WO2023176982A1 - Mhc遺伝子群ヒト化動物 - Google Patents

Mhc遺伝子群ヒト化動物 Download PDF

Info

Publication number
WO2023176982A1
WO2023176982A1 PCT/JP2023/010779 JP2023010779W WO2023176982A1 WO 2023176982 A1 WO2023176982 A1 WO 2023176982A1 JP 2023010779 W JP2023010779 W JP 2023010779W WO 2023176982 A1 WO2023176982 A1 WO 2023176982A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
human
mhc
sequence
resistance gene
Prior art date
Application number
PCT/JP2023/010779
Other languages
English (en)
French (fr)
Inventor
輝彦 鈴木
孝彦 原
Original Assignee
公益財団法人東京都医学総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公益財団法人東京都医学総合研究所 filed Critical 公益財団法人東京都医学総合研究所
Publication of WO2023176982A1 publication Critical patent/WO2023176982A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material

Definitions

  • Non-Patent Documents 4-8) mice in which these genes have been humanized have been created and used for drug development, etc. (Non-Patent Documents 4-8), but humanization of the MHC gene group has not yet been achieved. If MHC is mouse-derived, even if only TCR is humanized, a mouse MHC-restricted TCR will be created, so it is difficult to conduct sufficient TCR screening using mice.
  • MHC region The reason why humanization of only the MHC gene group has not been achieved is because humanization is technically extremely difficult.
  • MHC genes There are 21 types of MHC genes in humans and 39 types in mice, and these genes are mixed with various genes in a genomic region of about 3 to 4 million base pairs called the MHC region.
  • the targeting vector 1 includes a gene cassette 1 containing a partial sequence of 1 and a drug resistance gene 2 for drug selection after targeting.
  • a targeting vector 2 that is integrated into a chromosome of a non-human mammal in which an MHC region exists, at a position p1 corresponding to P1 distal to the MHC (non-human MHC) region, The targeting vector 2 causes translocation recombination between the region from the p1 to the distal end and the region from the P1 to the distal end of human No. 6 staining, and A targeting vector 2 comprising a gene cassette 2 containing a recombinant enzyme recognition sequence, another sequence of the drug resistance gene 1, and a drug resistance gene 3 for drug selection after targeting.
  • a targeting vector 3 that causes translocation recombination between a region distal to the non-human MHC region and corresponding to P1 to the distal end in an animal chromosome contains a homologous sequence of a part of the region R1a between the P1 and the human MHC region, a drug resistance gene 4 for drug selection after targeting, and a portion distal to the p1.
  • (D) A region from any position P2 to the distal end that is proximal to the human MHC region and is a target for cleavage by a genome editing tool, and in the chromosome of a non-human mammal where non-human MHC exists,
  • a targeting vector 4 that causes translocation recombination between a region proximal to the non-human MHC region and from position p2 corresponding to P2 to the distal end,
  • the targeting vector 4 includes a homologous sequence of a part of the region R3a on the proximal side of P2, a drug resistance gene 5 for drug selection after targeting, and a link between the p2 and the non-human MHC region.
  • Genome editing tool vector 1 that cuts human chromosome 6 at the arbitrary position P1
  • Genome editing tool vector 2 that cuts a non-human chromosome at the arbitrary position p1 [3]
  • G Genome editing tool vector 3 that cuts human chromosome 6 at the arbitrary position P2
  • H Genome editing tool vector 4 that cuts a non-human chromosome at the arbitrary position p2 [4]
  • the class I region includes at least one selected from the group consisting of HLA-A, HLA-B, HLA-C, HLA-E, HLA-F, HLA-G, MICA, and MICB.
  • Vector set described in. [6] The vector set according to [4], wherein the class II region includes at least one selected from the group consisting of HLA-DP, HLA-DQ, HLA-DR, HLA-DM, and HLA-DO.
  • the region containing the class I region is a region containing HLA-A, HLA-B, HLA-C, HLA-E, HLA-F, HLA-G, MICA and MICB, according to [4].
  • Gene cassette 1 has the following formula (1): BGHpA-3'Neo-SA-loxP-EF1-Hyg-P2A-mRuby2-RGpA (1)
  • BGHpA represents a polyA addition signal sequence derived from bovine growth hormone
  • 3'Neo represents a partial sequence on the 3' side of the neomycin resistance gene
  • SA represents a splicing acceptor sequence
  • loxP represents a recombinant enzyme recognition sequence.
  • SD represents the splicing donor sequence
  • loxP represents the recombinant enzyme recognition sequence
  • SA represents the splicing acceptor sequence
  • T2A represents the 2A sequence derived from Thosea asigna virus
  • Puro puromycin resistance gene RGpA represents the rabbit
  • the vector set according to any one of [1] to [21] humanizes the MHC region, including a chromosome in which the MHC region of a non-human mammal chromosome is replaced with the MHC region of a human chromosome. non-human mammalian cells.
  • a method for producing a non-human mammal in which the MHC region is humanized comprising the following steps: (1) Using the vector set described in any one of [1] to [21], create a cell containing a chromosome in which the MHC region of a non-human mammal chromosome is replaced with the MHC region of a human chromosome. process, (2) The method described above, comprising the step of producing a non-human mammal whose MHC region is humanized from the cells obtained in (1) above. [29] The method according to [28], wherein the non-human mammal is a rodent.
  • the present invention has made it possible to create a non-human animal having a chromosome in which non-human MHC has been replaced with human MHC. This makes it possible to develop pharmaceuticals (eg, tumor immune drugs) and reagents that utilize the human immune system using non-human animals.
  • pharmaceuticals eg, tumor immune drugs
  • FIG. 2 is a schematic diagram showing recombination for replacing non-human MHC with human MHC in the present invention.
  • the figure is a schematic diagram when the non-human animal is a mouse. It is a schematic diagram showing the MHC region in a human chromosome.
  • FIG. 2 is a diagram showing target regions when using a genome editing targeting vector.
  • FIG. 1 is a schematic diagram of a method for producing mice with humanized MHC regions.
  • FIG. 3 is a diagram showing the structure of a targeting vector.
  • A Structure of TV3R-dHLA.
  • B Structure of TV4-dH2.
  • C Structure of TV-Tl1/2-BS. The location of the homology arm used in the targeting vector on the genome is as shown in the figure.
  • A9-MRC5 fusion cell clone having human chromosome 6 It is a figure showing the isolation of A9-MRC5 fusion cell clone having human chromosome 6.
  • A Genomic DNA was prepared from the isolated A9-MRC5 fusion cell clones (hChA9#1, 5, 13, 17) and analyzed by genomic PCR for the presence of the sequence on human chromosome 6.
  • B The presence of human chromosome 6 in hChA9#5 was analyzed by FISH. Red: Human chromosome 6 centromere-specific probe. It is a figure showing targeting of TV3R.
  • FIG. 3 shows isolation of TV3-4RENKA clone. FISH analysis was performed on the modified human chromosome 6 introduced cell TV3-4RENKA#17/5-45a-3. The arrowhead indicates the introduced modified human chromosome 6. The number of chromosomes was confirmed to be 41. Red: mouse Cot-1 (probe of mouse genome sequence), purple: RP11-54H13 (probe within human MHC region) FIG. 3 shows isolation of TV3-4RENKATl3/4 clones.
  • A Recombinant translocation by Cre/loxP.
  • B Confirmation of translocation by genome PCR.
  • FIG. 3 shows isolation of TV3-4RENKATlb clone.
  • A Analysis of chromosomal translocation using genome PCR. *: TV3-4RENKATlb#38 clone.
  • B FISH analysis of TV3-4RENKATlb#38. The numbers in the FISH images correspond to the numbers of the translocated chromosomes in the schematic diagram.
  • FIG. 2 is a diagram showing the production of MHC humanized (hetero) mice.
  • MHC humanized (hetero) cells have MHC humanized mouse chromosome 17 with an EGFP expression cassette inserted in the distal side of the MHC region.
  • B An individual born by microinsemination using testis cells of a chimeric mouse derived from TV3-4RENKATlbdh6#3. Left: Bright field image. Right: EGFP fluorescence detected.
  • Genomes were prepared from offspring obtained by microinsemination, and analyzed by PCR for the presence of sequences within the human MHC region. Individual numbers 7 and 12 were litters that were EGFP negative. It is a diagram showing the production of MHC humanized (hetero) mice from XO ES cells.
  • A Chimeric mouse produced from TV3-4XOTlbdh6#11-1-4-57-3 clone. Arrowhead: 100% chimeric mouse.
  • B Offspring of XO chimeric mouse (female) and C57BL/6 (male). Black-haired individuals cannot be born unless XO ES cells are transmitted through the germline.
  • C Genome typing method targeting the DAXX gene locus present within the MHC region.
  • FIG. 2 is a diagram showing the results of expression analysis of human MHC proteins in MHC humanized (hetero) mice.
  • A Expression of human MHC proteins in spleen cells was analyzed by Western blotting.
  • Wt spleen cells derived from wild-type mice; Het, spleen cells derived from MHC humanized (hetero) mice.
  • B Surface expression of human MHC proteins in spleen cells was analyzed by flow cytometry. Wt, spleen cells derived from wild-type mice; Het, spleen cells derived from MHC humanized (hetero) mice.
  • the present invention relates to a targeting vector for constructing a non-human chromosome (MHC-humanized chromosome) in which a non-human MHC region is replaced with a human MHC region, a non-human mammal having the MHC-humanized chromosome, a method for producing the same, etc.
  • MHC-humanized chromosome a non-human chromosome
  • a method for producing the same etc.
  • a non-human animal having a chromosome into which a human MHC region has been introduced it becomes possible to express the gene that defines the MHC (MHC gene) using an endogenous promoter. This makes it possible to reconstruct the human immune system under physiological conditions, which is useful for drug discovery and research on human immune responses.
  • FIG. 1 (a) is a schematic diagram of human chromosome 6 and a non-human chromosome before replacement, and (c) is a schematic diagram of the chromosome after replacing the MHC region.
  • Replacement of the MHC region is performed by two-step recombination: translocation recombination from (a) to (b1) and translocation recombination from (b1) to (c) (this is referred to as "two-step recombination 1"). ), or use two-step recombination (referred to as "two-step recombination 2") of translocation recombination from (a) to (b2) and translocation recombination from (b2) to (c). do.
  • the order of recombination is arbitrary, and may be two-step recombination 1 or two-step recombination 2.
  • the telomere side is called the distal side
  • the centromere side is called the proximal side when viewed from the MHC region that is the target of translocation recombination (herein also referred to as "replacement” or simply “recombination”).
  • P1 is an arbitrary position distal to the human MHC region, that is, from the human MHC region to the distal end, and is the boundary for recombination
  • An arbitrary position between the region and the distal end that corresponds to the recombination boundary and corresponds to P1 is defined as p1.
  • P2 is an arbitrary position proximal to the human MHC region to be recombined, that is, between the human MHC region and the centromere, and serves as the boundary for recombination, and the non-human MHC region
  • the recombination from (a) to (b1) is the first recombination, which involves the region from P1 to the distal end (telomere) and the region from p1 to the distal end (telomere).
  • the recombination from (b1) to (c) is the second recombination, which involves the recombination of the region from P2 to the distal end (telomere) and the region from p2 to the distal end (telomere).
  • cells with humanized MHC such as ES cells
  • ES cells can be created and transplanted into foster parents to create chimeric non-human animals.
  • chromosomes in non-human mammals are diploid
  • an embodiment of a chromosome in which the MHC region of the chromosome of a non-human mammal after completion of recombination is replaced with the MHC region of a human chromosome may be homozygous (two chromosomes are humanized) or heterozygous (one chromosome is humanized).
  • an MHC humanized heterozygous animal can be produced by natural mating, microinsemination, etc., and an MHC humanized homozygous animal can be further produced by natural mating, microinsemination, etc.
  • the term "animal” refers to a non-human mammal unless otherwise specified.
  • human MHC is the same molecule as HLA, and the genes that determine this molecule are arranged in series on chromosome 6.
  • the MHC region of non-human mammals varies depending on the animal, and is located, for example, on chromosome 17 in mice, chromosome 20 in rats, chromosome 12 in rabbits, and chromosome 7 in pigs.
  • MHC region when describing a gene encoding MHC in a gene region, it may be expressed as an "MHC region.” Furthermore, since the mouse MHC region exists on the long arms, for example, when mouse chromosomes are represented as non-human chromosomes in Figure 1, the orientation of the mouse long and short arms is the same as the human long and short arms. and in the opposite direction.
  • the MHC region to be recombined may be the entire MHC region or a portion thereof.
  • class I it may be a classical class I molecule or a non-classical class I molecule.
  • classical class I molecules There are three types of classical class I molecules in humans: HLA-A, HLA-B, and HLA-C, and three types of non-classical class I molecules are HLA-E, HLA-F, HLA-G, MICA, and MICB. be.
  • Human class II genes are located in the human MHC class II region, and the DR, DQ, and DP loci encode the major products of this region.
  • mouse MHC includes mouse H2-M2 and H2-M3, but in the present invention, these MHCs do not need to be included in the replacement target region.
  • the class III region contains various genes other than MHC, and in humans, it is a region distal to HLA-DRA and proximal to MICB.
  • FIG. 2 is a schematic diagram showing the human MHC region.
  • the MHC region to be replaced may be only the class I region, only the class II region, only the class III region, or a combination of these regions.
  • the class I region may be a region containing a classical class I MHC gene, a region containing a non-classical class I MHC gene, or both regions.
  • the regions constituting each class for example, in class I, any one of HLA-A, HLA-B, HLA-C, HLA-E, HLA-F, HLA-G, MICA, MICB, Alternatively, it may be a combination of two or more of these, and in class II, any one of HLA-DP, HLA-DQ, HLA-DR, HLA-DO, HLA-DM, or a combination of two or more of these. It may be in the area of The class III region contains various genes other than MHC, and in humans, it is a region distal to HLA-DRA and proximal to MICB.
  • the MHC region to be recombined may be the entire region or a part of the region as described above. Therefore, depending on the selection of the target MHC region, P1, p1, P2, and p2 may be located in an unselected MHC region.
  • the entire region from MICB to HLA-F (region indicated by L2 in FIG. 2) is used in the human MHC class I region, and the entire region from HLA-DP to HLA-DR in the case of class II region (the region indicated by L2 in FIG. 2). 2).
  • the class III region is a region distal to HLA-DRA and proximal to MICB (region indicated by L3 in FIG. 2).
  • the entire MHC region shown in FIG. 2 is replaced.
  • Targeting vector First recombination in two-step recombination 1 and second recombination in two-step recombination 2
  • a vector used to cause recombination is referred to as a targeting vector.
  • the targeting vector used here is not limited as long as it causes the above-mentioned recombination, and may be a vector that uses a recombinase recognition sequence and a recombinase, or a vector that uses a genome editing tool. It's okay. If necessary, a genome editing tool can also be used as a tool for cutting at the P1 and p1 positions. Genome editing tools can be used to cut chromosomes at desired locations, making it easier for subsequent recombination to occur.
  • a recombinase recognition sequence called loxP and a recombinase called Cre are used for recombination using a recombinase.
  • the Cre/loxP specific recombination system is well known.
  • Cre enzyme is a protein consisting of 343 amino acids derived from P1 phage, and can recognize a 34 bp specific base sequence called loxP site and perform site-specific recombination.
  • the loxP site can be divided into three parts: 13 bases, 8 bases, and 13 bases, and the 13 base sequence has a complementary inverted repeat structure.
  • the 8-base sequence plays a role in determining the orientation of the loxP site.
  • Many mutant types of loxP called Lox511 and lox2272 are also known, and it is also possible to utilize the recognition sequences of these recombinant enzymes.
  • site-specific recombination systems using site-specific recombinases include, in addition to the Cre/loxP system, the Flp/FRT system derived from yeast plasmid 2 ⁇ , and the Flp/FRT system derived from bacteriophage PhiC31.
  • the PhiC31 integrase system, the Bxb1 integrase system derived from bacteriophage Bxb1, etc. can be used.
  • the targeting vector for recombining from (a) to (b1) or from (b2) to (c) is a combination of targeting vector 1 and targeting vector 2 below, or This is targeting vector 3 below.
  • the combination of targeting vector 1 and targeting vector 2 is a vector that causes recombination using a recombinase recognition sequence and a recombinase
  • targeting vector 3 is a vector that causes recombination using a genome editing tool. It is.
  • Targeting vector 1 is integrated into human chromosome 6 at any position P1 distal to the MHC (human MHC) region that is present on the short arm and is the target of recombination.
  • Targeting vector 1 includes a region from P1 to the distal end, and a region distal to the non-human MHC region to be recombined in the non-human mammal chromosome, and far from p1, which corresponds to P1. It causes translocation and recombination between the regions up to the terminal end.
  • the targeting vector 1 includes a recombinant enzyme recognition sequence, a partial sequence of a drug resistance gene 1 for drug selection that is reconstituted upon translocation and recombination, and a drug resistance gene 2 for drug selection after targeting. Contains gene cassette 1.
  • the construct contained in gene cassette 1 can have, for example, a recombinant enzyme recognition sequence as loxP, drug resistance gene 1 as a neomycin resistance gene, and drug resistance gene 2 as a hygromycin resistance gene.
  • a recombinant enzyme recognition sequence as loxP
  • drug resistance gene 1 as a neomycin resistance gene
  • drug resistance gene 2 as a hygromycin resistance gene.
  • corresponding is a term that refers to the positional relationship of the locations where recombination is performed. That is, the above P1, p1, P2, and p2 are marks that indicate the positional relationship between the distal side and the proximal side when viewed from the MHC region to be recombined. Therefore, it is not required that the genes adjacent to P1 and p1 or P2 and p2 be the same.
  • the MHC region may be inverted compared to the orientation of the human MHC region.
  • the human locus is between the MOG locus and the GABBR1 locus (see Examples and Figure 5)
  • the loci on both sides of the targeting vector insertion site (P1) are the MHC region.
  • the p1 of an inverted animal can be, for example, between the Kifc1 and Daxx loci.
  • FIG. 5 is a schematic diagram showing the structure of the targeting vector used in the examples of the present invention.
  • a targeting vector in which a mouse MHC region is replaced with a human MHC region will be described as an example.
  • TV3R represents the above gene cassette 1.
  • the recombinant enzyme recognition sequence is indicated by a horizontal “ ⁇ ” in the figure, and is a loxP sequence or the like.
  • one partial sequence of drug resistance gene 1 for drug selection that is reconstructed during translocation and recombination is "3'neo". is used.
  • the drug resistance gene in this case is the neomycin resistance gene.
  • the drug resistance gene 2 for drug selection after targeting is written as "Hyg", and the drug resistance gene in this case is a hygromycin resistance gene.
  • the gene cassette 1 produced in the example of the present invention includes the sequence shown by the following formula (1).
  • BGHpA-3'Neo-SA-loxP-EF1-Hyg-P2A-mRuby2-RGpA (1)
  • BGHpA represents a polyA addition signal sequence derived from bovine growth hormone
  • 3'Neo represents a partial sequence on the 3' side of the neomycin resistance gene
  • SA represents a splicing acceptor sequence
  • loxP represents Represents a recombinant enzyme recognition sequence
  • EF1 represents a promoter sequence derived from human elongation factor 1 ⁇
  • Hyg represents a hygromycin resistance gene
  • P2A represents a 2A sequence derived from porcine tesiovirus
  • mRuby2 represents a red fluorescent gene
  • RGpA represents a Represents a poly A addition signal sequence derived from rabbit ⁇ -globin.
  • a Flp recombinase recognition sequence FRT
  • FRT Flp recombinase recognition sequence
  • TV3R-dHLA is targeting vector 1, and homologous sequences of the regions on both sides of the position (P1) where TV3R is integrated are linked on both sides of TV3R.
  • PX458a-dHLACR1 is a genome editing vector, and is a vector that artificially cleaves the chromosome at any position P1 in order to facilitate recombination of targeting vector 1.
  • Any known genome editing tool can be used for the genome editing vector. Examples include tools that use zinc finger nuclease (ZFN), tools that use tail nuclease (TALEN), and tools that use CRISPR-Cas9.
  • PX458a-dHLACR1 is a vector that utilizes CRISPR-Cas9, and is composed of, for example, a guide RNA sequence, a Cas9 sequence, and a gene sequence for the fluorescent protein ametrin.
  • Figure 1(d) shows an enlarged view of the region from the vicinity of the MHC region to the distal end. ( Figure 5A).
  • Targeting vector 2 is integrated into the chromosome of a non-human mammal where the MHC region is present, at position p1, which corresponds to the above-mentioned P1, distal to the non-human MHC region to be recombined.
  • targeting vector 2 causes translocation recombination between the region from p1 to the distal end and the region from P1 to the distal end in the human chromosome.
  • the recombinant enzyme recognition sequence, other partial sequences of the drug resistance gene 1 for drug selection that are reconstituted during translocation and recombination (other than the predetermined partial sequence of the drug resistance gene 1 used in the targeting vector 1), (partial sequence), and a gene cassette 2 containing a drug resistance gene 3 for drug selection after targeting.
  • the construct contained in the gene cassette 2 can have, for example, loxP as the recombinant enzyme recognition sequence, a neomycin resistance gene as the drug resistance gene 1, and a puromycin resistance gene as the drug resistance gene 3.
