 발생시키는 제2 액압 공급장치(1600), 브레이크 오일 등의 가압매체를 저장하는 리저버(1900), 액압 정보 및 페달 변위 정보에 근거하여 각 부품요소의 작동을 제어하는 적어도 하나의 전자제어유닛(ECU1, ECU2)를 포함한다.
제1 액압 공급장치(1100)는 제1 액압 공급장치(1100)는 브레이크 페달(10)의 변위를 감지하는 페달 변위센서(20)로부터 운전자의 제동의지를 전기적 신호로 전달받아, 이에 근거하여 전기 기계적인 작동을 통해 가압매체의 액압을 발생시키도록 마련된다.
일 예로, 제1 액압 공급장치(1100)는 페달 변위센서(20)의 전기적 신호에 근거하여 유압피스톤(미도시)을 작동시키고, 유압피스톤의 변위에 의해 압력챔버에 수용된 가압매체를 가압하여 액압을 형성하는 장치로 마련될 수 있다. 또한, 제1 액압 공급장치(1100)는 유압피스톤의 전방 및 후방에 각각 압력챔버를 구비하고, 유압피스톤이 왕복동식 동작을 수행함으로써 두 개의 압력챔버를 통해 가압매체의 액압을 형성할 수도 있다. 그러나 제2 액압 공급장치(1100)는 해당 장치에 한정되는 것은 아니며 전자 기계식으로 작동하여 가압매체의 액압을 형성할 수 있다면 다양한 구조 및 방식의 장치로 이루어지는 경우에도 동일하게 이해되어야 할 것이다.
제1 액압 공급장치(1100)는 제1 전자제어유닛(ECU1)에 의해 작동이 제어될 수 있으며, 일반적이고 정상적인 제동이 가능한 상태인 노말(Normal) 모드에서 작동하여 복수의 휠 실린더(31, 32, 33, 34)의 제동을 위한 가압매체의 액압을 형성하고, 후술하는 메인 유압유로(1300)를 거쳐 유압 제어유닛(1200)에 제공할 수 있다.
한편, 도면에는 도시하지 않았으나 브레이크 페달(10)은 마스터 실린더 또는 페달 시뮬레이터에 연결됨으로써, 브레이크 페달(10)의 답력에 따른 반력이 발생되어 운전자에게 페달감을 제공할 수 있다.
유압 제어유닛(1200)은 제1 액압 공급장치(1100)와 휠 실린더(31, 32, 33, 34) 사이에 마련되되 제1 전자제어유닛(ECU1)에 의해 동작이 제어될 수 있다.
유압 제어유닛(1200)은 네 개의 휠 실린더 중, 제1 및 제2 휠 실린더(31, 32)로 전달되는 액압의 흐름을 제어하는 제1 유압서킷(1210)과, 제3 및 제4 휠 실린더(33, 34)로 전달되는 액압의 흐름을 제어하는 제2 유압서킷(1220)을 구비할 수 있으며, 휠 실린더(31, 32, 33, 34)에 가해지는 액압을 제어하도록 다수의 유압유로 및 솔레노이드 밸브를 포함한다.
제1 유압서킷(1210)은 네 개의 차륜(RR, RL, FR, FL) 중 두 개의 휠 실린더인 제1 및 제2 휠 실린더(31, 32)의 액압을 제어하고, 제2 유압서킷(1220)은 다른 두 개의 휠 실린더인 제3 및 제4 휠 실린더(33, 34)의 액압을 제어할 수 있다.
제1 및 제2 유압서킷(1210, 1220)은 후술하는 메인 유압유로(1300)로부터 제1 내지 제4 휠 실린더(31, 32, 33, 34)로 각각 분기되어 연결되는 제1 내지 제4 인렛유로(1211, 1212, 1221, 1222)를 포함할 수 있다. 제1 내지 제4 인렛유로(1211, 1212, 1221, 1222)는 상류 측 단부가 서로 연결되어 마련되되, 메인 유압유로(1300)의 하류 측에 연결될 수 있으며, 각 인렛유로(1211, 1212, 1221, 1222)의 하류 측 단부는 제1 내지 제4 휠 실린더(31, 32, 33, 34)에 각각 연결될 수 있다.
제1 내지 제4 인렛유로(1211, 1212, 1221, 1222)에는 제1 내지 제4 인렛밸브(1211a, 1212a, 1221a, 1222a)가 각각 마련될 수 있다. 제1 내지 제4 인렛밸브(1211a, 1212a, 1221a, 1222a)는 제1 액압 공급장치(1100)에서 발생되어 각각의 휠 실린더(31, 32, 33, 34)로 전달되는 가압매체의 흐름을 조절할 수 있으며, 아울러, 후술하는 제1 폴백모드에서 제2 액압 공급장치(1500)에서 발생되어 전달되는 가압매체의 흐름을 조절할 수도 있다. 제1 내지 제4 인렛밸브(1211a, 1212a, 1221a, 1222a)는 평상 시에는 개방되어 있다가 제1 또는 제2 전자제어유닛(ECU1, ECU2)에서 전기적 신호를 받으면 밸브가 닫히도록 작동하는 노말 오픈 타입(Normal Open type)의 솔레노이드 밸브로 마련될 수 있다. 제1 내지 제4 인렛밸브(1211a, 1212a, 1221a, 1222a)는 정상 작동상태인 노말모드에서 개방된 상태로 제어되어 제1 액압 공급장치(1100)에서 발생 및 제공되는 가압매체의 액압을 유압 제어유닛(1200)으로 전달하고, 제1 액압 공급장치(1100)가 정상적인 작동이 불능하되, 유압 제어유닛(1200)은 정상적인 작동이 가능한 제1 폴백모드에서도 개방됨으로써, 제2 액압 공급장치(1500)에서 제공되는 가압매체의 액압이 제1 내지 제4 휠 실린더(31, 32, 33, 34)로 모두 제공될 수 있다. 이에 대한 자세한 설명은 도 2 및 도 3을 참조하여 후술하도록 한다.
제1 및 제2 인렛유로(1211, 1212)에는 후술하는 제1 및 제2 지원 유로(1610, 1620)이 각각 합류하도록 연결될 수 있으며, 제1 및 제2 지원 유로(1610, 1620)가 합류한 지점의 상류 측에는 후술하는 제1 및 제2 서브 격리밸브(1510, 1520)가 각각 마련될 수 있다. 이에 대한 자세한 설명은 후술하도록 한다.
