WO2023176899A1 - 感光性樹脂組成物、顔料分散液、硬化物、ブラックマトリックス及び画像表示装置 - Google Patents

感光性樹脂組成物、顔料分散液、硬化物、ブラックマトリックス及び画像表示装置 Download PDF

Info

Publication number
WO2023176899A1
WO2023176899A1 PCT/JP2023/010154 JP2023010154W WO2023176899A1 WO 2023176899 A1 WO2023176899 A1 WO 2023176899A1 JP 2023010154 W JP2023010154 W JP 2023010154W WO 2023176899 A1 WO2023176899 A1 WO 2023176899A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
pigment
less
ring
resin composition
Prior art date
Application number
PCT/JP2023/010154
Other languages
English (en)
French (fr)
Inventor
宏明 石井
信夫 力武
謙一 入木
翔 藤本
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Publication of WO2023176899A1 publication Critical patent/WO2023176899A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds

Definitions

  • the present invention relates to a photosensitive resin composition, a pigment dispersion, a cured product, a black matrix, and an image display device.
  • Color filters usually form a black matrix on the surface of a transparent substrate such as glass or plastic, and then sequentially form pixels of three or more different colors, such as red, green, and blue, in a grid pattern or stripes. It is formed in a pattern such as a shape or a mosaic shape.
  • the pattern size varies depending on the use of the color filter and each color, but is usually about 5 to 700 ⁇ m.
  • a photolithography method using a photosensitive resin composition is currently known as a typical manufacturing method for color filters.
  • a photosensitive resin composition containing an alkali-soluble resin is applied onto a transparent substrate, dried to form a photosensitive resin film, the photosensitive resin film is exposed in a predetermined pattern, and then developed with an alkali. After developing with a liquid, a pattern is formed by curing by high-temperature treatment at 200° C. or higher.
  • the photosensitive resin composition contains a coloring material when used for forming pixels of color filters, black matrices, etc.
  • the coloring material pigments and dyes such as carbon black are used (Patent Document 1).
  • the application of the photosensitive resin composition may be repeated using the same application device.
  • foreign matter including aggregates of the pigment may be generated on the nozzle surface of the coating device during repeated coating. Such foreign matter may peel off from the nozzle and adhere to the photosensitive resin film or pattern, causing defects, and may adversely affect the linearity, fine line characteristics, etc. of the formed pattern.
  • the present invention provides a photosensitive resin composition that has excellent linearity and fine line characteristics in the formed pattern and suppresses the generation of pigment-derived foreign substances, a cured product using the same, a black matrix, and an image display device, and a pigment-based photosensitive resin composition. It is an object of the present invention to provide a pigment dispersion liquid from which a photosensitive resin composition can be obtained in which the generation of foreign substances derived from pigments is suppressed.
  • the present inventors found that the above problem could be solved by incorporating carbon black having a specific average primary particle size and dibutyl phthalate absorption amount into the pigment. That is, the gist of the present invention is as follows.
  • a photosensitive resin composition containing (A) a pigment, (B) a dispersant, (D) an alkali-soluble resin, (E) a photopolymerizable compound, and (F) a photoinitiator,
  • the pigment (A) contains carbon black (a1) having an average primary particle diameter of 15 nm or more and 28 nm or less, and a dibutyl phthalate absorption amount of 55 mL/100 g or more and 100 mL/100 g or less,
  • the carbon black (a1) has a specific surface area of 105 m 2 /g or less according to the BET method, Photosensitivity, where Z derived from the following formula (1) is 15 or more, where X is the average primary particle diameter (nm) of the carbon black (a1) and Y is the dibutyl phthalate absorption amount (mL/100g).
  • Resin composition. Y-1.6X Z...(1)
  • the content ratio of the (A) pigment and the (B) dispersant on a mass basis (the (A) pigment/the (B) dispersant) in the photosensitive resin composition is 4 or more;
  • the content ratio of the (A) pigment and the (C) dispersion aid on a mass basis (the (A) pigment/the (C) dispersion aid) in the photosensitive resin composition is 10 or more.
  • the pigment (A) contains carbon black (a1) having an average primary particle diameter of 15 nm or more and 28 nm or less, and a dibutyl phthalate absorption amount of 55 mL/100 g or more and 100 mL/100 g or less,
  • the carbon black (a1) has a specific surface area of 105 m 2 /g or less according to the BET method
  • a pigment dispersion in which Z derived from the following formula (1) is 15 or more, where X is the average primary particle diameter (nm) of the carbon black (a1) and Y is the dibutyl phthalate absorption amount (mL/100g). liquid.
  • the content ratio of the (A) pigment and the (B) dispersant on a mass basis (the (A) pigment/the (B) dispersant) in the pigment dispersion is 4 or more, [9 ] to [13].
  • the content ratio of the (A) pigment and the (C) dispersion aid on a mass basis (the (A) pigment/the (C) dispersion aid) in the pigment dispersion is 10 or more; Pigment dispersion liquid of [15].
  • An image display device comprising the cured product of [18].
  • a photosensitive resin composition that has excellent linearity and fine line characteristics in the formed pattern and suppresses the generation of foreign matter derived from pigments, a cured product using the same, a black matrix, and an image display device, and A pigment dispersion can be provided that yields a photosensitive resin composition in which the generation of pigment-derived foreign substances is suppressed.
  • 1 is a schematic cross-sectional view showing an example of an organic EL element in the present invention.
  • 1 is a photograph showing the results of a peel test for the photosensitive resin compositions of Examples 1 to 5 and Comparative Examples 1 to 3.
  • (meth)acrylic means “acrylic and/or methacryl", and the same applies to "(meth)acrylate” and "(meth)acryloyl".
  • the "photosensitive resin composition” may be referred to as "resist”.
  • total solid content means all components other than the organic solvent and water contained in the pigment dispersion or the photosensitive resin composition, and the components other than the organic solvent and water are liquid at room temperature. However, those components are not included in organic solvents and water, but are included in total solids.
  • the "average primary particle diameter" of carbon black is determined by a method of directly measuring the size of primary particles from an electron micrograph. Specifically, carbon black is observed with an electron microscope, and the microscopic spherical parts constituting the primary aggregate are regarded as single particles (primary particles), and 10 or more of the microscopic spherical parts are The diameter is measured using a perfect circle approximation, and the average value is taken as the average primary particle diameter. Note that the same results can be obtained using either a transmission electron microscope (TEM) or a scanning electron microscope (SEM). In the present invention, the "dibutyl phthalate absorption amount" of carbon black is measured according to the standard of JIS K 6217-4.
  • dibutyl phthalate will also be referred to as "DBP".
  • DBP dibutyl phthalate
  • the "specific surface area by BET method” of carbon black is measured according to the standard of JIS K 6217-7. The details are as described in the Examples described later.
  • weight average molecular weight refers to the weight average molecular weight (Mw) in terms of polystyrene measured by GPC (gel permeation chromatography).
  • the "amine value” refers to the amine value in terms of effective solid content, unless otherwise specified, and is a value expressed by the amount of base and the mass of KOH equivalent to 1 g of solid content of the dispersant. Note that the measurement method will be described later.
  • the photosensitive resin composition of the present invention contains (A) a pigment, (B) a dispersant, (D) an alkali-soluble resin, (E) a photopolymerizable compound, and (F) a photopolymerization initiator.
  • the pigment contains carbon black (a1).
  • the average primary particle diameter of carbon black (a1) is 28 nm or less, preferably 27 nm or less, more preferably 26 nm or less, and 15 nm or more, preferably 18 nm or more, and more preferably 20 nm or more.
  • the average primary particle diameter is below the upper limit, the effect of suppressing the generation of pigment-derived foreign matter, the linearity of the formed pattern, and the fine line characteristics tend to improve.
  • the average primary particle diameter is equal to or larger than the lower limit, the viscosity stability of the dispersion over time tends to be good.
  • the above upper and lower limits can be arbitrarily combined.
  • the thickness may be 15 nm or more and 28 nm or less, 18 nm or more and 28 nm or less, or 20 nm or more and 27 nm or less.
  • the DBP absorption amount of carbon black (a1) is 55 mL/100 g or more, preferably 56 mL/100 g or more, more preferably 57 mL/100 g or more, and 100 mL/100 g or less, preferably 80 mL/100 g or less, 70 mL /100g or less is more preferable. If the DBP absorption amount is equal to or greater than the lower limit, the effect of suppressing the generation of pigment-derived foreign matter, the linearity of the formed pattern, and the fine line characteristics tend to improve. If the DBP absorption amount is below the above-mentioned upper limit, the light-shielding properties and curability of the coating film tend to be good. The above upper and lower limits can be arbitrarily combined.
  • it may be 55 mL/100 g or more and 100 mL/100 g or less, 56 mL/100 g or more and 80 mL/100 g or less, and 57 mL/100 g or more and 70 mL/100 g or less.
  • Z derived from the following formula (1) is 15 or more, and 16 or more. is preferable, and 18 or more is more preferable.
  • the specific surface area of carbon black (a1) by the BET method is 105 m 2 /g or less, more preferably 100 m 2 /g or less, even more preferably 95 m 2 /g or less, and preferably 50 m 2 /g or more, 60 m 2 /g or less. 2 /g or more is more preferable, and 70 m 2 /g or more is even more preferable. If the specific surface area is below the upper limit, the amount of dispersant required will be appropriate, and the balance between dispersion stability, light-shielding properties of the coating film, curability, and pattern linearity will tend to be good.
  • the specific surface area is equal to or larger than the lower limit, the generation of foreign substances derived from carbon black can be suppressed, and the formed pattern tends to have good linearity and fine line characteristics.
  • the above upper and lower limits can be arbitrarily combined. For example, it is preferably 50 to 105 m 2 /g, more preferably 60 to 100 m 2 /g, and even more preferably 70 to 95 m 2 /g.
  • the volume resistivity of carbon black (a1) is preferably 10 ⁇ cm or less, more preferably 5 ⁇ cm or less, and even more preferably less than 3 ⁇ cm.
  • the lower limit is not particularly limited, but is 1 ⁇ 10 ⁇ 20 ⁇ cm or more. If the volume resistivity is less than or equal to the above upper limit, it tends to be less susceptible to the influence of electric fields from transistors in the display.
  • the above upper and lower limits can be arbitrarily combined. For example, it is preferably 1 ⁇ 10 ⁇ 20 to 10 ⁇ cm, more preferably 1 ⁇ 10 ⁇ 20 to 5 ⁇ cm, and even more preferably 1 ⁇ 10 ⁇ 20 to 3 ⁇ cm.
  • Examples of the carbon black (a1) include the following carbon blacks.
  • the carbon black (a1) may be a mixture of multiple types of carbon black.
  • the average primary particle diameter of the carbon black (a1) as a whole is 15 nm or more and 28 nm or less
  • the DBP absorption amount is 55 mL/100 g or more and 100 mL/100 g or less
  • the specific surface area by BET method is 105 m 2 /g or less.
  • the pigment (A) may further contain pigments other than carbon black (a1), if necessary.
  • pigments for example, pigments of various colors used as coloring materials for coloring photosensitive resin compositions and the like can be used. Examples of such pigments include blue pigments, green pigments, red pigments, yellow pigments, purple pigments, orange pigments, brown pigments, and black pigments (excluding carbon black (a1)). These pigments may be organic or inorganic pigments.
  • the structure of the organic pigment is not particularly limited, but examples include azo, phthalocyanine, quinacridone, benzimidazolone, isoindolinone, dioxazine, indanthrene, and perylene.
  • red pigments include C.I. I. Pigment Red 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 14, 15, 16, 17, 21, 22, 23, 31, 32, 37, 38, 41, 47, 48, 48:1, 48:2, 48:3, 48:4, 49, 49:1, 49:2, 50:1, 52:1, 52:2, 53, 53:1, 53:2, 53: 3, 57, 57:1, 57:2, 58:4, 60, 63, 63:1, 63:2, 64, 64:1, 68, 69, 81, 81:1, 81:2, 81: 3, 81:4, 83, 88, 90:1, 101, 101:1, 104, 108, 108:1, 109, 112, 113, 114, 122, 123, 144, 146, 147, 149, 151, 166, 168, 169, 170, 172, 173,
  • blue pigments examples include C.I. I. Pigment Blue 1, 1:2, 9, 14, 15, 15:1, 15:2, 15:3, 15:4, 15:6, 16, 17, 19, 25, 27, 28, 29, 33, 35, 36, 56, 56:1, 60, 61, 61:1, 62, 63, 66, 67, 68, 71, 72, 73, 74, 75, 76, 78, 79.
  • C. I. Pigment Blue 15, 15:1, 15:2, 15:3, 15:4, 15:6, 60 more preferably C.I. I. Pigment Blue 15:6, 60.
  • green pigments examples include C.I. I. Pigment Green 1, 2, 4, 7, 8, 10, 13, 14, 15, 17, 18, 19, 26, 36, 45, 48, 50, 51, 54, 55, 58.
  • C. I. Pigment Green 7, 36, and 58 are mentioned.
  • yellow pigments examples include C.I. I. Pigment Yellow 1, 1:1, 2, 3, 4, 5, 6, 9, 10, 12, 13, 14, 16, 17, 24, 31, 32, 34, 35, 35: 1, 36, 36: 1, 37, 37:1, 40, 41, 42, 43, 48, 53, 55, 61, 62, 62: 1, 63, 65, 73, 74, 75, 81, 83, 87, 93, 94, 95, 97, 100, 101, 104, 105, 108, 109, 110, 111, 116, 117, 119, 120, 126, 127, 127:1, 128, 129, 133, 134, 136, 138, 139, 142, 147, 148, 150, 151, 153, 154, 155, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 172, 173, 174, 175, 176, 180, 181, 182, 183, 184
  • orange pigments examples include C.I. I. Pigment Orange 1, 2, 5, 13, 16, 17, 19, 20, 21, 22, 23, 24, 34, 36, 38, 39, 43, 46, 48, 49, 61, 62, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 75, 77, 78, 79.
  • C. I. Pigment Orange 38, 64, and 71 Preferably C. I. Pigment Orange 38, 64, and 71.
  • C.I. I. Pigment Violet 1 1:1, 2, 2:2, 3, 3:1, 3:3, 5, 5:1, 14, 15, 16, 19, 23, 25, 27, 29, 31, 32, 37, 39, 42, 44, 47, 49, and 50.
  • C. I. Pigment Violet 19, 23, 29, more preferably C.I. I. Pigment Violet 23 and 29 are mentioned.
  • the black pigment a pigment that exhibits a black color by mixing multiple colored pigments (for example, three colors of red, green, and blue) may be used, or a pigment that exhibits a black color may be used alone. May be used together.
  • Pigments that can be mixed to prepare black pigments include, for example, Victoria Pure Blue (42595), Auramine O (41000), Cathylone Brilliant Flavin (Basic 13), Rhodamine 6GCP (45160), Rhodamine B (45170). , Safranin OK70:100 (50240), Erioglaucine X (42080), No.
  • black pigments examples include lamp black, bone black, graphite, iron oxide black pigments (iron black, etc.), aniline black, cyanine black, titanium black, perylene black, and lactam black.
  • pigments for example, barium sulfate, lead sulfate, titanium oxide, yellow lead, red iron oxide, and chromium oxide can also be used.
  • pigments can also be used in combination.
  • a green pigment and a yellow pigment can be used together, or a blue pigment and a violet pigment can be used together.
  • the content ratio of the pigment (A) to the total solid content of the photosensitive resin composition of the present invention is preferably 30% by mass or more, more preferably 35% by mass or more, even more preferably 40% by mass or more, and 75% by mass.
  • the content is preferably at most 70% by mass, more preferably at most 65% by mass. If the content ratio of the pigment (A) is at least the above-mentioned lower limit, the resulting cured product tends to have better light blocking properties, and when it is below the above-mentioned upper limit, the cured product tends to have better formability.
  • the above upper and lower limits can be arbitrarily combined. For example, it may be 30-75% by weight, it may be 35-70% by weight, it may be 40-65% by weight.
  • the content ratio of carbon black (a1) to the total mass of the pigment (A) is preferably 90% by mass or more, more preferably 95% by mass or more, even more preferably 99% by mass or more, and may be 100% by mass.
  • the dispersant finely disperses the pigment (A) and stabilizes the dispersion state.
  • a polymer dispersant having a functional group is preferable, and from the viewpoint of dispersion stability, a carboxy group; a phosphoric acid group; a sulfonic acid group; or a base thereof; primary, secondary or tertiary Polymer dispersants having functional groups such as a quaternary amino group; a quaternary ammonium base; a group derived from a nitrogen-containing heterocycle such as pyridine, pyrimidine, and pyrazine are preferred.
  • polymeric dispersants having basic functional groups such as primary, secondary or tertiary amino groups; quaternary ammonium bases; groups derived from nitrogen-containing heterocycles such as pyridine, pyrimidine and pyrazine are particularly preferred.
  • basic functional groups such as primary, secondary or tertiary amino groups; quaternary ammonium bases; groups derived from nitrogen-containing heterocycles such as pyridine, pyrimidine and pyrazine are particularly preferred.
  • polymeric dispersants include urethane dispersants, acrylic dispersants, polyethyleneimine dispersants, polyallylamine dispersants, dispersants made of monomers and macromonomers having amino groups, and polyoxyethylene alkyl ether dispersants.
  • examples include polyoxyethylene diester dispersants, polyether phosphate dispersants, polyester phosphate dispersants, sorbitan aliphatic ester dispersants, and aliphatic modified polyester dispersants.
  • dispersants include, for example, the trade names EFKA (registered trademark, manufactured by EFKA), DISPERBYK (registered trademark, manufactured by BYK Chemie Co., Ltd.), DISPARBYK (registered trademark, manufactured by Kusumoto Kasei Co., Ltd.), and SOLSPERSE (registered trademark, manufactured by Kusumoto Kasei Co., Ltd.).
  • EFKA registered trademark, manufactured by EFKA
  • DISPERBYK registered trademark, manufactured by BYK Chemie Co., Ltd.
  • DISPARBYK registered trademark, manufactured by Kusumoto Kasei Co., Ltd.
  • SOLSPERSE registered trademark, manufactured by Kusumoto Kasei Co., Ltd.
  • the dispersant contains a urethane polymer dispersant and/or an acrylic polymer dispersant having a basic functional group. More preferable in terms of gender. Further, from the viewpoint of dispersibility and storage stability, a polymer dispersant having a basic functional group and a polyester and/or polyether bond is preferable.
  • the weight average molecular weight (Mw) of the polymer dispersant is preferably 700 or more, more preferably 1,000 or more, and preferably 100,000 or less, more preferably 50,000 or less, and even more preferably 30,000 or less.
  • Mw weight average molecular weight
  • the above upper and lower limits can be arbitrarily combined. For example, it may be between 700 and 100,000, between 700 and 50,000, and between 1,000 and 30,000.
  • urethane-based or acrylic-based polymer dispersants examples include DISPERBYK 160 to 167, 182 series (all urethane-based), DISPERBYK 2000, 2001 (all acrylic-based) (all manufactured by BYK Chemie).
  • DISPERBYK167 and DISPERBYK182 are particularly preferable among the urethane-based polymer dispersants having the above-mentioned basic functional groups and polyester and/or polyether bonds and having a weight average molecular weight of 30,000 or less.
  • urethane-based polymer dispersants include polyisocyanate compounds, compounds with a number average molecular weight of 300 to 10,000 having one or two hydroxyl groups in the molecule, and active hydrogen and tertiary amino groups in the same molecule.
  • examples include dispersion resins having a weight average molecular weight of 1,000 to 200,000, which are obtained by reacting with a compound.
  • polyisocyanate compound examples include aromatic diisocyanates such as paraphenylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, naphthalene-1,5-diisocyanate, and toridine diisocyanate; Aliphatic diisocyanates such as hexamethylene diisocyanate, lysine methyl ester diisocyanate, 2,4,4-trimethylhexamethylene diisocyanate, dimer acid diisocyanate, isophorone diisocyanate, 4,4'-methylenebis(cyclohexyl isocyanate), ⁇ , ⁇ '-diisocyanate, alicyclic diisocyanates such as dimethylcyclohexane, xylylene diisocyanate, aliphatic diisocyanates with aromatic rings such as ⁇ , ⁇ , ⁇ ', ⁇
  • the method for producing isocyanate trimers involves converting the polyisocyanates into isocyanate groups using a suitable trimerization catalyst such as tertiary amines, phosphines, alkoxides, metal oxides, carboxylic acid salts, etc.
  • a suitable trimerization catalyst such as tertiary amines, phosphines, alkoxides, metal oxides, carboxylic acid salts, etc.
  • One method is to perform partial trimerization, stop the trimerization by adding a catalyst poison, and then remove unreacted polyisocyanate by solvent extraction and thin film distillation to obtain the desired isocyanurate group-containing polyisocyanate. .
  • Compounds having a number average molecular weight of 300 to 10,000 and having one or two hydroxyl groups in the same molecule include polyether glycol, polyester glycol, polycarbonate glycol, polyolefin glycol, etc., and compounds in which one terminal hydroxyl group of these compounds has 1 to 1 carbon atoms. Examples include those alkoxylated with 25 alkyl groups and mixtures of two or more of these.
  • polyether glycols include polyether diols, polyether ester diols, and mixtures of two or more of these.
  • polyether diols include those obtained by copolymerizing alkylene oxides alone or by copolymerizing them, such as polyethylene glycol, polypropylene glycol, polyethylene-propylene glycol, polyoxytetramethylene glycol, polyoxyhexamethylene glycol, polyoxyoctamethylene glycol, and the like. Examples include mixtures of two or more of these.
  • Polyether ester diols include those obtained by reacting ether group-containing diols or mixtures with other glycols with dicarboxylic acids or their anhydrides, or by reacting polyester glycols with alkylene oxides, such as poly(polyester diols). oxytetramethylene) adipate.
  • the most preferred polyether glycols are polyethylene glycol, polypropylene glycol, polyoxytetramethylene glycol, or compounds in which one terminal hydroxyl group of these compounds is alkoxylated with an alkyl group having 1 to 25 carbon atoms.
  • polyester glycols examples include dicarboxylic acids (succinic acid, glutaric acid, adipic acid, sebacic acid, fumaric acid, maleic acid, phthalic acid, etc.) or their anhydrides and glycols (ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, etc.).
  • dicarboxylic acids succinic acid, glutaric acid, adipic acid, sebacic acid, fumaric acid, maleic acid, phthalic acid, etc.
  • glycols ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, etc.
  • Glycol dipropylene glycol, tripropylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, 3-methyl-1,5-pentanediol, neo Pentyl glycol, 2-methyl-1,3-propanediol, 2-methyl-2-propyl-1,3-propanediol, 2-butyl-2-ethyl-1,3-propanediol, 1,5-pentanediol , 1,6-hexanediol, 2-methyl-2,4-pentanediol, 2,2,4-trimethyl-1,3-pentanediol, 2-ethyl-1,3-hexanediol, 2,5-dimethyl Aliphatic glycols such as -2,5-hexanediol, 1,8-octamethylene glyco
  • polycarbonate glycols include poly(1,6-hexylene) carbonate and poly(3-methyl-1,5-pentylene) carbonate
  • polyolefin glycols include polybutadiene glycol, hydrogenated polybutadiene glycol, and hydrogenated polyisoprene glycol. can be mentioned. These may be used alone or in combination of two or more.
  • the number average molecular weight of the compound having one or two hydroxyl groups in the same molecule is preferably 300 to 10,000, more preferably 500 to 6,000, even more preferably 1,000 to 4,000.
  • Active hydrogen that is, a hydrogen atom directly bonded to an oxygen atom, a nitrogen atom, or a sulfur atom, includes hydrogen atoms in functional groups such as hydroxyl groups, amino groups, and thiol groups, and among them, amino groups, especially primary The hydrogen atom of the amino group is preferred.
  • the tertiary amino group is not particularly limited, but includes, for example, an amino group having an alkyl group having 1 to 4 carbon atoms, or a heterocyclic structure, such as an imidazole ring or a triazole ring.
  • Examples of compounds having active hydrogen and a tertiary amino group in the same molecule include N,N-dimethyl-1,3-propanediamine, N,N-diethyl-1,3-propanediamine, and N,N-dipropyl.
  • N,N-dibutyl-1,3-propanediamine N,N-dibutyl-1,3-propanediamine, N,N-dimethylethylenediamine, N,N-diethylethylenediamine, N,N-dipropylethylenediamine, N,N-dibutylethylenediamine, N,N-dimethyl-1,4-butanediamine, N,N-diethyl-1,4-butanediamine, N,N-dipropyl-1,4-butanediamine, N,N-dibutyl-1,4-butane
  • Examples include diamines.
  • examples of the nitrogen-containing heterocycle include a pyrazole ring, an imidazole ring, a triazole ring, a tetrazole ring, an indole ring, a carbazole ring, an indazole ring, a benzimidazole ring, and a benzotriazole ring.
  • N-containing hetero 5-membered rings such as benzoxazole ring, benzothiazole ring, benzothiadiazole ring, etc.
  • nitrogen-containing hetero 6-membered rings such as pyridine ring, pyridazine ring, pyrimidine ring, triazine ring, quinoline ring, acridine ring, isoquinoline ring, etc. are mentioned, with imidazole rings and triazole rings being preferred.
  • Examples of compounds having an imidazole ring and an amino group include 1-(3-aminopropyl)imidazole, histidine, 2-aminoimidazole, and 1-(2-aminoethyl)imidazole.
  • Examples of compounds having a triazole ring and an amino group include 3-amino-1,2,4-triazole, 5-(2-amino-5-chlorophenyl)-3-phenyl-1H-1,2,4-triazole , 4-amino-4H-1,2,4-triazole-3,5-diol, 3-amino-5-phenyl-1H-1,3,4-triazole, 5-amino-1,4-diphenyl-1 , 2,3-triazole, and 3-amino-1-benzyl-1H-2,4-triazole.
  • N,N-dimethyl-1,3-propanediamine N,N-diethyl-1,3-propanediamine, 1-(3-aminopropyl)imidazole, and 3-amino-1,2,4-triazole. These may be used alone or in combination of two or more.
  • the preferred blending ratio of raw materials when producing a urethane polymer dispersant is 10 to 200 parts of a compound with a number average molecular weight of 300 to 10,000 having one or two hydroxyl groups in the same molecule to 100 parts by mass of the polyisocyanate compound. parts by weight, preferably 20 to 190 parts by weight, more preferably 30 to 180 parts by weight, and 0.2 to 25 parts by weight, preferably 0.3 to 24 parts by weight of a compound having active hydrogen and a tertiary amino group in the same molecule. Part by mass.
  • the urethane polymer dispersant is produced according to a known method for producing polyurethane resins.
  • solvents used during production include ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone, and isophorone, esters such as ethyl acetate, butyl acetate, and cellosolve acetate, benzene, toluene, xylene, Hydrocarbons such as hexane, some alcohols such as diacetone alcohol, isopropanol, sec-butanol and tertiary-butanol, chlorides such as methylene chloride and chloroform, ethers such as tetrahydrofuran and diethyl ether, dimethylformamide, N- Aprotic polar solvents such as methylpyrrolidone and dimethylsulfoxide are used. These may be used alone or in combination of two
  • a urethanization reaction catalyst may be used.
  • this catalyst include tin-based catalysts such as dibutyltin dilaurate, dioctyltin dilaurate, dibutyltin dioctoate, stannath octoate, iron-based catalysts such as iron acetylacetonate and ferric chloride, triethylamine, triethylenediamine, etc. Examples include grade amines. These may be used alone or in combination of two or more.
  • the amount of the compound having active hydrogen and a tertiary amino group introduced in the same molecule is preferably controlled within the range of 1 to 100 mgKOH/g based on the amine value after reaction. More preferably, it is in the range of 5 to 95 mgKOH/g.
  • the amine value is equal to or higher than the lower limit value, the dispersibility tends to be improved. Furthermore, when the content is below the upper limit, developability tends to be improved.
  • the amine value is expressed by the amount of base per 1 g of solid content excluding the solvent in the sample and the mass of KOH equivalent to the amount of base, and can be measured by the following method. Accurately weigh 0.5 to 1.5 g of the sample into a 100 mL beaker and dissolve it in 50 mL of acetic acid. Using an automatic titrator equipped with a pH electrode, this solution is subjected to neutralization titration with a 0.1 mol/L HClO 4 (perchloric acid) acetic acid solution. The inflection point of the titration pH curve is taken as the titration end point, and the amine value is determined by the following formula.
  • Amine value [mgKOH/g] (561 ⁇ V)/(W ⁇ S) [However, W: weighed amount of dispersant sample [g], V: titration amount at titration end point [mL], S: solid content concentration of dispersant sample [mass %]. ]
  • the weight average molecular weight (Mw) of the urethane polymer dispersant is preferably 1,000 to 200,000, more preferably 2,000 to 100,000, and even more preferably 3,000 to 50,000. In particular, it is preferably 30,000 or less. If Mw is equal to or greater than the lower limit, the dispersibility and dispersion stability tend to be good, and if it is equal to or less than the upper limit, the solubility tends to be good.
  • the above upper and lower limits can be arbitrarily combined. For example, it may be 1000 to 30000, 2000 to 30000, or 3000 to 30000. In particular, when Mw is 30,000 or less, alkali developability tends to be good even when the pigment concentration is particularly high. Examples of such particularly preferred commercially available urethane dispersants include DISPERBYK 167 and 182 (manufactured by BYK Chemie).
  • the amine value of the dispersant is preferably 1 mgKOH/g or more, more preferably 5 mgKOH/g or more, even more preferably 10 mgKOH/g or more, and preferably 100 mgKOH/g or less, more preferably 50 mgKOH/g. Below, it is more preferably less than 30 mgKOH/g.
  • the amine value is at least the above lower limit, the stability of the dispersion over time tends to improve, and when it is at most the above upper limit, the development solubility tends to improve.
  • the above upper and lower limits can be arbitrarily combined. For example, it may be 1-100 mgKOH/g, it may be 5-50 mgKOH/g, it may be 10-30 mgKOH/g.
  • the content ratio ((A) pigment/(B) dispersant) of the (A) pigment and (B) dispersant on a mass basis in the photosensitive resin composition of the present invention is preferably 1 or more, and 3 or more. is more preferable, 4 or more is even more preferable, 50 or less is preferable, 30 or less is more preferable, and 15 or less is even more preferable. If the (A) pigment/(B) dispersant is equal to or higher than the lower limit value, the development solubility tends to be better, and if it is lower than the upper limit value, it is easy to ensure sufficient dispersibility of the (A) pigment. Tend.
  • the above upper and lower limits can be arbitrarily combined. For example, it may be 1 to 50, 3 to 30, or 4 to 15.
  • the content ratio of carbon black (a1) and (B) dispersant in the photosensitive resin composition of the present invention on a mass basis is preferably 1 or more, It is more preferably 3 or more, further preferably 4 or more, preferably 50 or less, more preferably 30 or less, and even more preferably 15 or less. If the carbon black (a1)/(B) dispersant is equal to or greater than the lower limit value, development solubility tends to be better, and if it is equal to or less than the upper limit value, sufficient dispersibility of carbon black (a1) is ensured. It tends to be easy.
  • the above upper and lower limits can be arbitrarily combined. For example, it may be 1 to 50, 3 to 30, or 4 to 15.
  • the photosensitive resin composition of the present invention preferably contains (C) a dispersion aid in order to improve the dispersion stability of (A) the pigment.
  • the dispersion aid include pigment derivatives.
  • pigment derivatives include azo, phthalocyanine, quinacridone, benzimidazolone, quinophthalone, isoindolinone, dioxazine, anthraquinone, indanthrene, perylene, perinone, and diketopyrrolopyrrole. and dioxazine derivatives, with phthalocyanine derivatives and quinophthalone derivatives being preferred.
  • Substituents for the pigment derivative include sulfonic acid groups, sulfonamide groups and quaternary salts thereof, phthalimidomethyl groups, dialkylaminoalkyl groups, hydroxyl groups, carboxy groups, amide groups, etc. directly on the pigment skeleton, or alkyl groups, aryl groups, Examples include those bonded via a heterocyclic group, and preferably a sulfonic acid group. Moreover, a plurality of these substituents may be substituted on one pigment skeleton.
  • pigment derivatives include sulfonic acid derivatives of phthalocyanine, sulfonic acid derivatives of quinophthalone, sulfonic acid derivatives of anthraquinone, sulfonic acid derivatives of quinacridone, sulfonic acid derivatives of diketopyrrolopyrrole, and sulfonic acid derivatives of dioxazine. These may be used alone or in combination of two or more.
  • the content ratio ((A) pigment/(C) dispersion aid) of the (A) pigment and (C) dispersion aid on a mass basis agent) is preferably 10 or more, more preferably 30 or more, even more preferably 50 or more, and preferably 200 or less, more preferably 150 or less, and even more preferably 100 or less. If (A) pigment/(C) dispersion aid is equal to or higher than the above lower limit value, developability tends to be stable and substrate adhesion is more excellent, and if it is equal to or less than the above upper limit value, dispersion stability is better. Tend.
  • the above upper and lower limits can be arbitrarily combined. For example, it may be 10-200, 30-150, or 50-100.
  • the dispersion aid is preferably 10 or more, more preferably 30 or more, even more preferably 50 or more, and preferably 200 or less, more preferably 150 or less, and even more preferably 100 or less. If the carbon black (a1)/(C) dispersion aid is equal to or higher than the lower limit, the developability tends to be stable and the adhesion to the substrate tends to be better, and if it is lower than the upper limit, the dispersion stability is more stable. It tends to be better.
  • the above upper and lower limits can be arbitrarily combined. For example, it may be 10-200, 30-150, or 50-100.
  • the alkali-soluble resin is not particularly limited as long as it is a resin that exhibits alkali solubility, and includes, for example, a resin containing a carboxyl group or a hydroxyl group. More specifically, examples thereof include epoxy (meth)acrylate resins, acrylic resins, carboxyl group-containing epoxy resins, carboxyl group-containing urethane resins, novolak resins, and polyvinylphenol resins. especially, (D1) Epoxy (meth)acrylate resin (D2) Acrylic copolymer resin is preferably used from the viewpoint of excellent plate-making properties. These can be used alone or in combination of two or more.
  • Epoxy (meth)acrylate resin is a combination of an epoxy compound (epoxy resin) and an ⁇ , ⁇ -unsaturated monocarboxylic acid and/or an ⁇ , ⁇ -unsaturated monocarboxylic acid ester having a carboxyl group in the ester moiety. It is a resin obtained by reacting the hydroxyl group generated by the reaction with a compound having two or more substituents capable of reacting with the hydroxyl group, such as a polybasic acid and/or its anhydride.
  • a compound having two or more substituents that can react with a hydroxyl group is reacted, and then the polybasic acid and/or its anhydride is reacted.
  • the resin obtained by is also included in (D1) epoxy (meth)acrylate resin.
  • a resin obtained by reacting a compound having a functional group that can further react with the carboxy group of the resin obtained by the above reaction is also included in the epoxy (meth)acrylate resin (D1).
  • Epoxy (meth)acrylate resin has a chemical structure that substantially does not have an epoxy group, and is not limited to “(meth)acrylate,” but it uses an epoxy compound (epoxy resin) as a raw material, and , "(meth)acrylate” is a typical example, so it is named this way according to common usage.
  • epoxy (meth)acrylate resin epoxy (meth)acrylate resin (D1-1) and/or epoxy (meth)acrylate resin (D1-2) (hereinafter referred to as "carboxy group-containing epoxy (meth) (sometimes referred to as "acrylate resin”) is preferably used from the viewpoint of developability and reliability.
  • epoxy (meth)acrylate resin one having an aromatic ring in the main chain can be more preferably used from the viewpoint of outgassing.
  • the epoxy resin includes a raw material compound before forming a resin by thermosetting, and the epoxy resin can be appropriately selected from known epoxy resins. Further, as the epoxy resin, a compound obtained by reacting a phenolic compound and epihalohydrin can be used.
  • the phenolic compound is preferably a compound having a divalent or more than divalent phenolic hydroxyl group, and may be a monomer or a polymer. Examples of the types of epoxy resins used as raw materials include cresol novolak epoxy resin, phenol novolac epoxy resin, bisphenol A epoxy resin, bisphenol F epoxy resin, trisphenolmethane epoxy resin, biphenyl novolac epoxy resin, and naphthalene.
  • Novolak-type epoxy resins epoxy resins that are reaction products of polyaddition products of dicyclopentadiene and phenol or cresol, and epihalohydrin, adamantyl group-containing epoxy resins, and fluorene-type epoxy resins can be suitably used. Those having an aromatic ring can be more preferably used.
  • epoxy resins examples include bisphenol A type epoxy resins (for example, "jER (registered trademark, the same applies hereinafter) 828", “jER1001", “jER1002", “jER1004", etc. manufactured by Mitsubishi Chemical Corporation), bisphenol A type epoxy resins, etc. Epoxy resins obtained by the reaction of alcoholic hydroxyl groups of epoxy resins with epichlorohydrin (for example, "NER-1302” manufactured by Nippon Kayaku Co., Ltd. (epoxy equivalent: 323, softening point 76°C)), bisphenol F type resins (for example, manufactured by Mitsubishi Chemical Co., Ltd.) "JER807", “EP-4001”, “EP-4002", “EP-4004", etc.
  • bisphenol A type epoxy resins for example, "jER (registered trademark, the same applies hereinafter) 828", “jER1001", “jER1002", “jER1004", etc. manufactured by Mitsubishi Chemical Corporation
  • Resins for example, "EXA-7200” manufactured by DIC, "NC-7300” manufactured by Nippon Kayaku Co., Ltd.
  • epoxy resins represented by the following general formulas (B1) to (B4) can be suitably used.
  • B1 epoxy resin represented by the following general formula (B1)
  • B2 epoxy resin represented by the following general formula (B2)
  • B3 epoxy resin represented by Osaka Organic Chemical Industry Co., Ltd.
  • E-201 manufactured by Osaka Organic Chemical Industry Co., Ltd.
  • An example of this is the "ESF-300" manufactured by Manufacturer.
  • a is an average value and represents a number from 0 to 10
  • R 111 each independently represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, or a cycloalkyl group having 3 to 10 carbon atoms. group, phenyl group, naphthyl group, or biphenyl group. Note that the plurality of R 111s present in one molecule may be the same or different.
  • b1 and b2 are each independently an average value and represent a number from 0 to 10
  • R 121 is each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, or 3 carbon atoms. ⁇ 10 cycloalkyl, phenyl, naphthyl, or biphenyl groups. Note that the plurality of R 121s present in one molecule may be the same or different.
  • X represents a linking group represented by the following general formula (B3-1) or (B3-2).
  • the molecular structure contains one or more adamantane structures.
  • c represents 2 or 3.
  • R 131 to R 134 and R 135 to R 137 each independently represent an adamantyl group that may have a substituent, a hydrogen atom, or an adamantyl group that has a substituent. represents an optionally substituted alkyl group having 1 to 12 carbon atoms, or a phenyl group optionally having a substituent, and * represents a bond.
  • R 141 and R 142 each independently represent an alkyl group having 1 to 4 carbon atoms or a halogen atom
  • R 143 and R 144 are Each independently represents an alkylene group having 1 to 4 carbon atoms
  • x and y each independently represents an integer of 0 or more.
  • epoxy resin it is preferable to use an epoxy resin represented by any of formulas (B1) to (B4).
  • Examples of the ⁇ , ⁇ -unsaturated monocarboxylic acid or the ⁇ , ⁇ -unsaturated monocarboxylic acid ester having a carboxy group include (meth)acrylic acid, crotonic acid, o-, m- or p-vinylbenzoic acid, Monocarboxylic acids such as ⁇ -position haloalkyl, alkoxyl, halogen, nitro, and cyano substituted products of (meth)acrylic acid; 2-(meth)acryloyloxyethylsuccinic acid, 2-(meth)acryloyloxyethyladipic acid, 2 -(meth)acryloyloxyethyl phthalic acid, 2-(meth)acryloyloxyethyl hexahydrophthalic acid, 2-(meth)acryloyloxyethylmaleic acid, 2-(meth)acryloyloxypropyl succinic acid, 2 -(meth)acryloyl
  • a method for adding an ⁇ , ⁇ -unsaturated monocarboxylic acid or an ⁇ , ⁇ -unsaturated monocarboxylic acid ester having a carboxyl group to an epoxy resin a known method can be used. For example, it is possible to react an ⁇ , ⁇ -unsaturated monocarboxylic acid or an ⁇ , ⁇ -unsaturated monocarboxylic acid ester having a carboxyl group with an epoxy resin at a temperature of 50 to 150°C in the presence of an esterification catalyst. can.
  • esterification catalyst for example, tertiary amines such as triethylamine, trimethylamine, benzyldimethylamine, and benzyldiethylamine, and quaternary ammonium salts such as tetramethylammonium chloride, tetraethylammonium chloride, and dodecyltrimethylammonium chloride can be used.
  • tertiary amines such as triethylamine, trimethylamine, benzyldimethylamine, and benzyldiethylamine
  • quaternary ammonium salts such as tetramethylammonium chloride, tetraethylammonium chloride, and dodecyltrimethylammonium chloride
  • Each component of the epoxy resin, ⁇ , ⁇ -unsaturated monocarboxylic acid or ⁇ , ⁇ -unsaturated monocarboxylic acid ester having a carboxyl group, and esterification catalyst may be selected one by one and used. , two or more types may be used in combination.
  • the amount of ⁇ , ⁇ -unsaturated monocarboxylic acid or ⁇ , ⁇ -unsaturated monocarboxylic acid ester having a carboxyl group is preferably 0.5 to 1.2 equivalents per equivalent of epoxy group in the epoxy resin, and Preferably it is 0.7 to 1.1 equivalent.
  • polybasic acids and/or anhydrides examples include maleic acid, succinic acid, itaconic acid, phthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, pyromellitic acid, trimellitic acid, benzophenonetetracarboxylic acid, and methylhexahydrophthalic acid.
  • examples include hydrophthalic acid, endomethylenetetrahydrophthalic acid, chlorendic acid, methyltetrahydrophthalic acid, biphenyltetracarboxylic acid, and anhydrides thereof.
  • maleic acid succinic acid, itaconic acid, phthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, pyromellitic acid, trimellitic acid, biphenyltetracarboxylic acid, or anhydrides thereof.
  • Particularly preferred are tetrahydrophthalic acid, biphenyltetracarboxylic acid, tetrahydrophthalic anhydride, or biphenyltetracarboxylic dianhydride.
  • the addition reaction of a polybasic acid and/or its anhydride can be carried out using a known method.
  • the desired product can be obtained by continuing the reaction under the same conditions as the addition reaction of carboxylic acid esters.
  • the amount of polybasic acid and/or its anhydride component added is preferably such that the acid value of the resulting carboxyl group-containing epoxy (meth)acrylate resin is 10 to 150 mgKOH/g, and more preferably 20 to 150 mgKOH/g.
  • the amount is 140 mgKOH/g.
  • polyfunctional alcohols such as trimethylolpropane, ditrimethylolpropane, pentaerythritol, dipentaerythritol, trimethylolethane, 1,2,3-propanetriol, etc.
  • polyfunctional alcohols such as trimethylolpropane, ditrimethylolpropane, pentaerythritol, dipentaerythritol, trimethylolethane, 1,2,3-propanetriol, etc.
  • any hydroxyl group present in the mixture of the epoxy resin and the reaction product of ⁇ , ⁇ -unsaturated monocarboxylic acid or ⁇ , ⁇ -unsaturated monocarboxylic acid ester having a carboxyl group and polyfunctional alcohol is removed.
  • a polybasic acid and/or its anhydride undergoes an addition reaction.
  • carboxyl group-containing epoxy (meth)acrylate resin in addition to the above-mentioned ones, examples include those described in Korean Patent Publication No. 10-2013-0022955.
  • the weight average molecular weight (Mw) of the carboxyl group-containing epoxy (meth)acrylate resin in terms of polystyrene measured by gel permeation chromatography (GPC) is preferably 1000 or more, more preferably 1500 or more, even more preferably 2000 or more, It is even more preferably 3,000 or more, particularly preferably 4,000 or more, particularly preferably 5,000 or more. Further, it is preferably 30,000 or less, more preferably 20,000 or less, and even more preferably 15,000 or less.
  • the above upper and lower limits can be arbitrarily combined. For example, it may be 1000 to 30000, 1500 to 20000, 1500 to 15000, or 2000 to 15000.
  • the acid value of the carboxyl group-containing epoxy (meth)acrylate resin is not particularly limited, but is preferably 20 mgKOH/g or more, more preferably 40 mgKOH/g or more, even more preferably 60 mgKOH/g or more, even more preferably 80 mgKOH/g or more. , 100 mgKOH/g or more is particularly preferred. Moreover, 200 mgKOH/g or less is preferable, 150 mgKOH/g or less is more preferable, 130 mgKOH/g or less is still more preferable, and 120 mgKOH/g or less is particularly preferable. When the amount is at least the lower limit, development solubility tends to improve and resolution tends to improve.
  • the residual film rate of the photosensitive coloring composition tends to be good.
  • the above upper and lower limits can be arbitrarily combined. For example, it may be 20-200 mgKOH/g, it may be 60-150 mgKOH/g, it may be 80-130 mgKOH/g, it may be 100-130 mgKOH/g.
  • the chemical structure of the epoxy (meth)acrylate resin is not particularly limited, but from the viewpoint of developability and reliability, the epoxy (meth)acrylate resin (hereinafter referred to as , may be abbreviated as "(d1-I) epoxy (meth)acrylate resin") and/or epoxy (meth)acrylate resin having a partial structure represented by the following general formula (d1-II) ( Hereinafter, it may be abbreviated as "(d1-II) epoxy (meth)acrylate resin”).
  • R 11 represents a hydrogen atom or a methyl group
  • R 12 represents a divalent hydrocarbon group that may have a substituent
  • k represents 1 or 2
  • the benzene ring in formula (d1-I) may be further substituted with any substituent.
  • R 13 each independently represents a hydrogen atom or a methyl group
  • R 14 represents a divalent hydrocarbon group having a cyclic hydrocarbon group as a side chain
  • R 15 and R 16 each independently represents a divalent aliphatic group which may have a substituent
  • m and n each independently represent an integer of 0 to 2
  • * represents a bond.
  • R 11 represents a hydrogen atom or a methyl group
  • R 12 represents a divalent hydrocarbon group that may have a substituent
  • k represents 1 or 2
  • the benzene ring in formula (d1-I) may be further substituted with any substituent.
  • R 12 represents a divalent hydrocarbon group which may have a substituent.
  • divalent hydrocarbon groups include divalent aliphatic groups, divalent aromatic ring groups, and groups in which one or more divalent aliphatic groups and one or more divalent aromatic ring groups are connected. Can be mentioned.
  • divalent aliphatic groups examples include linear, branched, and cyclic aliphatic groups. From the viewpoint of development solubility, linear aliphatic groups are preferred. On the other hand, a cyclic aliphatic group is preferable from the viewpoint of reducing permeation of the developer into the exposed area.
  • the number of carbon atoms is preferably 1 or more, more preferably 3 or more, and even more preferably 6 or more. Further, it is preferably 20 or less, more preferably 15 or less, and even more preferably 10 or less. When the amount is at least the lower limit, a strong film is easily obtained, the surface roughness that occurs during development is less likely to occur, and the adhesion to the substrate tends to be good.
  • the above upper and lower limits can be arbitrarily combined. For example, it may be from 1 to 20, it may be from 1 to 15, it may be from 1 to 10.
  • divalent linear aliphatic group examples include methylene group, ethylene group, n-propylene group, n-butylene group, n-pentylene group, n-hexylene group, and n-heptylene group. From the viewpoint of the rigidity of the skeleton, a methylene group is preferred.
  • the divalent branched aliphatic group includes, for example, a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group as a side chain in addition to the above-mentioned divalent linear aliphatic group.
  • Examples include structures having a group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
  • the number of rings that the divalent cyclic aliphatic group has is not particularly limited, but is preferably 1 or more, and more preferably 2 or more. Moreover, 12 or less is preferable, and 10 or less is more preferable.
  • the amount is equal to or more than the lower limit, the film tends to be strong and have good adhesion to the substrate.
  • By setting it below the above-mentioned upper limit deterioration of sensitivity and film thinning during development can be easily suppressed, and resolution tends to improve.
  • the above upper and lower limits can be arbitrarily combined.
  • divalent cyclic aliphatic groups include hydrogen atoms removed from rings such as cyclohexane ring, cycloheptane ring, cyclodecane ring, cyclododecane ring, norbornane ring, isobornane ring, adamantane ring, dicyclopentadiene, and dicyclopentane.
  • groups divided by two From the viewpoint of rigidity of the skeleton, a group obtained by removing two hydrogen atoms from a dicyclopentadiene ring, a dicyclopentane ring, or an adamantane ring is preferable.
  • Examples of the substituent that the divalent aliphatic group may have include an alkoxy group having 1 to 5 carbon atoms such as a methoxy group and an ethoxy group; a hydroxyl group; a nitro group; a cyano group; and a carboxy group. From the viewpoint of ease of synthesis, it is preferable that it is unsubstituted.
  • divalent aromatic ring group examples include a divalent aromatic hydrocarbon ring group and a divalent aromatic heterocyclic group.
  • the number of carbon atoms is not particularly limited, but is preferably 4 or more, more preferably 5 or more, and even more preferably 6 or more. Further, it is preferably 20 or less, more preferably 15 or less, and even more preferably 10 or less.
  • the amount is at least the lower limit, a strong film is easily obtained, the surface roughness that occurs during development is less likely to occur, and the adhesion to the substrate tends to be good.
  • the above upper and lower limits can be arbitrarily combined. For example, it may be between 4 and 20, between 5 and 15, and between 6 and 10.
  • the aromatic hydrocarbon ring in the divalent aromatic hydrocarbon ring group may be a single ring or a fused ring.
  • Examples of the divalent aromatic hydrocarbon ring group include benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene ring, benzpyrene ring, chrysene ring, which have two free valences, Examples include triphenylene ring, acenaphthene ring, fluoranthene ring, and fluorene ring.
