WO2023176814A1 - Ladder filter, module, and communication device - Google Patents

Ladder filter, module, and communication device Download PDF

Info

Publication number
WO2023176814A1
WO2023176814A1 PCT/JP2023/009794 JP2023009794W WO2023176814A1 WO 2023176814 A1 WO2023176814 A1 WO 2023176814A1 JP 2023009794 W JP2023009794 W JP 2023009794W WO 2023176814 A1 WO2023176814 A1 WO 2023176814A1
Authority
WO
WIPO (PCT)
Prior art keywords
parallel
duty
resonators
resonator
parallel resonator
Prior art date
Application number
PCT/JP2023/009794
Other languages
French (fr)
Japanese (ja)
Inventor
富夫 金澤
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2023176814A1 publication Critical patent/WO2023176814A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves

Definitions

  • the present disclosure relates to a ladder filter that uses elastic waves, and also relates to a module and a communication device including the ladder filter.
  • a ladder type filter in which a plurality of resonators are connected in a ladder type is known (for example, Patent Document 1 below).
  • the resonator is, for example, an elastic wave resonator that uses elastic waves.
  • an acoustic wave resonator for example, one having a piezoelectric substrate having piezoelectricity on at least the upper surface and an IDT (Interdigital Transducer) electrode located on the upper surface of the piezoelectric substrate is known.
  • the IDT electrode has a plurality of electrode fingers arranged in the propagation direction of elastic waves. In such an elastic wave resonator, an elastic wave whose length of one wavelength is approximately twice the pitch of the plurality of electrode fingers is used.
  • a ladder filter includes a plurality of series resonators and a plurality of parallel resonators.
  • the plurality of series resonators are connected in series between an input terminal and an output terminal.
  • Each of the plurality of parallel resonators connects the input terminal side or the output terminal side of one of the series resonators among the plurality of series resonators to a reference potential section.
  • each of the plurality of parallel resonators has an IDT electrode including a plurality of electrode fingers.
  • the plurality of parallel resonators include a first parallel resonator and a second parallel resonator.
  • a connection position of the first parallel resonator to the plurality of series resonators is located electrically closer to the output terminal than a connection position of the second parallel resonator to the plurality of series resonators.
  • a value obtained by dividing each width of the plurality of electrode fingers by the pitch of the plurality of electrode fingers is called Duty. At this time, the duty of the first parallel resonator is smaller than the duty of the second parallel resonator.
  • a module includes the ladder filter, an antenna connected to one of the input terminal and the output terminal, and an integrated circuit element connected to the other of the input terminal and the output terminal. It has .
  • a communication device includes the ladder filter, an antenna connected to one of the input terminal and the output terminal, and an integrated circuit connected to the other of the input terminal and the output terminal. and a housing housing the ladder filter and the integrated circuit element.
  • FIG. 1 is a schematic diagram showing the configuration of a duplexer including a ladder filter according to an embodiment.
  • FIG. 2 is a plan view showing the configuration of an elastic wave resonator included in the ladder filter of FIG. 1; A sectional view taken along the line III-III in FIG. 2.
  • FIG. 3 is a diagram showing an example of frequency characteristics of the absolute value of impedance of an elastic wave resonator.
  • FIG. 3 is a diagram showing an example of the frequency characteristics of the impedance phase of an elastic wave resonator.
  • 3 is a diagram showing transmission characteristics of ladder filters according to Comparative Example 1 and Example 1.
  • FIG. 3 is a diagram showing transmission characteristics of ladder filters according to Comparative Example 2 and Example 2.
  • FIG. 6 is a diagram showing transmission characteristics of ladder filters according to Comparative Example 2 and Example 3.
  • FIG. 1 is a block diagram schematically showing the configuration of a communication device according to an embodiment.
  • FIG. 1 is a schematic diagram showing the configuration of main parts of a duplexer 101 including a ladder filter according to an embodiment.
  • the branching filter 101 is configured as a duplexer, for example.
  • the duplexer includes, for example, a transmission filter 109 that filters the transmission signal from the transmission terminal 105 and outputs it to the antenna terminal 103, and a reception filter 111 that filters the reception signal from the antenna terminal 103 and outputs it to the reception terminal 107. are doing.
  • the transmission filter 109 is configured to include, for example, a ladder type filter.
  • the ladder type filter is configured by connecting a plurality of resonators 15 (more specifically, 15S1 to 15S4 and 15P1 to 15P4 in the illustrated example) in a ladder type.
  • the plurality of resonators 15 include, for example, a plurality of (four in the illustrated example) series resonators 15S (more specifically, 15S1 to 15S4) and a plurality (four in the illustrated example) of parallel resonators 15S. It has a resonator 15P (more specifically, 15P1 to 15P4).
  • the plurality of series resonators 15S are connected in series between the transmission terminal 105 and the antenna terminal 103.
  • a signal path including the plurality of series resonators 15S may be referred to as a series arm 115.
  • the plurality of parallel resonators 15P connect the plurality of positions of the series arm 115 and the reference potential section 113. Each signal path from the series arm 115 to the reference potential section 113 via the parallel resonator 15P is sometimes referred to as a parallel arm (symbol omitted).
  • FIG. 2 is a schematic plan view showing an example of the configuration of each resonator 15.
  • FIG. 3 is a sectional view taken along line III--III in FIG. 2.
  • an orthogonal coordinate system D1D2D3 is attached to these figures.
  • the D3 direction is the normal direction of the upper surface of the composite substrate 3.
  • the D1 direction is the propagation direction of elastic waves propagating along the upper surface of the composite substrate 3.
  • the D2 direction is a direction orthogonal to the D1 direction and the D3 direction.
  • the resonator 15 may be directed upward or downward.
  • terms such as an upper surface or a lower surface may be used with the +D3 side as the upper side for convenience.
  • the resonator 15 includes, for example, a piezoelectric substrate (composite substrate 3 in this embodiment) having piezoelectricity on at least its upper surface, and an IDT electrode 19 located on the composite substrate 3.
  • the composite substrate 3 has, for example, a piezoelectric layer 11 that constitutes the upper surface of the composite substrate 3.
  • the IDT electrode 19 has a pair of comb-teeth electrodes 23 that engage with each other.
  • Each comb-teeth electrode 23 has a plurality of electrode fingers 27 extending in a direction (D2 direction) orthogonal to the propagation direction of elastic waves.
  • the plurality of electrode fingers 27 of one comb-teeth electrode 23 and the plurality of electrode fingers 27 of the other comb-teeth electrode 23 are basically arranged alternately in the propagation direction of the elastic wave (direction D1).
  • the voltage is applied to the pair of comb-teeth electrodes 23, the voltage is applied to the piezoelectric layer 11 by the plurality of electrode fingers 27, and the piezoelectric layer 11 of the composite substrate 3 vibrates. That is, elastic waves are excited.
  • the elastic waves of various wavelengths propagating in various directions the elastic waves propagating in the arrangement direction of the plurality of electrode fingers 27 with the pitch p of the plurality of electrode fingers 27 approximately half a wavelength ( ⁇ /2) are Since the plurality of waves excited by the electrode fingers 27 overlap in the same phase, the amplitude tends to become large.
  • the elastic waves propagating through the piezoelectric layer 11 are converted into electrical signals by the plurality of electrode fingers 27.
  • the pitch p of the plurality of electrode fingers 27 is approximately half a wavelength ( ⁇ /2), and the elastic waves propagating in the arrangement direction of the plurality of electrode fingers 27 are converted into electricity.
  • the signal strength tends to be strong.
  • the resonator 15 functions as a resonator whose resonant frequency is the frequency of an elastic wave with a pitch p of approximately half a wavelength ( ⁇ /2). do.
  • the resonant frequency of the series resonator 15S is approximately the center frequency of the passband, and the resonant frequency of the series resonator 15S is parallel to the resonant frequency of the series resonator 15S. It functions as a filter whose width is slightly narrower than the difference from the resonant frequency of the resonator 15P and is half the width of the passband.
  • is usually a symbol indicating wavelength.
  • the actual wavelength of an elastic wave may deviate from 2p. If the actual wavelength and 2p deviate from each other, ⁇ in the description of the embodiments means 2p rather than the actual wavelength.
  • the frequency of the elastic wave (the elastic wave intended to be used) having a pitch p of approximately half a wavelength is approximately
  • the amplitude of an elastic wave having three times the frequency (sometimes referred to as a "third harmonic wave") may become large. and/or the intensity of the electrical signal into which the third harmonic is converted may increase. That is, spurious waves due to the third harmonic may occur.
  • the characteristics deteriorate in a frequency band approximately three times the passband.
  • the ratio (w/p) of the width w (FIG. 2) of the electrode fingers 27 to the pitch p is referred to as Duty.