한편, 도면에는 도시하지 않았으나, 제1 및 제2 유압서킷(1210, 1220)은 제1 내지 제4 인렛밸브(1211a, 1212a, 1221a, 1222a)들에 대하여 각각 병렬 연결되어 마련되는 제1 내지 제4 체크밸브들을 포함할 수 있다. 제1 내지 제4 체크밸브들은 제1 내지 제4 인렛유로(1211, 1212, 1221, 1222) 상에서 제1 내지 제4 인렛밸브(1211a, 1212a, 1221a, 1222a)의 전방과 후방을 연결하는 바이패스 유로에 마련될 수 있으며, 각 휠 실린더(31, 32, 33, 34)로부터 배출되는 가압매체 흐름만을 허용하고, 각 휠 실린더(31, 32, 33, 34)로 향하는 가압매체의 흐름은 차단할 수 있다. 제1 내지 제4 체크밸브들에 의해 제동해제 시 각 휠 실린더(31, 32, 33, 34)에 가해진 가압매체의 액압을 신속하게 빼낼 수 있으며, 제1 내지 제4 인렛밸브(1211a, 1212a, 1221a, 1222a)가 정상적으로 작동하지 않는 경우에도, 휠 실린더(31, 32, 33, 34)에 가해진 가압매체의 액압이 원활하게 배출될 수 있다.
제1 및 제2 유압서킷(1210, 1220)은 제1 내지 제4 휠 실린더(31, 32, 33, 34)로부터 리저버(1900)로 각각 연결되는 제1 내지 제4 아웃렛유로(1213, 1214, 1223, 1224)를 더 포함할 수 있다. 리저버(1900)는 내부에 브레이크 오일 등의 가압매체가 수용될 수 있으며, 제1 내지 제4 아웃렛유로(1213, 1214, 1223, 1224)는 상류 측 단부가 각 휠 실린더(31, 32, 33, 34)에 연결되되, 하류 측 단부가 리저버(1900)에 연결됨으로써, 제동해제 시 각 휠 실린더(31, 32, 33, 34)에 가해진 가압매체가 각 아웃렛유로(1213, 1214, 1223, 1224)를 통해 리저버(1900)로 배출될 수 있다.
제1 내지 제4 아웃렛유로(1213, 1214, 1223, 1224)에는 제1 내지 제4 아웃렛밸브(1213a, 1214a, 1223a, 1224a)가 각각 마련될 수 있다. 제1 내지 제4 아웃렛밸브(1213a, 1214a, 1223a, 1224a)는 제1 내지 제4 휠 실린더(31, 32, 33, 34)로부터 리저버(1900)로 배출되는 가압매체의 흐름을 조절할 수 있으며, 특히, ABS Anti-lock Brake System) 모드, TCS(Traction Control System) 모드 등 능동 제동 수행 시, 각각의 휠 실린더(31, 32, 33, 34)에 가해진 가압매체의 액압을 개별적으로 감압할 수 있다. 제1 내지 제4 아웃렛밸브(1213a, 1214a, 1223a, 1224a)는 평상 시 닫힌 상태로 있다가 제1 또는 제2 전자제어유닛(ECU1, ECU2)으로부터 전기적 신호를 받으면 밸브가 열리도록 작동하는 노말 클로즈 타입(Normal Closed Type)의 솔레노이드 밸브로 마련될 수 있다.
메인 유압유로(1300)는 제1 액압 공급장치(1100)에서 형성된 가압매체의 액압을 유압 제어유닛(1200) 측으로 전달하도록 마련된다. 이를 위해, 메인 유압유로(1300)는 입구 측 단부가 제1 액압 공급장치(1100)에 연결되고, 출구 측 단부가 유압 제어유닛(1200)에 연결되되 제1 내지 제4 휠 실린더(31, 32, 33, 34)를 향해 제1 내지 제4 인렛유로(1211, 1212, 1221, 1222)로 분기되어 연결될 수 있다. 메인 유압유로(1300)에는 가압매체의 흐름을 제어하는 메인 격리밸브(1310)가 마련될 수 있다. 메인 격리밸브(1310)는 평상 시에는 개방되어 있다가 전자제어유닛에서 폐쇄신호를 받으면 밸브가 닫히도록 작동하는 노말 오픈 타입(Normal Open type)의 솔레노이드 밸브로 마련될 수 있다. 메인 격리밸브(1310)는 정상 작동상태인 노말모드에서 개방된 상태로 제어되어 제1 액압 공급장치(1100)에서 발생 및 제공되는 가압매체의 액압을 유압 제어유닛(1200)으로 전달하고, 제1 액압 공급장치(1100)가 정상적인 작동이 불능하되, 유압 제어유닛(1200)은 정상적인 작동이 가능한 제1 폴백모드에서는 폐쇄됨으로써, 제1 액압 공급장치(1100)로 가압매체가 누설되는 것을 방지할 수 있다. 이에 대한 자세한 설명은 도 2 내지 도 4를 참조하여 후술하도록 한다.
제2 액압 공급장치(1500)는 제1 및 제2 유압서킷(1210, 1220) 중 어느 일측에 연결되어 마련되되, 제1 액압 공급장치(1100) 및 유압 제어유닛(1200) 중 적어도 어느 하나의 고장 등에 의한 작동 불능 시 작동하여 제1 내지 제4 휠 실린더(31, 32, 33, 34) 중 적어도 어느 하나의 휠 실린더에 필요한 액압을 발생 및 제공할 수 있다. 제1 액압 공급장치(1100)의 작동 불능이되 유압 제어유닛(1200)은 정상 작동이 가능한 상태를 제1 폴백모드, 유압 제어유닛(1200)이 작동 불능인 상태를 제2 폴백모드라 한다. 여기서 제2 폴백모드는 유압 제어유닛(1200) 뿐만 아니라, 제1 액압 공급장치(1100)도 모두 작동 불능인 상태를 포함한다.
제2 액압 공급장치(1500)는 제1 액압 공급장치(1100)과 마찬가지로, 브레이크 페달(10)의 변위를 감지하는 페달 변위센서(20)로부터 운전자의 제동의지를 전기적 신호로 전달받아, 이에 근거하여 전기 기계적인 작동을 통해 가압매체의 액압을 발생시킬 수 있다.