  • the aromatic heterocycle in the divalent aromatic heterocyclic group may be a single ring or a condensed ring.
  • divalent aromatic heterocyclic groups include furan ring, benzofuran ring, thiophene ring, benzothiophene ring, pyrrole ring, pyrazole ring, imidazole ring, oxadiazole ring, and indole ring, each having two free valences.
  • benzene ring or a naphthalene ring having two free valences include pyrazine ring, pyridazine ring, pyrimidine ring, triazine ring, quinoline ring, isoquinoline ring, shinoline ring, quinoxaline ring, phenanthridine ring, perimidine ring, quinazoline ring, quinazolinone ring, and azulene ring.
  • a benzene ring or a naphthalene ring having two free valences include pyrazine ring, pyridazine ring, pyrimidine ring, triazine ring, quinoline ring, isoquinoline ring, shinoline ring, quinoxaline ring, phenanthridine ring, perimidine ring, quinazoline ring, quinazolinone ring, and azulene ring.
  • Examples of the substituents that the divalent aromatic ring group may have include a hydroxy group, a methyl group, a methoxy group, an ethyl group, an ethoxy group, a propyl group, and a propoxy group. From the viewpoint of development solubility, non-substitution is preferred.
  • the group linking one or more divalent aliphatic groups and one or more divalent aromatic ring groups includes one or more of the above-mentioned divalent aliphatic groups and the above-mentioned divalent aromatic ring group. Examples include groups in which one or more are linked.
  • the number of divalent aliphatic groups is not particularly limited, but is preferably 1 or more, more preferably 2 or more, and is preferably 10 or less, more preferably 5 or less, and even more preferably 3 or less. When the amount is at least the lower limit, a strong film is easily obtained, the surface roughness that occurs during development is less likely to occur, and the adhesion to the substrate tends to be good.
  • the above upper and lower limits can be arbitrarily combined. For example, it may be from 1 to 10, it may be from 1 to 5, it may be from 1 to 3, it may be from 2 to 3.
  • the number of divalent aromatic ring groups is not particularly limited, but is preferably 1 or more, more preferably 2 or more, and is preferably 10 or less, more preferably 5 or less, and even more preferably 3 or less.
  • the amount is at least the lower limit, a strong film is easily obtained, the surface roughness that occurs during development is less likely to occur, and the adhesion to the substrate tends to be good.
  • the above upper and lower limits can be arbitrarily combined. For example, it may be from 1 to 10, it may be from 1 to 5, it may be from 1 to 3, it may be from 2 to 3.
  • Examples of groups connecting one or more divalent aliphatic groups and one or more divalent aromatic ring groups include those represented by the following general formulas (d1-I-A) to (d1-IF). The following groups are mentioned. From the viewpoint of rigidity of the skeleton and hydrophobicization of the membrane, a group represented by the following formula (d1-IA) is preferable.
  • k represents 1 or 2. From the viewpoint of adhesion and patterning properties, k is preferably 1. From the viewpoint of NMP resistance, k is preferably 2. Furthermore, both a partial structure in which k is 1 and a partial structure in which k is 2 may be contained in the epoxy (meth)acrylate (d1-I).
  • the benzene ring in formula (d1-I) may be further substituted with any substituent.
  • substituents include a hydroxy group, a methyl group, a methoxy group, an ethyl group, an ethoxy group, a propyl group, and a propoxy group.
  • the number of substituents is not particularly limited either, and may be one or two or more. From the viewpoint of patterning properties, it is preferable that no substitution be made.
  • the partial structure represented by formula (d1-I) is preferably a partial structure represented by the following general formula (d1-I-1) from the viewpoint of ease of synthesis.
  • R 11 , R 12 and k have the same meanings as in formula (d1-I), R X represents a hydrogen atom or a polybasic acid residue, and * represents a bond. .
  • the benzene ring in formula (d1-I-1) may be further substituted with any substituent.
  • the polybasic acid residue means a monovalent group obtained by removing one OH group from a polybasic acid.
  • polybasic acids include maleic acid, succinic acid, itaconic acid, phthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, pyromellitic acid, trimellitic acid, benzophenonetetracarboxylic acid, methylhexahydrophthalic acid, and endomethylene.
  • examples include tetrahydrophthalic acid, chlorendic acid, methyltetrahydrophthalic acid, and biphenyltetracarboxylic acid.
  • maleic acid, succinic acid, itaconic acid, phthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, pyromellitic acid, trimellitic acid, biphenyltetracarboxylic acid are preferred, and tetrahydrophthalic acid is more preferred.
  • phthalic acid, biphenyltetracarboxylic acid, and biphenyltetracarboxylic acid are preferred.
  • the benzene ring in formula (d1-I-1) may be further substituted with any substituent.
  • substituent those listed for the benzene ring in formula (d1-I) can be preferably employed.
  • the partial structure represented by formula (d1-I-1) contained in one molecule of epoxy (meth)acrylate resin may be one type or two or more types, for example, when R There may be a mixture of atoms and those in which R X is a polybasic acid residue.
  • the number of partial structures represented by formula (d1-I) contained in one molecule of the epoxy (meth)acrylate resin is not particularly limited, but is preferably 1 or more, more preferably 3 or more. Moreover, 20 or less is preferable, and 15 or less is more preferable.
  • the amount is equal to or more than the lower limit, a strong film can be easily obtained, and surface roughness that occurs during development tends to be less likely to occur.
  • the above upper and lower limits can be arbitrarily combined. For example, it may be 1 to 20, 1 to 15, or 3 to 15.
  • the weight average molecular weight (Mw) of the epoxy (meth)acrylate resin measured by gel permeation chromatography (GPC) in terms of polystyrene is not particularly limited, but is preferably 1000 or more, more preferably 1500 or more. , more preferably 2,000 or more, even more preferably 3,000 or more, particularly preferably 4,000 or more, most preferably 5,000 or more, and preferably 30,000 or less, more preferably 20,000 or less, and even more preferably 15,000 or less.
  • the amount is equal to or more than the lower limit, the remaining film rate of the photosensitive coloring composition tends to be good.
  • the solubility in the developer tends to be improved.
  • the above upper and lower limits can be arbitrarily combined. For example, it may be 1000-30000, 1500-2000, 1500-15000, or 2000-1500.
  • the acid value of the epoxy (meth)acrylate resin is not particularly limited, but is preferably 20 mgKOH/g or more, more preferably 40 mgKOH/g or more, even more preferably 60 mgKOH/g or more, and 80 mgKOH/g or more. It is even more preferable, and particularly preferably 100 mgKOH/g or more. Moreover, 200 mgKOH/g or less is preferable, 150 mgKOH/g or less is more preferable, 130 mgKOH/g or less is even more preferable, and 120 mgKOH/g or less is particularly preferable. When the amount is at least the lower limit, development solubility tends to improve and resolution tends to improve.
  • the residual film rate of the photosensitive coloring composition tends to be good.
  • the above upper and lower limits can be arbitrarily combined. For example, it may be 20-200 mgKOH/g, it may be 60-150 mgKOH/g, it may be 80-130 mgKOH/g, it may be 100-130 mgKOH/g.
  • R 13 each independently represents a hydrogen atom or a methyl group
  • R 14 represents a divalent hydrocarbon group having a cyclic hydrocarbon group as a side chain
  • R 15 and R 16 each independently represents a divalent aliphatic group which may have a substituent
  • m and n each independently represent an integer of 0 to 2
  • * represents a bond.
  • R 14 represents a divalent hydrocarbon group having a cyclic hydrocarbon group as a side chain.
  • the cyclic hydrocarbon group include an aliphatic ring group and an aromatic ring group.
  • the number of rings that the aliphatic cyclic group has is not particularly limited, but is preferably one or more, and more preferably two or more. Further, it is preferably 10 or less, more preferably 5 or less, and even more preferably 3 or less.
  • the amount is at least the lower limit, a strong film can be easily obtained, and surface roughness that occurs during development tends to be less likely to occur.
  • the above upper and lower limits can be arbitrarily combined. For example, it may be from 1 to 10, it may be from 1 to 5, it may be from 1 to 3, it may be from 2 to 3.
  • the number of carbon atoms in the aliphatic cyclic group is not particularly limited, but is preferably 4 or more, more preferably 6 or more, and even more preferably 8 or more. Further, it is preferably 40 or less, more preferably 30 or less, even more preferably 20 or less, and particularly preferably 15 or less.
  • the amount is at least the lower limit, a strong film can be easily obtained, and surface roughness that occurs during development tends to be less likely to occur.
  • By setting it below the above-mentioned upper limit deterioration of sensitivity and film thinning during development can be easily suppressed, and resolution tends to improve.
  • the above upper and lower limits can be arbitrarily combined.
  • aliphatic ring in the aliphatic ring group examples include a cyclohexane ring, a cycloheptane ring, a cyclodecane ring, a norbornane ring, an isobornane ring, an adamantane ring, and a cyclododecane ring. From the viewpoint of the residual film rate and resolution of the photosensitive coloring composition, an adamantane ring is preferred.
  • the number of rings that the aromatic ring group has is not particularly limited, but is preferably 1 or more, more preferably 2 or more, and even more preferably 3 or more. Further, it is preferably 10 or less, more preferably 5 or less, and even more preferably 4 or less.
  • the above upper and lower limits can be arbitrarily combined.
  • the number is preferably 1 to 10, more preferably 1 to 5, even more preferably 1 to 4, even more preferably 2 to 4, and particularly preferably 3 to 4.
  • the amount is equal to or more than the lower limit, a strong film can be easily obtained, and surface roughness that occurs during development tends to be less likely to occur.
  • the aromatic ring group examples include an aromatic hydrocarbon ring group and an aromatic heterocyclic group.
  • the number of carbon atoms in the aromatic ring group is not particularly limited, but is preferably 4 or more, more preferably 6 or more, even more preferably 8 or more, even more preferably 10 or more, and particularly preferably 12 or more. Further, it is preferably 40 or less, more preferably 30 or less, even more preferably 20 or less, and particularly preferably 15 or less.
  • the amount When the amount is equal to or more than the lower limit, a strong film can be easily obtained, and surface roughness that occurs during development tends to be less likely to occur.
  • the above upper and lower limits can be arbitrarily combined. For example, it may be from 4 to 40, from 6 to 40, from 8 to 30, from 10 to 20, and from 12 to 15.
  • Examples of the aromatic ring in the aromatic ring group include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, a perylene ring, a tetracene ring, a pyrene ring, a benzpyrene ring, a chrysene ring, a triphenylene ring, an acenaphthene ring, a fluoranthene ring, and a fluorene ring.
  • Examples include rings. From the viewpoint of patterning properties, a fluorene ring is preferred.
  • the divalent hydrocarbon group in the divalent hydrocarbon group having a cyclic hydrocarbon group as a side chain is not particularly limited, but includes, for example, a divalent aliphatic group, a divalent aromatic ring group, and one or more divalent hydrocarbon groups. Examples include groups in which a valent aliphatic group and one or more divalent aromatic ring groups are connected.
  • divalent aliphatic groups examples include linear, branched, and cyclic aliphatic groups.
  • a linear aliphatic group is preferred from the viewpoint of development solubility, while a cyclic aliphatic group is preferred from the viewpoint of reducing permeation of the developer into the exposed area.
  • the number of carbon atoms is not particularly limited, but is preferably 1 or more, more preferably 3 or more, and even more preferably 6 or more. Further, it is preferably 25 or less, more preferably 20 or less, and even more preferably 15 or less. When the amount is at least the lower limit, a strong film is easily obtained, the surface roughness that occurs during development is less likely to occur, and the adhesion to the substrate tends to be good.
  • the above upper and lower limits can be arbitrarily combined. For example, it may be between 1 and 25, between 3 and 20, and between 6 and 15.
  • Examples of the divalent linear aliphatic group include methylene group, ethylene group, n-propylene group, n-butylene group, n-pentylene group, n-hexylene group, and n-heptylene group. From the viewpoint of the rigidity of the skeleton, a methylene group is preferred.
  • Examples of the divalent branched aliphatic group include a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group as a side chain in addition to the above-mentioned divalent linear aliphatic group. , an isobutyl group, a sec-butyl group, and a tert-butyl group.
  • the number of rings that the divalent cyclic aliphatic group has is not particularly limited, but is preferably 1 or more, and more preferably 2 or more. Further, it is preferably 10 or less, more preferably 5 or less, and even more preferably 3 or less.
  • the content is equal to or more than the lower limit, the film tends to be strong and have good adhesion to the substrate. Further, by setting the amount to be less than or equal to the upper limit value, deterioration of sensitivity and film thinning during development can be easily suppressed, and resolution tends to be improved.
  • the above upper and lower limits can be arbitrarily combined. For example, it may be from 1 to 10, it may be from 1 to 5, it may be from 1 to 3, it may be from 2 to 3.
  • Examples of the divalent cyclic aliphatic group include groups obtained by removing two hydrogen atoms from a ring such as a cyclohexane ring, a cycloheptane ring, a cyclodecane ring, a norbornane ring, an isobornane ring, an adamantane ring, and a cyclododecane ring. From the viewpoint of skeleton rigidity, a group obtained by removing two hydrogen atoms from an adamantane ring is preferable.
  • Examples of the substituent that the divalent aliphatic group may have include an alkoxy group having 1 to 5 carbon atoms such as a methoxy group and an ethoxy group; a hydroxyl group; a nitro group; a cyano group; and a carboxy group. From the viewpoint of ease of synthesis, it is preferable that it is unsubstituted.
  • divalent aromatic ring group examples include a divalent aromatic hydrocarbon ring group and a divalent aromatic heterocyclic group.
  • the number of carbon atoms is not particularly limited, but is preferably 4 or more, more preferably 5 or more, and even more preferably 6 or more. Further, it is preferably 30 or less, more preferably 20 or less, and even more preferably 15 or less.
  • the amount is at least the lower limit, a strong film is easily obtained, the surface roughness that occurs during development is less likely to occur, and the adhesion to the substrate tends to be good.
  • the above upper and lower limits can be arbitrarily combined. For example, it may be between 4 and 30, between 5 and 20, and between 6 and 15.
  • the aromatic hydrocarbon ring in the divalent aromatic hydrocarbon ring group may be a single ring or a fused ring.
  • Examples of the divalent aromatic hydrocarbon ring group include benzene ring, naphthalene ring, anthracene ring, phenanthrene ring, perylene ring, tetracene ring, pyrene ring, benzpyrene ring, chrysene ring, which have two free valences, Examples include triphenylene ring, acenaphthene ring, fluoranthene ring, and fluorene ring.
  • the aromatic heterocycle in the divalent aromatic heterocyclic group may be a single ring or a condensed ring.
  • divalent aromatic heterocyclic group examples include furan ring, benzofuran ring, thiophene ring, benzothiophene ring, pyrrole ring, pyrazole ring, imidazole ring, oxadiazole ring, and indole ring having two free valences.
  • benzene ring or a naphthalene ring having two free valence examples include pyrazine ring, pyridazine ring, pyrimidine ring, triazine ring, quinoline ring, isoquinoline ring, shinoline ring, quinoxaline ring, phenanthridine ring, perimidine ring, quinazoline ring, quinazolinone ring, and azulene ring.
  • a benzene ring or a naphthalene ring having two free valence examples include pyrazine ring, pyridazine ring, pyrimidine ring, triazine ring, quinoline ring, isoquinoline ring, shinoline ring, quinoxaline ring, phenanthridine ring, perimidine ring, quinazoline ring, quinazolinone ring, and azulene ring.
  • Examples of the substituents that the divalent aromatic ring group may have include a hydroxy group, a methyl group, a methoxy group, an ethyl group, an ethoxy group, a propyl group, and a propoxy group. From the viewpoint of development solubility, non-substitution is preferred.
  • the group linking one or more divalent aliphatic groups and one or more divalent aromatic ring groups includes one or more of the above-mentioned divalent aliphatic groups and the above-mentioned divalent aromatic ring group. Examples include groups in which one or more are linked.
  • the number of divalent aliphatic groups is not particularly limited, but is preferably 1 or more, more preferably 2 or more, also preferably 10 or less, more preferably 5 or less, and even more preferably 3 or less. When the amount is at least the lower limit, a strong film is easily obtained, the surface roughness that occurs during development is less likely to occur, and the adhesion to the substrate tends to be good.
  • the above upper and lower limits can be arbitrarily combined. For example, it may be from 1 to 10, it may be from 1 to 5, it may be from 1 to 3, it may be from 2 to 3.
  • the number of divalent aromatic ring groups is not particularly limited, but is preferably 1 or more, more preferably 2 or more, and is preferably 10 or less, more preferably 5 or less, and even more preferably 3 or less.
  • the amount is at least the lower limit, a strong film is easily obtained, the surface roughness that occurs during development is less likely to occur, and the adhesion to the substrate tends to be good.
  • the above upper and lower limits can be arbitrarily combined. For example, it may be from 1 to 10, it may be from 1 to 5, it may be from 1 to 3, it may be from 2 to 3.
  • Examples of groups linking one or more divalent aliphatic groups and one or more divalent aromatic ring groups include those represented by the above-mentioned formulas (d1-I-A) to (d1-IF). The following groups are mentioned. From the viewpoint of skeleton rigidity and membrane hydrophobization, a group represented by formula (d1-IC) is preferred.
  • the bonding mode of the cyclic hydrocarbon group as a side chain to these divalent hydrocarbon groups is not particularly limited, but for example, if one hydrogen atom of an aliphatic group or an aromatic ring group is Examples include an embodiment in which the aliphatic group is substituted with a hydrocarbon group, and an embodiment in which a cyclic hydrocarbon group that is a side chain includes one of the carbon atoms of the aliphatic group.
  • R 15 and R 16 each independently represent a divalent aliphatic group which may have a substituent.
  • divalent aliphatic groups examples include linear, branched, and cyclic aliphatic groups.
  • a linear aliphatic group is preferred from the viewpoint of development solubility, while a cyclic aliphatic group is preferred from the viewpoint of reducing permeation of the developer into the exposed area.
  • the number of carbon atoms is not particularly limited, but is preferably 1 or more, more preferably 3 or more, and even more preferably 6 or more. Further, it is preferably 20 or less, more preferably 15 or less, and even more preferably 10 or less. When the amount is at least the lower limit, a strong film is easily obtained, the surface roughness that occurs during development is less likely to occur, and the adhesion to the substrate tends to be good.
  • the above upper and lower limits can be arbitrarily combined. For example, it may be between 1 and 20, between 3 and 15, and between 6 and 10.
  • divalent linear aliphatic group examples include methylene group, ethylene group, n-propylene group, n-butylene group, n-pentylene group, n-hexylene group, and n-heptylene group. From the viewpoint of the rigidity of the skeleton, a methylene group is preferred.
  • the divalent branched aliphatic group includes, for example, a methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group as a side chain in addition to the above-mentioned divalent linear aliphatic group.
  • Examples include structures having a group, an isobutyl group, a sec-butyl group, and a tert-butyl group.
  • the number of rings that the divalent cyclic aliphatic group has is not particularly limited, but is preferably 1 or more, and more preferably 2 or more. Moreover, 12 or less is preferable, and 10 or less is more preferable.
  • the amount is equal to or more than the lower limit, the film tends to be strong and have good adhesion to the substrate.
  • By setting it below the above-mentioned upper limit deterioration of sensitivity and film thinning during development can be easily suppressed, and resolution tends to improve.
  • the above upper and lower limits can be arbitrarily combined.
  • divalent cyclic aliphatic groups include groups obtained by removing two hydrogen atoms from a cyclohexane ring, cycloheptane ring, cyclodecane ring, cyclododecane ring, norbornane ring, isobornane ring, adamantane ring, and dicyclopentadiene ring. Can be mentioned. From the viewpoint of skeleton rigidity, a group obtained by removing two hydrogen atoms from a dicyclopentadiene ring or an adamantane ring is preferable.
  • Examples of the substituent that the divalent aliphatic group may have include an alkoxy group having 1 to 5 carbon atoms such as a methoxy group and an ethoxy group; a hydroxyl group; a nitro group; a cyano group; and a carboxy group. From the viewpoint of ease of synthesis, it is preferable that it is unsubstituted.
  • m and n each independently represent an integer of 0 to 2.
  • the amount is at least the lower limit, patterning becomes more appropriate and surface roughness that occurs during development tends to be less likely to occur, and when the amount is at most the upper limit, the developability tends to be good.
  • m and n are preferably 0.
  • m and n are preferably 1 or more.
  • the partial structure represented by formula (d1-II) is preferably a partial structure represented by the following general formula (d1-II-1) from the viewpoint of adhesion to the substrate.
  • R 13 , R 15 , R 16 , m and n have the same meanings as in formula (d1-II), and R ⁇ is a monovalent group that may have a substituent. It represents a cyclic hydrocarbon group, p represents an integer of 1 or more, and * represents a bond.
  • the benzene ring in formula (d1-II-1) may be further substituted with any substituent.
  • R ⁇ represents a monovalent cyclic hydrocarbon group which may have a substituent.
  • the cyclic hydrocarbon group include an aliphatic ring group and an aromatic ring group.
  • the number of rings that the aliphatic cyclic group has is not particularly limited, but is preferably one or more, and more preferably two or more. Further, it is preferably 6 or less, more preferably 4 or less, and even more preferably 3 or less.
  • the amount is at least the lower limit, a strong film can be easily obtained, and surface roughness that occurs during development tends to be less likely to occur.
  • patterning characteristics tend to be improved.
  • the above upper and lower limits can be arbitrarily combined. For example, it may be from 1 to 6, it may be from 1 to 4, it may be from 1 to 3, it may be from 2 to 3.
  • the number of carbon atoms in the aliphatic cyclic group is not particularly limited, but is preferably 4 or more, more preferably 6 or more, and even more preferably 8 or more. Further, it is preferably 40 or less, more preferably 30 or less, even more preferably 20 or less, and particularly preferably 15 or less.
  • the amount is at least the lower limit, a strong film can be easily obtained, and surface roughness that occurs during development tends to be less likely to occur. By setting it below the above-mentioned upper limit, patterning characteristics tend to be improved.
  • the above upper and lower limits can be arbitrarily combined. For example, it may be between 4 and 40, between 4 and 30, between 6 and 20, and between 8 and 15.
  • Examples of the aliphatic ring in the aliphatic ring group include a cyclohexane ring, a cycloheptane ring, a cyclodecane ring, a norbornane ring, an isobornane ring, an adamantane ring, and a cyclododecane ring. From the viewpoint of strong film properties, an adamantane ring is preferred.
  • the number of rings that the aromatic ring group has is not particularly limited, but is preferably 1 or more, preferably 2 or more, and more preferably 3 or more. Moreover, 10 or less is preferable, and 5 or less is more preferable.
  • the amount is at least the lower limit, a strong film can be easily obtained, and surface roughness that occurs during development tends to be less likely to occur. By setting it below the above-mentioned upper limit, patterning characteristics tend to be improved.
  • the above upper and lower limits can be arbitrarily combined. For example, it may be from 1 to 10, it may be from 1 to 5, it may be from 2 to 5, it may be from 3 to 5.
  • the aromatic ring group include an aromatic hydrocarbon ring group and an aromatic heterocyclic group.
  • the number of carbon atoms in the aromatic ring group is not particularly limited, but is preferably 4 or more, more preferably 5 or more, and even more preferably 6 or more. Further, it is preferably 30 or less, more preferably 20 or less, and even more preferably 15 or less.
  • the amount is at least the lower limit, a strong film can be easily obtained, and surface roughness that occurs during development tends to be less likely to occur.
  • the above upper and lower limits can be arbitrarily combined. For example, it may be between 4 and 30, between 5 and 20, and between 6 and 15.
  • Examples of the aromatic ring in the aromatic ring group include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, and a fluorene ring. From the viewpoint of development solubility, a fluorene ring is preferred.
  • substituents that the cyclic hydrocarbon group may have include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, amyl group, Examples include alkyl groups having 1 to 5 carbon atoms such as isoamyl group; alkoxy groups having 1 to 5 carbon atoms such as methoxy group and ethoxy group; hydroxyl group; nitro group; cyano group; and carboxy group. From the viewpoint of ease of synthesis, no substitution is preferred.
  • p represents an integer of 1 or more, preferably 2 or more. Moreover, 3 or less is preferable. For example, 1 to 3 are preferable, and 2 to 3 are more preferable.
  • the amount is equal to or more than the lower limit, the degree of film curing and the remaining film rate tend to be good.
  • the amount is below the upper limit, developability tends to be improved.
  • R ⁇ is preferably a monovalent aliphatic cyclic group, and more preferably an adamantyl group.
  • the benzene ring in formula (d1-II-1) may be further substituted with any substituent.
  • substituents include a hydroxy group, a methyl group, a methoxy group, an ethyl group, an ethoxy group, a propyl group, and a propoxy group.
  • the number of substituents is not particularly limited either, and may be one or two or more. From the viewpoint of patterning properties, it is preferable that no substitution be made.
  • the partial structure represented by the formula (d1-II) is preferably a partial structure represented by the following general formula (d1-II-2) from the viewpoint of skeleton rigidity and membrane hydrophobization.
  • R 13 , R 15 , R 16 , m and n have the same meanings as in formula (d1-II), and R ⁇ is a divalent group which may have a substituent. represents a cyclic hydrocarbon group, and * represents a bond.
  • the benzene ring in formula (d1-II-2) may be further substituted with any substituent.
  • R ⁇ represents a divalent cyclic hydrocarbon group which may have a substituent.
  • the cyclic hydrocarbon group include an aliphatic ring group and an aromatic ring group.
  • the number of rings that the aliphatic cyclic group has is not particularly limited, but is preferably one or more, and more preferably two or more. Moreover, 10 or less is preferable, and 5 or less is more preferable.
  • the amount is at least the lower limit, a strong film can be easily obtained, and surface roughness that occurs during development tends to be less likely to occur.
  • the above upper and lower limits can be arbitrarily combined. For example, it may be from 1 to 10, or from 2 to 5.
  • the number of carbon atoms in the aliphatic cyclic group is preferably 4 or more, more preferably 6 or more, and even more preferably 8 or more. Further, it is preferably 40 or less, more preferably 35 or less, and even more preferably 30 or less.
  • the above upper and lower limits can be arbitrarily combined. For example, it may be 4-40, 6-35, or 8-30.
  • Examples of the aliphatic ring in the aliphatic ring group include a cyclohexane ring, a cycloheptane ring, a cyclodecane ring, a norbornane ring, an isobornane ring, an adamantane ring, and a cyclododecane ring. From the viewpoint of film loss during development and resolution, an adamantane ring is preferred.
  • the number of rings that the aromatic ring group has is not particularly limited, but is preferably 1 or more, more preferably 2 or more, and even more preferably 3 or more. Moreover, 10 or less is preferable, and 5 or less is more preferable.
  • the amount is equal to or more than the lower limit, a strong film can be easily obtained, and surface roughness that occurs during development tends to be less likely to occur.
  • the above upper and lower limits can be arbitrarily combined. For example, it may be from 1 to 10, it may be from 1 to 5, it may be from 2 to 5, it may be from 3 to 5.
  • the aromatic ring group examples include an aromatic hydrocarbon ring group and an aromatic heterocyclic group.
  • the number of carbon atoms in the aromatic ring group is preferably 4 or more, more preferably 6 or more, even more preferably 8 or more, and even more preferably 10 or more. Further, it is preferably 40 or less, more preferably 30 or less, even more preferably 20 or less, and particularly preferably 15 or less.
  • the amount is equal to or more than the lower limit, a strong film can be easily obtained, and surface roughness that occurs during development tends to be less likely to occur. By setting it below the above-mentioned upper limit value, deterioration of sensitivity and film thinning can be easily suppressed, and resolution tends to improve.
  • the above upper and lower limits can be arbitrarily combined. For example, it may be 4-40, 6-30, 8-20, or 10-15.
  • the aromatic ring in the aromatic ring group include a benzene ring, a naphthalene ring, an anthracene ring, a phenanthrene ring, and a fluorene ring. From the viewpoint of developability, a fluorene ring is preferred.
  • substituents that the cyclic hydrocarbon group may have include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, amyl group, Examples include alkyl groups having 1 to 5 carbon atoms such as isoamyl group; alkoxy groups having 1 to 5 carbon atoms such as methoxy group and ethoxy group; hydroxyl group; nitro group; cyano group; and carboxy group. From the viewpoint of ease of synthesis, no substitution is preferred.
  • R ⁇ is preferably a divalent aliphatic cyclic group, and more preferably a divalent adamantane cyclic group.
  • R ⁇ is preferably a divalent aromatic ring group, and more preferably a divalent fluorene ring group.
  • the benzene ring in formula (d1-II-2) may be further substituted with any substituent.
  • substituents include a hydroxy group, a methyl group, a methoxy group, an ethyl group, an ethoxy group, a propyl group, and a propoxy group.
  • the number of substituents is not particularly limited either, and may be one or two or more.
  • the two benzene rings in formula (d1-II-2) are connected via R ⁇ , and may be further connected via a substituent to form a tricyclic structure.
  • substituent in this case include divalent groups such as -O-, -S-, -NH-, and -CH 2 -.
  • linking via -O- to form a tricyclic structure means that carbon atoms at the ortho position of the carbon atom bonded to R ⁇ on each benzene ring are linked via -O-, It means forming a xanthene skeleton. From the viewpoint of patterning properties, it is preferable that no substitution be made. Furthermore, from the viewpoint of making film thinning less likely to occur, methyl group substitution is preferable.
  • the partial structure represented by the formula (d1-II) is preferably a partial structure represented by the following general formula (d1-II-3) from the viewpoint of coating film remaining rate and patterning characteristics.
  • R 13 , R 14 , R 15 , R 16 , m and n have the same meanings as in formula (d1-II), and R Z represents a hydrogen atom or a polybasic acid residue. represent.
  • the polybasic acid residue means a monovalent group obtained by removing one OH group from a polybasic acid. Note that one more OH group may be removed and shared with R Z in another molecule represented by formula (d1-II-3). That is, a plurality of formulas (d1-II-3) may be connected via R Z.
  • polybasic acids include maleic acid, succinic acid, itaconic acid, phthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, pyromellitic acid, trimellitic acid, benzophenonetetracarboxylic acid, methylhexahydrophthalic acid, and endomethylene.
  • Examples include tetrahydrophthalic acid, chlorendic acid, methyltetrahydrophthalic acid, and biphenyltetracarboxylic acid.
  • maleic acid, succinic acid, itaconic acid, phthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, pyromellitic acid, trimellitic acid, biphenyltetracarboxylic acid are preferred, and tetrahydrophthalic acid is more preferred. They are phthalic acid, biphenyltetracarboxylic acid, and biphenyltetracarboxylic acid.
  • the partial structure represented by formula (d1-II) contained in one molecule of epoxy (meth)acrylate resin may be one type or two or more types.
  • R Z is hydrogen
  • R Z is a mixture of atoms and those in which R Z is a polybasic acid residue.
  • the number of partial structures represented by formula (d1-II) contained in one molecule of the epoxy (meth)acrylate resin is not particularly limited, but is preferably 1 or more, more preferably 3 or more. Further, it is preferably 20 or less, more preferably 15 or less, and even more preferably 10 or less.
  • the amount is equal to or more than the lower limit, a strong film can be easily obtained, and surface roughness that occurs during development tends to be less likely to occur.
  • the above upper and lower limits can be arbitrarily combined. For example, it may be from 1 to 20, it may be from 1 to 15, it may be from 3 to 10.
  • the weight average molecular weight (Mw) of the epoxy (meth)acrylate resin measured by gel permeation chromatography (GPC) in terms of polystyrene is not particularly limited, but is preferably 1000 or more, more preferably 1500 or more. , more preferably 2000 or more, even more preferably 3000 or more, even more preferably 4000 or more, particularly preferably 5000 or more. Further, it is preferably 10,000 or less, more preferably 8,000 or less, and even more preferably 7,000 or less. When the amount is equal to or more than the lower limit, the remaining film rate of the photosensitive coloring composition tends to be good. When the content is below the upper limit, the solubility in the developer tends to be improved.
  • the above upper and lower limits can be arbitrarily combined. For example, it may be 1000-10000, 1500-10000, 1500-8000, 2000-8000, 2000-7000.
  • the acid value of the epoxy (meth)acrylate resin is not particularly limited, but is preferably 20 mgKOH/g or more, more preferably 40 mgKOH/g or more, even more preferably 60 mgKOH/g or more, and even more preferably 80 mgKOH/g or more. More preferably, 100 mgKOH/g or more is particularly preferable. Moreover, 200 mgKOH/g or less is preferable, 150 mgKOH/g or less is more preferable, 130 mgKOH/g or less is even more preferable, and 120 mgKOH/g or less is particularly preferable. When the amount is at least the lower limit, development solubility tends to improve and resolution tends to improve.
  • the residual film rate of the photosensitive coloring composition tends to be good.
  • the above upper and lower limits can be arbitrarily combined. For example, it may be 20 mgKOH/g to 200 mgKOH/g, it may be 60 mgKOH/g to 150 mgKOH/g, it may be 80 mgKOH/g to 130 mgKOH/g, it may be 100 mgKOH/g to 130 mgKOH/g.
  • the carboxyl group-containing epoxy (meth)acrylate resin may be used alone or in combination of two or more. Further, a part of the above-mentioned carboxyl group-containing epoxy (meth)acrylate resin may be replaced with another binder resin. That is, a carboxyl group-containing epoxy (meth)acrylate resin and another binder resin may be used in combination.
  • the proportion of the carboxyl group-containing epoxy (meth)acrylate resin in the alkali-soluble resin (b) is preferably 50% by mass or more, more preferably 60% by mass or more, and 70% by mass or more. The content is more preferably 80% by mass or more, and may be 100% by mass or less.
  • (D2) Acrylic copolymer resin As the alkali-soluble resin, from the viewpoint of compatibility with pigments, dispersants, etc., it is preferable to use (D2) acrylic copolymer resin, and those described in Japanese Patent Application Publication No. 2014-137466 are preferably used. be able to.
  • (D2) As the acrylic copolymer resin, for example, an ethylenically unsaturated monomer having one or more carboxyl groups (hereinafter referred to as “unsaturated monomer (d2-1)”) and other copolymers Examples include copolymers with possible ethylenically unsaturated monomers (hereinafter referred to as “unsaturated monomers (d2-2)").
  • Examples of the unsaturated monomer (d2-1) include unsaturated monocarboxylic acids such as (meth)acrylic acid, crotonic acid, ⁇ -chloroacrylic acid, and cinnamic acid; maleic acid, maleic anhydride, and fumaric acid.
  • unsaturated monocarboxylic acids such as (meth)acrylic acid, crotonic acid, ⁇ -chloroacrylic acid, and cinnamic acid
  • maleic acid, maleic anhydride, and fumaric acid include unsaturated monocarboxylic acids such as (meth)acrylic acid, crotonic acid, ⁇ -chloroacrylic acid, and cinnamic acid.
  • These unsaturated monomers (d2-1) can be used alone or in combination of two or more.
  • Examples of the unsaturated monomer (d2-2) include: N-substituted maleimides such as N-phenylmaleimide and N-cyclohexylmaleimide; Aromatic vinyl compounds such as styrene, ⁇ -methylstyrene, p-hydroxystyrene, p-hydroxy- ⁇ -methylstyrene, p-vinylbenzyl glycidyl ether, acenaphthylene; Methyl (meth)acrylate, n-butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, allyl (meth)acrylate, benzyl (meth)acrylate, polyethylene glycol (polymerization degree 2 ⁇ 10) Methyl ether (meth)acrylate, polypropylene glycol (degree of polymerization 2-10) Methyl ether (meth)acrylate, polyethylene glycol
  • Examples include macromonomers having a mono(meth)acryloyl group at the end of a polymer molecular chain such as polystyrene, polymethyl(meth)acrylate, poly-n-butyl(meth)acrylate, and polysiloxane. These unsaturated monomers (d2-2) can be used alone or in combination of two or more.
  • the copolymerization ratio of unsaturated monomer (d2-1) is preferably 5 to 50% by mass. , more preferably 10 to 40% by mass.
  • Examples of the copolymer of the unsaturated monomer (d2-1) and the unsaturated monomer (d2-2) include Japanese Patent Application Publication No. 7-140654, Japanese Patent Application Publication No. 8-259876, Japanese Unexamined Patent Publication No. 10-31308, Japanese Unexamined Patent Publication No. 10-300922, Unexamined Japanese Patent Application No. 11-174224, Unexamined Japanese Patent Application No. 11-258415, Unexamined Japanese Patent Application No. 2000-56118, Copolymers disclosed in Japanese Patent Application Publication No. 2004-101728 can be mentioned.
  • the copolymer of the unsaturated monomer (d2-1) and the unsaturated monomer (d2-2) can be produced by a known method, for example, Japanese Patent Application Publication No. 2003-222717,
  • the structure, Mw, and Mw/Mn (Mn is the number average molecular weight) can also be controlled by the methods disclosed in Japanese Patent Application Publication No. 2006-259680 and International Publication No. 2007/0298
  • the photosensitive resin composition of the present invention contains (E) a photopolymerizable compound from the viewpoint of sensitivity and the like.
  • the photopolymerizable compound include compounds having at least one ethylenically unsaturated group in the molecule (hereinafter sometimes referred to as "ethylenic monomers"). Specific examples include (meth)acrylic acid, (meth)acrylic acid alkyl esters, acrylonitrile, styrene, and esters of carboxylic acids having one ethylenically unsaturated bond and polyhydric or monohydric alcohols. .
  • a polyfunctional ethylenic monomer having two or more ethylenically unsaturated groups in one molecule.
  • the number of ethylenically unsaturated groups in the polyfunctional ethylenic monomer is preferably 3 or more, more preferably 4 or more, even more preferably 5 or more, particularly preferably 6 or more, and preferably 10. The number is more preferably 8 or less.
  • the photosensitive resin composition tends to have high sensitivity, and when it is equal to or less than the upper limit, curing shrinkage during polymerization tends to be reduced.
  • the above upper and lower limits can be arbitrarily combined.
  • the number may be 2 to 10, 3 to 10, 4 to 10, 5 to 8, or 6 to 8.
  • polyfunctional ethylenic monomers include, for example, esters of aliphatic polyhydroxy compounds and unsaturated carboxylic acids; esters of aromatic polyhydroxy compounds and unsaturated carboxylic acids; aliphatic polyhydroxy compounds, aromatic Examples include esters obtained by an esterification reaction between a polyhydric hydroxy compound such as a polyhydroxy compound, and an unsaturated carboxylic acid and a polybasic carboxylic acid.
  • esters of aliphatic polyhydroxy compounds and unsaturated carboxylic acids include ethylene glycol diacrylate, triethylene glycol diacrylate, trimethylolpropane triacrylate, trimethylolethane triacrylate, pentaerythritol diacrylate, and pentaerythritol triacrylate.
  • acrylic acid esters of aliphatic polyhydroxy compounds such as pentaerythritol tetraacrylate, dipentaerythritol tetraacrylate, dipentaerythritol pentaacrylate, dipentaerythritol hexaacrylate, glycerol acrylate, and methacrylic acid obtained by replacing the acrylate of these exemplary compounds with methacrylate.
  • esters such as itaconic esters in place of itaconate, crotonic esters in place of cronate or maleic esters in place of maleate.
  • esters of aromatic polyhydroxy compounds and unsaturated carboxylic acids include acrylic esters and methacrylates of aromatic polyhydroxy compounds such as hydroquinone diacrylate, hydroquinone dimethacrylate, resorcin diacrylate, resorcin dimethacrylate, and pyrogallol triacrylate.
  • esters of aromatic polyhydroxy compounds and unsaturated carboxylic acids include acrylic esters and methacrylates of aromatic polyhydroxy compounds such as hydroquinone diacrylate, hydroquinone dimethacrylate, resorcin diacrylate, resorcin dimethacrylate, and pyrogallol triacrylate.
  • acid esters include acid esters.
  • Esters obtained by the esterification reaction of polybasic carboxylic acids and unsaturated carboxylic acids with polyhydric hydroxy compounds are not necessarily single, but typical examples include acrylic acid, phthalic acid, and Examples include condensates of ethylene glycol, acrylic acid, maleic acid, and diethylene glycol, condensates of methacrylic acid, terephthalic acid, and pentaerythritol, and condensates of acrylic acid, adipic acid, butanediol, and glycerin.
  • polyfunctional ethylenic monomers used in the present invention include, for example, reacting a polyisocyanate compound with a hydroxyl group-containing (meth)acrylic ester or a polyisocyanate compound with a polyol and a hydroxyl group-containing (meth)acrylic ester.
  • urethane (meth)acrylates such as those obtained by oxidation
  • epoxy acrylates such as addition reaction products of polyvalent epoxy compounds and hydroxy (meth)acrylate or (meth)acrylic acid
  • acrylamides such as ethylene bisacrylamide
  • phthal Allyl esters such as acid diallyl
  • vinyl group-containing compounds such as divinyl phthalate are useful. These may be used alone or in combination of two or more.
  • the content ratio of the photopolymerizable compound is not particularly limited, but is preferably 90% by mass or less, more preferably 70% by mass or less, and 50% by mass or less based on the total solid content of the photosensitive resin composition. It is more preferably 30% by mass or less, even more preferably 20% by mass or less, most preferably 10% by mass or less, further preferably 1% by mass or more, and more preferably 5% by mass or more.
  • the content of the photopolymerizable compound is at most the above-mentioned upper limit, the permeability of the developer into the exposed area becomes appropriate, and a good image tends to be obtained.
  • the above upper and lower limits can be arbitrarily combined. For example, it may be 1 to 90% by weight, 1 to 70% by weight, 1 to 50% by weight, 5 to 30% by weight, 5 to 20% by weight. It may well be between 5 and 10% by weight.
  • the photosensitive resin composition of the present invention contains (F) a photopolymerization initiator.
  • the photopolymerization initiator is a component that directly absorbs light, causes a decomposition reaction or a hydrogen abstraction reaction, and has the function of generating polymerization-active radicals. If necessary, an additive such as a sensitizing dye may be added.
  • Photopolymerization initiators include, for example, metallocene compounds containing titanocene compounds described in Japanese Patent Application Laid-open No. 59-152396 and Japanese Patent Application Publication No. 61-151197; Hexaarylbiimidazole derivatives described in Japanese Patent Publication No. 56118; N-aryl- ⁇ -amino acids such as halomethylated oxadiazole derivatives, halomethyl-s-triazine derivatives, and N-phenylglycine described in Japanese Patent Publication No.
  • radical activators such as N-aryl- ⁇ -amino acid salts, N-aryl- ⁇ -amino acid esters, ⁇ -aminoalkylphenone derivatives; Examples thereof include oxime ester derivatives described in Japanese Patent Publication No.
  • titanocene derivatives include dicyclopentadienyl titanium dichloride, dicyclopentadienyl titanium bisphenyl, and dicyclopentadienyl titanium bis(2,3,4,5,6-pentafluorophenyl-1-yl).
  • biimidazole derivatives examples include 2-(2'-chlorophenyl)-4,5-diphenylimidazole dimer, 2-(2'-chlorophenyl)-4,5-bis(3'-methoxyphenyl)imidazole dimer, 2-(2'-fluorophenyl)-4,5-diphenylimidazole dimer, 2-(2'-methoxyphenyl)-4,5-diphenylimidazole dimer, (4'-methoxyphenyl) )-4,5-diphenylimidazole dimer.
  • halomethylated oxadiazole derivatives examples include 2-trichloromethyl-5-(2'-benzofuryl)-1,3,4-oxadiazole, 2-trichloromethyl-5-[ ⁇ -(2'- benzofuryl)vinyl]-1,3,4-oxadiazole, 2-trichloromethyl-5-[ ⁇ -(2'-(6''-benzofuryl)vinyl)]-1,3,4-oxadiazole, Examples include 2-trichloromethyl-5-furyl-1,3,4-oxadiazole.
  • halomethyl-s-triazine derivatives examples include 2-(4-methoxyphenyl)-4,6-bis(trichloromethyl)-s-triazine, 2-(4-methoxynaphthyl)-4,6-bis( trichloromethyl)-s-triazine, 2-(4-ethoxynaphthyl)-4,6-bis(trichloromethyl)-s-triazine, 2-(4-ethoxycarbonylnaphthyl)-4,6-bis(trichloromethyl) -s-triazine is mentioned.
  • ⁇ -aminoalkylphenone derivatives include 2-methyl-1[4-(methylthio)phenyl]-2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1-(4- Morpholinophenyl)butan-1-one, 4-dimethylaminoethylbenzoate, 4-dimethylaminoisoamylbenzoate, 4-diethylaminoacetophenone, 4-dimethylaminopropiophenone, 2-ethylhexyl-1,4-dimethylaminobenzoate, 2 , 5-bis(4-diethylaminobenzal)cyclohexanone, 7-diethylamino-3-(4-diethylaminobenzoyl)coumarin, and 4-(diethylamino)chalcone.
  • oxime derivatives (oxime ester compounds and ketooxime ester compounds) are preferable from the viewpoint of sensitivity.
  • oxime ester compounds are preferred from the viewpoint of adhesion to the substrate.
  • an alkali-soluble resin containing a phenolic hydroxyl group there may be a disadvantage in terms of sensitivity.
  • the oxime ester compound photopolymerization initiator has a structure that absorbs ultraviolet rays, a structure that transmits light energy, and a structure that generates radicals, so it is highly sensitive even in small amounts, and is highly sensitive to thermal reactions. It is stable against light, and it is possible to design a highly sensitive photosensitive resin composition in a small amount.
  • oxime ester compounds include compounds containing a structural moiety represented by the following general formula (22), and preferably oxime ester compounds represented by the following general formula (23).
  • R 22 is an alkanoyl group having 2 to 12 carbon atoms, a heteroarylalkanoyl group having 1 to 20 carbon atoms, an alkenoyl group having 3 to 25 carbon atoms, or an alkanoyl group having 3 to 25 carbon atoms, each of which may be substituted.
  • -8 cycloalkanoyl group, C3-20 alkoxycarbonylalkanoyl group, C8-20 phenoxycarbonylalkanoyl group, C3-20 heteroaryloxycarbonylalkanoyl group, C2-10 amino It represents an alkylcarbonyl group, an aryloyl group having 7 to 20 carbon atoms, a heteroaryloyl group having 1 to 20 carbon atoms, an alkoxycarbonyl group having 2 to 10 carbon atoms, or an aryloxycarbonyl group having 7 to 20 carbon atoms.
  • R 21a is hydrogen, or an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 25 carbon atoms, a heteroarylalkyl group having 1 to 20 carbon atoms, each of which may be substituted; Alkoxycarbonylalkyl group having 3 to 20 carbon atoms, phenoxycarbonylalkyl group having 8 to 20 carbon atoms, heteroaryloxycarbonylalkyl group or heteroarylthioalkyl group having 1 to 20 carbon atoms, aminoalkyl group having 1 to 20 carbon atoms , alkanoyl group having 2 to 12 carbon atoms, alkenoyl group having 3 to 25 carbon atoms, cycloalkanoyl group having 3 to 8 carbon atoms, aryloyl group having 7 to 20 carbon atoms, heteroaryloyl group having 1 to 20 carbon atoms, carbon It represents an alkoxycarbonyl group having 2 to 10 carbon atoms, an aryloxycarbonyl group
  • R 22a represents the same group as R 22 in formula (22).
  • R 22 in formula (22) and R 22a in formula (23) are preferably an alkanoyl group having 2 to 12 carbon atoms, a heteroarylalkanoyl group having 1 to 20 carbon atoms, or a cycloalkanoyl group having 3 to 8 carbon atoms. can be mentioned.
  • R 21a in formula (23) is preferably an unsubstituted linear alkyl group such as a methyl group, ethyl group, or propyl group or a cycloalkylalkyl group, or propyl substituted with an N-acetyl-N-acetoxyamino group. Examples include groups. Further, R 21b in formula (23) preferably includes an optionally substituted carbazolyl group, an optionally substituted thioxanthonyl group, and an optionally substituted phenyl sulfide group.
  • R 21b in formula (23) is an optionally substituted carbazolyl group
  • R 21b in formula (23) is an optionally substituted carbazolyl group