  • loxP as the recombinant enzyme recognition sequence
  • a neomycin resistance gene as the drug resistance gene 1
  • a puromycin resistance gene as the drug resistance gene 3.
  • some animal species have an inverted MHC region. Even in this case, it can be incorporated into the targeting vector 2 at a position p1 corresponding to any position P1.
  • TV4 represents gene cassette 2.
  • the recombinant enzyme recognition sequence is indicated by a horizontal “ ⁇ ” in the figure, and is a loxP sequence or the like.
  • “5'neo” is used as the partial sequence of drug resistance gene 1 for drug selection that is reconstructed upon translocation and recombination.
  • the drug resistance gene in this case is the neomycin resistance gene.
  • the drug resistance gene 2 for drug selection after targeting is written as "Puro", and the drug resistance gene in this case is a puromycin resistance gene.
  • the gene cassette 2 produced in the example of the present invention includes the sequence shown by the following formula (2). EF1-EGFP-P2A-5'Neo-SD-loxP-SA-T2A-Puro-RGpA (2)
  • EF1 represents the promoter sequence derived from human elongation factor 1 ⁇
  • EGFP represents the green fluorescent gene
  • P2A represents the 2A sequence derived from porcine tesiovirus
  • 5'Neo represents the 5' side of the neomycin resistance gene.
  • SD represents the splicing donor sequence
  • loxP represents the recombinant enzyme recognition sequence
  • SA represents the splicing acceptor sequence
  • T2A represents the 2A sequence derived from Thosea asigna virus
  • Puro represents the puromycin resistance gene.
  • RGpA represents a poly A-added signal sequence derived from rabbit ⁇ -globin.
  • an FRT can also be added to the cassette 2 shown in formula (2) above.
  • TV4-dH2 is targeting vector 2, and homologous sequences of the regions on both sides of the position (p1) where TV4 is integrated are linked on both sides of TV4.
  • PX458a-dH2CR1 is a genome editing vector, and is a vector that artificially cleaves the chromosome at any position p1 in order to facilitate recombination of targeting vector 2.
  • the genome editing tool used for the genome editing vector is the same as described above.
  • PX458a-dH2CR1 is a vector that utilizes CRISPR-Cas9, and is composed of, for example, a guide RNA sequence, a Cas9 sequence, and a gene sequence for the fluorescent protein ametrin.
  • targeting vector 2 was designed to be integrated between the Mog gene locus and the Gabbr1 gene locus in the non-human chromosome. ( Figure 5B)
  • Targeting vector 3 targets a region from an arbitrary position P1 to the distal end of human chromosome 6, which is distal to the human MHC region targeted for recombination and targeted for cleavage using a genome editing tool.
  • translocation recombination is caused between a region distal to the non-human MHC region and from position p1 corresponding to P1 to the distal end. .
  • the replacement of the MHC region is performed by translocation recombination from (a) to (b1) and from (b1) to (c) (two-step recombination 1), or from (a) to (b2) in Figure 1. ), and translocation recombination from (b2) to (c) (two-step recombination 2) can be used.
  • the targeting vector 3 contains a homologous sequence of a partial region between the P1 and the human MHC region (this region is referred to as "R1a”), a drug resistance gene 4 for drug selection after targeting, and the p1 contains a homologous sequence to the sequence of a part of the region distal to P1 (this region is referred to as "R2b"), or a part of the region distal to P1 (this region is referred to as "R1b”).
  • R2b homologous sequence to the sequence of drug resistance gene 4 for drug selection after targeting
  • a homologous sequence to the sequence of a part of the region between the p1 and the non-human MHC region this region is referred to as "R2a) including.
  • the positional relationship of R1a, R1b, R2a and R2b is shown in FIG. 3(a).
  • the regions R1a, R1b, R2a, and R2b may be any region in view of P1 and p1, but are preferably regions near P1 and p1.
  • the targeting vector 3 used in the present invention can be composed of, for example, an R2a sequence, a CAG promoter sequence, a blasticidin resistance gene, a rabbit ⁇ -globin-derived polyA addition signal sequence, and an R1b sequence.
  • Second recombination in two-step recombination 1 or first recombination in two-step recombination 2 In the present invention, the second recombination in two-step recombination 1 and the first recombination in two-step recombination 2
  • the vector that causes the first recombination that is, the recombination from (b1) to (c) in FIG. 1, or the recombination from (a) to (b2) in FIG. 1, is referred to as targeting vector 4.
  • the second recombination in two-step recombination 1 or the first recombination in two-step recombination 2 is performed using a genome editing tool.
  • Targeting vector 4 In the case of two-step recombination 1, the targeting vector 4 is used in the chromosome after translocation recombination (FIG. 1 (b1)) due to the action of the targeting vector 1 and the targeting vector 2, or the action of the targeting vector 3.
  • translocation recombination is caused between a region from position p2, which is proximal to the non-human MHC region and corresponds to P2, to the distal end.
  • targeting vector 4 can be used first, and then targeting vectors 1 to 3 can be used.
  • the recombination shown in Figures 1(a) to (c) involves first recombining from P1 and p1 to the distal end, and then recombining from P2 and p2 to the distal end. (order in Figures 1(a), (b1), and (c)), first perform recombination from P2 and p2 to the distal end, then recombine from P1 and p1 to the distal end. It is also possible to perform recombination (in the order of FIGS. 1(a), (b2), and (c)).
  • the targeting vector 4 contains a homologous sequence of a part of the region R3a on the proximal side of P2 (between P2 and the centromere), a drug resistance gene 5 for drug selection after targeting (for example, a blasticidin resistance gene). ), and a sequence homologous to the sequence of a part of the region R4b between the p2 and the non-human MHC region, or a sequence homologous to the sequence of a part of the region R3b between the p2 and the human MHC region. It contains a homologous sequence of the sequence, drug resistance gene 5 for drug selection after targeting, and the sequence of a part of the region R4a on the proximal side from p2 (between p2 and centromere).
  • the positional relationship of R3a, R3b, R4a and R4b is shown in FIG. 3(b).
  • the regions R3a, R3b, R4a, and R4b may be any region in view of P2 and p2, but are preferably regions near P2 and p2.
  • the targeting vector 4 used in the present invention can be composed of, for example, an R3a sequence, a CAG promoter sequence, a blasticidin resistance gene, a rabbit ⁇ -globin-derived polyA addition signal sequence, and an R4b sequence.
  • Figure 1(e) shows an enlarged view of the region from the vicinity of the MHC region to the distal end.
  • Targeting vector 4 was designed so that recombination would occur between the Kifc1 and Daxx loci (Fig. 5C).
  • Targeting vector 4 contains a blasticidin (BS) resistance gene.
  • PX458.1a-pHLACR2 is a genome editing vector, and is a vector that artificially cleaves P2 at any position on the chromosome to facilitate translocation and recombination via targeting vector 4.
  • PX458.1a-pHLACR2 is a vector that utilizes CRISPR-Cas9, and is composed of, for example, a guide RNA sequence, a Cas9 sequence, and a gene sequence for the fluorescent protein ametrine.
  • PX458.1a-pH2CR1 is a genome editing vector, and in order to facilitate translocation and recombination via targeting vector 4, it can be used to artificially modify p2 at any position on the chromosome. This is a vector that is cut into two.
  • PX458.1a-pH2CR1 is a vector that utilizes CRISPR-Cas9, and is composed of, for example, a guide RNA sequence, a Cas9 sequence, and a gene sequence for the fluorescent protein ametrin.
  • drug resistance genes 1 to 5 for drug selection are used in the targeting vector.
  • the combination of each of the drug resistance genes 1 to 5 is arbitrary and is appropriately selected so that the desired drug can be selected.
  • genes used as drug resistance genes 1 to 5 include, but are not limited to, neomycin resistance genes, hygromycin resistance genes, puromycin resistance genes, blasticidin resistance genes, and the like.
  • a specific fluorescent gene can be included in the targeting vector in order to confirm chromosome introduction, to confirm that the introduced chromosome has been maintained, or to confirm whether drug selection has been performed as intended.
  • the type of fluorescent gene can be arbitrarily selected as long as confirmation work is possible in each step, and it is also possible to use different types of fluorescent genes for each vector. Examples of fluorescent genes include green fluorescent genes (such as GFP and EGFP), red fluorescent genes, and yellow fluorescent genes.
  • Cells are not particularly limited as long as they are animal cells, and include ES cells, spermatogonial stem cells, fibroblasts, etc., but ES cells are preferred.
  • Examples of cell culture media include GMEM medium (Glasgow's Minimal Essential Medium), DMEM (Dulbecco's modified Eagle medium), and RPMI1640 medium.
  • Culture media generally include fetal bovine serum (FBS), non-essential amino acids, antibiotics (e.g. penicillin, streptomycin, etc.), growth factors/cytokines (e.g. epidermal growth factor, fibroblast growth factor, leukemia inhibitory factor, etc.).
  • Animal cell culture additives used can be added as appropriate depending on the cell type.
  • the cells After culturing the cells for a predetermined period of time, the cells are collected by incubating in a medium containing trypsin. The collected cells can be subcultured multiple times in the presence or absence of feeder cells, if necessary. It can be confirmed that the cultured cells are the desired cells by using their marker genes as indicators.
  • the cell is an ES cell, for example, Oct3/4, alkaline phosphatase, Nanog, etc. may be used as an indicator, and detection can be performed by any method such as RT-PCR or Western blotting.
  • ES cells can also be judged by colony morphology.
  • Non-human mammals can be produced by standard methods such as chimeric animal production using ES cells, somatic cell nuclear transfer, and microinsemination using sperm stem cells.
  • Non-human mammals to be produced are not particularly limited, and include rodents, livestock, primates, and the like. Examples of rodents include mice, rats, guinea pigs, and hamsters; examples of domestic animals include cows, horses, pigs, and sheep; and examples of primates include Japanese macaques and common marmosets.
  • pet or experimental animals such as dogs, cats, monkeys, and rabbits can also be used. In the present invention, rodents, especially mice, are preferred.
  • a chimeric animal In the case of a chimeric animal, first, the established ES cells are aggregated with an 8-cell stage embryo or injected into the scutellum. The embryo produced in this way is called a chimeric embryo, and a chimeric animal is produced by implanting this chimeric embryo into the uterus of a pseudopregnant foster mother and giving birth.
  • embryo means an individual at the stage from fertilization to birth in ontogeny, and includes 2-cell stage embryo, 4-cell stage embryo, 8-cell stage embryo, morula stage embryo, blastocyst, etc. do.
  • an ES cell will be used as an example of the cell.
  • known methods such as microinjection method and aggregation method can be used.
  • ES cells are injected into the collected embryo to create a cell aggregate.
  • ES cells may be sprinkled onto a normal embryo from which the zona pellucida has been removed and agglomerated.
  • the ES cells used here are not particularly limited, and include C57BL/6-derived RENKA, C57BL/6 and CBA F1 hybrid-derived TT2 cell Y-chromosome dropout strain XO, C57BL/6 and DBA/sCrSlc F1 Examples include ES cells established from hybrids.
  • a pseudopregnant female animal to be used as a foster parent can be obtained by mating a female animal with a normal menstrual cycle with a male animal castrated by vas ligation or the like.
  • a chimeric animal can be produced by implanting the chimeric embryo produced by the method described above into the uterus of the produced pseudopregnant animal, and then causing the animal to give birth.
  • chimeric animals animals derived from ES cell transplanted embryos are selected.
  • the selected chimeric animal is bred with an inbred strain of animal.
  • the coat color of an animal derived from the ES cells appears in the born offspring, it can be confirmed that the ES cells have been introduced into the germ line of the chimeric animal.
  • Whether a born offspring has a humanized MHC gene can be determined by cutting the DNA with a restriction enzyme and detecting whether a DNA fragment of the desired size is detected, or by analyzing it by PCR.
  • the upstream side of the human elongation factor 1 ⁇ -derived promoter sequence encoded by pEF-Hyg was digested with the restriction enzyme SalI, and the synthesized DNA fragment FRT-BGHpA-3'Neo-SA-loxP (Thermo Fisher Scientific) (sequence No. 2) was cloned using In-Fusion (registered trademark) HD Cloning Kit to produce TV3.
  • the sequence containing the 5' homologous region and 3' homologous region of the targeting vector TV3R-dHLA was extracted using PrimeSTAR (registered trademark) GXL DNA Polymerase (Takara) using the MRC5 cell genome as a template and the following primer set. Amplified according to the attached protocol.
  • the entire homologous region was amplified by nested-PCR using the following primer set, and cloned into pGEM (registered trademark)-T Easy Vector (Promega) to create pGEMTe-dHLA.
  • pGEM registered trademark
  • T Easy Vector Promega
  • pGEMTe-dHLA was amplified by PrimeSTAR® GXL DNA Polymerase using the following primer set, and TV3 was restricted with SalI-HF (New England BioLabs) and HindIII-HF (New England BioLabs). Digested with enzymes The prepared fragment containing FRT-BGHpA-3'Neo-SA-loxP was cloned using In-Fusion (registered trademark) HD Cloning Kit to produce TV3-dHLA.
  • the synthesized DNA fragment P2A-mRuby2 (SEQ ID NO: 9) (Thermo Fisher Scientific) was amplified by PrimeSTAR (registered trademark) GXL DNA Polymerase using the following primer set, and the amplified product and TV3-dHLA were treated with the restriction enzyme BssHII. (New England BioLabs), and the two were ligated using Ligation-Convenience Kit (Nippon gene) to produce TV3R-dHLA.
  • pEF-EGFP2 was digested with a restriction enzyme using BsrGI (New England BioLabs), and the sequence P2A-5'Neo-SD-loxP-SA-T2A-Puro (Thermo Fisher Scientific), which was synthesized as two DNA fragments, was then digested with BsrGI (New England BioLabs). ) (SEQ ID NO: 13) was cloned using In-Fusion (registered trademark) HD Cloning Kit to produce TV4dF.
  • BsrGI New England BioLabs
  • P2A-5'Neo-SD-loxP-SA-T2A-Puro Thermo Fisher Scientific
  • TV4dF was digested with a restriction enzyme using SalI-HF, and the following oligo DNA annealed thereto was ligated using a Ligation-Convenience Kit to produce TV4.
  • sequences containing the 5' homologous region and 3' homologous region of the targeting vector TV4-dH2 were added using PrimeSTAR (registered trademark) GXL DNA Polymerase using the C57BL/6 mouse genome as a template and the following primer set. Amplified according to the protocol.
  • pGEMTe-dH2 was amplified by PrimeSTAR (registered trademark) GXL DNA Polymerase using the following primer set, and P2A-5'Neo-SD- prepared by restriction enzyme digestion of TV4 with SalI-HF and HindIII-HF.
  • a fragment containing loxP-SA-T2A-Puro was cloned using In-Fusion (registered trademark) HD Cloning Kit to create TV4-dH2.
  • PX458a-dHLACR1 and PX458a-dH2CR1 gRNAs were designed for the following sequences, and pSpCas9(BB)-2A-GFP(PX458) (Addgene plasmid #48138; http://n2t.net) was used for expression of gRNA and Cas9. /addgene:48138; RRID: Addgene 48138) was used, and PX458a was produced by replacing the EGFP gene with the fluorescent gene ametrine (SEQ ID NO: 24).
  • PX458.1a-pHLACR2 and PX458.1a-pH2CR1 gRNAs were designed for the following sequences, and PX458.1a with a modified PX458a gRNA scaffold sequence was used for expression of gRNA and Cas9 (SEQ ID NO: 27).
  • MEFs drug-resistant mouse embryonic fibroblasts
  • HBPN lentivirus expressing a gene
  • HBPN-expressing MEFs were cultured under hypoxic conditions of 5% oxygen/5% CO2, treated with mitomycin C, and used as drug-resistant MEFs.
  • MRC5-A9 fusion cell Cloning of hChA9 MRC5 cells and A9 cells into which Neo resistance gene was introduced using lentivirus were fused using GenomONE-CF (Ishihara Sangyo), and Ouabain-resistant/G418-resistant cells were isolated as fused cells. did. Human cells are Ouabain sensitive, mouse cells are Ouabain insensitive, and it is possible to select fused cells by adding G418 and Ouabain to the medium. The fused cells having human chromosome 6 were identified by genome PCR using the following primer set set in the intergenic region between KIFC1 and DAXX.
  • the synthesized sequence is as follows.
  • TV3RhChA9 A clone (TV3RhChA9) in which TV3R-dHLA was targeted to MRC5-A9 fusion cells was created by transfecting hChA9 with PX458a-dHLACR1 and the targeting vector TV3R-dHLA using PEI max (Polysciences). PX458a-dHLACR1 was co-introduced to increase the homologous recombination efficiency of the targeting vector. On the day after the transfection, vector-introduced cells were sorted using the expression of the fluorescent gene mRuby2 on TV3R-dHLA as an indicator, and mRuby2-positive hygromycin-resistant clones were isolated. Genomic DNA was prepared from the isolated clones, and the recombinant clones were identified by PCR. The primers used for PCR are as follows. Similar analysis was performed when recloning was performed from isolated clones.
  • Cloning of TV4RENKA is an ES cell clone produced by transfecting RENKA with PX458a-dH2CR1 and targeting vector TV4-dH2 using Lipofectamine 3000 (Thermo Fisher Scientific). PX458a-dH2CR1 was co-introduced to increase the homologous recombination efficiency of the targeting vector. Clones that were EGFP positive were isolated, and clones into which recombination had been introduced were identified by genome PCR. Clones of XO and BDF1 can also be isolated in the same manner.
  • the primers used for PCR are as follows.
  • TV3-4RENKA was created by introducing modified human chromosome 6 from TV3RhChA9 into TV4RENKA using the retro-MMCT method (Suzuki, T. et al. (2016) PloS One, 11(6): e0157187.) This is an ES cell clone produced by. Cells that were mRuby2 positive and hygromycin resistant were cloned, and a clone with 41 chromosomes was isolated. In FISH analysis, detection was performed using Cy3-labeled mouse Cot-1 and Cy5-labeled RP11-54H13.
  • the primers used for PCR are as follows.
  • TV3RhChA9#5-45a (128) FISH analysis of TV3RhChA9#5-45a (128) confirmed that the majority of cells retained one human chromosome 6 (FIG. 7C). Therefore, TV3RhChA9#5-45a (128) was used as a modified human chromosome 6 donor cell.
  • Targeting of TV4 TV4-dH2 was targeted to the distal side of the MHC region present on chromosome 17 of the B6-derived mouse ES cell RENKA, and the sequence necessary for swapping the MHC region was introduced (FIG. 4, Step 4).
  • modified human chromosome 6 The modified human chromosome 6 of TV3RhChA9#5-45a (128) was introduced into TV4RENKA#17 (FIG. 4, step 5). Normally, ES cells have low chromosome transfer efficiency, and fused cells tend to have lower chromosome donation ability than A9 cells, so conventional chromosome transfer methods using polyethylene glycol (PEG-MMCT method) cannot transfer chromosomes. Possible. Therefore, a modified human chromosome 6 was introduced using a highly efficient chromosome introduction method (retro-MMCT method) using an ecotropic envelope protein derived from murine leukemia virus.
  • retro-MMCT method highly efficient chromosome introduction method using an ecotropic envelope protein derived from murine leukemia virus.
  • the recombinase Cre is capable of inducing translocation between loxP sequences located on independent chromosomes. Therefore, in order to induce a translocation between the distal side of the MHC region of the modified human chromosome 6 held by TV3-4RENKA #17/5-45a-3 and the modified mouse chromosome 17, TV3-4RENKA #17/5 -45a-3 was used to transiently express the recombinant enzyme Cre (FIG. 4, step 6).
  • Cre translocation recombination is induced between loxP present in the TV3 and TV4 sequences, the Neo resistance gene is reconstructed (FIG. 10A), so a clone that became G418 resistant was isolated.
  • TV3-4RENKA Tl3/4 #17-1 is a CRISPR vector that cleaves the intergenic region from KIFC1 to DAXX of mouse chromosome 17 and human chromosome 6, respectively, and a translocation-inducing targeting vector TV-Tl1/2.
  • - BS was introduced, and clones resistant to blasticidin were isolated (FIG. 4, step 7).
  • clone TV3-4RENKA Tlb#38 has 41 chromosomes (40 for XO), and it was confirmed by genome PCR that translocation and recombination had occurred.
  • MHC humanized ES cells In order to ensure the undifferentiated nature of MHC humanized ES cells, we initially introduced MHC humanized mouse chromosome 17, which had been produced up to this point, into ES cells with a small number of passages. We planned to create MHC humanized ES cells by deleting chromosome 17 (Fig. 4, Step 8'). However, this operation requires the production of ES-A9 fusion cells and the introduction of MHC humanized chromosomes into the ES cells, and it has been found that chromosomal abnormalities occur frequently during the process, which limits the operation. . Therefore, human chromosomes were spontaneously shed from TV3-4RENKA Tlb#38 to isolate a large number of MHC humanized ES clones, and an attempt was made to create a chimeric mouse (FIG. 4, Step 8).
  • ES-derived cells with MHC humanized chromosomes are engineered to express EGFP (Figure 13B). Therefore, when the contribution rate of MHC humanized ES cells in the testis was analyzed using EGFP expression as an index, it was found that almost 100% were EGFP positive (FIG. 13C). From this, it was considered that there is a high possibility of obtaining offspring by microinsemination (ICSI/ROSI) of testicular cells. Therefore, microinsemination was performed using testicular cells of chimeric mice (FIG. 4, step 10).
  • lung-derived fibroblasts To prepare lung-derived fibroblasts, first, excised lung tissue was minced with a knife, treated with 0.1% collagenase A (Roche) for 1 hour, and the cells were released by pipetting. Derived fibroblasts were prepared. Lung-derived fibroblasts were cultured in DMEM supplemented with 10% FCS.
  • spleen cells were prepared from MHC humanized (hetero) mice (Het) established from wild type (Wt) and XO ES cells, and anti-HLA-A, B, C antibodies, anti-HLA-A antibodies and anti-HLA-DRA Expression of human MHC proteins was analyzed by Western blotting using antibodies. As a result, human MHC expression was specifically detected in Het-derived spleen cells (FIG. 16A).