일 예로, 제2 액압 공급장치(1500)는 페달 변위센서(20)의 전기적 신호에 근거하여 전원을 공급받아 모터(미도시)를 작동시키고, 이를 통해 펌프(미도시)를 구동시켜 가압매체의 액압을 형성하는 장치로 마련될 수 있다. 그러나 제2 액압 공급장치(1500)는 해당 장치에 한정되는 것은 아니며 전자 기계식으로 작동하여 가압매체의 액압을 형성할 수 있다면 다양한 구조 및 방식의 장치로 이루어질 수 있음은 물론이다.
제2 액압 공급장치(1500)는 제2 전자제어유닛(ECU2)에 의해 작동이 제어될 수 있으며, 제1 및 제2 폴백모드에서 작동하여 복수의 휠 실린더(31, 32, 33, 34) 중 적어도 어느 하나의 휠 실린더에 제동을 위한 액압을 제공할 수 있다.
제1 및 제2 지원유로(1610, 1620)는 제2 액압 공급장치(1500)에서 형성된 가압매체의 액압을 휠 실린더 측으로 전달하도록 마련된다. 이를 위해, 제1 지원유로(1610)는 입구 측 단부가 제2 액압 공급장치(1500)에 연결되고, 출구 측 단부가 제1 인렛유로(1211) 상 제1 인렛밸브(1211a) 하류 측에 합류하도록 연결될 수 있다. 또한, 제2 지원유로(1620)는 입구 측 단부가 제2 액압 공급장치(1500)에 연결되고, 출구 측 단부가 제2 인렛유로(1212) 상 제2 인렛밸브(1212a) 하류 측에 합류하도록 연결될 수 있다. 그러나 이에 한정되는 것은 아니며, 도면에 도시된 것과는 달리, 제1 및 제2 지원유로(1610, 1620)가 제2 유압서킷(1220)의 제3 및 제4 인렛유로(1221, 1222)에 연결될 수도 있다.
제1 및 제2 서브 격리밸브(1510, 1520)는 제2 폴백모드에서 제2 액압 공급장치(1500)에 의해 형성된 가압매체의 액압이 유압 제어유닛(1200) 측으로 누설되는 것을 방지하도록 마련된다. 제1 서브 격리밸브(1510)는 제1 인렛유로(1211) 상에서 제1 지원유로(1610)가 합류한 지점과 제1 인렛밸브(1211a) 사이에 마련되고, 제2 서브 격리밸브(1520)는 제2 인렛유로(1212) 상에서 제2 지원유로(1620)가 합류한 지점과 제2 인렛밸브(1212a) 사이에 마련될 수 있다.
제2 폴백모드 시, 유압 제어유닛(1200) 고장 등에 의해 작동 불능인 상태이므로, 제2 액압 공급장치(1500)에 의해 형성된 가압매체의 액압이 유압 제어유닛(1200)으로 누설되면 제동을 위한 액압제어가 원활하지 않을 우려가 있다. 이에, 제1 및 제2 서브 격리밸브(1510, 1520)가 노말모드 및 제1 폴백모드에서는 개방되어, 제1 액압 공급장치(1100) 또는 제2 액압 공급장치(1500)에 의해 형성된 가압매체의 액압이 휠 실린더 또는 유압 제어유닛(1200) 측으로 전달되도록 허용하되, 유압 제어유닛(1200)의 작동 불능 상태인 제2 폴백모드에서는 폐쇄되어 제2 액압 공급장치(1500)에 의해 형성된 가압매체의 액압이 유압 제어유닛(1200) 측으로 누설되는 것을 방지할 수 있다.
제1 및 제2 서브 격리밸브(1510, 1520)는 제2 전자제어유닛(ECU2)에 의해 개방 및 폐쇄 작동이 제어될 수 있으며, 평상 시 열린 상태로 있다가 제2 전자제어유닛ㅓ(ECU2)으로부터 전기적 신호를 받으면 밸브가 닫히도록 작동하는 노말 오픈 타입(Normal Open Type)의 솔레노이드 밸브로 마련될 수 있다.
제1 지원유로(1610)에는 제2 액압 공급장치(1500)로부터 제1 인렛유로(1211) 측으로 제공되는 가압매체의 흐름을 제어하는 제1 지원밸브(1611)가 마련될 수 있다. 제1 지원밸브(1611)는 제2 전자제어유닛(ECU2)에 의해 개방 및 폐쇄 작동이 제어될 수 있으며, 평상 시 닫힌 상태로 있다가 제2 전자제어유닛(ECU2)으로부터 전기적 신호를 받으면 밸브가 열리도록 작동하는 노말 클로즈 타입(Normal Closed Type)의 솔레노이드 밸브로 마련될 수 있다. 제2 전자제어유닛(ECU2)은 제1 또는 제2 폴백모드로 전환되는 경우 제2 액압 공급장치(1500)로부터 제공되는 가압매체의 액압이 휠 실린더 측으로 제공될 수 있도록 제1 지원밸브(1611)를 개방시킬 수 있다.
제2 지원유로(1620)에는 제2 액압 공급장치(1500)로부터 제2 인렛유로(1212) 측으로 제공되는 가압매체의 흐름을 제어하는 제2 지원밸브(1621)가 마련될 수 있다. 제2 지원밸브(1621)는 제2 전자제어유닛(ECU2)에 의해 개방 및 폐쇄 작동이 제어될 수 있으며, 평상 시 닫힌 상태로 있다가 제2 전자제어유닛(ECU2)으로부터 전기적 신호를 받으면 밸브가 열리도록 작동하는 노말 클로즈 타입(Normal Closed Type)의 솔레노이드 밸브로 마련될 수 있다. 제2 전자제어유닛(ECU2)은 제1 또는 제2 폴백모드로 전환되는 경우 제2 액압 공급장치(1500)로부터 제공되는 가압매체의 액압이 휠 실린더 측으로 제공될 수 있도록 제2 지원밸브(1621)를 개방시킬 수 있다.
