WO2023176900A1 - Member - Google Patents

Member Download PDF

Info

Publication number
WO2023176900A1
WO2023176900A1 PCT/JP2023/010157 JP2023010157W WO2023176900A1 WO 2023176900 A1 WO2023176900 A1 WO 2023176900A1 JP 2023010157 W JP2023010157 W JP 2023010157W WO 2023176900 A1 WO2023176900 A1 WO 2023176900A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
water
surface layer
natural number
structure represented
Prior art date
Application number
PCT/JP2023/010157
Other languages
French (fr)
Japanese (ja)
Inventor
弘優 徳留
拓真 川崎
寿明 鴨志田
綾子 角崎
萌美 小柳
恭子 片岡
Original Assignee
Toto株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2023039682A external-priority patent/JP2023138439A/en
Application filed by Toto株式会社 filed Critical Toto株式会社
Publication of WO2023176900A1 publication Critical patent/WO2023176900A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00

Definitions

  • the present invention relates to a member. Specifically, in an environment where water and contaminants containing organic and/or inorganic components adhere to a surface, and the water dries with water and contaminants mixed on the surface, a cycle is repeated. Related to members for use in.
  • limescale is formed due to the adhesion of inorganic components contained in the tap water.
  • Typical inorganic components include silicate ions (SiO 3 2 ⁇ ) and calcium ions (Ca 2+ ).
  • Silicate ions (SiO 3 2- ) are polymerized by dehydration condensation, and calcium ions react with CO 2 in the air or water and become densely crystallized as calcium carbonate as water evaporates. It adheres to the surface of the component and forms limescale.
  • contaminants adhere to the surface of components, including not only water but also the inorganic components (silicate ions, calcium ions, etc.) and organic components (sebum, soap scum, rinse, protein, etc.) listed above. . These contaminants remain on the surface of the component when the water dries. In many cases, at least one type of these contaminants adheres to the surface of the component, so that a mixture of limescale and contaminants is formed on the surface of the component after drying. In order to suppress the adhesion of such dirt and to improve the cleanability of the adhered dirt, techniques have been proposed for modifying the surface of the member.
  • JP-A-2008-239949 discloses a hydrophilic member having a surface with excellent antifouling properties, antifogging properties, and abrasion resistance.
  • a zwitterionic low-molecular compound having a betaine structure is bonded to a hydrophilic polymer having a silane coupling group at the terminal or side chain by silane coupling, and inorganic components such as Si, Ti, Zr, and Al are bonded to the hydrophilic polymer having a silane coupling group at the terminal or side chain.
  • a member is disclosed in which a hydrophilic film introduced and densified is formed on a base material.
  • Patent Document 2 discloses a member in which a coating formed on a base material by curing a curable composition containing a polyfunctional (meth)acrylamide monomer and a betaine monomer of acrylic or acrylamide is disclosed. is disclosed. This member is said to be able to exhibit excellent antifogging properties, and has excellent antifogging durability while maintaining high hardness.
  • JP-A-5-179155 discloses a coating film obtained by curing a composition containing a polyfunctional (meth)acryloyl monomer and a sulfobetaine type monomer containing a (meth)acryloyl group. Disclosed is a member formed on a methacrylic resin plate. This member is said to have excellent scratch resistance, abrasion resistance, antistatic properties, and antifogging properties.
  • the present inventors proposed an environment in which a cycle in which water and contaminants containing organic and/or inorganic components adhere to a surface, and then the water dries with water and contaminants mixed on the surface is repeated.
  • a typical protein generated in the bathroom environment is human-derived keratin. Proteins have a hydrophobic region, a positively charged region, and a negatively charged region in their molecules, so they cannot be attached to inorganic materials such as glass and ceramics, resin materials, or metal materials that are commonly used as plumbing materials. It can also be attached to objects by hydrophobic action, electrostatic action, etc. Therefore, proteins were considered as the main contaminant.
  • the member according to the invention comprises: Components used in environments where water and contaminants containing organic and/or inorganic components adhere to the surface, and the water dries in a state where water and contaminants coexist on the surface, a cycle repeated.
  • the member includes a base material and a surface layer,
  • the surface layer includes a structure represented by the following formula (A1) and a structure represented by the following formula (A2),
  • L 1 includes any one of -COO-, -CONH-, -(CH 2 ) m - (m is a natural number), R 1 is H or CH 3 ;
  • X 1 is a functional group represented by the following formula (B),
  • R 2 and R 5 are each independently a hydrocarbon group represented by -(CH 2 ) l - (l is a natural number from 1 to 10),
  • R 3 and R 4 are each independently an organic group containing C and H as essential components, O as an optional component, and not containing N and S
  • L 2 includes
  • Y is a straight chain, branched or cyclic hydrocarbon group having 1 to 10 carbon atoms
  • L 3 includes any one of -OCO-, -NHCO-, -(CH 2 ) m - (m is a natural number), R 1 is H or CH 3
  • Y is a straight chain, branched or cyclic hydrocarbon group having 1 to 10 carbon atoms
  • X 3 is a structure represented by the following formula (E1),
  • E1 Y is a straight chain, branched or cyclic hydrocarbon group having 1 to 10 carbon atoms
  • L 3 includes any one of -OCO-, -NHCO-, -(CH 2 ) m - (m is a natural number)
  • R 1 is H or CH 3
  • a is a natural number
  • Y is a straight chain, branched or cyclic hydrocarbon group having 1 to 10 carbon atoms
  • X 3 is a straight chain, branched or cyclic hydrocarbon group
  • an environment in which a cycle is repeated in which water and contaminants containing organic and/or inorganic components adhere to a surface, and the water dries while water and contaminants are mixed on the surface a member is provided which is able to suppress the adhesion or adhesion of dirt, in particular limescale and proteins, to the surface, and which can furthermore allow the adhering dirt to be removed easily, ie with a low cleaning load.
  • FIG. 1 is a schematic cross-sectional view of an example of a member according to the present invention.
  • 3 is a microscopic photograph of a member sample of Example 1.
  • 3 is a micrograph of a member sample of Comparative Example 2.
  • FIG. 1 shows a structure in which water and contaminants containing organic and/or inorganic components adhere to the surface, and the water dries with the water and contaminants mixed on the surface, according to the present invention.
  • FIG. 2 is a schematic cross-sectional view of an example of a member (hereinafter also simply referred to as "member") used in an environment where the vehicle is used.
  • the member 10 according to the present invention comprises a base material 1 .
  • the member 10 further includes a surface layer 2.
  • the surface layer 2 is on the outermost surface of the member 10.
  • the member 10 may further include an intermediate layer 3 and/or a primer layer 4, which will be described later.
  • the member 10 may further include layers (not shown) other than those described above, as long as the effects of the present invention can be achieved. Note that it can be confirmed that the member 10 includes the surface layer 2 by observing a cross section of the member 10 using an electron microscope and separating the layers.
  • the member according to the present invention can be applied to all members used around water.
  • Examples of water areas include bathrooms, toilets, washrooms, and kitchens.
  • Specific examples of water-related members include floors, bathtubs, walls, ceilings, counters, aprons, drains, mirrors, etc. for bathrooms.
  • Examples of toilets include toilet bowls, tanks, toilet lids, toilet seats, and Washlets (registered trademark).
  • washrooms examples include washbowls, washstand counters, mirrors, lighting, faucet fittings, drains, cabinets, washing machine pans, etc.
  • examples include sinks, counters, faucet fittings, drains, dishwashers, dish dryers, cooking ranges, kitchen hoods, ventilation fans, etc.
  • the member according to the present invention can be used in an environment where a cycle is repeated in which water and contaminants containing organic and/or inorganic components adhere to the surface, and the water dries while water and contaminants are mixed on the surface.
  • a cycle is repeated in which water and contaminants containing organic and/or inorganic components adhere to the surface, and the water dries while water and contaminants are mixed on the surface.
  • parts are used in environments where water, components that make up limescale (silicate ions, calcium ions, etc.) and proteins adhere to the surface of the component, and a cycle of water drying in a mixed state is repeated. It is a member that Further, the present invention is applicable to any situation where the above cycle is repeated.
  • the filled condition a condition in which water and contaminants adhere to the surface
  • the drained condition a condition in which water dries with water and contaminants mixed together
  • the member according to the present invention can effectively suppress not only protein adhesion but also limescale adhesion under such an environment.
  • contaminants refer to all the dirt that adheres to the surfaces of parts used in environments where water adhesion and drying occur repeatedly, and more specifically, silicate ions, calcium ions, sebum, soap scum, etc. , rinse, and protein.
  • the member according to the present invention can be made from any base material that is commonly used in an environment where a cycle of adhesion of water and contaminants and drying of water in a state where these are mixed is repeated.
  • the above-mentioned effects can be achieved on various substrates.
  • the surface layer includes a structure represented by the following formula (A1) and a structure represented by the following formula (A2).
  • L 1 includes any one of -COO-, -CONH-, -(CH 2 ) m - (m is a natural number), R 1 is H or CH 3 ;
  • X 1 is a functional group represented by the following formula (B),
  • R 2 and R 5 are each independently a hydrocarbon group represented by -(CH 2 ) l - (l is a natural number from 1 to 10),
  • R 3 and R 4 are each independently an organic group containing C and H as essential components, O as an optional component, and not containing N or S.
  • L 2 includes any one of -COO-, -CONH-, -(CH 2 ) m - (m is a natural number), R 1 is H or CH 3 ;
  • X 2 is a functional group represented by the following formula (C),
  • Y is a straight chain, branched or cyclic hydrocarbon group having 1 to 10 carbon atoms, a is a natural number,
  • R 6 has any structure selected from the group consisting of H, CH 3 , C 2 H 5 , the following formula (D1), the following formula (D2), the following formula (D3), and the following formula (D4). It is characterized by containing.
  • Y is a straight chain, branched or cyclic hydrocarbon group having 1 to 10 carbon atoms
  • L 3 includes any one of -OCO-, -NHCO-, -(CH 2 ) m - (m is a natural number), R1 is H or CH3 .
  • Y is a straight chain, branched or cyclic hydrocarbon group having 1 to 10 carbon atoms
  • X 3 has a structure represented by the following formula (E1).
  • E1 Y is a straight chain, branched or cyclic hydrocarbon group having 1 to 10 carbon atoms
  • L 3 includes any one of -OCO-, -NHCO-, -(CH 2 ) m - (m is a natural number), R 1 is H or CH 3 a is a natural number.
  • Y is a straight chain, branched or cyclic hydrocarbon group having 1 to 10 carbon atoms
  • X 3 is a structure represented by the above formula (E1).
  • X 4 has a structure represented by the following formula (E2).
  • Y is a straight chain, branched or cyclic hydrocarbon group having 1 to 10 carbon atoms
  • L 3 includes any one of -OCO-, -NHCO-, -(CH 2 ) m - (m is a natural number), R 1 is H or CH 3 a is a natural number.
  • the member according to the present invention can suppress adhesion of various contaminants to the surface.
  • These suppressing mechanisms are thought to be as follows, but these are only hypotheses, and the present invention is not limited by this hypothesis in any way.
  • the structure represented by formula (A1) is a betaine structure as described later, and has antifouling ability (protein adsorption suppressing ability). This performance makes it possible to suppress the adhesion of proteins to the surface of the member.
  • silicate ions may be electrostatically adsorbed to the N + site in the structure represented by formula (A1).
  • the amount of silicate ions attached increases. That is, the adhesion density of silicate ions increases. This induces or promotes polymerization through dehydration condensation between silicate ions, and when the adhesion density of silicate ions further increases in this state, the generated polymer becomes denser, which accelerates the adhesion of limescale. There is a risk of causing Furthermore, there is a possibility that calcium ions may be electrostatically adsorbed to the SO 3 - site in the structure represented by formula (A1). In this case, the amount of calcium ions adsorbed increases. That is, the adsorption density of calcium ions increases.
  • the surface layer of the member according to the present invention includes the structure represented by formula (A2) as well as the structure represented by formula (A1), polymerization of silicate ions and/or crystallization of calcium carbonate, and further formation of It is possible to suppress the densification of the polymer and/or crystals. That is, the structure represented by formula (A2) is a structure that is hydrophilic and nonionic, as described below, so silicate ions and /or Calcium ions cannot be electrostatically adsorbed.
  • a hydrophilic and nonionic structure represented by formula (A2) and a betaine structure represented by formula (A1) coexist (for example, both are randomly distributed). Existing). Therefore, even if there is a site where a silicate ion is attached to N + in the structure represented by formula (A1) and/or a site where calcium ion is adsorbed to SO 3 - in the same structure, it is hydrophilic and There are also sites where adsorption of silicate ions and/or calcium ions is inhibited due to the nonionic structure.
  • the member according to the present invention can simultaneously suppress not only protein adhesion but also limescale adhesion. .
  • the expression that the surface layer includes a structure represented by formula (A1) refers to that the surface layer contains one or more of a specific number of structures represented by formula (A1)
  • the expression that the surface layer includes a structure represented by formula (A2) refers to that the surface layer contains one or more types of a specific number of structures represented by formula (A2).
  • the surface layer is preferably a layer containing only the structure represented by formula (A1) and the structure represented by formula (A2).
  • the surface layer is preferably a polymer layer.
  • the polymer layer is a layer containing a polymer compound.
  • the surface layer preferably contains a polymer compound having a structure represented by formula (A1) and a structure represented by formula (A2). It is further preferable that the surface layer contains a polymer compound containing only the structure represented by formula (A1) and the structure represented by formula (A2). In this case, it is preferable that the structure represented by formula (A1) and the structure represented by formula (A2) are randomly bonded.
  • L 1 is preferably -COO-.
  • R 2 and R 5 are preferably 1 to 6, more preferably 1 to 5, and preferably 1 to 3. Even more preferred. This makes it possible to minimize the adsorption of anionic silicate ions to cationic N + sites and/or adsorption of cationic calcium ions to anionic SO 3 - sites. can. Thereby, the structure represented by formula (A1) can constitute a stable molecule.
  • the anionic silicate ion and/or cation It is possible to suppress the easy approach of chemical calcium ions to the structure represented by formula (A1) (that is, the surface layer), and to suppress the adsorption of anionic silicate ions and/or cationic calcium ions.
  • L 2 is preferably -COO-.
  • R 6 preferably contains any one of H, CH 3 , C 2 H 5 , or a structure represented by formula (D1).
  • R 6 is H, CH 3 or C 2 H 5 , these are monovalent functional groups. This can enhance the effect of preventing attachment of various contaminants including proteins. More preferably, R 6 is H or CH 3 .
  • the proportion of the hydrophilic moiety (-YO- repeating structure) in formula (A2) can be increased, so that the hydrophilicity of the surface layer can be increased. As a result, it becomes possible to further enhance the effect of preventing the adhesion of contaminants.
  • R 6 preferably includes any one of formula (D1), formula (D2), formula (D3), or formula (D4).
  • the structure represented by formula (D1) is a divalent functional group
  • the structures represented by formulas (D2) and (D3) are trivalent functional groups
  • the structure represented by formula (D4) is a tetravalent functional group. This makes it possible to improve durability such as sliding durability and abrasion resistance.
  • R 6 is formula (D2), formula (D3), or formula (D4). This makes it possible to increase the crosslinking density in the surface structure, making it possible to further improve durability.
  • Y is preferably a linear hydrocarbon group having 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms.
  • the number of carbon atoms is 1 to 3, even more preferably. This also increases the hydrophilicity of the surface layer, making it possible to prevent attachment of various contaminants including proteins.
  • the surface layer contains the structure represented by formula (A1) and the structure represented by formula (A2).
  • IR Infrared spectroscopy
  • TOF-SIMS Time-of-flight secondary ion mass spectrometry
  • structural information on organic substances present on the surface of the surface layer can be obtained.
  • the sample surface is sputtered several nm thick with an ion source such as GCIB as a pretreatment, and then irradiated with a primary ion source such as Bi 3 2+ . and measure the fragments.
  • an ion source such as GCIB as a pretreatment
  • a primary ion source such as Bi 3 2+
  • XPS X-ray photoelectron spectroscopy
  • the structure represented by formula (A1) is the structure shown in the following formula (A3) (a structure containing a cationic ammonium moiety), or the structure represented by the formula (A3) and the following formula (A4) (anionic In the case of a mixture of structures containing sulfonic acid moieties), the peak positions are 402.0 eV and 401.8 eV, respectively. In this way, it is possible to identify whether an N atom is derived from sulfobetaine based on the difference in peak position. Similarly, it is possible to identify whether or not the S atom originates from sulfobetaine from the peak position.
  • the energy is 166.2 eV
  • the peak position is 167.5 eV. , 167.1 eV. Note that all these peak positions are obtained by correcting the peak position of the C1s orbit at 284.5 [eV].
  • NMR Nuclear magnetic resonance measurement
  • the static contact angle of water with respect to the surface of the surface layer is preferably as low as possible.
  • the angle is preferably 30° or less, more preferably 25° or less, and even more preferably 15° or less. This increases hydrophilicity, making it possible to prevent attachment of various contaminants including proteins.
  • the static contact angle of water with respect to the surface of the surface layer is measured, for example, using the following apparatus and software under the following measurement conditions.
  • the abundance ratio (SB ratio) of the structure represented by formula (A1) (sulfobetaine structure) in the surface layer is 14 It is preferable that % ⁇ SB ratio ⁇ 92%, and it is preferable that 22% ⁇ SB ratio ⁇ 75%. Thereby, adhesion of proteins and adhesion of scale can be suppressed well.
  • the SB ratio can be calculated from the S atom concentration obtained by XPS measurement of the surface layer.
  • By normalizing the S atom concentration obtained by XPS measurement of the surface of each sample using it is possible to estimate the proportion of sulfobetaine structures present on the surface of each sample.
  • the S atom concentration of a member sample containing only a compound having a sulfobetaine structure as a component of the surface layer is 100%, and the sample contains only a nonionic monomer (does not contain a compound having a sulfobetaine structure).
  • the S atom concentration of the member sample is normalized as 0%.
  • a normalized value for each component sample is calculated from the S concentration value obtained by the XPS measurement, and this value is taken as the SB ratio of each component sample.
  • a measurement sample can be obtained by cutting an area of an appropriate size from a plate-shaped member sample. Note that it is preferable to wash the surface of the measurement sample before measurement. For example, it is more preferable to wash the surface of the measurement sample using a neutral detergent and a sponge, and then rinse thoroughly with ultrapure water.
  • - XPS measurement device K-alpha manufactured by ThermoFisher Scientific
  • ⁇ XPS measurement conditions X-ray conditions: Monochromatic AlK ⁇ ray, 72W-12KV Photoelectron extraction angle: 90° Analysis area: 400 ⁇ m ⁇ Neutralization gun conditions: 200 ⁇ A Ion gun conditions: 10mA (survey) Time per step: 10ms Energy step size: 1.000eV Sweep: 2 times Pass energy: 200eV Scanning range: -10 to 1350eV (Narrow) Time per step: 50ms Energy step size: 0.100eV Sweep: 5 times Pass energy: 50eV Scanning range: C1s peak 279.000eV to 298.000eV, O1s peak 525.000eV to 545.000eV, N1s peak 392.000eV to 410.000eV, S2p peak 157.000eV to 175.000eV, Si2p peak 95.000eV to 11 0 .000eV, P2p peak 124.000eV to 144.000eV
  • the concentration of the detected atoms can be calculated from the obtained spectrum using, for example, data analysis software Thermo Avantage (version 5.9916, manufactured by ThermoFisher Scientific). Charge correction is performed on the spectrum obtained by narrow analysis by setting the C1s peak to 284.5 eV. After that, the background is removed using the Shirley method for the peak based on the electron orbit of each measured atom, and then the peak area intensity is calculated and divided by the device-specific sensitivity coefficient preset in the data analysis software. The process is performed, and the concentration of each atom is calculated when the total of C atoms , O atoms, N atoms, S atoms, Si atoms, and P atoms is taken as 100%.
  • Concentration of Si atoms In the present invention, it is preferable that the concentration of Si atoms obtained by XPS measurement of the surface of the member is 1.0% or less. Since the concentration of Si atoms contained in the surface of the member is low, formation and adsorption of water scale can be suppressed. More preferably, the concentration of Si atoms is 0.4% or less.
  • Concentration of S atoms In the present invention, it is preferable that the concentration of S atoms obtained by XPS measurement of the surface of the member is 0.5% or more. Thereby, protein adsorption can be suppressed.
  • the concentration of S atoms is preferably 0.7% or more. Note that the concentration of S atoms is considered to be the concentration due to S in the sulfobetaine structure existing on the surface.
  • N atom concentration/S atom concentration In the present invention, it is preferable that the N atom concentration/S atom concentration obtained by XPS measurement of the surface of the member is 0.5 or more and 2.5 or less. Thereby, protein adsorption and scale formation and adsorption can be effectively suppressed.
  • the ratio of N atom concentration/S atom concentration is more preferably 0.6 or more and 2.0 or less.
  • the surface layer may be provided on the base material.
  • the surface layer may be provided on the surface of the base material. That is, the surface layer may be formed directly on the surface of the base material without including any other layer between the base material and the surface layer.
  • the surface layer is preferably a gradient film having a gradient composition.
  • the surface side of the surface layer includes a structure represented by formula (A1) and a structure represented by formula (A2), and the base material side of the surface layer includes, for example, a main chain described below.
  • a gradient film containing a large amount of acrylic resin or polyvinyl resin is preferable. This makes it possible to ensure close contact with the base material while suppressing protein adsorption and scale formation and adsorption.
  • the surface layer is preferably formed by curing the composition for forming surface layer.
  • the composition for forming a surface layer may contain a compound having a betaine structure, a nonionic monomer, a polymerization initiator, and a solvent as an optional component.
  • the composition for forming a surface layer may contain a compound having a betaine structure.
  • a compound having a betaine structure means a compound having at least one cation, anion, and an ethylenically unsaturated group in the same molecule.
  • examples of the cation include cations such as quaternary ammonium, sulfonium, and phosphonium.
  • examples of anions include anions such as -COO - , -PO 4 2- , -HPO 4 - , and -SO 3 - .
  • sulfobetaine containing quaternary ammonium as a cation and -SO 3 - as an anion in the molecule is preferred.
  • Sulfobetaine having a (meth)acrylic skeleton in the molecule is more preferred.
  • Compound 1 represented by the following formula (F1) can be mentioned as a compound having a betaine structure.
  • L 1 includes any one of -COO-, -CONH-, -(CH 2 )m- (m is a natural number), R 1 is H or CH 3 ;
  • R 2 and R 5 are each independently a hydrocarbon group represented by -(CH 2 ) l - (l is a natural number from 1 to 10),
  • R 3 , R 4 and R 7 are each independently an organic group containing C and H as essential components, O as an optional component, and not containing N and S,
  • A is PO 4 ⁇ ;
  • B is N + , S + or P + . Note that it can be specified from the above-mentioned IR that L 1 includes -CO-.
  • Compound 2 represented by the following formula (F2) can be mentioned as a compound having a betaine structure.
  • L 1 includes any one of -COO-, -CONH-, -(CH 2 )m- (m is a natural number), R 1 is H or CH 3 ;
  • R 2 and R 5 are each independently a hydrocarbon group represented by -(CH 2 ) l - (l is a natural number from 1 to 10),
  • R 3 and R 4 are each independently an organic group containing C and H as essential components, O as an optional component, and not containing N and S,
  • A is COO ⁇ , PO 4 2 ⁇ , HPO 4 ⁇ or SO 3 ⁇
  • B is N + , S + or P + .
  • specific examples of compounds having a betaine structure include 3-[[2-(acryloyloxy)ethyl]dimethylammonio]propane-1-sulfonic acid, 3-[[2-(methacryloyloxy)ethyl]dimethyl ammonio]propane-1-sulfonic acid, 4-[(3-methacrylamidopropyl)dimethylammonio]butane-1-sulfonic acid, 3-[[2-(methacryloyloxy)ethyl]dimethylammonio]propionate, 2 -[[2-(methacryloyloxy)ethyl]dimethylammonio]acetic acid, 2-(methacryloyloxy)ethyl 2-(trimethylammonio)ethyl phosphate], 4-[[2-(methacryloyloxy)ethyl]dimethylammonio] o]butane-1-sulfonic acid, 3-[(3-acryla