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Environmental Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Toxicology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Animal Husbandry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

以下の(A)、(B)及び(D)、又は(C)及び(D)のベクターの組み合わせを含む、ベクターセット:(A)ヒトMHC領域よりも遠位側の任意の位置P1に組み込まれるターゲティングベクター1、(B)非ヒトMHC領域の前記P1に対応する位置p1に組み込まれるターゲティングベクター2、(C)前記P1から遠位端までの領域と、前記p1から遠位端までの領域との間で組換えを起こさせるターゲティングベクター3、(D)前記組換え後の染色体において、ヒトMHC領域よりも近位側の任意の位置P2から遠位端までの領域と、非ヒトMHCが存在する染色体において前記P2に対応する位置p2から遠位端までの領域との間で組換えを起こさせるターゲティングベクター4。

Description

MHC遺伝子群ヒト化動物
 本発明は、主要組織適合遺伝子複合体(MHC)がヒト化された非ヒト哺乳動物、及びその製造方法に関する。
 獲得免疫は、MHC、T細胞受容体及び抗体の3因子が協調的に機能してT細胞やB細胞を活性化し、病原体やウイルス感染細胞、がん細胞などの排除を行う免疫システムである。獲得免疫は特異的な分子を標的とすることが可能であるため、バイオ医薬品の開発に利用されている。抗体医薬はその代表格であり、ガンなどの様々な疾患の治療に用いられており、その市場規模は2020年時点で18兆円近くあると言われている(非特許文献1,2)。
 しかし、抗体は細胞外にある抗原しか認識できないため、有望な標的分子が枯渇しつつあるという問題が指摘されている。そこで現在注目されているのがT細胞受容体(TCR)を用いた医療・医薬品の開発である(非特許文献3)。TCRであれば細胞内タンパク質も標的となり得るため、非常に多くの分子をターゲットにすることが可能である。既に多くのTCRを用いた医療・医薬品について臨床試験が進められているが、TCRを用いた創薬にも問題点があり、その一つが生体を用いた適切なスクリーニング系がないことである。
 獲得免疫で主要な役割を果たすMHC、TCR及び抗体の3因子は種間で多様性があるため、モデル動物を用いて獲得免疫を利用した医薬品を創出することは困難である。そこで近年は、これら遺伝子をヒト化したマウスが作製され医薬品開発などに利用されているが(非特許文献4−8)、MHC遺伝子群のヒト化だけは、いまだに達成されていない。MHCがマウス由来である場合、TCRだけをヒト化してもマウスMHC拘束性のTCRができてしまうため、マウスを用いて十分なTCRのスクリーニングを行うのは困難な状況である。
 MHC遺伝子群だけヒト化が実現していない理由は、ヒト化することが技術的に非常に困難であるからである。MHC遺伝子はヒトで21種類、マウスでは39種類もあり、これらの遺伝子はMHC領域と呼ばれるおよそ300~400万塩基対もあるゲノム領域に様々な遺伝子と混在している。
 バクテリア人工染色体(BAC)は、大きな配列を保持できるベクターとしてゲノム配列の解読などに利用されてきたが、BACを用いても20万塩基対程度しか配列を保持できず、通常のトランスジェニック技術でMHC領域全体を導入することは極めて困難である。ヒトMHC領域の代わりにヒトMHC遺伝子群のcDNAを導入する方法も考えられるが、この場合各ヒトMHC遺伝子のトランスジェニックマウスを作製して、交配によりヒトの全てのMHC遺伝子を発現するマウスを作製しなければならない。トランスジェニックマウスを1系統樹立し交配可能な状態にするには、最低でも6ヶ月程度必要であるため、従来の遺伝子工学技術を用いてMHC遺伝子群ヒト化マウスを作製することは、現実的に極めて困難である。
 このため、HLAを発現するマウスが必要な場合は、特定のヒトMHCのみを導入したトランスジェニックマウスが用いられている(非特許文献9,10)。しかし、MHC遺伝子はそれぞれ環境に応じた発現制御を受けているため、遺伝子座周辺の発現制御領域を含まないcDNAの導入では、ヒト免疫応答を正確に再現することができない。
Goydel,R.S.and Rader,C.(2021)Antibody−based cancer therapy.Oncogene,40,3655−3664. Zahavi,D.and Weiner,L.(2020)Monoclonal Antibodies in Cancer Therapy.Antibodies(Basel),9. Zhao,L.and Cao,Y.J.(2019)Engineered T Cell Therapy for Cancer in the Clinic.Front Immunol,10,2250. Tomizuka,K.,Shinohara,T.,Yoshida,H.,Uejima,H.,Ohguma,A.,Tanaka,S.,Sato,K.,Oshimura,M.and Ishida,I.(2000)Double trans−chromosomic mice:maintenance of two individual human chromosome fragments containing Ig heavy and kappa loci and expression of fully human antibodies.Proc Natl Acad Sci U S A,97,722−727. Tomizuka,K.,Yoshida,H.,Uejima,H.,Kugoh,H.,Sato,K.,Ohguma,A.,Hayasaka,M.,Hanaoka,K.,Oshimura,M.and Ishida,I.(1997)Functional expression and germline transmission of a human chromosome fragment in chimaeric mice.Nat Genet,16,133−143. Li,L.P.,Lampert,J.C.,Chen,X.,Leitao,C.,Popovic,J.,Muller,W.and Blankenstein,T.(2010)Transgenic mice with a diverse human T cell antigen receptor repertoire.Nat Med,16,1029−1034. Obenaus,M.,Leitao,C.,Leisegang,M.,Chen,X.,Gavvovidis,I.,Van der Bruggen,P.,Uckert,W.,Schendel,D.J.and Blankenstein,T.(2015)Identification of human T−cell receptors with optimal affinity to cancer antigens using antigen−negative humanized mice.Nat Biotechnol,33,402−407. Poncette,L.,Chen,X.,Lorenz,F.K.and Blankenstein,T.(2019)Effective NY−ESO−1−specific MHC II−restricted T cell receptors from antigen−negative hosts enhance tumor regression.J Clin Invest,129,324−335. Shultz,L.D.,Saito,Y.,Najima,Y.,Tanaka,S.,Ochi,T.,Tomizawa,M.,Doi,T.,Sone,A.,Suzuki,N.,Fujiwara,H.et al.(2010)Generation of functional human T−cell subsets with HLA−restricted immune responses in HLA class I expressing NOD/SCID/IL2r gamma(null)humanized mice.Proc Natl Acad Sci U S A,107,13022−13027. Suzuki,M.,Takahashi,T.,Katano,I.,Ito,R.,Ito,M.,Harigae,H.,Ishii,N.and Sugamura,K.(2012)Induction of human humoral immune responses in a novel HLA−DR−expressing transgenic NOD/Shi−scid/γcnull mouse.Int Immunol,24,243−252.
 ヒトとマウスのMHC領域を比較すると、MHC領域は巨大ではあるが領域内の遺伝子構成は種特異的遺伝子を除けば両者で保たれていることが分かった。したがって、MHC領域全体をヒトとマウスで置換すればMHCを完全ヒト化することが可能であると考えられる。しかし、このような巨大配列を汎用されている遺伝子ベクター系を用いて導入することは不可能であり、従来の技術を用いてはMHC領域を置換することはできない。上記のことから、非ヒト哺乳動物のMHCをヒトのMHCで置換するためのターゲティングベクター、及び当該ターゲティングベクターを利用して非ヒト哺乳動物のMHCをヒトのMHCで置換する技術の開発が望まれていた。
 本発明者は、上記課題を解決するために鋭意検討を行った結果、非ヒト哺乳動物のMHCをヒトのMHCで置換することに成功し、本発明を完成するに至った。
 すなわち、本発明は以下の通りである。
[1] 以下の(A)、(B)及び(D)のターゲティングベクターの組み合わせ、又は以下の(C)及び(D)のターゲティングベクターの組み合わせを含む、ベクターセット。
 (A)ヒト第6番染色体において、その短腕に存在する主要組織適合遺伝子複合体(ヒトMHC)領域よりも遠位側の任意の位置P1に組み込まれるターゲティングベクター1であって、
 当該ターゲティングベクター1は、前記P1から遠位端までの領域と、非ヒト哺乳動物の染色体のうち当該染色体に存在するMHC(非ヒトMHC)領域よりも遠位側であって前記P1に対応する位置p1から遠位端までの領域との間で転座組換えを起こさせるものであり、かつ、組換え酵素認識配列、転座組換え時に再構成される薬剤選抜用の薬剤耐性遺伝子1の一の部分配列、及びターゲティング後の薬剤選抜用の薬剤耐性遺伝子2を含む遺伝子カセット1を含む、前記ターゲティングベクター1
 (B)MHC領域が存在する非ヒト哺乳動物の染色体において、当該MHC(非ヒトMHC)領域よりも遠位側の前記P1に対応する位置p1に組み込まれるターゲティングベクター2であって、
 当該ターゲティングベクター2は、前記p1から遠位端までの領域と、ヒト第6番染色のうち前記P1から遠位端までの領域との間で転座組換えを起こさせるものであり、かつ、組換え酵素認識配列、前記薬剤耐性遺伝子1の他の配列、ターゲティング後の薬剤選抜用の薬剤耐性遺伝子3を含む遺伝子カセット2を含む、ターゲティングベクター2
 (C)ヒト第6番染色体において、ヒトMHC領域よりも遠位側であってゲノム編集ツールにより切断の標的となる任意の位置P1から遠位端までの領域と、MHCが存在する非ヒト哺乳動物の染色体において、非ヒトMHC領域よりも遠位側であって前記P1に対応する位置p1から遠位端までの領域との間で転座組換えを起こさせるターゲティングベクター3であって、
 当該ターゲティングベクター3は、前記P1と前記ヒトMHC領域との間の一部の領域R1aの配列の相同配列、ターゲティング後の薬剤選抜用の薬剤耐性遺伝子4、及び前記p1よりも遠位側の一部の領域R2bの配列の相同配列を含むか、あるいは、前記P1よりも遠位側の一部の領域R1bの配列の相同配列、ターゲティング後の薬剤選抜用の薬剤耐性遺伝子4、及び前記p1と前記非ヒトMHC領域との間の一部の領域R2aの配列の相同配列を含む、前記ターゲティングベクター3
 (D)ヒトMHC領域よりも近位側であってゲノム編集ツールにより切断の標的となる任意の位置P2から遠位端までの領域と、非ヒトMHCが存在する非ヒト哺乳動物の染色体において、当該非ヒトMHC領域よりも近位側であって前記P2に対応する位置p2から遠位端までの領域との間で転座組換えを起こさせるターゲティングベクター4であって、
 当該ターゲティングベクター4は、前記P2よりも近位側の一部の領域R3aの配列の相同配列、ターゲティング後の薬剤選抜用の薬剤耐性遺伝子5、及び前記p2と前記非ヒトMHC領域との間の一部の領域R4bの配列の相同配列を含むか、あるいは、前記P2とヒトMHC領域との間の一部の領域R3bの配列の相同配列、ターゲティング後の薬剤選抜用の薬剤耐性遺伝子5、及び前記p2よりも近位側の一部の領域R4aの配列の相同配列を含む、前記ターゲティングベクター4
[2] さらに以下の(E)及び(F)のベクターを含む、[1]に記載のベクターセット。
(E)ヒト第6番染色体を前記任意の位置P1で切断するゲノム編集ツールベクター1
(F)非ヒト染色体を前記任意の位置p1で切断するゲノム編集ツールベクター2
[3] さらに以下の(G)及び(H)のベクターを含む、[1]に記載のベクターセット。
(G)ヒト第6番染色体を前記任意の位置P2で切断するゲノム編集ツールベクター3
(H)非ヒト染色体を前記任意の位置p2で切断するゲノム編集ツールベクター4
[4] ヒトMHC領域が、クラスI領域、クラスII領域、クラスIII領域、又はこれらの組み合わせの領域を含む、[1]~[3]のいずれか1項に記載のベクターセット。
[5] クラスI領域が、HLA−A、HLA−B、HLA−C、HLA−E、HLA−F、HLA−G、MICA及びMICBからなる群から選ばれる少なくとも1つを含む、[4]に記載のベクターセット。
[6] クラスII領域が、HLA−DP、HLA−DQ、HLA−DR、HLA−DM及びHLA−DOからなる群から選ばれる少なくとも1つを含む、[4]に記載のベクターセット。
[7] クラスI領域を含む領域が、HLA−A、HLA−B、HLA−C、HLA−E、HLA−F、HLA−G、MICA及びMICBを含む領域である、[4]に記載のベクターセット。
[8] クラスII領域を含む領域が、HLA−DP、HLA−DQ、HLA−DR、HLA−DM及びHLA−DOを含む領域である、[4]に記載のベクターセット。
[9] クラスI領域及びクラスII領域の両者を含む領域が、DAXX遺伝子座とMOG遺伝子座との間の領域である、[4]に記載のベクターセット。
[10] 前記任意の位置P1がMOG遺伝子座とGABBR1遺伝子座との間の位置である、[1]~[3]のいずれか1項に記載のベクターセット。
[11] 前記任意の位置P2がKIFC1遺伝子座とDAXX遺伝子座との間の位置である、[1]~[3]のいずれか1項に記載のベクターセット。
[12] 非ヒト哺乳動物がげっ歯類である[1]~[3]のいずれか1項に記載のベクターセット。
[13] げっ歯類がマウスである[12]に記載のベクターセット。
[14] 前記任意の位置p1がMog遺伝子座とGabbr1遺伝子座との間の位置である、[13]に記載のベクターセット。
[15] 前記任意の位置p2がKifc1遺伝子座とDaxx遺伝子座との間の位置である、[13]に記載のベクターセット。
[16] 薬剤耐性遺伝子1がネオマイシン耐性遺伝子であり、薬剤耐性遺伝子2がハイグロマイシン耐性遺伝子であり、及び/又は薬剤耐性遺伝子3がピューロマイシン耐性遺伝子である[1]~[3]のいずれか1項に記載のベクターセット。
[17] 薬剤耐性遺伝子4がネオマイシン耐性遺伝子であり、及び/又は薬剤耐性遺伝子5がブラストサイジン耐性遺伝子である、[1]~[3]のいずれか1項に記載のベクターセット。
[18] 遺伝子カセット1における組換え酵素認識配列がloxPであり、薬剤耐性遺伝子1がネオマイシン耐性遺伝子であり、薬剤耐性遺伝子2がハイグロマイシン耐性遺伝子である、[1]~[3]のいずれか1項に記載のベクターセット。
[19] 遺伝子カセット1が、次式(1):
BGHpA−3’Neo−SA−loxP−EF1−Hyg−P2A−mRuby2−RGpA (1)
(BGHpAはウシ成長ホルモン由来ポリA付加シグナル配列を表し、3’Neoはネオマイシン耐性遺伝子の3’側の一部の配列を表し、SAはスプライシングアクセプター配列を表し、loxPは組換え酵素認識配列を表し、EF1はヒト伸長因子1α由来プロモーター配列を表し、Hygはハイグロマイシン耐性遺伝子を表し、P2Aはブタテシオウイルス由来2A配列を表し、mRuby2は赤色蛍光遺伝子を表し、RGpAはラビットβ−グロビン由来ポリA付加シグナル配列を表す。)で示されるコンストラクトを含む、[1]~[3]のいずれか1項に記載のベクターセット。
[20] 遺伝子カセット2における組換え酵素認識配列がloxPであり、薬剤耐性遺伝子1がネオマイシン耐性遺伝子であり、薬剤耐性遺伝子3がピューロマイシン耐性遺伝子である、[1]~[3]のいずれか1項に記載のベクターセット。
[21] 遺伝子カセット2が、次式(2):
EF1−EGFP−P2A−5’Neo−SD−loxP−SA−T2A−Puro−RGpA (2)
(EF1はヒト伸長因子1α由来プロモーター配列を表し、EGFPは緑色蛍光遺伝子を表し、P2Aはブタテシオウイルス由来2A配列を表し、5’Neoはネオマイシン耐性遺伝子の5’側の一部の配列を表し、SDはスプライシングドナー配列を表し、loxPは組換え酵素認識配列を表し、SAはスプライシングアクセプター配列を表し、T2AはThosea asignaウイルス由来2A配列を表し、Puroピューロマイシン耐性遺伝子を表し、RGpAはラビットβ−グロビン由来ポリA付加シグナル配列を表す。)で示されるコンストラクトを含む、[1]~[3]のいずれか1項に記載のベクターセット。
[22] [1]~[21]のいずれか1項に記載のベクターセットにより非ヒト哺乳動物の染色体のMHC領域がヒト染色体のMHC領域で置換された染色体を含む、MHC領域がヒト化された非ヒト哺乳動物細胞。
[23] ES細胞である[22]に記載の細胞。
[24] [22]又は[23]に記載の細胞から作出され、MHC領域がヒト化された非ヒト哺乳動物。
[25] 非ヒト哺乳動物がげっ歯類である[24]に記載の非ヒト哺乳動物。
[26] げっ歯類がマウスである[25]に記載の非ヒト哺乳動物。
[27] マウス第17番染色体のうち少なくともDaxx遺伝子座からMog遺伝子座までの染色体部分が、ヒト第6番染色体のうち少なくともDAXX遺伝子座からMOG遺伝子座までの染色体部分で置換された染色体を有する、[26]に記載の非ヒト哺乳動物。
[28] MHC領域がヒト化された非ヒト哺乳動物の製造方法であって、以下の工程:
(1)[1]~[21]のいずれか1項に記載のベクターセットを用いて、非ヒト哺乳動物の染色体のMHC領域を、ヒト染色体のMHC領域で置換した染色体を含む細胞を作製する工程、
(2)前記(1)で得られた細胞から、MHC領域がヒト化された非ヒト哺乳動物を作出する工程
を含む、前記方法。
[29] 非ヒト哺乳動物がげっ歯類である[28]に記載の方法。
[30] げっ歯類がマウスである[29]非ヒト哺乳動物の仮親に移植して、MHC領域がヒト化された染色体を有する非ヒト哺乳動物を作出する工程を含む、MHC領域がヒト化された非ヒト哺乳動物の製造方法。
[31][22]に記載の細胞を非ヒト哺乳動物の仮親に移植して、MHC領域がヒト化された染色体を有する非ヒト哺乳動物を作出する工程を含む、MHC領域がヒト化された非ヒト哺乳動物の製造方法。
[32] 非ヒト哺乳動物がげっ歯類である[31]に記載の方法。
[33] げっ歯類がマウスである[32]に記載の方法。
 本発明により、非ヒトMHCがヒトMHCで置換された染色体を有する非ヒト動物の作出が可能となった。これにより、非ヒト動物を用いてヒトの免疫系を利用した医薬品(例えば腫瘍免疫薬)や試薬の開発が可能となる。