제1 휠 실린더(31)에 가해진 가압매체는 제1 덤프유로(1630)를 통해 리저버(1900)로 배출될 수 있다. 이를 위해, 제1 덤프유로(1630)는 일측 단부가 제1 휠 실린더(31) 측 또는 제1 지원유로(1610)의 제1 지원밸브(1611) 하류 측에 연결되고, 타측 단부가 리저버(1900)에 연결될 수 있다. 제1 덤프유로(1630)에는 제1 휠 실린더(31)로부터 리저버(1900)로 배출되는 가압매체의 흐름을 제어하는 제1 배출밸브(1631)가 마련된다. 제1 배출밸브(1631)는 제2 전자제어유닛(ECU2)에 의해 개방 및 폐쇄 작동이 제어될 수 있으며, 평상 시 닫힌 상태로 있다가 제2 전자제어유닛(ECU2)으로부터 전기적 신호를 받으면 밸브가 열리도록 작동하는 노말 클로즈 타입(Normal Closed Type)의 솔레노이드 밸브로 마련될 수 있다.
제2 휠 실린더(32)에 가해진 가압매체는 제2 덤프유로(1640)를 통해 리저버(1900)로 배출될 수 있다. 이를 위해, 제2 덤프유로(1640)는 일측 단부가 제2 휠 실린더(32) 측 또는 제2 지원유로(1620)의 제2 지원밸브(1621) 하류 측에 연결되고, 타측 단부가 리저버(1900)에 연결될 수 있다. 제2 덤프유로(1640)에는 제2 휠 실린더(32)로부터 리저버(1900)로 배출되는 가압매체의 흐름을 제어하는 제2 배출밸브(1641)가 마련된다. 제2 배출밸브(1641)는 제2 전자제어유닛(ECU2)에 의해 개방 및 폐쇄 작동이 제어될 수 있으며, 평상 시 닫힌 상태로 있다가 제2 전자제어유닛(ECU2)으로부터 전기적 신호를 받으면 밸브가 열리도록 작동하는 노말 클로즈 타입(Normal Closed Type)의 솔레노이드 밸브로 마련될 수 있다.
이하에서는 본 실시 예에 의한 전자식 브레이크 시스템(1000)의 작동에 대해 설명한다.
본 실시 예에 의한 전자식 브레이크 시스템(1000) 은 각종 장치 및 밸브의 고장이나 이상 없이 정상적으로 작동하는 노말모드와, 제1 액압 공급장치(1100)의 작동 불능이되 유압 제어유닛(1200)의 정상 작동이 가능한 상태로서 제2 액압 공급장치(1500)가 개입하여 제1 내지 제4 휠 실린더(31, 32, 33, 34) 모두에 가압매체의 액압을 제공하는 제1 폴백모드와, 유압 제어유닛(1200)이 작동 불능으로서 제2 액압 공급장치(1500)가 개입하여 일부의 휠 실린더(도면을 기준으로 제1 및 제2 휠 실린더)에 가압매체의 액압을 제공하는 제2 폴백모드를 수행할 수 있다. 이 때, 제2 폴백모드는 유압 제어유닛(1200) 만이 작동 불능인 경우 외에도, 제1 액압 공급장치(1100)와 유압 제어유닛(1200)이 모두 작동 불능인 경우를 포함한다.
먼저 본 실시 예에 의한 전자식 브레이크 시스템(1000)의 노말모드에 대해 설명한다.
도 2는 본 실시 예에 의한 전자식 브레이크 시스템(1000)의 노말모드를 수행하는 상태를 나타내는 유압회로도이다. 도 2를 참조하면, 전자식 브레이크 시스템(1000)이 정상적으로 작동하는 경우, 운전자가 브레이크 페달(10)에 답력을 가하게 되면 제1 전자제어유닛(ECU1)은 페달 변위센서(20)가 감지한 브레이크 페달(10)의 변위정보에 근거하여 제1 액압 공급장치(1100)를 작동시킨다.
제1 액압 공급장치(1100)의 유압피스톤 등이 전진 또는 후진하여 가압매체의 액압을 형성하고, 이는 메인 유압유로(1300)를 거쳐 유압 제어유닛(1200)으로 전달된다.
노말모드에서는 제1 액압 공급장치(1100)가 정상적으로 작동하는 상태이므로 메인 격리밸브(1310)가 개방된 상태를 유지하여 제1 액압 공급장치(1100)에서 발생된 가압매체의 액압이 유압 제어유닛(1200)으로 전달될 수 있으며, 제2 액압 공급장치(1500)는 작동하지 않는다. 또한, 제1 및 제2 서브 격리밸브(1510, 1520)는 개방된 상태를 유지함으로써, 제1 액압 공급장치(1100)에서 제공되는 액압이 제1 내지 제4 인렛유로(1211, 1212, 1221, 1222)를 거쳐 제1 내지 제4 휠 실린더(21, 22, 23, 24)로 원활하게 공급될 수 있다. 이 때, 제1 내지 제4 인렛밸브(1211a, 1212a, 1221a, 1222a)는 개방된 상태를 유지한다.
또한, 노말모드에서 차량의 운용상황에 따라 ABS 모드 또는 TCS 모드 등 능동 제동을 수행하고자 하는 경우, 감압을 필요로 하는 특정 휠 실린더에 마련되는 아웃렛밸브가 선택적으로 개방되도록 제어되어, 특정 휠 실린더에 가해진 액압의 적어도 일부가 아웃렛유로를 거쳐 리저버(1900)로 배출될 수 있다.
본 실시 예에 의한 전자식 브레이크 시스템(1000)은 제1 액압 공급장치(1100)가 고장, 가압매체 누설 등 작동 불능상태에 해당하는 경우 도 3 및 도 4에 도시된 제1 폴백모드로 전환할 수 있다.
도 3은 본 실시 예에 의한 전자식 브레이크 시스템(1000)이 제1 폴백모드를 수행하는 상태를 나타내는 유압회로도이다.
제1 전자제어유닛(ECU1)은 제1 액압 공급장치(1100)가 정상적인 작동이 불가능한 상태로 판단되되, 유압 제어유닛(1200)은 정상적인 작동이 가능한 것으로 판단한 경우, 제1 폴백모드에 진입할 수 있다.
도 3을 참조하면, 제1 폴백모드에서 운전자가 브레이크 페달(10)에 답력을 가하게 되면 제2 전자제어유닛(ECU2)은 페달 변위센서(20)가 감지한 브레이크 페달(10)의 변위정보에 근거하여 제2 액압 공급장치(1500)를 작동 및 개입시킨다.