  • the one whose connection position to the series arm 115 in other words, the plurality of series resonators 15S) is electrically closest to the input terminal (transmission terminal 105 in the illustrated example)
  • one of the parallel resonators for example, the parallel resonator 15P4 other than the parallel resonator 15P1
  • first parallel resonator for example, the parallel resonator 15P4
  • a parallel resonator 15P whose connection position to the series arm 115 is electrically located closer to the input terminal (transmission terminal 105) than the connection position of the first parallel resonator to the series arm 115 is referred to as a "second parallel resonator”. ”.
  • connection position with respect to the series arm 115 may also be omitted, and the parallel resonator 15P may simply be expressed as being close to or far from the antenna terminal 103 or the transmission terminal 105.
  • the duty of the first parallel resonator is smaller than the duty of the second parallel resonator.
  • the spurious caused by the third harmonic generated in the second parallel resonator is transmitted from the second parallel resonator of the ladder filter (transmission filter 109) in the process of being transmitted toward the output terminal (antenna terminal 103). It is also likely to be attenuated by the part located on the output terminal side. Conversely, spurious noise generated in the first parallel resonator relatively located closer to the output terminal is less likely to be attenuated. Therefore, by reducing the duty in the first parallel resonator to reduce spurious, it is possible to efficiently reduce spurious.
  • the duty of some parallel resonators (first parallel resonators) among the plurality of parallel resonators 15P is reduced, other parallel resonators 15P (second parallel resonators) Regarding, the duty can be set so as to improve characteristics other than spurious caused by the third harmonic. This makes it easier to ensure the characteristics in the passband, for example.
  • the resonator 15 shown in FIG. 2 is configured as a so-called one-port acoustic wave resonator.
  • the resonator 15 generates resonance when an electrical signal of a predetermined frequency is input from one of the terminals 17A and 17B shown conceptually and schematically, and can output the signal that caused the resonance from the other terminal 17A and 17B. It is.
  • the resonator 15 includes a piezoelectric substrate (composite substrate 3 in this embodiment) having piezoelectricity on at least its upper surface, and an IDT electrode 19.
  • the resonator 15 includes a composite substrate 3 and a conductor layer 5 that overlaps the upper surface of the composite substrate 3 and includes an IDT electrode 19.
  • the conductor layer 5 includes, in addition to the IDT electrode 19, a pair of reflectors 21 located on both sides thereof.
  • the pair of reflectors 21 reflect the elastic waves and contribute to confining the energy in the region where the IDT electrode 19 is arranged.
  • the region of the resonator 15 where the IDT electrode 19 is arranged is also a resonator. This resonator may be referred to as a resonator 16.
  • the resonator 15 includes at least a portion of the upper surface side of the composite substrate 3. At least a portion of the piezoelectric layer 11 includes, for example, a piezoelectric layer 11 and a low sound velocity film 9 (described later). However, in the description of the embodiment, for convenience, it may be expressed as if only the IDT electrode 19 and the pair of reflectors 21 (the configuration excluding the composite substrate 3) are the resonator 15.
  • the elastic waves intended to be used in the resonator 15 may be any appropriate type.
  • the elastic wave may be a surface acoustic wave, a bulk wave, a plate wave (Lamb wave), or it may be indistinguishable as described above.
  • the elastic waves to be utilized are, for example, the material, cut angle and thickness of the piezoelectric layer 11, the configuration of the lower surface side of the piezoelectric layer 11 (configuration of the low sound velocity film 9, etc.), and the configuration of the upper surface side of the piezoelectric layer 11 (configuration of the low sound velocity film 9, etc.).
  • the structure of the conductor layer 5, etc. differs depending on the configuration.
  • resonator 15 will be roughly explained in the following order. 1.1. Piezoelectric substrate (composite substrate 3) 1.2. Conductor layer 5 1.3. Other configurations of resonator 15
  • the piezoelectric substrate constituting the resonator 15 shown in FIGS. 2 and 3 may have various configurations in which at least the upper surface has piezoelectricity.
  • the piezoelectric substrate may be a composite substrate including a piezoelectric layer and one or more layers overlapping the bottom surface of the piezoelectric layer (as shown in the figure), or the entire substrate is basically made of piezoelectric material.
  • the "layer” may include, for example, a film-like layer (for example, a relatively thin layer) and a substrate-like layer (for example, a relatively thick layer).
  • the composite substrate 3 in the illustrated example includes a support substrate 7 (FIG. 3), a low sound velocity film 9 (FIG. 3) located on the support substrate 7, and a piezoelectric layer 11 located on the low sound speed film 9 (FIG. 2). and FIG. 3).
  • the sound speed in the low sound speed film 9 is lower than the sound speed in the piezoelectric layer 11.
  • the low sound velocity film 9 contributes to, for example, reflecting the elastic waves propagating through the piezoelectric layer 11 and confining the energy of the elastic waves in the piezoelectric layer 11 .
  • the support substrate 7 contributes to reinforcing the strength of the composite substrate 3, for example.
  • the composite substrate may have a configuration different from the illustrated example.
  • the configuration of the composite substrate may be such that a high-sonic membrane is added to the configuration of the composite substrate 3 in the illustrated example.
  • the high sound velocity film has a higher sound velocity than the sound velocity in the piezoelectric layer 11 .
  • the high-sonic membrane may be located, for example, between the piezoelectric layer 11 and the low-sonic membrane 9 and/or between the low-sonic membrane 9 and the support substrate 7.
  • a high sound velocity film may or may not be interposed therebetween.
  • the piezoelectric layer 11 and the low sound velocity membrane 9 overlap, unless otherwise specified, it refers to the fact that they directly overlap when viewed acoustically. The same applies to the other two layers that overlap each other.
  • the other layers have a thickness that has almost no acoustic effect on the elastic waves propagating through the piezoelectric layer 11, for example.
  • Such thickness varies depending on the materials of other layers, etc., but to give a specific example, it is 0.005 ⁇ or less or 0.001 ⁇ or less.
  • the existence of the bonding layer is basically ignored. The same applies to the other two layers that overlap each other.
  • the composite substrate may have still another configuration.
  • the composite substrate may include a support substrate 7, a multilayer film overlapping the support substrate 7, and a piezoelectric layer 11 overlapping the multilayer film.
  • the multilayer film may have, for example, a structure in which a plurality of layers (for example, 3 or more or 5 or more) having different acoustic impedances and/or sound velocities are alternately laminated.
  • the composite substrate may include a support substrate 7 and a piezoelectric layer 11 overlapping the support substrate 7.
  • the composite substrate may have a cavity that is in contact with the lower surface of the piezoelectric layer 11 and overlaps at least a portion of the resonator 15 when seen in plan view.
  • the piezoelectric layer 11 is made of, for example, a piezoelectric single crystal.
  • materials constituting such a single crystal include lithium tantalate (LiTaO 3 , hereinafter sometimes abbreviated as LT), lithium niobate (LiNbO 3 , hereinafter sometimes abbreviated as LN), and Quartz (SiO 2 ) can be mentioned.
  • the cut angle of these single crystals is arbitrary.
  • the piezoelectric layer 11 may be made of polycrystal.
  • the thickness of the piezoelectric layer 11 is arbitrary.
  • the thickness of the piezoelectric layer 11 may be 0.05 ⁇ or more or 0.1 ⁇ or more. With such a thickness, for example, elastic waves propagating through the piezoelectric layer 11 can be used. Further, for example, the thickness of the piezoelectric layer 11 may be 1.0 ⁇ or less. In this case, for example, it is possible to reduce insertion loss or to use elastic waves in a relatively fast mode.
  • the material of the low sound velocity film 9 is arbitrary as long as the sound velocity in the low sound velocity film 9 is lower than the sound velocity in the piezoelectric layer 11. Physical property values (density, Young's modulus, acoustic impedance, etc.) that mutually influence the speed of sound may also be set arbitrarily.
  • the sound speed in the comparison between the sound speed in the low sound speed film 9 and the sound speed in the piezoelectric layer 11 may be, for example, the sound speed of a bulk wave propagating through each layer.
  • Bulk waves generally include three types: longitudinal waves, slow shear waves, and fast shear waves.
  • the slow transverse wave or the fast transverse wave is, for example, either an SV (shear vertical) wave or an SH (shear vertical) wave.
  • the bulk wave used for comparison may be, for example, a bulk wave that propagates through the piezoelectric layer 11 and corresponds to a component mainly included in an elastic wave that is intended to be used, among the three types of bulk waves.
  • the low sound velocity film 9 is expected to have the effect of confining the elastic waves propagating through the piezoelectric layer 11, as described above.
  • the elastic waves in the piezoelectric layer 11 that are intended to be used mainly include SH waves
  • the sound speed of the SH waves in the piezoelectric layer 11 and the sound speed of the SH waves in the low-sonic film 9 may be compared.