本発明において非ヒトMHCをヒトMHCで置換するための組換えを示す模式図である。図は非ヒト動物がマウスである場合の模式図である。 ヒト染色体におけるMHC領域を示す模式図である。 ゲノム編集ターゲティングベクターを利用する場合の標的となる領域を示す図である。 MHC領域ヒト化マウス作製法の概略図である。 ターゲティングベクターの構造を示す図である。 (A) TV3R−dHLAの構造。(B) TV4−dH2の構造。(C) TV−Tl1/2−BSの構造。ターゲティングベクターに用いたhomology armのゲノム上の位置は図中に記載の通り。 ヒト6番染色体を持つA9−MRC5融合細胞クローンの単離を示す図である。(A) 単離したA9−MRC5融合細胞クローン(hChA9#1,5,13,17)からゲノムDNAを調製し、ヒト6番染色体上の配列が存在するかゲノムPCRで解析。(B) hChA9#5にヒト6番染色体が存在することをFISHで解析した。赤:ヒト6番染色体セントロメア特異的プローブ。 TV3Rのターゲティングを示す図である。(A) A9−MRC5融合細胞クローンでTV3R−dHLAのターゲティングを行い、ハイグロマイシン耐性クローンを単離して組換え導入が起きているかゲノムPCRで解析。*はTV3RhChA9#5−45(128)クローン。(B) TV3RhChA9#5−45(128)からリクローニングを行いゲノムPCRで解析。(C) TV3RhChA9#5−45aをFISH解析した。赤:ヒト6番染色体セントロメア特異的プローブ。 TV4のターゲティングを示す図である。(A) TV4−dH2のターゲティングをゲノムPCRで解析。*はTV4RENKA#17クローン。(B) DAPI染色によりTV4RENKA#17の染色体数が40本であることを確認した。 TV3−4RENKAクローンの単離を示す図である。改変ヒト6番染色体導入細胞TV3−4RENKA#17/5−45a−3をFISH解析した。矢頭は導入した改変ヒト6番染色体。染色体数は41本であることを確認した。赤:マウスCot−1(マウスゲノム配列のプローブ)、紫:RP11−54H13(ヒトMHC領域内のプローブ) TV3−4RENKATl3/4クローンの単離を示す図である。(A) Cre/loxPによる組換え転座。(B) ゲノムPCRによる転座の確認。*はTV3−4RENKATl3/4#17−1。(C) TV3−4RENKATl3/4#17−1をFISH解析した。FISH画像中の番号は模式図の転座染色体の番号と対応する。赤:ヒトCot−1(ヒトゲノム配列のプローブ)、緑:マウスCot−1(マウスゲノム配列のプローブ)(D) TV3−4RENKATl3/4#17−1をFISH解析した。FISH画像中の番号は模式図の転座染色体の番号と対応する。赤:RP11−54H13(ヒトMHC領域内のプローブ)、緑:RP23−147G23(マウス17番染色体MHC領域よりセントロメア側のプローブ)、紫:RP23−119G24(マウス17番染色体MHC領域よりテロメア側のプローブ)。 TV3−4RENKATlbクローンの単離を示す図である。(A) 染色体転座をゲノムPCRで解析。*はTV3−4RENKATlb#38クローン。(B) TV3−4RENKATlb#38をFISH解析した。FISH画像中の番号は模式図の転座染色体の番号と対応する。赤:RP23−147G23(マウス17番染色体MHC領域よりセントロメア側のプローブ)、緑:ヒトCot−1(ヒトゲノム配列のプローブ)、紫:RP23−306H20(マウス17番染色体MHC領域よりテロメア側のプローブ)。 TV3−4RENKATlbdh6クローンの単離を示す図である。(A) TV3−4RENKATlbdh6のソーティング。(B) TV3−4RENKATlb#38dh6#3をFISH解析した。FISH画像中の番号は模式図の転座染色体の番号と対応する。染色体数は40本になっていることを確認した。赤:RP23−147G23(マウス17番染色体MHC領域よりセントロメア側のプローブ)、緑:ヒトCot−1(ヒトゲノム配列のプローブ)、紫:RP23−361C19(マウス17番染色体MHC領域よりテロメア側のプローブ)。(C) ホールゲノムシークエンスによりTV3−4RENKATlbdh6#3のHLAハプロタイプを解析した結果。 MHCヒト化キメラマウスを示す図である。(A) TV3−4RENKATlbdh6#3由来キメラマウスの外観。(B) MHCヒト化マウス17番染色体の構造。MHC領域遠位側にEGFP発現カセットが挿入されている。(C) TV3−4RENKATlbdh6#3由来キメラマウスの精巣細胞におけるEGFPの発現をフローサイトメトリーで解析。 MHCヒト化(ヘテロ)マウスの作製を示す図である。(A) MHCヒト化(ヘテロ)細胞はMHC領域遠位側にEGFP発現カセットが挿入されたMHCヒト化マウス17番染色体を持つ。(B) TV3−4RENKATlbdh6#3由来キメラマウスの精巣細胞を用いた顕微授精により生まれた個体。左:明視野像。右:EGFP蛍光を検出。(C) 顕微授精により得られた産仔からゲノムを調製し、ヒトMHC領域内の配列が存在するかPCRにより解析した。個体番号7と12はEGFP陰性であった産仔。 XO ES細胞からのMHCヒト化(ヘテロ)マウスの作製を示す図である。(A) TV3−4XOTlbdh6#11−1−4−57−3クローンから作製したキメラマウス。矢頭:100%キメラマウス。(B) XOキメラマウス(メス)とC57BL/6(オス)の産仔。黒毛の個体はXO ES細胞が生殖系列伝播しない限り生まれない。(C) MHC領域内に存在するDAXX遺伝子座を標的としたゲノムタイピング法。1~3の3本のプライマーを用いてMHC領域がヒト由来かマウス由来かを判定する。赤矢印はヒトとマウスで配列が一致する部分に設計したプライマーの位置を示す。黒色はヒトまたはマウス特異的プライマー。(D) XOキメラマウス(メス)とC57BL/6(オス)の交配により得られた産仔のゲノムタイピング例。W:野生型マウス、H:MHCヒト化(ヘテロ)マウス。 MHCヒト化(ヘテロ)マウスにおけるヒトMHCタンパク質の発現解析結果を示す図である。(A) 脾臓細胞におけるヒトMHCタンパク質の発現をウエスタンブロットにより解析した。Wt,野生型マウス由来脾臓細胞;Het,MHCヒト化(ヘテロ)マウス由来脾臓細胞。(B)脾臓細胞におけるヒトMHCタンパク質の表面発現をフローサイトメトリーにより解析した。Wt,野生型マウス由来脾臓細胞;Het,MHCヒト化(ヘテロ)マウス由来脾臓細胞。
1.概要
 本発明は、非ヒトMHC領域がヒトMHC領域で置換された非ヒト染色体(MHCヒト化染色体)を構築するためのターゲティングベクター、当該MHCヒト化染色体を有する非ヒト哺乳動物及びその製造方法などに関する。
 ヒトMHC領域が導入された染色体を有する非ヒト動物を作製すれば、そのMHCを規定する遺伝子(MHC遺伝子)を内在性のプロモーターにより発現することが可能となる。このため、生理的条件に近いヒト免疫系の再構築が可能となり、創薬やヒト免疫応答の研究に有用となる。
 しかしながら、ヒトMHC領域の長さは3.4Mb近くに及ぶため、バクテリア人工染色体(BAC)などを用いたトランスジェニック法では、特にMHC領域全体を導入することができない。また、MHC領域は遺伝子密度が非常に高く、MHC遺伝子以外にも多数の遺伝子が存在する。
 そこで本発明においては、染色体工学を利用して、非ヒトMHC領域をヒトMHC領域で置換することにより、MHC領域がヒト化された非ヒト動物を作出することを試みた。
 本発明において、非ヒト哺乳動物のMHC領域をヒトMHC領域で置換するための概要を図1に示す。
 図1において、(a)は、置換前のヒト第6番染色体及び非ヒト染色体の模式図であり、(c)はMHC領域を置換した後の染色体の模式図である。MHC領域の置換は、(a)から(b1)への転座組換え、及び(b1)から(c)への転座組換えの2段階組換え(これを「2段階組換え1」という)、あるいは(a)から(b2)への転座組換え、及び(b2)から(c)への転座組換えの2段階組換え(これを「2段階組換え2」という)を利用する。本発明においては組換えの順序は任意であり、2段階組換え1でも2段階組換え2でもよい。
 図1において、転座組換え(本明細書において「置換」又は単に「組換え」ともいう。)の対象となるMHC領域からみてテロメア側を遠位側、セントロメア側を近位側という。そして、ヒトMHC領域から遠位側、すなわちヒトMHC領域から遠位端までの間であって組換えの境界となる任意の位置をP1とし、非ヒトMHC領域から遠位側、すなわち非ヒトMHC領域から遠位端までの間であって、組換えの境界となり前記P1に対応する任意の位置をp1とする。また、図1において、組換えの対象となるヒトMHC領域から近位側、すなわちヒトMHC領域とセントロメアとの間であって、組換えの境界となる任意の位置をP2とし、非ヒトMHC領域から近位側、すなわち非ヒトMHC領域とセントロメアとの間であって、組換えの境界となり前記P2に対応する任意の位置をp2とする。
 そうすると、2段階組換え1においては、(a)から(b1)への組換えは第一の組換えであり、P1から遠位端(テロメア)までの領域と、p1から遠位端(テロメア)までの領域の組換えとなる。そして、(b1)から(c)への組換えは第二の組換えであり、P2から遠位端(テロメア)までの領域と、p2から遠位端(テロメア)までの領域の組換えとなる。
 他方、2段階組換え2においては、図1において組換えの対象となるヒトMHC領域よりもセントロメア側(P2)から遠位端までの領域と、非ヒトMHC領域よりもセントロメア側(p2)から遠位端までの領域との組換えが「第一の組換え」となる(図1(b2))。この段階では、ヒト染色体のP1から遠位端までの領域と非ヒト染色体のp1から遠位端までの領域との組換えは起こっていない。その後、ヒト染色体のP1から遠位端までの領域と非ヒト染色体のp1から遠位端までの領域との組換えが「第二の組換え」となる。
 組換えが完了した後は、MHCがヒト化された細胞、例えばES細胞を作出し、これを仮親に移植してキメラ非ヒト動物を作出することができる。なお、組換えが完了した後は、当該細胞中に残存するヒト染色体を除去しておくことが好ましい。ヒト染色体は、選択薬剤非存在下で継代培養することにより脱落させて除去することができる。また、非ヒト哺乳動物における染色体は2倍体であるが、本発明において組換えが完了した後の非ヒト哺乳動物の染色体のうち、MHC領域がヒト染色体のMHC領域で置換された染色体の態様は、ホモ(染色体の2本がヒト化)であっても、ヘテロ(染色体の1本がヒト化)であってもよい。
 従って、その後、自然交配又は顕微授精等により、MHCヒト化ヘテロ動物を作出し、さらに自然交配又は顕微授精等によりMHCヒト化ホモ動物を作出することができる。なお、本明細書において「動物」というときは、特別に断らない限り非ヒト哺乳動物を意味する。
 ここで、ヒトのMHCはHLAと同じ分子であり、この分子を決定する遺伝子は第6番染色体の上に直列に配列している。非ヒト哺乳動物のMHC領域は動物によって異なり、例えばマウスでは第17番染色体、ラットでは第20番染色体、ウサギでは第12番染色体、ブタでは第7番染色体に位置する。
 なお、遺伝子領域においてMHCをコードする遺伝子を説明する場合には、「MHC領域」と表現する場合もある。また、マウスのMHC領域は長腕上に存在するため、例えば図1において非ヒト染色体としてマウス染色体を表すときは、マウスの長腕と短腕の向きは、ヒトの長腕と短腕の向きと逆向きとなる。
 組換えの対象となるMHC領域は、MHC領域の全体であっても一部であってもよい。クラスIにおいては古典的クラスI分子でも非古典的クラスI分子でもよい。古典的クラスI分子には、ヒトではHLA−A、HLA−B、HLA−Cの3種類が、非古典的クラスI分子にはHLA−E、HLA−F、HLA−G、MICA、MICBがある。
 ヒトのクラスII遺伝子はヒトMHCクラスII領域に位置し、DR、DQ及びDPの遺伝子座は当該領域の主要な産物をコードする。なお、マウスMHCにはマウスH2−M2及びH2−M3も存在するが、本発明においては、これらのMHCは置換の対象領域に含めなくてもよい。クラスIII領域にはMHC以外の様々な遺伝子が含まれており、ヒトではHLA−DRAより遠位側で、MICBより近位側の領域である。
 例えば図2は、ヒトのMHC領域を表示した模式図である。置換の対象となるMHC領域は、クラスI領域のみでもクラスII領域のみでもよく、クラスIII領域のみでもよく、あるいはこれらの領域の組み合わせでもよい。また、クラスI領域は古典的クラスIMHC遺伝子を含む領域、非古典的クラスIMHC遺伝子を含む領域、又はその両者の領域でもよい。従って、本発明においては各クラスを構成する領域、例えばクラスIではHLA−A、HLA−B、HLA−C、HLA−E、HLA−F、HLA−G、MICA、MICBのいずれか1つ、あるいはこれらの2つ以上の組み合わせの領域でもよく、クラスIIでは、HLA−DP、HLA−DQ、HLA−DR、HLA−DO、HLA−DMのいずれか1つ、あるいはこれらの2つ以上の組み合わせの領域でもよい。クラスIII領域にはMHC以外の様々な遺伝子が含まれており、ヒトではHLA−DRAより遠位側であり、MICBより近位側にある領域である。
 ここで、組換えの対象となるMHC領域は、前記の通り全体でも一部の領域でもよい。従って、当該対象となるMHC領域の選択によっては、選択されなかったMHC領域に前記P1、p1,P2、p2が位置する場合もある。
 本発明においては、ヒトMHCクラスI領域であればMICB~HLA−Fの全体の領域(図2のL2で示す領域)、クラスII領域であればHLA−DP~HLA−DRの全体の領域(図2のL1で示す領域)を含むことが好ましい。またクラスIII領域は、HLA−DRAより遠位側であり、MICBより近位側にある領域である(図2のL3で示す領域)。本発明の一態様において、さらに好ましくは、図2に示すMHC領域全体(図2のL4で示す領域)を置換する。
2.ターゲティングベクター
(1)2段階組換え1における第一の組換え及び2段階組換え2における第二の組換え
 本発明において、組換えを起こさせるために使用するベクターをターゲティングベクターという。ここで使用されるターゲティングベクターは、上記組換えを起こさせる限り限定されるものではなく、組換え酵素認識配列及び組換え酵素を利用するベクターであっても、ゲノム編集ツールを利用するベクターであってもよい。必要に応じて、前記P1及びp1の位置で切断するツールとして、ゲノム編集ツールを利用することもできる。ゲノム編集ツールを利用すると、目的の位置で染色体を切断できるため、その後の組換えを起こしやすくさせることが可能である。
<組換え酵素を利用した組換え>
 組換え酵素を利用した組換えは、例えば、loxPと呼ばれる組換え酵素認識配列、及びCreと呼ばれる組換え酵素が利用される。Cre/loxPの特異的組み換えシステムは周知である。Cre酵素はP1ファージ由来の343個のアミノ酸からなるタンパク質であり、loxP部位と呼ばれる34bpの特異的な塩基配列を認識し、部位特異的組換えを行うことができる。loxP部位は13塩基、8塩基、及び13塩基の3つの部分に分けることができ、13塩基の配列は相補的な逆反復配列構造となっている。一方、8塩基の配列は、loxP部位の向きを決める役割を果たす。Lox511やlox2272と呼ばれる変異型のloxPも多く知られており、これらの組換え酵素認識配列を利用することも可能である。
 本発明の別の態様において、部位特異的組換え酵素による部位特異的組換えシステムの他の例として、Cre/loxPシステム以外にも、酵母プラスミド2μ由来のFlp/FRT系、バクテリオファージPhiC31由来のPhiC31インテグラーゼ系やバクテリオファージBxb1由来のBxb1インテグラーゼ系などを使用することができる。
 図1において、(a)から(b1)への組換え、又は(b2)から(c)への組換えを行うためのターゲティングベクターは、以下のターゲティングベクター1とターゲティングベクター2との組み合わせ、あるいは以下のターゲティングベクター3である。ターゲティングベクター1とターゲティングベクター2との組み合わせは、組換え酵素認識配列及び組換え酵素を利用した組換えを起こさせるベクターであり、ターゲティングベクター3は、ゲノム編集ツールを利用した組換えを起こさせるベクターである。
 (i)ターゲティングベクター1
 ターゲティングベクター1は、ヒト第6番染色体において、その短腕に存在し組換えの対象となるMHC(ヒトMHC)領域よりも遠位側の任意の位置P1に組み込まれる。ターゲティングベクター1は、前記P1から遠位端までの領域と、非ヒト哺乳動物染色体において、組換えの対象となる非ヒトMHC領域よりも遠位側であって前記P1に対応する位置p1から遠位端までの領域との間で転座組換えを起こさせるものである。そして、ターゲティングベクター1は、組換え酵素認識配列、転座組換え時に再構成される薬剤選抜用の薬剤耐性遺伝子1の一の部分配列、及びターゲティング後の薬剤選抜用の薬剤耐性遺伝子2を含む遺伝子カセット1を含む。
 遺伝子カセット1に含まれるコンストラクトは、例えば、組換え酵素認識配列をloxP、薬剤耐性遺伝子1をネオマイシン耐性遺伝子、そして薬剤耐性遺伝子2をハイグロマイシン耐性遺伝子とすることができる。
 ここで、「対応する」とは、組換えが行われる場所の位置関係を指す用語である。すなわち、上記P1、p1、P2及びp2は、組換えの対象となるMHC領域から見て遠位側であるか近位側であるかの位置関係を表す目印の意味である。従って、P1とp1、あるいはP2とp2に隣接する遺伝子が同一であることを求めるものではない。哺乳動物の種類によっては、MHC領域が、ヒトのMHC領域の向きと比較して逆位になっている場合がある。その場合において、ターゲティングベクターを組み込む場所(P1)の両側の遺伝子座は、ヒト遺伝子座がMOG遺伝子座とGABBR1遺伝子座との間(実施例及び図5を参照)であるときは、MHC領域が逆位になっている動物のp1は、例えばKifc1遺伝子座とDaxx遺伝子座との間とすることができる。
 図5は、本発明の実施例で使用されたターゲティングベクターの構造を示す模式図である。説明の便宜上、マウスMHC領域をヒトMHC領域で置換する場合のターゲティングベクターを例に説明する。
 図5Aにおいて、「TV3R」は上記遺伝子カセット1を表している。組換え酵素認識配列は図中横向きの「▲」で示しており、loxP配列などである。転座組換え時に再構成される薬剤選抜用の薬剤耐性遺伝子1の一の部分配列(ターゲティングベクター1に使用された薬剤耐性遺伝子1の所定の部分配列)は、本発明では「3’neo」を用いている。この場合の薬剤耐性遺伝子はネオマイシン耐性遺伝子である。ターゲティング後の薬剤選抜用の薬剤耐性遺伝子2は、「Hyg」と表記されており、この場合の薬剤耐性遺伝子はハイグロマイシン耐性遺伝子である。
 そして、本発明の実施例で作製した遺伝子カセット1は、次式(1)で示す配列を含む。
BGHpA−3’Neo−SA−loxP−EF1−Hyg−P2A−mRuby2−RGpA (1)
 式(1)において、BGHpAはウシ成長ホルモン由来ポリA付加シグナル配列を表し、3’Neoはネオマイシン耐性遺伝子の3’側の一部の配列を表し、SAはスプライシングアクセプター配列を表し、loxPは組換え酵素認識配列を表し、EF1はヒト伸長因子1α由来プロモーター配列を表し、Hygはハイグロマイシン耐性遺伝子を表し、P2Aはブタテシオウイルス由来2A配列を表し、mRuby2は赤色蛍光遺伝子を表し、RGpAはラビットβ−グロビン由来ポリA付加シグナル配列を表す。但し、本発明においては、上記(1)に示すカセット1に、Flp組換え酵素認識配列(FRT)を付加することもできる。
 「TV3R−dHLA」はターゲティングベクター1であり、TV3Rの両側には、TV3Rが組み込まれる位置(P1)の両側の領域の配列の相同配列が連結されている。
 図5Aにおいて、「PX458a−dHLACR1」はゲノム編集用ベクターであり、ターゲティングベクター1の組換えを容易にするために、染色体の任意の位置P1を人工的に切断するベクターである。ゲノム編集用ベクターに利用されるゲノム編集ツールは、公知の任意のツールを使用することができる。例えば、ジンクフィンガーヌクレアーゼ(ZFN)を利用するツール、テールヌクレアーゼ(TALEN)を利用するツール、クリスパー・キャス9(CRISPR−Cas9)を利用するツールなどが挙げられる。
 PX458a−dHLACR1はCRISPR−Cas9を利用するベクターであり、例えばガイドRNA配列、Cas9配列及び蛍光タンパク質アメトリンの遺伝子配列により構成されている。
 図1(d)は、MHC領域付近から遠位端までの領域の拡大図を示すが、本発明の実施例においては、ヒト染色体ではMOG遺伝子座とGABBR1遺伝子座との間にターゲティングベクター1を組み込むように設計した(図5A)。
 (ii)ターゲティングベクター2
 ターゲティングベクター2は、MHC領域が存在する非ヒト哺乳動物の染色体において、組換えの対象となる非ヒトMHC領域よりも遠位側の前記P1に対応する位置p1に組み込まれる。
 実施例のマウスではターゲティングベクター2は、前記p1から遠位端までの領域と、ヒト染色体における前記P1から遠位端までの領域との間で転座組換えを起こさせるものである。そして、組換え酵素認識配列、転座組換え時に再構成される薬剤選抜用の薬剤耐性遺伝子1の他の部分配列(ターゲティングベクター1に使用された薬剤耐性遺伝子1の所定の部分配列以外の他の部分配列)、ターゲティング後の薬剤選抜用の薬剤耐性遺伝子3を含む遺伝子カセット2を含む。
 遺伝子カセット2に含まれるコンストラクトは、例えば、組換え酵素認識配列をloxP、薬剤耐性遺伝子1をネオマイシン耐性遺伝子、薬剤耐性遺伝子3をピューロマイシン耐性遺伝子とすることができる。
 前記の通り、動物種によってはMHC領域が逆位になっている動物が存在する。この場合でも、ターゲティングベクター2において、任意の位置P1に対応する位置p1に組み込むことができる。
 図5Bにおいて、「TV4」は遺伝子カセット2を表している。組換え酵素認識配列は図中横向きの「▲」で示しており、loxP配列などである。転座組換え時に再構成される薬剤選抜用の薬剤耐性遺伝子1の部分配列は、本発明では「5’neo」を用いている。この場合の薬剤耐性遺伝子はネオマイシン耐性遺伝子である。ターゲティング後の薬剤選抜用の薬剤耐性遺伝子2は、「Puro」と表記されており、この場合の薬剤耐性遺伝子はピューロマイシン耐性遺伝子である。
 そして、本発明の実施例で作製した遺伝子カセット2は、次式(2)で示す配列を含む。
EF1−EGFP−P2A−5’Neo−SD−loxP−SA−T2A−Puro−RGpA (2)
 式(2)において、EF1はヒト伸長因子1α由来プロモーター配列を表し、EGFPは緑色蛍光遺伝子を表し、P2Aはブタテシオウイルス由来2A配列を表し、5’Neoはネオマイシン耐性遺伝子の5’側の一部の配列を表し、SDはスプライシングドナー配列を表し、loxPは組換え酵素認識配列を表し、SAはスプライシングアクセプター配列を表し、T2AはThosea asignaウイルス由来2A配列を表し、Puroはピューロマイシン耐性遺伝子を表し、RGpAはラビットβ−グロビン由来ポリA付加シグナル配列を表す。本発明においては、上記式(2)に示すカセット2に、FRTを付加することもできる。
 TV4−dH2はターゲティングベクター2であり、TV4の両側には、TV4が組み込まれる位置(p1)の両側の領域の配列の相同配列が連結されている。
 図5Bにおいて、「PX458a−dH2CR1」はゲノム編集用ベクターであり、ターゲティングベクター2の組換えを容易にするために、染色体の任意の位置p1を人工的に切断するベクターである。ゲノム編集用ベクターに利用されるゲノム編集ツールは前記と同様である。PX458a−dH2CR1はCRISPR−Cas9を利用するベクターであり、例えばガイドRNA配列、Cas9配列及び蛍光タンパク質アメトリンの遺伝子配列により構成されている。
 図1(d)と同様に、本発明の実施例においては、非ヒト染色体ではMog遺伝子座とGabbr1遺伝子座との間にターゲティングベクター2を組み込むように設計した。(図5B)
<ゲノム編集用ベクターを利用した組換え>
 (iii)ターゲティングベクター3
 本発明の別の態様においては、前記第一の組換えを行うために、組換え酵素を利用した組換えに代えて、ゲノム編集ツールを利用することができる。ターゲティングベクター3は、ヒト第6番染色体において、組換えの対象となるヒトMHC領域よりも遠位側であってゲノム編集ツールにより切断の標的となる任意の位置P1から遠位端までの領域と、MHCが存在する非ヒト哺乳動物の染色体において、非ヒトMHC領域よりも遠位側であって前記P1に対応する位置p1から遠位端までの領域との間で転座組換えを起こさせる。
 この場合でも、MHC領域の置換は、図1において(a)から(b1)、及び(b1)から(c)への転座組換え(2段階組換え1)、あるいは(a)から(b2)、及び(b2)から(c)への転座組換え(2段階組換え2)を利用することができる。