  • the composition for forming a surface layer may contain a nonionic monomer.
  • a nonionic monomer means a monomer having one or more ethylenically unsaturated groups and oxyalkylene in the molecule.
  • Nonionic monomers are hydrophilic.
  • the nonionic monomer is more preferably a monomer having a (meth)acrylic skeleton and an oxyalkylene group in the molecule.
  • examples of the nonionic monomer include monofunctional nonionic monomers represented by the following formula (G1).
  • L 2 includes any one of -COO-, -CONH-, -(CH 2 ) m - (m is a natural number), R 1 is H or CH 3 ; R8 is H or CH3 or C2H5 , Y is a straight chain, branched or cyclic hydrocarbon group having 1 to 10 carbon atoms, a is a natural number.
  • examples of the nonionic monomer include a bifunctional nonionic monomer represented by the following formula (G2).
  • L 2 includes any one of -COO-, -CONH-, -(CH 2 ) m - (m is a natural number)
  • L 3 includes any one of -OCO-, -NHCO-, -(CH 2 ) m - (m is a natural number)
  • R 1 is H or CH 3
  • Y is a straight chain, branched or cyclic hydrocarbon group having 1 to 10 carbon atoms, a is a natural number.
  • trifunctional nonionic monomer 1 represented by the following formula (G3) can be mentioned as a nonionic monomer.
  • L 3 includes any one of -OCO-, -NHCO-, -(CH 2 ) m - (m is a natural number), R 1 is H or CH 3 ;
  • Y is a linear or cyclic hydrocarbon group having 1 to 10 carbon atoms, b, c, and d are each independent natural numbers.
  • trifunctional nonionic monomer 2 represented by the following formula (G4) can be mentioned as a nonionic monomer.
  • L 3 includes any one of -OCO-, -NHCO-, -(CH 2 ) m - (m is a natural number), R 1 is H or CH 3 ;
  • Y is a linear or cyclic hydrocarbon group having 1 to 10 carbon atoms, b, c, and d are each independent natural numbers.
  • examples of the nonionic monomer include a tetrafunctional nonionic monomer represented by the following formula (G5).
  • L 1 includes any one of -COO-, -CONH-, -(CH 2 ) m - (m is a natural number)
  • L 2 includes any one of -OCO-, -NHCO-, -(CH 2 ) m - (m is a natural number)
  • R 1 is H or CH 3
  • Y is a linear or cyclic hydrocarbon group having 1 to 10 carbon atoms, and b, c, d, and e are each independent natural numbers.
  • nonionic monomers include 4-hydroxybutyl acrylate, 2-methoxyethyl acrylate (2-methoxyethyl acrylate), 2-[2-(2-methoxyethoxy)ethoxy]ethyl acrylate, -Hydroxyethyl methacrylate (2-hydroxyethyl methacrylate (HEMA)), 2-methoxyethyl methacrylate, diethylene glycol monomethyl ether methacrylate, hydroxypropyl methacrylate, N-(hydroxymethyl)acrylamide, N-(2-hydroxyethyl)acrylamide, N -(methoxymethyl)acrylamide, N-(methoxymethyl)methacrylamide, N-(hydroxymethyl)methacrylamide, methoxydiethylene glycol methacrylate, methoxytetraethylene glycol methacrylate, methoxypolyethylene glycol methacrylate, methoxypolyethylene glycol acrylate, polyethylene glycol methacrylamide
  • HEMA 2-hydroxyethyl methacrylate
  • methoxytetraethylene glycol methacrylate methoxypolyethylene glycol methacrylate
  • 2-methoxyethyl acrylate 2-methoxyethyl acrylate
  • diethylene glycol dimethacrylate 2-hydroxyethyl methacrylate
  • HEMA 2-hydroxyethyl methacrylate
  • methoxypolyethylene glycol methacrylate methoxypolyethylene glycol methacrylate
  • the composition for forming a surface layer may contain a solvent.
  • solvents include alcohols such as methanol, ethanol, IPA (isopropanol), and n-butanol, cellosolves such as 2-methoxyethanol and methoxypropanol, ketones such as acetone, DMF (N,N'-dimethylformamide), Water and the like can be used, but are not limited to these. Further, a plurality of types of solvents may be mixed and used as necessary. Note that the solvent can also be used when preparing the composition for forming a primer layer and the composition for forming an intermediate layer, which will be described later.
  • the composition for forming a surface layer contains a polymerization initiator.
  • a polymerization initiator known ones can be used, such as photopolymerization initiators and thermal polymerization initiators.
  • Preferred examples of the photopolymerization initiator include IRGACURE 651, IRGACURE 184, IRGACURE 500, IRGACURE 2959, IRGACURE 127, IRGACURE 907, IRGACURE 369, IRGACURE 1300, and IRGACURE 819 provided by BASF. , Irgacure 1800, Irgacure OXE01, Irgacure OXE02, Darocure 1173, Darocure TPO, Darocure 4265, and the like.
  • thermal radical generators such as peroxides, persulfates, and azo compounds are preferably used.
  • composition for forming a surface layer may contain known additives such as a surfactant depending on the purpose, as long as the surface function is not impaired.
  • the composition for forming a surface layer does not contain a compound containing a sulfur atom other than a compound containing a betaine structure. It is thought that protein adhesion increases because the surface layer contains a large amount of sulfur atoms.
  • the composition for forming a surface layer contains only a compound containing a betaine structure as a compound containing a sulfur atom, so that protein adsorption can be suppressed in the surface layer obtained by curing the composition. .
  • an intermediate layer 3 may be formed between the base material 1 and the surface layer 2 in order to further strengthen the adhesion between the base material 1 and the surface layer 2.
  • the intermediate layer 3 contains an acrylic resin (polyacrylic copolymer) or a polyvinyl copolymer containing vinyl alcohol in its main chain. It is preferable.
  • the intermediate layer 3 is preferably formed by curing a composition for forming an intermediate layer.
  • the intermediate layer forming composition preferably contains a monomer capable of forming a polyacrylic or polyvinyl copolymer. It is preferable that the composition for forming an intermediate layer also contains the above-mentioned solvent and polymerization initiator.
  • polyfunctional acrylate A polyfunctional acrylate can be suitably used as a monomer constituting the polyacrylic copolymer.
  • polyfunctional acrylate means a monomer having at least two ethylenically unsaturated groups in the molecule.
  • polyfunctional acrylates include 2-hydroxy-3-acryloyloxypropyl methacrylate, propoxylated ethoxylated bisphenol A diacrylate, ethoxylated bisphenol A diacrylate, 9,9-bis[4-(2-acryloyloxyethoxy) phenyl]fluorene, propoxylated bisphenol A diacrylate, tricyclodecanedimethanol diacrylate, 1,10-decanediol diacrylate, 1,6-hexanediol diacrylate, 1,9-nonanediol diacrylate, dipropylene glycol diacrylate Acrylate, tripropylene glycol diacrylate, ethoxylated isocyanuric acid triacrylate, ⁇ -caprolactone modified tris-(2-acryloxyethyl) isocyanurate, pentaerythritol triacrylate, trimethylolpropane triacrylate, ditrimethylolpropane trimethacrylate,
  • polyfunctional acrylates include urethane (meth)acrylate oligomers (polymers) having two or more ethylenically unsaturated groups.
  • urethane (meth)acrylate oligomers polymers having two or more ethylenically unsaturated groups.
  • phenyl glycidyl ether acrylate hexamethylene diisocyanate urethane prepolymer phenyl glycidyl ether acrylate toluene diisocyanate urethane prepolymer, pentaerythritol triacrylate hexamethylene diisocyanate urethane prepolymer, pentaerythritol triacrylate toluene diisocyanate urethane prepolymer, pentaerythritol triacrylate isophorone diisocyanate
  • Examples include urethane prepolymers, dipentaerythritol pentaacrylate
  • polyfunctional acrylates include epoxy (meth)acrylate oligomers (polymers) having two or more ethylenically unsaturated groups.
  • examples include cresol novolac type epoxy acrylate, carboxylic anhydride-modified epoxy acrylate, and the like.
  • the functional group equivalent of an ethylenically unsaturated group is 200 g/eq or less.
  • the functional group equivalent of the ethylenically unsaturated group is preferably 150 g/eq or less, more preferably 27 g/eq or more and 150 g/eq or less.
  • the functional group equivalent represents the molecular weight of a compound per functional group. That is, it is the value obtained by dividing the molecular weight of the polyfunctional acrylate by the number of ethylenically unsaturated groups.
  • (meth)acrylate monomers (oligomers) as polyfunctional acrylates, urethane (meth)acrylate monomers (oligomers) that are urethane modified products thereof, and epoxy (meth)acrylate monomers (oligomers) that are epoxy modified products thereof. ) divided by the number of (meth)acryloyl groups, which are ethylenically unsaturated groups.
  • those having 6 or more functional groups in one molecule are particularly preferred in order to further enhance the durability of the intermediate layer, such as dipentaerythritol hexaacrylate (6 functional), ethoxylated dipentaerythritol hexaacrylate ( (6 functional), 1,3,5-tris(2,2-diacryloyloxymethyl-3-(2,2,2-triacryloyloxymethylethoxy)propylhexylcarbamate)isocyanurate (15 functional).
  • polyfunctional vinyl compound A polyfunctional vinyl compound can be suitably used as a monomer constituting the polyvinyl copolymer.
  • the polyfunctional vinyl compound means a monomer having at least two ethylenically unsaturated groups in the molecule.
  • polyfunctional vinyl compounds include diallyl ether, diethylene glycol divinyl ether, 1,3-diallyloxy-2-propanol, 1,2,3-triallyloxy-2-propanol, 2,2bisallyloxymethyl-1 -Propanol, 2,2 bisallyloxyethyl-1-butanol, 2,2 bisallyloxymethyl-1-hexanol, 3,3 bisallyloxyethyl-1-butanol, 3,3 bisallyloxyethyl-1-hexanol , 2,2,2 triallyloxymethyl-1-ethanol, 2,2,2 triallyloxymethyl-1-propanol, 2,2,2 triallyloxymethyl-1-butanol, 2,2,2 triallyl Oxymethyl-1-hexanol, 1,5-hexadiene-3,4-diol, diallyl isophthalate, 1,5-hexanediene, tetraallyloxyethane, tetraallyloxypropane, tetraallyl,
  • the surface layer and the intermediate layer can be formed at the same time. At that time, it is necessary to form a film so that the structure represented by formula (A1) and the structure represented by formula (A2) are sufficiently included in the surface layer.
  • an additive such as a surfactant
  • the surfactant preferably has a hydrophilic part and a hydrophobic part consisting of an organic residue, and has a molecular weight of less than 10,000.
  • a primer layer 4 may be formed to strengthen the adhesion between the surface layer 2 and the inorganic material.
  • the primer layer 4 is preferably formed between the inorganic material that is the base material 1 (hereinafter referred to as "inorganic base material") and the surface layer 2.
  • the primer layer 4 needs to be bonded to both the inorganic base material and the surface layer 2 in order to increase adhesion. For this reason, the primer layer 4 is preferably a layer containing silicon atoms.
  • the primer layer 4 is preferably a cured primer layer forming composition.
  • the composition for forming the primer layer may contain a commonly used silane-based or phosphoric acid-based coupling agent. Further, these coupling agents preferably contain an ethylenically unsaturated group such as an acryloyl group or a methacryloyl group in order to further strengthen the adhesion with the surface layer.
  • silane compound A silane compound can be suitably used as the silane coupling agent.
  • the silane compound refers to a hydrolyzable Si-OR group (reactive silyl group, OR may be a hydroxyl group or a hydrolyzable group.
  • the hydrolyzable group is, for example, an alkoxy group, It means an organic compound having a halogeno group (specifically, -OCH 3 , -OCH 2 CH 3 , and -Cl).
  • silane compounds include tetraethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, 8-methacryloxyoctyltrimethoxysilane, and 3-methacryloxypropyltrimethoxysilane.
  • silane compounds include those having three or more hydrolyzable Si-OR groups for adhesion to an inorganic base material, and acrylic or methacrylic polymerizable functionalities for adhesion to a surface layer that is an organic film.
  • Compounds having groups are preferred.
  • silane compounds include 3-acryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, 8-methacryloxyoctyltrimethoxysilane, and 3-methacryloxymethyltriethoxysilane.
  • Examples include silane, 3-methacryloxypropyltriethoxysilane, and 3-methacryloxymethyltrimethoxysilane.
  • a phosphoric acid compound can be suitably used as the phosphoric acid coupling agent.
  • the phosphoric acid compound refers to a covalent P(OH) n group (adsorptive phosphoric acid group, n is any one of 1 to 3, and the OH group is a base substitute thereof, ONa, OK, ONH 4 , etc.).
  • the phosphoric acid compound preferably contains in its molecule phosphoric acid or phosphate as an adsorptive functional group, and an acrylic group, methacrylic group, or vinyl group as a polymerizable functional group.
  • 2-acryloxyethyl phosphoric acid 2-acryloxyethyl phosphoric acid, 2-methacryloxyethyl phosphoric acid, 2-methacryloxyethyl phosphoric acid, 2-acryloxypropyl phosphoric acid, 2-acryloxypropyl phosphate, 2-methacryloxypropyl phosphate, 2-methacryloxypropyl phosphate vinyl phosphate, 2-acryloxybutyl phosphate, 2-acryloxybutyl phosphate, 2-meta Chloroxybutyl phosphoric acid, 2-methacloroxybutyl phosphoric acid, vinyl phosphoric acid, or their phosphates are used.
  • the substrate is not particularly limited.
  • any material that is generally used as a plumbing member such as resin, metal, or inorganic material (glass, ceramic, etc.) can be used.
  • the shape of the base material can be a general shape of plumbing parts. For example, it may be a flat plate or may have a complicated shape.
  • the member according to the present invention can be manufactured, for example, by the following method.
  • Preparation of base material Prepare the base material.
  • composition for forming surface layer A compound containing the structure represented by formula (A1) (compound having a betaine structure), a compound containing the structure represented by formula (A2) (nonionic monomer), and other components are mixed in any ratio. , dissolved in a solvent. A polymerization initiator is subsequently added to this solution and stirred to obtain a composition for forming a surface layer.
  • the total weight concentration of the compound containing the structure represented by formula (A1) and the compound containing the structure represented by formula (A2) is preferably from 0.5% to 20%, and the weight in each composition Preferably, the concentration ratio is from 90:10 to 5:95.
  • a composition for forming a surface layer is applied onto a substrate.
  • a coating method a known method may be used.
  • the coating can be applied by a common method such as brush coating, spray coating, dip coating, spin coating, curtain coating, or bar coating.
  • the surface layer forming composition applied onto the substrate is dried.
  • the composition for forming a surface layer contains a solvent (solvent), in order to dry the solvent, it is preferable to apply the composition for forming a surface layer onto a substrate and then dry it. Furthermore, in view of the productivity of the member, drying by heating can be suitably used.
  • the surface layer forming composition applied onto the base material is cured.
  • the curing means include thermosetting, active energy ray curing, or a combination of thermosetting and active energy ray curing.
  • a known thermal polymerization initiator can be used as the polymerization initiator, and a known method of heating with infrared rays, hot air, etc. can be used.
  • examples of the radiation include visible light of 400 to 800 nm, ultraviolet rays of 400 nm or less, or electron beams. Usually, ultraviolet rays or visible rays, which are relatively inexpensive, are preferably used rather than electron beams, which require expensive equipment.
  • a known photopolymerization initiator When performing active energy ray curing using ultraviolet rays or visible rays, a known photopolymerization initiator can be used.
  • sources of ultraviolet light include low-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, xenon lamps, gallium lamps, metal halide lamps, ultraviolet lasers, and ultraviolet light from sunlight.
  • the irradiation atmosphere may be air or an inert gas such as nitrogen or argon.
  • the intermediate layer 3 may be formed on the base material 1 before the surface layer 2 is formed on the base material 1. Thereby, the adhesion between the base material 1 and the surface layer 2 can be made stronger.
  • the composition for forming an intermediate layer can be prepared by, for example, adding a polymerization initiator to a solution in which the above-mentioned monomer capable of forming a polyacrylic or polyvinyl copolymer and a solvent are dissolved in an arbitrary weight ratio, and stirring the mixture. It can be prepared by Thereafter, the intermediate layer 3 can be formed by applying the prepared composition for forming an intermediate layer onto the base material 1, drying it, and curing it.
  • the primer layer 4 may be formed on the inorganic base material before forming the intermediate layer 3 on the inorganic base material. Thereby, the adhesion between the inorganic base material and the surface layer 2 can be made stronger.
  • the composition for forming a primer layer can be prepared, for example, by dissolving the above-mentioned coupling agent, a solvent, and, if necessary, a catalyst for promoting a hydrolysis reaction in any weight ratio, and stirring the mixture. Thereafter, the primer layer 4 can be formed by applying the prepared composition for forming a primer layer onto an inorganic base material and drying it.
  • Base materials The following five types of base materials were prepared.
  • ⁇ Acrylic board Acrylite EX (manufactured by Mitsubishi Rayon)
  • ⁇ PET film Lumirror film T60 (manufactured by As One)
  • ⁇ Glass Borosilicate glass
  • ⁇ Ceramics Sanitary ware with a glaze layer on the surface
  • ⁇ Metal Brass plate with a nickel-chromium plating layer on the surface
  • ⁇ Polymerization initiator> A mixture of 1-hydroxycyclohexyl phenyl ketone and benzophenone in a weight ratio of 1:1.
  • Silane compound 1 3-acryloxypropyltrimethoxysilane - Silane compound 2: 3-methacryloxypropyltrimethoxysilane - Silane compound 3: Tetraethoxysilane
  • the coated surface was exposed to UV light using an ultraviolet irradiation device (MDB15001N-01, manufactured by Sun Energy Co., Ltd.) so that the cumulative light intensity was 1000 mJ/cm 2 (measured with an ultraviolet integrated light meter, C9536-254, manufactured by Hamamatsu Photonics Co., Ltd.). Irradiated and cured.
  • an ultraviolet irradiation device MDB15001N-01, manufactured by Sun Energy Co., Ltd.
  • the coated surface was heated using an ultraviolet irradiation device (MDB15001N-01, manufactured by Sun Energy Co., Ltd.) so that the cumulative light intensity was 3 J/cm 2 (measured with an ultraviolet integrated light meter, C9536-254, manufactured by Hamamatsu Photonics Co., Ltd.). It was cured by UV irradiation. In order to remove uncured components, it was washed with a neutral detergent, rinsed with ion-exchanged water or ultrapure water, and left to dry at room temperature to obtain a member sample.
  • an ultraviolet irradiation device MDB15001N-01, manufactured by Sun Energy Co., Ltd.
  • Example 14 A member sample was obtained in the same manner as in Example 1 except that the acrylic plate was replaced with a PET film as the base material.
  • Examples 15-17 (Preprocessing) As the base material, the inorganic base material shown in Table 1 was used, and in the same pretreatment as in Example 1, after drying, the surface of the base material was activated by UV ozone treatment. In the UV ozone treatment, UV ozone was irradiated for 10 minutes using a UV ozone irradiation device (manufactured by Asumi Giken Co., Ltd.).
  • Example 18 In the manufacturing method of Example 1, in addition to compound 1 having a betaine structure and nonionic monomer 1, a polyfunctional acrylate was further added to the surface layer forming composition so that the total weight concentration was 10%. Dissolved in a solvent. To this solution, a polymerization initiator was added at a weight concentration of 0.2%, and the mixture was stirred with a stirrer for 1 hour to prepare a composition for forming a surface layer. After this, a member sample was obtained by the same manufacturing method as in Example 1.
  • Example 20 In the manufacturing method of Example 1, in addition to compound 1 having a betaine structure and nonionic monomer 1, silane compound 3 (tetraethoxysilane) was further added to the surface layer forming composition, and the total weight concentration was It was dissolved in a solvent to a concentration of 10%. To this solution, a polymerization initiator was added at a weight concentration of 0.2%, and the mixture was stirred with a stirrer for 1 hour to prepare a composition for forming a surface layer. After this, a member sample was obtained by the same manufacturing method as in Example 1.
  • silane compound 3 tetraethoxysilane
  • Example 21 Each weight concentration is 1% of compound 1 having a betaine structure, 0.5% of nonionic monomer 3, 30% of polyfunctional acrylate, 0.75% of polymerization initiator, and 0.1% of surfactant. % in a solvent, stirred with a stirrer for 1 hour, and coated on a substrate with a bar coat (#24). Immediately after coating, it was placed in a hot air drying oven and left to stand at 60°C for 10 minutes. Then, using an ultraviolet irradiation device (MDB15001N- 01 , manufactured by Sun Energy Co., Ltd.), the applied surface was It was irradiated with UV and cured to obtain a member sample.
  • MDB15001N- 01 manufactured by Sun Energy Co., Ltd.
  • Example 22 The respective weight concentrations are 0.5% of compound 1 having a betaine structure, 10% of nonionic monomer 1, 1.5% of nonionic monomer 3, 30% of polyfunctional acrylate, and 0.0% of polymerization initiator. 75% and 0.025% of the surfactant were dissolved in the solvent and stirred with a stirrer for 1 hour. Thereafter, a member sample was obtained by the same manufacturing method as in Example 21.
  • Comparative example 1 A member sample was obtained in the same manner as in Example 1 except that only Compound 1 having a betaine structure was used as the surface layer forming composition.
  • Comparative example 2 A member sample was obtained in the same manner as in Example 1 except that only nonionic monomer 1 was used as the surface layer forming composition.
  • Comparative example 3 A member sample was obtained in the same manner as in Example 1 except that only nonionic monomer 5 was used as the surface layer forming composition.
  • Comparative example 4 The acrylic plate as the base material was used as a member sample.
  • Evaluation and results 3-1 XPS evaluation ⁇ Preparation of evaluation sample> A measurement sample was obtained by cutting a region approximately 1 cm square in size from a plate-shaped member sample. Before measurement, the surface of the measurement sample was washed to sufficiently remove dirt adhering to the surface. Specifically, it was cleaned by sliding with a sponge using a neutral detergent, and then thoroughly rinsed with ultrapure water.
  • ⁇ XPS measurement> An XPS measuring device K-alpha (manufactured by ThermoFisher Scientific) was used.
  • ⁇ XPS measurement conditions X-ray conditions: Monochromatic AlK ⁇ ray, 72W-12KV Photoelectron extraction angle: 90° Analysis area: 400 ⁇ m ⁇ Neutralization gun conditions: 200 ⁇ A Ion gun conditions: 10mA (survey) Time per step: 10ms Energy step size: 1.000eV Sweep: 2 times Pass energy: 200eV Scanning range: -10 to 1350eV (Narrow) Time per step: 50ms Energy step size: 0.100eV Sweep: 5 times Pass energy: 50eV Scanning range: C1s peak 279.000eV to 298.000eV, O1s peak 525.000eV to 545.000eV, N1s peak 392.000eV to 410.000eV, S2p peak 157.000eV to 175.000eV, Si2p peak 95.000eV to 11 0 .000
  • the SB ratio was calculated from the S atom concentration obtained by the above XPS measurement.
  • the SB ratio can be calculated using the S atom concentration obtained from XPS measurement.
  • S atom concentration obtained by XPS measurement of a surface layer consisting only of a compound with a sulfobetaine structure and S atom concentration obtained by XPS measurement of a surface layer without a sulfobetaine structure (film containing no S atoms) By normalizing the S atom concentration obtained by XPS measurement on the surface of each sample using , it can be used to estimate the abundance ratio of the sulfobetaine structure present on the surface of each sample.
  • the analysis depth by XPS is approximately 10 nm
  • a sufficient amount of the composition to form a layer thickness of 10 nm is applied and cured.
  • the layer thickness is sufficiently thicker than the analysis depth by XPS. Therefore, analysis by XPS can analyze surface layer components without being influenced by the base material.
  • the surface to be coated can be covered by spin coating or bar coating, and the base material is not exposed. From the above, XPS allows analysis of surface layer components without being affected by the base material.
  • ⁇ Level 5 Wet a commercially available urethane sponge (Scotch Brite Bath Shine, manufactured by 3M Japan) with water and make 5 reciprocations with a load of 50 [g/cm2]
  • Level 4 Commercially available urethane sponge (Scotch Brite Bath Shine, 3M Japan Co., Ltd.) Japan Co., Ltd.) mixed with water and a neutral detergent (Bath Magic Clean, Kao) at a weight ratio of 90:10, and 5 reciprocations at a load of 25 [g/cm2].
  • Level 3 Commercially available urethane sponge (Scotch Brite).
  • Level 4 Commercially available A urethane sponge (Scotch Brite Bath Shine, manufactured by 3M Japan Co., Ltd.) is soaked in water and a neutral detergent (Bath Magic Clean, Kao) mixed in the same proportion as Level 4, and the load is 50 [g/cm2] for 30 reciprocations.
  • Level 1 A commercially available urethane sponge (Scotch Brite Bath Shine, manufactured by 3M Japan) is soaked in water and an abrasive cleaner (Kiraria, manufactured by TOTO), and a load of 50 [g/cm2] is used for 5 reciprocations, level 0. :Can't get it even at level 1
  • FIG. 2 is an image of a member sample of Example 1
  • FIG. 3 is an image of a member sample of Comparative Example 2.
  • the black particles seen in the image are attached proteins.
  • the protein adhesion area ratio can be calculated by the method shown below.
  • the protein adhesion area ratio was calculated for the obtained image using image processing software "WinROOF2018” (manufactured by Mitani Shoji, software version: 3.10.0). First, images were taken with a laser microscope, imported into the software, subjected to monochrome image processing, and then binarized. The setting of the threshold value for the binarization process was adjusted as appropriate so that the attached proteins were selected. Next, ⁇ filling processing'' was selected from ⁇ processing of shape features'', and the total area ratio was calculated. This total area ratio was defined as the protein adhesion area ratio. The results are shown in Table 1.

Abstract

Disclosed is a member capable of suppressing adhesion of contaminating materials such as limescale and protein. This member is used in an environment in which is repeated a cycle wherein water and contaminating materials including an organic component and/or an inorganic component are attached onto a surface and the water is dried off in a state in which the water is mixed with the contaminating materials on the surface. The member is characterized by including a base material and a surface layer and in that the surface layer includes a certain sulfobetaine structure and a certain hydrophilic and nonionic structure.