  • SH waves have been taken as an example, the same applies to SV waves or longitudinal waves.
  • the sound speed of the transverse waves may be compared, for example.
  • the conditions for comparison do not necessarily need to be as strict as described above.
  • the sound speeds of both do not need to be strictly specified.
  • the transverse sound velocity of the low sound velocity film 9 and the transverse sound velocity of the piezoelectric layer 11 the difference between fast transverse waves and slow transverse waves in the low sound velocity film 9 is relatively small (transverse sound velocity of the low sound velocity film 9). and the transverse wave sound speed of the piezoelectric layer 11), even if fast transverse waves and slow transverse waves in the low sound speed film 9 are not particularly distinguished, the transverse sound speed of the low sound speed film 9 is relatively large.
  • the sound velocity in the piezoelectric layer 11 varies depending on, for example, the direction in which the sound velocity is specified and the cut angle and thickness of the piezoelectric layer 11. to be influenced.
  • the same can be said about the low sound velocity membrane 9. Therefore, when comparing the sound speeds in the two layers (here, the piezoelectric layer 11 and the low sound speed membrane 9), the relationship between the sound speeds of the two layers may vary depending on the conditions under which the comparison is made. Therefore, when the sound speeds in the two layers are compared, for example, the sound speeds in the D1 direction (the arrangement direction of the plurality of electrode fingers 27) in the actual product may be compared. In other words, specific sound velocities may be compared in consideration of the effects of a specific cut angle, thickness, and the like.
  • the effects of cut angle, thickness, etc. do not necessarily have to be taken into consideration.
  • the speeds of sound between the two layers do not need to be strictly specified.
  • the sound speed in the low sound speed film 9 is lower than the sound speed in the piezoelectric layer 11, regardless of the cut angle and/or thickness of the piezoelectric layer 11 and the thickness of the low sound speed film 9.
  • the sound speed may be calculated from a simple theoretical formula based on density, Young's modulus, etc. and compared.
  • the speed of the elastic wave is also affected by the conductor layer 5 and the like located on the piezoelectric layer 11, and also differs from region to region within the resonator 15.
  • the sound speed in the intersection region of the IDT electrodes 19 may be used.
  • the intersection region is sandwiched between an imaginary line connecting the tips of the plurality of electrode fingers 27 of one comb-teeth electrode 23 and an imaginary line connecting the tips of the plurality of electrode fingers 27 of the other comb-teeth electrode 23.
  • the central area may be the same as the central area described in "4.5. Supplement regarding Duty" described later.
  • the sound velocity in the low-sonic membrane 9 is lower than the sound velocity in the piezoelectric layer 11 regardless of the presence or absence of the influence of the conductor layer 5, etc., or if the sound velocity is low in the same area when viewed through a plane, In cases such as when it is clear that the sound velocity in the membrane 9 is lower than the sound velocity in the piezoelectric layer 11, the sound velocity in such an intersection region does not need to be determined strictly.
  • Specific materials for the low sound velocity film 9 include, for example, silicon dioxide (SiO 2 ), tantalum oxide (Ta 2 O 3 ), silicon oxynitride (Si 2 N 2 O), and glass. Further, a compound in which fluorine, carbon, boron, or the like is added to SiO 2 may be used.
  • the various materials mentioned for the piezoelectric layer 11 for example, LT and LN
  • the materials mentioned here may be arbitrarily combined. Note that the conditions for comparing the sound speed in the piezoelectric layer 11 and the sound speed in the low sound speed film 9 have been described in detail so far. However, if the material of the low sound velocity membrane 9 is the material exemplified in this paragraph, some or all of the comparison conditions described above may be ignored.
  • the thickness of the low-sonic membrane 9 is arbitrary.
  • the thickness of the low sound velocity film 9 may be thinner than the thickness of the piezoelectric layer 11 (as shown in the illustrated example), or may be equal to or thicker.
  • the thickness of the low sound velocity film 9 may be 0.01 ⁇ or more or 0.1 ⁇ or more, or may be 0.6 ⁇ or less or 0.5 ⁇ or less.
  • the above lower limit and upper limit may be arbitrarily combined. When such a thickness is adopted, it is easy to reduce insertion loss, for example.
  • the material and dimensions of the support substrate 7 are arbitrary. Since the elastic waves propagating through the piezoelectric layer 11 are basically reflected by the low-sonic film 9, the direct influence of the material and dimensions of the support substrate 7 on the elastic waves propagating through the piezoelectric layer 11 is comparatively small. The target is small.
  • the material of the support substrate 7 may have a coefficient of thermal expansion lower than that of the piezoelectric layer 11 and the like. In this case, for example, it is possible to reduce the possibility that the frequency characteristics of the resonator 15 will change due to temperature changes. Examples of such materials include semiconductors such as silicon (Si), single crystals such as sapphire, and ceramics such as aluminum oxide sintered bodies. Note that the support substrate 7 may be configured by laminating a plurality of layers made of mutually different materials. The thickness of the support substrate 7 is thicker than the piezoelectric layer 11, for example.
  • the composite substrate may have a high sonic membrane.
  • the material for the high-sonic membrane is arbitrary as long as the sound velocity in the high-sonic membrane is higher than that in the piezoelectric layer 11. Physical property values (density, Young's modulus, acoustic impedance, etc.) that mutually influence the speed of sound may also be set arbitrarily.
  • the explanation given regarding the low sound speed membrane 9 may be used.
  • Specific materials for the high-speed sonic film include, for example, aluminum oxide (Al 2 O 3 ), silicon nitride (Si 3 N 4 ), and aluminum nitride (AlN).
  • Al 2 O 3 aluminum oxide
  • Si 3 N 4 silicon nitride
  • AlN aluminum nitride
  • the thickness of the high-sonic membrane is arbitrary.
  • the thickness of the high sonic velocity film may be thinner, equal to, or thicker than the thickness of the piezoelectric layer 11 and/or the low sonic velocity film 9.
  • the thickness of the high-sonic film interposed between the piezoelectric layer 11 and the low-sonic film 9 may be 0.01 ⁇ or more and 0.2 ⁇ or less. When such a thickness is adopted, it is easy to reduce insertion loss, for example.
  • the conductor layer 5 is made of metal, for example.
  • the specific type of metal is arbitrary.
  • the metal may be aluminum (Al) or an alloy containing Al as a main component (Al alloy).
  • the Al alloy may be, for example, an aluminum-copper (Cu) alloy.
  • the conductor layer 5 may be composed of a plurality of metal layers.
  • a relatively thin layer made of titanium (Ti) may be provided between Al or Al alloy and the piezoelectric layer 11 to strengthen the bonding properties between them.
  • the thickness of the conductor layer 5 may be set as appropriate depending on the characteristics required of the resonator 15.
  • the thickness of the conductor layer 5 may be 0.02 ⁇ or more and 0.10 ⁇ or less, and/or 50nm or more and 600nm or less.
  • the conductor layer 5 includes the IDT electrode 19 and a pair of reflectors 21. Below, the conductor layer 5 will be roughly explained in the following order. 1.2.1. IDT electrode 1.2.2. reflector
  • the IDT electrode 19 includes a pair of comb-teeth electrodes 23, as described above. Note that in FIG. 2, one comb-teeth electrode 23 is hatched for better visibility.
  • Each comb-teeth electrode 23 includes, for example, a busbar 25, a plurality of electrode fingers 27 extending in parallel from the busbar 25, and a dummy electrode 29 protruding from the busbar 25 between the plurality of electrode fingers 27.
  • the pair of comb-teeth electrodes 23 are arranged so that the plurality of electrode fingers 27 interlock with each other (cross each other).
  • the bus bar 25 has, for example, a shape that generally has a constant width and extends linearly in the elastic wave propagation direction (D1 direction). A pair of bus bars 25 are opposed to each other in a direction (D2 direction) that intersects the propagation direction of elastic waves. Unlike the illustrated example, the bus bar 25 may have a varying width or may be inclined with respect to the propagation direction of the elastic wave. In the latter embodiment, the intersection area may also be sloped.
  • Each electrode finger 27 has, for example, a shape that generally has a constant width and extends linearly in the direction (D2 direction) orthogonal to the propagation direction of the elastic wave.
  • the width w of the electrode finger 27 may change depending on the position in the length direction (D2 direction).
  • An example of such an electrode finger 27 is one that uses a piston mode. Note that a method for calculating Duty (w/p) when the width w is not constant in the length direction will be described later (see "4.5. Supplement regarding Duty").
  • the plurality of electrode fingers 27 are arranged in the propagation direction of the elastic wave (direction D1).