  • a carbazolyl group having at least one group selected from the group consisting of a benzoyl group, a toluoyl group, a naphthoyl group, a thienylcarbonyl group, and a nitro group. Further, these groups are desirably bonded to the 3-position of the carbazolyl group.
  • photopolymerization initiators for such oxime ester compounds include OXE-02 manufactured by BASF, TR-PBG-304 and TR-PBG-314 manufactured by Changzhou Power Electronics Co., Ltd.
  • ketooxime ester compounds include compounds containing a structural moiety represented by the following general formula (24), preferably ketoxime ester compounds represented by the following general formula (25).
  • R 24 has the same meaning as R 22 in formula (22).
  • R 23a is a phenyl group, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 25 carbon atoms, a heteroarylalkyl group having 1 to 20 carbon atoms, each of which may be substituted; Alkoxycarbonylalkyl group having 3 to 20 carbon atoms, phenoxycarbonylalkyl group having 8 to 20 carbon atoms, alkylthioalkyl group having 2 to 20 carbon atoms, heteroaryloxycarbonylalkyl group or heteroarylthioalkyl group having 1 to 20 carbon atoms , an aminoalkyl group having 1 to 20 carbon atoms, an alkanoyl group having 2 to 12 carbon atoms, an alkenoyl group having 3 to 25 carbon atoms, a cycloalkanoyl group having 3 to 8 carbon atoms, an aryloyl group having 7 to 20 carbon atoms, and an aryloyl group having 7 to
  • R 23b represents an arbitrary substituent containing an aromatic ring or a heteroaromatic ring.
  • R 23a may form a ring together with R 23b
  • R 24a is an alkanoyl group having 2 to 12 carbon atoms, an alkenoyl group having 3 to 25 carbon atoms, a cycloalkanoyl group having 4 to 8 carbon atoms, a benzoyl group having 7 to 20 carbon atoms, each of which may be substituted; Heteroaryloyl group having 3 to 20 carbon atoms, alkoxycarbonyl group having 2 to 10 carbon atoms, aryloxycarbonyl group having 7 to 20 carbon atoms, heteroaryl group having 2 to 20 carbon atoms, or alkylamino having 2 to 20 carbon atoms Represents a carbonyl group.
  • R 24 in formula (24) and R 24a in formula (25) are preferably an alkanoyl group having 2 to 12 carbon atoms, a heteroarylalkanoyl group having 1 to 20 carbon atoms, or a cycloalkanoyl group having 3 to 8 carbon atoms. , an aryloyl group having 7 to 20 carbon atoms.
  • R 23a in formula (25) includes an unsubstituted ethyl group, propyl group, butyl group, and an ethyl group or propyl group substituted with a methoxycarbonyl group.
  • R 23b in formula (25) preferably includes an optionally substituted carbazoyl group and an optionally substituted phenyl sulfide group.
  • ketooxime ester compounds suitable for the present invention include the following compounds, but the present invention is not limited to these compounds.
  • Examples of commercially available photopolymerization initiators of ketooxime ester compounds include OXE-01 manufactured by BASF and TR-PBG-305 manufactured by Changzhou Power Electronics Co., Ltd.
  • oxime and ketooxime ester compounds are known per se, and for example, a series of compounds described in Japanese Unexamined Patent Publication No. 2000-80068 and Japanese Unexamined Patent Publication No. 2006-36750. It is one of a kind.
  • One type of photopolymerization initiator may be used alone, or two or more types may be used in combination.
  • benzoin alkyl ethers such as benzoin methyl ether, benzoin phenyl ether, benzoin isobutyl ether, and benzoin isopropyl ether; 2-methylanthraquinone, 2-ethylanthraquinone, 2-t-butylanthraquinone, 1-chloroanthraquinone, Anthraquinone derivatives; benzophenone derivatives such as benzophenone, Michler's ketone, 2-methylbenzophenone, 3-methylbenzophenone, 4-methylbenzophenone, 2-chlorobenzophenone, 4-bromobenzophenone, 2-carboxybenzophenone; 2,2-dimethoxy-2 -Phenylacetophenone, 2,2-diethoxyacetophenone, 1-hydroxycyclohexylphenyl ketone, ⁇ -hydroxy-2-methylphenylpropanone, 1-hydroxy-1-methylethyl-(p-isopropyl
  • acetophenone derivatives thioxanthone derivatives such as thioxanthone, 2-ethylthioxanthone, 2-isopropylthioxanthone, 2-chlorothioxanthone, 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2,4-diisopropylthioxanthone; p- Benzoic acid ester derivatives such as ethyl dimethylaminobenzoate and ethyl p-diethylaminobenzoate; acridine derivatives such as 9-phenylacridine and 9-(p-methoxyphenyl)acridine; phenazine such as 9,10-dimethylbenzphenazine Derivatives: Anthrone derivatives such as benzanthrone are included. Among these photopolymerization initiators, oxime ester derivatives are particularly preferred for the reasons mentioned above.
  • the content ratio of the photopolymerization initiator is not particularly limited, but is preferably 1% by mass or more, more preferably 2% by mass or more, and further preferably 3% by mass or more based on the total solid content of the photosensitive resin composition. It is preferably 4% by mass or more, particularly preferably 30% by mass or less, more preferably 20% by mass or less, even more preferably 15% by mass or less, particularly preferably 10% by mass or less, and most preferably 8% by mass or less. .
  • the content ratio of the photopolymerization initiator is equal to or higher than the lower limit value, the sensitivity tends to improve, and if the content ratio is lower than the upper limit value, the solubility of the unexposed area in the developer tends to improve.
  • the above upper and lower limits can be arbitrarily combined. For example, it may be 1-30% by weight, it may be 1-20% by weight, it may be 2-15% by weight, it may be 3-10% by weight, it may be 4-8% by weight. good.
  • a sensitizing dye corresponding to the wavelength of the image exposure light source can be used in combination with the photopolymerization initiator (F), if necessary, for the purpose of increasing the sensitivity.
  • the sensitizing dye include xanthene dyes described in Japanese Patent Application Laid-Open No. 4-221958 and Japanese Patent Application Publication No. 4-219756, Japanese Patent Application Publication No. 3-239703, and Japanese Patent Application Publication No. 5-289335.
  • amino group-containing sensitizing dyes are preferred, and compounds having an amino group and a phenyl group in the same molecule are more preferred.
  • amino group-containing sensitizing dyes are preferred, and compounds having an amino group and a phenyl group in the same molecule are more preferred.
  • Benzophenone compounds such as benzophenone; 2-(p-dimethylaminophenyl)benzoxazole, 2-(p-diethylaminophenyl)benzoxazole, 2-(p-dimethylaminophenyl)benzo[4,5]benzoxazole, 2- (p-dimethylaminophenyl
  • the content ratio of the sensitizing dye is not particularly limited, but is preferably 0 to 20% by mass, more preferably 0 to 15% by mass, and further preferably 0 to 10% by mass, based on the total solid content of the photosensitive resin composition. preferable.
  • the photosensitive resin composition of the present invention typically contains an organic solvent.
  • an organic solvent having a boiling point of 100 to 300°C is preferable, and an organic solvent having a boiling point of 120 to 280°C is more preferable.
  • the boiling point is a value at a pressure of 1013.25 hPa.
  • all boiling points are the same.
  • organic solvents having a boiling point of 100 to 300°C include the following.
  • Ethylene glycol monomethyl ether ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono-n-butyl ether, propylene glycol-t-butyl ether, diethylene glycol monomethyl Ether, diethylene glycol monoethyl ether, diethylene glycol mono-n-butyl ether, methoxymethylpentanol, dipropylene glycol monoethyl ether, dipropylene glycol monomethyl ether, 3-methyl-3-methoxybutanol, triethylene glycol monomethyl ether, triethylene glycol Glycol monoalkyl ethers such as monoethyl ether and tripropylene glycol methyl ether;
  • Glycol dialkyl ethers such as ethylene glycol dimethyl ether, ethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dipropyl ether, diethylene glycol dibutyl ether, dipropylene glycol dimethyl ether; Ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, ethylene glycol mono-n-butyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl ether acetate, propylene glycol monobutyl ether acetate, methoxybutyl Acetate, 3-methoxybutyl acetate, methoxypentyl acetate, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, diethylene glycol mono-n
  • Glycol diacetates such as ethylene glycol diacetate, 1,3-butylene glycol diacetate, 1,6-hexanol diacetate; Alkyl acetates such as cyclohexanol acetate; Ethers such as amyl ether, diethyl ether, dipropyl ether, diisopropyl ether, dibutyl ether, diamyl ether, ethyl isobutyl ether, dihexyl ether; Such as acetone, methyl ethyl ketone, methyl amyl ketone, methyl isopropyl ketone, methyl isoamyl ketone, diisopropyl ketone, diisobutyl ketone, methyl isobutyl ketone, cyclohexanone, ethyl amyl ketone, methyl butyl ketone, methyl hexyl ketone, methyl nony
  • Aromatic hydrocarbons such as benzene, toluene, xylene, and cumene; Amyl formate, ethyl formate, ethyl acetate, butyl acetate, propyl acetate, amyl acetate, methyl isobutyrate, ethylene glycol acetate, ethyl propionate, propyl propionate, butyl butyrate, isobutyl butyrate, methyl isobutyrate, ethyl Caprylate, butyl stearate, ethyl benzoate, methyl 3-ethoxypropionate, ethyl 3-ethoxypropionate, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, propyl 3-methoxypropionate, 3-methoxypropionate linear or cyclic esters such as butyl, ⁇ -butyrolactone; Alkoxycarboxylic acids such as 3-methoxyprop
  • organic solvents include, for example, Mineral Spirit, Valsol #2, Apco #18 Solvent, Apco Thinner, Socal Solvent No. 1 and no. 2.
  • Solvesso #150 Shell TS28 Solvent, carbitol, ethyl carbitol, butyl carbitol, methyl cellosolve (“Cellosolve” is a registered trademark. The same applies hereinafter), ethyl cellosolve, ethyl cellosolve acetate, methyl cellosolve acetate, diglyme (all product name).
  • One type of organic solvent may be used alone, or two or more types may be used in combination.
  • the organic solvent preferably has a boiling point of 100 to 250°C, and preferably has a boiling point of 120 to 230°C. It is more preferable to have
  • glycol alkyl ether acetates are preferable because they have a good balance in coating properties, surface tension, etc., and have relatively high solubility of constituent components in the photosensitive resin composition.
  • One type of glycol alkyl ether acetate may be used alone, or two or more types may be used in combination. Although glycol alkyl ether acetates may be used alone, other organic solvents may also be used in combination.
  • glycol monoalkyl ethers are preferred. Propylene glycol monomethyl ether is preferred from the viewpoint of solubility of the constituent components in the photosensitive resin composition.
  • Glycol monoalkyl ethers have high polarity, and if the amount added is too large, the pigment (A) tends to aggregate, which tends to increase the viscosity of the photosensitive resin composition obtained later, resulting in a decrease in storage stability. . Therefore, when the organic solvent contains glycol monoalkyl ethers, the content of the glycol monoalkyl ethers is preferably 5 to 30% by mass, more preferably 5 to 20% by mass, based on the total mass of the organic solvent.
  • glycol alkyl ether acetates and an organic solvent having a boiling point of 200°C or higher hereinafter sometimes referred to as a "high boiling point solvent”
  • a high boiling point solvent an organic solvent having a boiling point of 200°C or higher
  • the upper limit of the boiling point of the high boiling point solvent is not particularly limited, but is, for example, 300° C. or lower.
  • high-boiling point solvents dipropylene glycol methyl ether acetate, diethylene glycol mono-n-butyl ether acetate, diethylene glycol monoethyl ether acetate, 1,4-butanediol diacetate, 1,3 -Butylene glycol diacetate, triacetin, and 1,6-hexanediol diacetate are preferred. These high boiling point solvents may be used alone or in combination of two or more.
  • the content ratio of the high boiling point solvent is preferably 0 to 50% by mass, more preferably 0.5 to 40% by mass, and even more preferably 1 to 30% by mass, based on the total mass of the organic solvent. If the content ratio of the high boiling point solvent is below the above upper limit, the drying temperature of the composition will be slow, which tends to suppress the occurrence of problems such as poor tact in the vacuum drying process and pin marks in pre-baking in the color filter manufacturing process. There is. If the content of the high boiling point solvent is 0.5% by mass or more, it tends to be possible to suppress precipitation and solidification of pigments and the like at the tip of the slit nozzle, causing foreign matter defects, for example.
  • the content of the organic solvent can be appropriately selected in consideration of the total solid content in the photosensitive resin composition.
  • the total solid content in the photosensitive resin composition is preferably 5% by mass or more, and 8% by mass or more based on the total mass of the photosensitive resin composition, from the viewpoint of adjusting the film thickness after coating and drying.
  • the content is more preferably 10% by mass or more, further preferably 10% by mass or more, and from the viewpoint of stability of the photosensitive resin composition over time, 40% by mass or less is preferred, more preferably 30% by mass or less, and even more preferably 25% by mass or less.
  • the above upper and lower limits can be arbitrarily combined. For example, it may be 5 to 40% by weight, 8 to 30% by weight, or 10 to 25% by weight.
  • the photosensitive resin composition of the present invention includes (A) coloring materials other than pigments, thiols, adhesion improvers, coating properties improvers, development improvers, ultraviolet absorbers, and antioxidants. Agents, etc. can be blended as appropriate.
  • coloring materials other than pigments include dyes.
  • the dye include azo dyes, anthraquinone dyes, phthalocyanine dyes, quinone imine dyes, quinoline dyes, nitro dyes, carbonyl dyes, and methine dyes.
  • azo dyes examples include C.I. I. Acid Yellow 11, C. I. Acid Orange 7, C. I. Acid Red 37, C. I. Acid Red 180, C. I. Acid Blue 29, C. I. Direct Red 28, C. I. Direct Red 83, C. I. Direct Yellow 12, C. I. Direct Orange 26, C. I. Direct Green 28, C. I. Direct Green 59, C. I. Reactive Yellow 2, C. I. Reactive Red 17, C. I. Reactive Red 120, C. I. Reactive Black 5, C. I. Disperse Orange 5, C. I. Dispersed Red 58, C. I. Disperse Blue 165, C. I. Basic Blue 41, C. I. Basic Red 18, C. I. Mordant Red 7, C. I. Mordant Yellow 5, C. I. Mordant Black 7 is mentioned.
  • anthraquinone dyes examples include C.I. I. Bat Blue 4, C. I. Acid Blue 40, C. I. Acid Green 25, C. I. Reactive Blue 19, C. I. Reactive Blue 49, C. I. Dispersed Red 60, C. I. Disperse Blue 56, C. I. An example is Disperse Blue 60.
  • examples of phthalocyanine dyes include C.I. I. Pad Blue 5 etc. are quinone imine dyes such as C.I. I. Basic Blue 3, C. I. Basic Blue 9 etc. are used as quinoline dyes such as C.I. I. Solvent Yellow 33, C. I. Acid Yellow 3, C. I. Disperse Yellow 64 and the like are used as nitro dyes such as C.I. I. Acid Yellow 1, C. I. Acid Orange 3, C. I. An example is Disperse Yellow 42.
  • the content ratio of other coloring materials is preferably 0 to 10% by mass, more preferably 0 to 5% by mass, based on the total solid content of the photosensitive resin composition of the present invention.
  • the photosensitive resin composition of the present invention may contain thiols in order to increase sensitivity and improve adhesion to a substrate.
  • thiols include hexanedithiol, decanedithiol, 1,4-dimethylmercaptobenzene, butanediol bisthiopropionate, butanediol bisthioglycolate, ethylene glycol bisthioglycolate, trimethylolpropane tristhioglycolate.
  • butanediol bisthiopropionate trimethylolpropane tristhiopropionate, trimethylolpropane tristhioglycolate, pentaerythritol tetrakisthiopropionate, pentaerythritol tetrakisthioglycolate, trishydroxyethyl tristhiopropionate, Ethylene glycol bis(3-mercaptobutyrate), propylene glycol bis(3-mercaptobutyrate) (PGMB), butanediol bis(3-mercaptobutyrate), 1,4-bis(3-mercaptobutyryloxy)butane (Product name: Karenz MT BD1, manufactured by Showa Denko K.K.), Butanedioltrimethylolpropane tris (3-mercaptobutyrate), Pentaerythritol tetrakis (3-mercaptobutyrate); (Product name:
  • thiols polyfunctional thiol compounds such as PGMB, TPMB, TPMIB, Karenz MT BD1, Karenz MT PE1, and Karenz MT NR1 are preferred, and among these, Karenz MT BD1, Karenz MT PE1, and Karenz MT NR1 are more preferred, and Karenz MT PE1 is particularly preferred.
  • the content of thiols is preferably 0.1% by mass or more, and 0.3% by mass based on the total solid content of the photosensitive resin composition.
  • the content is more preferably 0.5% by mass or more, further preferably 10% by mass or less, and more preferably 5% by mass or less. If the content ratio of thiols is at least the above lower limit value, there is a tendency to suppress a decrease in sensitivity, and if it is below the above upper limit value, there is a tendency that storage stability tends to be good.
  • the above upper and lower limits can be arbitrarily combined. For example, it may be 0.1 to 10% by weight, 0.3 to 10% by weight, or 0.5 to 5% by weight.
  • the photosensitive resin composition of the present invention may contain an adhesion improver in order to improve the adhesion to the substrate.
  • the adhesion improver include silane coupling agents and titanium coupling agents, with silane coupling agents being particularly preferred.
  • examples of the silane coupling agent include KBM-402, KBM-403, KBM-502, KBM-5103, KBE-9007, X-12-1048, X-12-1050 (manufactured by Shin-Etsu Silicone Co., Ltd.), and Z-6040. , Z-6043, and Z-6062 (manufactured by Dow Corning Toray Industries).
  • One type of silane coupling agent may be used alone, or two or more types may be used in combination in any combination and ratio.
  • the photosensitive resin composition of the present invention may contain adhesion improvers other than the silane coupling agent and the titanium coupling agent.
  • adhesion improvers other than silane coupling agents and titanium coupling agents include phosphoric acid-based adhesion improvers and other adhesion improvers.
  • phosphoric acid-based adhesion improver (meth)acryloyloxy group-containing phosphates are preferred, and among them, those represented by the following general formulas (g1), (g2), and (g3) are preferred.
  • R 51 each independently represents a hydrogen atom or a methyl group
  • l and l' each independently represent an integer of 1 to 10
  • m each independently represents 1 or 2.
  • Other adhesion improvers include TEGO*Add Bond LTH (manufactured by Evonik). These phosphoric acid group-containing compounds and other adhesives may be used alone or in combination of two or more.
  • the content ratio of the adhesion improver in the photosensitive resin composition is not particularly limited, but is 0.5% relative to the total solid content of the photosensitive resin composition. 01% by mass or more, more preferably 0.1% by mass or more, even more preferably 0.5% by mass or more, and preferably 5% by mass or less, more preferably 3% by mass or less, and even more preferably 2% by mass or less. It is preferably 1.5% by mass or less, particularly preferably 1.5% by mass or less. If the content of the adhesion improver is at least the lower limit, the adhesion will tend to improve, and if the content is at most the upper limit, the developability will tend to improve. The above upper and lower limits can be arbitrarily combined. For example, it may be 0.01 to 5% by weight, it may be 0.01 to 3% by weight, it may be 0.1 to 2% by weight, and it may be 0.5 to 1.5% by weight. good.
  • the photosensitive resin composition of the present invention may contain a coating properties improver to improve coating properties.
  • the coating property improver include surfactants.
  • the surfactant for example, anionic, cationic, nonionic, and amphoteric surfactants can be used.
  • nonionic surfactants are preferred since they are less likely to adversely affect various properties, and among them, fluorine-based or silicone-based surfactants are effective in terms of coating properties.
  • surfactants examples include TSF4460 (manufactured by Momentive Performance Materials), DFX-18 (manufactured by Neos), BYK-300, BYK-325, BYK-330 (BYK-Chemie). ), KP340 (manufactured by Shin-Etsu Silicone), F-470, F-475, F-478, F-554, F-559 (manufactured by DIC), SH7PA (manufactured by Dow Corning Toray), DS-401 (manufactured by Daikin), L-77 (manufactured by Nippon Unicar), and FC4430 (manufactured by 3M Japan).
  • the coating properties improver may be used alone or in combination of two or more in any combination and ratio.
  • the content ratio of the coating property improving agent in the photosensitive resin composition is not particularly limited, but is based on the total solid content of the photosensitive resin composition. It is preferably at least 0.01% by mass, more preferably at least 0.05% by mass, and preferably at most 1.0% by mass, more preferably at most 0.7% by mass, and even more preferably at most 0.5% by mass. Particularly preferred is 0.3% by mass or less. If the content ratio of the coating property improver is equal to or greater than the lower limit value, coating uniformity tends to improve, and if the content ratio is equal to or less than the upper limit value, resist sensitivity tends not to decrease. The above upper and lower limits can be arbitrarily combined. For example, it may be 0.01-1.0% by weight, it may be 0.01-0.7% by weight, it may be 0.05-0.5% by weight, it may be 0.05-0. It may be 3% by mass.
  • the photosensitive resin composition of the present invention can be suitably used for forming a black matrix, and from this point of view, it is preferable that the photosensitive resin composition exhibits a black color.
  • the optical density (OD) per 1 ⁇ m of film thickness of the coating film is preferably 1.0 or more, more preferably 2.0 or more, even more preferably 2.5 or more, even more preferably 3.0 or more, and 4 A value of .0 or more is particularly preferred, and a value of 4.5 or more is most preferred. If the OD is greater than or equal to the lower limit, sufficient light-shielding properties tend to be ensured.
  • the upper limit of OD is not particularly limited, but is, for example, 6.0.
  • the OD may be 1.0 to 6.0, 2.0 to 6.0, 2.5 to 6.0, 3.0 to 6.0, 4 It may be between .0 and 6.0, and between 4.5 and 6.0.
  • the photosensitive resin composition of the present invention includes, for example, the pigment dispersion of the present invention, (D) an alkali-soluble resin, (E) a photopolymerizable compound, and (F) a photopolymerization initiator, an organic solvent as necessary, and others. It can be produced by a method of mixing arbitrary components such as the compounded components.
  • the pigment dispersion of the present invention contains (A) a pigment, (B) a dispersant, and an organic solvent. The pigment dispersion of the present invention will be explained in detail later.
  • the temperature during mixing of each component is, for example, 20 to 30°C. After mixing, the resulting photosensitive resin composition may be filtered using a filter or the like, if necessary.
  • the pigment dispersion of the present invention contains (A) a pigment, (B) a dispersant, and an organic solvent.
  • the content ratio of the pigment (A) to the total solid content in the pigment dispersion of the present invention is preferably 50% by mass or more, more preferably 60% by mass or more, even more preferably 70% by mass or more, and 99% by mass or less. is preferable, 95% by mass or less is more preferable, and even more preferably 90% by weight or less. If the content ratio of the pigment (A) is at least the above lower limit, the obtained cured product tends to have better light-shielding properties, and when it is below the above upper limit, the dispersibility tends to be better.
  • the above upper and lower limits can be arbitrarily combined. For example, it may be 50 to 99% by weight, 60 to 95% by weight, or 70 to 90% by weight.
  • the content ratio ((A) pigment/(B) dispersant) of the (A) pigment and (B) dispersant in the pigment dispersion of the present invention on a mass basis is the content ratio ((A) pigment/(B) dispersant) in the photosensitive resin composition of the present invention. ) It is the same as the content ratio of the pigment and (B) the dispersant on a mass basis.
  • the content of the organic solvent can be appropriately selected in consideration of the total solid content in the pigment dispersion.
  • the total solid content in the pigment dispersion of the present invention is preferably 10% by mass or more, more preferably 20% by mass or more, and 30% by mass or more, based on the total mass of the pigment dispersion. is more preferable, and from the viewpoint of viscosity stability, it is preferably 60% by mass or less, more preferably 50% by mass or less, and even more preferably 40% by mass or less.
  • the above upper and lower limits can be arbitrarily combined. For example, it may be 10 to 60% by weight, 20 to 50% by weight, or 30 to 40% by weight.
  • the pigment dispersion of the present invention preferably contains (C) a dispersion aid in order to improve the dispersion stability of (A) the pigment.
  • the content of the dispersion aid (C) based on the total solid content of the pigment dispersion is preferably 0.1% by mass or more, and 0.5% by mass. % or more, more preferably 1.0% by mass or more, further preferably 10% by mass or less, more preferably 5% by mass or less, even more preferably 3% by mass or less.
  • C If the content ratio of the dispersion aid is equal to or higher than the lower limit value, the dispersion stability tends to be better, and if it is lower than the upper limit value, the developability tends to be stable and the adhesion to the substrate tends to be better. be.
  • the above upper and lower limits can be arbitrarily combined. For example, it may be 0.1 to 10% by weight, 0.5 to 5% by weight, or 1.0 to 3% by weight.
  • the pigment dispersion of the present invention may further contain components other than (A) pigment, (B) dispersant, (C) dispersion aid, and organic solvent, if necessary.
  • examples of other components include other components in the photosensitive resin composition of the present invention.
  • the content ratio of other components to the total solid content of the pigment dispersion of the present invention is preferably 5% by mass or less, more preferably 1% by mass or less, and may be 0% by mass.
  • the pigment dispersion of the present invention can be prepared by, for example, mixing optional components such as (A) pigment, (B) dispersant and organic solvent, and optionally (C) dispersion aid, and dispersing the resulting mixture. It can be manufactured by a method of applying.
  • the coating properties and light blocking ability of the pigment dispersion and the photosensitive resin composition containing the same are improved.
  • a polymeric dispersant is used as the dispersant (B)
  • the resulting pigment dispersion and the photosensitive resin composition containing the same are inhibited from increasing in viscosity over time (excellent dispersion stability).
  • the dispersion treatment can be carried out using a known dispersion treatment device such as a paint conditioner, sand grinder, ball mill, roll mill, stone mill, jet mill, or homogenizer.
  • a known dispersion treatment device such as a paint conditioner, sand grinder, ball mill, roll mill, stone mill, jet mill, or homogenizer.
  • glass beads or zirconia beads having a diameter of about 0.1 to 8 mm are preferably used.
  • Dispersion treatment conditions are not particularly limited, but the temperature is, for example, in the range of 0°C to 100°C, preferably in the range of room temperature to 80°C.
  • the appropriate dispersion time varies depending on the composition of the liquid, the size of the dispersion processing apparatus, etc., and is therefore adjusted as appropriate.
  • a guideline for dispersion is to control the dispersion state of the pigment (A) so that the 20 degree specular gloss (JIS Z8741) of the coating film of the photosensitive resin composition is in the range of 100 to 200.
  • the dispersion treatment is often insufficient and rough pigment particles remain, which may result in insufficient developability, adhesion, resolution, etc. There is sex.
  • the dispersion treatment is performed until the gloss value exceeds the above range, the pigment will be crushed and a large number of ultrafine particles will be produced, which tends to impair the dispersion stability.
  • the obtained dispersion treated product can be filtered using a filter or the like, if necessary, for example, in order to separate the beads used in the dispersion treatment and the pigment dispersion liquid.
  • the photosensitive resin composition of the present invention can be used as a resist for members constituting color filters, such as pixels and black matrices.
  • the photosensitive resin composition of the present invention contains a black coloring material such as a black pigment.
  • the photosensitive resin composition of the present invention can also be used as a resist for colored spacers.
  • the photosensitive resin composition of the present invention can also be used to form partition walls, particularly partition walls for partitioning organic layers of an organic electroluminescent device. Examples of the organic layer of the organic electroluminescent device include a hole injection layer, a hole transport layer, or a hole transport layer on the hole injection layer, as described in Japanese Patent Application Publication No. 2016-165396. An example is an organic layer.
  • the cured product of the present invention is obtained by curing the photosensitive resin composition of the present invention.
  • the cured product of the present invention can be suitably used as a member constituting a color filter, such as a pixel or a black matrix.
  • the cured product of the present invention can also be used as a colored spacer.
  • the cured product of the present invention can also be used as a partition wall, particularly a partition wall for partitioning an organic layer of an organic electroluminescent device.
  • the black matrix made of the cured product of the present invention will be explained according to its manufacturing method.
  • the black matrix made of the cured product of the present invention can be obtained by, for example, applying the photosensitive resin composition of the present invention on a support on which the black matrix is to be provided, drying it, and applying a photomask on the dried coating film. It can be formed by a method of placing the film, exposing it to light through a photomask (image exposure), developing it, and carrying out a curing treatment if necessary.
  • the material is not particularly limited as long as it has appropriate strength, but a transparent substrate is mainly used.
  • the material for the transparent substrate include polyester resins such as polyethylene terephthalate, polyolefin resins such as polypropylene and polyethylene, thermoplastic resin sheets such as polycarbonate, polymethyl methacrylate, and polysulfone, epoxy resins, unsaturated polyester resins, Examples include thermosetting resin sheets such as poly(meth)acrylic resins and various types of glasses. Among these, glass and heat-resistant resin are preferred from the viewpoint of heat resistance. Further, a transparent electrode such as ITO or IZO may be formed on the surface of the transparent substrate.
  • the support may be treated with corona discharge treatment, ozone treatment, atmospheric pressure plasma treatment, silane coupling agent, or thin film formation treatment of various resins such as urethane resins, as necessary. You may go.
  • the thickness of the transparent substrate is preferably in the range of 0.05 to 10 mm, more preferably 0.1 to 7 mm. Further, when performing a thin film formation treatment of various resins, the film thickness is preferably in the range of 0.01 to 10 ⁇ m, more preferably 0.05 to 5 ⁇ m.
  • the photosensitive resin composition for black matrix can be applied onto the support by spinner method, wire bar method, flow coating method, die coating method. , a roll coating method, a spray coating method, or the like.
  • the die coating method significantly reduces the amount of coating liquid used, has no influence from the mist that adheres when using the spin coating method, and suppresses the generation of foreign matter, from a comprehensive perspective. preferred.
  • the thickness of the coating film after drying is preferably 0.2 to 10 ⁇ m, more preferably 0.5 to 6 ⁇ m, and even more preferably 1 to 4 ⁇ m.
  • the thickness of the coating film after drying is preferably 0.2 to 10 ⁇ m, more preferably 0.5 to 6 ⁇ m, and even more preferably 1 to 4 ⁇ m.
  • the coating film after coating the photosensitive resin composition on the support is preferably dried by a drying method using a hot plate, an IR oven, or a convection oven. Drying conditions can be appropriately selected depending on the type of liquid medium (organic solvent, water) contained in the photosensitive resin composition, the performance of the dryer used, etc. For example, the time is selected in the range of 15 seconds to 5 minutes at a temperature of 40 to 200°C, preferably in the range of 30 seconds to 3 minutes at a temperature of 50 to 130°C.
  • the drying process of this coating film may be a reduced pressure drying method in which drying is performed within a reduced pressure chamber without increasing the temperature.
  • Exposure Image exposure is performed by overlaying a photomask on the coating film of the photosensitive resin composition and irradiating light with a wavelength ranging from the ultraviolet region to the visible region through this photomask.
  • a negative mask pattern is typically used as a photomask.
  • exposure may be performed after forming an oxygen barrier layer such as a polyvinyl alcohol layer on the coating film.
  • the light source used for image exposure is not particularly limited.
  • the light source examples include lamp light sources such as a xenon lamp, a halogen lamp, a tungsten lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a metal halide lamp, a medium-pressure mercury lamp, a low-pressure mercury lamp, and a carbon arc.
  • lamp light sources such as a xenon lamp, a halogen lamp, a tungsten lamp, a high-pressure mercury lamp, an ultra-high-pressure mercury lamp, a metal halide lamp, a medium-pressure mercury lamp, a low-pressure mercury lamp, and a carbon arc.
  • an optical filter can also be used.
  • This aqueous solution may further contain an organic solvent, a buffer, a complexing agent, a dye or a pigment.
  • alkaline compounds include sodium hydroxide, potassium hydroxide, lithium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium silicate, potassium silicate, sodium metasilicate, sodium phosphate, and phosphorus.
  • Inorganic alkaline compounds such as acid potassium, sodium hydrogen phosphate, potassium hydrogen phosphate, sodium dihydrogen phosphate, potassium dihydrogen phosphate, ammonium hydroxide, mono-, di- or triethanolamine, mono-, di- or trimethylamine, mono-, di- or triethylamine, mono- or di-isopropylamine, n-butylamine, mono-, di- or triisopropanolamine, ethyleneimine, ethylenediimine, tetramethylammonium hydroxide (TMAH), choline, etc.
  • Examples include organic alkaline compounds. These alkaline compounds may be used alone or in a mixture of two or more.
  • surfactant examples include nonionic surfactants such as polyoxyethylene alkyl ethers, polyoxyethylene alkylaryl ethers, polyoxyethylene alkyl esters, sorbitan alkyl esters, and monoglyceride alkyl esters, and alkylbenzene sulfonic acids.
  • nonionic surfactants such as polyoxyethylene alkyl ethers, polyoxyethylene alkylaryl ethers, polyoxyethylene alkyl esters, sorbitan alkyl esters, and monoglyceride alkyl esters, and alkylbenzene sulfonic acids.
  • anionic surfactants such as salts, alkylnaphthalene sulfonates, alkyl sulfates, alkyl sulfonates, and sulfosuccinic acid ester salts
  • amphoteric surfactants such as alkyl betaines and amino acids.
  • organic solvent examples include isopropyl alcohol, benzyl alcohol, ethyl cellosolve, butyl cellosolve, phenyl cellosolve, propylene glycol, and diacetone alcohol.
  • the organic solvent may be used alone or in combination with an aqueous solution.
  • the developing temperature is preferably 10 to 50°C, more preferably 15 to 45°C, even more preferably 20 to 40°C.
  • the developing method can be any method such as an immersion developing method, a spray developing method, a brush developing method, an ultrasonic developing method, or the like.
  • thermosetting treatment examples include thermosetting treatment and photocuring treatment, with thermosetting treatment being preferred.
  • the temperature of the heat curing treatment is selected in the range of 100 to 280°C, preferably in the range of 150 to 250°C.
  • the time for the heat curing treatment is selected within the range of 5 to 60 minutes.
  • the height of the black matrix formed as described above is preferably 0.5 to 5 ⁇ m, more preferably 0.8 to 4 ⁇ m.
  • the optical density (OD) per 1 ⁇ m of thickness is preferably 2.0 or more, more preferably 2.5 or more, even more preferably 3.0 or more, and particularly preferably 3.2 or more.
  • [Color filter] Containing a color material of one color among red (R), green (G), and blue (B) on a transparent substrate provided with a black matrix using the same process as in (2-1) to (2-5) above.
  • a photomask is placed on the coating film, and a pixel image is formed by image exposure and development through this photomask, and if necessary, thermal curing or photocuring, Create a colored layer.
  • a color filter can be formed.
  • the color filter can be used as a part of components of color displays, liquid crystal display devices, etc. by forming transparent electrodes such as ITO on the image as it is.
  • transparent electrodes such as ITO
  • a top coat layer of polyamide, polyimide, etc. can be provided on the image, if necessary.
  • IPS mode planar alignment drive system
  • a transparent electrode may not be formed.
  • the partition wall made of the cured product of the present invention will be explained according to its manufacturing method.
  • the partition wall made of the cured product of the present invention can be obtained, for example, by applying the photosensitive resin composition of the present invention onto a support on which the partition wall is to be provided, drying it, and placing a photomask on the dried coating film. It can be formed by exposing through a photomask (image exposure), developing, and, if necessary, curing.
  • the size, shape, etc. of the partition walls are appropriately adjusted depending on the specifications of the organic electroluminescent device to which they are applied, but the height of the partition walls formed from the photosensitive resin composition is preferably about 0.5 to 10 ⁇ m.
  • Organic electroluminescent device Various organic electroluminescent devices are manufactured using a support provided with partition walls manufactured by the method described above.
  • the method for forming an organic electroluminescent device is not particularly limited, but preferably, the organic electroluminescent device is manufactured by forming partition walls on a support by the method described above, and then forming an organic layer such as a pixel. be done.
  • Methods for forming the organic layer include vapor deposition, in which a functional material is sublimated in a vacuum, and deposited within an area surrounded by partition walls on a substrate, and wet methods, such as casting, spin coating, and inkjet printing.
  • wet methods such as casting, spin coating, and inkjet printing.
  • Types of organic electroluminescent devices include bottom emission type and top emission type.
  • partition walls are formed on a glass substrate laminated with transparent electrodes, and a hole transport layer, a light emitting layer, an electron transport layer, and a metal electrode layer are stacked in the opening surrounded by the partition walls. Ru.
  • the top emission type for example, partition walls are formed on a glass substrate laminated with a metal electrode layer, and an electron transport layer, a light emitting layer, a hole transport layer, and a transparent electrode layer are stacked in the opening surrounded by the partition walls.
  • the light-emitting layer include organic electroluminescent layers as described in Japanese Patent Application Publication No. 2009-146691 and Japanese Patent No. 5734681.
  • quantum dots such as those described in Japanese Patent No. 5653387 and Japanese Patent No. 5653101 may be used.
  • each layer of the hole transport layer and the electron transport layer may have a laminated structure consisting of two or more layers from the viewpoint of luminous efficiency.
  • the thickness of each layer is not particularly limited, but from the viewpoint of luminous efficiency and brightness, it is preferably 1 to 500 nm.
  • the organic electroluminescent element may be formed with RGB colors separated for each opening, or two or more colors may be stacked in one opening.
  • the organic electroluminescent device may include a sealing layer from the viewpoint of improving reliability.
  • the sealing layer has a function of preventing moisture in the air from adsorbing to the organic electroluminescent element and reducing luminous efficiency.
  • the organic electroluminescent device may include a low-reflection film at the interface with air from the viewpoint of improving light extraction efficiency. By arranging a low-reflection film at the interface between air and the element, it is expected that the gap in refractive index will be reduced and reflection at the interface will be suppressed. For example, a moth-eye structure or a super multilayer film technique can be applied to such a low reflection film.
  • an organic electroluminescent device When using an organic electroluminescent device as a pixel in an image display device, it is necessary to prevent light from the light-emitting layer of one pixel from leaking to other pixels, and to prevent the reflection of external light if the electrodes are made of metal. In order to prevent the image quality from deteriorating due to this, it is preferable to impart light-shielding properties to the partition walls constituting the organic electroluminescent device.
  • the partition walls since electrodes are provided on the upper and lower surfaces of the partition walls, from the viewpoint of insulation, the partition walls preferably have high resistance and low dielectric constant. Therefore, when using a coloring agent to impart light-shielding properties to the partition walls, it is preferable to use the organic pigment that has high resistance and low dielectric constant.
  • the image display device of the present invention includes the cured product of the present invention.
  • Examples of the image display device of the present invention include the image display device provided with the above-mentioned black matrix or partition wall.
  • the image display device is not particularly limited as long as it is a device that displays images or videos, and includes liquid crystal display devices and organic EL displays, which will be described later.
  • liquid crystal display device The liquid crystal display device according to the present invention can be manufactured using, for example, the color filter having the black matrix described above. Note that there are no particular restrictions on the formation order or formation position of color pixels and black matrices.
  • a liquid crystal display device forms an alignment film on a color filter, scatters spacers on this alignment film, and then attaches it to a counter substrate to form a liquid crystal cell. Liquid crystal is injected into the formed liquid crystal cell. Complete by connecting to the counter electrode.
  • a resin film such as polyimide is suitable. Gravure printing and/or flexographic printing are usually used to form the alignment film, and the thickness of the alignment film is several tens of nanometers. After the alignment film is hardened by thermal baking, the surface is treated by irradiation with ultraviolet rays or treatment with a rubbing cloth to obtain a surface condition that allows adjustment of the tilt of the liquid crystal.
  • the spacer used has a size that corresponds to the gap with the opposing substrate, and is preferably 2 to 8 ⁇ m. It is also possible to form a photospacer (PS) of a transparent resin film on the color filter substrate by photolithography and use this instead of the spacer.
  • PS photospacer
  • As the counter substrate an array substrate is usually used, and a TFT (thin film transistor) substrate is particularly suitable.
  • the bonding gap with the counter substrate varies depending on the use of the liquid crystal display device, but is preferably in the range of 2 to 8 ⁇ m.
  • parts other than the liquid crystal injection port are sealed with a sealing material such as epoxy resin.
  • the sealing material is cured by UV irradiation and/or heating, and the periphery of the liquid crystal cell is sealed.
  • the liquid crystal cell whose periphery is sealed is cut into panel units, the pressure is reduced in a vacuum chamber, the liquid crystal injection port is immersed in the liquid crystal, and the liquid crystal is injected into the liquid crystal cell by leaking the inside of the chamber. .
  • the degree of reduced pressure within the liquid crystal cell is preferably 1 ⁇ 10 ⁇ 7 to 1 ⁇ 10 ⁇ 2 Pa, more preferably 1 ⁇ 10 ⁇ 6 to 1 ⁇ 10 ⁇ 3 Pa. Further, it is preferable to heat the liquid crystal cell when the pressure is reduced, and the heating temperature is preferably 30 to 100°C, more preferably 50 to 90°C. It is preferable to keep the temperature under reduced pressure for 10 to 60 minutes. It is then immersed in liquid crystal. A liquid crystal display device (panel) is completed by curing the liquid crystal injection port of the liquid crystal cell into which the liquid crystal is injected and sealing it with a UV curing resin.
  • liquid crystal is not particularly limited, and it may be any conventionally known liquid crystal such as aromatic, aliphatic, polycyclic compounds, etc., such as lyotropic liquid crystal, thermotropic liquid crystal, etc.
  • liquid crystals such as aromatic, aliphatic, polycyclic compounds, etc.
  • lyotropic liquid crystal such as lyotropic liquid crystal, thermotropic liquid crystal, etc.
  • Nematic liquid crystals, smectic liquid crystals, cholesteric liquid crystals, etc. are known as thermotropic liquid crystals, but any of them may be used.
  • Organic EL display of the present invention can be produced using, for example, the color filter having the black matrix described above or the organic electroluminescent element having the partition walls described above.
  • a color filter is prepared in which a black matrix (not shown) is provided between pixels 20, and an organic light emitter 500 is formed on the color filter via an organic protective layer 30 and an inorganic oxide film 40.
  • the organic EL element 100 can be manufactured. Note that at least one of the pixels 20 and the black matrix was produced using the photosensitive resin composition of the present invention.
  • the organic light emitter 500 can be laminated by sequentially forming a transparent anode 50, a hole injection layer 51, a hole transport layer 52, a light emitting layer 53, an electron injection layer 54, and a cathode 55 on the top surface of the color filter.
  • a method of bonding the organic light emitter 500 formed on a separate substrate onto the inorganic oxide film 40, and the like Using the organic EL element 100 produced in this way, for example, the method described in "Organic EL Display” (Ohmsha, August 20, 2004, Luminescence, written by Shizushi Tokito, Chinaya Adachi, and Hideyuki Murata), etc. An organic EL display can be manufactured using this method.
  • color filter in the present invention is applicable to both passive drive type organic EL displays and active drive type organic EL displays.
  • NEROX555 carbon black
  • NEROX505 carbon black
  • NEROX505 carbon black
  • NEROX5 carbon black
  • NEROX5 carbon black
  • NEROX305 carbon black
  • MA-100 carbon black
  • Average primary particle diameter Observe the pigment with a TEM, consider the micro spherical parts that make up the primary aggregate as a single particle (primary particle), and measure the diameters of 10 or more micro granular parts by approximating a perfect circle. The average value was taken as the average primary particle diameter.
  • DBP absorption amount Dibutyl phthalate (DBP) was dropped in stages onto the pigment being stirred by a rotor, and the amount of DBP absorbed was measured from the relationship between the amount of DBP dropped and the torque applied to the rotor. The amount of DBP dripped at 70% of the maximum torque was calculated according to the JIS K 6217-4 standard.
  • the pigment was allowed to adsorb nitrogen, and the specific surface area was calculated from the amount of nitrogen adsorbed. BET measurement was performed according to the standard of JIS K 6217-7, and the specific surface area of the pigment was calculated.
  • TMP trimethylolpropane
  • BPDA biphenyltetracarboxylic dianhydride
  • THPA tetrahydrophthalic anhydride
  • Pigments-1 to 6, dispersant-1, dispersion aid-1, and PGMEA listed in Table 2 were mixed at the mass ratio listed in Table 2 to obtain a mixed solution.
  • the blending ratio of PGMEA in Table 2 also includes the amount of the solvent derived from the dispersant and the solvent derived from the dispersion aid.
  • Beads were added to this mixed solution and dispersed in a paint shaker at a temperature of 25 to 45° C. for 6 hours. Zirconia beads with a diameter of 0.5 mm were used as beads, and 2.5 times the mass of the dispersion was added. After the dispersion was completed, the beads and the dispersion liquid were separated using a filter to prepare dispersion liquids 1 to 8.
  • the tip of the glass test piece (the part immersed in the photosensitive resin composition) was observed at four locations in total, including both widthwise ends (ridgeline areas) on the front and back sides, and no deposits were observed.
  • the following criteria were used to evaluate the number of ridgeline areas.
  • the results are shown in Table 3.
  • the ridgeline portion of the glass test piece of each example is shown in FIG. In FIG. 2, optical microscope images of two ridgeline sites are shown side by side for each of Examples 1 to 5 and Comparative Examples 1 to 3.
  • a line extending vertically near the center of each of the two side-by-side optical microscope images is a ridgeline portion, and the area inside each ridgeline portion (center side in the figure) is the tip of the glass test piece.
  • a photosensitive resin composition (resist) was applied onto a glass substrate using a spin coater so that the film thickness after heat curing would be 1.2 ⁇ m, and after drying under reduced pressure at 100 Pa for 60 seconds, it was heated to 100 ° C. with a hot plate. and dried for 120 seconds.
  • the obtained coating film was exposed to ultraviolet light with an intensity of 60 mW/cm 2 at a wavelength of 365 nm using a photomask having openings with a line width of 1 to 20 ⁇ m in 1 ⁇ m increments. Exposure treatment was performed so that the amount of light was 40 mJ/cm 2 . Subsequently, shower development was performed at 23° C.
  • the photosensitive resin compositions of Comparative Examples 1 to 3 using carbon black with a Z value of less than 15 or carbon black with a specific surface area of 110 m 2 /g had poor peel test results.
  • the linearity of the pattern was low.
  • Comparative Example 3 it is presumed that the dispersion stability was lowered due to the large specific surface area, and fine aggregation occurred, resulting in poor pattern linearity and peel test results.
  • the linearity of the pattern was good.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials For Photolithography (AREA)