 ターゲティングベクター3は、前記P1と前記ヒトMHC領域との間の一部の領域(この領域を「R1a」という)の配列の相同配列、ターゲティング後の薬剤選抜用の薬剤耐性遺伝子4、及び前記p1よりも遠位側の一部の領域(この領域を「R2b」という)の配列の相同配列を含むか、あるいは、前記P1よりも遠位側の一部の領域(この領域を「R1b」という)の配列の相同配列、ターゲティング後の薬剤選抜用の薬剤耐性遺伝子4、及び前記p1と前記非ヒトMHC領域との間の一部の領域(この領域を「R2a」という)の配列の相同配列を含む。
 R1a、R1b、R2a及びR2bの位置関係を図3(a)に示す。なお、R1a、R1b、R2a及びR2bの領域は、P1、p1からみて任意の領域でよいが、P1、p1の近傍の領域であることが好ましい。
 本発明において使用されるターゲティングベクター3は、例えばR2a配列、CAGプロモーター配列、ブラストサイジン耐性遺伝子、ラビットβ−グロビン由来ポリA付加シグナル配列及びR1b配列により構成することができる。
(2)2段階組換え1における第二の組換え、又は2段階組換え2における第一の組換え
 本発明において、2段階組換え1における第二の組換え、及び2段階組換え2における第一の組換え、すなわち図1の(b1)から(c)への組換え、又は図1の(a)から(b2)への組換えを起こすベクターをターゲティングベクター4という。
 本節における組換えは、前記と同様に組換え酵素を利用したターゲティングベクターを利用することも可能であるが、本発明者による予備実験により、組換え酵素を利用したターゲティングベクターよりもゲノム編集ツールを利用したターゲティングベクターを利用したほうが効率的に組換えが起こり、その後の非ヒト哺乳動物の作出も有効であることが分かった。
 そこで本発明においては、2段階組換え1における第二の組換え、又は2段階組換え2における第一の組換えはゲノム編集ツールを利用した組換えを行う。
 (iv)ターゲティングベクター4
 ターゲティングベクター4は、2段階組換え1の場合は、前記ターゲティングベクター1及び前記ターゲティングベクター2の作用、又は前記ターゲティングベクター3の作用による転座組換え後の染色体(図1(b1))において、組換えの対象となるヒトMHC領域よりも近位側であってゲノム編集ツールにより切断の標的となる任意の位置P2から遠位端までの領域と、非ヒトMHCが存在する非ヒト哺乳動物の染色体において、当該非ヒトMHC領域よりも近位側であって前記P2に対応する位置p2から遠位端までの領域との間で転座組換えを起こさせる。
 また、ターゲティングベクター4の使用は、2段階組換え2の場合は、ターゲティングベクター4を先に使用してターゲティングベクター1~3を使用することもできる。要するに、図1(a)~(c)に示す組換えは、先にP1及びp1から遠位端までの組換えを行った後、次にP2及びp2から遠位端までの組換えを行ってもよく(図1(a)、(b1)、及び(c)の順序)、先にP2及びp2から遠位端までの組換えを行った後、次にP1及びp1から遠位端までの組換えを行うこともできる(図1(a)、(b2)、及び(c)の順序)。
 ターゲティングベクター4は、前記P2よりも近位側(P2とセントロメアとの間)の一部の領域R3aの配列の相同配列、ターゲティング後の薬剤選抜用の薬剤耐性遺伝子5(例えばブラストサイジン耐性遺伝子)、及び前記p2と前記非ヒトMHC領域との間の一部の領域R4bの配列の相同配列を含むか、あるいは、前記P2とヒトMHC領域との間の一部の領域R3bの配列の相同配列、ターゲティング後の薬剤選抜用の薬剤耐性遺伝子5、及び前記p2から近位側(p2とセントロメアとの間)の一部の領域R4aの配列の相同配列を含む。
 R3a、R3b、R4a及びR4bの位置関係を図3(b)に示す。なお、R3a、R3b、R4a及びR4bの領域は、P2、p2からみて任意の領域でよいが、P2、p2の近傍の領域であることが好ましい。
 本発明において使用されるターゲティングベクター4は、例えばR3a配列、CAGプロモーター配列、ブラストサイジン耐性遺伝子、ラビットβ−グロビン由来ポリA付加シグナル配列及びR4b配列により構成することができる。
 図1(e)は、MHC領域付近から遠位端までの領域の拡大図を示すが、本発明の実施例においては、ヒト染色体ではKIFC1遺伝子座とDAXX遺伝子座との間、非ヒト染色体ではKifc1遺伝子座とDaxx遺伝子座との間で組換えが起こるようにターゲティングベクター4を設計した(図5C)。ターゲティングベクター4には、ブラストサイジン(BS)耐性遺伝子が含まれている。
 図5Cにおいて、「PX458.1a−pHLACR2」はゲノム編集用ベクターであり、ターゲティングベクター4を介した転座組換えを容易にするために、染色体の任意の位置P2を人工的に切断するベクターである。PX458.1a−pHLACR2はCRISPR−Cas9を利用するベクターであり、例えばガイドRNA配列、Cas9配列及び蛍光タンパク質アメトリンの遺伝子配列により構成されている。
 PX458.1a−pHLACR2と同様に、「PX458.1a−pH2CR1」はゲノム編集用ベクターであり、ターゲティングベクター4を介した転座組換えを容易にするために、染色体の任意の位置p2を人工的に切断するベクターである。PX458.1a−pH2CR1はCRISPR−Cas9を利用するベクターであり、例えばガイドRNA配列、Cas9配列及び蛍光タンパク質アメトリンの遺伝子配列により構成されている。
<薬剤選抜用の薬剤耐性遺伝子>
 本発明においては、前記の通り、ターゲティングベクターには、薬剤選抜用の薬剤耐性遺伝子1~5が使用される。薬剤耐性遺伝子1~5それぞれの遺伝子の組み合わせは任意であり、目的の薬剤選抜ができるように適宜選択される。
 薬剤耐性遺伝子1~5に使用される遺伝子としては、例えばネオマイシン耐性遺伝子、ハイグロマイシン耐性遺伝子、ピューロマイシン耐性遺伝子、ブラストサイジン耐性遺伝子などが挙げられるが、これらに限定されるものではない。
<組換え又は選抜確認用の蛍光遺伝子>
 本発明においては、染色体導入の確認や導入染色体が維持されていることの確認、あるいは薬剤選抜が目的通りに行われたかを確認するために、ターゲティングベクターに所定の蛍光遺伝子を含めることができる。蛍光遺伝子の種類は、それぞれの工程において確認作業ができる限り任意に選択することができ、ベクターごとに蛍光遺伝子の種類を変えて使用することも可能である。
 蛍光遺伝子としては、例えば緑色蛍光遺伝子(GFP、EGFP等)、赤色蛍光遺伝子、黄色蛍光遺伝子などが挙げられる。
3.細胞
 MHCがヒト化された非ヒト哺乳動物を樹立するには、非ヒト哺乳動物の細胞において内在MHC遺伝子をヒトMHC遺伝子で置換する必要がある。
本発明においては、上記の通り通常の相同組換え法又はゲノム編集技術を利用することができる。
 細胞としては動物細胞であれば特に限定されるものではなく、ES細胞、精子幹細胞、線維芽細胞などが挙げられるが、ES細胞であることが好ましい。
 細胞の培養培地としては、例えばGMEM培地(Glasgow’s Minimal Essential Medium)、DMEM(ダルベッコの改変イーグル培地)、RPMI1640培地などが挙げられる。培養培地には、ウシ胎児血清(FBS)、非必須アミノ酸、抗生物質(例えばペニシリン、ストレプトマイシン等)、増殖因子/サイトカイン(上皮成長因子、線維芽細胞増殖因子、白血病阻止因子等)など一般的に使用される動物細胞培養添加物を細胞種に応じて適宜加えることができる。
 細胞を所定期間培養後、トリプシンを含む培地でインキュベートすることにより細胞を回収する。回収された細胞は、必要によりフィーダー細胞の存在又は非存在下で複数回の継代培養を行うこともできる。培養された細胞が目的の細胞であることの確認は、それらのマーカー遺伝子を指標とすればよい。細胞がES細胞の場合は、例えばOct3/4、アルカリホスファターゼ、Nanogなどを指標とすればよく、RT−PCRやウエスタンブロッティング等の任意の手法により検出することができる。またES細胞は、コロニー形態で判断することもできる。
5.非ヒト哺乳動物の作製
 非ヒト哺乳動物の作製は、ES細胞を用いたキメラ動物の作製のほか、体細胞核移植、精子幹細胞を用いた顕微授精等の標準的な方法で行うことができる。
 作製の対象となる非ヒト哺乳動物は特に限定されるものではなく、げっ歯類、家畜類、霊長類などが挙げられる。げっ歯類としては、マウス、ラット、モルモット、ハムスターなどが例示され、家畜類としては、ウシ、ウマ、ブタ、ヒツジ、霊長類としてはニホンザル、コモンマーモセットが例示される。その他にも、イヌ、ネコ、サル、ウサギなどの愛玩又は実験動物を使用することもできる。
 本発明においては、げっ歯類、中でもマウスであることが好ましい。
 キメラ動物の場合は、まず、上記樹立されたES細胞を、8細胞期胚と凝集させるか、あるいは胚盤法に注入する。このようにして作製された胚をキメラ胚というが、このキメラ胚を偽妊娠仮親の子宮内に移植して出産させることによりキメラ動物を作製する。
 ここで、「胚」とは、個体発生における受精から出生までの段階の個体を意味し、2細胞期胚、4細胞期胚、8細胞期胚、桑実期胚、胚盤胞などを包含する。
 以下、説明の便宜上、細胞としてES細胞を例に説明する。
 ES細胞と胚を用いて集合体を作製する方法として、マイクロインジェクション法、凝集法などの公知手法を用いることができる。
 マイクロインジェクション法を採用する場合は、回収した胚に、ES細胞を注入して細胞の集合体を作製する。また、凝集法を採用する場合は、ES細胞を、透明帯を除去した正常胚にふりかけて凝集させればよい。ここで使用されるES細胞としては特に限定されるものではなく、C57BL/6由来RENKA、C57BL/6とCBAのF1ハイブリッド由来TT2細胞のY染色体脱落株XO、C57BL/6とDBA/sCrSlcのF1ハイブリッドから樹立したES細胞などが挙げられる。
 一方、仮親にするための偽妊娠雌動物は、正常性周期の雌動物を、精管結紮などにより去勢した雄動物と交配することにより得ることができる。作出した偽妊娠動物に対して、上述の方法により作製したキメラ胚を子宮内に移植し、その後出産させることによりキメラ動物を作製することができる。
 このようなキメラ動物の中から、ES細胞移植胚由来の動物を選択する。選択したキメラ動物を近交系系統の動物と交配させる。そして、誕生した子動物に、ES細胞に由来する動物の被毛色が現れることにより、ES細胞がキメラ動物の生殖系列へ導入されたことを確認することができる。
 誕生した子動物がヒト化MHC遺伝子を持つかどうかは、DNAを制限酵素で切断し目的のサイズのDNA断片が検出されるかどうか、あるいはPCR法により解析することで同定できる。
 実施例
 以下、実施例により本発明をさらに具体的に説明する。但し、本発明の範囲はこれらの実施例により限定されるものではない。
1.ターゲティングベクターの作製
<方法>
方法
 TV3R−dHLAの作製
pEF−GFP(Addgene plasmid # 11154 ; http://n2t.net/addgene:11154 ; RRID:Addgene_11154)をEcoRI−HF(New England BioLabs)とNotI−HF(New England BioLabs)で制限酵素消化し、In−Fusion(登録商標) HD Cloning Kit(Clontech)を用いて付属のプロトコールに従いヒト伸長因子1α由来プロモーター配列の下流にハイグロマイシン耐性遺伝子をクローニングしてpEF−Hyg(配列番号1)を作製した。次にpEF−Hygがコードするヒト伸長因子1α由来プロモーター配列の上流側を制限酵素SalIで消化し、合成により作製したDNAフラグメントFRT−BGHpA−3’Neo−SA−loxP(Thermo Fisher Scientific) (配列番号2)をIn−Fusion(登録商標)HD Cloning Kitを用いてクローニングしてTV3を作製した。
次にターゲティングベクターTV3R−dHLAの5’側相同領域と3’側相同領域を含む配列を、MRC5細胞のゲノムを鋳型として以下のプライマーセットを用いてPrimeSTAR(登録商標)GXL DNA Polymerase(Takara)により付属のプロトコールに従い増幅した。
Figure JPOXMLDOC01-appb-I000001
さらに以下のプライマーセットを用いてNested−PCR法により相同領域全体を増幅し、pGEM(登録商標)−T Easy Vector(Promega)にクローニングしてpGEMTe−dHLAを作製した。
Figure JPOXMLDOC01-appb-I000002
次にpGEMTe−dHLAを以下のプライマーセットを用いてPrimeSTAR(登録商標) GXL DNA Polymeraseにより増幅し、TV3をSalI−HF(New England BioLabs)及びHindIII−HF(New England BioLabs)で制限酵素消化して調製したFRT−BGHpA−3’Neo−SA−loxPを含む断片をIn−Fusion(登録商標)HD Cloning Kitを用いてクローニングしてTV3−dHLAを作製した。
Figure JPOXMLDOC01-appb-I000003
さらに合成により作製したDNAフラグメントP2A−mRuby2(配列番号9)(Thermo Fisher Scientific)を以下のプライマーセットを用いてPrimeSTAR(登録商標) GXL DNA Polymeraseにより増幅し、増幅産物とTV3−dHLAを制限酵素BssHII(New England BioLabs)により消化してから両者をLigation−Convenience Kit(Nippon gene)を用いてライゲーションしTV3R−dHLAを作製した。
Figure JPOXMLDOC01-appb-I000004
TV4−dH2の作製
pEF−GFP(Addgene plasmid # 11154 ; http://n2t.net/addgene:11154 ; RRID:Addgene_11154)をEcoRI−HFとNotI−HFで制限酵素消化し、In−Fusion(登録商標) HD Cloning Kitを用いて付属のプロトコールに従いヒト伸長因子1α由来プロモーター配列の下流にEGFP遺伝子をクローニングしてpEF−EGFP2(配列番号12)を作製した。次にpEF−EGFP2をBsrGI(New England BioLabs)で制限酵素消化し、これに合成により2本のDNAフラグメントとして作製した配列P2A−5’Neo−SD−loxP−SA−T2A−Puro(Thermo Fisher Scientific)(配列番号13)を、In−Fusion(登録商標) HD Cloning Kitを用いてクローニングしてTV4dFを作製した。
 TV4dFをSalI−HFで制限酵素消化し、これにアニーリングさせた下記オリゴDNAをLigation−Convenience Kitを用いてライゲーションし、TV4を作製した。
Figure JPOXMLDOC01-appb-I000005
 次にターゲティングベクターTV4−dH2の5’側相同領域と3’側相同領域を含む配列を、C57BL/6マウスのゲノムを鋳型として以下のプライマーセットを用いてPrimeSTAR(登録商標)GXL DNA Polymeraseにより付属のプロトコールに従い増幅した。
Figure JPOXMLDOC01-appb-I000006
さらに以下のプライマーセットを用いてNested−PCR法により相同領域全体を増幅し、pGEM(登録商標)−T Easy Vector(Promega)にクローニングしてpGEMTe−dH2を作製した。
Figure JPOXMLDOC01-appb-I000007
次にpGEMTe−dH2を以下のプライマーセットを用いてPrimeSTAR(登録商標) GXL DNA Polymeraseにより増幅し、TV4をSalI−HF及びHindIII−HFで制限酵素消化して調製したP2A−5’Neo−SD−loxP−SA−T2A−Puroを含む断片をIn−Fusion(登録商標) HD Cloning Kitを用いてクローニングしてTV4−dH2を作製した。
Figure JPOXMLDOC01-appb-I000008
TV−TI1/2−BSの作製
pGEM(登録商標)−T Easy Vectorをベクター骨格とし、TV−Tl1/2−BSに用いる5’側相同領域と3’側相同領域を持つHprt発現ベクターTV−Tl1/2−Hprt(配列番号22)を、XhoI(New England BioLabs)とXbaI(New England BioLabs)により制限酵素消化し、これに合成により作製したブラストサイジン耐性遺伝子を含むDNAフラグメント(IDT)(配列番号23)をIn−Fusion(登録商標) HD Cloning Kitを用いてクローニングしてTV−Tl1/2−BSを作製した。
ゲノム編集ベクターの作製(1)
 PX458a−dHLACR1およびPX458a−dH2CR1のgRNAは以下の配列に対して設計し、gRNAとCas9の発現にはpSpCas9(BB)−2A−GFP(PX458)(Addgene plasmid #48138; http://n2t.net/addgene:48138; RRID: Addgene 48138)を改変し、EGFP遺伝子を蛍光遺伝子アメトリンに置換して作製したPX458aを用いた(配列番号24)。
Figure JPOXMLDOC01-appb-I000009
ゲノム編集ベクターの作製(2)
 PX458.1a−pHLACR2およびPX458.1a−pH2CR1のgRNAは以下の配列に対して設計し、gRNAとCas9の発現にはPX458aのgRNA scaffold配列を改変したPX458.1aを用いた(配列番号27)。
Figure JPOXMLDOC01-appb-I000010
薬剤耐性マウス胎児線維芽細胞(MEF)の調製
 薬剤選択中もES細胞をフィーダー細胞上で培養するため、薬剤耐性MEFを作製した。まず胎生14.5日胚からMEFを調製し、ハイグロマイシン耐性遺伝子、ブラストサイジン耐性遺伝子、ピューロマイシン耐性遺伝子、ネオマイシン耐性遺伝子を2A配列で繋いだ遺伝子(HBPN)を発現するレンチウイルスをMEFに感染させた。MEFの増殖能を向上させるため5%酸素/5%CO2の低酸素条件でHBPN発現MEFの培養を行い、これをマイトマイシンC処理して薬剤耐性MEFとして用いた。
MRC5−A9融合細胞hChA9のクローニング
 レンチウイルスを用いてNeo耐性遺伝子を導入したMRC5細胞とA9細胞をGenomONE−CF(石原産業)を用いて融合させ、Ouabain耐性/G418耐性細胞を融合細胞として単離した。ヒト細胞はOuabain感受性、マウス細胞はOuabain非感受性であり、G418とOuabainを培地中に添加することで融合細胞を選択することが可能である。ヒト6番染色体を持つ融合細胞はKIFC1とDAXXの遺伝子間領域に設定した以下のプライマーセットを用いてゲノムPCRにより同定した。
Figure JPOXMLDOC01-appb-I000011
またFISHによるヒト6番染色体の検出にはJabsらの報告(Am. J. Hum. Genet. 41:374−390, 1987)を参考にヒト6番染色体セントロメアに特異的な配列を集めて人工合成したDNA断片をプローブの調製に用いた。
合成した配列は以下の通りである。
Figure JPOXMLDOC01-appb-I000012
TV3RhChA9のクローニング
 MRC5−A9融合細胞にTV3R−dHLAをターゲティングしたクローン(TV3RhChA9)は、PX458a−dHLACR1とターゲティングベクターTV3R−dHLAをPEI max(Polysciences)を用いてhChA9にトランスフェクションして作製した。PX458a−dHLACR1はターゲティングベクターの相同組換え効率を上げるために共導入した。トランスフェクション翌日にTV3R−dHLA上の蛍光遺伝子mRuby2の発現を指標にベクター導入細胞をソーティングし、mRuby2陽性ハイグロマイシン耐性となったクローンを単離した。単離したクローンからゲノムDNAを調製し、PCRにより組換え導入されたクローンを同定した。PCRに用いたプライマーは以下の通りである。単離したクローンからリクローニングを実施した場合も同様に解析を行った。
Figure JPOXMLDOC01-appb-I000013
TV4RENKAのクローニング
 TV4RENKAは、PX458a−dH2CR1とターゲティングベクターTV4−dH2をLipofectamine 3000(Thermo Fisher Scientific)を用いてRENKAにトランスフェクションして作製したES細胞クローンである。PX458a−dH2CR1は、ターゲティングベクターの相同組換え効率を上げるために共導入した。EGFP陽性となったクローンを単離し、ゲノムPCRにより組換え導入されたクローンを同定した。XO,BDF1についても同様にしてクローン単離することが可能である。
PCRに用いたプライマーは以下の通りである。
Figure JPOXMLDOC01-appb-I000014
TV3−4RENKAのクローニング
 TV3−4RENKAは、TV3RhChA9からTV4RENKAへretro−MMCT法(Suzuki, T.et al.(2016)PloS One, 11(6): e0157187.)を用いて改変ヒト6番染色体を導入して作製したES細胞クローンである。mRuby2陽性ハイグロマイシン耐性となった細胞をクローニングし、染色体数41本となったクローンを単離した。FISH解析ではCy3ラベルしたmouse Cot−1とCy5ラベルしたRP11−54H13を用いて検出を行った。
TV3−4RENKATl3/4のクローニング
 TV3−4RENKAに、Lipofectamine 3000を用いてCre発現ベクターを導入し、loxP間で染色体転座を誘導した。染色体転座を起こしたクローンは、G418耐性を指標として単離し、「TV3−4RENKATl3/4」とした。組換えが生じていることをゲノムPCRにより確認した後、FISH解析でマウス17番染色体とヒト6番染色体間で転座が起きていることを確認した。
PCRに用いたプライマーは以下の通りである。
Figure JPOXMLDOC01-appb-I000015
 FISH解析では、Cy3ラベルしたRP11−54H13,DY490ラベルしたRP23−147G23とCy5ラベルしたRP23−119G24、またはCy3ラベルしたヒトCot−1とDY490ラベルしたマウスCot−1を用いて検出を行った。
TV3−4RENKATlbのクローニング
 TV3−4RENKATlbのクローニングでは、TV3−4RENKATl3/4にTV−Tl1/2−BSとPX458.1a−pHLACR2とPX458.1a−pH2CR1をLipofectamine 3000を用いて共導入した。トランスフェクション翌日にアメトリン陽性細胞をソーティングし、ブラストサイジン耐性となったクローンを単離した。組換えが生じていることをゲノムPCRにより確認した後、FISH解析でMHC領域の置換が起きていることを確認した。