  • the plurality of electrode fingers 27 of one comb-teeth electrode 23 and the plurality of electrode fingers 27 of the other comb-teeth electrode 23 are basically arranged alternately.
  • the pitch p of the plurality of electrode fingers 27 is basically constant within the IDT electrode 19.
  • a part of the IDT electrode 19 may be provided with a narrow pitch part in which the pitch p is narrower than in most other parts, or a wide pitch part in which the pitch p is wider than in most other parts.
  • a thinned out portion where the electrode fingers 27 are substantially thinned out may exist in a part of the IDT electrode 19. Note that a method of calculating the pitch p and Duty (w/p) when the pitch p is not constant will be described later (see "4.5. Supplement regarding Duty").
  • the pitch p may be set according to the intended resonance frequency.
  • the pitch p may be 0.1 ⁇ m or more, 0.3 ⁇ m or more, or 0.5 ⁇ m or more, and may be 10 ⁇ m or less, 5 ⁇ m or less, or 2 ⁇ m or less.
  • the above lower limit and upper limit may be arbitrarily combined.
  • the number of electrode fingers 27 may be appropriately set depending on the electrical characteristics required of the resonator 15. Since FIG. 2 is a schematic diagram, the number of electrode fingers 27 is shown to be small. In reality, more electrode fingers 27 than shown may be arranged. The same applies to the strip electrode 33 of the reflector 21, which will be described later.
  • the lengths of the plurality of electrode fingers 27 are, for example, equal to each other.
  • the IDT electrode 19 has a so-called apodized structure in which the length of the plurality of electrode fingers 27 (from another point of view, the so-called crossing width) changes depending on the position in the propagation direction of the elastic wave (D1 direction). may be applied.
  • the length and width of the electrode fingers 27 may be set as appropriate depending on required electrical characteristics and the like.
  • the dummy electrode 29 has, for example, a shape that approximately has a constant width and protrudes in a direction perpendicular to the propagation direction of the elastic wave. Its width is, for example, equivalent to the width of the electrode finger 27.
  • the plurality of dummy electrodes 29 are arranged at the same pitch as the plurality of electrode fingers 27, and the tip of the dummy electrode 29 of one comb-teeth electrode 23 is in a gap with the tip of the electrode finger 27 of the other comb-teeth electrode 23. are facing each other through. Note that the IDT electrode 19 may not include the dummy electrode 29.
  • the pair of reflectors 21 are located on both sides of the IDT electrode 19 in the propagation direction of the elastic wave.
  • each reflector 21 may be electrically floating or may be provided with a reference potential.
  • Each reflector 21 is formed, for example, in a lattice shape. That is, the reflector 21 includes a pair of bus bars 31 facing each other and a plurality of strip electrodes 33 extending between the pair of bus bars 31.
  • the pitch between the plurality of strip electrodes 33 and the pitch between the electrode fingers 27 and the strip electrodes 33 that are adjacent to each other are, for example, equivalent to the pitch between the plurality of electrode fingers 27.
  • the upper surface of the piezoelectric layer 11 may be covered from above the conductor layer 5 with a protective film made of SiO 2 and/or Si 3 N 4 or the like.
  • the protective film may contribute, for example, to reducing corrosion of the conductor layer 5 and/or to temperature compensation regarding the properties of the resonator 15.
  • an additional film made of an insulator or metal may be provided on the upper or lower surfaces of the IDT electrode 19 and reflector 21. The additional film contributes to improving the reflection coefficient of elastic waves, for example.
  • the resonator 15 may be packaged as appropriate.
  • the packaging may be such that the illustrated configuration is mounted on a substrate (not shown) so that the upper surfaces of the piezoelectric layers 11 face each other with a gap therebetween, and the piezoelectric layer 11 is sealed with resin from above.
  • a wafer level package type in which a box-shaped cover is provided on the body layer 11 may be used.
  • packaging may be performed, for example, for each filter (109 or 111), or for each part of the filter, or for packaging the duplexer 101 (in other words, It may be performed for each filter (all two or more filters).
  • the transmission filter 109 shown in FIG. 1 includes a ladder type filter.
  • the transmission filter 109 may include filters other than the ladder type filter.
  • the transmission filter 109 is configured only by a ladder type filter. Therefore, in the description of the embodiments, the two may not be distinguished.
  • the ladder filter may include components (for example, an inductor, a capacitor, and/or a resistor) other than the series resonator 15S and the parallel resonator 15P.
  • the ladder filter transmission filter 109 includes only the series resonator 15S and the parallel resonator 15P (and wiring connecting these).
  • the plurality of resonators 15 that constitute the transmission filter 109 are provided, for example, on the same piezoelectric substrate (composite substrate 3). However, the plurality of resonators 15 may be provided on different piezoelectric substrates. For example, a plurality of series resonators 15S may be provided on the first piezoelectric substrate, and a plurality of parallel resonators 15P may be provided on the second piezoelectric substrate. In the description of this embodiment, it is assumed that all the resonators 15 of the ladder filter are provided on the same piezoelectric substrate unless otherwise specified.
  • the number of series resonators 15S is arbitrary.
  • the number of series resonators 15S is generally plural (as shown in the figure), or may be one. In the illustrated example, the number of series resonators 15S is four. This is just one example.
  • the number of series resonators 15S may be 2, 3, or 5 or more.
  • the number of parallel resonators 15P is also arbitrary. Note that in a normal ladder filter, the number of parallel resonators 15P may be one. However, in the ladder type filter of the embodiment, the number of parallel resonators 15P is plural. In the illustrated example, the number of parallel resonators 15P is four. This is just one example. The number of parallel resonators 15P may be 2, 3, or 5 or more.
  • Each parallel resonator 15P connects the antenna terminal 103 side or the transmission terminal 105 side of any series resonator 15S to the reference potential section 113.
  • the plurality of parallel resonators 15P connect a plurality of electrically different positions on the series arm 115 and the reference potential section 113.
  • the connection position of the parallel resonator 15P to the series arm 115 is a position between adjacent series resonators 15S, a position on the antenna terminal 103 side with respect to the entire plurality of series resonators 15S, and a position where the parallel resonator 15P is connected to the series arm 115. This is any position on the transmission terminal 105 side with respect to the entire child 15S.
  • a parallel resonator 15P1 is connected to a position on the transmission terminal 105 side with respect to the entire plurality of series resonators 15S, and a parallel resonator is connected to a position between adjacent series resonators 15S. 15P2 to 15P4 are provided.
  • a parallel resonator 15P connected to the antenna terminal 103 side with respect to the entire plurality of series resonators 15S may be provided.
  • the parallel resonator 15P1 may be omitted.
  • the number of parallel resonators 15P is typically the same (as in the illustrated example), one less, or one more than the number of series resonators 15S. However, this is not necessarily the case.
  • a parallel resonant circuit configured to include an inductor and a capacitor in place of the resonator 15.
  • At least two parallel resonators 15P are elastic wave resonators as described with reference to FIGS. 2 and 3. Furthermore, in the description of this embodiment, unless otherwise specified, all the resonators 15 are assumed to be elastic wave resonators as described with reference to FIGS. 2 and 3.
  • each resonator 15 (for example, a series resonator 15S) is divided into two or more resonators (referred to as "split resonators" in this paragraph) connected in series (or in parallel). Good too.
  • Each divided resonator has, for example, the configuration of an elastic wave resonator as described with reference to FIGS. 2 and 3. By dividing, for example, the voltage applied to the divided resonators can be divided to improve voltage resistance.
  • the parallel resonators 15P are usually not connected between divided resonators obtained by dividing one series resonator 15S into series.
  • connection position of the parallel resonator 15P to the series arm 115 is indicated by a node (number omitted) located on the wiring (number omitted) connected to each series resonator 15S.
  • the actual connection position may be substantially the same position as the above-mentioned node from an electrical point of view.
  • the wiring extending from the parallel resonator 15P may be directly connected to one bus bar 25 of the series resonator 15S, or one bus bar 25 of the parallel resonator 15P may be directly connected to the bus bar 25 of the series resonator 15S. You may.
  • the plurality of reference potential sections 113 to which the plurality of parallel resonators 15P are connected are drawn as mutually different reference potential sections 113. These reference potential sections 113 may be located at different locations in the actual product, or may be partially or entirely the same location. Furthermore, the plurality of reference potential sections 113 as mutually different parts may be insulated from each other within the transmission filter 109 or within the duplexer 101, or may be partially or entirely connected to each other.
  • the resonator 15 functions as a resonator whose resonant frequency is the frequency of an elastic wave whose pitch p is approximately half a wavelength.
  • the impedance of the resonator 15 takes a minimum value (see region Rr in FIG. 4, which will be described later). Further, the impedance of the resonator 15 takes a maximum value (see region Ra in FIG. 4) at the anti-resonance frequency.