Description

部材Element
 本発明は、部材に関する。具体的には、水と、有機成分および/または無機成分を含む汚染物質とが表面に付着し、且つ表面に水と汚染物質とが混在した状態で水が乾燥するというサイクルが繰り返される環境下で使用するための部材に関する。 The present invention relates to a member. Specifically, in an environment where water and contaminants containing organic and/or inorganic components adhere to a surface, and the water dries with water and contaminants mixed on the surface, a cycle is repeated. Related to members for use in.
 水がかかり得る環境下で使用される部材の表面に水道水が付着し乾燥すると、水道水に含まれる無機成分の付着により、水垢が形成される。代表的な無機成分として、ケイ酸イオン(SiO 2-)およびカルシウムイオン(Ca2+)が挙げられる。ケイ酸イオン(SiO 2-)は脱水縮合によりポリマー化され、カルシウムイオンは大気中あるいは水中のCOと反応して、水の蒸発とともに炭酸カルシウムとして緻密結晶化し、それらが単独でまたは混合物として部材の表面に付着して、水垢が形成される。部材表面への水の付着量が多い場合や、部材表面への水の付着および乾燥が繰り返される場合などは、部材表面におけるケイ酸イオンおよびカルシウムイオンの付着量や付着頻度が増加し、水垢の形成が加速され、部材表面に水垢が強く付着した状態、すなわち部材表面に水垢が固着した状態が生じる。 When tap water adheres to the surface of a member used in an environment where water can be splashed and dries, limescale is formed due to the adhesion of inorganic components contained in the tap water. Typical inorganic components include silicate ions (SiO 3 2− ) and calcium ions (Ca 2+ ). Silicate ions (SiO 3 2- ) are polymerized by dehydration condensation, and calcium ions react with CO 2 in the air or water and become densely crystallized as calcium carbonate as water evaporates. It adheres to the surface of the component and forms limescale. When a large amount of water adheres to the surface of a component, or when water adheres to the surface of the component and dries repeatedly, the amount and frequency of adhesion of silicate ions and calcium ions on the surface of the component increases, causing water scale to build up. The formation is accelerated, resulting in a state in which water scale is strongly adhered to the surface of the member, that is, a state in which water scale is firmly adhered to the surface of the member.
 また、部材の表面には、水だけでなく、上記に示す無機成分(ケイ酸イオン、カルシウムイオンなど)や有機成分(皮脂、石鹸カス、リンス、タンパク質など)など、様々な汚染物質が付着する。これらの汚染物質は、水が乾燥すると部材の表面に残る。多くの場合、部材の表面においてはこれらの汚染物質が少なくとも1種類以上付着するため、乾燥後の部材表面に水垢と汚染物質の混合物が形成される。このような汚れの付着を抑制し、また付着した汚れの清掃性を向上させるため、部材の表面を改質する技術が提案されている。 In addition, various contaminants adhere to the surface of components, including not only water but also the inorganic components (silicate ions, calcium ions, etc.) and organic components (sebum, soap scum, rinse, protein, etc.) listed above. . These contaminants remain on the surface of the component when the water dries. In many cases, at least one type of these contaminants adheres to the surface of the component, so that a mixture of limescale and contaminants is formed on the surface of the component after drying. In order to suppress the adhesion of such dirt and to improve the cleanability of the adhered dirt, techniques have been proposed for modifying the surface of the member.
 例えば、特開2008-239949号公報(特許文献1)には、防汚性、防曇性及びその耐摩擦性に優れた表面を有する親水性部材が開示されている。具体的には、末端又は側鎖にシランカップリング基を有する親水性ポリマーに、ベタイン構造を有する両性イオン低分子化合物をシランカップリングで結合させ、Si、Ti、Zr、Alなどの無機成分を導入して緻密化させた親水性膜を基材上に形成した部材が開示されている。 For example, JP-A-2008-239949 (Patent Document 1) discloses a hydrophilic member having a surface with excellent antifouling properties, antifogging properties, and abrasion resistance. Specifically, a zwitterionic low-molecular compound having a betaine structure is bonded to a hydrophilic polymer having a silane coupling group at the terminal or side chain by silane coupling, and inorganic components such as Si, Ti, Zr, and Al are bonded to the hydrophilic polymer having a silane coupling group at the terminal or side chain. A member is disclosed in which a hydrophilic film introduced and densified is formed on a base material.
 また、WO2017/018146号公報(特許文献2)には、多官能(メタ)アクリルアミドモノマーと、アクリル又はアクリルアミドのベタインモノマーとを含む硬化性組成物を硬化させたコーティングを基材上に形成した部材が開示されている。この部材は、優れた防曇性を発現させることができ、高い硬度を維持しつつ防曇の耐久性に優れるものとされている。 Furthermore, WO2017/018146 (Patent Document 2) discloses a member in which a coating formed on a base material by curing a curable composition containing a polyfunctional (meth)acrylamide monomer and a betaine monomer of acrylic or acrylamide is disclosed. is disclosed. This member is said to be able to exhibit excellent antifogging properties, and has excellent antifogging durability while maintaining high hardness.
 また、特開平5-179155号公報(特許文献3)には、多官能の(メタ)アクリロイルモノマーと、(メタ)アクリロイル基を含有するスルホベタイン型モノマーとを含む組成物を硬化させた塗膜をメタクリル樹脂板上に形成した部材が開示されている。この部材は、耐擦傷性、耐摩耗性、制電性および防曇性に優れるものとされている。 Furthermore, JP-A-5-179155 (Patent Document 3) discloses a coating film obtained by curing a composition containing a polyfunctional (meth)acryloyl monomer and a sulfobetaine type monomer containing a (meth)acryloyl group. Disclosed is a member formed on a methacrylic resin plate. This member is said to have excellent scratch resistance, abrasion resistance, antistatic properties, and antifogging properties.
特開2008-239949号公報Japanese Patent Application Publication No. 2008-239949 WO2017/018146号公報WO2017/018146 publication 特開平5-179155号公報Japanese Patent Application Publication No. 5-179155
 本発明者らは、水と、有機成分および/または無機成分を含む汚染物質とが表面に付着し、且つ表面に水と汚染物質とが混在した状態で水が乾燥するというサイクルが繰り返される環境下で使用される部材の表面に存在する様々な汚染物質のうちタンパク質の存在割合が高いことに着眼した。例えば、浴室環境で発生する代表的なタンパク質としては、ヒト由来のケラチンが挙げられる。タンパク質は、分子中に疎水性領域、正電荷領域および負電荷領域を有するため、水まわり部材として一般的に使用されているガラスや陶器等の無機材料、樹脂材料、または金属材料等のいずれに対しても、疎水作用や静電作用等により付着することができる。このため、タンパク質を主要な汚染物質と考えた。そして、このような主要な汚染物質であるタンパク質の部材の表面への付着を抑制することが重要であるとの着想に至った。そこで、まず、部材表面にベタイン構造を含ませることにより、タンパク質の付着を抑制できることを確認した。しかし、部材表面にベタイン構造を含ませることにより、水と、有機成分および/または無機成分を含む汚染物質とが表面に付着し、且つ表面に水と汚染物質とが混在した状態で水が乾燥するというサイクルが繰り返される環境下で使用される部材に特異的な課題が発生することを見出した。すなわち、部材表面にベタイン構造を含ませることにより、水垢の形成が促進されるとの新規な課題を見出した。そこで、部材表面にベタイン構造に加えて親水性の非イオン性構造を含ませることで、タンパク質の付着を抑制できると同時に水垢の形成も抑制することができることを見出し、上記課題を解決した。本発明は、これらの知見に基づくものである。 The present inventors proposed an environment in which a cycle in which water and contaminants containing organic and/or inorganic components adhere to a surface, and then the water dries with water and contaminants mixed on the surface is repeated. Among the various contaminants present on the surface of the parts used below, we focused on the fact that protein is present at a high rate. For example, a typical protein generated in the bathroom environment is human-derived keratin. Proteins have a hydrophobic region, a positively charged region, and a negatively charged region in their molecules, so they cannot be attached to inorganic materials such as glass and ceramics, resin materials, or metal materials that are commonly used as plumbing materials. It can also be attached to objects by hydrophobic action, electrostatic action, etc. Therefore, proteins were considered as the main contaminant. This led to the idea that it is important to suppress the adhesion of proteins, which are major contaminants, to the surfaces of components. First, we confirmed that protein adhesion could be suppressed by including a betaine structure on the surface of the member. However, by including a betaine structure on the surface of the component, water and contaminants containing organic and/or inorganic components adhere to the surface, and the water dries while water and contaminants are mixed on the surface. It has been discovered that specific problems arise with parts used in environments where this cycle is repeated. That is, a novel problem has been discovered in that the formation of water scale is promoted by including a betaine structure on the surface of the member. Therefore, we have found that by including a hydrophilic nonionic structure in addition to the betaine structure on the surface of the member, it is possible to suppress the adhesion of proteins and at the same time suppress the formation of water scale, thereby solving the above problem. The present invention is based on these findings.
 本発明による部材は、
 水と、有機成分および/または無機成分を含む汚染物質とが表面に付着し、且つ表面に水と汚染物質とが混在した状態で水が乾燥するというサイクルが繰り返される環境下で使用される部材であって、
 当該部材は、基材と表面層とを含み、
 当該表面層は、下記式(A1)で表される構造および下記式(A2)で表される構造を含み、
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 式(A1)において、
  Lは、-COO-、-CONH-、-(CH-(mは自然数である)のいずれか1つを含み、
  Rは、HまたはCHであり、
  Xは、下記式(B)で表される官能基であり、
Figure JPOXMLDOC01-appb-C000013
 式(B)において、
  RおよびRは、それぞれ独立して、-(CH-(lは1~10の自然数である)で表される炭化水素基であり、
  RおよびRは、それぞれ独立して、必須成分としてCおよびHを、任意成分としてOを含み、かつ、NおよびSを含まない有機基であり、
 式(A2)において、
  Lは、-COO-、-CONH-、-(CH-(mは自然数である)のいずれか1つを含み、
  Rは、HまたはCHであり、
  Xは、下記式(C)で表される官能基であり、
Figure JPOXMLDOC01-appb-C000014
 式(C)において、
  Yは、炭素数が1~10の直鎖または分岐または環状の炭化水素基であり、
  aは自然数であり、
  Rは、H、CH、C、下記式(D1)、下記式(D2)、下記式(D3)、および下記式(D4)からなる群から選択されるいずれかの構造を含み、
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
 式(D1)において、
  Yは、炭素数が1~10の直鎖または分岐または環状の炭化水素基であり、
  Lは、-OCO-、-NHCO-、-(CH-(mは自然数である)のいずれか1つを含み、
  Rは、HまたはCHであり、
 式(D2)において、
  Yは、炭素数が1~10の直鎖または分岐または環状の炭化水素基であり、
  Xは下記式(E1)で表される構造であり、
Figure JPOXMLDOC01-appb-C000019
 式(E1)において、
  Yは、炭素数が1~10の直鎖または分岐または環状の炭化水素基であり、
  Lは、-OCO-、-NHCO-、-(CH-(mは自然数である)のいずれか1つを含み、
  Rは、HまたはCHであり、
  aは自然数であり、
 式(D3)において、
  Yは、炭素数が1~10の直鎖または分岐または環状の炭化水素基であり、
  Xは上記式(E1)で表される構造であり、
 式(D4)において、
  X4は下記式(E2)で表される構造であり、
Figure JPOXMLDOC01-appb-C000020
 式(E2)において、
  Yは、炭素数が1~10の直鎖または分岐または環状の炭化水素基であり、
  Lは、-OCO-、-NHCO-、-(CH-(mは自然数である)のいずれか1つを含み、
  Rは、HまたはCHであり、
  aは自然数である
ことを特徴とする。
The member according to the invention comprises:
Components used in environments where water and contaminants containing organic and/or inorganic components adhere to the surface, and the water dries in a state where water and contaminants coexist on the surface, a cycle repeated. And,
The member includes a base material and a surface layer,
The surface layer includes a structure represented by the following formula (A1) and a structure represented by the following formula (A2),
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
In formula (A1),
L 1 includes any one of -COO-, -CONH-, -(CH 2 ) m - (m is a natural number),
R 1 is H or CH 3 ;
X 1 is a functional group represented by the following formula (B),
Figure JPOXMLDOC01-appb-C000013
In formula (B),
R 2 and R 5 are each independently a hydrocarbon group represented by -(CH 2 ) l - (l is a natural number from 1 to 10),
R 3 and R 4 are each independently an organic group containing C and H as essential components, O as an optional component, and not containing N and S,
In formula (A2),
L 2 includes any one of -COO-, -CONH-, -(CH 2 ) m - (m is a natural number),
R 1 is H or CH 3 ;
X 2 is a functional group represented by the following formula (C),
Figure JPOXMLDOC01-appb-C000014
In formula (C),
Y is a straight chain, branched or cyclic hydrocarbon group having 1 to 10 carbon atoms,
a is a natural number,
R 6 has any structure selected from the group consisting of H, CH 3 , C 2 H 5 , the following formula (D1), the following formula (D2), the following formula (D3), and the following formula (D4). including,
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
In formula (D1),
Y is a straight chain, branched or cyclic hydrocarbon group having 1 to 10 carbon atoms,
L 3 includes any one of -OCO-, -NHCO-, -(CH 2 ) m - (m is a natural number),
R 1 is H or CH 3 ;
In formula (D2),
Y is a straight chain, branched or cyclic hydrocarbon group having 1 to 10 carbon atoms,
X 3 is a structure represented by the following formula (E1),
Figure JPOXMLDOC01-appb-C000019
In formula (E1),
Y is a straight chain, branched or cyclic hydrocarbon group having 1 to 10 carbon atoms,
L 3 includes any one of -OCO-, -NHCO-, -(CH 2 ) m - (m is a natural number),
R 1 is H or CH 3 ;
a is a natural number,
In formula (D3),
Y is a straight chain, branched or cyclic hydrocarbon group having 1 to 10 carbon atoms,
X 3 is a structure represented by the above formula (E1),
In formula (D4),
X 4 is a structure represented by the following formula (E2),
Figure JPOXMLDOC01-appb-C000020
In formula (E2),
Y is a straight chain, branched or cyclic hydrocarbon group having 1 to 10 carbon atoms,
L 3 includes any one of -OCO-, -NHCO-, -(CH 2 ) m - (m is a natural number),
R 1 is H or CH 3 ;
A is characterized in that a is a natural number.
 本発明によれば、水と、有機成分および/または無機成分を含む汚染物質とが表面に付着し、且つ表面に水と汚染物質とが混在した状態で水が乾燥するというサイクルが繰り返される環境下において、表面への汚れ、とりわけ水垢およびタンパク質の付着または固着を抑制することができ、さらに付着した汚れを容易に、すなわち小さい清掃負荷で除去することができる部材が提供される。 According to the present invention, an environment in which a cycle is repeated in which water and contaminants containing organic and/or inorganic components adhere to a surface, and the water dries while water and contaminants are mixed on the surface. Below, a member is provided which is able to suppress the adhesion or adhesion of dirt, in particular limescale and proteins, to the surface, and which can furthermore allow the adhering dirt to be removed easily, ie with a low cleaning load.
本発明による部材の一例の断面模式図である。FIG. 1 is a schematic cross-sectional view of an example of a member according to the present invention. 実施例1の部材サンプルの顕微鏡写真である。3 is a microscopic photograph of a member sample of Example 1. 比較例2の部材サンプルの顕微鏡写真である。3 is a micrograph of a member sample of Comparative Example 2.
部材
 図1は本発明による、水と、有機成分および/または無機成分を含む汚染物質とが表面に付着し、且つ表面に水と汚染物質とが混在した状態で水が乾燥するというサイクルが繰り返される環境下で使用される部材(以下、単に「部材」ということもある。)の一例の断面模式図である。本発明による部材10は、基材1を備えてなる。部材10は、表面層2をさらに備えてなる。表面層2は、部材10の最表面にあることが好ましい。部材10は、後述する中間層3および/またはプライマー層4をさらに備えていてもよい。部材10は、本発明の効果を奏し得る範囲において、上記以外の層(図示せず)をさらに備えていてもよい。なお、部材10が表面層2を備えていることは、電子顕微鏡を用いて部材10の断面を観察し、層分離することにより、確認することができる。
Figure 1 shows a structure in which water and contaminants containing organic and/or inorganic components adhere to the surface, and the water dries with the water and contaminants mixed on the surface, according to the present invention. FIG. 2 is a schematic cross-sectional view of an example of a member (hereinafter also simply referred to as "member") used in an environment where the vehicle is used. The member 10 according to the present invention comprises a base material 1 . The member 10 further includes a surface layer 2. Preferably, the surface layer 2 is on the outermost surface of the member 10. The member 10 may further include an intermediate layer 3 and/or a primer layer 4, which will be described later. The member 10 may further include layers (not shown) other than those described above, as long as the effects of the present invention can be achieved. Note that it can be confirmed that the member 10 includes the surface layer 2 by observing a cross section of the member 10 using an electron microscope and separating the layers.
用途
 本発明による部材は、水まわりで用いられる部材全般に適用することができる。水まわりとしては、例えば、浴室、トイレ、洗面所、キッチンが挙げられる。水まわり部材の具体例としては、浴室については、床、浴槽、壁、天井、カウンター、エプロン、排水溝、鏡等が挙げられる。トイレについては、便器、タンク、便フタ、便座、ウォシュレット(登録商標)等が挙げられる。洗面所については、洗面ボウル、洗面カウンター、鏡、照明、水栓金具、排水口、キャビネット、洗濯機パン等が挙げられる。キッチンについては、流し台(シンク)、カウンター、水栓金具、排水口、食器洗浄器、食器乾燥器、調理レンジ、キッチンフード、換気扇等が挙げられる。
Applications The member according to the present invention can be applied to all members used around water. Examples of water areas include bathrooms, toilets, washrooms, and kitchens. Specific examples of water-related members include floors, bathtubs, walls, ceilings, counters, aprons, drains, mirrors, etc. for bathrooms. Examples of toilets include toilet bowls, tanks, toilet lids, toilet seats, and Washlets (registered trademark). For washrooms, examples include washbowls, washstand counters, mirrors, lighting, faucet fittings, drains, cabinets, washing machine pans, etc. For the kitchen, examples include sinks, counters, faucet fittings, drains, dishwashers, dish dryers, cooking ranges, kitchen hoods, ventilation fans, etc.
 本発明による部材は、水と、有機成分および/または無機成分を含む汚染物質とが表面に付着し、且つ表面に水と汚染物質とが混在した状態で水が乾燥するというサイクルが繰り返される環境下で使用される部材である。例えば、部材の表面に水と、水垢を構成する成分(ケイ酸イオン、カルシウムイオン等)およびタンパク質とが付着し、これらが混在した状態で水が乾燥するというサイクルが繰り返される環境下で使用される部材である。また、上記サイクルが繰り返される状況であれば、本発明は適用可能である。例えば、部材が浴槽の場合、湯張り状態(水と汚染物質とが表面に付着する状態)と、湯抜き状態(水と汚染物質とが混在した状態で水が乾燥する状態)は、1つの状態が長く保持された後に他の状態に移行する状況や、2つの状態が不均等に存在する状況も現出するが、そのような場合でも本発明は適用可能である。本発明による部材は、そのような環境下でタンパク質の付着だけでなく水垢の固着も効果的に抑制することができる。ここで、汚染物質とは、水の付着および乾燥が繰り返される環境下で使用される部材の表面に付着する汚れ全般を指し、より具体的には、ケイ酸イオン、カルシウムイオン、皮脂、石鹸カス、リンス、タンパク質から選択される一種以上を意味する。また、本発明による部材は、水と汚染物質の付着、およびこれらが混在した状態で水が乾燥するというサイクルが繰り返される環境下で使用される部材において一般に使用されている基材を材料種問わず利用可能であり、様々な基材に対して上述した効果を奏することが可能である。 The member according to the present invention can be used in an environment where a cycle is repeated in which water and contaminants containing organic and/or inorganic components adhere to the surface, and the water dries while water and contaminants are mixed on the surface. This is the member used below. For example, parts are used in environments where water, components that make up limescale (silicate ions, calcium ions, etc.) and proteins adhere to the surface of the component, and a cycle of water drying in a mixed state is repeated. It is a member that Further, the present invention is applicable to any situation where the above cycle is repeated. For example, if the component is a bathtub, the filled condition (a condition in which water and contaminants adhere to the surface) and the drained condition (a condition in which water dries with water and contaminants mixed together) are one. There may also be situations where a state is held for a long time and then transitions to another state, or where two states exist unevenly, but the present invention is applicable even in such cases. The member according to the present invention can effectively suppress not only protein adhesion but also limescale adhesion under such an environment. Here, contaminants refer to all the dirt that adheres to the surfaces of parts used in environments where water adhesion and drying occur repeatedly, and more specifically, silicate ions, calcium ions, sebum, soap scum, etc. , rinse, and protein. In addition, the member according to the present invention can be made from any base material that is commonly used in an environment where a cycle of adhesion of water and contaminants and drying of water in a state where these are mixed is repeated. The above-mentioned effects can be achieved on various substrates.
表面層
 本発明において、表面層は、下記式(A1)で表される構造および下記式(A2)で表される構造を含む。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Surface Layer In the present invention, the surface layer includes a structure represented by the following formula (A1) and a structure represented by the following formula (A2).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
 式(A1)において、
  Lは、-COO-、-CONH-、-(CH-(mは自然数である)のいずれか1つを含み、
  Rは、HまたはCHであり、
  Xは、下記式(B)で表される官能基であり、
Figure JPOXMLDOC01-appb-C000023
 式(B)において、
  RおよびRは、それぞれ独立して、-(CH-(lは1~10の自然数である)で表される炭化水素基であり、
  RおよびRは、それぞれ独立して、必須成分としてCおよびHを、任意成分としてOを含み、かつ、NおよびSを含まない有機基である。
In formula (A1),
L 1 includes any one of -COO-, -CONH-, -(CH 2 ) m - (m is a natural number),
R 1 is H or CH 3 ;
X 1 is a functional group represented by the following formula (B),
Figure JPOXMLDOC01-appb-C000023
In formula (B),
R 2 and R 5 are each independently a hydrocarbon group represented by -(CH 2 ) l - (l is a natural number from 1 to 10),
R 3 and R 4 are each independently an organic group containing C and H as essential components, O as an optional component, and not containing N or S.
 式(A2)において、
  Lは、-COO-、-CONH-、-(CH-(mは自然数である)のいずれか1つを含み、
  Rは、HまたはCHであり、
  Xは、下記式(C)で表される官能基であり、
Figure JPOXMLDOC01-appb-C000024
 式(C)において、
  Yは、炭素数が1~10の直鎖または分岐または環状の炭化水素基であり、
  aは自然数であり、
  Rは、H、CH、C、下記式(D1)、下記式(D2)、下記式(D3)、および下記式(D4)からなる群から選択されるいずれかの構造を含む
ことを特徴とする。
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
In formula (A2),
L 2 includes any one of -COO-, -CONH-, -(CH 2 ) m - (m is a natural number),
R 1 is H or CH 3 ;
X 2 is a functional group represented by the following formula (C),
Figure JPOXMLDOC01-appb-C000024
In formula (C),
Y is a straight chain, branched or cyclic hydrocarbon group having 1 to 10 carbon atoms,
a is a natural number,
R 6 has any structure selected from the group consisting of H, CH 3 , C 2 H 5 , the following formula (D1), the following formula (D2), the following formula (D3), and the following formula (D4). It is characterized by containing.
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
 式(D1)において、
  Yは、炭素数が1~10の直鎖または分岐または環状の炭化水素基であり、
  Lは、-OCO-、-NHCO-、-(CH-(mは自然数である)のいずれか1つを含み、
  Rは、HまたはCHである。
In formula (D1),
Y is a straight chain, branched or cyclic hydrocarbon group having 1 to 10 carbon atoms,
L 3 includes any one of -OCO-, -NHCO-, -(CH 2 ) m - (m is a natural number),
R1 is H or CH3 .
 式(D2)において、
  Yは、炭素数が1~10の直鎖または分岐または環状の炭化水素基であり、
  Xは下記式(E1)で表される構造である。
Figure JPOXMLDOC01-appb-C000029
 式(E1)において、
  Yは、炭素数が1~10の直鎖または分岐または環状の炭化水素基であり、
  Lは、-OCO-、-NHCO-、-(CH-(mは自然数である)のいずれか1つを含み、
  Rは、HまたはCHである
  aは自然数である。
In formula (D2),
Y is a straight chain, branched or cyclic hydrocarbon group having 1 to 10 carbon atoms,
X 3 has a structure represented by the following formula (E1).
Figure JPOXMLDOC01-appb-C000029
In formula (E1),
Y is a straight chain, branched or cyclic hydrocarbon group having 1 to 10 carbon atoms,
L 3 includes any one of -OCO-, -NHCO-, -(CH 2 ) m - (m is a natural number),
R 1 is H or CH 3 a is a natural number.
 式(D3)において、
  Yは、炭素数が1~10の直鎖または分岐または環状の炭化水素基であり、
  Xは上記式(E1)で表される構造である。
In formula (D3),
Y is a straight chain, branched or cyclic hydrocarbon group having 1 to 10 carbon atoms,
X 3 is a structure represented by the above formula (E1).
 式(D4)において、
  X4は下記式(E2)で表される構造である。
Figure JPOXMLDOC01-appb-C000030
 式(E2)において、
  Yは、炭素数が1~10の直鎖または分岐または環状の炭化水素基であり、
  Lは、-OCO-、-NHCO-、-(CH-(mは自然数である)のいずれか1つを含み、
  Rは、HまたはCHである
  aは自然数である。
In formula (D4),
X 4 has a structure represented by the following formula (E2).
Figure JPOXMLDOC01-appb-C000030
In formula (E2),
Y is a straight chain, branched or cyclic hydrocarbon group having 1 to 10 carbon atoms,
L 3 includes any one of -OCO-, -NHCO-, -(CH 2 ) m - (m is a natural number),
R 1 is H or CH 3 a is a natural number.