 PCRに用いたプライマーは以下の通りである。
Figure JPOXMLDOC01-appb-I000016
 FISH解析では、Cy3ラベルしたRP11−147G23,DY490ラベルしたヒトCot−1とCy5ラベルしたRP23−306H20を用いて検出を行った。
TV3−4RENKATlbdh6のクローニング
 TV3−4RENKATlbから残存するヒト6番染色体が脱落したTV3−4RENKATlbdh6を単離するため、mRuby2陰性細胞をソーティングし、フィーダー細胞上に播種してクローンの単離を行った。さらに、核型解析により染色体数が40本であったクローン(XOの場合は39本)のFISH解析を行い、残存ヒト6番染色体が脱落していることを確認した。FISH解析では、Cy3ラベルしたRP11−147G23,DY490ラベルしたヒトCot−1とCy5ラベルしたRP23−361C19を用いて検出を行った。TV3−4XOTlbdh6,TV3−4BDF1Tlbdh6の単離もTV3−4RENKATlbdh6と同じ手順で実施した。
2.MHCヒト化マウスの作製
 MHCヒト化キメラマウスは、MHCヒト化ES細胞とICR由来胚を用いて集合キメラ法により作製した。MHCヒト化マウスは、RENKA由来MHCヒト化ES細胞を用いて作製したキメラマウスの場合は、精巣より精子細胞を単離し、B6/DBA F1マウスまたはICRマウスの卵に顕微授精を行って樹立した。また、XO ES細胞由来MHCヒト化ES細胞を用いて作製したメスのキメラマウスの場合は、C57BL/6のオスマウスと交配を行ってMHCヒト化キメラマウス(MHCヒト化ヘテロマウス)を樹立した。MHCヒト化マウスの樹立は産仔のEGFP蛍光及びゲノムPCR法により確認した。
 ゲノムPCRに用いたプライマーセットは下記の通りである。
DAXX:
Figure JPOXMLDOC01-appb-I000017
MICA:
Figure JPOXMLDOC01-appb-I000018
MOG:
Figure JPOXMLDOC01-appb-I000019
S76:
Figure JPOXMLDOC01-appb-I000020
DAXX(3プライマーによる確認):
Figure JPOXMLDOC01-appb-I000021
3.結果と考察
MHC領域を置換するためのベクターの構築
 まず、一連の組換え操作に必要なベクターの構築を行った。転座置換による周辺遺伝子の発現への影響を考慮し、ヒトまたはマウスのMHC領域遠位側で遺伝子間配列が比較的大きいMOGとGABBR1遺伝子座との間にTV3R配列またはTV4配列を組換え導入するためのターゲティングベクターTV3R−dHLA5,TV4−dH2を設計した(図5A,B)。また、相同組換え効率を上げるため、それぞれの標的部位にDNA二重鎖切断を誘導するCRISPRベクターPX458a−dHLACR1、PX458a−dH2CR1を作製した。
 TV3Rには、転座誘導に必要なloxP配列と転座組換え時にG418耐性となるようにするためのNeo耐性遺伝子の3’側配列、転座誘導後ターゲティングベクター内の配列を除去するためのFRT配列、ターゲティング時に薬剤選択するためのハイグロマイシン耐性遺伝子とターゲティングされた染色体が存在することを検出するための赤色蛍光遺伝子mRuby2がコードされている。
 一方、TV4には、転座誘導に必要なloxP配列、転座組換え時にG418耐性となるようにするためのNeo耐性遺伝子の5’側配列、転座誘導後ターゲティングベクター内の配列を除去するためのFRT配列、ターゲティング時に薬剤選択するためのピューロマイシン耐性遺伝子、及びターゲティングされた染色体の存在を検出するための緑色蛍光遺伝子EGFPがコードされている。TV3R配列とTV4配列は、転座誘導後のマウス17番染色体にEGFP発現ユニットと再構成されたNeo耐性遺伝子が残るように設計されており、MHCヒト化マウス17番染色体保持細胞を薬剤と蛍光により選別することが可能である。
 次に、ヒト及びマウスのMHC領域近位側で遺伝子間配列が比較的大きいDAXXとKIFC1遺伝子座との間の転座組換えを誘導するためのターゲティングベクターTV−Tl 1/2−BSと、それぞれの標的部位を切断し組換え効率を上げるためのCRISPRベクターPX458.1a−pHLACR2、PX458.1a−pH2CR1を作製した(図5C)。TV−Tl 1/2−BSには、ブラストサイジン耐性遺伝子発現カセットが入っているため、組換え導入された細胞はブラストサイジン耐性で選択することができるよう設計した。またブラストサイジン耐性遺伝子は、最終的にES細胞から除去される残存ヒト6番染色体上に組換え導入されるようベクター設計を行った。これにより、MHCヒト化マウス17番染色体のMHC領域近位側には外来の遺伝子発現カセットが導入されないため、ヒト化MHC領域周辺の遺伝子発現への影響は最小限に留めることができると考えられる。
A9−MRC5融合細胞の作製
 ヒト正常線維芽細胞MRC5細胞のヒト6番染色体をマウスES細胞(以下ES細胞)に導入するため、MRC5細胞と染色体供与能の高いマウス線維芽細胞A9細胞の融合細胞を作製する必要がある。そこで、まず融合細胞を薬剤選択するため、レンチウイルスを用いてMRC5細胞にネオマイシン耐性遺伝子を導入した(図4、ステップ1(丸印の1番。以降、ステップ1以降も、ステップ1と同様に各ステップのナンバリングは丸印の番号を付与する。))。次に、ネオマイシン耐性MRC5細胞をA9細胞と細胞融合させ、ヒト細胞を選択的に死滅させる薬剤ウアバインとG418の両方に耐性となった融合細胞株hChA9を単離した(図4、ステップ2)。
 単離したクローンにヒトHLA領域内の配列が存在するか否かゲノムPCRで確認したところ、クローン#1,5,13でシグナルが検出された(図6A)。さらに、hChA9#5にヒト6番染色体が存在することを確かめるため、ヒト6番染色体セントロメア配列特異的プローブを用いてFISH法により解析を行ったところ、この融合細胞クローンにはヒト6番染色体が2本存在することが確認できた(図6B)。
TV3Rのターゲティング
 hChA9#5のヒト6番染色体MHC領域遠位側にターゲティングベクターTV3R−dHLAを組換え導入し、MHC領域の置換に必要な配列を導入した(図4、ステップ3)。
 その結果、ハイグロマイシン耐性となったクローンを単離してゲノムPCRによる解析を行い、複数のターゲティングされた細胞TV3RhChA9が単離できた(図7A)。クローンが混じっている可能性を排除するため、TV3RhChA9#5−45(128)からリクローニングを行いTV3RhChA9#5−45a(128)を単離した(図7B)。TV3RhChA9#5−45a(128)をFISH解析したところ、過半数の細胞がヒト6番染色体を1本保持していることを確認できた(図7C)。そこで、TV3RhChA9#5−45a(128)を改変ヒト6番染色体供与細胞として用いた。
TV4のターゲティング
 B6由来マウスES細胞RENKAの17番染色体上に存在するMHC領域の遠位側にTV4−dH2をターゲティングし、MHC領域のスワッピングに必要な配列を導入した(図4、ステップ4)。
 EGFP陽性クローンをゲノムPCRにより解析したところ、組換え導入されたクローンが多数確認できた(図8A)。TV4配列内にあるEGFPは、MHCヒト化アリルのみに存在すれば生殖系列伝播の確認に利用できるため、片アリルのみがターゲティングされている染色体数40本のクローンTV4RENKA#17を以降の実験に使用した(図8)。
改変ヒト6番染色体の導入
 TV4RENKA#17にTV3RhChA9#5−45a(128)の改変ヒト6番染色体を導入した(図4、ステップ5)。通常、ES細胞は染色体導入効率が低く、また融合細胞はA9細胞に比べて染色体供与能が低い傾向にあるため、ポリエチレングリコールを用いた従来の染色体導入法(PEG−MMCT法)では染色体導入できない可能性が考えられる。そこで、マウス白血病ウイルス由来のエコトロピックエンベロープタンパク質を利用した高効率染色体導入法(retro−MMCT法)を用いて改変ヒト6番染色体の導入を行った。
 ハイグロマイシン耐性・mRuby2陽性となったES細胞をクローニングし、染色体標本を作製して核型解析を行った。マウス正常細胞は染色体数が40本(XOは39本)であるが、TV3−4RENKA#17/5−45a−3は染色体数が41本(XOは40本)となっていることが確認できた。また、ヒト6番染色体の特徴であるサブメタセントリック染色体を保持していることが確認できたため、さらにFISH解析を行ったところ、この染色体はヒトMHC領域を含んでいた。従って、改変ヒト6番染色体の導入に成功したと考えられた(図9)。
Cre/loxPを用いた染色体転座の誘導
 組換え酵素Creは、独立した染色体上にあるloxP配列間で転座を誘導することが可能である。そこで、TV3−4RENKA#17/5−45a−3が保持する改変ヒト6番染色体と改変マウス17番染色体のMHC領域遠位側の間で転座を誘導するため、TV3−4RENKA#17/5−45a−3で組換え酵素Creを一過的に発現させた(図4、ステップ6)。TV3配列とTV4配列に存在するloxP間で転座組換えが誘導されると、Neo耐性遺伝子が再構築されるため(図10A)、G418耐性となったクローンの単離を行った。これらクローンのうち、染色体数が41本(XOでは40本)で転座組換えが起きていることを、ゲノムPCR及びFISH法により確認できた。このクローンを「TV3−4RENKA Tl3/4#17−1」とし、以降の実験に用いた(図10B−D)。
CRISPR/Cas9を用いた染色体転座の誘導
 MHC領域近位側の転座は、遠位側と同様に組換え酵素Dreを用いて転座誘導する予定であったため、当初は近位側にDreの認識配列roxを組換え導入したES細胞を準備していた。しかし、Dreによる転座は効率が低く、また選択マーカーとして用いる予定であったHPRT遺伝子の発現は、ES細胞において要求性が高かったため、組換え転座により再構築されるHPRT遺伝子の発現ではHATによる選択培養に耐えられないことがわかった。このため、マウス17番染色体の改変はTV4の導入のみに変更し、ES細胞のHprt遺伝子破壊は中止してTV3−4RENKA Tl3/4#17−1を作製している。
 そこで、MHC領域近位側はCRISPR/Cas9を用いて転座誘導することとした。具体的には、TV3−4RENKA Tl3/4#17−1にマウス17番染色体とヒト6番染色体それぞれのKIFC1からDAXXの遺伝子間領域を切断するCRISPRベクターと転座誘導ターゲティングベクターTV−Tl1/2−BSを導入し、ブラストサイジン耐性となったクローンを単離した(図4、ステップ7)。このうち、クローンTV3−4RENKA Tlb#38は染色体数が41本(XOでは40本)であり、転座組換えが起きていることをゲノムPCRにより確認できた。またFISH法により解析したところ、改変ヒト6番染色体は野生型17番染色体ではなく改変17番染色体との間で転座していることが分かったことから、TV3−4RENKA Tlb#38を以降の実験に用いた(図11)。
MHCヒト化ES細胞の単離
 MHCヒト化ES細胞の未分化性を担保するため、当初はここまでで作製できたMHCヒト化マウス17番染色体を継代数の少ないES細胞に導入し、内在マウス17番染色体を欠損させてMHCヒト化ES細胞を作製する計画を立てた(図4、ステップ8’)。しかし、この操作を行うにはES−A9融合細胞の作製とES細胞へのMHCヒト化染色体の導入が必要となり、その過程で高頻度で染色体異常が起きることが分かり、操作に制限が生じた。そこで、TV3−4RENKA Tlb#38からヒト染色体を自然脱落させてMHCヒト化ESクローンを多数単離して、キメラマウスの作製を試みた(図4、ステップ8)。
 ヒト染色体は、マウス細胞内で脱落しやすいことが報告されている。このため、TV3−4RENKA Tlb#38を選択薬剤非存在下で数日間培養を行い、残存ヒト6番染色体の脱落を誘導した。残存ヒト6番染色体脱落クローンの単離には、当初HPRT遺伝子欠損細胞を選択可能な6−チオグアニンを選択薬剤として利用する予定であったが、先述のようにES細胞においてHprt遺伝子は選択マーカーとして用いるのが難しいことが分かった。
 そこで、残存ヒト6番染色体上に残るよう設計した蛍光遺伝子mRuby2の発現を指標に、mRuby2陰性細胞をソートしてクローンを単離することにした。その結果、残存ヒト6番染色体が脱落したTV3−4RENKATlb#38dh6クローンの単離に成功した(図12)。このうち、染色体数が40本(XOでは39本)で、FISH法によりMHCヒト化マウス17番染色体が確認できたTV3−4RENKA Tlbdh6#3を以降の実験に用いた。また、マウスゲノム配列とヒトMHC領域内の配列をリファレンスとしてTV3−4RENKA Tlbdh6#3のホールゲノムシークエンス解析を実施し、導入したヒトMHC遺伝子群のハプロタイプを同定した(図12C)。
MHCヒト化マウスの樹立
 TV3−4RENKATlb#38dh6#3からキメラマウスの作製を実施し、毛色のキメラ率が50%~60%のマウスを3匹得た(図13A)(図4、ステップ9)。
 MHCヒト化染色体を持つES由来の細胞は、EGFPを発現するよう設計されている(図13B)。そこで、精巣におけるMHCヒト化ES細胞の寄与率をEGFPの発現を指標に解析したところ、ほぼ100%がEGFP陽性であったことが分かった(図13C)。このことから、精巣細胞を顕微授精(ICSI/ROSI)すれば産仔を得られる可能性が高いと考えられた。そこで、キメラマウスの精巣細胞を用いて顕微授精を実施した(図4、ステップ10)。
 その結果、MHCヒト化ES細胞が生殖系列伝播して全身が緑色に光るMHCヒト化マウスを得ることに成功した(図14A,B)。さらに、ゲノムPCRによりEGFP陽性個体がヒトMHC領域の配列を持つことも確認された(図14C)。これらの結果から、MHCヒト化(ヘテロ)マウスを樹立することに成功したことが分かった。
キメラマウスの自然交配によるMHCヒト化マウスの作製
 これまでの結果から、B6由来ES細胞から作製したMHCヒト化キメラマウスは生殖能力が低いことが分かった。そこで、メスとして発生するXO ES細胞(B6/CBA F1)のMHCヒト化も同様に実施してキメラマウスを作製し(図15A)(図4、ステップ9)、野生型マウスと交配した。
 その結果、自然交配によりMHCヒト化ヘテロマウスを得ることに成功した(図15B−D)(図4、ステップ10)。
4.MHCヒト化(ヘテロ)マウスにおけるヒトMHC遺伝子の発現解析
<方法>
ヒトMHC(HLAともいう)タンパク質の発現解析
 脾臓細胞の調製では、まず摘出した脾臓をナイフで細かく刻んだ後、スライドガラスのフロスト処理部を用いて組織片をすりつぶした。次に細胞を0.83%塩化アンモニウムで溶血処理し、ナイロンメッシュを通して脾臓細胞を調製した。フローサイトメトリー解析ではPacific Blue標識 抗mouse CD19抗体(Biolegend)、APC Conjugation Kit−Lightning−Link(Abcam)を用いてAPC標識した抗HLA class I抗体(MBL)あるいはAPC標識抗HLA−DR,DP,DQ抗体(Biolegend)を用いて細胞を染色し、FACS AriaIII(BD)を用いて解析を行った。ウエスタンブロット法による解析では抗HLA−A,B,C抗体(MBL)、抗HLA−A抗体(Abcam)、抗HLA−DRA抗体(Abcam)またはHRP標識抗ACTB抗体(Genscript)を用いて検出を行った。
 肺由来線維芽細胞の調製では、まず摘出した肺組織をナイフで細かく刻んだ後0.1%コラゲナーゼA(Roche)で1時間処理し、ピペッティングにより細胞を遊離させた後、ナイロンメッシュを通して肺由来線維芽細胞を調製した。肺由来線維芽細胞は10%FCS添加DMEMで培養した。
結果
 脾臓細胞におけるヒトMHC遺伝子の発現をタンパク質レベルで解析した。まず野生型(Wt)及びXO ES細胞から樹立したMHCヒト化(ヘテロ)マウス(Het)より脾臓細胞を調製し、抗HLA−A,B,C抗体、抗HLA−A抗体及び抗HLA−DRA抗体を用いたウエスタンブロッティング法によりヒトMHCタンパク質の発現を解析した。その結果、Het由来脾臓細胞においてヒトMHCの発現が特異的に検出された(図16A)。
 次にHLAタンパク質の細胞表面への発現を解析した。脾臓細胞は主にB細胞とT細胞から構成されており、MHCクラスIは全ての細胞、MHC class IIはB細胞に発現が確認されるはずである。そこでB細胞マーカーであるCD19に対する抗体、ヒトMHC class Iを認識する抗HLA class I抗体及びヒトMHC class IIを認識する抗HLA−DP,DQ,DR抗体を用いてフローサイトメトリーにより解析したところ、HLA class Iは全てのHet由来脾臓細胞で検出され、HLA−DP,DQ,DRはHet由来B細胞で特異的に発現が確認できた(図16B)。
配列番号1:合成DNA
 他の情報:
 /label=″EF1″(存在位置:30..1217)
 /label=″Hyg″(存在位置:1230..2267)
 /label=″RGpA″(存在位置:2274..2808)
 complement/label=″Origin pMB1 ori(pUC)″(存在位置:3562..4176)
 complement/label=″Bacterial Selection Amp″(存在位置:4336..5196)
配列番号2:合成DNA
 他の情報:
 /label=″FRT″(存在位置:18..65)
 complement/label=″BGHpA″(存在位置:66..342)
 complement/label=″3’Neo″(存在位置:347..805)
 /label=″SA″(存在位置:806..871)
 complement/label=″loxP″(存在位置:872..905)
配列番号3~8:合成DNA
配列番号9:合成DNA
 他の情報:
 /lebel=″P2A″ /note=″P2A″(存在位置:46..111)
 /lebel=″mRuby2″(存在位置:118..831)
配列番号10~11:合成DNA
配列番号12:合成DNA
 他の情報:
 /label=″EF1″(存在位置:30..1217)
 /label=″EGFP″(存在位置:1230..1949)
 /label=″RGpA″(存在位置:1956..2490)
 complement/label=″Origin pMB1 ori(pUC)″(存在位置:3244..3858)
 /label=″Bacterial Selection Amp″(存在位置:4018..4878)
配列番号13:合成DNA
 他の情報:
 complement/label=″Puro″(存在位置:22..618)
 complement/label=″T2A″(存在位置:619..681)
 /label=″SA″(存在位置:684..750)
 complement/label=″loxP″(存在位置:751..784)
 /label=″SD″(存在位置:788..854)
 complement/label=″5’Neo″(存在位置:855..1199)
 complement/label=″P2A″(存在位置:1200..1265)
配列番号14~21:合成DNA
配列番号22:合成DNA
 他の情報:
 /label=″Amp″(存在位置:819..1679)
 /label=″Origin pMB1 ori(pUC)″(存在位置:1839..2453)
 /label=″LA″(存在位置:2957..4041)
 /label=″CAG promoter″(存在位置:4047..5746)
 /label=″Hprt″(存在位置:5756..6412)
 /label=″RGpA″(存在位置:6439..6968)
 /label=″RA″(存在位置:6975..8363)
配列番号23:合成DNA
 他の情報:
 /label=″Blasticidin resistance gene″(存在位置:126..524)
配列番号24:合成DNA
 他の情報:
 /label=″U6 promoter″(存在位置:1..249)
 /label=″chimeric guide RNA scaffold″(存在位置:268..343)
 /label=″U6 terminator″(存在位置:344..349)
 /label=″CBh″(存在位置:440..1238)
 /label=″3xFLAG″(存在位置:1251..1319)
 /label=″NLS(1)″(存在位置:1320..1370)
 /label=″hSpCsn1″(存在位置:1371..5471)
 /label=″NLS″(存在位置:5472..5519)
 /label=″T2A″(存在位置:5526..5588)
 /label=″Ametrine″(存在位置:5589..6305)
 /label=″BGHpA″(存在位置:6315..6546)
 /label=″Bacterial Selection Amp″(存在位置:7612..8472)
 /label=″Origin pMB1 ori(pUC)″(存在位置:8632..9246)
配列番号27:合成DNA
 他の情報:
 /label=″U6 promoter″(存在位置:1..249)
 /label=″chimeric guide RNA scaffold″(存在位置:268..353)
 /label=″U6 terminator″(存在位置:354..359)
 /label=″CBh″(存在位置:450..1248)
 /label=″3xFLAG″(存在位置:1261..1329)
 /label=″NLS(1)″(存在位置:1330..1380)
 /label=″hSpCsn1″(存在位置:1381..5481)
 /label=″NLS″(存在位置:5482..5529)
 /label=″T2A″(存在位置:5536..5598)
 /label=″Ametrine″(存在位置:5599..6315)
 /label=″BGHpA″(存在位置:6325..6556)
 /label=″Bacterial Selection Amp″(存在位置:7622..8482)
 /label=″Origine pMB1 ori(pUC)″(存在位置:8642..9256)
配列番号28~52:合成DNA