  • the anti-resonance frequency is determined by the resonance frequency, the capacitance of the resonator 15, and the like. The anti-resonant frequency is, for example, higher than the resonant frequency.
  • the plurality of series resonators 15S are configured so that their resonant frequencies are equal to each other and their anti-resonant frequencies are equal to each other.
  • the plurality of series resonators 15S have substantially the same values of parameters (pitch p, duty, etc.) that affect the resonant frequency and the anti-resonant frequency.
  • the resonant frequency and/or the anti-resonant frequency are In some cases, the values of influencing parameters) may be different among the plurality of series resonators 15S.
  • the resonant frequency and anti-resonant frequency of the series resonator 15S and the parallel resonator 15P are set so that the resonant frequency of the series resonator 15S and the anti-resonant frequency of the parallel resonator 15P approximately match.
  • these resonators 15 as a whole (ladder type filter) function as a bandpass filter whose pass band is slightly narrower than the frequency range from the resonant frequency of the parallel resonator 15P to the anti-resonant frequency of the series resonator 15S. Function.
  • the duplexer 101 shown in FIG. 1 includes a transmission filter 109 and a reception filter 111, as described above.
  • the reception filter 111 is a bandpass filter that has a passband that is different from (does not overlap) the passband of the transmission filter 109.
  • the configuration of the reception filter 111 is arbitrary.
  • the reception filter 111 may include an elastic wave filter that uses elastic waves, or may not include an elastic wave filter.
  • the latter includes, for example, a filter that utilizes a parallel resonant circuit including an inductor and a capacitor. Note that in the description of this embodiment, unless otherwise specified, expressions may be made on the premise that the reception filter 111 is an elastic wave filter.
  • the reception filter 111 includes an elastic wave filter
  • its specific configuration is arbitrary.
  • the reception filter 111 may include a ladder filter and/or a multimode filter (including a dual mode filter).
  • the multimode filter includes two or more IDT electrodes 19 (resonators 16 from another perspective) arranged in the propagation direction of elastic waves and adjacent to each other, and a pair of IDT electrodes 19 located on both sides of the IDT electrodes 19 (resonators 16 from another perspective). It has a reflector 21.
  • the reception filter 111 includes a plurality of resonators 15 (or 16)
  • the plurality of resonators 15 may be provided on the same piezoelectric substrate (composite substrate 3) similarly to the transmission filter 109. , may not be provided on the same piezoelectric substrate.
  • the reception filter 111 (a part or all of it) and the transmission filter 109 (a part or all of it) may be provided on the same piezoelectric substrate (composite substrate 3), or may be provided on the same piezoelectric substrate It does not have to be provided.
  • the former includes, for example, a mode in which the entire receiving filter 111 and the entire transmitting filter 109 are provided on the same piezoelectric substrate.
  • the latter includes, for example, a mode in which the piezoelectric substrate provided with the reception filter 111 and the piezoelectric substrate provided with the transmission filter 109 are mounted on the same mounting substrate (not shown).
  • the duplexer 101 may include the above-mentioned antenna terminal 103, transmission terminal 105, and reception terminal 107 as constituent elements.
  • the antenna terminal 103 is connected, for example, directly or indirectly to an antenna (not shown).
  • the transmission terminal 105 is connected, for example, directly or indirectly to a high frequency circuit for transmission (not shown here).
  • the reception terminal 107 is connected, for example, directly or indirectly to a high frequency circuit for reception (not shown here).
  • the illustrated antenna terminal 103, transmission terminal 105, and reception terminal 107 may be external terminals that contribute to the connection between the duplexer 101 and the outside of the duplexer 101, or may be connected to such external terminals. It may also be an internal terminal of the duplexer 101. Furthermore, in any case, the specific configurations of the various terminals are arbitrary. For example, various terminals may be constituted by a conductor layer 5 located on the upper surface of the composite substrate 3.
  • each terminal consists of only one and outputs an unbalanced signal.
  • at least one type of terminal may be composed of two terminals capable of outputting a balanced signal.
  • two transmission terminals 105 may be provided by interposing a multimode elastic wave filter between the ladder type filter of the transmission filter 109 and the transmission terminal 105.
  • two reception terminals 107 may be provided by the reception filter 111 being constituted by a multimode elastic wave filter.
  • the branching filter may be something other than a duplexer.
  • the duplexer may be a diplexer, or may include three or more filters (for example, a triplexer or a quadplexer).
  • the duplexer 101 is included in one chip-type electronic component, for example.
  • the transmission filter 109 and the reception filter 111 may be included in different chip-type electronic components.
  • the transmission filter 109, the reception filter 111, or the duplexer 101 may be regarded as one elastic wave device 1.
  • connection position of the first parallel resonator to the series arm 115 is electrically closer to the output terminal (antenna terminal 103) than the connection position of the second parallel resonator to the series arm 115. It's on the side. Further, the duty of the first parallel resonator is smaller than the duty of the second parallel resonator.
  • the configuration described above may be referred to as "requirement A.”
  • first parallel resonator refers to only one of the parallel resonators 15P when there are multiple parallel resonators 15P that can be regarded as the first parallel resonator. In some cases, it refers to two or more parallel resonators 15P. The same applies to the "second parallel resonator”.
  • the first parallel resonator and the second parallel resonator that satisfy requirement A may be any of the parallel resonators 15P.
  • the number of first parallel resonators may be one, or two or more.
  • the number of second parallel resonators may be one, or two or more.
  • the number of first parallel resonators and the number of second parallel resonators may be equal to each other, or one may be greater than the other.
  • the parallel resonator 15P4 may be the first parallel resonator, and any one, two, or three of the parallel resonators 15P1 to 15P3 may be the second parallel resonators.
  • the parallel resonator 15P closest to the output terminal (antenna terminal 103) is the first parallel resonator, and some (one or more) or all of the other parallel resonators 15P are the second parallel resonators. may be considered.
  • the parallel resonator 15P closest to the output terminal (antenna terminal 103) is connected between the series resonator 15S closest to the output terminal and the series resonator 15S next closest to the output terminal.
  • This is a parallel resonator 15P.
  • the parallel resonator 15P closest to the output terminal may be connected between the entire plurality of series resonators 15S and the output terminal.
  • the parallel resonators 15P4 and 15P3 may be the first parallel resonators, and any one or two of the parallel resonators 15P1 and 15P2 may be the second parallel resonators.
  • two or more consecutive parallel resonators 15P including the parallel resonator 15P closest to the output terminal (antenna terminal 103) are the first parallel resonators, and some (one (or a plurality of parallel resonators) or all may be used as the second parallel resonator.
  • the first parallel resonator may be one or more parallel resonators 15P including the parallel resonator 15P closest to the antenna terminal 103.
  • the second parallel resonator is, for example, the parallel resonator 15P (parallel resonator 15P1 in the illustrated example) closest to the input terminal (transmission terminal 105). It may be one or more (one or more) parallel resonators 15P including.
  • the parallel resonator 15P closest to the input terminal is the parallel resonator 15P connected between the entire plurality of series resonators 15S and the input terminal.
  • the parallel resonator 15P closest to the input terminal is connected between the series resonator 15S closest to the input terminal and the series resonator 15S next closest to the input terminal. It may be something.
  • the number (types) of different values of Duty may be two or three or more.
  • the number of different values of Duty is two means, for example, that among the four parallel resonators 15P, the duties of three parallel resonators 15P are all the first value (for example, 0.60), and one parallel resonator 15P has two different values. This refers to a mode in which the duty of the resonator 15P is the second value (for example, 0.50).
  • the number of mutually different values of Duty is three, for example, the Duty of two parallel resonators 15P among four parallel resonators 15P are both the first value (for example, 0.60), and one parallel
  • the duty of the resonator 15P is a second value (for example, 0.55)
  • the duty of the remaining one parallel resonator 15P is a third value (for example, 0.50).
  • the number (types) of different values of Duty may be less than or equal to the number of parallel resonators 15P. In an embodiment in which the number of different values of Duty is three or more, Duty may become smaller as it approaches the output terminal (antenna terminal 103), temporarily become larger in the middle, or the duty may become smaller as it approaches the output terminal (antenna terminal 103). It may also grow to the side.
  • Duty1 to Duty4 The duty values of the parallel resonators 15P1 to 15P4 are expressed as Duty1 to Duty4, and an example of the magnitude relationship of Duty1 to Duty4 will be briefly shown below.
  • the above (a1) is the duty value of the parallel resonator 15P (first parallel resonator) closest to the output terminal (antenna terminal 103) and the duty value of all other parallel resonators 15P (second parallel resonators). In this example, only two types of values are set.