Abstract

形成されるパターンの直線性、細線特性に優れ、顔料由来の異物の発生が抑制された感光性樹脂組成物を提供する。本発明の感光性樹脂組成物は、(A)顔料、(B)分散剤、(D)アルカリ可溶性樹脂、(E)光重合性化合物及び(F)光重合開始剤を含有し、前記(A)顔料が、平均一次粒子径が15nm以上28nm以下であり、且つジブチルフタレート吸収量が55mL/100g以上100mL/100g以下であるカーボンブラック(a1)を含有し、前記カーボンブラック(a1)のBET法による比表面積が105m/g以下であり、前記カーボンブラック(a1)の平均一次粒子径(nm)をX、ジブチルフタレート吸収量(mL/100g)をYとした場合に、下記式(1)から導き出されるZが15以上である。Y-1.6X=Z・・・(1)

Description

感光性樹脂組成物、顔料分散液、硬化物、ブラックマトリックス及び画像表示装置
 本発明は、感光性樹脂組成物、顔料分散液、硬化物、ブラックマトリックス及び画像表示装置に関する。本願は、2022年3月18日に日本出願された特願2022-044594号に基づき優先権を主張し、その内容をここに援用する。
 カラーフィルターは、通常、ガラス、プラスチック等の透明基板の表面に、黒色のブラックマトリックスを形成し、続いて、赤、緑、青等の3種以上の異なる色の画素を順次、格子状、ストライプ状又はモザイク状等のパターンで形成したものである。パターンサイズは、カラーフィルターの用途並びにそれぞれの色により異なるが、通常5~700μm程度である。
 カラーフィルターの代表的な製造方法として、現在、感光性樹脂組成物を用いたフォトリソグラフィー法が知られている。フォトリソグラフィー法では、例えば、アルカリ可溶性樹脂を含む感光性樹脂組成物を透明基板上に塗布し、乾燥させて感光性樹脂膜を形成し、感光性樹脂膜を所定のパターンで露光し、アルカリ現像液を用いて現像した後、200℃以上の高温処理により硬化(キュア)させることでパターンを形成する。
 感光性樹脂組成物は、カラーフィルターの画素、ブラックマトリックス等の形成等に用いられる場合には、色材を含有する。色材としては、カーボンブラック等の顔料や染料が用いられる(特許文献1)。
特開2012-68613号公報
 カラーフィルターの製造においては、同じ塗布装置を用いて感光性樹脂組成物の塗布が繰り返されることがある。本発明者らの検討によれば、顔料を含む感光性樹脂組成物の場合、塗布が繰り返されるなかで、塗布装置のノズル表面に、顔料の凝集物を含む異物が発生することがある。このような異物は、ノズルから剥がれ、感光性樹脂膜やパターンに付着して欠陥となり、形成されるパターンの直線性、細線特性等に悪影響を及ぼすおそれがある。
 そこで本発明は、形成されるパターンの直線性、細線特性に優れ、顔料由来の異物の発生が抑制された感光性樹脂組成物、これを用いた硬化物、ブラックマトリックス及び画像表示装置、並びに顔料由来の異物の発生が抑制された感光性樹脂組成物が得られる顔料分散液を提供することを目的とする。
 本発明者らは前記課題を解決すべく鋭意検討した結果、顔料に、特定の平均一次粒子径及びジブチルフタレート吸収量を有するカーボンブラックを含有させることにより、前記課題を解決できることを見出した。即ち本発明の要旨は以下に存する。
[1](A)顔料、(B)分散剤、(D)アルカリ可溶性樹脂、(E)光重合性化合物及び(F)光重合開始剤を含有する感光性樹脂組成物であって、
 前記(A)顔料が、平均一次粒子径が15nm以上28nm以下であり、且つジブチルフタレート吸収量が55mL/100g以上100mL/100g以下であるカーボンブラック(a1)を含有し、
 前記カーボンブラック(a1)のBET法による比表面積が105m/g以下であり、
 前記カーボンブラック(a1)の平均一次粒子径(nm)をX、ジブチルフタレート吸収量(mL/100g)をYとした場合に、下記式(1)から導き出されるZが15以上である、感光性樹脂組成物。
  Y-1.6X=Z  ・・・(1)
[2]前記Zが16以上である、[1]の感光性樹脂組成物。
[3]前記(B)分散剤のアミン価が30mgKOH/g未満である、[1]又は[2]の感光性樹脂組成物。
[4]前記カーボンブラック(a1)の体積抵抗率が3Ω・cm未満である、[1]~[3]のいずれかの感光性樹脂組成物。
[5]感光性樹脂組成物の全固形分に対する前記(A)顔料の含有割合が30質量%以上である、[1]~[4]のいずれかの感光性樹脂組成物。
[6]感光性樹脂組成物中における、前記(A)顔料と前記(B)分散剤との質量基準における含有比率(前記(A)顔料/前記(B)分散剤)が4以上である、[1]~[5]のいずれかの感光性樹脂組成物。
[7]さらに(C)分散助剤を含有する、[1]~[6]のいずれかの感光性樹脂組成物。
[8]感光性樹脂組成物中における、前記(A)顔料と前記(C)分散助剤との質量基準における含有比率(前記(A)顔料/前記(C)分散助剤)が10以上である、[7]の感光性樹脂組成物。
[9](A)顔料、(B)分散剤及び有機溶剤を含有する顔料分散液であって、
 前記(A)顔料が、平均一次粒子径が15nm以上28nm以下であり、且つジブチルフタレート吸収量が55mL/100g以上100mL/100g以下であるカーボンブラック(a1)を含有し、
 前記カーボンブラック(a1)のBET法による比表面積が105m/g以下であり、
 前記カーボンブラック(a1)の平均一次粒子径(nm)をX、ジブチルフタレート吸収量(mL/100g)をYとした場合に、下記式(1)から導き出されるZが15以上である、顔料分散液。
  Y-1.6X=Z   ・・・(1)
[10]前記Zが16以上である、[9]の顔料分散液。
[11]前記(B)分散剤のアミン価が30mgKOH/g未満である、[9]又は[10]の顔料分散液。
[12]前記カーボンブラック(a1)の体積抵抗率が3Ω・cm未満である、[9]~[11]のいずれかの顔料分散液。
[13]顔料分散液の全固形分に対する前記(A)顔料の含有割合が50質量%以上である、[9]~[12]のいずれかの顔料分散液。
[14]顔料分散液中における、前記(A)顔料と前記(B)分散剤との質量基準における含有比率(前記(A)顔料/前記(B)分散剤)が4以上である、[9]~[13]のいずれかの顔料分散液。
[15]さらに(C)分散助剤を含有する、[9]~[14]のいずれかの顔料分散液。
[16]顔料分散液中における、前記(A)顔料と前記(C)分散助剤との質量基準における含有比率(前記(A)顔料/前記(C)分散助剤)が10以上である、[15]の顔料分散液。
[17][9]~[16]のいずれかの顔料分散液、(D)アルカリ可溶性樹脂、(E)光重合性化合物及び(F)光重合開始剤を含有する、感光性樹脂組成物。
[18][1]~[8]及び[17]のいずれかの感光性樹脂組成物が硬化された硬化物。
[19][18]の硬化物からなるブラックマトリックス。
[20][18]の硬化物を有する画像表示装置。
 本発明によれば、形成されるパターンの直線性、細線特性に優れ、顔料由来の異物の発生が抑制された感光性樹脂組成物、これを用いた硬化物、ブラックマトリックス及び画像表示装置、並びに顔料由来の異物の発生が抑制された感光性樹脂組成物が得られる顔料分散液を提供できる。
本発明における有機EL素子の一例を示す断面概略図である。 実施例1~5、比較例1~3の感光性樹脂組成物についての剥離試験の結果を示す写真である。
 以下、本発明の実施の形態を具体的に説明するが、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々に変更して実施することができる。
 本発明において「(メタ)アクリル」とは「アクリル及び/又はメタクリル」を意味し、「(メタ)アクリレート」、「(メタ)アクリロイル」についても同様である。
 本発明においては「感光性樹脂組成物」を「レジスト」と称することがある。
 本発明において「全固形分」とは、顔料分散液又は感光性樹脂組成物中に含まれる、有機溶剤及び水以外の全成分を意味し、有機溶剤及び水以外の成分が常温で液体であっても、その成分は有機溶剤及び水には含めず、全固形分に含める。
 本発明においてカーボンブラックの「平均一次粒子径」は、電子顕微鏡写真から一次粒子の大きさを直接計測する方法で求められる。具体的には、カーボンブラックを電子顕微鏡にて観察し、一次凝集体(アグリゲート)を構成している微少球状部を単一粒子(一次粒子)とみなし、10個以上の該微少粒状部の直径を真円近似で計測し、それらの平均値を平均一次粒子径とする。なお、透過型電子顕微鏡(TEM)、走査型電子顕微鏡(SEM)のいずれを用いても同じ結果を得ることができる。
 本発明においてカーボンブラックの「ジブチルフタレート吸収量」は、JIS K 6217-4の規格に準じて測定される。詳しくは、後述する実施例に記載のとおりである。以下、「ジブチルフタレート」を「DBP」とも記す。
 本発明においてカーボンブラックの「BET法による比表面積」は、JIS K 6217-7の規格に準じて測定される。詳しくは、後述する実施例に記載のとおりである。
 本発明において「重量平均分子量」とは、GPC(ゲルパーミエーションクロマトグラフィー)によるポリスチレン換算の重量平均分子量(Mw)を指す。
 本発明において「アミン価」とは、特に断りのない限り、有効固形分換算のアミン価を表し、分散剤の固形分1gあたりの塩基量と当量のKOHの質量で表される値である。なお、測定方法については後述する。
[感光性樹脂組成物]
 本発明の感光性樹脂組成物は、(A)顔料、(B)分散剤、(D)アルカリ可溶性樹脂、(E)光重合性化合物及び(F)光重合開始剤を含有する。
<(A)顔料>
 (A)顔料は、カーボンブラック(a1)を含有する。
 カーボンブラック(a1)の平均一次粒子径は、28nm以下であり、27nm以下が好ましく、26nm以下がより好ましく、また、15nm以上であり、18nm以上が好ましく、20nm以上がより好ましい。平均一次粒子径が前記上限値以下であれば、顔料由来の異物の発生抑制効果、形成されるパターンの直線性、細線特性が向上する傾向がある。平均一次粒子径が前記下限値以上であれば、分散液の経時粘度安定性が良好となる傾向がある。
 上記の上限及び下限は任意に組み合わせることができる。例えば、15nm以上28nm以下であり、18nm以上28nm以下であってよく、20nm以上27nm以下であってよい。
 カーボンブラック(a1)のDBP吸収量は、55mL/100g以上であり、56mL/100g以上が好ましく、57mL/100g以上がより好ましく、また、100mL/100g以下であり、80mL/100g以下が好ましく、70mL/100g以下がより好ましい。DBP吸収量が前記下限値以上であれば、顔料由来の異物の発生抑制効果、形成されるパターンの直線性、細線特性が向上する傾向がある。DBP吸収量が前記上限値以下であれば、塗膜の遮光性、硬化性が良好となる傾向がある。
 上記の上限及び下限は任意に組み合わせることができる。例えば、55mL/100g以上100mL/100g以下であり、56mL/100g以上80mL/100g以下であってよく、57mL/100g以上70mL/100g以下であってよい。
 カーボンブラック(a1)の平均一次粒子径(nm)をX、ジブチルフタレート吸収量(mL/100g)をYとした場合に、下記式(1)から導き出されるZは、15以上であり、16以上が好ましく、18以上がより好ましい。Zの上限は、特に限定されないが、例えば50以下である。例えば、15~50が好ましく、16~50がより好ましく、18~50がさらに好ましい。Zが前記下限値以上であれば、平均一次粒子径が一定範囲内であるカーボンブラック(a1)が適度なストラクチャーを形成し、該ストラクチャーに分散剤が効率的に吸着するため、顔料由来の異物の発生抑制効果、形成されるパターンの直線性、細線特性が向上する傾向がある。
  Y-1.6X=Z  ・・・(1)
 カーボンブラック(a1)のBET法による比表面積は、105m/g以下であり、100m/g以下がより好ましく、95m/g以下がさらに好ましく、また、50m/g以上が好ましく、60m/g以上がより好ましく、70m/g以上がさらに好ましい。比表面積が前記上限値以下であれば、必要となる分散剤の量が適量となり、分散安定性、塗膜の遮光性、硬化性、パターンの直線性のバランスが良好となる傾向がある。比表面積が前記下限値以上であれば、カーボンブラック由来の異物の発生抑制でき、また、形成されるパターンの直線性、細線特性が良好となる傾向がある。
 上記の上限及び下限は任意に組み合わせることができる。例えば、50~105m/gが好ましく、60~100m/gがより好ましく、70~95m/gがさらに好ましい。
 カーボンブラック(a1)の体積抵抗率は、10Ω・cm以下であることが好ましく、5Ω・cm以下であることがより好ましく、3Ω・cm未満であることがさらに好ましい。下限値は特に限定されないが、1×10-20Ω・cm以上である。体積抵抗率が上記上限値以下であれば、ディスプレイのトランジスタからの電場影響を受けにくくなる傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、1×10-20~10Ω・cmが好ましく、1×10-20~5Ω・cmがより好ましく、1×10-20~3Ω・cmがさらに好ましい。
 カーボンブラック(a1)としては、以下のようなカーボンブラックが挙げられる。
 オリオンエンジニアドカーボンズ社製:NEROX(登録商標。以下同じ。)305、NEROX505、NEROX510、NEROX555、PRINTEX(登録商標。以下同じ。)Nature、PRINTEX300。
 BIRLA CARBON社製:RAVEN(登録商標。以下同じ。)1080。
 三菱ケミカル社製:MA11。
 カーボンブラック(a1)は、複数種のカーボンブラックの混合物であってもよい。この場合、カーボンブラック(a1)全体として平均一次粒子径が15nm以上28nm以下であり、DBP吸収量が55mL/100g以上100mL/100g以下であり、BET法による比表面積が105m/g以下であり、前記式(1)から導き出されるZが15以上であれば、カーボンブラック(a1)を構成するカーボンブラックの一部は、これらの特性を満たしていなくてもよい。
 (A)顔料は、必要に応じて、カーボンブラック(a1)以外の他の顔料をさらに含有していてもよい。
 他の顔料としては、例えば、感光性樹脂組成物等を着色する色材として用いられる各種の色の顔料を使用することができる。かかる顔料としては、例えば、青色顔料、緑色顔料、赤色顔料、黄色顔料、紫色顔料、オレンジ顔料、ブラウン顔料、黒色顔料(ただし、カーボンブラック(a1)を除く。)が挙げられる。これらの顔料は、有機顔料でも無機顔料でもよい。有機顔料の構造は特に限定されないが、例えば、アゾ系、フタロシアニン系、キナクリドン系、ベンズイミダゾロン系、イソインドリノン系、ジオキサジン系、インダンスレン系、ペリレン系が挙げられる。
 以下に、他の顔料の具体例をピグメントナンバーで示す。なお、以下に挙げる「C.I.ピグメントレッド2」等の用語は、カラーインデックス(C.I.)を意味する。
 赤色顔料としては、例えば、C.I.ピグメントレッド1、2、3、4、5、6、7、8、9、12、14、15、16、17、21、22、23、31、32、37、38、41、47、48、48:1、48:2、48:3、48:4、49、49:1、49:2、50:1、52:1、52:2、53、53:1、53:2、53:3、57、57:1、57:2、58:4、60、63、63:1、63:2、64、64:1、68、69、81、81:1、81:2、81:3、81:4、83、88、90:1、101、101:1、104、108、108:1、109、112、113、114、122、123、144、146、147、149、151、166、168、169、170、172、173、174、175、176、177、178、179、181、184、185、187、188、190、193、194、200、202、206、207、208、209、210、214、216、220、221、224、230、231、232、233、235、236、237、238、239、242、243、245、247、249、250、251、253、254、255、256、257、258、259、260、262、263、264、265、266、267、268、269、270、271、272、273、274、275、276が挙げられる。好ましくはC.I.ピグメントレッド48:1、122、168、177、202、206、207、209、224、242、254、より好ましくはC.I.ピグメントレッド177、209、224、254が挙げられる。
 青色顔料としては、例えば、C.I.ピグメントブルー1、1:2、9、14、15、15:1、15:2、15:3、15:4、15:6、16、17、19、25、27、28、29、33、35、36、56、56:1、60、61、61:1、62、63、66、67、68、71、72、73、74、75、76、78、79が挙げられる。好ましくはC.I.ピグメントブルー15、15:1、15:2、15:3、15:4、15:6、60、より好ましくはC.I.ピグメントブルー15:6、60が挙げられる。
 緑色顔料としては、例えば、C.I.ピグメントグリーン1、2、4、7、8、10、13、14、15、17、18、19、26、36、45、48、50、51、54、55、58が挙げられる。好ましくはC.I.ピグメントグリーン7、36、58が挙げられる。
 黄色顔料としては、例えば、C.I.ピグメントイエロー1、1:1、2、3、4、5、6、9、10、12、13、14、16、17、24、31、32、34、35、35:1、36、36:1、37、37:1、40、41、42、43、48、53、55、61、62、62:1、63、65、73、74、75、81、83、87、93、94、95、97、100、101、104、105、108、109、110、111、116、117、119、120、126、127、127:1、128、129、133、134、136、138、139、142、147、148、150、151、153、154、155、157、158、159、160、161、162、163、164、165、166、167、168、169、170、172、173、174、175、176、180、181、182、183、184、185、188、189、190、191、191:1、192、193、194、195、196、197、198、199、200、202、203、204、205、206、207、208が挙げられる。好ましくはC.I.ピグメントイエロー83、117、129、138、139、150、154、155、180、185、より好ましくはC.I.ピグメントイエロー83、138、139、150、180が挙げられる。
 オレンジ顔料としては、例えば、C.I.ピグメントオレンジ1、2、5、13、16、17、19、20、21、22、23、24、34、36、38、39、43、46、48、49、61、62、64、65、67、68、69、70、71、72、73、74、75、77、78、79が挙げられる。好ましくは、C.I.ピグメントオレンジ38、64、71が挙げられる。
 紫色顔料としては、例えば、C.I.ピグメントバイオレット1、1:1、2、2:2、3、3:1、3:3、5、5:1、14、15、16、19、23、25、27、29、31、32、37、39、42、44、47、49、50が挙げられる。好ましくはC.I.ピグメントバイオレット19、23、29、より好ましくはC.I.ピグメントバイオレット23、29が挙げられる。
 黒色顔料としては、複数の有色顔料(例えば赤色、緑色、青色の三色)の混合によって黒色を呈する顔料を使用してもよく、単独で黒色を呈する顔料を単独使用してもよく、それらを併用してもよい。
 黒色顔料を調製するために混合使用可能な顔料としては、例えば、ビクトリアピュアブルー(42595)、オーラミンO(41000)、カチロンブリリアントフラビン(ベーシック13)、ローダミン6GCP(45160)、ローダミンB(45170)、サフラニンOK70:100(50240)、エリオグラウシンX(42080)、No.120/リオノールイエロー(21090)、リオノールイエローGRO(21090)、シムラーファーストイエロー8GF(21105)、ベンジジンイエロー4T-564D(21095)、シムラーファーストレッド4015(12355)、リオノールレッド7B4401(15850)、ファーストゲンブルーTGR-L(74160)、リオノールブルーSM(26150)、リオノールブルーES(ピグメントブルー15:6)、リオノーゲンレッドGD(ピグメントレッド168)、リオノールグリーン2YS(ピグメントグリーン36)が挙げられる。
 上記の( )内の数字は、カラーインデックス(C.I.)を意味する。
 さらに他の混合使用可能な顔料についてC.I.ナンバーにて示すと、例えば、C.I.黄色顔料20、24、86、93、109、110、117、125、137、138、147、148、153、154、166、C.I.オレンジ顔料36、43、51、55、59、61、64、C.I.赤色顔料9、97、122、123、149、168、177、180、192、215、216、217、220、223、224、226、227、228、240、254、C.I.バイオレット顔料19、23、29、30、37、40、50、C.I.青色顔料15、15:1、15:4、22、60、64、C.I.緑色顔料7、C.I.ブラウン顔料23、25、26が挙げられる。
 単独使用可能な黒色顔料としては、例えば、ランプブラック、ボーンブラック、黒鉛、酸化鉄系黒色顔料(鉄黒等)、アニリンブラック、シアニンブラック、チタンブラック、ペリレンブラック、ラクタムブラックが挙げられる。
 他の顔料として、例えば、硫酸バリウム、硫酸鉛、酸化チタン、黄色鉛、ベンガラ、酸化クロムを用いることもできる。
 これら各種の顔料は、複数種を併用することもできる。例えば、色度の調整のために、緑色顔料と黄色顔料とを併用したり、青色顔料と紫色顔料とを併用したりすることができる。
 本発明の感光性樹脂組成物の全固形分に対する(A)顔料の含有割合は、30質量%以上が好ましく、35質量%以上がより好ましく、40質量%以上がさらに好ましく、また、75質量%以下が好ましく、70質量%以下がより好ましく、65質量%以下がさらに好ましい。(A)顔料の含有割合が前記下限値以上であれば、得られる硬化物の遮光性がより優れる傾向があり、前記上限値以下であれば、硬化物の形成性がより優れる傾向がある。
 上記の上限及び下限は任意に組み合わせることができる。例えば、30~75質量%であってよく、35~70質量%であってよく、40~65質量%であってよい。
 (A)顔料の全質量に対するカーボンブラック(a1)の含有割合は、90質量%以上が好ましく、95質量%以上がより好ましく、99質量%以上がさらに好ましく、100質量%であってもよい。
<(B)分散剤>
 (B)分散剤は、(A)顔料を微細に分散させ、且つその分散状態を安定化させる。
 (B)分散剤としては、官能基を有する高分子分散剤が好ましく、さらには、分散安定性の面からカルボキシ基;リン酸基;スルホン酸基;又はこれらの塩基;一級、二級又は三級アミノ基;四級アンモニウム塩基;ピリジン、ピリミジン、ピラジン等の含窒素ヘテロ環由来の基、等の官能基を有する高分子分散剤が好ましい。中でも、一級、二級又は三級アミノ基;四級アンモニウム塩基;ピリジン、ピリミジン、ピラジン等の含窒素ヘテロ環由来の基、等の塩基性官能基を有する高分子分散剤が特に好ましい。これら塩基性官能基を有する高分子分散剤を使用することにより、分散性を良好にできる傾向がある。
 高分子分散剤としては、例えばウレタン系分散剤、アクリル系分散剤、ポリエチレンイミン系分散剤、ポリアリルアミン系分散剤、アミノ基を持つモノマーとマクロモノマーからなる分散剤、ポリオキシエチレンアルキルエーテル系分散剤、ポリオキシエチレンジエステル系分散剤、ポリエーテルリン酸系分散剤、ポリエステルリン酸系分散剤、ソルビタン脂肪族エステル系分散剤、脂肪族変性ポリエステル系分散剤が挙げられる。
 分散剤としては、例えば、商品名で、EFKA(登録商標。エフカーケミカルズビーブイ(EFKA)社製)、DISPERBYK(登録商標。ビックケミー社製)、ディスパロン(登録商標。楠本化成社製)、SOLSPERSE(登録商標。ルーブリゾール社製)、KP(信越化学工業社製)、ポリフロー又はフローレン(登録商標。共栄社化学社製)、アジスパー(登録商標。味の素ファインテクノ社製)が挙げられる。
 これらの高分子分散剤は1種を単独で使用してもよく、2種以上を併用してもよい。
 密着性及び直線性の面から、分散剤は塩基性官能基を有するウレタン系高分子分散剤及び/又はアクリル系高分子分散剤を含むことが好ましく、ウレタン系高分子分散剤を含むことが密着性の面でより好ましい。また、分散性、保存性の面から、塩基性官能基を有し、ポリエステル及び/又はポリエーテル結合を有する高分子分散剤が好ましい。
 高分子分散剤の重量平均分子量(Mw)は、700以上が好ましく、1000以上がより好ましく、また、100000以下が好ましく、50000以下がより好ましく、30000以下がさらに好ましい。前記上限値以下とすることで、顔料濃度が高い時でもアルカリ現像性が良好となる傾向がある。
 上記の上限及び下限は任意に組み合わせることができる。例えば、700~100000であってよく、700~50000であってよく、1000~30000であってよい。
 ウレタン系又はアクリル系高分子分散剤としては、例えば、DISPERBYK160~167、182シリーズ(いずれもウレタン系)、DISPERBYK2000,2001(いずれもアクリル系)(以上すべてビックケミー社製)が挙げられる。上記の塩基性官能基を有し、ポリエステル及び/又はポリエーテル結合を有するウレタン系高分子分散剤で重量平均分子量30000以下の特に好ましいものとしてDISPERBYK167、182が挙げられる。
 ウレタン系高分子分散剤としては、例えば、ポリイソシアネート化合物と、分子内に水酸基を1個又は2個有する数平均分子量300~10000の化合物と、同一分子内に活性水素と3級アミノ基を有する化合物とを反応させることによって得られる、重量平均分子量1000~200000の分散樹脂が挙げられる。
 ポリイソシアネート化合物としては、パラフェニレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、ナフタレン-1,5-ジイソシアネート、トリジンジイソシアネート等の芳香族ジイソシアネート、ヘキサメチレンジイソシアネート、リジンメチルエステルジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート、ダイマー酸ジイソシアネート等の脂肪族ジイソシアネート、イソホロンジイソシアネート、4,4’-メチレンビス(シクロヘキシルイソシアネート)、ω,ω’-ジイソシネートジメチルシクロヘキサン等の脂環族ジイソシアネート、キシリレンジイソシアネート、α,α,α’,α’-テトラメチルキシリレンジイソシアネート等の芳香環を有する脂肪族ジイソシアネート、リジンエステルトリイソシアネート、1,6,11-ウンデカントリイソシアネート、1,8-ジイソシアネート-4-イソシアネートメチルオクタン、1,3,6-ヘキサメチレントリイソシアネート、ビシクロヘプタントリイソシアネート、トリス(イソシアネートフェニルメタン)、トリス(イソシアネートフェニル)チオホスフェート等のトリイソシアネート、及びこれらの3量体、水付加物、及びこれらのポリオール付加物が挙げられる。ポリイソシアネートとして好ましいのは有機ジイソシアネートの三量体で、最も好ましいのはトリレンジイソシアネートの三量体とイソホロンジイソシアネートの三量体である。
 これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 イソシアネートの三量体の製造方法としては、前記ポリイソシアネート類を適当な三量化触媒、例えば、第3級アミン類、ホスフィン類、アルコキシド類、金属酸化物、カルボン酸塩類等を用いてイソシアネート基の部分的な三量化を行い、触媒毒の添加により三量化を停止させた後、未反応のポリイソシアネートを溶剤抽出、薄膜蒸留により除去して目的のイソシアヌレート基含有ポリイソシアネートを得る方法が挙げられる。
 同一分子内に水酸基を1個又は2個有する数平均分子量300~10000の化合物としては、ポリエーテルグリコール、ポリエステルグリコール、ポリカーボネートグリコール、ポリオレフィングリコール等、及びこれらの化合物の片末端水酸基が炭素数1~25のアルキル基でアルコキシ化されたもの及びこれら2種類以上の混合物が挙げられる。
 ポリエーテルグリコールとしては、ポリエーテルジオール、ポリエーテルエステルジオール、及びこれら2種類以上の混合物が挙げられる。ポリエーテルジオールとしては、アルキレンオキシドを単独又は共重合させて得られるもの、例えばポリエチレングリコール、ポリプロピレングリコール、ポリエチレン-プロピレングリコール、ポリオキシテトラメチレングリコール、ポリオキシヘキサメチレングリコール、ポリオキシオクタメチレングリコール及びそれらの2種以上の混合物が挙げられる。
 ポリエーテルエステルジオールとしては、エーテル基含有ジオールもしくは他のグリコールとの混合物をジカルボン酸又はそれらの無水物と反応させるか、又はポリエステルグリコールにアルキレンオキシドを反応させることによって得られるもの、例えばポリ(ポリオキシテトラメチレン)アジペートが挙げられる。ポリエーテルグリコールとして最も好ましいのはポリエチレングリコール、ポリプロピレングリコール、ポリオキシテトラメチレングリコール又はこれらの化合物の片末端水酸基が炭素数1~25のアルキル基でアルコキシ化された化合物である。
 ポリエステルグリコールとしては、例えば、ジカルボン酸(コハク酸、グルタル酸、アジピン酸、セバシン酸、フマル酸、マレイン酸、フタル酸等)又はそれらの無水物とグリコール(エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、3-メチル-1,5-ペンタンジオール、ネオペンチルグリコール、2-メチル-1,3-プロパンジオール、2-メチル-2-プロピル-1,3-プロパンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、2-メチル-2,4-ペンタンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、2,5-ジメチル-2,5-ヘキサンジオール、1,8-オクタメチレングリコール、2-メチル-1,8-オクタメチレングリコール、1,9-ノナンジオール等の脂肪族グリコール、ビスヒドロキシメチルシクロヘキサン等の脂環族グリコール、キシリレングリコール、ビスヒドロキシエトキシベンゼン等の芳香族グリコール、N-メチルジエタノールアミン等のN-アルキルジアルカノールアミン等)とを重縮合させて得られたもの、例えばポリエチレンアジペート、ポリブチレンアジペート、ポリヘキサメチレンアジペート、ポリエチレン/プロピレンアジペート等、又は前記ジオール類又は炭素数1~25の1価アルコールを開始剤として用いて得られるポリラクトンジオール又はポリラクトンモノオール、例えばポリカプロラクトングリコール、ポリメチルバレロラクトン及びこれらの2種以上の混合物が挙げられる。ポリエステルグリコールとして最も好ましいのはポリカプロラクトングリコール又は炭素数1~25のアルコールを開始剤としたポリカプロラクトンである。
 ポリカーボネートグリコールとしては、例えば、ポリ(1,6-ヘキシレン)カーボネート、ポリ(3-メチル-1,5-ペンチレン)カーボネート、ポリオレフィングリコールとしてはポリブタジエングリコール、水素添加型ポリブタジエングリコール、水素添加型ポリイソプレングリコールが挙げられる。
 これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 同一分子内に水酸基を1個又は2個有する化合物の数平均分子量は、300~10000が好ましく、500~6000がより好ましく、1000~4000がさらに好ましい。
 次いで、同一分子内に活性水素と3級アミノ基を有する化合物について説明する。活性水素、即ち、酸素原子、窒素原子又はイオウ原子に直接結合している水素原子としては、水酸基、アミノ基、チオール基等の官能基中の水素原子が挙げられ、中でもアミノ基、特に1級のアミノ基の水素原子が好ましい。
 3級アミノ基は、特に限定されないが、例えば、炭素数1~4のアルキル基を有するアミノ基、又はヘテロ環構造、例えば、イミダゾール環又はトリアゾール環が挙げられる。
 同一分子内に活性水素と3級アミノ基を有する化合物としては、例えば、N,N-ジメチル-1,3-プロパンジアミン、N,N-ジエチル-1,3-プロパンジアミン、N,N-ジプロピル-1,3-プロパンジアミン、N,N-ジブチル-1,3-プロパンジアミン、N,N-ジメチルエチレンジアミン、N,N-ジエチルエチレンジアミン、N,N-ジプロピルエチレンジアミン、N,N-ジブチルエチレンジアミン、N,N-ジメチル-1,4-ブタンジアミン、N,N-ジエチル-1,4-ブタンジアミン、N,N-ジプロピル-1,4-ブタンジアミン、N,N-ジブチル-1,4-ブタンジアミンが挙げられる。
 3級アミノ基が含窒素ヘテロ環構造である場合の含窒素ヘテロ環としては、例えば、ピラゾール環、イミダゾール環、トリアゾール環、テトラゾール環、インドール環、カルバゾール環、インダゾール環、ベンズイミダゾール環、ベンゾトリアゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、ベンゾチアジアゾール環等のN含有ヘテロ5員環、ピリジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、アクリジン環、イソキノリン環等の含窒素ヘテロ6員環が挙げられ、イミダゾール環、トリアゾール環が好ましい。
 イミダゾール環とアミノ基を有する化合物としては、例えば、1-(3-アミノプロピル)イミダゾール、ヒスチジン、2-アミノイミダゾール、1-(2-アミノエチル)イミダゾールが挙げられる。
 トリアゾール環とアミノ基を有する化合物としては、例えば、3-アミノ-1,2,4-トリアゾール、5-(2-アミノ-5-クロロフェニル)-3-フェニル-1H-1,2,4-トリアゾール、4-アミノ-4H-1,2,4-トリアゾール-3,5-ジオール、3-アミノ-5-フェニル-1H-1,3,4-トリアゾール、5-アミノ-1,4-ジフェニル-1,2,3-トリアゾール、3-アミノ-1-ベンジル-1H-2,4-トリアゾールが挙げられる。N,N-ジメチル-1,3-プロパンジアミン、N,N-ジエチル-1,3-プロパンジアミン、1-(3-アミノプロピル)イミダゾール、3-アミノ-1,2,4-トリアゾールが好ましい。
 これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 ウレタン系高分子分散剤を製造する際の原料の好ましい配合比率はポリイソシアネート化合物100質量部に対し、同一分子内に水酸基を1個又は2個有する数平均分子量300~10000の化合物が10~200質量部、好ましくは20~190質量部、さらに好ましくは30~180質量部、同一分子内に活性水素と3級アミノ基を有する化合物が0.2~25質量部、好ましくは0.3~24質量部である。
 ウレタン系高分子分散剤の製造はポリウレタン樹脂製造に係る公知の方法に従って行われる。製造する際に用いる溶媒としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン、イソホロン等のケトン類、酢酸エチル、酢酸ブチル、酢酸セロソルブ等のエステル類、ベンゼン、トルエン、キシレン、ヘキサン等の炭化水素類、ダイアセトンアルコール、イソプロパノール、第二ブタノール、第三ブタノール等一部のアルコール類、塩化メチレン、クロロホルム等の塩化物、テトラヒドロフラン、ジエチルエーテル等のエーテル類、ジメチルホルムアミド、N-メチルピロリドン、ジメチルスルホキサイド等の非プロトン性極性溶媒が用いられる。
 これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 上記製造に際して、ウレタン化反応触媒を用いてもよい。この触媒としては、例えば、ジブチルチンジラウレート、ジオクチルチンジラウレート、ジブチルチンジオクトエート、スタナスオクトエート等の錫系、鉄アセチルアセトナート、塩化第二鉄等の鉄系、トリエチルアミン、トリエチレンジアミン等の3級アミン系が挙げられる。
 これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 同一分子内に活性水素と3級アミノ基を有する化合物の導入量は、反応後のアミン価で1~100mgKOH/gの範囲に制御するのが好ましい。より好ましくは5~95mgKOH/gの範囲である。アミン価を前記下限値以上とすることで分散性が良好となる傾向がある。また、前記上限値以下とすることで現像性が良好となる傾向がある。
 アミン価は、試料中の溶媒を除いた固形分1gあたりの塩基量と当量のKOHの質量で表し、次の方法により測定することができる。
 100mLのビーカーに試料の0.5~1.5gを精秤し、50mLの酢酸で溶解する。pH電極を備えた自動滴定装置を使って、この溶液を0.1mol/LのHClO(過塩素酸)酢酸溶液にて中和滴定する。滴定pH曲線の変曲点を滴定終点とし次式によりアミン価を求める。
 アミン価[mgKOH/g]=(561×V)/(W×S)
〔但し、W:分散剤試料秤取量[g]、V:滴定終点での滴定量[mL]、S:分散剤試料の固形分濃度[質量%]を表す。〕
 以上の反応で高分子分散剤にイソシアネート基が残存する場合にはさらに、アルコールやアミノ化合物でイソシアネート基を消費すると、生成物の経時安定性が高くなるので好ましい。
 ウレタン系高分子分散剤の重量平均分子量(Mw)は、1000~200000が好ましく、2000~100000がより好ましく、3000~50000がさらに好ましい。特に30000以下が好ましい。Mwが前記下限値以上であれば、分散性及び分散安定性が良好となる傾向があり、前記上限値以下であれば、溶解性が良好となる傾向がある。
 上記の上限及び下限は任意に組み合わせることができる。例えば、1000~30000であってよく、2000~30000であってよく、3000~30000であってよい。
 特にMwが30000以下であると、特に顔料濃度の高い場合でも、アルカリ現像性が良好となる傾向がある。このような特に好ましい市販のウレタン分散剤としては、例えば、DISPERBYK167、182(ビックケミー社)が挙げられる。
 (B)分散剤のアミン価は、好ましくは1mgKOH/g以上、より好ましくは5mgKOH/g以上、さらに好ましくは10mgKOH/g以上であり、また、好ましくは100mgKOH/g以下、より好ましくは50mgKOH/g以下、さらに好ましくは30mgKOH/g未満である。アミン価が前記下限値以上であれば、分散液の経時安定性が向上する傾向があり、前記上限値以下であれば、現像溶解性が良化する傾向がある。
 上記の上限及び下限は任意に組み合わせることができる。例えば、1~100mgKOH/gであってよく、5~50mgKOH/gであってよく、10~30mgKOH/gであってよい。
 本発明の感光性樹脂組成物中における、(A)顔料と(B)分散剤との、質量基準における含有比率((A)顔料/(B)分散剤)は、1以上が好ましく、3以上がより好ましく、4以上がさらに好ましく、また、50以下が好ましく、30以下がより好ましく、15以下がさらに好ましい。(A)顔料/(B)分散剤が前記下限値以上であれば、現像溶解性がより優れる傾向があり、前記上限値以下であれば、(A)顔料の十分な分散性を確保しやすい傾向がある。
 上記の上限及び下限は任意に組み合わせることができる。例えば、1~50であってよく、3~30であってよく、4~15であってよい。
 本発明の感光性樹脂組成物中における、カーボンブラック(a1)と(B)分散剤との、質量基準における含有比率(カーボンブラック(a1)/(B)分散剤)は、1以上が好ましく、3以上がより好ましく、4以上がさらに好ましく、また、50以下が好ましく、30以下がより好ましく、15以下がさらに好ましい。カーボンブラック(a1)/(B)分散剤が前記下限値以上であれば、現像溶解性がより優れる傾向があり、前記上限値以下であれば、カーボンブラック(a1)の十分な分散性を確保しやすい傾向がある。
 上記の上限及び下限は任意に組み合わせることができる。例えば、1~50であってよく、3~30であってよく、4~15であってよい。
<(C)分散助剤>
 本発明の感光性樹脂組成物は、(A)顔料の分散安定性の向上のため、(C)分散助剤を含有することが好ましい。
 (C)分散助剤としては、例えば、顔料誘導体が挙げられる。顔料誘導体としては、例えば、アゾ系、フタロシアニン系、キナクリドン系、ベンズイミダゾロン系、キノフタロン系、イソインドリノン系、ジオキサジン系、アントラキノン系、インダンスレン系、ペリレン系、ペリノン系、ジケトピロロピロール系、ジオキサジン系の誘導体が挙げられ、フタロシアニン系、キノフタロン系が好ましい。
 顔料誘導体の置換基としては、スルホン酸基、スルホンアミド基及びその4級塩、フタルイミドメチル基、ジアルキルアミノアルキル基、水酸基、カルボキシ基、アミド基等が顔料骨格に直接又はアルキル基、アリール基、複素環基等を介して結合したものが挙げられ、好ましくはスルホン酸基である。また、これら置換基は一つの顔料骨格に複数置換していてもよい。
 顔料誘導体としては、例えば、フタロシアニンのスルホン酸誘導体、キノフタロンのスルホン酸誘導体、アントラキノンのスルホン酸誘導体、キナクリドンのスルホン酸誘導体、ジケトピロロピロールのスルホン酸誘導体、ジオキサジンのスルホン酸誘導体が挙げられる。
 これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 本発明の感光性樹脂組成物が(C)分散助剤を含有する場合、(A)顔料と(C)分散助剤との、質量基準における含有比率((A)顔料/(C)分散助剤)は、10以上が好ましく、30以上がより好ましく、50以上がさらに好ましく、また、200以下が好ましく、150以下がより好ましく、100以下がさらに好ましい。(A)顔料/(C)分散助剤が前記下限値以上であれば、現像性が安定し、基板密着性がより優れる傾向があり、前記上限値以下であれば、分散安定性がより優れる傾向がある。
 上記の上限及び下限は任意に組み合わせることができる。例えば、10~200であってよく、30~150であってよく、50~100であってよい。
 本発明の感光性樹脂組成物が(C)分散助剤を含有する場合、カーボンブラック(a1)と(C)分散助剤との、質量基準における含有比率(カーボンブラック(a1)/(C)分散助剤)は、10以上が好ましく、30以上がより好ましく、50以上がさらに好ましく、また、200以下が好ましく、150以下がより好ましく、100以下がさらに好ましい。カーボンブラック(a1)/(C)分散助剤が前記下限値以上であれば、現像性が安定し、基板密着性がより優れる傾向があり、前記上限値以下であれば、分散安定性がより優れる傾向がある。
 上記の上限及び下限は任意に組み合わせることができる。例えば、10~200であってよく、30~150であってよく、50~100であってよい。
<(D)アルカリ可溶性樹脂>
 (D)アルカリ可溶性樹脂としては、アルカリ可溶性を示す樹脂であれば特に限定はなく、例えば、カルボキシ基又は水酸基を含む樹脂が挙げられる。より具体的には、例えば、エポキシ(メタ)アクリレート系樹脂、アクリル系樹脂、カルボキシ基含有エポキシ樹脂、カルボキシ基含有ウレタン樹脂、ノボラック系樹脂、ポリビニルフェノール系樹脂が挙げられる。特に、
(D1)エポキシ(メタ)アクリレート系樹脂
(D2)アクリル共重合樹脂
が優れた製版性の観点から好適に用いられる。これらは1種を単独で、あるいは2種以上を併用することができる。
 <(D1)エポキシ(メタ)アクリレート系樹脂>
 (D1)エポキシ(メタ)アクリレート系樹脂は、エポキシ化合物(エポキシ樹脂)とα,β-不飽和モノカルボン酸及び/又はエステル部分にカルボキシ基を有するα,β-不飽和モノカルボン酸エステルとの反応により生成した水酸基を、さらに多塩基酸及び/又はその無水物等の水酸基と反応し得る置換基を2個以上有する化合物と反応させて得られる樹脂である。
 上記、多塩基酸及び/又はその無水物を水酸基と反応させる前に、水酸基と反応し得る置換基を2個以上有する化合物を反応させた後、多塩基酸及び/又はその無水物を反応させて得られる樹脂も、(D1)エポキシ(メタ)アクリレート系樹脂に含まれる。
 上記反応で得られた樹脂のカルボキシ基に、さらに反応し得る官能基を有する化合物を反応させて得られる樹脂も、(D1)エポキシ(メタ)アクリレート系樹脂に含まれる。
 エポキシ(メタ)アクリレート系樹脂は化学構造上、実質的にエポキシ基を有さず、かつ「(メタ)アクリレート」に限定されるものではないが、エポキシ化合物(エポキシ樹脂)が原料であり、かつ、「(メタ)アクリレート」が代表例であるので慣用に従いこのように命名されている。
 (D1)エポキシ(メタ)アクリレート系樹脂としては、エポキシ(メタ)アクリレート系樹脂(D1-1)及び/又はエポキシ(メタ)アクリレート系樹脂(D1-2)(以下「カルボキシ基含有エポキシ(メタ)アクリレート系樹脂」と称す場合がある。)が現像性、信頼性の観点から好適に用いられる。