Claims (33)

  1. 以下の(A)、(B)及び(D)のターゲティングベクターの組み合わせ、又は以下の(C)及び(D)のターゲティングベクターの組み合わせを含む、ベクターセット。
    (A)ヒト第6番染色体において、その短腕に存在する主要組織適合遺伝子複合体(ヒトMHC)領域よりも遠位側の任意の位置P1に組み込まれるターゲティングベクター1であって、
    当該ターゲティングベクター1は、前記P1から遠位端までの領域と、非ヒト哺乳動物の染色体のうち当該染色体に存在するMHC(非ヒトMHC)領域よりも遠位側であって前記P1に対応する位置p1から遠位端までの領域との間で転座組換えを起こさせるものであり、かつ、組換え酵素認識配列、転座組換え時に再構成される薬剤選抜用の薬剤耐性遺伝子1の一の部分配列、及びターゲティング後の薬剤選抜用の薬剤耐性遺伝子2を含む遺伝子カセット1を含む、前記ターゲティングベクター1
    (B)MHC領域が存在する非ヒト哺乳動物の染色体において、当該MHC(非ヒトMHC)領域よりも遠位側の前記P1に対応する位置p1に組み込まれるターゲティングベクター2であって、
    当該ターゲティングベクター2は、前記p1から遠位端までの領域と、ヒト第6番染色のうち前記P1から遠位端までの領域との間で転座組換えを起こさせるものであり、かつ、組換え酵素認識配列、前記薬剤耐性遺伝子1の他の配列、ターゲティング後の薬剤選抜用の薬剤耐性遺伝子3を含む遺伝子カセット2を含む、ターゲティングベクター2
    (C)ヒト第6番染色体において、ヒトMHC領域よりも遠位側であってゲノム編集ツールにより切断の標的となる任意の位置P1から遠位端までの領域と、MHCが存在する非ヒト哺乳動物の染色体において、非ヒトMHC領域よりも遠位側であって前記P1に対応する位置p1から遠位端までの領域との間で転座組換えを起こさせるターゲティングベクター3であって、
    当該ターゲティングベクター3は、前記P1と前記ヒトMHC領域との間の一部の領域R1aの配列の相同配列、ターゲティング後の薬剤選抜用の薬剤耐性遺伝子4、及び前記p1よりも遠位側の一部の領域R2bの配列の相同配列を含むか、あるいは、前記P1よりも遠位側の一部の領域R1bの配列の相同配列、ターゲティング後の薬剤選抜用の薬剤耐性遺伝子4、及び前記p1と前記非ヒトMHC領域との間の一部の領域R2aの配列の相同配列を含む、前記ターゲティングベクター3
    (D)ヒトMHC領域よりも近位側であってゲノム編集ツールにより切断の標的となる任意の位置P2から遠位端までの領域と、非ヒトMHCが存在する非ヒト哺乳動物の染色体において、当該非ヒトMHC領域よりも近位側であって前記P2に対応する位置p2から遠位端までの領域との間で転座組換えを起こさせるターゲティングベクター4であって、
    当該ターゲティングベクター4は、前記P2よりも近位側の一部の領域R3aの配列の相同配列、ターゲティング後の薬剤選抜用の薬剤耐性遺伝子5、及び前記p2と前記非ヒトMHC領域との間の一部の領域R4bの配列の相同配列を含むか、あるいは、前記P2とヒトMHC領域との間の一部の領域R3bの配列の相同配列、ターゲティング後の薬剤選抜用の薬剤耐性遺伝子5、及び前記p2よりも近位側の一部の領域R4aの配列の相同配列を含む、前記ターゲティングベクター4
  2. さらに以下の(E)及び(F)のベクターを含む、請求項1に記載のベクターセット。
    (E)ヒト第6番染色体を前記任意の位置P1で切断するゲノム編集ツールベクター1
    (F)非ヒト染色体を前記任意の位置p1で切断するゲノム編集ツールベクター2
  3. さらに以下の(G)及び(H)のベクターを含む、請求項1に記載のベクターセット。
    (G)ヒト第6番染色体を前記任意の位置P2で切断するゲノム編集ツールベクター3
    (H)非ヒト染色体を前記任意の位置p2で切断するゲノム編集ツールベクター4
  4. ヒトMHC領域が、クラスI領域、クラスII領域、クラスIII領域、又はこれらの組み合わせの領域を含む、請求項1~3のいずれか1項に記載のベクターセット。
  5. クラスI領域が、HLA−A、HLA−B、HLA−C、HLA−E、HLA−F、HLA−G、MICA及びMICBからなる群から選ばれる少なくとも1つを含む、請求項4に記載のベクターセット。
  6. クラスII領域が、HLA−DP、HLA−DQ、HLA−DR、HLA−DM及びHLA−DOからなる群から選ばれる少なくとも1つを含む、請求項4に記載のベクターセット。
  7. クラスI領域を含む領域が、HLA−A、HLA−B、HLA−C、HLA−E、HLA−F、HLA−G、MICA及びMICBを含む領域である、請求項4に記載のベクターセット。
  8. クラスII領域を含む領域が、HLA−DP、HLA−DQ、HLA−DR、HLA−DM及びHLA−DOを含む領域である、請求項4に記載のベクターセット。
  9. クラスI領域及びクラスII領域の両者を含む領域が、DAXX遺伝子座とMOG遺伝子座との間の領域である、請求項4に記載のベクターセット。
  10. 前記任意の位置P1がMOG遺伝子座とGABBR1遺伝子座との間の位置である、請求項1~3のいずれか1項に記載のベクターセット。
  11. 前記任意の位置P2がKIFC1遺伝子座とDAXX遺伝子座との間の位置である、請求項1~3のいずれか1項に記載のベクターセット。
  12. 非ヒト哺乳動物がげっ歯類である請求項1~3のいずれか1項に記載のベクターセット。
  13. げっ歯類がマウスである請求項12に記載のベクターセット。
  14. 前記任意の位置p1がMog遺伝子座とGabbr1遺伝子座との間の位置である、請求項13に記載のベクターセット。
  15. 前記任意の位置p2がKifc1遺伝子座とDaxx遺伝子座との間の位置である、請求項13に記載のベクターセット。
  16. 薬剤耐性遺伝子1がネオマイシン耐性遺伝子であり、薬剤耐性遺伝子2がハイグロマイシン耐性遺伝子であり、及び/又は薬剤耐性遺伝子3がピューロマイシン耐性遺伝子である請求項1~3のいずれか1項に記載のベクターセット。
  17. 薬剤耐性遺伝子4がネオマイシン耐性遺伝子であり、及び/又は薬剤耐性遺伝子5がブラストサイジン耐性遺伝子である、請求項1~3のいずれか1項に記載のベクターセット。
  18. 遺伝子カセット1における組換え酵素認識配列がloxPであり、薬剤耐性遺伝子1がネオマイシン耐性遺伝子であり、薬剤耐性遺伝子2がハイグロマイシン耐性遺伝子である、請求項1~3のいずれか1項に記載のベクターセット。
  19. 遺伝子カセット1が、次式(1):
    BGHpA−3’Neo−SA−loxP−EF1−Hyg−P2A−mRuby2−RGpA (1)
    (BGHpAはウシ成長ホルモン由来ポリA付加シグナル配列を表し、3’Neoはネオマイシン耐性遺伝子の3’側の一部の配列を表し、SAはスプライシングアクセプター配列を表し、loxPは組換え酵素認識配列を表し、EF1はヒト伸長因子1α由来プロモーター配列を表し、Hygはハイグロマイシン耐性遺伝子を表し、P2Aはブタテシオウイルス由来2A配列を表し、mRuby2は赤色蛍光遺伝子を表し、RGpAはラビットβ−グロビン由来ポリA付加シグナル配列を表す。)で示されるコンストラクトを含む、請求項1~3のいずれか1項に記載のベクターセット。
  20. 遺伝子カセット2における組換え酵素認識配列がloxPであり、薬剤耐性遺伝子1がネオマイシン耐性遺伝子であり、薬剤耐性遺伝子3がピューロマイシン耐性遺伝子である、請求項1~3のいずれか1項に記載のベクターセット。
  21. 遺伝子カセット2が、次式(2):
    EF1−EGFP−P2A−5’Neo−SD−loxP−SA−T2A−Puro−RGpA (2)
    (EF1はヒト伸長因子1α由来プロモーター配列を表し、EGFPは緑色蛍光遺伝子を表し、P2Aはブタテシオウイルス由来2A配列を表し、5’Neoはネオマイシン耐性遺伝子の5’側の一部の配列を表し、SDはスプライシングドナー配列を表し、loxPは組換え酵素認識配列を表し、SAはスプライシングアクセプター配列を表し、T2AはThosea asignaウイルス由来2A配列を表し、Puroはピューロマイシン耐性遺伝子を表し、RGpAはラビットβ−グロビン由来ポリA付加シグナル配列を表す。)で示されるコンストラクトを含む、請求項1~3のいずれか1項に記載のベクターセット。
  22. 請求項1~3のいずれか1項に記載のベクターセットにより非ヒト哺乳動物の染色体のMHC領域がヒト染色体のMHC領域で置換された染色体を含む、MHC領域がヒト化された非ヒト哺乳動物細胞。
  23. ES細胞である請求項22に記載の細胞。
  24. 請求項22に記載の細胞から作出され、MHC領域がヒト化された非ヒト哺乳動物。
  25. 非ヒト哺乳動物がげっ歯類である請求項24に記載の非ヒト哺乳動物。
  26. げっ歯類がマウスである請求項25に記載の非ヒト哺乳動物。
  27. マウス第17番染色体のうち少なくともDaxx遺伝子座からMog遺伝子座までの染色体部分が、ヒト第6番染色体のうち少なくともDAXX遺伝子座からMOG遺伝子座までの染色体部分で置換された染色体を有する、請求項26に記載の非ヒト哺乳動物。
  28. MHC領域がヒト化された非ヒト哺乳動物の製造方法であって、以下の工程:
    (1)請求項1~3のいずれか1項に記載のベクターセットを用いて、非ヒト哺乳動物の染色体のMHC領域を、ヒト染色体のMHC領域で置換した染色体を含む細胞を作製する工程、
    (2)前記(1)で得られた細胞から、MHC領域がヒト化された非ヒト哺乳動物を作出する工程
    を含む、前記方法。
  29. 非ヒト哺乳動物がげっ歯類である請求項28に記載の方法。
  30. げっ歯類がマウスである請求項29に記載の方法。
  31. 請求項22に記載の細胞を非ヒト哺乳動物の仮親に移植して、MHC領域がヒト化された染色体を有する非ヒト哺乳動物を作出する工程を含む、MHC領域がヒト化された非ヒト哺乳動物の製造方法。
  32. 非ヒト哺乳動物がげっ歯類である請求項31に記載の方法。
  33. げっ歯類がマウスである請求項32に記載の方法。
PCT/JP2023/010779 2022-03-14 2023-03-14 Mhc遺伝子群ヒト化動物 WO2023176982A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-039574 2022-03-14
JP2022039574 2022-03-14