  • the above (a2) is the duty value of two or more consecutive parallel resonators 15P (first parallel resonators) including the parallel resonator 15P4 closest to the output terminal, and the duty values of all other (one or more) parallel resonators. This is an example in which only two values are set, including the duty value of the child 15P (second parallel resonator).
  • the above (a1) and (a2) are examples in which the number of first parallel resonators is equal to or less than the number of second parallel resonators. In this case, for example, the influence of reducing the Duty on the passband is reduced. Of course, as shown in (a3) above, the number of first parallel resonators may be greater than the number of second parallel resonators.
  • the above (a4) is an example in which the number (types) of Duty values is three or more.
  • Duty1>Duty2 it can be said that the parallel resonator 15P2 is the first parallel resonator and the parallel resonator 15P1 is the second parallel resonator.
  • Duty2>Duty3, Duty3>Duty4, Duty1>Duty3, Duty1>Duty4, or Duty2>Duty4 the two parallel resonators 15P related to each magnitude relationship are used as the second parallel resonator and the first parallel resonator. can be captured. In this way, the above-mentioned requirement A may be satisfied in combination.
  • Various methods may be used to set specific values of the duty of the first parallel resonator and the second parallel resonator on the input terminal side (transmission terminal 105 side) than the first parallel resonator. For example, by simulation calculations and/or experiments (prototypes), when various values are set as the duty values of the plurality of parallel resonators 15P, the characteristics of the passband and the frequency band of the third harmonic (and if necessary characteristics in other frequency bands) may be identified. Then, based on the results, a specific value of Duty that improves the characteristics may be searched for.
  • the specific procedure for performing simulation calculations and/or experiments is also arbitrary.
  • the duty value that provides the best characteristics of the passband (and other frequency bands as necessary) is investigated by simulation calculation and/or experiment. It's okay to be.
  • the Duty value obtained through this exploration may be used as the reference value.
  • simulation calculations and/or experiments were performed in which the above reference value was set as the Duty value of the second parallel resonator, and various values smaller than the reference value were set as the Duty value of the first parallel resonator.
  • the duty value of the first parallel resonator that improves the characteristics in the pass band and third harmonic frequency band (and other frequency bands as necessary) may be searched for.
  • the Duty value of the first parallel resonator is set to various values smaller than the reference value, but also the Duty value of the second parallel resonator is set to a value different from the reference value (for example, the Duty value of the second parallel resonator is set to a value different from the reference value). value) may be set in various ways.
  • simulation calculations and/or experiments are performed assuming various values as the Duty values of the first parallel resonator and the second parallel resonator from the beginning.
  • a Duty value that improves the characteristics of the frequency band and third harmonic frequency band (and other frequency bands as necessary) may be searched for.
  • the duty values of the first parallel resonator and the second parallel resonator are set according to the desired characteristics of the ladder filter (transmission filter 109) as a whole. may be set as appropriate to meet the specifications. However, unlike the above description, the duty values of the first parallel resonator and the second parallel resonator may be set so that the characteristics of each resonator 15 are desired. In any case, the specific values of the duty of the first parallel resonator and the second parallel resonator may be various values, and there is no need to satisfy a specific numerical range.
  • the specific value of the duty of the parallel resonator 15P may be set as appropriate and may take various values.
  • Duty_S Duty_S
  • Duty_L Duty_L
  • these values may satisfy any of the following relationships with respect to 0.50.
  • Duty_Av1 the average value of the duties of all the parallel resonators 15P is set as Duty_Av1.
  • Duty_S ⁇ Duty_Av1 ⁇ Duty_L the average value of the duties of all the parallel resonators 15P is set as Duty_Av1.
  • Duty_Av2 may be smaller than, equal to, or larger than 0.50 and/or Duty_L. Further, for example, when Duty_Av2 is a value exceeding 0.50, Duty_S may be set to 0.50 or less.
  • the first parallel resonator referred to in this paragraph may refer to only one of them, or may refer to some ( 2 or more) or all of them.
  • Duty_S may be set to 0.40 or more or 0.45 or more, and may be set to 0.60 or less or 0.50 or less.
  • the above lower limit and upper limit may be arbitrarily combined so that no contradiction occurs.
  • Duty_L may be set to 0.45 or more or 0.50 or more, and may be set to 0.65 or less or 0.60 or less, as long as it does not conflict with Duty_S ⁇ Duty_L.
  • the above lower limit and upper limit may be arbitrarily combined so that no contradiction occurs. Within these value ranges, it is easy to ensure a certain level of characteristics as a ladder filter.
  • the duties of the plurality of parallel resonators 15P may differ from each other due to manufacturing errors.
  • the difference in duty due to manufacturing error is naturally not the difference in duty (intentional difference in duty) as used in this embodiment.
  • whether or not the differences are due to manufacturing errors can be determined by taking into account various circumstances such as the equipment configuration and manufacturing conditions related to manufacturing the resonators 15. may be judged accordingly.
  • the judgment may be made as follows, for example. Round off the measured Duty value to the third decimal place. Then, when a difference of 0.02 or more exists, it may be determined that the two are different. For example, 0.475 and 0.484 are both 0.48 when rounded to the third decimal place, and may be determined to be the same value. Also, for example, 0.484 and 0.485 become 0.48 and 0.49 when rounded to the third decimal place, but the difference between them is 0.01 (less than 0.02), so they are the same. It may be determined that the value is .
  • the width w of the electrode finger 27 may change depending on the position of the electrode finger 27 in the length direction (D2 direction).
  • Duty (w/p) may vary in the length direction of the electrode fingers 27.
  • the duty value when comparing the duties of the resonators 15 or determining whether the duties of the resonators 15 fall within a predetermined range, the value of the central area of the intersection area is used as the duty value. It's fine. This is because normally, elastic waves that propagate in the center region are intended to be used, and the duty is also set based on the value of the center region.
  • the electrode finger 27 of the IDT electrode 19 that uses the piston mode typically has a first portion located at the center in the D2 direction of the intersection region, and a first portion located at the center in the D2 direction of the intersection region. and a second portion adjacent to the inner side of the intersection area with respect to the edge of the direction.
  • the first portion extends, for example, with a constant width, and occupies most (for example, 1/2 or more or 2/3 or more) of the width (D2 direction) of the intersection area.
  • the duty of the first portion described above may be used as the duty of the central region (as the duty to be compared between the parallel resonators 15P). That is, the region where the first portion is located in the D2 direction may be the center region described in the previous paragraph.
  • a mode other than the typical IDT electrode 19 that utilizes the piston mode as described above is a mode in which the width w of the electrode finger 27 gradually changes. Furthermore, although the first portion of the electrode fingers 27 located at the center of the intersection area extends with a constant width, its length (in the D2 direction) is relatively short and occupies most of the width of the intersection area. There are some cases where it cannot be said that the In these embodiments, for example, a region having the center of the intersection region in the D2 direction as the center and having a width of 2/3 of the width of the intersection region may be the center side region described in the second paragraph before. Then, the average value of Duty in the central region may be used as a Duty value for various determinations.
  • the IDT electrode 19 may have a narrow pitch portion, a wide pitch portion, and/or a thinned-out portion regarding the pitch p.
  • the pitch p refers to the pitch of the remaining portion (most of the plurality of electrode fingers 27) excluding such a unique portion.
  • the pitch changes in most of the plurality of electrode fingers 27 for example, 80% or more of all the electrode fingers 27 selected to exclude unique parts
  • the average value of the pitches of the plurality of electrode fingers 27 in the portion may be used as the value of the pitch p. The above naturally applies to the pitch p used to calculate Duty.
  • width w some of the plurality of electrode fingers 27 may have a unique part, or may vary among the plurality of electrode fingers 27. Therefore, the explanation regarding pitch p in the previous paragraph may be applied to width w by replacing the word pitch p with width w.
  • a typical ladder filter may be modified by using two or more resonators connected in parallel (referred to as “divided resonators" in this paragraph) instead of one parallel resonator 15P.
  • a ladder type filter may be constructed.
  • the duty of the parallel resonator 15P is to function in the same way as one parallel resonator 15P (for example, one electrical position on the input side or output side of the series resonator 15S and the reference potential section 113).
  • the average duty of two or more resonators may be used.
  • first common conditions Conditions common to various simulations to be described later (hereinafter sometimes referred to as "first common conditions") are as follows.
  • ⁇ Composite board 3 ...Piezoelectric layer 11
  • ...Material: LT ... Cut angle: 26° rotation Y cut X propagation
  • Thickness 1.84 ⁇ m ⁇ Low sound velocity membrane 9
  • ...Material: SiO2 ...Thickness: 0.58 ⁇ m
  • ⁇ Conductor layer 5 ⁇ Material: Al-Cu alloy ⁇ Thickness: 5000 ⁇ ⁇ Resonator 15 ...