제2 액압 공급장치(1500)의 모터 또는 펌프 등이 작동하여 가압매체의 액압을 형성하고, 이는 제1 및 제2 지원유로(1610, 1620)를 거쳐 제1 유압서킷(1210) 측으로 전달된다. 이 때, 제2 액압 공급장치(1550)로부터 제공되는 가압매체의 액압이 원활히 전달될 수 있도록 제1 및 제2 지원유로(1610, 1620)에 각각 마련되는 제1 및 제2 지원밸브(1611, 1621)은 개방된 상태로 전환된다.
제1 폴백모드에서 유압 제어유닛(1200)은 정상적인 개폐 작동이 가능한 상태인 바, 제2 전자에어유닛(ECU2)은 제1 및 제2 서브 격리밸브(1510, 1520)를 개방하도록 제어하여, 제2 액압 공급장치(1500)에서 발생되어 제1 및 제2 지원유로(1610, 1620)를 거쳐 공급되는 가압매체의 액압을 유압 제어유닛(1200) 측으로 전달한다. 이 때, 제2 액압 공급장치(1500)로부터 제공되는 가압매체의 액압이 제1 액압 공급장치(1100) 측으로 누설될 경우, 액압에 의해 피스톤 또는 실링부재 등의 변형 및 파손이 발생할 우려가 있다. 이에, 제1 전자제어유닛(ECU1) 또는 제2 전자제어유닛(ECU2)은 제2 액압 공급장치(1500)로부터 제공되는 가압매체의 액압이 제1 액압 공급장치(1100) 측으로 가압매체의 액압이 누설되지 않도록 메인 유압유로(1300)에 마련되는 메인 격리밸브(1310)는 폐쇄 작동시킨다.
또한, 제1 폴백모드에서 제1 전자제어유닛(ECU1) 또는 제2 전자제어유닛(ECU2)은 제1 내지 제4 인렛밸브(1211a, 1212a, 1221a, 1222a)를 개방상태로 제어함으로써, 제2 액압 공급장치(1500)로부터 제1 및 제2 인렛유로(1211, 1212)를 거쳐 제공되는 가압매체의 액압이 제3 및 제4 인렛유로(1221, 1222)로 전달될 수 있으며, 이로써 제1 폴백모드에서 제2 액압 공급장치(1500)가 개입하는 경우에도 제1 내지 제4 휠 실린더(31, 32, 33, 34) 모두에 가압매체의 액압이 전달되어 차량의 안정적인 제동을 수행할 수 있다.
한편, 본 실시 예에 의한 전자식 브레이크 시스템(1000)은 제1 액압 공급장치(1100)의 작동 불능인 제1 폴백모드에서도 능동 제동이 가능하게 마련된다.
도 4는 본 실시 예에 의한 전자식 브레이크 시스템(100)이 제1 폴백모드에서 능동 제동을 수행하는 상태를 나타내는 유압회로도이다.
앞서 설명한 바와 같이, 제1 폴백모드에서 유압 제어유닛(1200)의 제1 내지 제4 인렛밸브(1211a, 1212a, 1221a, 1222a)는 개방된 상태로 마련됨에 따라, 비상 작동상태인 폴백모드에도 불구하고 제1 내지 제4 휠 실린더(31, 32, 33, 34) 모두에 가압매체의 액압이 안정적으로 전달될 수 있다. 이 때, 차량의 운용상황에 따라 ABS 모드 또는 TCS 모드 등 능동 제동을 수행하고자 하는 경우, 제2 전자제어유닛(ECU2)은 감압을 필요로 하는 특정 휠 실린더에 마련되는 아웃렛밸브를 선택적으로 개방하도록 제어할 수 있다. 일 예로, 도 4에 도시된 바와 같이, 제1 폴백모드에서 능동 제동을 위해 제1 휠 실린더(31) 및 제3 휠 실린더(33)의 선택적인 감압이 필요한 경우, 제2 전자제어유닛(ECU2)은 제1 아웃렛밸브(1213a) 및 제3 아웃렛밸브(1223a)을 개방하여 제1 휠 실린더(31) 및 제3 휠 실린더(33)에 가해진 가압매체의 액압 중 적어도 일부를 리저버(1900)로 배출할 수 있다.
이와 같이, 본 실시 예에 의한 전자식 브레이크 시스템(1000)은 비상 작동상태 폴백모드에서도 유압 제어유닛(1200)의 정상 작동 가능여부를 판단하여, 제1 폴백모드에 진입하도록 하고, 이를 통해 일부의 휠 실린더가 아닌 제1 내지 제4 휠 실린더(31, 32, 33, 34) 모두에 가압매체의 액압을 전달함으로써 차량의 안정적인 제동을 구현할 수 있다. 아울러, 제1 폴백모드는 비상 작동상태임에도 불구하고, 특정 아웃렛밸브의 제어를 통해 ABS 모드 또는 TCS 모드 등의 능동 제동을 수행할 수 있으므로, 차량의 다양한 운용상황에 대응하여 운전자와 승객의 안전을 도모할 수 있다.
본 실시 예에 의한 전자식 브레이크 시스템(1000)은 유압 제어유닛(1200)이 고장, 가압매체 누설 등 작동 불능상태에 해당하는 경우 도 5에 도시된 제2 폴백모드로 전환할 수 있다.
도 5은 본 실시 예에 의한 전자식 브레이크 시스템(1000)이 제2 폴백모드를 수행하는 상태를 나타내는 유압회로도이다.
제2 전자제어유닛(ECU2)은 유압 제어유닛(1200)이 정상적인 작동이 불가능한 상태로 판단한 경우, 제2 폴백모드에 진입할 수 있다.
도 5를 참조하면, 제2 폴백모드에서 운전자가 브레이크 페달(10)에 답력을 가하게 되면 제2 전자제어유닛(ECU2)은 페달 변위센서(20)가 감지한 브레이크 페달(10)의 변위정보에 근거하여 제2 액압 공급장치(1500)를 작동 및 개입시킨다.