 表面層が式(A1)で表される構造および式(A2)で表される構造を含むことにより、本発明による部材は、様々な汚染物質の表面への付着を抑制することができる。とりわけ、タンパク質の付着および水垢の固着の双方を抑制することが可能である。これらの抑制メカニズムは以下のように考えられるが、あくまで仮説であり、この仮説により本発明は何ら制限されるものではない。式(A1)で表される構造は、後述するようにベタイン構造であり、アンチファウリング能(タンパク質の吸着抑制能)を有する。この性能により、部材表面へのタンパク質の付着を抑制することができる。その一方で、式(A1)で表される構造中のN部位にケイ酸イオンが静電吸着するおそれがある。この場合、ケイ酸イオンの付着量が多くなる。すなわちケイ酸イオンの付着密度が増加する。これにより、ケイ酸イオン同士の脱水縮合によるポリマー化が誘発又は促進され、この状態でケイ酸イオンの付着密度がさらに増加すると、生成されたポリマーはより緻密なものとなり、これが水垢の固着を加速させるおそれがある。また、式(A1)で表される構造中のSO 部位にカルシウムイオンが静電吸着するおそれがある。この場合、カルシウムイオンの吸着量が多くなる。すなわちカルシウムイオンの吸着密度が増加する。これにより、炭酸カルシウムの結晶化が誘発又は促進され、この状態でカルシウムイオンの吸着密度がさらに増加すると、生成された結晶はより緻密なものとなり、これが水垢の固着を加速させるおそれがある。しかしながら、本発明による部材の表面層は式(A1)で表される構造とともに式(A2)で表される構造を含むため、ケイ酸イオンのポリマー化および/または炭酸カルシウムの結晶化、さらに生成されたポリマーおよび/または結晶の緻密化を抑制することができる。すなわち、式(A2)で表される構造は、後述するように親水性かつノニオン性を有する構造であるため、表面層において親水性かつノニオン性を有する構造が存在する領域にはケイ酸イオンおよび/またはカルシウムイオンが静電吸着することができない。本発明による部材の表面層には、式(A2)で表される親水性かつノニオン性を有する構造と式(A1)で表されるベタイン構造とが共存している(例えば、両者がランダムに存在している)。そのため、式(A1)で表される構造中のNにケイ酸イオンが付着した部位および/または同構造中のSO にカルシウムイオンが吸着した部位が存在していても、親水性かつノニオン性を有する構造によりケイ酸イオンおよび/またはカルシウムイオンの吸着が阻害された部位も存在する。したがって、この部位でケイ酸イオンのポリマー化および/または炭酸カルシウムの結晶化、さらに生成されたポリマーおよび/または結晶の緻密化を遮断することができ、水垢の固着を抑制することができる。このように、式(A1)で表される構造および式(A2)で表される構造を含むことにより、本発明による部材は、タンパク質の付着だけでなく水垢の固着も同時に抑制することができる。
 なお、本発明において、表面層が式(A1)で表される構造を含むとは、表面層が式(A1)で表される特定数の構造の1種または複数種を含むことを指し、表面層が式(A2)で表される構造を含むとは、表面層が式(A2)で表される特定数の構造の1種または複数種を含むことを指す。
By including the structure represented by formula (A1) and the structure represented by formula (A2) in the surface layer, the member according to the present invention can suppress adhesion of various contaminants to the surface. In particular, it is possible to suppress both protein adhesion and limescale adhesion. These suppressing mechanisms are thought to be as follows, but these are only hypotheses, and the present invention is not limited by this hypothesis in any way. The structure represented by formula (A1) is a betaine structure as described later, and has antifouling ability (protein adsorption suppressing ability). This performance makes it possible to suppress the adhesion of proteins to the surface of the member. On the other hand, there is a possibility that silicate ions may be electrostatically adsorbed to the N + site in the structure represented by formula (A1). In this case, the amount of silicate ions attached increases. That is, the adhesion density of silicate ions increases. This induces or promotes polymerization through dehydration condensation between silicate ions, and when the adhesion density of silicate ions further increases in this state, the generated polymer becomes denser, which accelerates the adhesion of limescale. There is a risk of causing Furthermore, there is a possibility that calcium ions may be electrostatically adsorbed to the SO 3 - site in the structure represented by formula (A1). In this case, the amount of calcium ions adsorbed increases. That is, the adsorption density of calcium ions increases. This induces or promotes crystallization of calcium carbonate, and if the adsorption density of calcium ions further increases in this state, the generated crystals become denser, which may accelerate the fixation of limescale. However, since the surface layer of the member according to the present invention includes the structure represented by formula (A2) as well as the structure represented by formula (A1), polymerization of silicate ions and/or crystallization of calcium carbonate, and further formation of It is possible to suppress the densification of the polymer and/or crystals. That is, the structure represented by formula (A2) is a structure that is hydrophilic and nonionic, as described below, so silicate ions and /or Calcium ions cannot be electrostatically adsorbed. In the surface layer of the member according to the present invention, a hydrophilic and nonionic structure represented by formula (A2) and a betaine structure represented by formula (A1) coexist (for example, both are randomly distributed). Existing). Therefore, even if there is a site where a silicate ion is attached to N + in the structure represented by formula (A1) and/or a site where calcium ion is adsorbed to SO 3 - in the same structure, it is hydrophilic and There are also sites where adsorption of silicate ions and/or calcium ions is inhibited due to the nonionic structure. Therefore, polymerization of silicate ions and/or crystallization of calcium carbonate as well as densification of the produced polymer and/or crystals can be blocked at this site, and the adhesion of scale can be suppressed. As described above, by including the structure represented by formula (A1) and the structure represented by formula (A2), the member according to the present invention can simultaneously suppress not only protein adhesion but also limescale adhesion. .
In the present invention, the expression that the surface layer includes a structure represented by formula (A1) refers to that the surface layer contains one or more of a specific number of structures represented by formula (A1), The expression that the surface layer includes a structure represented by formula (A2) refers to that the surface layer contains one or more types of a specific number of structures represented by formula (A2).
 本発明において、表面層は、式(A1)で表される構造および式(A2)で表される構造のみを含む層であることが好ましい。 In the present invention, the surface layer is preferably a layer containing only the structure represented by formula (A1) and the structure represented by formula (A2).
 本発明において、表面層は、高分子層であることが好ましい。高分子層とは、高分子化合物を含有する層である。本発明において、表面層は、式(A1)で表される構造および式(A2)で表される構造を含む高分子化合物を含むことが好ましい。表面層は、式(A1)で表される構造および式(A2)で表される構造のみを含む高分子化合物を含むことがさらに好ましい。この場合、式(A1)で表される構造と式(A2)で表される構造はランダムに結合していることが好ましい。 In the present invention, the surface layer is preferably a polymer layer. The polymer layer is a layer containing a polymer compound. In the present invention, the surface layer preferably contains a polymer compound having a structure represented by formula (A1) and a structure represented by formula (A2). It is further preferable that the surface layer contains a polymer compound containing only the structure represented by formula (A1) and the structure represented by formula (A2). In this case, it is preferable that the structure represented by formula (A1) and the structure represented by formula (A2) are randomly bonded.
 式(A1)で表される構造および式(A2)で表される構造についてさらに説明する。 The structure represented by formula (A1) and the structure represented by formula (A2) will be further explained.
式(A1)で表される構造
 式(A1)において、Lは-COO-であることが好ましい。これにより、タンパク質の付着および水垢の固着をより抑制することができる。
In structural formula (A1) represented by formula (A1), L 1 is preferably -COO-. Thereby, adhesion of proteins and adhesion of scale can be further suppressed.
 式(A1)のX、つまり式(B)において、RおよびRのlは、1~6であることが好ましく、1~5であることがより好ましく、1~3であることがさらにより好ましい。これにより、カチオン性であるN部位へのアニオン性であるケイ酸イオンの吸着および/またはアニオン性であるSO 部位へのカチオン性であるカルシウムイオンの吸着を最小限に抑制することができる。これにより、式(A1)で表される構造は安定な分子を構成することができる。すなわち、カチオン性のN部位と、式(A1)で表される構造の末端にあるアニオン性のSO 部位との距離が大きくなりすぎないため、アニオン性のケイ酸イオンおよび/またはカチオン性のカルシウムイオンが式(A1)で表される構造(つまり、表面層)に容易に近づくことを抑制し、アニオン性のケイ酸イオンおよび/またはカチオン性のカルシウムイオンの吸着を抑制できる。 In formula (A1), X 1 , that is, in formula (B), R 2 and R 5 are preferably 1 to 6, more preferably 1 to 5, and preferably 1 to 3. Even more preferred. This makes it possible to minimize the adsorption of anionic silicate ions to cationic N + sites and/or adsorption of cationic calcium ions to anionic SO 3 - sites. can. Thereby, the structure represented by formula (A1) can constitute a stable molecule. That is, since the distance between the cationic N + site and the anionic SO 3 - site at the end of the structure represented by formula (A1) does not become too large, the anionic silicate ion and/or cation It is possible to suppress the easy approach of chemical calcium ions to the structure represented by formula (A1) (that is, the surface layer), and to suppress the adsorption of anionic silicate ions and/or cationic calcium ions.
式(A2)で表される構造
 式(A2)において、Lは-COO-であることが好ましい。これにより、タンパク質の付着および水垢の固着をより抑制することができる。
In structural formula (A2) represented by formula (A2), L 2 is preferably -COO-. Thereby, adhesion of proteins and adhesion of scale can be further suppressed.
 式(A2)のX、つまり式(C)において、RはH、CH、C、または式(D1)で表される構造のいずれかを含むことが好ましい。ここで、RがH、CH、またはCである場合、これらは1価官能基である。これにより、タンパク質を含む様々な汚染物質の付着を防止する効果を高めることができる。Rは、H、またはCHであることがより好ましい。これにより、式(A2)中の親水性部(-YO-の繰り返し構造)の割合を大きくすることができるため、表面層の親水性を高くすることができる。その結果、汚染物質の付着を防止する効果をより高めることが可能となる。一方で、Rは式(D1)、式(D2)、式(D3)、または式(D4)のいずれかを含むことが好ましい。ここで、式(D1)で表される構造は2価官能基であり、式(D2)、(D3)で表される構造は3価官能基であり、式(D4)で表される構造は4価官能基である。これにより、摺動耐久性、耐摩耗性などの耐久性を高めることが可能となる。Rは式(D2)、式(D3)、または式(D4)であることがより好ましい。これにより、表面構造中の架橋密度を高くすることができ、耐久性をより高めることが可能となる。 In X 2 of formula (A2), that is, formula (C), R 6 preferably contains any one of H, CH 3 , C 2 H 5 , or a structure represented by formula (D1). Here, when R 6 is H, CH 3 or C 2 H 5 , these are monovalent functional groups. This can enhance the effect of preventing attachment of various contaminants including proteins. More preferably, R 6 is H or CH 3 . As a result, the proportion of the hydrophilic moiety (-YO- repeating structure) in formula (A2) can be increased, so that the hydrophilicity of the surface layer can be increased. As a result, it becomes possible to further enhance the effect of preventing the adhesion of contaminants. On the other hand, R 6 preferably includes any one of formula (D1), formula (D2), formula (D3), or formula (D4). Here, the structure represented by formula (D1) is a divalent functional group, the structures represented by formulas (D2) and (D3) are trivalent functional groups, and the structure represented by formula (D4) is a tetravalent functional group. This makes it possible to improve durability such as sliding durability and abrasion resistance. More preferably, R 6 is formula (D2), formula (D3), or formula (D4). This makes it possible to increase the crosslinking density in the surface structure, making it possible to further improve durability.
 Rの価数が2価~4価のいずれの場合も、Yは、炭素数が1~10の直鎖の炭化水素基であることが好ましく、炭素数が1~5であることがより好ましく、炭素数が1~3であることがさらにより好ましい。これによっても、表面層の親水性が高くなるため、タンパク質を含む様々な汚染物質の付着を防止することが可能となる。 In any case where R 6 has a valence of 2 to 4, Y is preferably a linear hydrocarbon group having 1 to 10 carbon atoms, more preferably 1 to 5 carbon atoms. Preferably, the number of carbon atoms is 1 to 3, even more preferably. This also increases the hydrophilicity of the surface layer, making it possible to prevent attachment of various contaminants including proteins.
 本発明において、表面層が式(A1)で表される構造および式(A2)で表される構造を含むことは、下記の方法により特定することができる。 In the present invention, it can be specified by the following method that the surface layer contains the structure represented by formula (A1) and the structure represented by formula (A2).
(赤外分光法(IR))
 赤外分光法によって表面層の表面近傍の赤外光吸収スペクトルを測定することで、表面層に含まれる官能基を推定することができる。例えば、エステル結合(-COO-)における-C=Oおよび-C-O-の存在を吸収波数から特定することが可能である。表面層の表面近傍の赤外吸収スペクトルを測定する方法としては、表面層を削り取るなどして回収し、この粉末を透過法で測定する方法や、より簡便な方法として一回反射ATR法や顕微ATR法などが挙げられる。
(Infrared spectroscopy (IR))
By measuring the infrared light absorption spectrum near the surface of the surface layer using infrared spectroscopy, it is possible to estimate the functional groups contained in the surface layer. For example, it is possible to identify the presence of -C=O and -C-O- in an ester bond (-COO-) from the absorption wave number. Methods for measuring the infrared absorption spectrum near the surface of the surface layer include collecting the powder by scraping off the surface layer and measuring the powder using a transmission method, and simpler methods such as the single-reflection ATR method and microscopy. Examples include the ATR method.
(飛行時間型二次イオン質量分析法(TOF-SIMS))
 TOF-SIMSによって、表面層の表面に存在する有機物の構造情報を得ることができる。表面層をTOF-SIMSで評価することにより、式(A1)で表される構造や式(A2)で表される構造に固有のフラグメントピークから部分構造を特定することが可能である。例えば式(A1)で表される構造が下記式(A1-1)で表される構造の場合、m/z=279.11,m/z=421.26に固有のフラグメントピークを検出することができる。また、式(A2)で表される構造が下記式(A2-1)で表される構造の場合、m/z=88.99に固有のフラグメントピークを検出することができる。TOF-SIMSで測定する際、測定するサンプル表面の汚れを除去するために、前処理として、GCIBなどのイオン源でサンプル表面を数nm程度スパッタし、その後Bi 2+などの一次イオン源を照射し、そのフラグメントを測定する。
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
(Time-of-flight secondary ion mass spectrometry (TOF-SIMS))
By TOF-SIMS, structural information on organic substances present on the surface of the surface layer can be obtained. By evaluating the surface layer by TOF-SIMS, it is possible to identify the partial structure from the fragment peak specific to the structure represented by formula (A1) or the structure represented by formula (A2). For example, if the structure represented by formula (A1) is the structure represented by formula (A1-1) below, unique fragment peaks at m/z = 279.11 and m/z = 421.26 can be detected. I can do it. Furthermore, when the structure represented by formula (A2) is the structure represented by formula (A2-1) below, a unique fragment peak at m/z=88.99 can be detected. When measuring with TOF-SIMS, in order to remove dirt from the surface of the sample to be measured, the sample surface is sputtered several nm thick with an ion source such as GCIB as a pretreatment, and then irradiated with a primary ion source such as Bi 3 2+ . and measure the fragments.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
(X線光電子分光測定法(XPS))
 XPSにより、表面層を構成する分子中に含まれるC、N、O、Sの組成比率および化学結合状態を特定可能である。例えば、式(A1-1)に示すようなスルホベタイン構造に由来するN原子のXPSスペクトル(N1s軌道)は、ピーク位置が結合エネルギー401.2eVである。これに対し、式(A1)で表される構造が下記式(A3)(カチオン性のアンモニウム部位を含む構造)に示すような構造、または式(A3)と下記式(A4)(アニオン性のスルホン酸部位を含む構造)の混合物である場合は、ピーク位置がそれぞれ402.0eVまたは401.8eVとなる。このように、N原子について、ピーク位置の違いからスルホベタイン由来のN原子かどうかを特定することが可能である。またS原子についても同様にピーク位置からスルホベタイン由来かどうかを特定可能であり、式(A1-1)に示すような構造に由来するS原子のXPSスペクトル(S2p軌道)は、ピーク位置が結合エネルギー166.2eVであるのに対し、式(A4)に示すような構造(アニオン性のスルホン酸)または式(A3)と式(A4)の混合物である場合は、ピーク位置がそれぞれ167.5eV、167.1eVとなる。なお、これらのすべてのピーク位置は、C1s軌道のピーク位置284.5[eV]で補正を行うことにより得られる。
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
(X-ray photoelectron spectroscopy (XPS))
By XPS, it is possible to specify the composition ratio and chemical bonding state of C, N, O, and S contained in the molecules constituting the surface layer. For example, the XPS spectrum (N1s orbital) of the N atom derived from the sulfobetaine structure as shown in formula (A1-1) has a peak position with a binding energy of 401.2 eV. On the other hand, the structure represented by formula (A1) is the structure shown in the following formula (A3) (a structure containing a cationic ammonium moiety), or the structure represented by the formula (A3) and the following formula (A4) (anionic In the case of a mixture of structures containing sulfonic acid moieties), the peak positions are 402.0 eV and 401.8 eV, respectively. In this way, it is possible to identify whether an N atom is derived from sulfobetaine based on the difference in peak position. Similarly, it is possible to identify whether or not the S atom originates from sulfobetaine from the peak position. The energy is 166.2 eV, whereas in the case of the structure shown in formula (A4) (anionic sulfonic acid) or a mixture of formula (A3) and formula (A4), the peak position is 167.5 eV. , 167.1 eV. Note that all these peak positions are obtained by correcting the peak position of the C1s orbit at 284.5 [eV].
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000034
(核磁気共鳴測定法(NMR))
 NMRにより、表面層を構成する分子中に含まれるH、C、Nの結合状態および隣接原子との相互作用に関する情報を標準試料との比較による化学シフトにより得ることができる。これにより、表面層を構成する分子構造を詳細に特定することができる。
(Nuclear magnetic resonance measurement (NMR))
By NMR, information regarding the bonding states of H, C, and N contained in the molecules constituting the surface layer and interactions with neighboring atoms can be obtained by chemical shifts compared with standard samples. Thereby, the molecular structure constituting the surface layer can be specified in detail.
表面層の静的接触角
 本発明において、表面層の表面に対する水の静的接触角が低いほど好ましい。具体的には、30°以下であることが好ましく、25°以下であることがより好ましく、15°以下であることがさらにより好ましい。これにより、親水性が高くなるため、タンパク質を含む様々な汚染物質の付着を防止することが可能となる。
Static contact angle of surface layer In the present invention, the static contact angle of water with respect to the surface of the surface layer is preferably as low as possible. Specifically, the angle is preferably 30° or less, more preferably 25° or less, and even more preferably 15° or less. This increases hydrophilicity, making it possible to prevent attachment of various contaminants including proteins.
 表面層の表面に対する水の静的接触角は、例えば下記装置およびソフトウェアを用い、下記測定条件にて測定される。
装置:SA-301(協和界面化学社製)
ソフトウェア:界面測定/解析統合システム FAMAS
バージョン:5.0.16
測定方法:液滴法
液滴量:2.0μL
待ち時間:1000ms
解析方法:θ/2法
The static contact angle of water with respect to the surface of the surface layer is measured, for example, using the following apparatus and software under the following measurement conditions.
Equipment: SA-301 (manufactured by Kyowa Interface Science Co., Ltd.)
Software: Interface measurement/analysis integrated system FAMAS
Version: 5.0.16
Measurement method: Droplet method Droplet volume: 2.0μL
Waiting time: 1000ms
Analysis method: θ/2 method
表面層における式(A1)で表される構造(ベタイン構造)の存在割合
 本発明において、表面層における式(A1)で表される構造(スルホベタイン構造)の存在割合(SB比率)は、14%<SB比率<92%であることが好ましく、22%<SB比率<75%であることが好ましい。これにより、タンパク質の付着および水垢の固着を良好に抑制することができる。
Existence ratio of the structure represented by formula (A1) (betaine structure) in the surface layer In the present invention, the abundance ratio (SB ratio) of the structure represented by formula (A1) (sulfobetaine structure) in the surface layer is 14 It is preferable that %<SB ratio<92%, and it is preferable that 22%<SB ratio<75%. Thereby, adhesion of proteins and adhesion of scale can be suppressed well.
<SB比率の算出方法>
 SB比率は、後述するように、表面層をXPS測定して得られたS原子濃度より算出することが可能である。スルホベタイン構造を有する化合物のみからなる表面層のXPS測定によって得られたS原子濃度と、スルホベタイン構造を有さない(S原子を含まない)表面層のXPS測定によって得られたS原子濃度とを用い、各試料の表面のXPS測定によって得られたS原子濃度を規格化することにより、各試料の表面に存在するスルホベタイン構造の存在割合を推測することができる。
<How to calculate the SB ratio>
As described later, the SB ratio can be calculated from the S atom concentration obtained by XPS measurement of the surface layer. The S atom concentration obtained by XPS measurement of a surface layer consisting only of a compound having a sulfobetaine structure, and the S atom concentration obtained by XPS measurement of a surface layer that does not have a sulfobetaine structure (does not contain S atoms). By normalizing the S atom concentration obtained by XPS measurement of the surface of each sample using , it is possible to estimate the proportion of sulfobetaine structures present on the surface of each sample.
 より詳細には、表面層の構成成分として、スルホベタイン構造を有する化合物のみを含む部材サンプルのS原子濃度を100%とし、(スルホベタイン構造を有する化合物を含まず)非イオン性モノマーのみを含む部材サンプルのS原子濃度を0%として規格化する。この2点から得られる線形回帰直線を使用することで、XPS測定で得られたS濃度の値から各部材サンプルの規格化した値を算出し、この値を各部材サンプルのSB比率とする。 More specifically, the S atom concentration of a member sample containing only a compound having a sulfobetaine structure as a component of the surface layer is 100%, and the sample contains only a nonionic monomer (does not contain a compound having a sulfobetaine structure). The S atom concentration of the member sample is normalized as 0%. By using the linear regression line obtained from these two points, a normalized value for each component sample is calculated from the S concentration value obtained by the XPS measurement, and this value is taken as the SB ratio of each component sample.
<XPS測定>
・測定試料の準備
 板状の部材サンプルから適切なサイズの領域を切断したものを測定試料とすることができる。なお、測定前に測定試料の表面を洗浄することが好ましい。例えば、測定試料の表面を中性洗剤とスポンジを用いて洗浄し、その後超純水にて十分にすすぎ洗いを行うことがより好ましい。
・XPS測定装置
 XPS測定装置には、K-alpha(ThermoFisher Scientific社製)を用いることができる。
・XPS測定条件
X線条件:単色化AlKα線,72W-12KV
光電子取出角:90°
分析領域:400μmφ
中和銃条件:200μA
イオン銃条件:10mA
(サーベイ)
Time per step:10ms
Energy step size:1.000eV
Sweep:2回
Pass energy:200eV
走査範囲:-10~1350eV
(ナロー)
Time per step:50ms
Energy step size:0.100eV
Sweep:5回
Pass energy:50eV
走査範囲:C1sピーク 279.000eV~298.000eV、O1sピーク 525.000eV~545.000eV、N1sピーク 392.000eV~410.000eV、S2pピーク 157.000eV~175.000eV、Si2pピーク 95.000eV~110.000eV、P2pピーク 124.000eV~144.000eV
<XPS measurement>
- Preparation of measurement sample A measurement sample can be obtained by cutting an area of an appropriate size from a plate-shaped member sample. Note that it is preferable to wash the surface of the measurement sample before measurement. For example, it is more preferable to wash the surface of the measurement sample using a neutral detergent and a sponge, and then rinse thoroughly with ultrapure water.
- XPS measurement device K-alpha (manufactured by ThermoFisher Scientific) can be used as the XPS measurement device.
・XPS measurement conditions X-ray conditions: Monochromatic AlKα ray, 72W-12KV
Photoelectron extraction angle: 90°
Analysis area: 400μmφ
Neutralization gun conditions: 200μA
Ion gun conditions: 10mA
(survey)
Time per step: 10ms
Energy step size: 1.000eV
Sweep: 2 times Pass energy: 200eV
Scanning range: -10 to 1350eV
(Narrow)
Time per step: 50ms
Energy step size: 0.100eV
Sweep: 5 times Pass energy: 50eV
Scanning range: C1s peak 279.000eV to 298.000eV, O1s peak 525.000eV to 545.000eV, N1s peak 392.000eV to 410.000eV, S2p peak 157.000eV to 175.000eV, Si2p peak 95.000eV to 11 0 .000eV, P2p peak 124.000eV to 144.000eV
<各原子濃度(S、N、Si、P)の算出>
 検出された原子の濃度は、得られたスペクトルから、例えばデータ解析ソフトThermo Avantage(バージョン5.9916、ThermoFisher Scientific社製)を用いて算出することができる。ナロー分析で得たスペクトルに対して、C1sピークを284.5eVとしてチャージ補正する。その後、測定された各原子の電子軌道に基づくピークに対してShirley法でバックグラウンドを除去した後にピーク面積強度を算出し、データ解析ソフトウェアに予め設定されている装置固有の感度係数で除算する解析処理を行い、C原子、O原子、N原子、S原子、Si原子、P原子の合計を100%としたときの各原子濃度を算出する。
<Calculation of each atomic concentration (S, N, Si, P)>
The concentration of the detected atoms can be calculated from the obtained spectrum using, for example, data analysis software Thermo Avantage (version 5.9916, manufactured by ThermoFisher Scientific). Charge correction is performed on the spectrum obtained by narrow analysis by setting the C1s peak to 284.5 eV. After that, the background is removed using the Shirley method for the peak based on the electron orbit of each measured atom, and then the peak area intensity is calculated and divided by the device-specific sensitivity coefficient preset in the data analysis software. The process is performed, and the concentration of each atom is calculated when the total of C atoms , O atoms, N atoms, S atoms, Si atoms, and P atoms is taken as 100%.
Si原子の濃度
 本発明において、部材の表面をXPS測定することによって得られるSi原子の濃度が1.0%以下であることが好ましい。部材の表面に含まれるSi原子濃度が低いため、水垢の形成や吸着を抑制することができる。Si原子の濃度は0.4%以下であることがより好ましい。
Concentration of Si atoms In the present invention, it is preferable that the concentration of Si atoms obtained by XPS measurement of the surface of the member is 1.0% or less. Since the concentration of Si atoms contained in the surface of the member is low, formation and adsorption of water scale can be suppressed. More preferably, the concentration of Si atoms is 0.4% or less.