  • Pitch of strip electrode 33 of reflector 21 Same as pitch p of electrode fingers 27 of IDT electrode 19 in each resonator 15 (different for each resonator 15) ...Number of strip electrodes 33 in one reflector 21: 20 ⁇ Duty of series resonator 15S: 0.50
  • FIG. 4 and 5 are diagrams showing examples of characteristics of the resonator 15 alone.
  • the horizontal axis indicates frequency (MHz).
  • the vertical axis in FIG. 4 indicates the absolute value of impedance
  • the vertical axis in FIG. 5 indicates the phase (°) of impedance.
  • the lower diagram in FIG. 4 is an enlarged view of the region R1 in the upper diagram in FIG.
  • the lower diagram in FIG. 5 is an enlarged view of region R2 in the upper diagram in FIG.
  • the lines in the figure indicate frequency characteristics related to the impedance of the resonators 15 with different Duty values.
  • the Duty value varies by 0.05 in the range of 0.45 or more and 0.65 or less.
  • the absolute value of the impedance of the resonator 15 takes a minimum value at the resonant frequency (see region Rr), and also at the antiresonance It takes a local maximum value at the frequency (see region Ra).
  • the resonant frequency and anti-resonant frequency are set around approximately 700 MHz.
  • the phase of the impedance of the resonator 15 is 90° in the range between the resonant frequency and the anti-resonant frequency (referred to as the "first range” in this paragraph). and, outside the first range, approaches ⁇ 90°.
  • the first range the closer the impedance phase is to 90°, the better the characteristics are, and outside the first range, the closer the impedance phase is to ⁇ 90°, the better the characteristics.
  • Region R1 in FIG. 4 and region R2 in FIG. 5 indicate a frequency band having a frequency that is approximately three times the resonant frequency and the anti-resonant frequency (near 700 MHz). That is, it shows a frequency band in which spurious waves due to third harmonics may appear.
  • the spurious is reduced by decreasing the Duty value. There is. More specifically, in the illustrated example, the smaller the Duty value, the more the spurious is reduced. Furthermore, when the Duty is 0.50 or less, spurious signals hardly appear.
  • second common conditions conditions common to the simulation calculations related to these figures (hereinafter referred to as "second common conditions") are as follows. ⁇ Series resonator 15S1 ...Pitch p of electrode fingers 27: 2.70981 ⁇ m ⁇ Number of electrode fingers 27: 126 ... Crossing width of electrode fingers 27: 92.8 ⁇ m ⁇ Series resonator 15S2 ...Pitch p of electrode fingers 27: 2.71384 ⁇ m ⁇ Number of electrode fingers 27: 164 ...
  • Crossing width of electrode fingers 27 79 ⁇ m ⁇ Series resonator 15S3 ...Pitch p of electrode fingers 27: 2.71401 ⁇ m ⁇ Number of electrode fingers 27: 140 ... Crossing width of electrode fingers 27: 81 ⁇ m ⁇ Series resonator 15S4 ...Pitch p of electrode fingers 27: 2.70750 ⁇ m ⁇ Number of electrode fingers 27: 130 ... Crossing width of electrode fingers 27: 82 ⁇ m ⁇ Parallel resonator 15P1 ...Pitch p of electrode fingers 27: 2.87142 ⁇ m ⁇ Number of electrode fingers 27: 106 ...
  • each resonator 15 The resonant frequency and anti-resonant frequency of each resonator 15 are roughly the same as the characteristics of the resonator 15 whose characteristics are shown in FIGS. 4 and 5. Therefore, the passband of the ladder filter is approximately located around 700 MHz. Further, spurious waves caused by the third harmonic appear around approximately 2100 MHz.
  • line LC1 indicates the characteristics of the first comparative example.
  • Line LE1 shows the characteristics of the first embodiment.
  • simulation conditions other than the first common condition and the second common condition are as follows. - First comparative example... Duty of parallel resonator 15P1: 0.60 ... Duty of parallel resonator 15P2: 0.60 ... Duty of parallel resonator 15P3: 0.60 ... Duty of parallel resonator 15P4: 0.60 ⁇ First example... Duty of parallel resonator 15P1: 0.60 ... Duty of parallel resonator 15P2: 0.60 ... Duty of parallel resonator 15P3: 0.48 ... Duty of parallel resonator 15P4: 0.48
  • the plurality of parallel resonators 15P have the same duty.
  • the duty of at least one first parallel resonator (15P3 and 15P4) located closer to the output terminal (antenna terminal 103) than at least one second parallel resonator (15P1 and 15P2) is is smaller than the duty of the second parallel resonator (from another point of view, than the duty of the first comparative example). In other words, requirement A is satisfied.
  • the transmission characteristics in the passband are almost the same between the first comparative example and the first example.
  • the first example has lower transmission characteristics than the first comparative example (the characteristics as a filter have improved).
  • line LC2 shows the characteristics of the second comparative example.
  • Line LE2 shows the characteristics of the second embodiment.
  • the lower right diagram in FIG. 7 is an enlarged view of region R5 in the upper left diagram in FIG. Region R5 corresponds to a band (near 2100 MHz) having a frequency that is approximately three times the frequency of the passband (near 700 MHz).
  • simulation conditions other than the first common condition and the second common condition are as follows.
  • -Second comparative example ...Duty of parallel resonator 15P1: 0.63 ... Duty of parallel resonator 15P2: 0.63 ... Duty of parallel resonator 15P3: 0.63 ... Duty of parallel resonator 15P4: 0.63
  • Second example ... Duty of parallel resonator 15P1: 0.63 ... Duty of parallel resonator 15P2: 0.63 ... Duty of parallel resonator 15P3: 0.63 ... Duty of parallel resonator 15P4: 0.50
  • the plurality of parallel resonators 15P have the same duty.
  • the duty of at least one first parallel resonator (15P4) located closer to the output terminal (antenna terminal 103) than at least one second parallel resonator (15P1 to 15P3) is The duty of the second parallel resonator is smaller than the duty of the second parallel resonator (from another point of view, the duty of the second comparative example). In other words, requirement A is satisfied.
  • the transmission characteristics in the passband are almost the same between the second comparative example and the second example.
  • the second example has lower transmission characteristics than the second comparative example (the characteristics as a filter have improved).
  • line LC2 is similar to line LC2 in FIG. 7, and indicates the characteristics of the second comparative example.
  • Line LE3 shows the characteristics of the third embodiment.
  • the lower right diagram in FIG. 8 is an enlarged view of region R7 in the upper left diagram in FIG. Region R7 corresponds to a band (near 2100 MHz) having a frequency that is approximately three times the frequency of the passband (near 700 MHz).
  • simulation conditions other than the first common condition and the second common condition are as follows. -Third example...Duty of parallel resonator 15P1: 0.63 ... Duty of parallel resonator 15P2: 0.63 ... Duty of parallel resonator 15P3: 0.50 ... Duty of parallel resonator 15P4: 0.50
  • the number of first parallel resonators whose duty is reduced in the third example is smaller than that of the second example.
  • the number of first parallel resonators was smaller than the number of second parallel resonators, but in the third embodiment, the number of both is the same.
  • the number of first parallel resonators is one, but in the third embodiment, the number of first parallel resonators is plural (specifically, two). It is said that
  • the transmission characteristics in the passband are almost the same between the second comparative example and the third example.
  • the third example has lower transmission characteristics than the second comparative example (the characteristics as a filter have improved).
  • the transmission characteristics are reduced in the vicinity of 2100 MHz (the characteristics as a filter are improved).
  • the ladder filter (transmission filter 109) may be used, for example, in a communication module and/or a communication device. An example is shown below.
  • FIG. 9 is a block diagram showing the main parts of a communication device 151 as an example of how the duplexer 101 is used.
  • the communication device 151 includes a module 171 and a housing 173 that accommodates the module 171.
  • the module 171 performs wireless communication using radio waves, and includes a duplexer 101.
  • the transmission information signal TIS containing the information to be transmitted is modulated and frequency increased (conversion of carrier frequency to a high frequency signal) by an RF-IC (Radio Frequency Integrated Circuit) 153 (an example of an integrated circuit element).
  • the transmitted signal is then used as a transmission signal TS.
  • the transmission signal TS has unnecessary components outside the transmission passband removed by a bandpass filter 155, is amplified by an amplifier 157, and is input to the duplexer 101 (transmission terminal 105).
  • the duplexer 101 (transmission filter 109) removes unnecessary components other than the transmission passband from the input transmission signal TS, and outputs the removed transmission signal TS from the antenna terminal 103 to the antenna 159.
  • the antenna 159 converts the input electric signal (transmission signal TS) into a wireless signal (radio wave) and transmits the signal.
  • the wireless signal (radio wave) received by the antenna 159 is converted into an electric signal (received signal RS) by the antenna 159, and is input to the duplexer 101 (antenna terminal 103).