Publications (1)

Publication Number Publication Date
WO2023176982A1 true WO2023176982A1 (ja) 2023-09-21

Family

ID=88023467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/010779 WO2023176982A1 (ja) 2022-03-14 2023-03-14 Mhc遺伝子群ヒト化動物

Country Status (1)

Country Link
WO (1) WO2023176982A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000010383A1 (en) * 1998-08-21 2000-03-02 Kirin Beer Kabushiki Kaisha Method for modifying chromosomes
US20090328240A1 (en) * 2008-06-24 2009-12-31 Sing George L Genetically modified mice as predictors of immune response
WO2020257545A1 (en) * 2019-06-19 2020-12-24 Applied Stemcell, Inc. Methods for chomosome rearrangement
WO2021139799A1 (en) * 2020-01-10 2021-07-15 Biocytogen Pharmaceuticals (Beijing) Co., Ltd. Genetically modified non-human animal with human or chimeric mhc protein complex
US20220033781A1 (en) * 2019-04-12 2022-02-03 Humab Co., Ltd. Artificial recombinant chromosome and use thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000010383A1 (en) * 1998-08-21 2000-03-02 Kirin Beer Kabushiki Kaisha Method for modifying chromosomes
US20090328240A1 (en) * 2008-06-24 2009-12-31 Sing George L Genetically modified mice as predictors of immune response
US20220033781A1 (en) * 2019-04-12 2022-02-03 Humab Co., Ltd. Artificial recombinant chromosome and use thereof
WO2020257545A1 (en) * 2019-06-19 2020-12-24 Applied Stemcell, Inc. Methods for chomosome rearrangement
WO2021139799A1 (en) * 2020-01-10 2021-07-15 Biocytogen Pharmaceuticals (Beijing) Co., Ltd. Genetically modified non-human animal with human or chimeric mhc protein complex

Similar Documents

Publication Publication Date Title
JP6700306B2 (ja) 受精前の卵細胞、受精卵、及び標的遺伝子の改変方法
JP2020124228A (ja) ヒト可変領域を保有している抗体を産生するために有用な繁殖可能遺伝子導入動物
US20140201858A1 (en) Methods for site-specific genetic modification in stem cells using xanthomonas tal nucleases (xtn) for the creation of model organisms
KR20180091821A (ko) 유전적 상보성에 의한 인간화 car t-세포 및 혈소판의 조작방법
CN106535630A (zh) 猪中的多重基因编辑
JP2009034106A (ja) ヒト化免疫系を含むトランスジェニック動物
JP6004290B2 (ja) 不活化された内因性遺伝子座を有するトランスジェニックニワトリ
US20200205384A1 (en) Transgenic Animals
JP2019502400A (ja) キメラ胚補助臓器作製用の組成物及び方法
WO2020240876A1 (ja) エクソンヒト化マウス
US20170223938A1 (en) Transgenic chickens with an inactivated endogenous gene locus
WO2015199225A1 (ja) 家禽始原生殖細胞の遺伝子改変方法、遺伝子改変された家禽始原生殖細胞、遺伝子改変家禽の生産方法及び家禽卵
US20060064769A1 (en) Conditional disruption of Dicer1 in cell lines and non-human mammals
AU2001241720B2 (en) Production of mammals which produce progeny of a single sex
WO2017175745A1 (ja) 生殖細胞欠損動物を用いる遺伝子改変動物の作製方法
CN106978416B (zh) 一种基因定位整合表达系统及其应用
JP2019505218A (ja) 遺伝子相補によるヒト化腎臓の操作
WO2023176982A1 (ja) Mhc遺伝子群ヒト化動物
JP2020145983A (ja) 円形脱毛症モデル動物
US20240263194A1 (en) Animal preparation method
Brakebusch Generation and analysis of genetically modified mice
US20190183100A1 (en) Animal models for polycystic kidney disease
JP4590629B2 (ja) Psf1遺伝子欠損動物およびその利用方法
WO2024003907A1 (en) Totally sterile population of avian embryos, production and uses thereof
CN116376976A (zh) 人源IL32γ条件敲入小鼠模型的构建方法及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770934

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024508289

Country of ref document: JP

Kind code of ref document: A