 (D1)エポキシ(メタ)アクリレート系樹脂としては、アウトガスの観点から、主鎖に芳香族環を有するものをより好適に用いることができる。
 <エポキシ(メタ)アクリレート系樹脂(D1-1)>
 エポキシ樹脂にα,β-不飽和モノカルボン酸又はカルボキシ基を有するα,β-不飽和モノカルボン酸エステルを付加させ、さらに、多塩基酸及び/又はその無水物を反応させることによって得られたアルカリ可溶性樹脂。
 <エポキシ(メタ)アクリレート系樹脂(D1-2)>
 エポキシ樹脂にα,β-不飽和モノカルボン酸又はカルボキシ基を有するα,β-不飽和モノカルボン酸エステルを付加させ、さらに、多価アルコール、及び多塩基酸及び/又はその無水物と反応させることによって得られたアルカリ可溶性樹脂。
 ここで、エポキシ樹脂とは、熱硬化により樹脂を形成する以前の原料化合物をも含めて言うこととし、そのエポキシ樹脂としては、公知のエポキシ樹脂の中から適宜選択して用いることができる。また、エポキシ樹脂は、フェノール性化合物とエピハロヒドリンとを反応させて得られる化合物を用いることができる。フェノール性化合物としては、2価もしくは2価以上のフェノール性水酸基を有する化合物が好ましく、単量体でも重合体でもよい。
 原料となるエポキシ樹脂の種類としては、例えば、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、トリスフェノールメタン型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、ナフタレンノボラック型エポキシ樹脂、ジシクロペンタジエンとフェノール又はクレゾールとの重付加反応物とエピハロヒドリンとの反応生成物であるエポキシ樹脂、アダマンチル基含有エポキシ樹脂、フルオレン型エポキシ樹脂を好適に用いることができ、主鎖に芳香族環を有するものをより好適に用いることができる。
 エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂(例えば、三菱ケミカル社製の「jER(登録商標、以下同じ。)828」、「jER1001」、「jER1002」、「jER1004」等)、ビスフェノールA型エポキシ樹脂のアルコール性水酸基とエピクロルヒドリンの反応により得られるエポキシ樹脂(例えば、日本化薬社製の「NER-1302」(エポキシ当量323,軟化点76℃))、ビスフェノールF型樹脂(例えば、三菱ケミカル社製の「jER807」、「EP-4001」、「EP-4002」、「EP-4004」等)、ビスフェノールF型エポキシ樹脂のアルコール性水酸基とエピクロルヒドリンの反応により得られるエポキシ樹脂(例えば、日本化薬社製の「NER-7406」(エポキシ当量350,軟化点66℃))、ビスフェノールS型エポキシ樹脂、ビフェニルグリシジルエーテル(例えば、三菱ケミカル社製の「YX-4000」)、フェノールノボラック型エポキシ樹脂(例えば、日本化薬社製の「EPPN-201」、三菱ケミカル社製の「EP-152」、「EP-154」、ダウケミカル社製の「DEN-438」)、(o,m,p-)クレゾールノボラック型エポキシ樹脂(例えば、日本化薬社製の「EOCN(登録商標、以下同じ。)-102S」、「EOCN-1020」、「EOCN-104S」)、トリグリシジルイソシアヌレート(例えば、日産化学社製の「TEPIC(登録商標)」)、トリスフェノールメタン型エポキシ樹脂(例えば、日本化薬社製の「EPPN(登録商標、以下同じ。)-501」、「EPPN-502」、「EPPN-503」)、脂環式エポキシ樹脂(ダイセル社製の「セロキサイド(登録商標、以下同じ。)2021P」、「セロキサイドEHPE」)、ジシクロペンタジエンとフェノールの反応によるフェノール樹脂をグリシジル化したエポキシ樹脂(例えば、DIC社製の「EXA-7200」、日本化薬社製の「NC-7300」)、下記一般式(B1)~(B4)で表されるエポキシ樹脂、を好適に用いることができる。具体的には、例えば、下記一般式(B1)で表されるエポキシ樹脂として日本化薬社製の「XD-1000」、下記一般式(B2)で表されるエポキシ樹脂として日本化薬社製の「NC-3000」、下記一般式(B3)で表されるエポキシ樹脂として大阪有機化学工業社製の「E-201」、下記一般式(B4)で表されるエポキシ樹脂として新日鉄住金化学社製の「ESF-300」が挙げられる。
Figure JPOXMLDOC01-appb-C000001
 式(B1)において、aは平均値であり、0~10の数を表し、R111は各々独立に水素原子、ハロゲン原子、炭素数1~8のアルキル基、炭素数3~10のシクロアルキル基、フェニル基、ナフチル基、又はビフェニル基を表す。なお、1分子中に存在する複数のR111は、それぞれ同じであっても異なっていてもよい。
Figure JPOXMLDOC01-appb-C000002
 式(B2)において、b1及びb2は各々独立に平均値であり、0~10の数を表し、R121は各々独立に水素原子、ハロゲン原子、炭素数1~8のアルキル基、炭素数3~10のシクロアルキル基、フェニル基、ナフチル基、又はビフェニル基を表す。なお、1分子中に存在する複数のR121は、それぞれ同じであっても異なっていてもよい。
Figure JPOXMLDOC01-appb-C000003
 式(B3)において、Xは下記一般式(B3-1)又は(B3-2)で表される連結基を表す。但し、分子構造中に1つ以上のアダマンタン構造を含む。cは2又は3を表す。
Figure JPOXMLDOC01-appb-C000004
 式(B3-1)及び(B3-2)において、R131~R134及びR135~R137は、各々独立に、置換基を有していてもよいアダマンチル基、水素原子、置換基を有していてもよい炭素数1~12のアルキル基、又は置換基を有していてもよいフェニル基を表し、*は結合手を表す。
Figure JPOXMLDOC01-appb-C000005
 式(B4)において、p及びqは各々独立に0~4の整数を表し、R141及びR142は各々独立に炭素数1~4のアルキル基又はハロゲン原子を表し、R143及びR144は各々独立に炭素数1~4のアルキレン基を表し、x及びyは各々独立に0以上の整数を表す。
 エポキシ樹脂としては、式(B1)~(B4)のいずれかで表されるエポキシ樹脂を用いることが好ましい。
 α,β-不飽和モノカルボン酸又はカルボキシ基を有するα,β-不飽和モノカルボン酸エステルとしては、例えば、(メタ)アクリル酸、クロトン酸、o-、m-又はp-ビニル安息香酸、(メタ)アクリル酸のα位ハロアルキル、アルコキシル、ハロゲン、ニトロ、シアノ置換体等のモノカルボン酸;2-(メタ)アクリロイロキシエチルコハク酸、2-(メタ)アクリロイロキシエチルアジピン酸、2-(メタ)アクリロイロキシエチルフタル酸、2-(メタ)アクリロイロキシエチルヘキサヒドロフタル酸、2-(メタ)アクリロイロキシエチルマレイン酸、2-(メタ)アクリロイロキシプロピルコハク酸、2-(メタ)アクリロイロキシプロピルアジピン酸、2-(メタ)アクリロイロキシプロピルテトラヒドロフタル酸、2-(メタ)アクリロイロキシプロピルフタル酸、2-(メタ)アクリロイロキシプロピルマレイン酸、2-(メタ)アクリロイロキシブチルコハク酸、2-(メタ)アクリロイロキシブチルアジピン酸、2-(メタ)アクリロイロキシブチルヒドロフタル酸、2-(メタ)アクリロイロキシブチルフタル酸、2-(メタ)アクリロイロキシブチルマレイン酸(メタ)、アクリル酸にε-カプロラクトン、β-プロピオラクトン、γ-ブチロラクトン、δ-バレロラクトン等のラクトン類を付加させたものである単量体;あるいはヒドロキシアルキル(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレートに(無水)コハク酸、(無水)フタル酸、(無水)マレイン酸等の酸(無水物)を付加させた単量体;(メタ)アクリル酸ダイマー;が挙げられ、感度の点から、(メタ)アクリル酸が好ましい。
 エポキシ樹脂にα,β-不飽和モノカルボン酸又はカルボキシ基を有するα,β-不飽和モノカルボン酸エステルを付加させる方法としては、公知の手法を用いることができる。例えば、エステル化触媒の存在下、50~150℃の温度で、α,β-不飽和モノカルボン酸又はカルボキシ基を有するα,β-不飽和モノカルボン酸エステルとエポキシ樹脂とを反応させることができる。エステル化触媒としては、例えば、トリエチルアミン、トリメチルアミン、ベンジルジメチルアミン、ベンジルジエチルアミン等の3級アミン、テトラメチルアンモニウムクロリド、テトラエチルアンモニウムクロリド、ドデシルトリメチルアンモニウムクロリド等の4級アンモニウム塩を用いることができる。
 エポキシ樹脂、α,β-不飽和モノカルボン酸又はカルボキシ基を有するα,β-不飽和モノカルボン酸エステル、及びエステル化触媒の各成分は、各成分を1種ずつ選択して用いてもよく、2種以上を併用してもよい。
 α,β-不飽和モノカルボン酸又はカルボキシ基を有するα,β-不飽和モノカルボン酸エステルの使用量は、エポキシ樹脂のエポキシ基1当量に対し0.5~1.2当量が好ましく、さらに好ましくは0.7~1.1当量である。α,β-不飽和モノカルボン酸又はカルボキシ基を有するα,β-不飽和モノカルボン酸エステルの使用量を前記下限値以上とすることで不飽和基の導入量の不足が抑制でき、引き続く多塩基酸及び/又はその無水物との反応も十分なものとしやすい傾向がある。前記上限値以下とすることでα,β-不飽和モノカルボン酸又はカルボキシ基を有するα,β-不飽和モノカルボン酸エステルの未反応物の残存を抑制でき、硬化特性を良好なものとしやすい傾向が認められる。
 多塩基酸及び/又はその無水物としては、例えば、マレイン酸、コハク酸、イタコン酸、フタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、ピロメリット酸、トリメリット酸、ベンゾフェノンテトラカルボン酸、メチルヘキサヒドロフタル酸、エンドメチレンテトラヒドロフタル酸、クロレンド酸、メチルテトラヒドロフタル酸、ビフェニルテトラカルボン酸、及びこれらの無水物が挙げられる。
 好ましくは、マレイン酸、コハク酸、イタコン酸、フタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、ピロメリット酸、トリメリット酸、ビフェニルテトラカルボン酸、又はこれらの無水物である。特に好ましくは、テトラヒドロフタル酸、ビフェニルテトラカルボン酸、無水テトラヒドロフタル酸、又はビフェニルテトラカルボン酸二無水物である。
 多塩基酸及び/又はその無水物の付加反応は、公知の手法を用いて行うことができ、エポキシ樹脂へのα,β-不飽和モノカルボン酸又はカルボキシ基を有するα,β-不飽和モノカルボン酸エステルの付加反応と同様な条件下で、継続反応させて目的物を得ることができる。多塩基酸及び/又はその無水物成分の付加量は、生成するカルボキシ基含有エポキシ(メタ)アクリレート系樹脂の酸価が10~150mgKOH/gとなるような程度であることが好ましく、さらに20~140mgKOH/gとなるような程度であることが好ましい。前記下限値以上とすることでアルカリ現像性が良好となる傾向がある。前記上限値以下とすることで硬化性能が良好となる傾向がある。
 多塩基酸及び/又はその無水物の付加反応時に、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール、トリメチロールエタン、1,2,3-プロパントリオール等の多官能アルコール(多価アルコール)を添加し、多分岐構造を導入したものとしてもよい。この場合、多塩基酸及び/又はその無水物と多官能アルコールの混合順序に、特に制限はない。加温により、エポキシ樹脂とα,β-不飽和モノカルボン酸又はカルボキシ基を有するα,β-不飽和モノカルボン酸エステルとの反応物と多官能アルコールとの混合物中に存在するいずれかの水酸基に対して多塩基酸及び/又はその無水物が付加反応する。
 多価アルコールを用いることで、(D1)エポキシ(メタ)アクリレート樹脂の分子量を増大させ、分子中に分岐を導入することが出来、分子量と粘度のバランスをとることができる傾向がある。また、分子中への酸基の導入率を増やすことができ、感度や密着性等のバランスがとれやすい傾向がある。
 カルボキシ基含有エポキシ(メタ)アクリレート系樹脂としては、前述のもの以外に、例えば、大韓民国公開特許第10-2013-0022955号公報に記載のものが挙げられる。
 カルボキシ基含有エポキシ(メタ)アクリレート系樹脂の、ゲルパーミエーションクロマトグラフィー(GPC)で測定したポリスチレン換算の重量平均分子量(Mw)は好ましくは1000以上、より好ましくは1500以上、さらに好ましくは2000以上、よりさらに好ましくは3000以上、ことさらに好ましくは4000以上、特に好ましくは5000以上である。また、好ましくは30000以下、より好ましくは20000以下、さらに好ましくは15000以下である。前記下限値以上とすることで現像液に対する溶解性が高くなりすぎるのを抑制できる傾向がある。前記上限値以下とすることで現像液に対する溶解性が良好なものとしやすい傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、1000~30000であってよく、1500~20000であってよく、1500~15000であってよく、2000~15000であってよい。
 カルボキシ基含有エポキシ(メタ)アクリレート系樹脂の酸価は特に限定されないが、20mgKOH/g以上が好ましく、40mgKOH/g以上がより好ましく、60mgKOH/g以上がさらに好ましく、80mgKOH/g以上がよりさらに好ましく、100mgKOH/g以上が特に好ましい。また、200mgKOH/g以下が好ましく、150mgKOH/g以下がより好ましく、130mgKOH/g以下がさらに好ましく、120mgKOH/g以下が特に好ましい。前記下限値以上とすることで現像溶解性が向上し、解像性が良好となる傾向がある。前記上限値以下とすることで感光性着色組成物の残膜率が良好となる傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、20~200mgKOH/gであってよく、60~150mgKOH/gであってよく、80~130mgKOH/gであってよく、100~130mgKOH/gであってよい。
 エポキシ(メタ)アクリレート系樹脂の化学構造は特に限定されないが、現像性、信頼性の観点から、下記一般式(d1-I)で表される部分構造を有するエポキシ(メタ)アクリレート系樹脂(以下、「(d1-I)エポキシ(メタ)アクリレート系樹脂」と略記する場合がある。)及び/又は下記一般式(d1-II)で表される部分構造を有するエポキシ(メタ)アクリレート系樹脂(以下、「(d1-II)エポキシ(メタ)アクリレート系樹脂」と略記する場合がある。)を含有することが好ましい。
Figure JPOXMLDOC01-appb-C000006
 式(d1-I)中、R11は水素原子又はメチル基を表し、R12は置換基を有していてもよい2価の炭化水素基を表し、kは1又は2を表し、*は結合手を表す。
 式(d1-I)中のベンゼン環は、さらに任意の置換基により置換されていてもよい。
Figure JPOXMLDOC01-appb-C000007
 式(d1-II)中、R13は各々独立に、水素原子又はメチル基を表し、R14は、環状炭化水素基を側鎖として有する2価の炭化水素基を表し、R15及びR16は各々独立に、置換基を有していてもよい2価の脂肪族基を表し、m及びnは各々独立に0~2の整数を表し、*は結合手を表す。
<(d1-I)エポキシ(メタ)アクリレート系樹脂>
Figure JPOXMLDOC01-appb-C000008
 式(d1-I)中、R11は水素原子又はメチル基を表し、R12は置換基を有していてもよい2価の炭化水素基を表し、kは1又は2を表し、*は結合手を表す。
 式(d1-I)中のベンゼン環は、さらに任意の置換基により置換されていてもよい。
(R12
 式(d1-I)において、R12は置換基を有していてもよい2価の炭化水素基を表す。
 2価の炭化水素基としては、2価の脂肪族基、2価の芳香族環基、1以上の2価の脂肪族基と1以上の2価の芳香族環基とを連結した基が挙げられる。
 2価の脂肪族基は、直鎖状、分岐鎖状、環状の脂肪族基が挙げられる。現像溶解性の観点からは直鎖状の脂肪族基が好ましい。一方で露光部への現像液の浸透低減の観点からは環状の脂肪族基が好ましい。その炭素数は1以上が好ましく、3以上がより好ましく、6以上がさらに好ましい。また、20以下が好ましく、15以下がより好ましく、10以下がさらに好ましい。前記下限値以上とすることで強固な膜が得られやすく、現像時に生じる表面荒れが生じにくく、基板への密着性が良好となる傾向がある。前記上限値以下とすることで感度の悪化や現像時の膜減りを抑制しやすく、解像性が向上する傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、1~20であってよく、1~15であってよく、1~10であってよい。
 2価の直鎖状の脂肪族基としては、例えば、メチレン基、エチレン基、n-プロピレン基、n-ブチレン基、n-ペンチレン基、n-ヘキシレン基、n-ヘプチレン基が挙げられる。骨格の剛直性の観点から、メチレン基が好ましい。
 2価の分岐鎖状の脂肪族基としては、前述の2価の直鎖状の脂肪族基に、側鎖として、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基を有する構造が挙げられる。
 2価の環状の脂肪族基が有する環の数は特に限定されないが、1以上が好ましく、2以上がより好ましい。また、12以下が好ましく、10以下がより好ましい。前記下限値以上とすることで強固な膜となり、基板密着性が良好となる傾向がある。前記上限値以下とすることで感度の悪化や現像時の膜減りを抑制しやすく、解像性が向上する傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、1~12であってよく、1~10であってよく、2~10であってよい。
 2価の環状の脂肪族基としては、例えば、シクロヘキサン環、シクロヘプタン環、シクロデカン環、シクロドデカン環、ノルボルナン環、イソボルナン環、アダマンタン環、ジシクロペンタジエン、ジシクロペンタン等の環から水素原子を2つ除した基が挙げられる。骨格の剛直性の観点から、ジシクロペンタジエン環、ジシクロペンタン環、アダマンタン環から水素原子を2つ除した基が好ましい。
 2価の脂肪族基が有していてもよい置換基としては、例えば、メトキシ基、エトキシ基等の炭素数1~5のアルコキシ基;水酸基;ニトロ基;シアノ基;カルボキシ基が挙げられる。合成容易性の観点から、無置換であることが好ましい。
 2価の芳香族環基としては、2価の芳香族炭化水素環基及び2価の芳香族複素環基が挙げられる。その炭素数は特に限定されないが、4以上が好ましく、5以上がより好ましく、6以上がさらに好ましい。また、20以下が好ましく、15以下がより好ましく、10以下がさらに好ましい。前記下限値以上とすることで強固な膜が得られやすく、現像時に生じる表面荒れが生じにくく、基板への密着性が良好となる傾向がある。前記上限値以下とすることで感度の悪化や現像時の膜減りを抑制しやすく、解像性が向上する傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、4~20であってよく、5~15であってよく、6~10であってよい。
 2価の芳香族炭化水素環基における芳香族炭化水素環としては、単環であっても縮合環であってもよい。2価の芳香族炭化水素環基としては、例えば、2個の遊離原子価を有する、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオランテン環、フルオレン環が挙げられる。
 2価の芳香族複素環基における芳香族複素環としては、単環であっても縮合環であってもよい。2価の芳香族複素環基としては、例えば、2個の遊離原子価を有する、フラン環、ベンゾフラン環、チオフェン環、ベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シノリン環、キノキサリン環、フェナントリジン環、ペリミジン環、キナゾリン環、キナゾリノン環、アズレン環が挙げられる。
 パターニング特性の観点から、2個の遊離原子価を有するベンゼン環又はナフタレン環が好ましく、2個の遊離原子価を有するベンゼン環がより好ましい。
 2価の芳香族環基が有していてもよい置換基としては、例えば、ヒドロキシ基、メチル基、メトキシ基、エチル基、エトキシ基、プロピル基、プロポキシ基が挙げられる。現像溶解性の観点から、無置換が好ましい。
 1以上の2価の脂肪族基と1以上の2価の芳香族環基とを連結した基としては、前述の2価の脂肪族基を1以上と、前述の2価の芳香族環基を1以上とを連結した基が挙げられる。
 2価の脂肪族基の数は特に限定されないが、1以上が好ましく、2以上がより好ましく、また、10以下が好ましく、5以下がより好ましく、3以下がさらに好ましい。前記下限値以上とすることで強固な膜が得られやすく、現像時に生じる表面荒れが生じにくく、基板への密着性が良好となる傾向がある。前記上限値以下とすることで感度の悪化や現像時の膜減りを抑制しやすく、解像性が向上する傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、1~10であってよく、1~5であってよく、1~3であってよく、2~3であってよい。
 2価の芳香族環基の数は特に限定されないが、1以上が好ましく、2以上がより好ましく、また、10以下が好ましく、5以下がより好ましく、3以下がさらに好ましい。前記下限値以上とすることで強固な膜が得られやすく、現像時に生じる表面荒れが生じにくく、基板への密着性が良好となる傾向がある。前記上限値以下とすることで感度の悪化や現像時の膜減りを抑制しやすく、解像性が向上する傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、1~10であってよく、1~5であってよく、1~3であってよく、2~3であってよい。
 1以上の2価の脂肪族基と1以上の2価の芳香族環基とを連結した基としては、例えば、下記一般式(d1-I-A)~(d1-I-F)で表される基が挙げられる。骨格の剛直性と膜の疎水化の観点から、下記式(d1-I-A)で表される基が好ましい。
Figure JPOXMLDOC01-appb-C000009
 式(d1-I)において、kは1又は2を表す。密着性、パターニング性の観点からkは1が好ましい。NMP耐性の観点からkは2が好ましい。また、(d1-I)エポキシ(メタ)アクリレート中にkが1の部分構造と、kが2の部分構造の両方が含有されていてもよい。
 式(d1-I)中のベンゼン環は、さらに任意の置換基により置換されていてもよい。置換基としては、例えば、ヒドロキシ基、メチル基、メトキシ基、エチル基、エトキシ基、プロピル基、プロポキシ基が挙げられる。置換基の数も特に限定されず、1つでもよいし、2つ以上でもよい。
 パターニング特性の観点から、無置換であることが好ましい。
 式(d1-I)で表される部分構造は、合成の簡易性の観点から、下記一般式(d1-I-1)で表される部分構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000010
 式(d1-I-1)中、R11、R12及びkは、式(d1-I)と同義であり、Rは水素原子又は多塩基酸残基を表し、*は結合手を表す。
 式(d1-I-1)中のベンゼン環は、さらに任意の置換基により置換されていてもよい。
 多塩基酸残基とは、多塩基酸からOH基を1つ除した1価の基を意味する。多塩基酸としては、例えば、マレイン酸、コハク酸、イタコン酸、フタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、ピロメリット酸、トリメリット酸、ベンゾフェノンテトラカルボン酸、メチルヘキサヒドロフタル酸、エンドメチレンテトラヒドロフタル酸、クロレンド酸、メチルテトラヒドロフタル酸、ビフェニルテトラカルボン酸が挙げられる。
 パターニング特性の観点から、好ましくは、マレイン酸、コハク酸、イタコン酸、フタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、ピロメリット酸、トリメリット酸、ビフェニルテトラカルボン酸であり、より好ましくは、テトラヒドロフタル酸、ビフェニルテトラカルボン酸、ビフェニルテトラカルボン酸である。
 式(d1-I-1)中のベンゼン環は、さらに任意の置換基により置換されていてもよい。置換基としては、式(d1-I)中のベンゼン環について挙げたものを好ましく採用することができる。
 (d1-I)エポキシ(メタ)アクリレート系樹脂1分子中に含まれる、式(d1-I-1)で表される部分構造は、1種でも2種以上でもよく、例えば、Rが水素原子のものと、Rが多塩基酸残基のものが混在していてもよい。
 (d1-I)エポキシ(メタ)アクリレート系樹脂1分子中に含まれる、式(d1-I)で表される部分構造の数は特に限定されないが、1以上が好ましく、3以上がより好ましい。また、20以下が好ましく、15以下がさらに好ましい。前記下限値以上とすることで強固な膜が得られやすく、現像時に生じる表面荒れが生じにくくなる傾向がある。前記上限値以下とすることで感度の悪化や現像時の膜減りを抑制しやすく、解像性が向上する傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、1~20であってよく、1~15であってよく、3~15であってよい。
 (d1-I)エポキシ(メタ)アクリレート系樹脂の、ゲルパーミエーションクロマトグラフィー(GPC)で測定したポリスチレン換算の重量平均分子量(Mw)は特に限定されないが、1000以上が好ましく、1500以上がより好ましく、2000以上がさらに好ましく、3000以上がよりさらに好ましく、4000以上が特に好ましく、5000以上が最も好ましく、また、30000以下が好ましく、20000以下がより好ましく、15000以下がさらに好ましい。前記下限値以上とすることで感光性着色組成物の残膜率が良好となる傾向がある。前記上限値以下とすることで現像液に対する溶解性が良好となる傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、1000~30000であってよく、1500~2000であってよく、1500~15000であってよく、2000~1500であってよい。
 (d1-I)エポキシ(メタ)アクリレート系樹脂の、酸価は特に限定されないが、20mgKOH/g以上が好ましく、40mgKOH/g以上がより好ましく、60mgKOH/g以上がさらに好ましく、80mgKOH/g以上がよりさらに好ましく、100mgKOH/g以上が特に好ましい。また、200mgKOH/g以下が好ましく、150mgKOH/g以下がより好ましく、130mgKOH/g以下がよりさらに好ましく、120mgKOH/g以下が特に好ましい。前記下限値以上とすることで現像溶解性が向上し、解像性が良好となる傾向がある。前記上限値以下とすることで感光性着色組成物の残膜率が良好となる傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、20~200mgKOH/gであってよく、60~150mgKOH/gであってよく、80~130mgKOH/gであってよく、100~130mgKOH/gであってよい。
 以下に(d1-I)エポキシ(メタ)アクリレート系樹脂の具体例を挙げる。なお、例中の*は結合手を示す。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
<(d1-II)エポキシ(メタ)アクリレート系樹脂>
Figure JPOXMLDOC01-appb-C000015
 式(d1-II)中、R13は各々独立に、水素原子又はメチル基を表し、R14は、環状炭化水素基を側鎖として有する2価の炭化水素基を表し、R15及びR16は各々独立に、置換基を有していてもよい2価の脂肪族基を表し、m及びnは各々独立に0~2の整数を表し、*は結合手を表す。
(R14
 式(d1-II)において、R14は、環状炭化水素基を側鎖として有する2価の炭化水素基を表す。
 環状炭化水素基としては、脂肪族環基又は芳香族環基が挙げられる。
 脂肪族環基が有する環の数は特に限定されないが、1以上が好ましく、2以上がより好ましい。また、10以下が好ましく、5以下がより好ましく、3以下がさらに好ましい。前記下限値以上とすることで強固な膜が得られやすく、現像時に生じる表面荒れが生じにくくなる傾向がある。前記上限値以下とすることで感度の悪化や現像時の膜減りを抑制しやすく、解像性が向上する傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、1~10であってよく、1~5であってよく、1~3であってよく、2~3であってよい。
 脂肪族環基の炭素数は特に限定されないが、4以上が好ましく、6以上がより好ましく、8以上がさらに好ましい。また、40以下が好ましく、30以下がより好ましく、20以下がさらに好ましく、15以下が特に好ましい。前記下限値以上とすることで強固な膜が得られやすく、現像時に生じる表面荒れが生じにくくなる傾向がある。前記上限値以下とすることで感度の悪化や現像時の膜減りを抑制しやすく、解像性が向上する傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、4~40であってよく、4~30であってよく、6~20であってよく、8~15であってよい。
 脂肪族環基における脂肪族環としては、例えば、シクロヘキサン環、シクロヘプタン環、シクロデカン環、ノルボルナン環、イソボルナン環、アダマンタン環、シクロドデカン環が挙げられる。感光性着色組成物の残膜率と解像性の観点から、アダマンタン環が好ましい。
 芳香族環基が有する環の数は特に限定されないが、1以上が好ましく、2以上がより好ましく、3以上がさらに好ましい。また、10以下が好ましく、5以下がより好ましく、4以下がさらに好ましい。上記の上限及び下限は任意に組み合わせることができる。例えば、1~10が好ましく、1~5がより好ましく、1~4がさらに好ましく、2~4がよりさらに好ましく、3~4が特に好ましい。前記下限値以上とすることで強固な膜が得られやすく、現像時に生じる表面荒れが生じにくくなる傾向がある。前記上限値以下とすることで感度の悪化や現像時の膜減りを抑制しやすく、解像性が向上する傾向がある。
 芳香族環基としては、芳香族炭化水素環基、芳香族複素環基が挙げられる。芳香族環基の炭素数は特に限定されないが、4以上が好ましく、6以上がより好ましく、8以上がさらに好ましく、10以上がよりさらに好ましく、12以上が特に好ましい。また、40以下が好ましく、30以下がより好ましく、20以下がさらに好ましく、15以下が特に好ましい。前記下限値以上とすることで強固な膜が得られやすく、現像時に生じる表面荒れが生じにくくなる傾向がある。前記上限値以下とすることでパターニング特性が良好となる傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、4~40であってよく、6~40であってよく、8~30であってよく、10~20であってよく、12~15であってよい。
 芳香族環基における芳香族環としては、例えば、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオランテン環、フルオレン環が挙げられる。パターニング特性の観点から、フルオレン環が好ましい。
 環状炭化水素基を側鎖として有する2価の炭化水素基における、2価の炭化水素基は特に限定されないが、例えば、2価の脂肪族基、2価の芳香族環基、1以上の2価の脂肪族基と1以上の2価の芳香族環基とを連結した基が挙げられる。
 2価の脂肪族基は、直鎖状、分岐鎖状、環状の脂肪族基が挙げられる。現像溶解性の観点からは直鎖状の脂肪族基が好ましく、一方で露光部への現像液の浸透低減の観点からは環状の脂肪族基が好ましい。その炭素数は特に限定されないが、1以上が好ましく、3以上がより好ましく、6以上がさらに好ましい。また、25以下が好ましく、20以下がより好ましく、15以下がさらに好ましい。前記下限値以上とすることで強固な膜が得られやすく、現像時に生じる表面荒れが生じにくく、基板への密着性が良好となる傾向がある。前記上限値以下とすることで感度の悪化や現像時の膜減りを抑制しやすく、解像性が向上する傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、1~25であってよく、3~20であってよく、6~15であってよい。
 2価の直鎖状の脂肪族基としては、例えば、メチレン基、エチレン基、n-プロピレン基、n-ブチレン基、n-ペンチレン基、n-ヘキシレン基、n-ヘプチレン基が挙げられる。骨格の剛直性の観点から、メチレン基が好ましい。
 2価の分岐鎖状の脂肪族基としては、例えば、前述の2価の直鎖状の脂肪族基に、側鎖としてメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基を有する構造が挙げられる。
 2価の環状の脂肪族基が有する環の数は特に限定されないが、1以上が好ましく、2以上がより好ましい。また、10以下が好ましく、5以下がより好ましく、3以下がさらに好ましい。前記下限値以上とすることで強固な膜となり、基板密着性と良好となる傾向がある。また、前記上限値以下とすることで感度の悪化や現像時の膜減りを抑制しやすく、解像性が向上する傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、1~10であってよく、1~5であってよく、1~3であってよく、2~3であってよい。
 2価の環状の脂肪族基としては、例えば、シクロヘキサン環、シクロヘプタン環、シクロデカン環、ノルボルナン環、イソボルナン環、アダマンタン環、シクロドデカン環の環から水素原子を2つ除した基が挙げられる。骨格の剛直性の観点から、アダマンタン環から水素原子を2つ除した基が好ましい。
 2価の脂肪族基が有していてもよい置換基としては、例えば、メトキシ基、エトキシ基等の炭素数1~5のアルコキシ基;水酸基;ニトロ基;シアノ基;カルボキシ基が挙げられる。合成容易性の観点から、無置換であることが好ましい。
 2価の芳香族環基としては、2価の芳香族炭化水素環基及び2価の芳香族複素環基が挙げられる。その炭素数は特に限定されないが、4以上が好ましく、5以上がより好ましく、6以上がさらに好ましい。また、30以下が好ましく、20以下がより好ましく、15以下がさらに好ましい。前記下限値以上とすることで強固な膜が得られやすく、現像時に生じる表面荒れが生じにくく、基板への密着性が良好となる傾向がある。前記上限値以下とすることで感度の悪化や現像時の膜減りを抑制しやすく、解像性が向上する傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、4~30であってよく、5~20であってよく、6~15であってよい。
 2価の芳香族炭化水素環基における芳香族炭化水素環としては、単環であっても縮合環であってもよい。2価の芳香族炭化水素環基としては、例えば、2個の遊離原子価を有する、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、ペリレン環、テトラセン環、ピレン環、ベンズピレン環、クリセン環、トリフェニレン環、アセナフテン環、フルオランテン環、フルオレン環が挙げられる。
 2価の芳香族複素環基における芳香族複素環としては、単環であっても縮合環であってもよい。2価の芳香族複素環基としては、例えば、2個の遊離原子価を有する、フラン環、ベンゾフラン環、チオフェン環、ベンゾチオフェン環、ピロール環、ピラゾール環、イミダゾール環、オキサジアゾール環、インドール環、カルバゾール環、ピロロイミダゾール環、ピロロピラゾール環、ピロロピロール環、チエノピロール環、チエノチオフェン環、フロピロール環、フロフラン環、チエノフラン環、ベンゾイソオキサゾール環、ベンゾイソチアゾール環、ベンゾイミダゾール環、ピリジン環、ピラジン環、ピリダジン環、ピリミジン環、トリアジン環、キノリン環、イソキノリン環、シノリン環、キノキサリン環、フェナントリジン環、ペリミジン環、キナゾリン環、キナゾリノン環、アズレン環が挙げられる。パターニング特性の観点から、2個の遊離原子価を有するベンゼン環又はナフタレン環が好ましく、2個の遊離原子価を有するベンゼン環がより好ましい。
 2価の芳香族環基が有していてもよい置換基としては、例えば、ヒドロキシ基、メチル基、メトキシ基、エチル基、エトキシ基、プロピル基、プロポキシ基が挙げられる。現像溶解性の観点から、無置換が好ましい。
 1以上の2価の脂肪族基と1以上の2価の芳香族環基とを連結した基としては、前述の2価の脂肪族基を1以上と、前述の2価の芳香族環基を1以上とを連結した基が挙げられる。
 2価の脂肪族基の数は特に限定されないが、1以上が好ましく、2以上がより好ましく、また、10以下が好ましく、5以下がより好ましく、3以下がさらに好ましい。前記下限値以上とすることで強固な膜が得られやすく、現像時に生じる表面荒れが生じにくく、基板への密着性が良好となる傾向がある。前記上限値以下とすることで感度の悪化や現像時の膜減りを抑制しやすく、解像性が向上する傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、1~10であってよく、1~5であってよく、1~3であってよく、2~3であってよい。
 2価の芳香族環基の数は特に限定されないが、1以上が好ましく、2以上がより好ましく、また、10以下が好ましく、5以下がより好ましく、3以下がさらに好ましい。前記下限値以上とすることで強固な膜が得られやすく、現像時に生じる表面荒れが生じにくく、基板への密着性が良好となる傾向がある。前記上限値以下とすることで感度の悪化や現像時の膜減りを抑制しやすく、解像性が向上する傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、1~10であってよく、1~5であってよく、1~3であってよく、2~3であってよい。
 1以上の2価の脂肪族基と1以上の2価の芳香族環基とを連結した基としては、例えば、前述した式(d1-I-A)~(d1-I-F)で表される基が挙げられる。骨格の剛直性と膜の疎水化の観点から、式(d1-I-C)で表される基が好ましい。
 これらの2価の炭化水素基に対して、側鎖である環状炭化水素基の結合態様は特に限定されないが、例えば、脂肪族基や芳香族環基の水素原子1つを側鎖である環状炭化水素基で置換した態様や、脂肪族基の炭素原子の1つを含めて側鎖である環状炭化水素基を構成した態様が挙げられる。
(R15、R16
 式(d1-II)において、R15及びR16は各々独立に、置換基を有していてもよい2価の脂肪族基を表す。
 2価の脂肪族基は、直鎖状、分岐鎖状、環状の脂肪族基が挙げられる。現像溶解性の観点からは直鎖状の脂肪族基が好ましく、一方で露光部への現像液の浸透低減の観点からは環状の脂肪族基が好ましい。その炭素数は特に限定されないが、1以上が好ましく、3以上がより好ましく、6以上がさらに好ましい。また、20以下が好ましく、15以下がより好ましく、10以下がさらに好ましい。前記下限値以上とすることで強固な膜が得られやすく、現像時に生じる表面荒れが生じにくく、基板への密着性が良好となる傾向がある。前記上限値以下とすることで感度の悪化や現像時の膜減りを抑制しやすく、解像性が向上する傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、1~20であってよく、3~15であってよく、6~10であってよい。
 2価の直鎖状の脂肪族基としては、例えば、メチレン基、エチレン基、n-プロピレン基、n-ブチレン基、n-ペンチレン基、n-ヘキシレン基、n-ヘプチレン基が挙げられる。骨格の剛直性の観点から、メチレン基が好ましい。
 2価の分岐鎖状の脂肪族基としては、前述の2価の直鎖状の脂肪族基に、側鎖として、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基を有する構造が挙げられる。
 2価の環状の脂肪族基が有する環の数は特に限定されないが、1以上が好ましく、2以上がより好ましい。また、12以下が好ましく、10以下がより好ましい。前記下限値以上とすることで強固な膜となり、基板密着性が良好となる傾向がある。前記上限値以下とすることで感度の悪化や現像時の膜減りを抑制しやすく、解像性が向上する傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、1~12であってよく、2~10であってよい。
 2価の環状の脂肪族基としては、例えば、シクロヘキサン環、シクロヘプタン環、シクロデカン環、シクロドデカン環、ノルボルナン環、イソボルナン環、アダマンタン環、ジシクロペンタジエン環から水素原子を2つ除した基が挙げられる。骨格の剛直性の観点から、ジシクロペンタジエン環、アダマンタン環から水素原子を2つ除した基が好ましい。
 2価の脂肪族基が有していてもよい置換基としては、例えば、メトキシ基、エトキシ基等の炭素数1~5のアルコキシ基;水酸基;ニトロ基;シアノ基;カルボキシ基が挙げられる。合成容易性の観点から、無置換であることが好ましい。
(m、n)
 式(d1-II)において、m及びnは各々独立に0~2の整数を表す。前記下限値以上とすることでパターニング適正が良好となり、現像時に生じる表面荒れが生じにくくなる傾向があり、また、前記上限値以下とすることで現像性が良好となる傾向がある。現像性の観点からm及びnが0であることが好ましい。パターニング適正、現像時に生じる表面荒れを抑制する観点からm及びnが1以上であることが好ましい。
 式(d1-II)で表される部分構造は、基板への密着性の観点から、下記一般式(d1-II-1)で表される部分構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000016
 式(d1-II-1)中、R13、R15、R16、m及びnは式(d1-II)と同義であり、Rαは、置換基を有していてもよい1価の環状炭化水素基を表し、pは1以上の整数を表し、*は結合手を表す。式(d1-II-1)中のベンゼン環は、さらに任意の置換基により置換されていてもよい。
(Rα
 式(d1-II-1)において、Rαは、置換基を有していてもよい1価の環状炭化水素基を表す。
 環状炭化水素基としては、脂肪族環基又は芳香族環基が挙げられる。
 脂肪族環基が有する環の数は特に限定されないが、1以上が好ましく、2以上がより好ましい。また、6以下が好ましく、4以下がより好ましく、3以下がさらに好ましい。前記下限値以上とすることで強固な膜が得られやすく、現像時に生じる表面荒れが生じにくくなる傾向がある。前記上限値以下とすることでパターニング特性が良好となる傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、1~6であってよく、1~4であってよく、1~3であってよく、2~3であってよい。
 脂肪族環基の炭素数は特に限定されないが、4以上が好ましく、6以上がより好ましく、8以上がさらに好ましい。また、40以下が好ましく、30以下がより好ましく、20以下がさらに好ましく、15以下が特に好ましい。前記下限値以上とすることで強固な膜が得られやすく、現像時に生じる表面荒れが生じにくくなる傾向がある。前記上限値以下とすることでパターニング特性が良好となる傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、4~40であってよく、4~30であってよく、6~20であってよく、8~15であってよい。
 脂肪族環基における脂肪族環としては、例えば、シクロヘキサン環、シクロヘプタン環、シクロデカン環、ノルボルナン環、イソボルナン環、アダマンタン環、シクロドデカン環が挙げられる。強固な膜特性の観点から、アダマンタン環が好ましい。
 芳香族環基が有する環の数は特に限定されないが、1以上が好ましく、2以上が好ましく、3以上がより好ましい。また、10以下が好ましく、5以下がより好ましい。前記下限値以上とすることで強固な膜が得られやすく、現像時に生じる表面荒れが生じにくくなる傾向がある。前記上限値以下とすることでパターニング特性が良好となる傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、1~10であってよく、1~5であってよく、2~5であってよく、3~5であってよい。
 芳香族環基としては、芳香族炭化水素環基、芳香族複素環基が挙げられる。また、芳香族環基の炭素数は特に限定されないが、4以上が好ましく、5以上がより好ましく、6以上がさらに好ましい。また、30以下が好ましく、20以下がより好ましく、15以下がさらに好ましい。前記下限値以上とすることで強固な膜が得られやすく、現像時に生じる表面荒れが生じにくくなる傾向がある。前記上限値以下とすることでパターニング特性が良好となる傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、4~30であってよく、5~20であってよく、6~15であってよい。
 芳香族環基における芳香族環としては、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、フルオレン環が挙げられる。現像溶解性の観点から、フルオレン環が好ましい。