제2 액압 공급장치(1500)의 모터 또는 펌프 등이 작동하여 가압매체의 액압을 형성하고, 이는 제1 및 제2 지원유로(1610, 1620)를 거쳐 제1 유압서킷(1210) 측으로 전달된다. 이 때, 제2 액압 공급장치(1550)로부터 제공되는 가압매체의 액압이 원활히 전달될 수 있도록 제1 및 제2 지원유로(1610, 1620)에 각각 마련되는 제1 및 제2 지원밸브(1611, 1621)은 개방된 상태로 전환된다. 이로써, 제2 액압 공급장치(1500)에서 제공되는 가압매체의 액압이 제1 및 제2 지원유로(1610, 1620)와 제1 및 제2 인렛유로(1211, 1212)를 순차적으로 거쳐 제1 및 제2 휠 실린더(31, 32)로 전달되어 비상 제동을 수행할 수 있다.
한편, 제2 폴백모드에서 유압 제어유닛(1200)은 정상적인 개폐 작동이 불가능한 상태인 바, 제2 액압 공급장치(1500)로부터 제공되는 가압매체의 액압이 유압 제어유닛(1200) 측으로 누설될 경우, 가압매체의 액압 제어가 원활하지 않아 차량의 제동 응답성이 지연되어 안전사고가 발생할 위험이 있다. 이에, 제1 전자제어유닛(ECU1) 또는 제2 전자제어유닛(ECU2)은 제2 폴백모드에서 제1 및 제2 서브 격리밸브(1510, 1520)를 폐쇄하도록 제어하여, 제2 액압 공급장치(1500)에서 발생되어 제1 및 제2 지원유로(1610, 1620)를 거쳐 공급되는 가압매체의 액압이 유압 제어유닛(1200) 측으로 누설되는 것을 방지한다.
제2 폴백모드에서 제동을 해제하고자 하는 경우, 제2 전자제어유닛(ECU2)은 제1 및 제2 덤프유로(1630, 1640)에 각각 마련되는 제1 및 제2 배출밸브(1631, 1641)를 개방시킴으로써, 제1 및 제2 휠 실린더(31, 32)에 가해진 가압매체를 리저버(1900)로 배출함으로써, 차량의 제동을 해제할 수 있다.

Claims (20)

  1. 브레이크 페달의 변위에 대응하여 출력되는 전기적 신호에 의해 액압을 발생시키는 제1 액압 공급장치;
    제1 휠 실린더 및 제2 휠 실린더의 액압을 제어하는 제1 유압서킷과, 제3 휠 실린더 및 제4 휠 실린더의 액압을 제어하는 제2 유압서킷을 포함하는 유압 제어유닛;
    상기 제1 및 제2 휠 실린더와 상기 제1 유압서킷 사이에 연결되고, 상기 제1 액압 공급장치 및 상기 유압 제어유닛 중 적어도 어느 하나의 작동 불능 시 상기 전기적 신호에 의해 액압을 발생시키는 제2 액압 공급장치;
    상기 제1 액압 공급장치와 상기 유압 제어유닛을 연결하는 메인 유압유로; 및
    상기 메인 유압유로에 마련되어 가압매체의 흐름을 제어하되, 상기 제1 액압 공급장치의 작동 불능 및 상기 유압 제어유닛의 정상 작동이 가능한 제1 폴백모드에서 폐쇄되어 상기 제2 액압 공급장치로부터 제공되는 가압매체의 액압이 상기 제1 액압 공급장치 측으로 누설되는 것을 방지하는 메인 격리밸브를 포함하는 전자식 브레이크 시스템.
  2. 제1항에 있어서,
    상기 제1 유압서킷은
    상기 메인 유압유로의 하류로부터 상기 제1 및 제2 휠 실린더로 각각 분기되어 연결되는 제1 및 제2 인렛유로와, 상기 제1 및 제2 인렛유로에 각각 마련되어 가압매체의 흐름을 제어하는 제1 및 제2 인렛밸브를 포함하고,
    상기 제2 액압 공급장치는
    상기 제1 인렛유로 및 상기 제2 인렛유로 중 적어도 어느 하나에 연결되는 전자식 브레이크 시스템.
  3. 제2항에 있어서,
    상기 제2 유압서킷은
    상기 메인 유압유로의 하류로부터 상기 제3 및 제4 휠 실린더로 각각 분기되어 연결되는 제3 및 제4 인렛유로와, 상기 제3 및 제4 인렛유로에 각각 마련되어 가압매체의 흐름을 제어하는 제3 및 제4 인렛밸브를 포함하며,
    상기 제1 내지 제4 인렛밸브는
    상기 제1 폴백모드에서 개방되어 상기 제2 액압 공급장치로부터 제공되는 가압매체의 액압을 상기 제1 내지 제4 휠 실린더로 모두 전달하는 전자식 브레이크 시스템.
  4. 제3항에 있어서,
    상기 제1 인렛유로 및 상기 제2 인렛유로 중 적어도 어느 하나와 상기 제2 액압 공급장치를 연결하는 지원유로; 및
    상기 제1 인렛유로 및 상기 제2 인렛유로 중 적어도 어느 하나에 마련되되, 상기 유압 제어유닛의 작동 불능인 제2 폴백모드에서 폐쇄되어 상기 제2 액압 공급장치로부터 제공되는 가압매체의 액압이 상기 유압 제어유닛 측으로 누설되는 것을 방지하는 서브 격리밸브를 더 포함하는 전자식 브레이크 시스템.
  5. 제3항에 있어서,
    상기 제2 액압 공급장치와 상기 제1 인렛유로를 연결하는 제1 지원유로;
    상기 제2 액압 공급장치와 상기 제2 인렛유로를 연결하는 제2 지원유로;
    상기 제1 인렛유로 상에서 상기 제1 지원유로가 합류한 지점과 상기 제1 인렛밸브 사이에 마련되어 가압매체의 흐름을 제어하되, 상기 유압 제어유닛의 작동 불능인 제2 폴백모드에서 폐쇄되어 상기 제2 액압 공급장치로부터 제공되는 가압매체의 액압이 상기 유압 제어유닛 측으로 누설되는 것을 방지하는 제1 서브 격리밸브; 및
    상기 제2 인렛유로 상에서 상기 제2 지원유로가 합류한 지점과 상기 제2 인렛밸브 사이에 마련되어 가압매체의 흐름을 제어하되, 상기 제2 폴백모드에서 폐쇄되어 상기 제2 액압 공급장치로부터 제공되는 가압매체의 액압이 상기 유압 제어유닛 측으로 누설되는 것을 방지하는 제2 서브 격리밸브를 더 포함하는 전자식 브레이크 시스템.