S原子の濃度
 本発明において、部材の表面をXPS測定することによって得られるS原子の濃度が0.5%以上であることが好ましい。これにより、タンパク質の吸着を抑制することができる。S原子の濃度は、好ましくは0.7%以上である。なお、S原子の濃度は、スルホベタイン構造中のSが表面に存在しているものによる濃度と考えられる。
Concentration of S atoms In the present invention, it is preferable that the concentration of S atoms obtained by XPS measurement of the surface of the member is 0.5% or more. Thereby, protein adsorption can be suppressed. The concentration of S atoms is preferably 0.7% or more. Note that the concentration of S atoms is considered to be the concentration due to S in the sulfobetaine structure existing on the surface.
N原子の濃度/S原子の濃度
 本発明において、部材の表面をXPS測定することによって得られるN原子の濃度/S原子の濃度が、0.5以上2.5以下であることが好ましい。これにより、タンパク質の吸着および水垢の形成や吸着を効果的に抑制することができる。N原子の濃度/S原子の濃度は、より好ましくは、0.6以上2.0以下である。
N atom concentration/S atom concentration In the present invention, it is preferable that the N atom concentration/S atom concentration obtained by XPS measurement of the surface of the member is 0.5 or more and 2.5 or less. Thereby, protein adsorption and scale formation and adsorption can be effectively suppressed. The ratio of N atom concentration/S atom concentration is more preferably 0.6 or more and 2.0 or less.
 本発明において、表面層は、基材上に設けられていても良い。表面層は、基材の表面に設けられていても良い。つまり、基材と表面層との間に他の層を含まずに、基材の表面に直接表面層が形成されていても良い。表面層が基材の表面に設けられる場合、表面層は、組成が傾斜した傾斜膜であることが好ましい。具体的には、表面層の表面側には、式(A1)で表される構造および式(A2)で表される構造を含み、表面層の基材側には、例えば後述する主鎖がアクリル系樹脂やポリビニル系樹脂を多く含む傾斜膜であることが好ましい。これにより、タンパク質の吸着および水垢の形成や吸着を抑制しつつ、基材との密着を確保することが可能となる。 In the present invention, the surface layer may be provided on the base material. The surface layer may be provided on the surface of the base material. That is, the surface layer may be formed directly on the surface of the base material without including any other layer between the base material and the surface layer. When the surface layer is provided on the surface of the base material, the surface layer is preferably a gradient film having a gradient composition. Specifically, the surface side of the surface layer includes a structure represented by formula (A1) and a structure represented by formula (A2), and the base material side of the surface layer includes, for example, a main chain described below. A gradient film containing a large amount of acrylic resin or polyvinyl resin is preferable. This makes it possible to ensure close contact with the base material while suppressing protein adsorption and scale formation and adsorption.
表面層形成用組成物
 本発明において、表面層は、表面層形成用組成物を硬化させたものであることが好ましい。本発明において、表面層形成用組成物は、ベタイン構造を有する化合物と、非イオン性モノマーと、重合開始剤と、任意成分として溶媒と、を含むものを使用することができる。
Composition for Forming Surface Layer In the present invention, the surface layer is preferably formed by curing the composition for forming surface layer. In the present invention, the composition for forming a surface layer may contain a compound having a betaine structure, a nonionic monomer, a polymerization initiator, and a solvent as an optional component.
ベタイン構造を有する化合物
 本発明において、表面層形成用組成物は、ベタイン構造を有する化合物を含むことができる。これにより、表面層形成用組成物が硬化して得られる表面層において、式(A1)で表される構造を含むことが可能となる。本発明において、ベタイン構造を有する化合物とは、同一分子内に少なくとも一つ以上の陽イオンと陰イオンおよびエチレン性不飽和基をもつ化合物を意味する。本発明において、陽イオンとして、四級アンモニウム、スルホニウム、ホスホニウムなどのカチオンが挙げられる。また陰イオンとして、-COO、-PO 2-、-HPO 、-SO などのアニオンが挙げられる。
Compound Having Betaine Structure In the present invention, the composition for forming a surface layer may contain a compound having a betaine structure. This allows the surface layer obtained by curing the surface layer forming composition to include the structure represented by formula (A1). In the present invention, a compound having a betaine structure means a compound having at least one cation, anion, and an ethylenically unsaturated group in the same molecule. In the present invention, examples of the cation include cations such as quaternary ammonium, sulfonium, and phosphonium. Examples of anions include anions such as -COO - , -PO 4 2- , -HPO 4 - , and -SO 3 - .
 本発明において、ベタイン構造を有する化合物として、分子内に陽イオンとして四級アンモニウムを含み、陰イオンとして-SO を含むスルホベタインが好ましい。分子内に(メタ)アクリル骨格を有するスルホベタインがより好ましい。 In the present invention, as a compound having a betaine structure, sulfobetaine containing quaternary ammonium as a cation and -SO 3 - as an anion in the molecule is preferred. Sulfobetaine having a (meth)acrylic skeleton in the molecule is more preferred.
 本発明において、ベタイン構造を有する化合物として、下記式(F1)で表される化合物1を挙げることができる。
化合物1:
Figure JPOXMLDOC01-appb-C000035
 化合物1において、
 Lは、-COO-、-CONH-、-(CH)m-(mは自然数である)のいずれか1つを含み、
 Rは、HまたはCHであり、
 RおよびRは、それぞれ独立して、-(CH-(lは1~10の自然数である)で表される炭化水素基であり、
 R、R、Rは、それぞれ独立して、必須成分としてCおよびHを、任意成分としてOを含み、かつ、NおよびSを含まない有機基であり、
 Aは、PO であり、
 Bは、N、SまたはPである。
 なお、Lが、-CO-を含むことは、上述したIRから特定することが可能である。
In the present invention, Compound 1 represented by the following formula (F1) can be mentioned as a compound having a betaine structure.
Compound 1:
Figure JPOXMLDOC01-appb-C000035
In compound 1,
L 1 includes any one of -COO-, -CONH-, -(CH 2 )m- (m is a natural number),
R 1 is H or CH 3 ;
R 2 and R 5 are each independently a hydrocarbon group represented by -(CH 2 ) l - (l is a natural number from 1 to 10),
R 3 , R 4 and R 7 are each independently an organic group containing C and H as essential components, O as an optional component, and not containing N and S,
A is PO 4 ;
B is N + , S + or P + .
Note that it can be specified from the above-mentioned IR that L 1 includes -CO-.
 本発明において、ベタイン構造を有する化合物として、下記式(F2)で表される化合物2を挙げることができる。
化合物2:
Figure JPOXMLDOC01-appb-C000036
 化合物2において、
 Lは、-COO-、-CONH-、-(CH)m-(mは自然数である)のいずれか1つを含み、
 Rは、HまたはCHであり、
 RおよびRは、それぞれ独立して、-(CH-(lは1~10の自然数である)で表される炭化水素基であり、
 RおよびRは、それぞれ独立して、必須成分としてCおよびHを、任意成分としてOを含み、かつ、NおよびSを含まない有機基であり、
 Aは、COO、PO 2-、HPO またはSO であり、
 Bは、N、SまたはPである。
In the present invention, Compound 2 represented by the following formula (F2) can be mentioned as a compound having a betaine structure.
Compound 2:
Figure JPOXMLDOC01-appb-C000036
In compound 2,
L 1 includes any one of -COO-, -CONH-, -(CH 2 )m- (m is a natural number),
R 1 is H or CH 3 ;
R 2 and R 5 are each independently a hydrocarbon group represented by -(CH 2 ) l - (l is a natural number from 1 to 10),
R 3 and R 4 are each independently an organic group containing C and H as essential components, O as an optional component, and not containing N and S,
A is COO , PO 4 2− , HPO 4 or SO 3 ,
B is N + , S + or P + .
 本発明において、ベタイン構造を有する化合物の具体例として、3-[[2-(アクリロイルオキシ)エチル]ジメチルアンモニオ]プロパン-1-スルホン酸、3-[[2-(メタクリロイルオキシ)エチル]ジメチルアンモニオ]プロパン-1-スルホン酸、4-[(3-メタクリルアミドプロピル)ジメチルアンモニオ]ブタン-1-スルホン酸、3-[[2-(メタクリロイルオキシ)エチル]ジメチルアンモニオ]プロピオナート、2-[[2-(メタクリロイルオキシ)エチル]ジメチルアンモニオ]酢酸、リン酸2-(メタクリロイルオキシ)エチル2-(トリメチルアンモニオ)エチル]、4-[[2-(メタクリロイルオキシ)エチル]ジメチルアンモニオ]ブタン-1-スルホン酸、3-[(3-アクリルアミドプロピル)ジメチルアンモニオ]プロパノアート、3-[(3-アクリルアミドプロピル)ジメチルアンモニオ]プロパン-1-スルホン酸、3-[(3-メタクリルアミドプロピル)ジメチルアンモニオ]プロパン-1-スルホン酸が挙げられる。これらの中で、3-[[2-(アクリロイルオキシ)エチル]ジメチルアンモニオ]プロパン-1-スルホン酸、3-[[2-(メタクリロイルオキシ)エチル]ジメチルアンモニオ]プロパン-1-スルホン酸、[3-(メタクリロイルアミノ)プロピル]ジメチル(3-スルホブチル)アンモニウムヒドロキシドが好ましい。 In the present invention, specific examples of compounds having a betaine structure include 3-[[2-(acryloyloxy)ethyl]dimethylammonio]propane-1-sulfonic acid, 3-[[2-(methacryloyloxy)ethyl]dimethyl ammonio]propane-1-sulfonic acid, 4-[(3-methacrylamidopropyl)dimethylammonio]butane-1-sulfonic acid, 3-[[2-(methacryloyloxy)ethyl]dimethylammonio]propionate, 2 -[[2-(methacryloyloxy)ethyl]dimethylammonio]acetic acid, 2-(methacryloyloxy)ethyl 2-(trimethylammonio)ethyl phosphate], 4-[[2-(methacryloyloxy)ethyl]dimethylammonio] o]butane-1-sulfonic acid, 3-[(3-acrylamidopropyl)dimethylammonio]propanoate, 3-[(3-acrylamidopropyl)dimethylammonio]propane-1-sulfonic acid, 3-[(3- Methacrylamide propyl)dimethylammonio]propane-1-sulfonic acid is mentioned. Among these, 3-[[2-(acryloyloxy)ethyl]dimethylammonio]propane-1-sulfonic acid, 3-[[2-(methacryloyloxy)ethyl]dimethylammonio]propane-1-sulfonic acid , [3-(methacryloylamino)propyl]dimethyl(3-sulfobutyl)ammonium hydroxide is preferred.
非イオン性モノマー
 本発明において、表面層形成用組成物は、非イオン性モノマーを含むことができる。これにより、表面層形成用組成物が硬化して得られる表面層において、式(A2)で表される構造を含むことが可能となる。本発明において、非イオン性モノマーとは、分子内に一つ以上のエチレン性不飽和基とオキシアルキレンとを有するモノマーを意味する。非イオン性モノマーは、親水性である。非イオン性モノマーは、より好ましくは、分子内に(メタ)アクリル骨格とオキシアルキレン基とを有するモノマーである。
Nonionic Monomer In the present invention, the composition for forming a surface layer may contain a nonionic monomer. This allows the surface layer obtained by curing the surface layer forming composition to include the structure represented by formula (A2). In the present invention, a nonionic monomer means a monomer having one or more ethylenically unsaturated groups and oxyalkylene in the molecule. Nonionic monomers are hydrophilic. The nonionic monomer is more preferably a monomer having a (meth)acrylic skeleton and an oxyalkylene group in the molecule.
 本発明において、非イオン性モノマーとして、下記式(G1)で表される1官能非イオン性モノマーを挙げることができる。
Figure JPOXMLDOC01-appb-C000037
式(G1)中、
 Lは、-COO-、-CONH-、-(CH-(mは自然数である)のいずれか1つを含み、
 Rは、HまたはCHであり、
 Rは、HまたはCHまたはCであり、
 Yは、炭素数が1~10の直鎖または分岐または環状の炭化水素基であり、
 aは自然数である。
In the present invention, examples of the nonionic monomer include monofunctional nonionic monomers represented by the following formula (G1).
Figure JPOXMLDOC01-appb-C000037
In formula (G1),
L 2 includes any one of -COO-, -CONH-, -(CH 2 ) m - (m is a natural number),
R 1 is H or CH 3 ;
R8 is H or CH3 or C2H5 ,
Y is a straight chain, branched or cyclic hydrocarbon group having 1 to 10 carbon atoms,
a is a natural number.
 本発明において、非イオン性モノマーとして、下記式(G2)で表される2官能非イオン性モノマーを挙げることができる。
Figure JPOXMLDOC01-appb-C000038
式(G2)中、
 Lは、-COO-、-CONH-、-(CH-(mは自然数である)のいずれか1つを含み、
 Lは、-OCO-、-NHCO-、-(CH-(mは自然数である)のいずれか1つを含み、
 Rは、HまたはCHであり、
 Yは、炭素数が1~10の直鎖または分岐または環状の炭化水素基であり、
 aは自然数である。
In the present invention, examples of the nonionic monomer include a bifunctional nonionic monomer represented by the following formula (G2).
Figure JPOXMLDOC01-appb-C000038
In formula (G2),
L 2 includes any one of -COO-, -CONH-, -(CH 2 ) m - (m is a natural number),
L 3 includes any one of -OCO-, -NHCO-, -(CH 2 ) m - (m is a natural number),
R 1 is H or CH 3 ;
Y is a straight chain, branched or cyclic hydrocarbon group having 1 to 10 carbon atoms,
a is a natural number.
 本発明において、非イオン性モノマーとして、下記式(G3)で表される3官能非イオン性モノマー1を挙げることができる。
Figure JPOXMLDOC01-appb-C000039
式(G3)中、
 Lは、-OCO-、-NHCO-、-(CH-(mは自然数である)のいずれか1つを含み、
 Rは、HまたはCHであり、
 Yは、炭素数が1~10の直鎖または環状の炭化水素基であり、
 b、c、dはそれぞれ独立した自然数である。
In the present invention, trifunctional nonionic monomer 1 represented by the following formula (G3) can be mentioned as a nonionic monomer.
Figure JPOXMLDOC01-appb-C000039
In formula (G3),
L 3 includes any one of -OCO-, -NHCO-, -(CH 2 ) m - (m is a natural number),
R 1 is H or CH 3 ;
Y is a linear or cyclic hydrocarbon group having 1 to 10 carbon atoms,
b, c, and d are each independent natural numbers.
 本発明において、非イオン性モノマーとして、下記式(G4)で表される3官能非イオン性モノマー2を挙げることができる。
Figure JPOXMLDOC01-appb-C000040
上記式中、
 Lは、-OCO-、-NHCO-、-(CH-(mは自然数である)のいずれか1つを含み、
 Rは、HまたはCHであり、
 Yは、炭素数が1~10の直鎖または環状の炭化水素基であり、
 b、c、dはそれぞれ独立した自然数である
ことを特徴とする。
In the present invention, trifunctional nonionic monomer 2 represented by the following formula (G4) can be mentioned as a nonionic monomer.
Figure JPOXMLDOC01-appb-C000040
In the above formula,
L 3 includes any one of -OCO-, -NHCO-, -(CH 2 ) m - (m is a natural number),
R 1 is H or CH 3 ;
Y is a linear or cyclic hydrocarbon group having 1 to 10 carbon atoms,
b, c, and d are each independent natural numbers.
 本発明において、非イオン性モノマーとして、下記式(G5)で表される4官能非イオン性モノマーを挙げることができる。
Figure JPOXMLDOC01-appb-C000041
式(G5)中、
 Lは、-COO-、-CONH-、-(CH-(mは自然数である)のいずれか1つを含み、
 Lは、-OCO-、-NHCO-、-(CH-(mは自然数である)のいずれか1つを含み、
 Rは、HまたはCHであり、
 Yは、炭素数が1~10の直鎖または環状の炭化水素基であり、b、c、d、eはそれぞれ独立した自然数である。
In the present invention, examples of the nonionic monomer include a tetrafunctional nonionic monomer represented by the following formula (G5).
Figure JPOXMLDOC01-appb-C000041
In formula (G5),
L 1 includes any one of -COO-, -CONH-, -(CH 2 ) m - (m is a natural number),
L 2 includes any one of -OCO-, -NHCO-, -(CH 2 ) m - (m is a natural number),
R 1 is H or CH 3 ;
Y is a linear or cyclic hydrocarbon group having 1 to 10 carbon atoms, and b, c, d, and e are each independent natural numbers.
 本発明において、非イオン性モノマーの具体例として、4-ヒドロキシブチルアクリレート、2-メトキシエチルアクリレート(アクリル酸2-メトキシエチル)、2-[2-(2-メトキシエトキシ)エトキシ]エチルアクリレート、2-ヒドロキシエチルメタクリレート(メタクリル酸2-ヒドロキシエチル(HEMA))、2-メトキシエチルメタクリレート、ジエチレングリコールモノメチルエーテルメタクリレート、ヒドロキシプロピルメタクリレート、N-(ヒドロキシメチル)アクリルアミド、N-(2-ヒドロキシエチル)アクリルアミド、N-(メトキシメチル)アクリルアミド、N-(メトキシメチル)メタクリルアミド、N-(ヒドロキシメチル)メタクリルアミド、メトキシジエチレングリコールメタクリレート、メトキシテトラエチレングリコールメタクリレート、メトキシポリエチレングリコールメタクリレート、メトキシポリエチレングリコールアクリレート、ポリエチレングリコールメタクリレート、N-(4-ヒドロキシフェニル)メタクリルアミド、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、ポリエチレングリコールジアクリレート、ポリエチレングリコールジメタクリレート、アルコキシ化トリメチロールプロパンアクリレート、アルコキシ化トリメチロールプロパンメタクリレート、アルコキシ化グリセリンアクリレート、アルコキシ化グリセリンメタクリレート、アルコキシ化ペンタエリスリトールテトラアクリレート、アルコキシ化ペンタエリスリトールテトラメタクリレートが挙げられる。これらの中で、メタクリル酸2-ヒドロキシエチル(HEMA)、メトキシテトラエチレングリコールメタクリレート、メトキシポリエチレングリコールメタクリレート、アクリル酸2-メトキシエチル、ジエチレングリコールジメタクリレートが好ましい。より好ましくは、メタクリル酸2-ヒドロキシエチル(HEMA)、メトキシポリエチレングリコールメタクリレートである。 In the present invention, specific examples of nonionic monomers include 4-hydroxybutyl acrylate, 2-methoxyethyl acrylate (2-methoxyethyl acrylate), 2-[2-(2-methoxyethoxy)ethoxy]ethyl acrylate, -Hydroxyethyl methacrylate (2-hydroxyethyl methacrylate (HEMA)), 2-methoxyethyl methacrylate, diethylene glycol monomethyl ether methacrylate, hydroxypropyl methacrylate, N-(hydroxymethyl)acrylamide, N-(2-hydroxyethyl)acrylamide, N -(methoxymethyl)acrylamide, N-(methoxymethyl)methacrylamide, N-(hydroxymethyl)methacrylamide, methoxydiethylene glycol methacrylate, methoxytetraethylene glycol methacrylate, methoxypolyethylene glycol methacrylate, methoxypolyethylene glycol acrylate, polyethylene glycol methacrylate, N -(4-hydroxyphenyl)methacrylamide, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, polyethylene glycol diacrylate, polyethylene glycol dimethacrylate, alkoxylated trimethylolpropane acrylate, alkoxylated trimethylolpropane methacrylate, alkoxylated glycerin acrylate, alkoxy Examples include glycerol methacrylate, alkoxylated pentaerythritol tetraacrylate, and alkoxylated pentaerythritol tetramethacrylate. Among these, 2-hydroxyethyl methacrylate (HEMA), methoxytetraethylene glycol methacrylate, methoxypolyethylene glycol methacrylate, 2-methoxyethyl acrylate, and diethylene glycol dimethacrylate are preferred. More preferred are 2-hydroxyethyl methacrylate (HEMA) and methoxypolyethylene glycol methacrylate.
(溶媒)
 本発明において、表面層形成用組成物は溶媒を含むことができる。これにより、基材への濡れ性を向上させたり、表面層形成用組成物の粘度を調整したりすることができる。溶媒としては、メタノール、エタノール、IPA(イソプロパノール)、n―ブタノール等のアルコール類、2-メトキシエタノール、メトキシプロパノール等のセロソルブ類、アセトン等のケトン類、DMF(N,N’-ジメチルホルムアミド)、水などを使用することができるが、これらに限定されない。また、溶媒は必要に応じて複数種類を混合して用いても良い。なお、溶媒は、後述するプライマー層形成用組成物、中間層形成用組成物を調製する際にも使用することができる。
(solvent)
In the present invention, the composition for forming a surface layer may contain a solvent. Thereby, the wettability to the base material can be improved and the viscosity of the composition for forming a surface layer can be adjusted. Examples of solvents include alcohols such as methanol, ethanol, IPA (isopropanol), and n-butanol, cellosolves such as 2-methoxyethanol and methoxypropanol, ketones such as acetone, DMF (N,N'-dimethylformamide), Water and the like can be used, but are not limited to these. Further, a plurality of types of solvents may be mixed and used as necessary. Note that the solvent can also be used when preparing the composition for forming a primer layer and the composition for forming an intermediate layer, which will be described later.
(重合開始剤)
 表面層形成用組成物は、重合開始剤を含むことが好ましい。重合開始剤としては、公知のものを使用することができ、例えば光重合開始剤や熱重合開始剤が挙げられる。
(Polymerization initiator)
It is preferable that the composition for forming a surface layer contains a polymerization initiator. As the polymerization initiator, known ones can be used, such as photopolymerization initiators and thermal polymerization initiators.
 光重合開始剤の好ましい例として、例えばBASF社が提供するイルガキュアー651、イルガキュアー184、イルガキュアー500、イルガキュアー2959、イルガキュアー127、イルガキュアー907、イルガキュアー369、イルガキュアー1300、イルガキュアー819、イルガキュアー1800、イルガキュアーOXE01、イルガキュアーOXE02、ダロキュアー1173、ダロキュアーTPO、ダロキュアー4265等が挙げられる。 Preferred examples of the photopolymerization initiator include IRGACURE 651, IRGACURE 184, IRGACURE 500, IRGACURE 2959, IRGACURE 127, IRGACURE 907, IRGACURE 369, IRGACURE 1300, and IRGACURE 819 provided by BASF. , Irgacure 1800, Irgacure OXE01, Irgacure OXE02, Darocure 1173, Darocure TPO, Darocure 4265, and the like.
 熱重合開始剤の好ましい例として、例えば過酸化物、過硫酸物、アゾ化合物等の熱ラジカル発生剤が好ましく用いられる。 As preferred examples of the thermal polymerization initiator, thermal radical generators such as peroxides, persulfates, and azo compounds are preferably used.
 表面層形成用組成物は、上記以外に、表面の機能を損なわない範囲で、目的に応じて界面活性剤など、公知の添加剤を含むことができる。 In addition to the above, the composition for forming a surface layer may contain known additives such as a surfactant depending on the purpose, as long as the surface function is not impaired.
 表面層形成用組成物は、ベタイン構造を含む化合物以外に、硫黄原子を含む化合物を含まないことが好ましい。表面層が硫黄原子を多く含むことにより、タンパク質の付着が増えると考えられる。本発明において、表面層形成用組成物は、硫黄原子を含む化合物としてベタイン構造を含む化合物のみを含むことにより、これを硬化して得られた表面層において、タンパク質の吸着を抑制することができる。 It is preferable that the composition for forming a surface layer does not contain a compound containing a sulfur atom other than a compound containing a betaine structure. It is thought that protein adhesion increases because the surface layer contains a large amount of sulfur atoms. In the present invention, the composition for forming a surface layer contains only a compound containing a betaine structure as a compound containing a sulfur atom, so that protein adsorption can be suppressed in the surface layer obtained by curing the composition. .
中間層
 本発明において、基材1と表面層2の密着をより強固にするため、基材1と表面層2との間に中間層3を形成してもよい。有機膜である表面層2との強固な密着性を得るために、中間層3は、主鎖がアクリル系樹脂(ポリアクリル系共重合体)、またはビニルアルコールを含むポリビニル系共重合体を含むことが好ましい。
Intermediate layer In the present invention, an intermediate layer 3 may be formed between the base material 1 and the surface layer 2 in order to further strengthen the adhesion between the base material 1 and the surface layer 2. In order to obtain strong adhesion with the surface layer 2, which is an organic film, the intermediate layer 3 contains an acrylic resin (polyacrylic copolymer) or a polyvinyl copolymer containing vinyl alcohol in its main chain. It is preferable.
中間層形成用組成物
 本発明において、中間層3は中間層形成用組成物を硬化させたものであることが好ましい。中間層形成用組成物は、ポリアクリル系またはポリビニル系共重合体を形成可能なモノマーを含むことが好ましい。中間層形成用組成物は、その他、上述した溶媒や重合開始剤を含むことが好ましい。
Composition for Forming an Intermediate Layer In the present invention, the intermediate layer 3 is preferably formed by curing a composition for forming an intermediate layer. The intermediate layer forming composition preferably contains a monomer capable of forming a polyacrylic or polyvinyl copolymer. It is preferable that the composition for forming an intermediate layer also contains the above-mentioned solvent and polymerization initiator.
(多官能アクリレート)
 ポリアクリル系共重合体を構成するモノマーとして、多官能アクリレートを好適に用いることができる。本発明において、多官能アクリレートとは、分子内にエチレン性不飽和基を少なくとも二つ以上有するモノマーを意味する。多官能アクリレートの具体例として、2-ヒドロキシー3-アクリロイロキシプロピルメタクリレート、プロポキシ化エトキシ化ビスフェノールAジアクリレート、エトキシ化ビスフェノールAジアクリレート、9、9-ビス[4-(2-アクリロイルオキシエトキシ)フェニル]フルオレン、プロポキシ化ビスフェノールAジアクリレート、トリシクロデカンジメタノールジアクリレート、1、10-デカンジオールジアクリレート、1、6-ヘキサンジオールジアクリレート、1、9-ノナンジオールジアクリレート、ジプロピレングリコールジアクリレート、トリプロピレングリコールジアクリレート、エトキシ化イソシアヌル酸トリアクリレート、ε-カプロラクトン変性トリス-(2-アクリロキシエチル)イソシアヌレート、ペンタエリスリトールトリアクリレート、トリメチロールプロパントリアククリレート、ジトリメチロールプロパントリメタクリレート、エトキシ化グリセリントリアクリレート、エトキシ化ペンタエリスリトールテトラアクリレート、ジトリメチロールプロパンテトラアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、2、2ビス[4-(メタクリロキシエトキシ)フェニル]プロパン、トリシクロデカンジメタノールジメタクリレート、1、10-デカンジオールジメタクリレート、1、6-ヘキサンジオールメタクリレート、1、9-ノナンジオールメタクリレート、ネオペンチルグリコールメタクリレート、グリセリンジメタクリレート、トリメチロールプロパントリメタクリレート、ポリエチレングリコールジアクリレート、ポリエチレングリコールジメタクリレート、ポリプロピレングリコールジアクリレート、ポリテトラメチレングリコールジアクリレート、グリセリントリアクリレートエトキシレート、ジペンタエリスリトールポリアクリレート、エトキシ化ポリプロピレングリコールジメタクリレート、ポリプロピレンジメタクリレート等が挙げられる。
(polyfunctional acrylate)
A polyfunctional acrylate can be suitably used as a monomer constituting the polyacrylic copolymer. In the present invention, polyfunctional acrylate means a monomer having at least two ethylenically unsaturated groups in the molecule. Specific examples of polyfunctional acrylates include 2-hydroxy-3-acryloyloxypropyl methacrylate, propoxylated ethoxylated bisphenol A diacrylate, ethoxylated bisphenol A diacrylate, 9,9-bis[4-(2-acryloyloxyethoxy) phenyl]fluorene, propoxylated bisphenol A diacrylate, tricyclodecanedimethanol diacrylate, 1,10-decanediol diacrylate, 1,6-hexanediol diacrylate, 1,9-nonanediol diacrylate, dipropylene glycol diacrylate Acrylate, tripropylene glycol diacrylate, ethoxylated isocyanuric acid triacrylate, ε-caprolactone modified tris-(2-acryloxyethyl) isocyanurate, pentaerythritol triacrylate, trimethylolpropane triacrylate, ditrimethylolpropane trimethacrylate, ethoxy glycerol triacrylate, ethoxylated pentaerythritol tetraacrylate, ditrimethylolpropane tetraacrylate, pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate, ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, 2,2 bis[4 -(Methacryloxyethoxy)phenyl]propane, tricyclodecane dimethanol dimethacrylate, 1,10-decanediol dimethacrylate, 1,6-hexanediol methacrylate, 1,9-nonanediol methacrylate, neopentyl glycol methacrylate, glycerin dimethacrylate Methacrylate, trimethylolpropane trimethacrylate, polyethylene glycol diacrylate, polyethylene glycol dimethacrylate, polypropylene glycol diacrylate, polytetramethylene glycol diacrylate, glycerin triacrylate ethoxylate, dipentaerythritol polyacrylate, ethoxylated polypropylene glycol dimethacrylate, polypropylene Examples include dimethacrylate.
 また多官能アクリレートとして、エチレン性不飽和基を二つ以上有するウレタン(メタ)アクリレートオリゴマー(ポリマー)が挙げられる。例えば、フェニルグリシジルエーテルアクリレートヘキサメチレンジイソシアネートウレタンプレポリマー、フェニルグリシジルエーテルアクリレートトルエンジイソシアネートウレタンプレポリマー、ペンタエリスリトールトリアクリレートヘキサメチレンジイソシアネートウレタンプレポリマー、ペンタエリスリトールトリアクリレートトルエンジイソシアネートウレタンプレポリマー、ペンタエリスリトールトリアクリレートイソホロンジイソシアネートウレタンプレポリマー、ジペンタエリスリトールペンタアクリレートヘキサメチレンジイソシアネートウレタンプレポリマー、オリゴウレタンアクリレート、カルボン酸含有ウレタンアクリレートオリゴマーなどが挙げられる。 Examples of polyfunctional acrylates include urethane (meth)acrylate oligomers (polymers) having two or more ethylenically unsaturated groups. For example, phenyl glycidyl ether acrylate hexamethylene diisocyanate urethane prepolymer, phenyl glycidyl ether acrylate toluene diisocyanate urethane prepolymer, pentaerythritol triacrylate hexamethylene diisocyanate urethane prepolymer, pentaerythritol triacrylate toluene diisocyanate urethane prepolymer, pentaerythritol triacrylate isophorone diisocyanate Examples include urethane prepolymers, dipentaerythritol pentaacrylate hexamethylene diisocyanate urethane prepolymers, oligourethane acrylates, and carboxylic acid-containing urethane acrylate oligomers.