 環状炭化水素基が有していてもよい置換基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、アミル基、イソアミル基等の炭素数1~5のアルキル基;メトキシ基、エトキシ基等の炭素数1~5のアルコキシ基;水酸基;ニトロ基;シアノ基;カルボキシ基が挙げられる。合成の容易性の観点から、無置換が好ましい。
 pは1以上の整数を表すが、2以上が好ましい。また、3以下が好ましい。例えば、1~3が好ましく、2~3がより好ましい。前記下限値以上とすることで膜硬化度と残膜率が良好となる傾向がある。前記上限値以下とすることで現像性が良好となる傾向がある。
 強固な膜硬化度の観点から、Rαが1価の脂肪族環基であることが好ましく、アダマンチル基であることがより好ましい。
 式(d1-II-1)中のベンゼン環は、さらに任意の置換基により置換されていてもよい。置換基としては、例えば、ヒドロキシ基、メチル基、メトキシ基、エチル基、エトキシ基、プロピル基、プロポキシ基が挙げられる。置換基の数も特に限定されず、1つでもよいし、2つ以上でもよい。
 パターニング特性の観点から、無置換であることが好ましい。
 以下に、式(d1-II-1)で表される部分構造の具体例を挙げる。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
 式(d1-II)で表される部分構造は、骨格の剛直性、及び膜疎水化の観点から、下記一般式(d1-II-2)で表される部分構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000022
 式(d1-II-2)中、R13、R15、R16、m及びnは、式(d1-II)と同義であり、Rβは、置換基を有していてもよい2価の環状炭化水素基を表し、*は結合手を表す。
 式(d1-II-2)中のベンゼン環は、さらに任意の置換基により置換されていてもよい。
 (Rβ
 式(d1-II-2)において、Rβは、置換基を有していてもよい2価の環状炭化水素基を表す。
 環状炭化水素基としては、脂肪族環基又は芳香族環基が挙げられる。
 脂肪族環基が有する環の数は特に限定されないが、1以上が好ましく、2以上がより好ましい。また、10以下が好ましく、5以下がより好ましい。前記下限値以上とすることで強固な膜が得られやすく、現像時に生じる表面荒れが生じにくくなる傾向がある。前記上限値以下とすることで感度の悪化や現像時の膜減りを抑制しやすく、解像性が向上する傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、1~10であってよく、2~5であってよい。
 脂肪族環基の炭素数は4以上が好ましく、6以上がより好ましく、8以上がさらに好ましい。また、40以下が好ましく、35以下がより好ましく、30以下がさらに好ましい。前記下限値以上とすることで現像時の膜表面の荒れを抑制する傾向がある。前記上限値以下とすることで感度の悪化や現像時の膜減りを抑制しやすく、解像性が向上する傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、4~40であってよく、6~35であってよく、8~30であってよい。
 脂肪族環基における脂肪族環としては、例えば、シクロヘキサン環、シクロヘプタン環、シクロデカン環、ノルボルナン環、イソボルナン環、アダマンタン環、シクロドデカン環が挙げられる。現像時の膜減り、解像性の観点から、アダマンタン環が好ましい。
 芳香族環基が有する環の数は特に限定されないが、1以上が好ましく、2以上がより好ましく、3以上がさらに好ましい。また、10以下が好ましく、5以下がより好ましい。前記下限値以上とすることで強固な膜が得られやすく、現像時に生じる表面荒れが生じにくくなる傾向がある。前記上限値以下とすることで感度の悪化や膜減りを抑制しやすく、解像性が向上する傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、1~10であってよく、1~5であってよく、2~5であってよく、3~5であってよい。
 芳香族環基としては、芳香族炭化水素環基、芳香族複素環基が挙げられる。
 芳香族環基の炭素数は4以上が好ましく、6以上がより好ましく、8以上がさらに好ましく、10以上がよりさらに好ましい。また、40以下が好ましく、30以下がより好ましく、20以下がさらに好ましく、15以下が特に好ましい。前記下限値以上とすることで強固な膜が得られやすく、現像時に生じる表面荒れが生じにくくなる傾向がある。前記上限値以下とすることで感度の悪化や膜減りを抑制しやすく、解像性が向上する傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、4~40であってよく、6~30であってよく、8~20であってよく、10~15であってよい。
 芳香族環基における芳香族環としては、例えば、ベンゼン環、ナフタレン環、アントラセン環、フェナントレン環、フルオレン環が挙げられる。現像性の観点から、フルオレン環が好ましい。
 環状炭化水素基が有していてもよい置換基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、アミル基、イソアミル基等の炭素数1~5のアルキル基;メトキシ基、エトキシ基等の炭素数1~5のアルコキシ基;水酸基;ニトロ基;シアノ基;カルボキシ基が挙げられる。合成の簡易性の観点から、無置換が好ましい。
 膜減りの抑制、解像性の観点から、Rβが2価の脂肪族環基であることが好ましく、2価のアダマンタン環基であることがより好ましい。一方で、パターニング特性の観点から、Rβが2価の芳香族環基であることが好ましく、2価のフルオレン環基であることがより好ましい。
 式(d1-II-2)中のベンゼン環は、さらに任意の置換基により置換されていてもよい。置換基としては、例えば、ヒドロキシ基、メチル基、メトキシ基、エチル基、エトキシ基、プロピル基、プロポキシ基が挙げられる。置換基の数も特に限定されず、1つでもよいし、2つ以上でもよい。
 また、式(d1-II-2)中の2つのベンゼン環はRβを介して連結しているところ、さらに、置換基を介して連結して三環構造を形成していてもよい。この場合の置換基としては、-O-、-S-、-NH-、-CH-等の2価の基が挙げられる。例えば、-O-を介して連結して三環構造を形成するとは、それぞれのベンゼン環上でRβに結合する炭素原子のオルト位の炭素原子同士が-O-を介して連結して、キサンテン骨格を形成することを意味する。
 パターニング特性の観点から、無置換であることが好ましい。また、膜減り等を生じにくくする観点から、メチル基置換であることが好ましい。
 以下に式(d1-II-2)で表される部分構造の具体例を挙げる。なお、例中の*は結合手を示す。
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
 式(d1-II)で表される部分構造は、塗膜残膜率とパターニング特性の観点から、下記一般式(d1-II-3)で表される部分構造であることが好ましい。
Figure JPOXMLDOC01-appb-C000027
 式(d1-II-3)中、R13、R14、R15、R16、m及びnは、式(d1-II)と同義であり、Rは水素原子又は多塩基酸残基を表す。
 多塩基酸残基とは、多塩基酸からOH基を1つ除した1価の基を意味する。なお、さらにもう1つのOH基が除され、式(d1-II-3)で表される他の分子におけるRと共用されていてもよい。つまり、Rを介して複数の式(d1-II-3)が連結していてもよい。
 多塩基酸としては、例えば、マレイン酸、コハク酸、イタコン酸、フタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、ピロメリット酸、トリメリット酸、ベンゾフェノンテトラカルボン酸、メチルヘキサヒドロフタル酸、エンドメチレンテトラヒドロフタル酸、クロレンド酸、メチルテトラヒドロフタル酸、ビフェニルテトラカルボン酸が挙げられる。
 パターニング特性の観点から、好ましくは、マレイン酸、コハク酸、イタコン酸、フタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、ピロメリット酸、トリメリット酸、ビフェニルテトラカルボン酸であり、より好ましくは、テトラヒドロフタル酸、ビフェニルテトラカルボン酸、ビフェニルテトラカルボン酸である。
 (d1-II)エポキシ(メタ)アクリレート系樹脂1分子中に含まれる、式(d1-II-3)で表される部分構造は、1種でも2種以上でもよく、例えば、Rが水素原子のものと、Rが多塩基酸残基のものが混在していてもよい。
 (d1-II)エポキシ(メタ)アクリレート系樹脂1分子中に含まれる、式(d1-II)で表される部分構造の数は特に限定されないが、1以上が好ましく、3以上がより好ましい。また、20以下が好ましく、15以下がより好ましく、10以下がさらに好ましい。前記下限値以上とすることで強固な膜が得られやすく、現像時に生じる表面荒れが生じにくくなる傾向がある。前記上限値以下とすることで感度の悪化や膜減りを抑制しやすく、解像性が向上する傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、1~20であってよく、1~15であってよく、3~10であってよい。
 (d1-II)エポキシ(メタ)アクリレート系樹脂の、ゲルパーミエーションクロマトグラフィー(GPC)で測定したポリスチレン換算の重量平均分子量(Mw)は特に限定されないが、1000以上が好ましく、1500以上がより好ましく、2000以上がさらに好ましく、3000以上がよりさらに好ましく、4000以上がことさらに好ましく、5000以上が特に好ましい。また、10000以下が好ましく、8000以下がより好ましく、7000以下がさらに好ましい。前記下限値以上とすることで感光性着色組成物の残膜率が良好となる傾向がある。前記上限値以下とすることで現像液に対する溶解性が良好となる傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、1000~10000であってよく、1500~10000であってよく、1500~8000であってよく、2000~8000であってよく、2000~7000であってよい。
 (d1-II)エポキシ(メタ)アクリレート系樹脂の酸価は特に限定されないが、20mgKOH/g以上が好ましく、40mgKOH/g以上がより好ましく、60mgKOH/g以上がさらに好ましく、80mgKOH/g以上がよりさらに好ましく、100mgKOH/g以上が特に好ましい。また、200mgKOH/g以下が好ましく、150mgKOH/g以下がより好ましく、130mgKOH/g以下がよりさらに好ましく、120mgKOH/g以下が特に好ましい。前記下限値以上とすることで現像溶解性が向上し、解像性が良好となる傾向がある。前記上限値以下とすることで感光性着色組成物の残膜率が良好となる傾向がある。上記の上限及び下限は任意に組み合わせることができる。例えば、20mgKOH/g~200mgKOH/gであってよく、60mgKOH/g~150mgKOH/gであってよく、80mgKOH/g~130mgKOH/gであってよく、100mgKOH/g~130mgKOH/gであってよい。
 カルボキシ基含有エポキシ(メタ)アクリレート系樹脂は、1種を単独で用いても、2種以上の樹脂を併用してもよい。
 また、前述のカルボキシ基含有エポキシ(メタ)アクリレート系樹脂の一部を、他のバインダー樹脂に置き換えて用いてもよい。即ち、カルボキシ基含有エポキシ(メタ)アクリレート系樹脂と他のバインダー樹脂を併用してもよい。この場合において、(b)アルカリ可溶性樹脂におけるカルボキシ基含有エポキシ(メタ)アクリレート系樹脂の割合を、50質量%以上とすることが好ましく、60質量%以上とすることがより好ましく、70質量%以上とすることがさらに好ましく、80質量%以上とすることが特に好ましく、100質量%以下であってよい。
 <(D2)アクリル共重合樹脂>
 (D)アルカリ可溶性樹脂として、顔料や分散剤等との相溶性の観点から、(D2)アクリル共重合樹脂を用いることが好ましく、日本国特開2014-137466号公報に記載のものを好ましく用いることができる。
 (D2)アクリル共重合樹脂としては、例えば、1個以上のカルボキシ基を有するエチレン性不飽和単量体(以下、「不飽和単量体(d2-1)」という。)と他の共重合可能なエチレン性不飽和単量体(以下、「不飽和単量体(d2-2)」という。)との共重合体を挙げることができる。
 不飽和単量体(d2-1)としては、例えば、(メタ)アクリル酸、クロトン酸、α-クロルアクリル酸、けい皮酸等の不飽和モノカルボン酸;マレイン酸、無水マレイン酸、フマル酸、シトラコン酸、無水シトラコン酸、メサコン酸等の不飽和ジカルボン酸又はその無水物;こはく酸モノ〔2-(メタ)アクリロイロキシエチル〕、フタル酸モノ〔2-(メタ)アクリロイロキシエチル〕等の2価以上の多価カルボン酸のモノ〔(メタ)アクリロイロキシアルキル〕エステル;ω-カルボキシポリカプロラクトンモノ(メタ)アクリレート等の両末端にカルボキシ基と水酸基とを有するポリマーのモノ(メタ)アクリレート;p-ビニル安息香酸を挙げることができる。
 これらの不飽和単量体(d2-1)は、単独で又は2種以上を併用することができる。
 不飽和単量体(d2-2)としては、例えば、
N-フェニルマレイミド、N-シクロヘキシルマレイミド等のN-置換マレイミド;
 スチレン、α-メチルスチレン、p-ヒドロキシスチレン、p-ヒドロキシ-α-メチルスチレン、p-ビニルベンジルグリシジルエーテル、アセナフチレン等の芳香族ビニル化合物;
 メチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、アリル(メタ)アクリレート、ベンジル(メタ)アクリレート、ポリエチレングルコール(重合度2~10)メチルエーテル(メタ)アクリレート、ポリプロピレングルコール(重合度2~10)メチルエーテル(メタ)アクリレート、ポリエチレングリコール(重合度2~10)モノ(メタ)アクリレート、ポリプロピレングリコール(重合度2~10)モノ(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、トリシクロ[5.2.1.02,6]デカン-8-イル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、グリセロールモノ(メタ)アクリレート、4-ヒドロキシフェニル(メタ)アクリレート、パラクミルフェノールのエチレンオキサイド変性(メタ)アクリレート、グリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート、3-〔(メタ)アクリロイルオキシメチル〕オキセタン、3-〔(メタ)アクリロイルオキシメチル〕-3-エチルオキセタン等の(メタ)アクリル酸エステル;
 シクロヘキシルビニルエーテル、イソボルニルビニルエーテル、トリシクロ[5.2.1.02,6]デカン-8-イルビニルエーテル、ペンタシクロペンタデカニルビニルエーテル、3-(ビニルオキシメチル)-3-エチルオキセタン等のビニルエーテル;
 ポリスチレン、ポリメチル(メタ)アクリレート、ポリ-n-ブチル(メタ)アクリレート、ポリシロキサン等の重合体分子鎖の末端にモノ(メタ)アクリロイル基を有するマクロモノマーを挙げることができる。
 これらの不飽和単量体(d2-2)は、単独で又は2種以上を併用することができる。
 不飽和単量体(d2-1)と不飽和単量体(d2-2)の共重合体において、不飽和単量体(d2-1)の共重合割合は、好ましくは5~50質量%、さらに好ましくは10~40質量%である。このような範囲で不飽和単量体(d2-1)を共重合させることにより、アルカリ現像性及び保存安定性に優れた感光性着色組成物を得ることができる傾向がある。
 不飽和単量体(d2-1)と不飽和単量体(d2-2)の共重合体としては、例えば、日本国特開平7-140654号公報、日本国特開平8-259876号公報、日本国特開平10-31308号公報、日本国特開平10-300922号公報、日本国特開平11-174224号公報、日本国特開平11-258415号公報、日本国特開2000-56118号公報、日本国特開2004-101728号公報に開示されている共重合体を挙げることができる。
 不飽和単量体(d2-1)と不飽和単量体(d2-2)の共重合体は、公知の方法により製造することができるが、例えば、日本国特開2003-222717号公報、日本国特開2006-259680号公報、国際公開第2007/029871号公報に開示されている方法により、その構造やMw、Mw/Mn(Mnは数平均分子量である。)を制御することもできる。
 国際公開第2016/194619号、国際公開第2017/154439号に記載の樹脂を用いてもよい。
<(E)光重合性化合物>
 本発明の感光性樹脂組成物は、感度等の点から(E)光重合性化合物を含有する。
 (E)光重合性化合物としては、分子内にエチレン性不飽和基を少なくとも1個有する化合物(以下、「エチレン性単量体」と称することがある。)が挙げられる。具体的には、例えば、(メタ)アクリル酸、(メタ)アクリル酸アルキルエステル、アクリロニトリル、スチレン、及びエチレン性不飽和結合を1個有するカルボン酸と、多価又は1価アルコールのエステルが挙げられる。
 (E)光重合性化合物としては、特に、1分子中にエチレン性不飽和基を2個以上有する多官能エチレン性単量体を使用することが好ましい。多官能エチレン性単量体におけるエチレン性不飽和基の数は、好ましくは3個以上、より好ましくは4個以上、さらに好ましくは5個以上、特に好ましくは6個以上、また、好ましくは10個以下、より好ましくは8個以下である。前記下限値以上とすることで感光性樹脂組成物が高感度となる傾向があり、また、前記上限値以下とすることで重合時の硬化収縮が小さくなる傾向がある。
 上記の上限及び下限は任意に組み合わせることができる。例えば、2~10個であってよく、3~10個であってよく、4~10個であってよく、5~8個であってよく、6~8個であってよい。
 多官能エチレン性単量体の例としては、例えば、脂肪族ポリヒドロキシ化合物と不飽和カルボン酸とのエステル;芳香族ポリヒドロキシ化合物と不飽和カルボン酸とのエステル;脂肪族ポリヒドロキシ化合物、芳香族ポリヒドロキシ化合物等の多価ヒドロキシ化合物と、不飽和カルボン酸及び多塩基性カルボン酸とのエステル化反応により得られるエステルが挙げられる。
 脂肪族ポリヒドロキシ化合物と不飽和カルボン酸とのエステルとしては、例えば、エチレングリコールジアクリレート、トリエチレングリコールジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールエタントリアクリレート、ペンタエリスリトールジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、グリセロールアクリレート等の脂肪族ポリヒドロキシ化合物のアクリル酸エステル、これら例示化合物のアクリレートをメタクリレートに代えたメタクリル酸エステル、同様にイタコネートに代えたイタコン酸エステル、クロネートに代えたクロトン酸エステルもしくはマレエートに代えたマレイン酸エステルが挙げられる。
 芳香族ポリヒドロキシ化合物と不飽和カルボン酸とのエステルとしては、例えば、ハイドロキノンジアクリレート、ハイドロキノンジメタクリレート、レゾルシンジアクリレート、レゾルシンジメタクリレート、ピロガロールトリアクリレート等の芳香族ポリヒドロキシ化合物のアクリル酸エステル及びメタクリル酸エステルが挙げられる。
 多塩基性カルボン酸及び不飽和カルボン酸と、多価ヒドロキシ化合物のエステル化反応により得られるエステルとしては必ずしも単一物ではないが、代表的な具体例を挙げれば、アクリル酸、フタル酸、及びエチレングリコールの縮合物、アクリル酸、マレイン酸、及びジエチレングリコールの縮合物、メタクリル酸、テレフタル酸及びペンタエリスリトールの縮合物、アクリル酸、アジピン酸、ブタンジオール及びグリセリンの縮合物が挙げられる。
 その他、本発明に用いられる多官能エチレン性単量体の例としては、例えば、ポリイソシアネート化合物と水酸基含有(メタ)アクリル酸エステル又はポリイソシアネート化合物とポリオール及び水酸基含有(メタ)アクリル酸エステルを反応させて得られるようなウレタン(メタ)アクリレート類;多価エポキシ化合物とヒドロキシ(メタ)アクリレート又は(メタ)アクリル酸との付加反応物のようなエポキシアクリレート類;エチレンビスアクリルアミド等のアクリルアミド類;フタル酸ジアリル等のアリルエステル類;ジビニルフタレート等のビニル基含有化合物が有用である。
 これらは1種を単独で用いてもよく、2種以上を併用してもよい。
 (E)光重合性化合物の含有割合は、特に限定されないが、感光性樹脂組成物の全固形分に対して、90質量%以下が好ましく、70質量%以下がより好ましく、50質量%以下がさらに好ましく、30質量%以下がよりさらに好ましく、20質量%以下が特に好ましく、10質量%以下が最も好ましく、また、1質量%以上が好ましく、5質量%以上がより好ましい。(E)光重合性化合物の含有割合が上記上限値以下であることで、露光部への現像液の浸透性が適度となり、良好な画像を得ることができる傾向にある。上記下限値以上であることで、紫外線照射による光硬化を向上させるとともにアルカリ現像性も良好となる傾向にある。
 上記の上限及び下限は任意に組み合わせることができる。例えば、1~90質量%であってよく、1~70質量%であってよく、1~50質量%であってよく、5~30質量%であってよく、5~20質量%であってよく、5~10質量%であってよい。
<(F)光重合開始剤>
 本発明の感光性樹脂組成物は(F)光重合開始剤を含有する。(F)光重合開始剤は光を直接吸収し、分解反応又は水素引き抜き反応を起こし、重合活性ラジカルを発生する機能を有する成分である。必要に応じて、増感色素等の付加剤を添加して使用してもよい。
 (F)光重合開始剤としては、例えば、日本国特開昭59-152396号公報、日本国特開昭61-151197号各公報に記載のチタノセン化合物を含むメタロセン化合物;日本国特開2000-56118号公報に記載のヘキサアリールビイミダゾール誘導体;日本国特開平10-39503号公報記載のハロメチル化オキサジアゾール誘導体、ハロメチル-s-トリアジン誘導体、N-フェニルグリシン等のN-アリール-α-アミノ酸類、N-アリール-α-アミノ酸塩類、N-アリール-α-アミノ酸エステル類等のラジカル活性剤、α-アミノアルキルフェノン誘導体;日本国特開2000-80068号公報、日本国特開2006-36750号公報等に記載されているオキシムエステル誘導体が挙げられる。
 チタノセン誘導体類としては、例えば、ジシクロペンタジエニルチタニウムジクロライド、ジシクロペンタジエニルチタニウムビスフェニル、ジシクロペンタジエニルチタニウムビス(2,3,4,5,6-ペンタフルオロフェニ-1-イル)、ジシクロペンタジエニルチタニウムビス(2,3,5,6-テトラフルオロフェニ-1-イル)、ジシクロペンタジエニルチタニウムビス(2,4,6-トリフルオロフェニ-1-イル)、ジシクロペンタジエニルチタニウムジ(2,6-ジフルオロフェニ-1-イル)、ジシクロペンタジエニルチタニウムジ(2,4-ジフルオロフェニ-1-イル)、ジ(メチルシクロペンタジエニル)チタニウムビス(2,3,4,5,6-ペンタフルオロフェニ-1-イル)、ジ(メチルシクロペンタジエニル)チタニウムビス(2,6-ジフルオロフェニ-1-イル)、ジシクロペンタジエニルチタニウム〔2,6-ジ-フルオロ-3-(ピロ-1-イル)-フェニ-1-イル〕が挙げられる。
 ビイミダゾール誘導体類としては、例えば、2-(2’-クロロフェニル)-4,5-ジフェニルイミダゾール2量体、2-(2’-クロロフェニル)-4,5-ビス(3’-メトキシフェニル)イミダゾール2量体、2-(2’-フルオロフェニル)-4,5-ジフェニルイミダゾール2量体、2-(2’-メトキシフェニル)-4,5-ジフェニルイミダゾール2量体、(4’-メトキシフェニル)-4,5-ジフェニルイミダゾール2量体が挙げられる。
 ハロメチル化オキサジアゾール誘導体類としては、例えば、2-トリクロロメチル-5-(2’-ベンゾフリル)-1,3,4-オキサジアゾール、2-トリクロロメチル-5-〔β-(2’-ベンゾフリル)ビニル〕-1,3,4-オキサジアゾール、2-トリクロロメチル-5-〔β-(2’-(6’’-ベンゾフリル)ビニル)〕-1,3,4-オキサジアゾール、2-トリクロロメチル-5-フリル-1,3,4-オキサジアゾールが挙げられる。
 ハロメチル-s-トリアジン誘導体類としては、例えば、2-(4-メトキシフェニル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-メトキシナフチル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-エトキシナフチル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-エトキシカルボニルナフチル)-4,6-ビス(トリクロロメチル)-s-トリアジンが挙げられる。
 α-アミノアルキルフェノン誘導体類としては、例えば、2-メチル-1〔4-(メチルチオ)フェニル〕-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)ブタン-1-オン、4-ジメチルアミノエチルベンゾエート、4-ジメチルアミノイソアミルベンゾエート、4-ジエチルアミノアセトフェノン、4-ジメチルアミノプロピオフェノン、2-エチルヘキシル-1,4-ジメチルアミノベンゾエート、2,5-ビス(4-ジエチルアミノベンザル)シクロヘキサノン、7-ジエチルアミノ-3-(4-ジエチルアミノベンゾイル)クマリン、4-(ジエチルアミノ)カルコンが挙げられる。
 (F)光重合開始剤としては、感度の点で、オキシム誘導体類(オキシムエステル系化合物及びケトオキシムエステル系化合物)が好ましい。オキシム誘導体類の中でも、基板との密着性の観点から、オキシムエステル系化合物が好ましい。フェノール性水酸基を含むアルカリ可溶性樹脂を用いる場合は、感度の点で不利になる場合がある。
 オキシムエステル系化合物の光重合開始剤は、その構造の中に紫外線を吸収する構造と光エネルギーを伝達する構造とラジカルを発生する構造を併せ持っているために、少量で感度が高く、かつ熱反応に対しては安定であり、少量で高感度な感光性樹脂組成物の設計が可能である。特に、露光光源のi線(365nm)に対する光吸収性の観点から、置換されていてもよいカルバゾリル基(置換されていてもよいカルバゾール環を有する基)を含有するオキシムエステル系化合物の場合に、この構造特性が良好に発現され、より好ましい。現在、市場では、遮光度が高く、薄膜なブラックマトリックスが要求されており、顔料濃度も、ますます大きくなっている。このような状況においては、特に有効である。
 オキシムエステル系化合物としては、下記一般式(22)で示される構造部分を含む化合物が挙げられ、好ましくは、下記一般式(23)で示されるオキシムエステル系化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000028
 式(22)中、R22は、それぞれ置換されていてもよい、炭素数2~12のアルカノイル基、炭素数1~20のヘテロアリールアルカノイル基、炭素数3~25のアルケノイル基、炭素数3~8のシクロアルカノイル基、炭素数3~20のアルコキシカルボニルアルカノイル基、炭素数8~20のフェノキシカルボニルアルカノイル基、炭素数3~20のヘテロアリ-ルオキシカルボニルアルカノイル基、炭素数2~10のアミノアルキルカルボニル基、炭素数7~20のアリーロイル基、炭素数1~20のヘテロアリーロイル基、炭素数2~10のアルコキシカルボニル基、又は炭素数7~20のアリールオキシカルボニル基を示す。
Figure JPOXMLDOC01-appb-C000029
 式(23)中、R21aは、水素、又はそれぞれ置換されていてもよい、炭素数1~20のアルキル基、炭素数2~25のアルケニル基、炭素数1~20のヘテロアリールアルキル基、炭素数3~20のアルコキシカルボニルアルキル基、炭素数8~20のフェノキシカルボニルアルキル基、炭素数1~20のヘテロアリールオキシカルボニルアルキル基もしくはヘテロアリールチオアルキル基、炭素数1~20のアミノアルキル基、炭素数2~12のアルカノイル基、炭素数3~25のアルケノイル基、炭素数3~8のシクロアルカノイル基、炭素数7~20のアリーロイル基、炭素数1~20のヘテロアリーロイル基、炭素数2~10のアルコキシカルボニル基、炭素数7~20のアリールオキシカルボニル基、又は炭素数1~10のシクロアルキルアルキル基を示す。
 R21bは芳香環あるいはヘテロ芳香環を含む任意の置換基を示す。
 なお、R21aはR21bと共に環を形成してもよく、その連結基は、それぞれ置換基を有していてもよい炭素数1~10のアルキレン基、ポリエチレン基(-(CH=CH)-)、ポリエチニレン基(-(C≡C)-)あるいはこれらを組み合わせてなる基が挙げられる(なお、rは0~3の整数である。)。
 R22aは、式(22)のおけるR22と同様の基を示す。
 式(22)におけるR22及び式(23)におけるR22aとしては、好ましくは、炭素数2~12のアルカノイル基、炭素数1~20のヘテロアリールアルカノイル基、炭素数3~8のシクロアルカノイル基が挙げられる。
 式(23)におけるR21aとしては、好ましくは無置換のメチル基、エチル基、プロピル基等の直鎖アルキル基又はシクロアルキルアルキル基や、N-アセチル-N-アセトキシアミノ基で置換されたプロピル基が挙げられる。
 また、式(23)におけるR21bとしては、好ましくは置換されていてもよいカルバゾリル基、置換されていてもよいチオキサントニル基、置換されていてもよいフェニルスルフィド基が挙げられる。
 オキシムエステル系化合物の光重合開始剤としては、式(23)におけるR21bが、置換されていてもよいカルバゾリル基であるものが、前述の理由からより好ましい。さらに、置換されていてもよい炭素数6~25のアリール基、置換されていてもよい炭素数7~25のアリールカルボニル基、置換されていてもよい炭素数5~25のヘテロアリール基、置換されていてもよい炭素数6~25のヘテロアリールカルボニル基、及びニトロ基からなる群から選ばれる少なくとも1種の基を有するカルバゾール基が好ましい。特に、ベンゾイル基、トルオイル基、ナフトイル基、チエニルカルボニル基、及びニトロ基からなる群から選ばれる少なくとも1種の基を有するカルバゾリル基が好ましい。また、これらの基はカルバゾリル基の3位に結合していることが望ましい。
 このようなオキシムエステル系化合物の光重合開始剤の市販品として、BASF社製のOXE-02、常州強力電子社製のTR-PBG-304やTR-PBG-314等がある。
 本発明に好適なオキシムエステル系化合物の光重合開始剤として具体的には、以下に例示されるような化合物が挙げられるが、何らこれらの化合物に限定されるものではない。
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
 ケトオキシムエステル系化合物としては、下記一般式(24)で示される構造部分を含む化合物が挙げられ、好ましくは、下記一般式(25)で示されるケトオキシムエステル系化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000033
 式(24)において、R24は、式(22)におけるR22と同義である。
Figure JPOXMLDOC01-appb-C000034
 式(25)において、R23aは、それぞれ置換されていてもよい、フェニル基、炭素数1~20のアルキル基、炭素数2~25のアルケニル基、炭素数1~20のヘテロアリールアルキル基、炭素数3~20のアルコキシカルボニルアルキル基、炭素数8~20のフェノキシカルボニルアルキル基、炭素数2~20のアルキルチオアルキル基、炭素数1~20のヘテロアリールオキシカルボニルアルキル基もしくはヘテロアリールチオアルキル基、炭素数1~20のアミノアルキル基、炭素数2~12のアルカノイル基、炭素数3~25のアルケノイル基、炭素数3~8のシクロアルカノイル基、炭素数7~20のアリーロイル基、炭素数1~20のヘテロアリーロイル基、炭素数2~10のアルコキシカルボニル基、炭素数7~20のアリールオキシカルボニル基、又は炭素数1~10のシクロアルキルアルキル基を示す。
 R23bは芳香環あるいはヘテロ芳香環を含む任意の置換基を示す。
 なお、R23aはR23bと共に環を形成してもよく、その連結基は、それぞれ置換基を有していてもよい炭素数1~10のアルキレン基、ポリエチレン基(-(CH=CH)-)、ポリエチニレン基(-(C≡C)-)あるいはこれらを組み合わせてなる基が挙げられる(なお、rは0~3の整数である。)。
 R24aは、それぞれ置換されていてもよい、炭素数2~12のアルカノイル基、炭素数3~25のアルケノイル基、炭素数4~8のシクロアルカノイル基、炭素数7~20のベンゾイル基、炭素数3~20のヘテロアリーロイル基、炭素数2~10のアルコキシカルボニル基、炭素数7~20のアリールオキシカルボニル基、炭素数2~20のヘテロアリール基、又は炭素数2~20のアルキルアミノカルボニル基を表す。
 式(24)におけるR24及び式(25)におけるR24aとしては、好ましくは、炭素数2~12のアルカノイル基、炭素数1~20のヘテロアリールアルカノイル基、炭素数3~8のシクロアルカノイル基、炭素数7~20のアリーロイル基が挙げられる。
 式(25)におけるR23aとしては、好ましくは無置換のエチル基、プロピル基、ブチル基や、メトキシカルボニル基で置換されたエチル基又はプロピル基が挙げられる。
 また、式(25)におけるR23bとしては、好ましくは置換されていてもよいカルバゾイル基、置換されていてもよいフェニルスルフィド基が挙げられる。
 本発明に好適なケトオキシムエステル系化合物として具体的には、以下に例示されるような化合物が挙げられるが、何らこれらの化合物に限定されるものではない。
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
 このようなケトオキシムエステル系化合物の光重合開始剤の市販品として、例えば、BASF社製のOXE-01、常州強力電子社製のTR-PBG-305が挙げられる。
 これらのオキシム及びケトオキシムエステル系化合物は、それ自体公知の化合物であり、例えば、日本国特開2000-80068号公報や、日本国特開2006-36750号公報に記載されている一連の化合物の一種である。
 光重合開始剤は1種を単独で用いてもよく、2種以上を併用してもよい。
 その他に、例えば、ベンゾインメチルエーテル、ベンゾインフェニルエーテル、ベンゾインイソブチルエーテル、ベンゾインイソプロピルエーテル等のベンゾインアルキルエーテル類;2-メチルアントラキノン、2-エチルアントラキノン、2-t-ブチルアントラキノン、1-クロロアントラキノン等のアントラキノン誘導体類;ベンゾフェノン、ミヒラーズケトン、2-メチルベンゾフェノン、3-メチルベンゾフェノン、4-メチルベンゾフェノン、2-クロロベンゾフェノン、4-ブロモベンゾフェノン、2-カルボキシベンゾフェノン等のベンゾフェノン誘導体類;2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシアセトフェノン、1-ヒドロキシシクロへキシルフェニルケトン、α-ヒドロキシ-2-メチルフェニルプロパノン、1-ヒドロキシ-1-メチルエチル-(p-イソプロピルフェニル)ケトン、1-ヒドロキシ-1-(p-ドデシルフェニル)ケトン、2-メチル-(4’-メチルチオフェニル)-2-モルホリノ-1-プロパノン、1,1,1-トリクロロメチル-(p-ブチルフェニル)ケトン等のアセトフェノン誘導体類;チオキサントン、2-エチルチオキサントン、2-イソプロピルチオキサントン、2-クロロチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジイソプロピルチオキサントン等のチオキサントン誘導体類;p-ジメチルアミノ安息香酸エチル、p-ジエチルアミノ安息香酸エチル等の安息香酸エステル誘導体類;9-フェニルアクリジン、9-(p-メトキシフェニル)アクリジン等のアクリジン誘導体類;9,10-ジメチルベンズフェナジン等のフェナジン誘導体類;ベンズアンスロン等のアンスロン誘導体類が挙げられる。
 これらの光重合開始剤の中では、前述の理由からオキシムエステル誘導体類が特に好ましい。
 (F)光重合開始剤の含有割合は、特に限定されないが、感光性樹脂組成物の全固形分に対して、1質量%以上が好ましく、2質量%以上がより好ましく、3質量以上がさらに好ましく、4質量%以上が特に好ましく、また、30質量%以下が好ましく、20質量%以下がより好ましく、15質量%以下がさらに好ましく、10質量%以下が特に好ましく、8質量%以下が最も好ましい。(F)光重合開始剤の含有割合が前記下限値以上であれば、感度が向上する傾向があり、前記上限値以下であれば、未露光部分の現像液に対する溶解性が向上する傾向がある。
 上記の上限及び下限は任意に組み合わせることができる。例えば、1~30質量%であってよく、1~20質量%であってよく、2~15質量%であってよく、3~10質量%であってよく、4~8質量%であってよい。
<増感色素>
 (F)光重合開始剤には、必要に応じて、感応感度を高める目的で、画像露光光源の波長に応じた増感色素を併用させることができる。増感色素としては、例えば、日本国特開平4-221958号公報、日本国特開平4-219756号公報に記載のキサンテン色素、日本国特開平3-239703号公報、日本国特開平5-289335号公報に記載の複素環を有するクマリン色素、日本国特開平3-239703号公報、日本国特開平5-289335号公報に記載の3-ケトクマリン化合物、日本国特開平6-19240号公報に記載のピロメテン色素、その他、日本国特開昭47-2528号公報、日本国特開昭54-155292号公報、日本国特公昭45-37377号公報、日本国特開昭48-84183号公報、日本国特開昭52-112681号公報、日本国特開昭58-15503号公報、日本国特開昭60-88005号公報、日本国特開昭59-56403号公報、日本国特開平2-69号公報、日本国特開昭57-168088号公報、日本国特開平5-107761号公報、日本国特開平5-210240号公報、日本国特開平4-288818号公報に記載のジアルキルアミノベンゼン骨格を有する色素が挙げられる。
 これらの増感色素のうち、アミノ基含有増感色素が好ましく、アミノ基及びフェニル基を同一分子内に有する化合物がより好ましい。例えば、4,4’-ジメチルアミノベンゾフェノン、4,4’-ジエチルアミノベンゾフェノン、2-アミノベンゾフェノン、4-アミノベンゾフェノン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、3,4-ジアミノベンゾフェノン等のベンゾフェノン系化合物;2-(p-ジメチルアミノフェニル)ベンゾオキサゾール、2-(p-ジエチルアミノフェニル)ベンゾオキサゾール、2-(p-ジメチルアミノフェニル)ベンゾ[4,5]ベンゾオキサゾール、2-(p-ジメチルアミノフェニル)ベンゾ[6,7]ベンゾオキサゾール、2,5-ビス(p-ジエチルアミノフェニル)1,3,4-オキサゾール、2-(p-ジメチルアミノフェニル)ベンゾチアゾール、2-(p-ジエチルアミノフェニル)ベンゾチアゾール、2-(p-ジメチルアミノフェニル)ベンズイミダゾール、2-(p-ジエチルアミノフェニル)ベンズイミダゾール、2,5-ビス(p-ジエチルアミノフェニル)1,3,4-チアジアゾール、(p-ジメチルアミノフェニル)ピリジン、(p-ジエチルアミノフェニル)ピリジン、(p-ジメチルアミノフェニル)キノリン、(p-ジエチルアミノフェニル)キノリン、(p-ジメチルアミノフェニル)ピリミジン、(p-ジエチルアミノフェニル)ピリミジン等のp-ジアルキルアミノフェニル基含有化合物がさらに好ましく、4,4’-ジアルキルアミノベンゾフェノンが特に好ましい。
 増感色素は1種を単独で用いてもよく、2種以上を併用してもよい。
 増感色素の含有割合は、特に限定されないが、感光性樹脂組成物の全固形分に対して、0~20質量%が好ましく、0~15質量%がより好ましく、0~10質量%がさらに好ましい。
<有機溶剤>
 本発明の感光性樹脂組成物は、典型的には、有機溶剤を含有する。
 有機溶剤としては、100~300℃の沸点を持つ有機溶剤が好ましく、120~280℃の沸点を持つ有機溶剤がより好ましい。ここで、沸点は、圧力1013.25hPaにおける値である。以下、沸点に関しては全て同様である。
 100~300℃の沸点を持つ有機溶剤としては、例えば、次のようなものが挙げられる。
 エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ-n-ブチルエーテル、プロピレングリコール-t-ブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ-n-ブチルエーテル、メトキシメチルペンタノール、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノメチルエーテル、3-メチル-3-メトキシブタノール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、トリプロピレングリコールメチルエーテルのようなグリコールモノアルキルエーテル類;
 エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジプロピルエーテル、ジエチレングリコールジブチルエーテル、ジプロピレングリコールジメチルエーテルのようなグリコールジアルキルエーテル類;
 エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノ-n-ブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート、メトキシブチルアセテート、3-メトキシブチルアセテート、メトキシペンチルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノ-n-ブチルエーテルアセテート、ジプロピレングリコールモノメチルエーテルアセテート、トリエチレングリコールモノメチルエーテルアセテート、トリエチレングリコールモノエチルエーテルアセテート、3-メチル-3-メトキシブチルアセテートのようなグリコールアルキルエーテルアセテート類;
 エチレングリコールジアセテート、1,3-ブチレングリコールジアセテート、1,6-ヘキサノールジアセテート等のグリコールジアセテート類;
 シクロヘキサノールアセテート等のアルキルアセテート類;
 アミルエーテル、ジエチルエーテル、ジプロピルエーテル、ジイソプロピルエーテル、ジブチルエーテル、ジアミルエーテル、エチルイソブチルエーテル、ジヘキシルエーテルのようなエーテル類;
 アセトン、メチルエチルケトン、メチルアミルケトン、メチルイソプロピルケトン、メチルイソアミルケトン、ジイソプロピルケトン、ジイソブチルケトン、メチルイソブチルケトン、シクロヘキサノン、エチルアミルケトン、メチルブチルケトン、メチルヘキシルケトン、メチルノニルケトン、メトキシメチルペンタノンのようなケトン類;
 エタノール、プロパノール、ブタノール、ヘキサノール、シクロヘキサノール、エチレングリコール、プロピレングリコール、ブタンジオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、メトキシメチルペンタノール、グリセリン、ベンジルアルコールのような1価又は多価アルコール類;
 n-ペンタン、n-オクタン、ジイソブチレン、n-ヘキサン、ヘキセン、イソプレン、ジペンテン、ドデカンのような脂肪族炭化水素類;
 シクロヘキサン、メチルシクロヘキサン、メチルシクロヘキセン、ビシクロヘキシルのような脂環式炭化水素類;
 ベンゼン、トルエン、キシレン、クメンのような芳香族炭化水素類;
 アミルホルメート、エチルホルメート、酢酸エチル、酢酸ブチル、酢酸プロピル、酢酸アミル、メチルイソブチレート、エチレングリコールアセテート、エチルプロピオネート、プロピルプロピオネート、酪酸ブチル、酪酸イソブチル、イソ酪酸メチル、エチルカプリレート、ブチルステアレート、エチルベンゾエート、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、γ-ブチロラクトンのような鎖状又は環状エステル類;
 3-メトキシプロピオン酸、3-エトキシプロピオン酸のようなアルコキシカルボン酸類;
 ブチルクロライド、アミルクロライドのようなハロゲン化炭化水素類;
 メトキシメチルペンタノンのようなエーテルケトン類;
 アセトニトリル、ベンゾニトリルのようなニトリル類。
 市販の有機溶剤としては、例えば、ミネラルスピリット、バルソル#2、アプコ#18ソルベント、アプコシンナー、ソーカルソルベントNo.1及びNo.2、ソルベッソ#150、シェルTS28 ソルベント、カルビトール、エチルカルビトール、ブチルカルビトール、メチルセロソルブ(「セロソルブ」は登録商標。以下同じ。)、エチルセロソルブ、エチルセロソルブアセテート、メチルセロソルブアセテート、ジグライム(いずれも商品名)が挙げられる。
 有機溶剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 本発明の感光性樹脂組成物によって、フォトリソグラフィー法にてカラーフィルターの画素又はブラックマトリックスを形成する場合、有機溶剤としては、100~250℃の沸点を持つものが好ましく、120~230℃の沸点を持つものがより好ましい。