  6. 제5항에 있어서,
    상기 제1 지원유로에 마련되어 가압매체의 흐름을 제어하는 제1 지원밸브; 및
    상기 제2 지원유로에 마련되어 가압매체의 흐름을 제어하는 제2 지원밸브를 더 포함하는 전자식 브레이크 시스템.
  7. 제32항에 있어서,
    가압매체가 저장되는 리저버;를 더 포함하고,
    상기 제1 유압서킷은
    상기 제1 및 제2 휠 실린더와 상기 리저버를 각각 연결하는 제1 및 제2 아웃렛유로와, 상기 제1 및 제2 아웃렛유로에 각각 마련되어 가압매체의 흐름을 제어하는 제1 및 제2 아웃렛밸브를 더 포함하고,
    상기 제2 유압서킷은
    상기 제3 및 제4 휠 실린더와 상기 리저버를 각각 연결하는 제3 및 제4 아웃렛유로와, 상기 제3 및 제4 아웃렛유로에 각각 마련되어 가압매체의 흐름을 제어하는 제3 및 제4 아웃렛밸브를 더 포함하는 전자식 브레이크 시스템.
  8. 제6항에 있어서,
    가압매체가 저장되는 리저버;
    상기 제1 휠 실린더와 상기 리저버를 연결하는 제1 덤프유로; 및
    상기 제2 휠 실린더와 상기 리저버를 연결하는 제2 덤프유로를 더 포함하는 전자식 브레이크 시스템.
  9. 제8항에 있어서,
    상기 제1 덤프유로에 마련되어 가압매체의 흐름을 제어하는 제1 배출밸브; 및
    상기 제2 덤프유로에 마련되어 가압매체의 흐름을 제어하는 제2 배출밸브를 더 포함하는 전자식 브레이크 시스템.
  10. 제7항에 있어서,
    제1 액압 공급장치와, 상기 유압 제어유닛과, 상기 메인 격리밸브 중 적어도 어느 하나의 작동을 제어하는 제1 전자제어유닛을 더 포함하는 전자식 브레이크 시스템.
  11. 제9항에 있어서,
    상기 제2 액압 공급장치와, 상기 유압 제어유닛과, 상기 메인 격리밸브와, 상기 제1 및 제2 서브 격리밸브와, 상기 제1 및 제2 지원밸브와, 상기 제1 및 제2 배출밸브 중 적어도 어느 하나의 작동을 제어하는 제2 전자제어유닛을 더 포함하는 전자식 브레이크 시스템.
  12. 브레이크 페달의 변위에 대응하여 출력되는 전기적 신호에 의해 액압을 발생시키는 제1 액압 공급장치와, 제1 내지 제4 휠 실린더의 액압을 각각 제어하는 유압 제어유닛과, 상기 제1 액압 공급장치 및 상기 유압 제어유닛 중 적어도 어느 하나의 작동 불능 시 상기 전기적 신호에 의해 액압을 발생시키고 상기 제1 내지 제4 휠 실린더 중 적어도 어느 하나에 연결되는 제2 액압 공급장치를 포함하는 전자식 브레이크 시스템의 작동방법에 있어서,
    상기 제1 액압 공급장치은 작동 불능이되, 상기 유압 제어유닛은 정상 작동 가능한 제1 폴백모드를 포함하고,
    상기 제1 폴백모드는
    상기 제1 액압 공급장치와 상기 유압 제어유닛을 연결하는 메인 유압유로에 마련되어 가압매체의 흐름을 제어하는 메인 격리밸브를 폐쇄 작동시켜, 상기 제2 액압 공급장치로부터 제공되는 가압매체의 액압이 상기 제1 액압 공급장치 측으로 누설되는 것을 방지하는 전자식 브레이크 시스템의 작동방법.
  13. 제12항에 있어서,
    상기 유압 제어유닛은 제1 휠 실린더 및 제2 휠 실린더의 액압을 제어하는 제1 유압서킷과, 제3 휠 실린더 및 제4 휠 실린더의 액압을 제어하는 제2 유압서킷을 포함하고,
    상기 제1 폴백모드는
    상기 제2 액압 공급장치로부터 제공되는 가압매체의 액압을 상기 제1 내지 제4 휠 실린더로 모두 전달하는 전자식 브레이크 시스템의 작동방법.
  14. 제13항에 있어서,상기 제1 유압서킷은 상기 메인 유압유로의 하류로부터 상기 제1 및 제2 휠 실린더로 각각 분기되어 연결되는 제1 및 제2 인렛유로와, 상기 제1 및 제2 인렛유로에 각각 마련되어 가압매체의 흐름을 제어하는 제1 및 제2 인렛밸브를 포함하고,
    상기 제2 액압 공급장치는 상기 제1 인렛유로 및 상기 제2 인렛유로 중 적어도 어느 하나에 연결되어 가압매체의 액압을 전달하는 전자식 브레이크 시스템의 작동방법.
  15. 제14항에 있어서,
    상기 제2 유압서킷은 상기 메인 유압유로의 하류로부터 상기 제3 및 제4 휠 실린더로 각각 분기되어 연결되는 제3 및 제4 인렛유로와, 상기 제3 및 제4 인렛유로에 각각 마련되어 가압매체의 흐름을 제어하는 제3 및 제4 인렛밸브를 포함하며,
    상기 제1 폴백모드는
    상기 제1 내지 제4 인렛밸브를 개방시켜 상기 제2 액압 공급장치로부터 제공되는 가압매체의 액압을 상기 제1 내지 제4 휠 실린더로 모두 전달하는 전자식 브레이크 시스템의 작동방법.
  16. 제14항에 있어서,
    상기 제1 인렛유로 및 상기 제2 인렛유로 중 적어도 어느 하나에 서브 격리밸브가 마련되고,
    상기 유압 제어유닛이 작동 불능인 제2 폴백모드를 더 포함하고,
    상기 제2 폴백모드는
    상기 서브 격리밸브를 폐쇄 작동시켜, 상기 제2 액압 공급장치로부터 제공되는 가압매체의 액압이 상기 유압 제어유닛 측으로 누설되는 것을 방지하는 전자식 브레이크 시스템의 작동방법.