 また多官能アクリレートとして、エチレン性不飽和基を二つ以上有するエポキシ(メタ)アクリレートオリゴマー(ポリマー)が挙げられる。例えば、クレゾールノボラック型エポキシアクリレート、カルボン酸無水物変性エポキシアクリレートなどが挙げられる。 Examples of polyfunctional acrylates include epoxy (meth)acrylate oligomers (polymers) having two or more ethylenically unsaturated groups. Examples include cresol novolac type epoxy acrylate, carboxylic anhydride-modified epoxy acrylate, and the like.
 本発明において、好ましい多官能アクリレートの具体例として、エチレン性不飽和基の官能基当量が200g/eq以下であるものが好ましい。これにより、耐久性の高いプライマー層とすることができる。また、エチレン性不飽和基の官能基当量は、好ましくは150g/eq以下であり、より好ましくは27g/eq以上150g/eq以下である。これにより、より耐久性の高いプライマー層を得ることができる。ここで、官能基当量とは、官能基1個あたりの化合物の分子量をあらわす。すなわち、多官能アクリレートの分子量をエチレン性不飽和基の数で割った値である。具体的には、多官能アクリレートとしての、(メタ)アクリレートモノマー(オリゴマー)、そのウレタン変性物であるウレタン(メタ)アクリレートモノマー(オリゴマー)、そのエポキシ変性物であるエポキシ(メタ)アクリレートモノマー(オリゴマー)の分子量をエチレン性不飽和基である(メタ)アクリロイル基の数で割った値である。このような官能基当量を満たす化合物としては、ペンタエリスリトールテトラアクリレート(88g/eq)、ジペンタエリスリトールテトラアクリレート(105g/eq)、ジペンタエリスリトールヘキサアクリレート(96g/eq)、トリメチロールプロパントリアクリレート(99g/eq)、トリメチロールプロパンテトラアクリレート(117g/eq)、1、3、5-トリス(2、2-ジアクリロイルオキシメチル-3-(2、2、2-トリアクリロイルオキシメチルエトキシ)プロピルヘキシルカルバメート)イソシアヌレート(153g/eq)、エトキシ化ジペンタエリスリトールヘキサアクリレート(185g/eq)などが挙げられる。 In the present invention, as a specific example of a preferable polyfunctional acrylate, one in which the functional group equivalent of an ethylenically unsaturated group is 200 g/eq or less is preferable. This makes it possible to obtain a highly durable primer layer. Further, the functional group equivalent of the ethylenically unsaturated group is preferably 150 g/eq or less, more preferably 27 g/eq or more and 150 g/eq or less. Thereby, a more durable primer layer can be obtained. Here, the functional group equivalent represents the molecular weight of a compound per functional group. That is, it is the value obtained by dividing the molecular weight of the polyfunctional acrylate by the number of ethylenically unsaturated groups. Specifically, (meth)acrylate monomers (oligomers) as polyfunctional acrylates, urethane (meth)acrylate monomers (oligomers) that are urethane modified products thereof, and epoxy (meth)acrylate monomers (oligomers) that are epoxy modified products thereof. ) divided by the number of (meth)acryloyl groups, which are ethylenically unsaturated groups. Compounds that satisfy such functional group equivalents include pentaerythritol tetraacrylate (88 g/eq), dipentaerythritol tetraacrylate (105 g/eq), dipentaerythritol hexaacrylate (96 g/eq), and trimethylolpropane triacrylate ( 99g/eq), trimethylolpropane tetraacrylate (117g/eq), 1,3,5-tris(2,2-diacryloyloxymethyl-3-(2,2,2-triacryloyloxymethylethoxy)propylhexyl) carbamate) isocyanurate (153 g/eq), ethoxylated dipentaerythritol hexaacrylate (185 g/eq), and the like.
 これらの中でも、中間層の耐久性を一層高めるために一分子中の官能基数が6個以上のものが特に好ましく、例えば、ジペンタエリスリトールヘキサアクリレート(6官能)、エトキシ化ジペンタエリスリトールヘキサアクリレート(6官能)、1、3、5-トリス(2、2-ジアクリロイルオキシメチル-3-(2、2、2-トリアクリロイルオキシメチルエトキシ)プロピルヘキシルカルバメート)イソシアヌレート(15官能)が挙げられる。 Among these, those having 6 or more functional groups in one molecule are particularly preferred in order to further enhance the durability of the intermediate layer, such as dipentaerythritol hexaacrylate (6 functional), ethoxylated dipentaerythritol hexaacrylate ( (6 functional), 1,3,5-tris(2,2-diacryloyloxymethyl-3-(2,2,2-triacryloyloxymethylethoxy)propylhexylcarbamate)isocyanurate (15 functional).
(多官能ビニル化合物)
 ポリビニル系共重合体を構成するモノマーとして、多官能ビニル化合物を好適に用いることができる。本発明において、多官能ビニル化合物とは、分子内にエチレン性不飽和基を少なくとも二つ以上有するモノマーを意味する。多官能ビニル化合物の具体例として、ジアリルエーテル、ジエチレングリコールジビニルエーテル、1、3-ジアリルオキシ-2-プロパノール、1、2、3-トリアリルオキシ-2-プロパノール、2、2ビスアリルオキシメチル-1-プロパノール、2、2ビスアリルオキシエチル-1-ブタノール、2、2ビスアリルオキシメチル-1-ヘキサノール、3、3ビスアリルオキシエチル-1-ブタノール、3、3ビスアリルオキシエチル-1-ヘキサノール、2、2、2トリアリルオキシメチル-1-エタノール、2、2、2トリアリルオキシメチル-1-プロパノール、2、2、2トリアリルオキシメチル-1-ブタノール、2、2、2トリアリルオキシメチル-1-ヘキサノール、1、5-ヘキサジエン-3、4-ジオール、イソフタル酸ジアリル、1、5-ヘキサンジエン、テトラアリルオキシエタン、テトラアリルオキシプロパン、テトラアリルオキシブタン、クエン酸トリアリル、アジピン酸ジビニル、等が挙げられる。
(Polyfunctional vinyl compound)
A polyfunctional vinyl compound can be suitably used as a monomer constituting the polyvinyl copolymer. In the present invention, the polyfunctional vinyl compound means a monomer having at least two ethylenically unsaturated groups in the molecule. Specific examples of polyfunctional vinyl compounds include diallyl ether, diethylene glycol divinyl ether, 1,3-diallyloxy-2-propanol, 1,2,3-triallyloxy-2-propanol, 2,2bisallyloxymethyl-1 -Propanol, 2,2 bisallyloxyethyl-1-butanol, 2,2 bisallyloxymethyl-1-hexanol, 3,3 bisallyloxyethyl-1-butanol, 3,3 bisallyloxyethyl-1-hexanol , 2,2,2 triallyloxymethyl-1-ethanol, 2,2,2 triallyloxymethyl-1-propanol, 2,2,2 triallyloxymethyl-1-butanol, 2,2,2 triallyl Oxymethyl-1-hexanol, 1,5-hexadiene-3,4-diol, diallyl isophthalate, 1,5-hexanediene, tetraallyloxyethane, tetraallyloxypropane, tetraallyloxybutane, triallyl citrate, adipine divinyl acid, etc.
 本発明において、表面層形成用組成物と中間層形成用組成物を混合した組成物を用いることで、表面層と中間層を同時に形成することができる。その際、式(A1)で表される構造と式(A2)で表される構造が十分に表面層に含まれるように製膜する必要がある。例えば、組成物に界面活性剤などの添加剤を加えることで、式(A1)で表される構造と式(A2)で表される構造を表面に傾斜偏析させることが可能である。ここで、界面活性剤としては、親水部および有機残基からなる疎水部を有し、分子量が10000未満であるものが好ましい。 In the present invention, by using a composition in which a composition for forming a surface layer and a composition for forming an intermediate layer are mixed, the surface layer and the intermediate layer can be formed at the same time. At that time, it is necessary to form a film so that the structure represented by formula (A1) and the structure represented by formula (A2) are sufficiently included in the surface layer. For example, by adding an additive such as a surfactant to the composition, it is possible to cause the structure represented by formula (A1) and the structure represented by formula (A2) to be gradient segregated on the surface. Here, the surfactant preferably has a hydrophilic part and a hydrophobic part consisting of an organic residue, and has a molecular weight of less than 10,000.
プライマー層
 本発明において、基材1がガラス、陶器、金属等の無機材料の場合は、これら無機材料と表面層2との密着性を強固にするためにプライマー層4を形成してもよい。プライマー層4は、基材1である無機材料(以下、「無機基材」という。)と表面層2との間に形成することが好ましい。プライマー層4は密着力を高めるために、無機基材と表面層2との両方に結合することが必要である。このため、プライマー層4は、ケイ素原子を含む層であることが好ましい。
Primer Layer In the present invention, when the base material 1 is an inorganic material such as glass, ceramic, or metal, a primer layer 4 may be formed to strengthen the adhesion between the surface layer 2 and the inorganic material. The primer layer 4 is preferably formed between the inorganic material that is the base material 1 (hereinafter referred to as "inorganic base material") and the surface layer 2. The primer layer 4 needs to be bonded to both the inorganic base material and the surface layer 2 in order to increase adhesion. For this reason, the primer layer 4 is preferably a layer containing silicon atoms.
プライマー層形成用組成物
 プライマー層4は、プライマー層形成用組成物を硬化させたものであることが好ましい。プライマー層形成用組成物は、一般的に使用されているシラン系やリン酸系のカップリング剤を含むものを用いることが可能である。また、これらのカップリング剤は、表面層との密着をより強固にするため、アクリロイル基やメタクリロイル基などのエチレン性不飽和基を含んでいることが好ましい。
Primer layer forming composition The primer layer 4 is preferably a cured primer layer forming composition. The composition for forming the primer layer may contain a commonly used silane-based or phosphoric acid-based coupling agent. Further, these coupling agents preferably contain an ethylenically unsaturated group such as an acryloyl group or a methacryloyl group in order to further strengthen the adhesion with the surface layer.
(シラン化合物)
 シランカップリング剤として、シラン化合物を好適に用いることができる。本発明において、シラン化合物とは、加水分解性のSi-OR基(反応性シリル基、ORは、水酸基または加水分解可能な基であってよい。加水分解可能な基は、例えば、アルコキシ基、ハロゲノ基である。具体的には、-OCH、-OCHCH、-Clが挙げられる。)を有する有機化合物を意味する。シラン化合物の具体例として、テトラエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、8-メタクリロキシオクチルトリメトキシシラン、3-メタクリロキシメチルトリエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-メタクリロキシメチルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、トリス-(トリメトキシシリルプロピル)イソシアヌレート、3-ウレイドプロピルトリアルコキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-トリメトキシシリルプロピルコハク酸無水物などが挙げられる。
(silane compound)
A silane compound can be suitably used as the silane coupling agent. In the present invention, the silane compound refers to a hydrolyzable Si-OR group (reactive silyl group, OR may be a hydroxyl group or a hydrolyzable group. The hydrolyzable group is, for example, an alkoxy group, It means an organic compound having a halogeno group (specifically, -OCH 3 , -OCH 2 CH 3 , and -Cl). Specific examples of silane compounds include tetraethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, 8-methacryloxyoctyltrimethoxysilane, and 3-methacryloxypropyltrimethoxysilane. Roxymethyltriethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-methacryloxymethyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, vinyltrimethoxysilane, vinyltrimethoxysilane Ethoxysilane, 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3 -glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane, N-2-(aminoethyl)-3-aminopropyltrimethoxysilane, 3-Aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N-(1,3-dimethyl-butylidene)propylamine, N-phenyl-3-aminopropyltrimethoxysilane, Tris- (trimethoxysilylpropyl)isocyanurate, 3-ureidopropyltrialkoxysilane, 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-isocyanatepropyltriethoxysilane, 3-trimethoxysilylpropylsuccinic anhydride Examples include things.
 本発明において、好ましいシラン化合物の具体例として、無機基材と密着するための加水分解性Si-OR基を3つ以上持ち、かつ有機膜である表面層と密着するためのアクリルまたはメタクリル重合官能基を持つ化合物が好ましい。このようなシラン化合物として、3-アクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、8-メタクリロキシオクチルトリメトキシシラン、3-メタクリロキシメチルトリエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-メタクリロキシメチルトリメトキシシランが挙げられる。 In the present invention, specific examples of preferred silane compounds include those having three or more hydrolyzable Si-OR groups for adhesion to an inorganic base material, and acrylic or methacrylic polymerizable functionalities for adhesion to a surface layer that is an organic film. Compounds having groups are preferred. Examples of such silane compounds include 3-acryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, 8-methacryloxyoctyltrimethoxysilane, and 3-methacryloxymethyltriethoxysilane. Examples include silane, 3-methacryloxypropyltriethoxysilane, and 3-methacryloxymethyltrimethoxysilane.
(リン酸化合物)
 リン酸カップリング剤として、リン酸化合物を好適に用いることができる。本発明において、リン酸化合物とは、共有結合性のP(OH)基(吸着性リン酸基、nは1~3のいずれかであり、OH基は、その塩基置換体であるONa、OK、ONH等であってもよい)を有する有機化合物を意味する。リン酸化合物としては、分子内に、吸着性官能基としてリン酸あるいはリン酸塩、および、重合性官能基としてアクリル基あるいはメタクリル基あるいはビニル基を含んでいるものが好ましい。具体例としては、2-アクロイロキシエチルリン酸、2-アクロイロキシエチルリン酸、2-メタクロイロキシエチルリン酸、2-メタクロイロキシエチルリン酸、2-アクロイロキシプロピルリン酸、2-アクロイロキシプロピルリン酸、2-メタクロイロキシプロピルリン酸、2-メタクロイロキシプロピルリン酸ビニルリン酸、2-アクロイロキシブチルリン酸、2-アクロイロキシブチルリン酸、2-メタクロイロキシブチルリン酸、2-メタクロイロキシブチルリン酸、ビニルリン酸、あるいはそれらのリン酸塩等が用いられる。
(phosphoric acid compound)
A phosphoric acid compound can be suitably used as the phosphoric acid coupling agent. In the present invention, the phosphoric acid compound refers to a covalent P(OH) n group (adsorptive phosphoric acid group, n is any one of 1 to 3, and the OH group is a base substitute thereof, ONa, OK, ONH 4 , etc.). The phosphoric acid compound preferably contains in its molecule phosphoric acid or phosphate as an adsorptive functional group, and an acrylic group, methacrylic group, or vinyl group as a polymerizable functional group. Specific examples include 2-acryloxyethyl phosphoric acid, 2-acryloxyethyl phosphoric acid, 2-methacryloxyethyl phosphoric acid, 2-methacryloxyethyl phosphoric acid, 2-acryloxypropyl phosphoric acid, 2-acryloxypropyl phosphate, 2-methacryloxypropyl phosphate, 2-methacryloxypropyl phosphate vinyl phosphate, 2-acryloxybutyl phosphate, 2-acryloxybutyl phosphate, 2-meta Chloroxybutyl phosphoric acid, 2-methacloroxybutyl phosphoric acid, vinyl phosphoric acid, or their phosphates are used.
基材
 本発明において、基材は特に制限されない。基材の材料としては、樹脂、金属、無機材料(ガラス、陶器等)など水まわり部材として一般に使用されている材料をいずれも使用することができる。また基材の形状として、水まわり部材の一般的な形状をとることができる。例えば、平板であってもよく、複雑形状であってもよい。
Substrate In the present invention, the substrate is not particularly limited. As the material for the base material, any material that is generally used as a plumbing member, such as resin, metal, or inorganic material (glass, ceramic, etc.), can be used. Further, the shape of the base material can be a general shape of plumbing parts. For example, it may be a flat plate or may have a complicated shape.
部材の製造方法
 本発明による部材は、例えば、以下の方法により製造することができる。
Method for manufacturing member The member according to the present invention can be manufactured, for example, by the following method.
<基材の用意>
 基材を用意する。本発明において、基材を前処理することが好ましい。例えば、基材を中性洗剤で洗浄し、イオン交換水または超純水ですすぐことが好ましい。基材表面に残った水滴は、エアブローや乾燥機を用いて乾燥させることが好ましい。
<Preparation of base material>
Prepare the base material. In the present invention, it is preferable to pre-treat the substrate. For example, it is preferable to wash the substrate with a neutral detergent and rinse with ion-exchanged water or ultrapure water. It is preferable to dry the water droplets remaining on the surface of the base material using an air blower or a dryer.
<表面層形成用組成物の調製>
 式(A1)で表される構造を含む化合物(ベタイン構造を有する化合物)および式(A2)で表される構造を含む化合物(非イオン性モノマー)、ならびにその他の成分を任意の割合で混合し、溶媒に溶解させる。この溶液に、重合開始剤を後添加し、撹拌することにより、表面層形成用組成物を得る。式(A1)で表される構造を含む化合物および式(A2)で表される構造を含む化合物の合計重量濃度は0.5%から20%であることが好ましく、それぞれの組成物中の重量濃度比は90:10から5:95であることが好ましい。
<Preparation of composition for forming surface layer>
A compound containing the structure represented by formula (A1) (compound having a betaine structure), a compound containing the structure represented by formula (A2) (nonionic monomer), and other components are mixed in any ratio. , dissolved in a solvent. A polymerization initiator is subsequently added to this solution and stirred to obtain a composition for forming a surface layer. The total weight concentration of the compound containing the structure represented by formula (A1) and the compound containing the structure represented by formula (A2) is preferably from 0.5% to 20%, and the weight in each composition Preferably, the concentration ratio is from 90:10 to 5:95.
<表面層形成用組成物の塗布>
 基材上に表面層形成用組成物を塗布する。塗布方法としては公知の方法を使用してよい。例えば、ハケ塗り、スプレーコート、ディップコート、スピンコート、カーテンコート、バーコートなどの一般的な方法によって塗布することができる。
<Application of surface layer forming composition>
A composition for forming a surface layer is applied onto a substrate. As a coating method, a known method may be used. For example, the coating can be applied by a common method such as brush coating, spray coating, dip coating, spin coating, curtain coating, or bar coating.
<乾燥>
 基材上に塗布された表面層形成用組成物を乾燥させる。本発明において、表面層形成用組成物が溶媒(溶剤)を含む場合、この溶媒を乾燥させるため、表面層形成用組成物を基材上に塗布した後、乾燥させることが好ましい。また部材の生産性を鑑みた場合、加熱による乾燥を好適に用いることが可能である。
<Drying>
The surface layer forming composition applied onto the substrate is dried. In the present invention, when the composition for forming a surface layer contains a solvent (solvent), in order to dry the solvent, it is preferable to apply the composition for forming a surface layer onto a substrate and then dry it. Furthermore, in view of the productivity of the member, drying by heating can be suitably used.
<硬化>
 基材上に塗布された表面層形成用組成物を硬化させる。硬化手段としては、例えば、熱硬化、活性エネルギー線硬化、または熱硬化と活性エネルギー線硬化との組み合わせが挙げられる。熱硬化を行う場合は、重合開始剤として公知の熱重合開始剤を用いることができ、また赤外線または熱風等により加熱する公知の方法を用いることができる。また、活性エネルギー線硬化の場合、放射線としては、400~800nmの可視光線、400nm以下の紫外線、または電子線が挙げられる。通常、装置が高価な電子線よりも、比較的に安価な紫外線または可視光線が好ましく用いられる。紫外線または可視光線を利用して活性エネルギー線硬化を行う場合は、公知の光重合開始剤を用いることができる。紫外線を用いる場合、紫外線発生源としては、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、キセノンランプ、ガリウムランプ、メタルハライドランプ、紫外線レーザー、太陽光等の紫外線などが挙げられる。照射雰囲気は空気でもよいし、窒素、アルゴン等の不活性ガスでもよい。
<Curing>
The surface layer forming composition applied onto the base material is cured. Examples of the curing means include thermosetting, active energy ray curing, or a combination of thermosetting and active energy ray curing. When thermal curing is performed, a known thermal polymerization initiator can be used as the polymerization initiator, and a known method of heating with infrared rays, hot air, etc. can be used. Furthermore, in the case of active energy ray curing, examples of the radiation include visible light of 400 to 800 nm, ultraviolet rays of 400 nm or less, or electron beams. Usually, ultraviolet rays or visible rays, which are relatively inexpensive, are preferably used rather than electron beams, which require expensive equipment. When performing active energy ray curing using ultraviolet rays or visible rays, a known photopolymerization initiator can be used. When using ultraviolet light, examples of sources of ultraviolet light include low-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, xenon lamps, gallium lamps, metal halide lamps, ultraviolet lasers, and ultraviolet light from sunlight. The irradiation atmosphere may be air or an inert gas such as nitrogen or argon.
<中間層の形成>
 本発明において、基材1上に表面層2を形成する前に、基材1上に中間層3を形成してもよい。これにより、基材1と表面層2との密着性をより強固にすることができる。中間層形成用組成物は、例えば、上述したポリアクリル系またはポリビニル系共重合体を形成可能なモノマーと溶媒を任意の重量比で溶解させた溶液に、重合開始剤を後添加し、撹拌して調製することができる。その後、調製した中間層形成用組成物を基材1上に塗布し、乾燥させ、そして硬化させることにより、中間層3を形成することができる。
<Formation of intermediate layer>
In the present invention, the intermediate layer 3 may be formed on the base material 1 before the surface layer 2 is formed on the base material 1. Thereby, the adhesion between the base material 1 and the surface layer 2 can be made stronger. The composition for forming an intermediate layer can be prepared by, for example, adding a polymerization initiator to a solution in which the above-mentioned monomer capable of forming a polyacrylic or polyvinyl copolymer and a solvent are dissolved in an arbitrary weight ratio, and stirring the mixture. It can be prepared by Thereafter, the intermediate layer 3 can be formed by applying the prepared composition for forming an intermediate layer onto the base material 1, drying it, and curing it.
<プライマー層の形成>
 本発明において、基材1がガラス、陶器、金属等の無機材料の場合は、無機基材上に中間層3を形成する前に、無機基材上にプライマー層4を形成してもよい。これにより、無機基材と表面層2との密着性をより強固にすることができる。プライマー層形成用組成物は、例えば、上述したカップリング剤と溶媒、必要に応じて加水分解反応を促進するための触媒を任意の重量比で溶解させ、撹拌して調製することができる。その後、調製したプライマー層形成用組成物を無機基材上に塗布し、乾燥させることにより、プライマー層4を形成させることができる。
<Formation of primer layer>
In the present invention, when the base material 1 is an inorganic material such as glass, ceramic, metal, etc., the primer layer 4 may be formed on the inorganic base material before forming the intermediate layer 3 on the inorganic base material. Thereby, the adhesion between the inorganic base material and the surface layer 2 can be made stronger. The composition for forming a primer layer can be prepared, for example, by dissolving the above-mentioned coupling agent, a solvent, and, if necessary, a catalyst for promoting a hydrolysis reaction in any weight ratio, and stirring the mixture. Thereafter, the primer layer 4 can be formed by applying the prepared composition for forming a primer layer onto an inorganic base material and drying it.
 以下の実施例によって本発明をさらに詳細に説明する。なお、本発明はこれらの実施例に限定されるものではない。 The present invention will be explained in further detail with the following examples. Note that the present invention is not limited to these examples.
1.準備
1-1.基材
 下記5種類の基材を用意した。
・アクリル板:アクリライトEX(三菱レイヨン社製)
・PETフィルム:ルミラーフィルムT60(アズワン社製)
・ガラス:ホウケイ酸ガラス
・陶器:表面に釉薬層を備えた衛生陶器
・金属:黄銅の表面にニッケルクロムめっき層を有する板
1. preparation
1-1. Base materials The following five types of base materials were prepared.
・Acrylic board: Acrylite EX (manufactured by Mitsubishi Rayon)
・PET film: Lumirror film T60 (manufactured by As One)
・Glass: Borosilicate glass ・Ceramics: Sanitary ware with a glaze layer on the surface ・Metal: Brass plate with a nickel-chromium plating layer on the surface
1-2.試薬
 下記試薬を用意した。
1-2. Reagents The following reagents were prepared.
<多官能アクリレート>
ジペンタエリスリトールポリアクリレート
<Multifunctional acrylate>
dipentaerythritol polyacrylate
<重合開始剤>
1-ヒドロキシシクロヘキシルフェニルケトンとベンゾフェノンを重量比1:1で混合したもの
<Polymerization initiator>
A mixture of 1-hydroxycyclohexyl phenyl ketone and benzophenone in a weight ratio of 1:1.
<溶媒>
2-メトキシエタノール
<Solvent>
2-methoxyethanol
<ベタイン構造を有する化合物>
・化合物1:3-[[2-(メタクリロイルオキシ)エチル]ジメチルアンモニオ]プロパン-1-スルホン酸
・化合物2:4-[(3-メタクリルアミドプロピル)ジメチルアンモニオ]ブタン-1-スルホン酸
<Compound with betaine structure>
・Compound 1: 3-[[2-(methacryloyloxy)ethyl]dimethylammonio]propane-1-sulfonic acid ・Compound 2: 4-[(3-methacrylamidopropyl)dimethylammonio]butane-1-sulfonic acid
<非イオン性モノマー>
・非イオン性モノマー1:メタクリル酸2-ヒドロキシエチル(HEMA)
・非イオン性モノマー2:メトキシテトラエチレングリコールメタクリレート
・非イオン性モノマー3:メトキシポリエチレングリコールメタクリレート
・非イオン性モノマー4:アクリル酸2-メトキシエチル
・非イオン性モノマー5:ジエチレングリコールジメタクリレート
<Nonionic monomer>
・Nonionic monomer 1: 2-hydroxyethyl methacrylate (HEMA)
・Nonionic monomer 2: Methoxytetraethylene glycol methacrylate ・Nonionic monomer 3: Methoxypolyethylene glycol methacrylate ・Nonionic monomer 4: 2-methoxyethyl acrylate ・Nonionic monomer 5: Diethylene glycol dimethacrylate
<シラン化合物>
・シラン化合物1:3-アクリロキシプロピルトリメトキシシラン
・シラン化合物2:3メタクリロキシプロピルトリメトキシシラン
・シラン化合物3:テトラエトキシシラン
<Silane compound>
- Silane compound 1: 3-acryloxypropyltrimethoxysilane - Silane compound 2: 3-methacryloxypropyltrimethoxysilane - Silane compound 3: Tetraethoxysilane
<界面活性剤>
・ジ-2-エチルヘキシルスルホこはく酸ナトリウム(エーロゾルOT)(規格含量が重量濃度75%のものを使用した。)
<Surfactant>
・Sodium di-2-ethylhexyl sulfosuccinate (aerosol OT) (standard content was 75% by weight).
2.部材サンプルの作製
実施例1~13、19
(前処理)
 基材であるアクリル板の表面を中性洗剤で洗浄し、イオン交換水または超純水ですすいだ。エアブローで基材表面の水滴を飛ばし、乾燥機で60℃、30分乾燥させた。
2. Preparation of component samples
Examples 1 to 13, 19
(Preprocessing)
The surface of the acrylic board, which is the base material, was cleaned with a neutral detergent and rinsed with ion-exchanged water or ultrapure water. Water droplets on the surface of the substrate were blown off with air, and the substrate was dried at 60° C. for 30 minutes in a dryer.
(中間層)
 多官能アクリレート:溶媒=33:67(重量比)の溶液に、重合開始剤を重量濃度で0.6%添加し、スターラーで1時間撹拌し、中間層形成用組成物を調製した。この組成物を、前処理した基材に対し、表1に示すように、スピンコート(1500rpm,15秒)またはバーコート(#10)で塗布した。塗布後すぐに熱風乾燥炉に入れ、60℃で10分間静置した。その後、紫外線照射装置(MDB15001N-01、サンエナジー社製)を用い積算光量が1000mJ/cm(紫外線積算光量計、C9536-254、浜松ホトニクス社製で測定)となるように、塗布面にUV照射し、硬化させた。
(middle class)