 有機溶剤としては、塗布性、表面張力等のバランスが良く、感光性樹脂組成物中の構成成分の溶解度が比較的高い点からは、グリコールアルキルエーテルアセテート類が好ましい。グリコールアルキルエーテルアセテート類は、1種を単独で用いてもよく、2種以上を併用してもよい。
 グリコールアルキルエーテルアセテート類のみを使用してもよいが、他の有機溶剤を併用してもよい。他の有機溶剤としては、グリコールモノアルキルエーテル類が好ましい。感光性樹脂組成物中の構成成分の溶解性から、プロピレングリコールモノメチルエーテルが好ましい。
 グリコールモノアルキルエーテル類は極性が高く、添加量が多すぎると(A)顔料が凝集しやすく、後に得られる感光性樹脂組成物の粘度が上がっていく等、保存安定性が低下する傾向がある。そのため、有機溶剤がグリコールモノアルキルエーテル類を含有する場合、グリコールモノアルキルエーテル類の含有割合は、有機溶剤の総質量に対し、5~30質量%が好ましく、5~20質量%がより好ましい。
 グリコールアルキルエーテルアセテート類と、200℃以上の沸点を持つ有機溶剤(以下「高沸点溶剤」と称す場合がある。)を併用することも好ましい。このような高沸点溶剤を併用することにより、顔料分散液を含む感光性樹脂組成物は乾きにくくなるが、組成物中における(A)顔料の均一な分散状態が、急激な乾燥により破壊されることを防止する効果がある。すなわち、例えばスリットノズル先端における、顔料等の析出・固化による異物欠陥の発生を防止する効果がある。高沸点溶剤の沸点の上限は特に限定されないが、例えば300℃以下である。
 上記のような効果が高い点から、高沸点溶剤の中でも、ジプロピレングリコールメチルエーテルアセテート、ジエチレングリコールモノ-n-ブチルエーテルアセテート、及びジエチレングリコールモノエチルエーテルアセテート、1,4-ブタンジオールジアセテート、1,3-ブチレングリコールジアセテート、トリアセチン、1,6-ヘキサンジオールジアセテートが好ましい。
 これらの高沸点溶剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 高沸点溶剤の含有割合は、有機溶剤の総質量に対し、0~50質量%が好ましく、0.5~40質量%がより好ましく、1~30質量%がさらに好ましい。高沸点溶剤の含有割合が前記上限値以下であれば、組成物の乾燥温度が遅くなり、カラーフィルター製造工程における、減圧乾燥プロセスのタクト不良や、プリベークのピン跡といった問題の発生を抑制できる傾向がある。高沸点溶剤の含有割合が0.5質量%以上であれば、例えばスリットノズル先端で顔料等が析出・固化して異物欠陥を惹き起こすことを抑制できる傾向がある。
 本発明の感光性樹脂組成物において、有機溶剤の含有割合は、感光性樹脂組成物中の全固形分の含有割合を考慮して適宜選定できる。
 感光性樹脂組成物中の全固形分の含有割合は、塗布、乾燥後の膜厚調整の観点から、感光性樹脂組成物の総質量に対し、5質量%以上が好ましく、8質量%以上がより好ましく、10質量%以上がさらに好ましく、また、感光性樹脂組成物の経時安定性の観点から、40質量%以下が好ましく、30質量%以下がより好ましく、25質量%以下がさらに好ましい。
 上記の上限及び下限は任意に組み合わせることができる。例えば、5~40質量%であってよく、8~30質量%であってよく、10~25質量%であってよい。
<感光性樹脂組成物における他の配合成分>
 本発明の感光性樹脂組成物には、上述の成分の他、(A)顔料以外の他の色材、チオール類、密着向上剤、塗布性向上剤、現像改良剤、紫外線吸収剤、酸化防止剤等を適宜配合することができる。
 (他の色材)
 (A)顔料以外の色材としては、例えば染料が挙げられる。
 染料としては、例えば、アゾ系染料、アントラキノン系染料、フタロシアニン系染料、キノンイミン系染料、キノリン系染料、ニトロ系染料、カルボニル系染料、メチン系染料が挙げられる。
 アゾ系染料としては、例えば、C.I.アシッドイエロー11、C.I.アシッドオレンジ7、C.I.アシッドレッド37、C.I.アシッドレッド180、C.I.アシッドブルー29、C.I.ダイレクトレッド28、C.I.ダイレクトレッド83、C.I.ダイレクトイエロー12、C.I.ダイレクトオレンジ26、C.I.ダイレクトグリーン28、C.I.ダイレクトグリーン59、C.I.リアクティブイエロー2、C.I.リアクティブレッド17、C.I.リアクティブレッド120、C.I.リアクティブブラック5、C.I.ディスパースオレンジ5、C.I.ディスパースレッド58、C.I.ディスパースブルー165、C.I.ベーシックブルー41、C.I.ベーシックレッド18、C.I.モルダントレッド7、C.I.モルダントイエロー5、C.I.モルダントブラック7が挙げられる。
 アントラキノン系染料としては、例えば、C.I.バットブルー4、C.I.アシッドブルー40、C.I.アシッドグリーン25、C.I.リアクティブブルー19、C.I.リアクティブブルー49、C.I.ディスパースレッド60、C.I.ディスパースブルー56、C.I.ディスパースブルー60が挙げられる。
 この他、フタロシアニン系染料として、例えば、C.I.パッドブルー5等が、キノンイミン系染料として、例えば、C.I.ベーシックブルー3、C.I.ベーシックブルー9等が、キノリン系染料として、例えば、C.I.ソルベントイエロー33、C.I.アシッドイエロー3、C.I.ディスパースイエロー64等が、ニトロ系染料として、例えば、C.I.アシッドイエロー1、C.I.アシッドオレンジ3、C.I.ディスパースイエロー42が挙げられる。
 他の色材の含有割合は、本発明の感光性樹脂組成物の全固形分に対して、0~10質量%が好ましく、0~5質量%がより好ましい。
 (チオール類)
 本発明の感光性樹脂組成物に、高感度化、基板への密着性の向上のため、チオール類を含有させてもよい。
 チオール類としては、例えば、ヘキサンジチオール、デカンジチオール、1,4-ジメチルメルカプトベンゼン、ブタンジオールビスチオプロピオネート、ブタンジオールビスチオグリコレート、エチレングリコールビスチオグリコレート、トリメチロールプロパントリスチオグリコレート、ブタンジオールビスチオプロピオネート、トリメチロールプロパントリスチオプロピオネート、トリメチロールプロパントリスチオグリコレート、ペンタエリスリトールテトラキスチオプロピオネート、ペンタエリスリトールテトラキスチオグリコレート、トリスヒドロキシエチルトリスチオプロピオネート、エチレングリコールビス(3-メルカプトブチレート)、プロピレングリコールビス(3-メルカプトブチレート)(PGMB),ブタンジオールビス(3-メルカプトブチレート)、1,4-ビス(3-メルカプトブチリルオキシ)ブタン;(商品名;カレンズMT BD1、昭和電工(株)製)、ブタンジオールトリメチロールプロパントリス(3-メルカプトブチレート)、ペンタエリスリトールテトラキス(3-メルカプトブチレート);(商品名;カレンズMT PE1、昭和電工(株)製)、ペンタエリスリトールトリス(3-メルカプトブチレート)、エチレングリコールビス(3-メルカプトイソブチレート)、ブタンジオールビス(3-メルカプトイソブチレート)、トリメチロールプロパントリス(3-メルカプトイソブチレート)、トリメチロールプロパントリス(3-メルカプトブチレート)(TPMB)、トリメチロールプロパントリス(2-メルカプトイソブチレート)(TPMIB)、1,3,5-トリス(3-メルカプトブチルオキシエチル)-1,3,5-トリアジン-2,4,6(1H,3H,5H)-トリオン(商品名:カレンズMT NR1、昭和電工(株)製)が挙げられる。これらは1種を単独で、あるいは2種以上を混合して使用できる。
 チオール類としては、PGMB、TPMB、TPMIB、カレンズMT BD1、カレンズMT PE1、カレンズMT NR1等の多官能チオール化合物が好ましく、その中でもカレンズMT BD1、カレンズMT PE1、カレンズMT NR1がさらに好ましく、カレンズMT PE1が特に好ましい。
 本発明の感光性樹脂組成物がチオール類を含有する場合、チオール類の含有割合は、感光性樹脂組成物の全固形分に対して、0.1質量%以上が好ましく、0.3質量%以上がより好ましく、0.5質量%以上がさらに好ましく、また、10質量%以下が好ましく、5質量%以下がより好ましい。チオール類の含有割合が前記下限値以上であれば、感度低下を抑制できる傾向があり、前記上限値以下であれば、保存安定性を良好なものとしやすい傾向がある。
 上記の上限及び下限は任意に組み合わせることができる。例えば、0.1~10質量%であってよく、0.3~10質量%であってよく、0.5~5質量%であってよい。
 (密着向上剤)
 本発明の感光性樹脂組成物に、基板との密着性を改善するため、密着向上剤を含有させてもよい。
 密着向上剤としては、例えば、シランカップリング剤、チタンカップリング剤が挙げられ、特にシランカップリング剤が好ましい。
 シランカップリング剤としては、例えば、KBM-402、KBM-403、KBM-502、KBM-5103、KBE-9007、X-12-1048、X-12-1050(信越シリコーン社製)、Z-6040、Z-6043、Z-6062(東レ・ダウコーニング社製)が挙げられる。シランカップリング剤は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 シランカップリング剤及びチタンカップリング剤以外の密着向上剤を本発明の感光性樹脂組成物に含有させてもよい。シランカップリング剤及びチタンカップリング剤以外の密着向上剤としては、例えば、リン酸系密着向上剤、その他の密着向上剤が挙げられる。
 リン酸系密着向上剤としては、(メタ)アクリロイルオキシ基含有ホスフェート類が好ましく、中でも下記一般式(g1)、(g2)、(g3)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000038
 式(g1)、(g2)、(g3)において、R51は各々独立に水素原子又はメチル基を示し、l及びl’は各々独立に1~10の整数、mは各々独立に1、2又は3である。
 その他の密着向上剤としては、TEGO*Add Bond LTH(Evonik社製)等が上げられる。これらの燐酸基含有化合物やその他の密着剤も1種類を単独で用いても、2種以上を組み合わせて使用してもよい。
 本発明の感光性樹脂組成物が密着向上剤を含有する場合、感光性樹脂組成物中の密着向上剤の含有割合は特に限定されないが、感光性樹脂組成物の全固形分に対して0.01質量%以上が好ましく、0.1質量%以上がより好ましく、0.5質量%以上がさらに好ましく、また、5質量%以下が好ましく、3質量%以下がより好ましく、2質量%以下がさらに好ましく、1.5質量%以下が特に好ましい。密着向上剤の含有割合が前記下限値以上であれば、密着力が向上する傾向があり、前記上限値以下であれば、現像性が良好となる傾向がある。
 上記の上限及び下限は任意に組み合わせることができる。例えば、0.01~5質量%であってよく、0.01~3質量%であってよく、0.1~2質量%であってよく、0.5~1.5質量%であってよい。
 (塗布性向上剤)
 本発明の感光性樹脂組成物に、塗布性向上のため、塗布性向上剤を含有させてもよい。
 塗布性向上剤としては、例えば、界面活性剤が挙げられる。界面活性剤としては、例えば、アニオン系、カチオン系、非イオン系及び両性界面活性剤を用いることができる。中でも、諸特性に悪影響を及ぼす可能性が低い点で、非イオン系界面活性剤が好ましく、中でもフッ素系又はシリコーン系の界面活性剤が塗布性の面で効果的である。
 塗布性向上剤として使用可能な界面活性剤としては、例えば、TSF4460(モメンティブ・パフォーマンス・マテリアルズ社製)、DFX-18(ネオス社製)、BYK-300、BYK-325、BYK-330(ビックケミー社製)、KP340(信越シリコーン社製)、F-470、F-475、F-478、F-554、F-559(DIC社製)、SH7PA(東レ・ダウコーニング社製)、DS-401(ダイキン社製)、L-77(日本ユニカー社製)及びFC4430(3Mジャパン社製)が挙げられる。
 塗布性向上剤は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
 本発明の感光性樹脂組成物が塗布性向上剤を含有する場合、感光性樹脂組成物中の塗布性向上剤の含有割合は特に限定されないが、感光性樹脂組成物の全固形分に対して0.01質量%以上が好ましく、0.05質量%以上がより好ましく、また、1.0質量%以下が好ましく、0.7質量%以下がより好ましく、0.5質量%以下がさらに好ましく、0.3質量%以下が特に好ましい。塗布性向上剤の含有割合が前記下限値以上であれば、塗布均一性が向上する傾向があり、前記上限値以下であれば、レジスト感度が下がらない傾向がある。
 上記の上限及び下限は任意に組み合わせることができる。例えば、0.01~1.0質量%であってよく、0.01~0.7質量%であってよく、0.05~0.5質量%であってよく、0.05~0.3質量%であってよい。
<感光性樹脂組成物の物性>
 本発明の感光性樹脂組成物は、ブラックマトリックス形成に好適に使用することができ、係る観点からは黒色を呈していることが好ましい。また、その塗膜の膜厚1μm当たりの光学濃度(OD)は1.0以上が好ましく、2.0以上がより好ましく、2.5以上がさらに好ましく、3.0以上がよりさらに好ましく、4.0以上が特に好ましく、4.5以上が最も好ましい。ODが前記下限値以上であれば、十分な遮光性が確保できる傾向がある。ODの上限は特に限定されないが、例えば6.0である。ODは、例えば、1.0~6.0あってよく、2.0~6.0あってよく、2.5~6.0あってよく、3.0~6.0あってよく、4.0~6.0あってよく、4.5~6.0あってよい。
<感光性樹脂組成物の製造方法>
 本発明の感光性樹脂組成物は、例えば、本発明の顔料分散液、(D)アルカリ可溶性樹脂、(E)光重合性化合物及び(F)光重合開始剤、必要に応じて有機溶剤、他の配合成分等の任意成分を混合する方法により製造できる。
 本発明の顔料分散液は、(A)顔料、(B)分散剤及び有機溶剤を含有する。本発明の顔料分散液については後で詳しく説明する。
 各成分の混合時の温度は、例えば20~30℃である。
 混合後、必要に応じて、得られた感光性樹脂組成物を、フィルター等により濾過処理してもよい。
[顔料分散液]
 本発明の顔料分散液は、(A)顔料、(B)分散剤及び有機溶剤を含有する。
 本発明の顔料分散液中の全固形分に対する(A)顔料の含有割合は、50質量%以上が好ましく、60質量%以上がより好ましく、70質量%以上がさらに好ましく、また、99質量%以下が好ましく、95質量%以下がより好ましく、90質量%以下がさらに好ましい。(A)顔料の含有割合が前記下限値以上であれば、得られる硬化物の遮光性がより優れる傾向があり、前記上限値以下であれば、分散性がより優れる傾向がある。
 上記の上限及び下限は任意に組み合わせることができる。例えば、50~99質量%であってよく、60~95質量%であってよく、70~90質量%であってよい。
 本発明の顔料分散液における(A)顔料と(B)分散剤との、質量基準における含有比率((A)顔料/(B)分散剤)は、本発明の感光性樹脂組成物における(A)顔料と(B)分散剤との、質量基準における含有比率と同様である。
 本発明の顔料分散液において、有機溶剤の含有割合は、顔料分散液中の全固形分の含有割合を考慮して適宜選定できる。
 本発明の顔料分散液中の全固形分の含有割合は、遮光性の観点から、顔料分散液の総質量に対し、10質量%以上が好ましく、20質量%以上がより好ましく、30質量%以上がさらに好ましく、また、粘度安定性の観点から、60質量%以下が好ましく、50質量%以下がより好ましく、40質量%以下がさらに好ましい。
 上記の上限及び下限は任意に組み合わせることができる。例えば、10~60質量%であってよく、20~50質量%であってよく、30~40質量%であってよい。
 本発明の顔料分散液は、(A)顔料の分散安定性の向上のため、(C)分散助剤を含有することが好ましい。
 本発明の顔料分散液が(C)分散助剤を含有する場合、顔料分散液の全固形分に対する(C)分散助剤の含有割合は、0.1質量%以上が好ましく、0.5質量%以上がより好ましく、1.0質量%以上がさらに好ましく、また、10質量%以下が好ましく、5質量%以下がより好ましく、3質量%以下がさらに好ましい。(C)分散助剤の含有割合が前記下限値以上であれば、分散安定性がより優れる傾向があり、前記上限値以下であれば、現像性が安定し、基板密着性がより優れる傾向がある。
 上記の上限及び下限は任意に組み合わせることができる。例えば、0.1~10質量%であってよく、0.5~5質量%であってよく、1.0~3質量%であってよい。
 本発明の顔料分散液は、必要に応じて、(A)顔料、(B)分散剤、(C)分散助剤及び有機溶剤以外の他の成分をさらに含有していてもよい。他の成分としては、例えば、本発明の感光性樹脂組成物における他の配合成分が挙げられる。
 本発明の顔料分散液の全固形分に対する他の成分の含有割合は、5質量%以下が好ましく、1質量%以下がより好ましく、0質量%であってもよい。
<顔料分散液の製造方法>
 本発明の顔料分散液は、例えば、(A)顔料、(B)分散剤及び有機溶剤、必要に応じて(C)分散助剤等の任意成分を混合し、得られた混合液に分散処理を施す方法により製造できる。
 分散処理により(A)顔料が微粒子化されるため、顔料分散液及びこれを含有する感光性樹脂組成物の塗布特性、遮光能力が向上する。特に(B)分散剤として高分子分散剤を用いると、得られる顔料分散液及びこれを含有する感光性樹脂組成物の経時の増粘が抑制される(分散安定性に優れる)。
 分散処理は、ペイントコンディショナー、サンドグラインダー、ボールミル、ロールミル、ストーンミル、ジェットミル、ホモジナイザー等の公知の分散処理装置を用いて実施できる。サンドグラインダーで分散処理を行う場合には、0.1~8mm程度の径のガラスビーズ又はジルコニアビーズが好ましく用いられる。
 分散処理条件は特に限定されないが、温度は例えば0℃から100℃の範囲であり、好ましくは室温から80℃の範囲である。分散時間は、液の組成及び分散処理装置のサイズ等により適正時間が異なるため適宜調節する。感光性樹脂組成物の塗膜の20度鏡面光沢度(JIS Z8741)が100~200の範囲となるように(A)顔料の分散状態を制御するのが分散の目安である。感光性樹脂組成物の塗膜の光沢度が低い場合には、分散処理が十分でなく荒い顔料粒子が残っていることが多く、現像性、密着性、解像性等が不十分となる可能性がある。また、光沢値が上記範囲を超えるまで分散処理を行うと、顔料が破砕して超微粒子が多数生じるため、却って分散安定性が損なわれる傾向がある。
 分散処理後、必要に応じて、例えば分散処理に用いられたビーズと顔料分散液の分離のために、フィルター等により、得られた分散処理物の濾過処理を行うことができる。
 本発明の感光性樹脂組成物は、画素、ブラックマトリックス等の、カラーフィルターを構成する部材用のレジストとして使用することが可能である。本発明の感光性樹脂組成物は、ブラックマトリックス用である場合は、黒色顔料等の黒色色材を含有する。
 本発明の感光性樹脂組成物は、着色スペーサー用のレジストとして使用することも可能である。
 本発明の感光性樹脂組成物は、隔壁、特に有機電界発光素子の有機層を区画するための隔壁を形成するために用いることも可能である。有機電界発光素子の有機層としては、例えば日本国特開2016-165396号公報に記載されているような、正孔注入層、正孔輸送層あるいは正孔注入層上の正孔輸送層に用いる有機層が挙げられる。
[硬化物]
 本発明の硬化物は、本発明の感光性樹脂組成物が硬化されたものである。
 本発明の硬化物は、画素、ブラックマトリックス等の、カラーフィルターを構成する部材として好適に用いることができる。
 本発明の硬化物は、着色スペーサーとしても用いることができる。
 本発明の硬化物は、隔壁、特に有機電界発光素子の有機層を区画するための隔壁としても用いることができる。
[ブラックマトリックス]
 本発明の硬化物からなるブラックマトリックスについて、その製造方法に従って説明する。
 本発明の硬化物からなるブラックマトリックスは、例えば、ブラックマトリックスが設けられるべき支持体上に、本発明の感光性樹脂組成物を塗布し、乾燥し、乾燥後の塗膜の上にフォトマスクを置き、フォトマスクを介して露光(画像露光)し、現像し、必要に応じて硬化処理する方法により形成できる。
(1)支持体
 ブラックマトリックスを形成するための支持体としては、適度の強度があれば、その材質は特に限定されるものではないが、おもに透明基板が使用される。透明基板の材質としては、例えば、ポリエチレンテレフタレート等のポリエステル系樹脂、ポリプロピレン、ポリエチレン等のポリオレフィン系樹脂、ポリカーボネート、ポリメチルメタクリレート、ポリスルフォン等の熱可塑性樹脂製シート、エポキシ樹脂、不飽和ポリエステル樹脂、ポリ(メタ)アクリル系樹脂等の熱硬化性樹脂シート、各種のガラスが挙げられる。この中でも、耐熱性の観点からガラス、耐熱性樹脂が好ましい。また、透明基板の表面にITO、IZO等の透明電極が成膜されていてもよい。透明基板以外の支持体、例えば、TFTアレイ上に形成することも可能である。
 支持体には、接着性等の表面物性の改良のため、必要に応じ、コロナ放電処理、オゾン処理、大気圧プラズマ処理、シランカップリング剤や、ウレタン系樹脂等の各種樹脂の薄膜形成処理を行ってもよい。
 透明基板の厚さは、好ましくは0.05~10mm、より好ましくは0.1~7mmの範囲とされる。また各種樹脂の薄膜形成処理を行う場合、その膜厚は、好ましくは0.01~10μm、より好ましくは0.05~5μmの範囲である。
(2)ブラックマトリックスの形成
(2-1)感光性樹脂組成物の塗布
 ブラックマトリックス用の感光性樹脂組成物の支持体上への塗布は、スピナー法、ワイヤーバー法、フローコート法、ダイコート法、ロールコート法、又はスプレーコート法等によって行うことができる。中でも、ダイコート法によれば、塗布液使用量が大幅に削減され、かつ、スピンコート法によった際に付着するミスト等の影響が全くなく、異物発生が抑制される等、総合的な観点から好ましい。
 塗膜の厚さは、乾燥後の膜厚として、0.2~10μmが好ましく、0.5~6μmがより好ましく、1~4μmがさらに好ましい。前記上限値以下とすることで、パターン現像が容易となり、液晶セル化工程でのギャップ調整も容易となる傾向がある。前記下限値以上とすることで、所望の色発現が容易となる傾向がある。
(2-2)塗膜の乾燥
 支持体上に感光性樹脂組成物を塗布した後の塗膜の乾燥は、ホットプレート、IRオーブン、又はコンベクションオーブンを使用した乾燥法によるのが好ましい。乾燥の条件は、感光性樹脂組成物に含まれる液状媒体(有機溶剤、水)の種類、使用する乾燥機の性能等に応じて適宜選択することができる。例えば、40~200℃の温度で15秒~5分間の範囲で選ばれ、好ましくは50~130℃の温度で30秒~3分間の範囲で選ばれる。
 乾燥温度は、高いほど透明基板に対する塗膜の接着性が向上するが、高すぎるとアルカリ可溶性樹脂が分解し、熱重合を誘発して現像不良を生ずる場合がある。なお、この塗膜の乾燥工程は、温度を高めず、減圧チャンバー内で乾燥を行う、減圧乾燥法であってもよい。
(2-3)露光
 画像露光は、感光性樹脂組成物の塗膜上に、フォトマスクを重ね、このフォトマスクを介し、紫外域から可視域に至る波長の光を照射して行う。フォトマスクとしては、典型的には、ネガのマスクパターンが使用される。この際、必要に応じ、酸素による塗膜の感度の低下を防ぐため、塗膜上にポリビニルアルコール層等の酸素遮断層を形成した後に露光を行ってもよい。画像露光に使用される光源は、特に限定されるものではない。光源としては、例えば、キセノンランプ、ハロゲンランプ、タングステンランプ、高圧水銀灯、超高圧水銀灯、メタルハライドランプ、中圧水銀灯、低圧水銀灯、カーボンアーク等のランプ光源等が挙げられる。特定の波長の光を照射して使用する場合には、光学フィルターを利用することもできる。
(2-4)現像
 現像は、有機溶剤、又は、アルカリ性化合物と界面活性剤とを含む水溶液を用いて行われる。この水溶液には、さらに有機溶剤、緩衝剤、錯化剤、染料又は顔料を含ませることができる。
 アルカリ性化合物としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、ケイ酸ナトリウム、ケイ酸カリウム、メタケイ酸ナトリウム、リン酸ナトリウム、リン酸カリウム、リン酸水素ナトリウム、リン酸水素カリウム、リン酸二水素ナトリウム、リン酸二水素カリウム、水酸化アンモニウム等の無機アルカリ性化合物や、モノ-、ジ-又はトリエタノールアミン、モノ-、ジ-又はトリメチルアミン、モノ-、ジ-又はトリエチルアミン、モノ-又はジイソプロピルアミン、n-ブチルアミン、モノ-、ジ-又はトリイソプロパノールアミン、エチレンイミン、エチレンジイミン、テトラメチルアンモニウムヒドロキシド(TMAH)、コリン等の有機アルカリ性化合物が挙げられる。これらのアルカリ性化合物は、1種単独で用いてもよく、2種以上の混合物であってもよい。
 界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテル類、ポリオキシエチレンアルキルアリールエーテル類、ポリオキシエチレンアルキルエステル類、ソルビタンアルキルエステル類、モノグリセリドアルキルエステル類等のノニオン系界面活性剤、アルキルベンゼンスルホン酸塩類、アルキルナフタレンスルホン酸塩類、アルキル硫酸塩類、アルキルスルホン酸塩類、スルホコハク酸エステル塩類等のアニオン性界面活性剤、アルキルベタイン類、アミノ酸類等の両性界面活性剤が挙げられる。
 有機溶剤としては、例えば、イソプロピルアルコール、ベンジルアルコール、エチルセロソルブ、ブチルセロソルブ、フェニルセロソルブ、プロピレングリコール、ジアセトンアルコールが挙げられる。有機溶剤は、単独で用いてもよく、また、水溶液と併用してもよい。
 現像処理の条件に特に制限はない。現像温度は10~50℃が好ましく、15~45℃がより好ましく、20~40℃がさらに好ましい。現像方法は、浸漬現像法、スプレー現像法、ブラシ現像法、超音波現像法等のいずれかの方法によることができる。
(2-5)硬化処理
 硬化処理としては、熱硬化処理、光硬化処理等が挙げられ、熱硬化処理が好ましい。
 熱硬化処理の温度は100~280℃の範囲、好ましくは150~250℃の範囲で選ばれる。熱硬化処理の時間は5~60分間の範囲で選ばれる。
 以上のようにして形成させたブラックマトリックスの高さは、0.5~5μmが好ましく、0.8~4μmがより好ましい。さらに、厚さ1μm当たりの光学濃度(OD)は、2.0以上が好ましく、2.5以上がより好ましく、3.0以上がさらに好ましく、3.2以上が特に好ましい。
[カラーフィルター]
 ブラックマトリックスを設けた透明基板上に、上記(2-1)~(2-5)と同じプロセスで、赤色(R)、緑色(G)、青色(B)のうち一色の色材を含有する感光性樹脂組成物を塗布し、乾燥した後、塗膜の上にフォトマスクを重ね、このフォトマスクを介して画像露光、現像、必要に応じて熱硬化又は光硬化により画素画像を形成させ、着色層を作成する。この操作を、R、G、Bの三色の感光性樹脂組成物についてそれぞれ行うことによって、カラーフィルターを形成することができる。これらの順番は上記に限定されるものではない。
(2-6)透明電極の形成
 カラーフィルターは、このままの状態で画像上にITO等の透明電極を形成して、カラーディスプレー、液晶表示装置等の部品の一部として使用することができる。
 表面平滑性や耐久性を高めるため、必要に応じ、画像上にポリアミド、ポリイミド等のトップコート層を設けることもできる。一部の用途、例えば平面配向型駆動方式(IPSモード)の用途においては、透明電極を形成しないこともある。
[着色スペーサー]
 スペーサーをTFT型LCDに使用する場合、TFTに入射する光によりスイッチング素子としてTFTが誤作動を起こすことがあり、着色スペーサーはこれを防止するために用いられる。例えば、日本国特開平8-234212号公報にスペーサーを遮光性とすることが記載されている。
 本発明の硬化物からなる着色スペーサーは、着色スペーサー用のマスクを用いる以外は前述のブラックマトリックスと同様の方法で形成することができる。
[隔壁]
 本発明の硬化物からなる隔壁について、その製造方法に従って説明する。
 本発明の硬化物からなる隔壁は、例えば、隔壁が設けられるべき支持体上に、本発明の感光性樹脂組成物を塗布し、乾燥し、乾燥後の塗膜の上にフォトマスクを置き、フォトマスクを介して露光(画像露光)し、現像し、必要に応じて硬化処理する方法により形成できる。
(3-1)支持体
 隔壁を形成するための支持体としては、上述した、ブラックマトリックスを形成するための支持体と同様のものを用いることができる。
(3-2)隔壁の形成
 隔壁の形成方法における、支持体への感光性樹脂組成物の塗布方法、乾燥方法、露光方法、現像方法及び硬化処理の具体的方法は、上述したブラックマトリックスの形成と同様の方法を採用することができる。
 隔壁の大きさや形状等は、これを適用する有機電界発光素子の仕様等によって適宜調整されるが、感光性樹脂組成物より形成される隔壁の高さは、0.5~10μm程度が好ましい。
[有機電界発光素子]
 上述した方法により製造された隔壁を備える支持体を用いて、種々の有機電界発光素子が製造される。
 例えば、有機電界発光素子を形成する方法は特に限定されないが、好ましくは、上述した方法により支持体上に隔壁を形成した後に、画素等の有機層を形成することによって、有機電界発光素子が製造される。
 有機層の形成方法としては、機能材料を真空状態で昇華させ、基板上の隔壁により囲まれた領域内に付着させて成膜する蒸着法や、キャスト法、スピンコート法、インクジェット印刷法といったウェットプロセスが挙げられる。
 有機電界発光素子のタイプとしては、ボトムエミッション型やトップエミッション型が挙げられる。
 ボトムエミッション型では、例えば、透明電極を積層したガラス基板上に隔壁を形成し、隔壁で囲まれた開口部に正孔輸送層、発光層、電子輸送層、金属電極層を積層して作成される。一方でトップエミッション型では、例えば、金属電極層を積層したガラス基板上に隔壁を形成し、隔壁で囲まれた開口部に電子輸送層、発光層、正孔輸送層、透明電極層を積層して作成される。
 発光層としては、日本国特開2009-146691号公報や日本国特許第5734681号公報に記載されているような有機電界発光層が挙げられる。また、日本国特許第5653387号公報や日本国特許第5653101号公報に記載されているような量子ドットを用いてもよい。
 層構成はこれに限定されず、例えば、正孔輸送層、電子輸送層の各層は発光効率の観点から二層以上からなる積層構成でもよい。各層の厚みは特に限定されないが、発光効率や輝度の観点から、1~500nmが好ましい。
 有機電界発光素子は、開口部ごとにRGB各色を分けて形成してもよく、1つの開口部に二色以上を積層してもよい。有機電界発光素子は信頼性向上の観点から、封止層を備えていてもよい。封止層は空気中の水分が有機電界発光素子に吸着し、発光効率を低下することを防ぐ機能を有する。有機電界発光素子は、光取り出し効率向上の観点から、空気との界面に低反射膜を備えていてもよい。低反射膜を空気と素子との界面に配置することで屈折率のギャップを小さくし、界面での反射を抑制することが期待できる。このような低反射膜には、例えば、モスアイ構造、超多層膜の技術が適用されうる。
 有機電界発光素子を画像表示装置の画素として使用する場合には、ある画素の発光層の光が他の画素に漏れることを防止し、さらに、電極等が金属である場合には外光の反射に伴う画像品質の低下を防止するために、有機電界発光素子を構成する隔壁に遮光性を付与することが好ましい。
 有機電界発光素子においては、隔壁の上面及び下面に電極を付与するため、絶縁性の観点から、隔壁は高抵抗、低誘電率であることが好ましい。そのため、隔壁に遮光性を付与するために着色剤を使用する場合には、高抵抗かつ低誘電率である前記有機顔料を用いることが好ましい。
[画像表示装置]
 本発明の画像表示装置は、本発明の硬化物を備える。
 本発明の画像表示装置としては、例えば、前記したブラックマトリックスや隔壁を備える画像表示装置が挙げられる。
 画像表示装置としては、画像や映像を表示する装置であれば特に限定は受けないが、後述する液晶表示装置や有機ELディスプレイが挙げられる。
[液晶表示装置]
 本発明における液晶表示装置は、例えば、前記したブラックマトリックスを有するカラーフィルターを用いて作製できる。なお、カラー画素やブラックマトリックスの形成順序や形成位置等、特に制限を受けるものではない。
 液晶表示装置は、通常、カラーフィルター上に配向膜を形成し、この配向膜上にスペーサーを散布した後、対向基板と貼り合わせて液晶セルを形成し、形成した液晶セルに液晶を注入し、対向電極に結線して完成する。配向膜としては、ポリイミド等の樹脂膜が好適である。配向膜の形成には、通常、グラビア印刷法及び/又はフレキソ印刷法が採用され、配向膜の厚さは数10nmとされる。熱焼成によって配向膜の硬化処理を行った後、紫外線の照射やラビング布による処理によって表面処理し、液晶の傾きを調整しうる表面状態に加工される。
 スペーサーとしては、対向基板とのギャップ(隙間)に応じた大きさのものが用いられ、2~8μmのものが好適である。カラーフィルター基板上に、フォトリソグラフィー法によって透明樹脂膜のフォトスペーサー(PS)を形成し、これをスペーサーの代わりに活用することもできる。対向基板としては、通常、アレイ基板が用いられ、特にTFT(薄膜トランジスタ)基板が好適である。
 対向基板との貼り合わせのギャップは、液晶表示装置の用途によって異なるが、2~8μmの範囲が好ましい。対向基板と貼り合わせた後、液晶注入口以外の部分は、エポキシ樹脂等のシール材によって封止する。シール材は、UV照射及び/又は加熱することによって硬化させ、液晶セル周辺がシールされる。
 周辺をシールされた液晶セルは、パネル単位に切断した後、真空チャンバー内で減圧とし、上記液晶注入口を液晶に浸漬した後、チャンバー内をリークすることによって、液晶を液晶セル内に注入する。液晶セル内の減圧度は、1×10-7~1×10-2Paが好ましく、1×10-6~1×10-3Paがより好ましい。また、減圧時に液晶セルを加温するのが好ましく、加温温度は30~100℃が好ましく、50~90℃がより好ましい。減圧時の加温保持は、10~60分間が好ましい。その後液晶中に浸漬される。液晶を注入した液晶セルは、液晶注入口を、UV硬化樹脂を硬化させて封止することによって、液晶表示装置(パネル)が完成する。
 液晶の種類には特に制限がなく、芳香族系、脂肪族系、多環状化合物等、従来から知られている液晶であって、リオトロピック液晶、サーモトロピック液晶等のいずれでもよい。サーモトロピック液晶には、ネマティック液晶、スメスティック液晶及びコレステリック液晶等が知られているが、いずれであってもよい。
[有機ELディスプレイ]
 本発明における有機ELディスプレイは、例えば、前記したブラックマトリックスを有するカラーフィルターや前記した隔壁を有する有機電界発光素子を用いて作製できる。
 本発明におけるカラーフィルターを用いて有機ELディスプレイを作製する場合、例えば図1に示すように、まず透明支持基板10上に、感光性樹脂組成物により形成されたパターン(すなわち、画素20、及び隣接する画素20の間に設けられたブラックマトリックス(図示せず))が形成されてなるカラーフィルターを作製し、該カラーフィルター上に有機保護層30及び無機酸化膜40を介して有機発光体500を積層することによって、有機EL素子100を作製することができる。なお、画素20及びブラックマトリックスの内、少なくとも一つは本発明の感光性樹脂組成物を用いて作製されたものである。有機発光体500の積層方法としては、カラーフィルター上面へ透明陽極50、正孔注入層51、正孔輸送層52、発光層53、電子注入層54、及び陰極55を逐次形成していく方法や、別基板上へ形成した有機発光体500を無機酸化膜40上に貼り合わせる方法等が挙げられる。このようにして作製された有機EL素子100を用い、例えば「有機ELディスプレイ」(オーム社,2004年8月20日発光,時任静士、安達千波矢、村田英幸著)に記載された方法等にて、有機ELディスプレイを作製することができる。
 なお、本発明におけるカラーフィルターは、パッシブ駆動方式の有機ELディスプレイにもアクティブ駆動方式の有機ELディスプレイにも適用可能である。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はその要旨を超えない限り以下の実施例に限定されるものではない。
 以下の実施例及び比較例で用いた顔料分散液、感光性樹脂組成物の構成成分は、次の通りである。
<顔料-1>
 オリオンエンジニアドカーボンズ社製「NEROX555」(カーボンブラック)。
<顔料-2>
 オリオンエンジニアドカーボンズ社製「NEROX505」(カーボンブラック)。
<顔料-3>
 BIRLA CARBON社製「RAVEN1080」(カーボンブラック)。
<顔料-4>
 エボニックデグサ社製「NEROX305」(カーボンブラック)。
<顔料-5>
 BIRLA CARBON社製「RAVEN1060」(カーボンブラック)。
<顔料-6>
 三菱ケミカル社製「MA-100」(カーボンブラック)。
<分散剤-1>
 ビックケミー社製「DISPERBYK-167」(ウレタン系高分子分散剤)。
<分散助剤-1>
 ルーブリゾール社製「S12000-S」(銅フタロシアニンスルホネート誘導体)。
<アルカリ可溶性樹脂-1>
 後述する合成例で得た樹脂を用いた。
<光重合性化合物-1>
 日本化薬社製「KAYARAD DPHA」(多官能アクリレート)。
<光重合開始剤-1>
 常州強力電子新材料社製「TR-PBG-304」(カルバゾール骨格を有するオキシムエステル系化合物)。
<添加剤-1>
 信越化学工業社製「X-12-1048」(多官能アクリルシラン)。
<界面活性剤-1>
 DIC社製「メガファックF554」(フッ素系界面活性剤)。
<溶剤>
 プロピレングリコールモノメチルエーテルアセテート(PGMEA)。
<顔料-1~6の諸物性>
 顔料-1~6の平均一次粒子径、DBP吸収量及びBET法による比表面積を下記の方法で測定した。また、平均一次粒子径及びDBP吸収量から前記式(1)によりZの値を算出した。結果を表1に示す。
[平均一次粒子径]
 顔料をTEMにて観察し、一次凝集体(アグリゲート)を構成している微少球状部を単一粒子(一次粒子)とみなし、10個以上の該微少粒状部の直径を真円近似で計測し、それらの平均値を平均一次粒子径とした。
[DBP吸収量]
 回転翼でかき混ぜられている顔料にジブチルフタレート(DBP)を段階的に滴下し、滴下したDBP量と回転翼にかかるトルクの関係からDBP吸収量を計測した。JIS K 6217-4の規格に準じて、最大トルクの70%となる部分でのDBP滴下量を算出した。
[BET法による比表面積]
 顔料に窒素吸着させ、その吸着量から比表面積を換算した。JIS K 6217-7の規格に準じてBET測定を行い、顔料の比表面積を算出した。
Figure JPOXMLDOC01-appb-T000039
<合成例:アルカリ可溶性樹脂-1の合成>
Figure JPOXMLDOC01-appb-C000040
 上記構造のエポキシ化合物(エポキシ当量264)240質量部、メタクリル酸81.6質量部、メトキシブチルアセテート263.1質量部、トリフェニルホスフィン6.4質量部、及びパラメトキシフェノール0.16質量部を、温度計、攪拌機、冷却管を取り付けたフラスコに入れ、攪拌しながら90℃で酸価が5mgKOH/g以下になるまで12時間反応させた。
 次いで、上記反応により得られた反応液にトリメチロールプロパン(TMP)8.3質量部、ビフェニルテトラカルボン酸2無水物(BPDA)80.7質量部、テトラヒドロフタル酸無水物(THPA)51.6質量部を、温度計、攪拌機、冷却管を取り付けたフラスコに入れ、攪拌しながら105℃までゆっくり昇温し反応させ、固形分酸価112mgKOH/g、GPCで測定したポリスチレン換算の重量平均分子量(Mw)2500であるアルカリ可溶性樹脂-1を得た。
<顔料分散液の調製>
 表2に記載の顔料-1~6、分散剤-1、分散助剤-1及びPGMEAを、表2に記載の質量比となるように混合して混合液を得た。なお、表2中のPGMEAの配合割合には、分散剤由来の溶剤及び分散助剤由来の溶剤の量も含まれる。
 この混合液にビーズを加え、ペイントシェーカーにより25~45℃の範囲で6時間分散処理を行った。ビーズとしては、0.5mmφのジルコニアビーズを用い、分散液の2.5倍の質量を加えた。分散終了後、フィルターによりビーズと分散液を分離して、分散液1~8を調製した。
Figure JPOXMLDOC01-appb-T000041
<感光性樹脂組成物の調製>
 上記調製した分散液1~8に、表3に示す各成分を、感光性樹脂組成物の全固形分における各成分の固形分比率が表3の配合割合となるように加え、さらにプロピレングリコールモノメチルエーテルアセテート(PGMEA)、3-メトキシブチルアセテート(MBA)及びジエチレングリコールモノエチルエーテルアセテート(DGMEA)を、感光性樹脂組成物の全固形分の含有割合が14質量%となり、さらには溶剤中のPGMEA/MBA/DGMEAの質量比が68/30/2となるように加え、攪拌、溶解させて、実施例1~5、比較例1~3の感光性樹脂組成物を得た。
<感光性樹脂組成物の評価>
 得られた各感光性樹脂組成物について、以下の評価を行った。
 [剥離試験]
 雰囲気温度23℃、湿度50%で、長さ100mm×幅5mm×厚み0.7mmのガラス試験片の縦方向の先端部分20mmを、12.5mm/秒の速度で感光性樹脂組成物中に浸漬した後、その位置で4秒間維持し、12.5mm/秒の速度で感光性樹脂組成物から取り出し、該ガラス試験片の先端を下にして垂直に保持した状態で、雰囲気温度23℃、湿度55%、風速0.5±0.2秒の条件下で乾燥させる工程を250回繰り返した。
 その後、該ガラス試験片の先端部(感光性樹脂組成物中に浸漬した部分)について、表裏それぞれの幅方向の両端(稜線部位)、計4カ所を光学顕微鏡で観察し、付着物が見られた稜線部位の数から以下の基準で評価した。結果を表3に示す。
 A:稜線部位に付着物が観察されない。
 B:1稜線部位に付着物が観察される。
 C:2稜線部位以上に付着物が観察される。
 また、各例のガラス試験片の稜線部位を図2に示す。図2においては、実施例1~5、比較例1~3それぞれについて、稜線部位2箇所の光学顕微鏡像を左右に並べて示した。
並べた2枚の光学顕微鏡像それぞれの中央付近において上下方向に延びる線が稜線部位であり、各稜線部位よりも内側(図中の中央側)がガラス試験片の先端部である。
 [溶解時間]
 ガラス基板上に感光性樹脂組成物(レジスト)を、加熱硬化後の膜厚が1.2μmとなるようにスピンコーターにて塗布し、100Paで60秒間減圧乾燥した後に、ホットプレートで100℃にて120秒間乾燥した。得られた塗膜に、フォトマスクとして、1μm刻みで1~20μmの線幅の開口部を有するフォトマスクを使用して、波長365nmでの強度が60mW/cmである紫外線を用いて、露光量が40mJ/cmとなるよう露光処理を施した。
 続いて、0.04質量%のKOH(水酸化カリウム)水溶液よりなる現像液を用い、23℃において水圧0.05MPaのシャワー現像を施したのち、純水にて現像を停止し、水洗スプレーにて洗浄した。シャワー現像時にパターニングが目視できた時間を溶解時間として測定した。結果を表3に示す。
 [直線性]
 溶解時間の評価でのシャワー現像後のガラス基板を光学顕微鏡で観察し、フォトマスクの6μm開口部に対応するパターンの直線性を以下の基準で評価した。結果を表3に示す。
 A:カケが無い。
 B:2~3個のカケが見られるが、カラーフィルターの製造には問題はない。
 C:多くのカケが見られ、カラーフィルターの製造には不適切である。
 [線幅]
 溶解時間の評価でのシャワー現像後のガラス基板を光学顕微鏡で観察し、フォトマスクの線幅6μmの開口部に対応するパターンの幅を測定した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000042
 Zの値が15未満のカーボンブラック、又は比表面積が110m/gのカーボンブラックを用いた比較例1~3の感光性樹脂組成物は、剥離試験の結果が悪かった。また、パターンの直線性が低かった。さらに、線幅6.5μm以下の細線を形成できなかった。また比較例3は比表面積が大きいことで分散安定性が低下し、微細な凝集が生じたことでパターンの直線性や剥離試験の結果が悪くなったと推察される。
 これに対し、実施例1~5の感光性樹脂組成物は、剥離試験の結果が良好であり、顔料由来の異物の発生が抑制されていた。また、パターンの直線性が良好であった。さらに、線幅6.5μm以下の細線を形成できていた。実施例1~5では、カーボンブラックの平均一次粒子径に対して適度にDBP吸油量が大きい為、カーボンブラックへの分散剤の効率的な吸着が進み、遊離の分散剤量が抑制されたことで、露光時の膜硬化が高まり、直線性が綺麗なまま細線を作製できたと考えられる。
 10 透明支持基板
 20 画素
 30 有機保護層
 40 無機酸化膜
 50 透明陽極
 51 正孔注入層
 52 正孔輸送層
 53 発光層
 54 電子注入層
 55 陰極
 100 有機EL素子
 500 有機発光体