  17. 제15항에 있어서,
    상기 제1 인렛유로 상에서 상기 제2 액압 공급장치가 연결된 지점과 상기 제1 인렛밸브 사이에 제1 서브 격리밸브가 마련되고, 상기 제2 인렛유로 상에서 상기 제2 액압 공급장치가 연결된 지점과 상기 제2 인렛밸브 사이에 제2 서브 격리밸브가 마련되며,
    상기 유압 제어유닛이 작동 불능인 제2 폴백모드를 더 포함하고,
    상기 제2 폴백모드는
    상기 제1 및 제2 서브 격리밸브를 폐쇄 작동시켜, 상기 제2 액압 공급장치로부터 제공되는 가압매체의 액압이 상기 유압 제어유닛 측으로 누설되는 것을 방지하는 전자식 브레이크 시스템의 작동방법.
  18. 제17항에 있어서,
    상기 제2 액압 공급장치와 상기 제1 인렛유로를 연결하는 제1 지원유로에 제1 지원밸브가 마련되고, 상기 제2 액압 공급장치와 상기 제2 인렛유로를 연결하는 제2 지원유로에 제2 지원밸브가 마련되며,
    상기 제1 및 제2 폴백모드는
    상기 제1 및 제2 지원밸브를 개방 작동시켜, 상기 제2 액압 공급장치로부터 제공되는 가압매체의 흐름을 허용하는 전자식 브레이크 시스템의 작동방법.
  19. 제18항에 있어서,
    상기 제1 액압 공급장치 및 상기 유압 제어유닛이 모두 정상 작동 가능한 노말모드를 더 포함하고,
    상기 노말모드는
    상기 제1 및 제2 서브 격리밸브를 개방 작동시켜, 상기 제1 액압 공급장치로부터 제공되는 가압매체의 액압을 상기 제1 및 제2 휠 실린더로 전달하 는 전자식 브레이크 시스템의 작동방법.
  20. 제19항에 있어서,
    상기 노말모드는
    상기 제1 및 제2 지원밸브는 폐쇄 작동시켜, 상기 제1 액압 공급장치로부터 제공되는 가압매체의 액압이 상기 제2 액압 공급장치 측으로 누설되는 것을 방지하는 전자식 브레이크 시스템의 작동방법.
PCT/KR2023/003291 2022-03-14 2023-03-10 전자식 브레이크 시스템 및 이의 작동방법 WO2023177155A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0031232 2022-03-14
KR1020220031232A KR20230134211A (ko) 2022-03-14 2022-03-14 전자식 브레이크 시스템 및 이의 작동방법

Publications (1)

Publication Number Publication Date
WO2023177155A1 true WO2023177155A1 (ko) 2023-09-21

Family

ID=88023982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/003291 WO2023177155A1 (ko) 2022-03-14 2023-03-10 전자식 브레이크 시스템 및 이의 작동방법

Country Status (2)

Country Link
KR (1) KR20230134211A (ko)
WO (1) WO2023177155A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014184840A1 (ja) * 2013-05-13 2014-11-20 トヨタ自動車株式会社 ブレーキ装置
KR101673772B1 (ko) * 2015-05-29 2016-11-07 현대자동차주식회사 전자식 유압 브레이크 장치 및 그 제어 방법
KR20210041819A (ko) * 2019-10-08 2021-04-16 현대모비스 주식회사 전자식 유압 브레이크 장치
KR20210048773A (ko) * 2019-10-24 2021-05-04 주식회사 만도 전자식 브레이크 시스템 및 이의 작동방법
US20220063577A1 (en) * 2018-12-20 2022-03-03 Robert Bosch Gmbh Electrohydraulic power vehicle braking system for an autonomously driving land vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014184840A1 (ja) * 2013-05-13 2014-11-20 トヨタ自動車株式会社 ブレーキ装置
KR101673772B1 (ko) * 2015-05-29 2016-11-07 현대자동차주식회사 전자식 유압 브레이크 장치 및 그 제어 방법
US20220063577A1 (en) * 2018-12-20 2022-03-03 Robert Bosch Gmbh Electrohydraulic power vehicle braking system for an autonomously driving land vehicle
KR20210041819A (ko) * 2019-10-08 2021-04-16 현대모비스 주식회사 전자식 유압 브레이크 장치
KR20210048773A (ko) * 2019-10-24 2021-05-04 주식회사 만도 전자식 브레이크 시스템 및 이의 작동방법

Also Published As

Publication number Publication date
KR20230134211A (ko) 2023-09-21

Similar Documents

Publication Publication Date Title
WO2020184967A1 (ko) 전자식 브레이크 시스템
US10137877B2 (en) Brake system for motor vehicles
CN107580571B (zh) 用于控制商用车的制动装置的设备和制动装置
WO2020246866A1 (ko) 브레이크 시스템의 제어장치
KR102528292B1 (ko) 전자식 브레이크 시스템
GB2224088A (en) Hydraulic braking system with reduced pedal travel
WO2022092959A1 (ko) 전자식 브레이크 시스템
WO2020242070A1 (ko) 전자식 브레이크 시스템 및 이의 작동방법
WO2021194289A1 (ko) 전자식 브레이크 시스템
WO2022050735A1 (ko) 전자식 주차 브레이크 시스템의 제어장치
WO2022010272A1 (ko) 전자식 브레이크 시스템 및 이의 작동방법
WO2020184968A1 (ko) 전자식 브레이크 시스템
WO2020184925A1 (ko) 마스터 실린더 및 이를 구비하는 전자식 브레이크 시스템
WO2023177155A1 (ko) 전자식 브레이크 시스템 및 이의 작동방법
KR20230058958A (ko) 전자식 유압 브레이크
WO2022146054A1 (ko) 전자식 브레이크 시스템
WO2020242069A1 (ko) 전자식 브레이크 시스템 및 작동방법
WO2020180165A1 (ko) 전자식 브레이크 시스템용 마스터 실린더
WO2022216119A1 (ko) 전자식 브레이크 시스템
US11912251B2 (en) Electric brake system
WO2021080366A1 (ko) 전자식 브레이크 시스템 및 이의 작동방법
KR100356856B1 (ko) 비상제동기능을 갖는 차량의 브레이크시스템
WO2022146049A1 (ko) 전자식 브레이크 시스템
WO2020184976A1 (ko) 전자식 브레이크 시스템
WO2022146048A1 (ko) 전자식 브레이크 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23771034

Country of ref document: EP

Kind code of ref document: A1