A polymerization initiator was added at a weight concentration of 0.6% to a solution of polyfunctional acrylate:solvent=33:67 (weight ratio), and the mixture was stirred with a stirrer for 1 hour to prepare a composition for forming an intermediate layer. This composition was applied to the pretreated substrate by spin coating (1500 rpm, 15 seconds) or bar coating (#10) as shown in Table 1. Immediately after coating, it was placed in a hot air drying oven and left to stand at 60°C for 10 minutes. Thereafter, the coated surface was exposed to UV light using an ultraviolet irradiation device (MDB15001N-01, manufactured by Sun Energy Co., Ltd.) so that the cumulative light intensity was 1000 mJ/cm 2 (measured with an ultraviolet integrated light meter, C9536-254, manufactured by Hamamatsu Photonics Co., Ltd.). Irradiated and cured.
(表面層)
 表1に示すベタイン構造を有する化合物と非イオン性モノマーとを任意の割合で混合し、これらの合計が重量濃度で10%となるように、溶媒に溶解させた。この溶液に、重合開始剤を重量濃度で0.2%後添加し、スターラーで1時間撹拌し、表面層形成用組成物を調製した。この組成物を中間層に対し、表1に示すように、スピンコート(1500rpm,15秒)またはバーコート(#10)で塗布した。塗布後すぐに熱風乾燥炉に入れ、60℃で10分間静置した。その後、紫外線照射装置(MDB15001N-01、サンエナジー社製))を用い積算光量が3J/cm(紫外線積算光量計、C9536-254、浜松ホトニクス社製で測定)となるように、塗布面にUV照射し、硬化させた。
 未硬化の成分を除去するため、中性洗剤で洗浄後、イオン交換水または超純水ですすぎ、室温で静置して乾燥させ、部材サンプルを得た。
(Surface layer)
A compound having a betaine structure shown in Table 1 and a nonionic monomer were mixed in an arbitrary ratio and dissolved in a solvent so that the total weight concentration was 10%. To this solution, a polymerization initiator was added at a weight concentration of 0.2%, and the mixture was stirred with a stirrer for 1 hour to prepare a composition for forming a surface layer. This composition was applied to the intermediate layer by spin coating (1500 rpm, 15 seconds) or bar coating (#10) as shown in Table 1. Immediately after coating, it was placed in a hot air drying oven and left to stand at 60°C for 10 minutes. After that, the coated surface was heated using an ultraviolet irradiation device (MDB15001N-01, manufactured by Sun Energy Co., Ltd.) so that the cumulative light intensity was 3 J/cm 2 (measured with an ultraviolet integrated light meter, C9536-254, manufactured by Hamamatsu Photonics Co., Ltd.). It was cured by UV irradiation.
In order to remove uncured components, it was washed with a neutral detergent, rinsed with ion-exchanged water or ultrapure water, and left to dry at room temperature to obtain a member sample.
実施例14
 基材としてアクリル板をPETフィルムに置き換えた以外は実施例1と同様の製法で部材サンプルを得た。
Example 14
A member sample was obtained in the same manner as in Example 1 except that the acrylic plate was replaced with a PET film as the base material.
実施例15~17
(前処理)
 基材として、表1に示す無機基材を用い、実施例1と同様の前処理において、乾燥後、UVオゾン処理により基材の表面を活性化させた。UVオゾン処理は、UVオゾン照射装置(あすみ技研社製)を用い、10分間UVオゾンを照射した。
Examples 15-17
(Preprocessing)
As the base material, the inorganic base material shown in Table 1 was used, and in the same pretreatment as in Example 1, after drying, the surface of the base material was activated by UV ozone treatment. In the UV ozone treatment, UV ozone was irradiated for 10 minutes using a UV ozone irradiation device (manufactured by Asumi Giken Co., Ltd.).
(プライマー層)
 シラン化合物(1または2):10wt%酢酸水溶液:エタノール=0.5:2:97.5(重量比)の混合溶液をスターラーで室温1時間撹拌し、プライマー層形成用組成物を調製した。その後、この組成物を無機基材表面に、表1に示すようにバーコート(#10)で塗布し、乾燥機で50℃にて5分間、その後120℃にて30分間乾燥させ、プライマー層を形成した。この後は、実施例1と同様の製法により、中間層および表面層をこの順に作製し、部材サンプルを得た。
(Primer layer)
A mixed solution of silane compound (1 or 2): 10 wt % acetic acid aqueous solution: ethanol = 0.5:2:97.5 (weight ratio) was stirred with a stirrer at room temperature for 1 hour to prepare a composition for forming a primer layer. Thereafter, this composition was coated on the surface of the inorganic substrate with a bar coat (#10) as shown in Table 1, and dried in a dryer at 50°C for 5 minutes and then at 120°C for 30 minutes to form a primer layer. was formed. Thereafter, an intermediate layer and a surface layer were produced in this order by the same manufacturing method as in Example 1 to obtain a member sample.
実施例18
 実施例1の製法において、表面層形成用組成物として、ベタイン構造を有する化合物1と非イオン性モノマー1の他に、多官能アクリレートをさらに加え、これらの合計が重量濃度で10%となるよう溶媒に溶解させた。この溶液に、重合開始剤を重量濃度で0.2%後添加し、スターラーで1時間撹拌し、表面層形成用組成物を調製した。この後は、実施例1と同様の製法により部材サンプルを得た。
Example 18
In the manufacturing method of Example 1, in addition to compound 1 having a betaine structure and nonionic monomer 1, a polyfunctional acrylate was further added to the surface layer forming composition so that the total weight concentration was 10%. Dissolved in a solvent. To this solution, a polymerization initiator was added at a weight concentration of 0.2%, and the mixture was stirred with a stirrer for 1 hour to prepare a composition for forming a surface layer. After this, a member sample was obtained by the same manufacturing method as in Example 1.
実施例20
 実施例1の製法において、表面層形成用組成物として、ベタイン構造を有する化合物1と非イオン性モノマー1の他に、シラン化合物3(テトラエトキシシラン)をさらに加え、これらの合計が重量濃度で10%となるよう溶媒に溶解させた。この溶液に、重合開始剤を重量濃度で0.2%後添加し、スターラーで1時間撹拌し、表面層形成用組成物を調製した。この後は、実施例1と同様の製法により部材サンプルを得た。
Example 20
In the manufacturing method of Example 1, in addition to compound 1 having a betaine structure and nonionic monomer 1, silane compound 3 (tetraethoxysilane) was further added to the surface layer forming composition, and the total weight concentration was It was dissolved in a solvent to a concentration of 10%. To this solution, a polymerization initiator was added at a weight concentration of 0.2%, and the mixture was stirred with a stirrer for 1 hour to prepare a composition for forming a surface layer. After this, a member sample was obtained by the same manufacturing method as in Example 1.
実施例21
 それぞれ重量濃度で、ベタイン構造を有する化合物1を1%、非イオン性モノマー3を0.5%、多官能アクリレートを30%、重合開始剤を0.75%、および界面活性剤を0.1%、溶媒に溶解させ、スターラーで1時間攪拌し、バーコート(#24)で基材に塗布した。塗布後すぐに熱風乾燥炉に入れ、60℃で10分間静置した。その後、紫外線照射装置(MDB15001N-01、サンエナジー社製)を用い、積算光量が1000mJ/cm(紫外線積算光量計、C9536-254、浜松ホトニクス社製で測定)となるように、塗布面にUV照射し、硬化させ、部材サンプルを得た。
Example 21
Each weight concentration is 1% of compound 1 having a betaine structure, 0.5% of nonionic monomer 3, 30% of polyfunctional acrylate, 0.75% of polymerization initiator, and 0.1% of surfactant. % in a solvent, stirred with a stirrer for 1 hour, and coated on a substrate with a bar coat (#24). Immediately after coating, it was placed in a hot air drying oven and left to stand at 60°C for 10 minutes. Then, using an ultraviolet irradiation device (MDB15001N- 01 , manufactured by Sun Energy Co., Ltd.), the applied surface was It was irradiated with UV and cured to obtain a member sample.
実施例22
 それぞれ重量濃度で、ベタイン構造を有する化合物1を0.5%、非イオン性モノマー1を10%、非イオン性モノマー3を1.5%、多官能アクリレートを30%、重合開始剤を0.75%、および界面活性剤を0.025%、溶媒に溶解させ、スターラーで1時間攪拌した。その後は実施例21と同様の製法により部材サンプルを得た。
Example 22
The respective weight concentrations are 0.5% of compound 1 having a betaine structure, 10% of nonionic monomer 1, 1.5% of nonionic monomer 3, 30% of polyfunctional acrylate, and 0.0% of polymerization initiator. 75% and 0.025% of the surfactant were dissolved in the solvent and stirred with a stirrer for 1 hour. Thereafter, a member sample was obtained by the same manufacturing method as in Example 21.
比較例1
 実施例1の製法において、表面層形成用組成物として、ベタイン構造を有する化合物1のみを用いた以外は同様にして部材サンプルを得た。
Comparative example 1
A member sample was obtained in the same manner as in Example 1 except that only Compound 1 having a betaine structure was used as the surface layer forming composition.
比較例2
 実施例1の製法において、表面層形成用組成物として、非イオン性モノマー1のみを用いた以外は同様にして部材サンプルを得た。
Comparative example 2
A member sample was obtained in the same manner as in Example 1 except that only nonionic monomer 1 was used as the surface layer forming composition.
比較例3
 実施例1の製法において、表面層形成用組成物として、非イオン性モノマー5のみを用いた以外は同様にして部材サンプルを得た。
Comparative example 3
A member sample was obtained in the same manner as in Example 1 except that only nonionic monomer 5 was used as the surface layer forming composition.
比較例4
 基材であるアクリル板をそのまま部材サンプルとした。
Comparative example 4
The acrylic plate as the base material was used as a member sample.
3.評価および結果
3-1.XPS評価
<評価サンプルの準備>
 板状の部材サンプルから約1cm角サイズの領域を切断したものを測定試料とした。測定前に測定試料の表面を洗浄し、表面に付着した汚れを十分に除去した。具体的には中性洗剤を用いてスポンジで摺動洗浄し、その後超純水にて十分にすすぎ洗いを行った。
3. Evaluation and results
3-1. XPS evaluation <Preparation of evaluation sample>
A measurement sample was obtained by cutting a region approximately 1 cm square in size from a plate-shaped member sample. Before measurement, the surface of the measurement sample was washed to sufficiently remove dirt adhering to the surface. Specifically, it was cleaned by sliding with a sponge using a neutral detergent, and then thoroughly rinsed with ultrapure water.
<XPS測定>
・XPS測定装置
 K-alpha(ThermoFisher Scientific社製)を用いた。
・XPS測定条件
X線条件:単色化AlKα線,72W-12KV
光電子取出角:90°
分析領域:400μmφ
中和銃条件:200μA
イオン銃条件:10mA
(サーベイ)
Time per step:10ms
Energy step size:1.000eV
Sweep:2回
Pass energy:200eV
走査範囲:-10~1350eV
(ナロー)
Time per step:50ms
Energy step size:0.100eV
Sweep:5回
Pass energy:50eV
走査範囲:C1sピーク 279.000eV~298.000eV、O1sピーク 525.000eV~545.000eV、N1sピーク 392.000eV~410.000eV、S2pピーク 157.000eV~175.000eV、Si2pピーク 95.000eV~110.000eV、P2pピーク 124.000eV~144.000eV
<XPS measurement>
- An XPS measuring device K-alpha (manufactured by ThermoFisher Scientific) was used.
・XPS measurement conditions X-ray conditions: Monochromatic AlKα ray, 72W-12KV
Photoelectron extraction angle: 90°
Analysis area: 400μmφ
Neutralization gun conditions: 200μA
Ion gun conditions: 10mA
(survey)
Time per step: 10ms
Energy step size: 1.000eV
Sweep: 2 times Pass energy: 200eV
Scanning range: -10 to 1350eV
(Narrow)
Time per step: 50ms
Energy step size: 0.100eV
Sweep: 5 times Pass energy: 50eV
Scanning range: C1s peak 279.000eV to 298.000eV, O1s peak 525.000eV to 545.000eV, N1s peak 392.000eV to 410.000eV, S2p peak 157.000eV to 175.000eV, Si2p peak 95.000eV to 11 0 .000eV, P2p peak 124.000eV to 144.000eV
<各原子濃度(S、N、Si、P)>
 検出された原子の濃度は、得られたスペクトルから、データ解析ソフトThermo Avantage(バージョン5.9916、ThermoFisher Scientific社製)を用いて算出した。ナロー分析で得たスペクトルに対して、C1sピークを284.5eVとしてチャージ補正した後に、測定された各原子の電子軌道に基づくピークに対してShirley法でバックグラウンドを除去した後にピーク面積強度を算出し、データ解析ソフトウェアに予め設定されている装置固有の感度係数で除算する解析処理を行い、C原子、O原子、N原子、S原子、Si原子、P原子の合計を100%としたときの各原子濃度を算出した。結果を表1に示す。
<Each atomic concentration (S, N, Si, P)>
The concentration of the detected atoms was calculated from the obtained spectrum using data analysis software Thermo Avantage (version 5.9916, manufactured by ThermoFisher Scientific). After performing charge correction on the spectrum obtained by narrow analysis by setting the C1s peak at 284.5 eV, the peak area intensity was calculated after removing the background using the Shirley method for the peak based on the measured electron orbit of each atom. Then, an analysis process is performed to divide by the device-specific sensitivity coefficient preset in the data analysis software, and the total of C atoms , O atoms, N atoms, S atoms, Si atoms, and P atoms is taken as 100%. The concentration of each atom was calculated. The results are shown in Table 1.
<SB比率>
 上記のXPS測定により得られたS原子濃度よりSB比率を算出した。SB比率は、XPS測定から得られたS原子濃度を用いて算出することが可能である。スルホベタイン構造を有する化合物のみからなる表面層のXPS測定によって得られたS原子濃度と、スルホベタイン構造を有さない表面層(S原子を含まない膜)のXPS測定によって得られたS原子濃度とを用い、各試料の表面のXPS測定によって得られたS原子濃度を規格化することにより、各試料の表面に存在するスルホベタイン構造の存在割合を推測するのに利用できる。また、XPSによる分析深さはおよそ10nmであるが、実施例および比較例の部材サンプルの製法においては10nmの層厚を形成するのに十分な量の組成物を塗布して硬化させており、層厚はXPSによる分析深さよりも十分に厚い。したがって、XPSによる分析は基材の影響を受けることなく表面層成分の分析を行うことができる。また、スピンコートまたはバーコートによる塗布で被塗布表面を覆うことができており、基材の露出はない。以上より、XPSでは基材の影響を受けず、表面層成分の分析を行うことができる。
<SB ratio>
The SB ratio was calculated from the S atom concentration obtained by the above XPS measurement. The SB ratio can be calculated using the S atom concentration obtained from XPS measurement. S atom concentration obtained by XPS measurement of a surface layer consisting only of a compound with a sulfobetaine structure and S atom concentration obtained by XPS measurement of a surface layer without a sulfobetaine structure (film containing no S atoms) By normalizing the S atom concentration obtained by XPS measurement on the surface of each sample using , it can be used to estimate the abundance ratio of the sulfobetaine structure present on the surface of each sample. In addition, although the analysis depth by XPS is approximately 10 nm, in the manufacturing method of the member samples of Examples and Comparative Examples, a sufficient amount of the composition to form a layer thickness of 10 nm is applied and cured. The layer thickness is sufficiently thicker than the analysis depth by XPS. Therefore, analysis by XPS can analyze surface layer components without being influenced by the base material. Furthermore, the surface to be coated can be covered by spin coating or bar coating, and the base material is not exposed. From the above, XPS allows analysis of surface layer components without being affected by the base material.
(算出方法)
 表面層の構成成分として、ベタイン構造を有する化合物1のみを含む比較例1の部材サンプルから切り出した試料のS濃度=2.9%を100%とし、非イオン性モノマー1のみを含む比較例2の部材サンプルから切り出した試料のS濃度=0.1%を0%として規格化した。この2点から得られる線形回帰直線を使用することで、XPS測定で得られたS濃度の値から各部材サンプルの規格化した値を算出し、この値を各部材サンプルのSB比率とした。得られた値を表1に示す。
(Calculation method)
The S concentration of the sample cut out from the member sample of Comparative Example 1 containing only Compound 1 having a betaine structure as a component of the surface layer = 2.9% is taken as 100%, and Comparative Example 2 containing only Nonionic Monomer 1 The S concentration of the sample cut out from the member sample of 0.1% was normalized as 0%. By using the linear regression line obtained from these two points, a normalized value for each member sample was calculated from the S concentration value obtained by the XPS measurement, and this value was taken as the SB ratio of each member sample. The obtained values are shown in Table 1.
3-2.接触角
 下記装置およびソフトウェアを用い、下記測定条件にて、表面層の表面に対する水の静的接触角を測定した。結果を表1に示す。
装置:SA-301(協和界面化学社製)
ソフトウェア:界面測定/解析統合システム FAMAS
バージョン:5.0.16
測定方法:液滴法
液滴量:2.0μL
待ち時間:1000ms
解析方法:θ/2法
3-2. Contact angle The static contact angle of water on the surface of the surface layer was measured using the following equipment and software under the following measurement conditions. The results are shown in Table 1.
Equipment: SA-301 (manufactured by Kyowa Interface Science Co., Ltd.)
Software: Interface measurement/analysis integrated system FAMAS
Version: 5.0.16
Measurement method: Droplet method Droplet volume: 2.0μL
Waiting time: 1000ms
Analysis method: θ/2 method
3-3.水垢清掃性評価
<水垢の作製1>
 水道水(茅ヶ崎市)20μLをマイクロピペットで各部材サンプルの表面に滴下し、恒温槽(エスペック社製)に入れ、25℃、相対湿度75%で24時間静置し、水垢が形成された試料を得た。
3-3. Water scale cleaning performance evaluation <Lake scale preparation 1>
20μL of tap water (Chigasaki City) was dropped onto the surface of each component sample with a micropipette, placed in a constant temperature bath (manufactured by ESPEC), and left to stand at 25℃ and 75% relative humidity for 24 hours to remove water scales. I got it.
<水垢の作製2>
 上記「水垢の作製1」において、水道水の代わりに、水道水に羊毛ケラチン(東京化成工業株式会社)を0.1wt%混合させ、10分間超音波処理して分散させて得た懸濁液を用いた以外は、同様の方法により水垢が形成された試料を得た。
<Preparation of limescale 2>
In the above "Preparation of water scale 1", instead of tap water, 0.1 wt% of wool keratin (Tokyo Kasei Kogyo Co., Ltd.) was mixed with tap water, and the suspension was obtained by ultrasonication for 10 minutes to disperse the mixture. A sample with water scale formed was obtained by the same method except that .
<清掃性評価>
 得られた試料に対し、下記方法にて水垢清掃性評価を行った。摺動機(テスター産業社製)を用い、段階的に摺動負荷を大きくし、下記のレベルにて水垢が形成された表面を摺動した。その後、試料表面を目視で観察し、水垢が見えなくなった時点のレベルをその試料の水垢清掃性として評価した。結果を表1に示す。
<Cleanability evaluation>
The resulting samples were evaluated for their limescale cleaning performance using the following method. Using a sliding machine (manufactured by Tester Sangyo Co., Ltd.), the sliding load was increased in stages, and the surface on which water scale was formed was slid at the following levels. Thereafter, the surface of the sample was visually observed, and the level at which limescale was no longer visible was evaluated as the scale cleaning performance of the sample. The results are shown in Table 1.
・レベル5:市販のウレタンスポンジ(スコッチブライト バスシャイン,3Mジャパン社製)に水を含ませ、荷重50[g/cm2]で5往復
・レベル4:市販のウレタンスポンジ(スコッチブライト バスシャイン,3Mジャパン社製)に重量比90:10で混合した水と中性洗剤(バスマジックリン、花王)を含ませ、荷重25[g/cm2]で5往復
・レベル3:市販のウレタンスポンジ(スコッチブライト バスシャイン,3Mジャパン社製)にレベル4と同様の割合で混合した水と中性洗剤(バスマジックリン、花王)を含ませ、荷重50[g/cm2]で5往復
・レベル2:市販のウレタンスポンジ(スコッチブライト バスシャイン,3Mジャパン社製)にレベル4と同様の割合で混合した水と中性洗剤(バスマジックリン、花王)を含ませ、荷重50[g/cm2]で30往復
・レベル1:市販のウレタンスポンジ(スコッチブライト バスシャイン,3Mジャパン社製)に水と研磨剤入りクリーナー(きらりあ、TOTO社製)を含ませ、荷重50[g/cm2]で5往復
・レベル0:レベル1でも取れない
・Level 5: Wet a commercially available urethane sponge (Scotch Brite Bath Shine, manufactured by 3M Japan) with water and make 5 reciprocations with a load of 50 [g/cm2] ・Level 4: Commercially available urethane sponge (Scotch Brite Bath Shine, 3M Japan Co., Ltd.) Japan Co., Ltd.) mixed with water and a neutral detergent (Bath Magic Clean, Kao) at a weight ratio of 90:10, and 5 reciprocations at a load of 25 [g/cm2]. Level 3: Commercially available urethane sponge (Scotch Brite). Bath Shine, manufactured by 3M Japan Co., Ltd.) was mixed with water and a neutral detergent (Bath Magic Clean, Kao) in the same proportion as Level 4, and the load was 50 [g/cm2] for 5 cycles. Level 2: Commercially available A urethane sponge (Scotch Brite Bath Shine, manufactured by 3M Japan Co., Ltd.) is soaked in water and a neutral detergent (Bath Magic Clean, Kao) mixed in the same proportion as Level 4, and the load is 50 [g/cm2] for 30 reciprocations. Level 1: A commercially available urethane sponge (Scotch Brite Bath Shine, manufactured by 3M Japan) is soaked in water and an abrasive cleaner (Kiraria, manufactured by TOTO), and a load of 50 [g/cm2] is used for 5 reciprocations, level 0. :Can't get it even at level 1
3-4.タンパク質吸着量評価
<タンパク質を含む懸濁液の作製>
 イオン交換水100mLに、タンパク質として市販の羊毛ケラチン2g(東京化成工業株式会社製)を混合し懸濁して得た液に、ケラチンの分散性を高める目的でトリオレイン(関東化学社製)を0.2g添加し、10分間超音波処理を行って、懸濁液を得た。
3-4. Evaluation of protein adsorption amount <Preparation of suspension containing protein>
2 g of commercially available wool keratin (manufactured by Tokyo Kasei Kogyo Co., Ltd.) as a protein was mixed and suspended in 100 mL of ion-exchanged water, and 0. .2 g was added and subjected to ultrasonication for 10 minutes to obtain a suspension.
<タンパク質の付着と洗浄>
 上記懸濁液に部材サンプルを5分間浸漬させた後、部材サンプルを懸濁液から取り出した。その後、部材サンプルの表面に、スポイトを用いて超純水を0.4[mL/cm]かけて洗浄した。その後、部材サンプルを乾燥機にて60℃、10分間乾燥し、ケラチンの固着を加速させた。この手順を3回繰り返し行い、ケラチンを付着させた部材サンプルを得た。
<Protein attachment and cleaning>
After the component sample was immersed in the suspension for 5 minutes, the component sample was taken out from the suspension. Thereafter, the surface of the member sample was washed with 0.4 [mL/cm 2 ] of ultrapure water using a dropper. Thereafter, the member sample was dried in a dryer at 60° C. for 10 minutes to accelerate the fixation of keratin. This procedure was repeated three times to obtain a member sample to which keratin was attached.
<タンパク質が付着した部材サンプルの表面観察>
 レーザー顕微鏡 LEXT OLS5000(オリンパス製)を用い、倍率:467倍、標準モード(ピッチ1.2μm)を選択し、1視野あたり645μm×645μmの画像を撮影した。上記顕微鏡のスペックは以下のとおりである。
 装置:OLS5000
 製品バージョン:1.2.1.4807
 光源:405nm半導体レーザー
 検出系:フォトマルチプライヤー
 対物レンズ:OLYMPUS MPlan APO N 20X/0.60 LEXT
<Surface observation of component sample with protein attached>
Using a laser microscope LEXT OLS5000 (manufactured by Olympus), magnification: 467 times, standard mode (pitch 1.2 μm) was selected, and images of 645 μm×645 μm per field of view were photographed. The specs of the above microscope are as follows.
Equipment: OLS5000
Product version: 1.2.1.4807
Light source: 405nm semiconductor laser Detection system: Photomultiplier Objective lens: OLYMPUS MPlan APO N 20X/0.60 LEXT
 撮影した画像を、図2および図3に示す。図2は実施例1の部材サンプル、図3は比較例2の部材サンプルを撮影した画像である。画像中に見られる黒い粒々が付着したタンパク質である。以下に示す方法によってタンパク質の付着面積率を算出することができる。 The captured images are shown in FIGS. 2 and 3. FIG. 2 is an image of a member sample of Example 1, and FIG. 3 is an image of a member sample of Comparative Example 2. The black particles seen in the image are attached proteins. The protein adhesion area ratio can be calculated by the method shown below.
<タンパク質付着面積率の算出>
 得られた画像を画像処理ソフトウェア「WinROOF2018」(三谷商事製、ソフトウェアバージョン:3.10.0)を用いて、タンパク質付着面積率を算出した。先ず、レーザー顕微鏡で撮影し画像を前記ソフトウェアに取込み、モノクロ画像処理を経て、2値化処理を行った。2値化処理の閾値の設定については、付着したタンパク質が選択されるように適宜調整した。次に、「形状特長の処理」により「穴埋め処理」を選択し、これにより総面積率を算出した。この総面積率をタンパク付着面積率とした。結果を表1に示す。
<Calculation of protein adhesion area ratio>
The protein adhesion area ratio was calculated for the obtained image using image processing software "WinROOF2018" (manufactured by Mitani Shoji, software version: 3.10.0). First, images were taken with a laser microscope, imported into the software, subjected to monochrome image processing, and then binarized. The setting of the threshold value for the binarization process was adjusted as appropriate so that the attached proteins were selected. Next, ``filling processing'' was selected from ``processing of shape features'', and the total area ratio was calculated. This total area ratio was defined as the protein adhesion area ratio. The results are shown in Table 1.
<摺動耐久性評価>
 実施例5の部材サンプルに対し、摺動機(テスター産業社製)を用い摺動耐久性試験を行った。
 市販のウレタンスポンジ(スコッチブライト バスシャイン,3Mジャパン社製)に重量比90:10で混合した水と中性洗剤(バスマジックリン、花王)を含ませ、荷重25[g/cm2]でサンプルの表面を5000往復させた。サンプルを流水洗浄後、乾燥させ、上述した方法で接触角を測定した。摺動耐久性は以下の基準で判定した。
〇:摺動試験後の接触角が30度以下
×:摺動試験後の接触角が30度より大きい
<Sliding durability evaluation>
A sliding durability test was conducted on the member sample of Example 5 using a sliding machine (manufactured by Tester Sangyo Co., Ltd.).
A commercially available urethane sponge (Scotch Brite Bath Shine, manufactured by 3M Japan) was soaked in water and a neutral detergent (Bath Magic Clean, Kao) mixed at a weight ratio of 90:10, and the sample was washed under a load of 25 [g/cm2]. The surface was moved back and forth 5,000 times. After washing the sample with running water, it was dried, and the contact angle was measured using the method described above. Sliding durability was judged based on the following criteria.
〇: Contact angle after sliding test is 30 degrees or less ×: Contact angle after sliding test is greater than 30 degrees
 その結果、実施例5の部材サンプルにおける摺動耐久性試験後の接触角は7.0度であり、評価は〇であった。 As a result, the contact angle of the member sample of Example 5 after the sliding durability test was 7.0 degrees, and the evaluation was 0.
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042
10 部材
1  基材
2  表面層
3  中間層
4  プライマー層