Claims (20)

  1.  (A)顔料、(B)分散剤、(D)アルカリ可溶性樹脂、(E)光重合性化合物及び(F)光重合開始剤を含有する感光性樹脂組成物であって、
     前記(A)顔料が、平均一次粒子径が15nm以上28nm以下であり、且つジブチルフタレート吸収量が55mL/100g以上100mL/100g以下であるカーボンブラック(a1)を含有し、
     前記カーボンブラック(a1)のBET法による比表面積が105m/g以下であり、
     前記カーボンブラック(a1)の平均一次粒子径(nm)をX、ジブチルフタレート吸収量(mL/100g)をYとした場合に、下記式(1)から導き出されるZが15以上である、感光性樹脂組成物。
      Y-1.6X=Z  ・・・(1)
  2.  前記Zが16以上である、請求項1に記載の感光性樹脂組成物。
  3.  前記(B)分散剤のアミン価が30mgKOH/g未満である、請求項1又は2に記載の感光性樹脂組成物。
  4.  前記カーボンブラック(a1)の体積抵抗率が3Ω・cm未満である、請求項1~3のいずれか1項に記載の感光性樹脂組成物。
  5.  感光性樹脂組成物の全固形分に対する前記(A)顔料の含有割合が30質量%以上である、請求項1~4のいずれか1項に記載の感光性樹脂組成物。
  6.  感光性樹脂組成物中における、前記(A)顔料と前記(B)分散剤との質量基準における含有比率(前記(A)顔料/前記(B)分散剤)が4以上である、請求項1~5のいずれか1項に記載の感光性樹脂組成物。
  7.  さらに(C)分散助剤を含有する、請求項1~6のいずれか1項に記載の感光性樹脂組成物。
  8.  感光性樹脂組成物中における、前記(A)顔料と前記(C)分散助剤との質量基準における含有比率(前記(A)顔料/前記(C)分散助剤)が10以上である、請求項7に記載の感光性樹脂組成物。
  9.  (A)顔料、(B)分散剤及び有機溶剤を含有する顔料分散液であって、
     前記(A)顔料が、平均一次粒子径が15nm以上28nm以下であり、且つジブチルフタレート吸収量が55mL/100g以上100mL/100g以下であるカーボンブラック(a1)を含有し、
     前記カーボンブラック(a1)のBET法による比表面積が105m/g以下であり、
     前記カーボンブラック(a1)の平均一次粒子径(nm)をX、ジブチルフタレート吸収量(mL/100g)をYとした場合に、下記式(1)から導き出されるZが15以上である、顔料分散液。
      Y-1.6X=Z   ・・・(1)
  10.  前記Zが16以上である、請求項9に記載の顔料分散液。
  11.  前記(B)分散剤のアミン価が30mgKOH/g未満である、請求項9又は10に記載の顔料分散液。
  12.  前記カーボンブラック(a1)の体積抵抗率が3Ω・cm未満である、請求項9~11のいずれか1項に記載の顔料分散液。
  13.  顔料分散液の全固形分に対する前記(A)顔料の含有割合が50質量%以上である、請求項9~12のいずれか1項に記載の顔料分散液。
  14.  顔料分散液中における、前記(A)顔料と前記(B)分散剤との質量基準における含有比率(前記(A)顔料/前記(B)分散剤)が4以上である、請求項9~13のいずれか1項に記載の顔料分散液。
  15.  さらに(C)分散助剤を含有する、請求項9~14のいずれか1項に記載の顔料分散液。
  16.  顔料分散液中における、前記(A)顔料と前記(C)分散助剤との質量基準における含有比率(前記(A)顔料/前記(C)分散助剤)が10以上である、請求項15に記載の顔料分散液。
  17.  請求項9~16のいずれか1項に記載の顔料分散液、(D)アルカリ可溶性樹脂、(E)光重合性化合物及び(F)光重合開始剤を含有する、感光性樹脂組成物。
  18.  請求項1~8及び17のいずれか1項に記載の感光性樹脂組成物が硬化された硬化物。
  19.  請求項18に記載の硬化物からなるブラックマトリックス。
  20.  請求項18に記載の硬化物を有する画像表示装置。
PCT/JP2023/010154 2022-03-18 2023-03-15 感光性樹脂組成物、顔料分散液、硬化物、ブラックマトリックス及び画像表示装置 WO2023176899A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022044594 2022-03-18
JP2022-044594 2022-03-18

Publications (1)

Publication Number Publication Date
WO2023176899A1 true WO2023176899A1 (ja) 2023-09-21

Family

ID=88023911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/010154 WO2023176899A1 (ja) 2022-03-18 2023-03-15 感光性樹脂組成物、顔料分散液、硬化物、ブラックマトリックス及び画像表示装置

Country Status (2)

Country Link
TW (1) TW202402819A (ja)
WO (1) WO2023176899A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014102346A (ja) * 2012-11-19 2014-06-05 Sakata Corp ブラックマトリックス用顔料分散組成物及びそれを含有するブラックマトリックス用顔料分散レジスト組成物
JP2019082533A (ja) * 2017-10-30 2019-05-30 サカタインクス株式会社 ブラックマトリックス用顔料分散組成物及びそれを含有するブラックマトリックス用顔料分散レジスト組成物
WO2020162270A1 (ja) * 2019-02-06 2020-08-13 日本化薬株式会社 インク、インクジェット記録方法及び記録メディア
JP2021177204A (ja) * 2020-05-07 2021-11-11 サカタインクス株式会社 ブラックマトリックス用顔料分散組成物、およびブラックマトリックス用顔料分散レジスト組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014102346A (ja) * 2012-11-19 2014-06-05 Sakata Corp ブラックマトリックス用顔料分散組成物及びそれを含有するブラックマトリックス用顔料分散レジスト組成物
JP2019082533A (ja) * 2017-10-30 2019-05-30 サカタインクス株式会社 ブラックマトリックス用顔料分散組成物及びそれを含有するブラックマトリックス用顔料分散レジスト組成物
WO2020162270A1 (ja) * 2019-02-06 2020-08-13 日本化薬株式会社 インク、インクジェット記録方法及び記録メディア
JP2021177204A (ja) * 2020-05-07 2021-11-11 サカタインクス株式会社 ブラックマトリックス用顔料分散組成物、およびブラックマトリックス用顔料分散レジスト組成物

Also Published As

Publication number Publication date
TW202402819A (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
JP6361838B2 (ja) 感光性着色組成物、硬化物、ブラックマトリクス、着色スペーサー及び画像表示装置
KR101477981B1 (ko) 컬러 필터용 감광성 착색 수지 조성물, 컬러 필터, 액정 표시 장치 및 유기 el 디스플레이
JP7283519B2 (ja) 感光性樹脂組成物、硬化物及び画像表示装置
WO2016002911A1 (ja) 樹脂、感光性樹脂組成物、硬化物、カラーフィルタ及び画像表示装置
JP2013011845A (ja) カラーフィルタ用感光性着色樹脂組成物、カラーフィルタ、液晶表示装置及び有機elディスプレイ
JP2013167687A (ja) 感光性着色樹脂組成物、及びカラーフィルタ、及び液晶表示装置
JP5957952B2 (ja) 感光性着色樹脂組成物、及びカラーフィルタ、及び液晶表示装置
JP7120234B2 (ja) 感光性樹脂組成物、硬化物、ブラックマトリックス及び画像表示装置
JP2013195681A (ja) 感光性樹脂組成物、カラーフィルタ、液晶表示装置、及び有機elディスプレイ
JP2013065000A (ja) 感光性着色樹脂組成物、カラーフィルタ、及び液晶表示装置
JP2012083549A (ja) カラーフィルタ用感光性着色樹脂組成物、カラーフィルタ、液晶表示装置及び有機elディスプレイ
JP6344108B2 (ja) 感光性樹脂組成物、これを硬化させてなる硬化物、ブラックマトリックス及び画像表示装置
JP2018159930A (ja) 感光性樹脂組成物、これを硬化させてなる硬化物、ブラックマトリックス及び画像表示装置
JP6607054B2 (ja) 感光性樹脂組成物、硬化物、ブラックマトリックス及び画像表示装置
WO2023176899A1 (ja) 感光性樹脂組成物、顔料分散液、硬化物、ブラックマトリックス及び画像表示装置
WO2023204314A1 (ja) 顔料分散液、感光性樹脂組成物、硬化物、ブラックマトリックス及び画像表示装置
WO2023176898A1 (ja) 感光性樹脂組成物、硬化物、ブラックマトリックス及び画像表示装置
WO2023182350A1 (ja) 顔料分散液、感光性樹脂組成物、硬化物、ブラックマトリックス、画像表示装置、及び顔料分散液の製造方法
WO2019065789A1 (ja) 感光性樹脂組成物、硬化物、ブラックマトリックス及び画像表示装置
WO2023068201A1 (ja) 顔料分散液、感光性樹脂組成物、硬化物、ブラックマトリックス及び画像表示装置
TW202225243A (zh) 含有羧基之樹脂含有液之製造方法及含有羧基之樹脂之安定化方法
TW202223008A (zh) 含有羧基之樹脂之製造方法及含有羧基之樹脂之分子量之控制方法
JP2020003819A (ja) 感光性樹脂組成物、これを硬化させてなる硬化物、ブラックマトリックス及び画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770852

Country of ref document: EP

Kind code of ref document: A1