 
10 Member 1 Base material 2 Surface layer 3 Intermediate layer 4 Primer layer

Claims (9)

  1.  部材であって、
     当該部材は、基材と表面層とを含み、
     当該表面層は、下記式(A1)で表される構造および下記式(A2)で表される構造を含み、
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
     式(A1)において、
      Lは、-COO-、-CONH-、-(CH-(mは自然数である)のいずれか1つを含み、
      Rは、HまたはCHであり、
      Xは、下記式(B)で表される官能基であり、
    Figure JPOXMLDOC01-appb-C000003
     式(B)において、
      RおよびRは、それぞれ独立して、-(CH-(lは1~10の自然数である)で表される炭化水素基であり、
      RおよびRは、それぞれ独立して、必須成分としてCおよびHを、任意成分としてOを含み、かつ、NおよびSを含まない有機基であり、
     式(A2)において、
      Lは、-COO-、-CONH-、-(CH-(mは自然数である)のいずれか1つを含み、
      Rは、HまたはCHであり、
      Xは、下記式(C)で表される官能基であり、
    Figure JPOXMLDOC01-appb-C000004
     式(C)において、
      Yは、炭素数が1~10の直鎖または分岐または環状の炭化水素基であり、
      aは自然数であり、
      Rは、H、CH、C、下記式(D1)、下記式(D2)、下記式(D3)および下記式(D4)からなる群から選択されるいずれかの構造を含み、
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
     式(D1)において、
      Yは、炭素数が1~10の直鎖または分岐または環状の炭化水素基であり、
      Lは、-OCO-、-NHCO-、-(CH-(mは自然数である)のいずれか1つを含み、
      Rは、HまたはCHであり、
     式(D2)において、
      Yは、炭素数が1~10の直鎖または分岐または環状の炭化水素基であり、
      Xは下記式(E1)で表される構造であり、
    Figure JPOXMLDOC01-appb-C000009
     式(E1)において、
      Yは、炭素数が1~10の直鎖または分岐または環状の炭化水素基であり、
      Lは、-OCO-、-NHCO-、-(CH-(mは自然数である)のいずれか1つを含み、
      Rは、HまたはCHであり、
      aは自然数であり、
     式(D3)において、
      Yは、炭素数が1~10の直鎖または分岐または環状の炭化水素基であり、
      Xは上記式(E1)で表される構造であり、
     式(D4)において、
      X4は下記式(E2)で表される構造であり、
    Figure JPOXMLDOC01-appb-C000010
     式(E2)において、
      Yは、炭素数が1~10の直鎖または分岐または環状の炭化水素基であり、
      Lは、-OCO-、-NHCO-、-(CH-(mは自然数である)のいずれか1つを含み、
      Rは、HまたはCHであり、
      aは自然数であり、
     前記部材は、水と、有機成分および/または無機成分を含む汚染物質とが表面に付着し、且つ表面に水と汚染物質とが混在した状態で水が乾燥するというサイクルが繰り返される環境下で使用されることを特徴とする、部材。
    A member,
    The member includes a base material and a surface layer,
    The surface layer includes a structure represented by the following formula (A1) and a structure represented by the following formula (A2),
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    In formula (A1),
    L 1 includes any one of -COO-, -CONH-, -(CH 2 ) m - (m is a natural number),
    R 1 is H or CH 3 ;
    X 1 is a functional group represented by the following formula (B),
    Figure JPOXMLDOC01-appb-C000003
    In formula (B),
    R 2 and R 5 are each independently a hydrocarbon group represented by -(CH 2 ) l - (l is a natural number from 1 to 10),
    R 3 and R 4 are each independently an organic group containing C and H as essential components, O as an optional component, and not containing N and S,
    In formula (A2),
    L 2 includes any one of -COO-, -CONH-, -(CH 2 ) m - (m is a natural number),
    R 1 is H or CH 3 ;
    X 2 is a functional group represented by the following formula (C),
    Figure JPOXMLDOC01-appb-C000004
    In formula (C),
    Y is a straight chain, branched or cyclic hydrocarbon group having 1 to 10 carbon atoms,
    a is a natural number,
    R 6 includes any structure selected from the group consisting of H, CH 3 , C 2 H 5 , the following formula (D1), the following formula (D2), the following formula (D3), and the following formula (D4) ,
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    Figure JPOXMLDOC01-appb-C000008
    In formula (D1),
    Y is a straight chain, branched or cyclic hydrocarbon group having 1 to 10 carbon atoms,
    L 3 includes any one of -OCO-, -NHCO-, -(CH 2 ) m - (m is a natural number),
    R 1 is H or CH 3 ;
    In formula (D2),
    Y is a straight chain, branched or cyclic hydrocarbon group having 1 to 10 carbon atoms,
    X 3 is a structure represented by the following formula (E1),
    Figure JPOXMLDOC01-appb-C000009
    In formula (E1),
    Y is a straight chain, branched or cyclic hydrocarbon group having 1 to 10 carbon atoms,
    L 3 includes any one of -OCO-, -NHCO-, -(CH 2 ) m - (m is a natural number),
    R 1 is H or CH 3 ;
    a is a natural number,
    In formula (D3),
    Y is a straight chain, branched or cyclic hydrocarbon group having 1 to 10 carbon atoms,
    X 3 is a structure represented by the above formula (E1),
    In formula (D4),
    X 4 is a structure represented by the following formula (E2),
    Figure JPOXMLDOC01-appb-C000010
    In formula (E2),
    Y is a straight chain, branched or cyclic hydrocarbon group having 1 to 10 carbon atoms,
    L 3 includes any one of -OCO-, -NHCO-, -(CH 2 ) m - (m is a natural number),
    R 1 is H or CH 3 ;
    a is a natural number,
    The above-mentioned member is used in an environment where water and contaminants containing organic and/or inorganic components adhere to the surface, and the water dries while water and contaminants are mixed on the surface. A member characterized in that it is used.
  2.  前記式(C)において、Rが、HまたはCHまたはCである、請求項1に記載の部材。 The member according to claim 1 , wherein in the formula (C), R6 is H, CH3 or C2H5 .
  3.  表面に対する水の静的接触角が30°以下である、請求項1または2に記載の部材。 The member according to claim 1 or 2, wherein the static contact angle of water with the surface is 30° or less.
  4.  前記式(A1)および式(A2)において、LおよびLが-COO-である、請求項1~3のいずれか一項に記載の部材。 The member according to any one of claims 1 to 3, wherein in the formulas (A1) and (A2), L 1 and L 2 are -COO-.
  5.  前記部材の表面をX線光電子分光法(XPS)測定することによって得られるSi原子の濃度が1.0%以下である、請求項1~4のいずれか一項に記載の部材。 The member according to any one of claims 1 to 4, wherein the concentration of Si atoms obtained by measuring the surface of the member by X-ray photoelectron spectroscopy (XPS) is 1.0% or less.
  6.  前記部材の表面をX線光電子分光法(XPS)測定することによって得られるS原子の濃度が0.5%以上である、請求項1~5のいずれか一項に記載の部材。 The member according to any one of claims 1 to 5, wherein the concentration of S atoms obtained by measuring the surface of the member by X-ray photoelectron spectroscopy (XPS) is 0.5% or more.
  7.  前記部材の表面をX線光電子分光法(XPS)測定することによって得られるN原子の濃度/S原子の濃度が、0.5以上2.5以下である、請求項1~6のいずれか一項に記載の部材。 Any one of claims 1 to 6, wherein the concentration of N atoms/concentration of S atoms obtained by measuring the surface of the member by X-ray photoelectron spectroscopy (XPS) is 0.5 or more and 2.5 or less. Components listed in section.
  8.  前記基材は、樹脂、無機材料または金属からなるものである、請求項1~7のいずれか一項に記載の部材。 The member according to any one of claims 1 to 7, wherein the base material is made of resin, inorganic material, or metal.
  9.  請求項1~8のいずれか一項に記載の部材の使用方法であって、
     前記部材を、水と、有機成分および/または無機成分を含む汚染物質とが表面に付着し、且つ表面に水と汚染物質とが混在した状態で水が乾燥するというサイクルが繰り返される環境下で使用することを含む、使用方法。
    A method of using the member according to any one of claims 1 to 8, comprising:
    The member is placed in an environment where water and contaminants containing organic and/or inorganic components adhere to the surface, and the water dries in a state where water and contaminants are mixed on the surface, and a cycle is repeated. How to use it, including using it.
PCT/JP2023/010157 2022-03-16 2023-03-15 Member WO2023176900A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-041657 2022-03-16
JP2022041657 2022-03-16
JP2023039682A JP2023138439A (en) 2022-03-16 2023-03-14 Member
JP2023-039682 2023-03-14

Publications (1)

Publication Number Publication Date
WO2023176900A1 true WO2023176900A1 (en) 2023-09-21

Family

ID=88023342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/010157 WO2023176900A1 (en) 2022-03-16 2023-03-15 Member

Country Status (1)

Country Link
WO (1) WO2023176900A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181601A (en) * 1999-12-27 2001-07-03 Lion Corp Antifouling composition
JP2006514150A (en) * 2003-02-20 2006-04-27 ロディア・シミ Hard surface cleaning or rinsing composition
JP2015105311A (en) * 2013-11-29 2015-06-08 花王株式会社 Treatment agent composition for hard surface
WO2016067795A1 (en) * 2014-10-29 2016-05-06 富士フイルム株式会社 Material nonadhesive to biological substances, curing composition, and artificial organ and medical instrument using same
WO2017018146A1 (en) * 2015-07-29 2017-02-02 富士フイルム株式会社 Curable composition, coating, and laminate
JP2018068808A (en) * 2016-11-01 2018-05-10 テルモ株式会社 Tracheal tube
WO2018212061A1 (en) * 2017-05-16 2018-11-22 富士フイルム株式会社 Laminate, kit, and method for producing laminate
JP2019178200A (en) * 2018-03-30 2019-10-17 東洋インキScホールディングス株式会社 Biofilm formation inhibiting coating agent and biofilm formation inhibiting laminate
CN110358006A (en) * 2019-05-24 2019-10-22 中国科学院化学研究所 A kind of hydrogel and its preparation method and application can be used for marine anti-pollution
WO2020076240A1 (en) * 2018-10-11 2020-04-16 National University Of Singapore Antifouling polymer for reverse osmosis and membrane comprising same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181601A (en) * 1999-12-27 2001-07-03 Lion Corp Antifouling composition
JP2006514150A (en) * 2003-02-20 2006-04-27 ロディア・シミ Hard surface cleaning or rinsing composition
JP2015105311A (en) * 2013-11-29 2015-06-08 花王株式会社 Treatment agent composition for hard surface
WO2016067795A1 (en) * 2014-10-29 2016-05-06 富士フイルム株式会社 Material nonadhesive to biological substances, curing composition, and artificial organ and medical instrument using same
WO2017018146A1 (en) * 2015-07-29 2017-02-02 富士フイルム株式会社 Curable composition, coating, and laminate
JP2018068808A (en) * 2016-11-01 2018-05-10 テルモ株式会社 Tracheal tube
WO2018212061A1 (en) * 2017-05-16 2018-11-22 富士フイルム株式会社 Laminate, kit, and method for producing laminate
JP2019178200A (en) * 2018-03-30 2019-10-17 東洋インキScホールディングス株式会社 Biofilm formation inhibiting coating agent and biofilm formation inhibiting laminate
WO2020076240A1 (en) * 2018-10-11 2020-04-16 National University Of Singapore Antifouling polymer for reverse osmosis and membrane comprising same
CN110358006A (en) * 2019-05-24 2019-10-22 中国科学院化学研究所 A kind of hydrogel and its preparation method and application can be used for marine anti-pollution

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIN, WEIHAN ET AL.: "Spheroid Formation of Human Adipose-Derived Stem Cells on Environmentally Friendly BMA/SBMA/HEMA Copolymer-Coated Anti-Adhesive Surface", BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, vol. 91, no. 9, 2018, pages 1457 - 1464, XP009548623 *

Similar Documents

Publication Publication Date Title
Zoulalian et al. Self-assembly of poly (ethylene glycol)− poly (alkyl phosphonate) terpolymers on titanium oxide surfaces: synthesis, interface characterization, investigation of nonfouling properties, and long-term stability
WO2010058848A1 (en) Graft polymerization method and product obtained thereby
WO2009116612A1 (en) Hydrophilic film
JP6028660B2 (en) Hydrophilic coating composition, hydrophilic coating film, water-borne article, and method for producing hydrophilic coating film
TW201213114A (en) Process for the production of a deposit of inorganic nanoparticles having micro gaps onto a light-transparent support
KR20190038868A (en) The antifogging laminate
Sin et al. An intuitive thermal-induced surface zwitterionization for versatile, well-controlled haemocompatible organic and inorganic materials
JP6331217B2 (en) Hydrophilic coating composition, hydrophilic coating film, water-related article and method for producing hydrophilic coating film
WO2023176900A1 (en) Member
JP2021525169A (en) Fingerprint invisible coating and how to form it
JP6535164B2 (en) Separation membrane
JP2023138439A (en) Member
JP2012236950A (en) Coating material, member, method for manufacturing member, and method for manufacturing mirror
JP6075718B2 (en) Hydrophilic coating composition, hydrophilic coating film, water-borne article, and method for producing hydrophilic coating film
Iguerb et al. Antifouling properties of poly (methyl methacrylate) films grafted with poly (ethylene glycol) monoacrylate immersed in seawater
TW202406753A (en) component
JP2009184300A (en) Surface hydrophilic member
JP6120249B2 (en) Element
JP2013213199A (en) Hydrophilic film and coating liquid
JP2020037637A (en) Surface protective resin member, laminated resin member, and liquid set
JP2010053305A (en) Composite material
JP2019137594A (en) Plumbing member
EP3902631A1 (en) Film for microfluidic device, microfluidic device and method for manufacturing same
JP7307468B2 (en) Aqueous composition for painted surfaces
TW201943750A (en) Hydrophilic oil repellent agent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770853

Country of ref document: EP

Kind code of ref document: A1