  • the duplexer 101 (reception filter 111) removes unnecessary components outside the reception passband from the input reception signal RS, and outputs the result from the reception terminal 107 to the amplifier 161.
  • the output reception signal RS is amplified by an amplifier 161, and a bandpass filter 163 removes unnecessary components outside the reception passband.
  • the received signal RS is then lowered in frequency and demodulated by the RF-IC 153 to become a received information signal RIS.
  • the transmission information signal TIS and the reception information signal RIS may be low frequency signals (baseband signals) containing appropriate information, such as analog audio signals or digitized audio signals.
  • the passband of the wireless signal may be set as appropriate.
  • the modulation method may be phase modulation, amplitude modulation, frequency modulation, or a combination of two or more of these.
  • a direct conversion system is shown as the circuit system, any other appropriate circuit system may be used, for example, a double superheterodyne system may be used.
  • FIG. 9 schematically shows only the main parts, and a low-pass filter, an isolator, etc. may be added at an appropriate position, or the position of an amplifier, etc. may be changed.
  • the module 171 has, for example, components from the RF-IC 153 to the antenna 159 on the same circuit board. That is, the ladder filter (transmission filter 109) is modularized by combining with other components. Note that the ladder filter may be included in the communication device 151 without being modularized. Further, the components illustrated as the components of the module 171 may be located outside the module or may not be housed in the housing 173. For example, the antenna 159 may be exposed outside the housing 173.
  • the ladder filter (transmission filter 109) includes a plurality of series resonators 15S and a plurality of parallel resonators 15P.
  • the plurality of series resonators 15S are connected in series between an input terminal (transmission terminal 105) and an output terminal (antenna terminal 103).
  • Each of the plurality of parallel resonators 15P connects the transmission terminal 105 side or the antenna terminal 103 side of one of the plurality of series resonators 15S to the reference potential section 113.
  • Each of the plurality of parallel resonators 15P has an IDT electrode 19 including a plurality of electrode fingers 27.
  • the plurality of parallel resonators 15P include a first parallel resonator (eg, parallel resonator 15P4) and a second parallel resonator (eg, parallel resonator 15P1).
  • the connection position of the first parallel resonator to the plurality of series resonators 15S is located electrically closer to the antenna terminal 103 than the connection position of the second parallel resonator to the plurality of series resonators 15S.
  • Duty the Duty of the first parallel resonator is smaller than the Duty of the second parallel resonator.
  • spurious caused by the third harmonic can be efficiently reduced, and characteristics in the passband can be easily ensured.
  • connection position of the first parallel resonator (15P4) to the plurality of series resonators 15S is the electrically closest output terminal (antenna terminal 103) among the connection positions of the plurality of parallel resonators 15P to the plurality of series resonators 15S. It's good to be close to.
  • the effects described above are improved. Specifically, for example, it is as follows.
  • the spurious generated in the parallel resonator 15P (for example, the second parallel resonator) that is relatively far from the output terminal (antenna terminal 103) is transmitted from the parallel resonator 15P that is far away from the ladder filter in the process of being transmitted to the output terminal.
  • the signal is also attenuated by the portion located on the antenna terminal 103 side.
  • the spurious of the parallel resonator 15P4 located closest to the antenna terminal 103 is difficult to attenuate.
  • connection position of the second parallel resonator (15P1) to the plurality of series resonators 15S is the electrically closest output terminal (antenna terminal 103) among the connection positions of the plurality of parallel resonators 15P to the plurality of series resonators 15S. It's good to be far away.
  • the effects described above are improved. Specifically, for example, it is as follows.
  • the spurious generated in the parallel resonator 15P (for example, the second parallel resonator) that is relatively far from the output terminal (antenna terminal 103) is transmitted to the output terminal from the parallel resonator 15P that is far away from the ladder filter.
  • the signal is also attenuated by the portion located on the antenna terminal 103 side.
  • the parallel resonator 15P1 where the spurious is attenuated the most, there is relatively little need to reduce the Duty from the viewpoint of reducing the third harmonic spurious. Therefore, in the parallel resonator 15P1, the duty can be adjusted from another viewpoint. This improves, for example, the effect of making it easier to ensure the characteristics of the passband.
  • the duty of the first parallel resonator (for example, 15P4) may be the smallest among the duties of the plurality of parallel resonators 15P.
  • the smaller the Duty the easier the spurious caused by the third harmonic is reduced. Therefore, the effects described above are improved by minimizing the duty of the first parallel resonator.
  • the Duty of one first parallel resonator is "the smallest" it means that the other parallel resonators 15P (other first parallel resonators) have the same Duty as that of the first parallel resonator. It does not matter if there is something that can be captured or something that cannot be captured as such from the point of view of the connection position.
  • the average duty (Duty_Av2) of the plurality of parallel resonators 15P excluding the first parallel resonator (for example, 15P4) may exceed 0.50.
  • the duty of the first parallel resonator may be 0.5 or less.
  • the first parallel resonators 15P are the two or more parallel resonators described above. It may refer to one of the resonators 15P, some (two or more), or all of the resonators 15P.
  • the first parallel resonator (for example, 15P4) may include a piezoelectric layer 11, a low sound velocity film 9, and a support substrate 7.
  • An IDT electrode 19 may be located on the top surface of the piezoelectric layer 11.
  • the low sound velocity film 9 may extend along the lower surface of the piezoelectric layer 11 and may have a sound velocity lower than the sound velocity in the piezoelectric layer 11 .
  • the support substrate 7 may extend along the lower surface of the low-sonic membrane 9 .
  • the energy of the elastic wave can be confined in the piezoelectric layer 11 to reduce the insertion loss of the first parallel resonator.
  • the energy of the third harmonic wave is also likely to be trapped, and as a result, spurious waves due to the third harmonic wave are likely to appear. Therefore, the effect of spurious reduction by making the duty of the first parallel resonator smaller than the duty of the second parallel resonator is effectively achieved.
  • the piezoelectric layer 11 may be made of lithium tantalate single crystal.
  • the low sound velocity membrane 9 may be composed of silicon dioxide.
  • the support substrate 7 may be made of silicon.
  • the materials of each layer are the same as the conditions of the simulation calculation described above. Therefore, it has been confirmed that by making the duty of the first parallel resonator smaller than the duty of the second parallel resonator, the effect of reducing the spurious caused by the third harmonic can be achieved. Note that the reason why the spurious caused by the third harmonic is reduced is that the duty is relatively small or 0.5 or less, so that the amplitude of the elastic wave is integrated over the width w of the electrode finger 27. This is thought to be due to the value of time approaching 0. Therefore, the materials to which the configuration of this embodiment is applied are not limited to the above.
  • the output terminal may constitute the antenna terminal 103 connected to the antenna 159.
  • the ladder filter may be the transmission filter 109.
  • the spurious caused by the third harmonic is reduced in the transmitting filter 109, which has a higher signal strength than the receiving filter 111.
  • the characteristics of the entire circuit and device including the transmission filter 109 are improved.
  • the transmission filter 109 is an example of a ladder type filter.
  • Transmission terminal 105 is an example of an input terminal.
  • Antenna terminal 103 is an example of an output terminal.
  • the parallel resonator 15P4 is an example of a first parallel resonator.
  • the parallel resonator 15P1 is an example of a second parallel resonator.
  • the transmission filter 109 is illustrated as an example of a ladder type filter.
  • the ladder type filter may constitute the reception filter 111.
  • the antenna terminal 103 is an example of an input terminal
  • the receiving terminal 107 is an example of an output terminal.
  • the ladder type filter may be a filter that does not fit the concepts of a transmission filter and a reception filter.

Abstract

In this ladder filter, a plurality of parallel resonators each connect an input terminal side or an output terminal side of one of a plurality of series resonators with a reference potential portion. Each of the plurality of parallel resonators includes an IDT electrode comprising a plurality of electrode fingers. The plurality of parallel resonators include a first parallel resonator and a second parallel resonator. A connecting position of the first parallel resonator with respect to the plurality of series resonators is closer to the output terminal side electrically than a connecting position of the second parallel resonator with respect to the plurality of series resonators. A value obtained by dividing the width of each of the plurality of electrode fingers by the pitch of the plurality of electrode fingers is referred to as the duty. The duty of the first parallel resonator is smaller than the duty of the second parallel resonator.

Description

ラダー型フィルタ、モジュール及び通信装置Ladder filters, modules and communication devices
 本開示は、弾性波を利用するラダー型フィルタに関し、また、上記ラダー型フィルタを含むモジュール及び通信装置に関する。 The present disclosure relates to a ladder filter that uses elastic waves, and also relates to a module and a communication device including the ladder filter.
 複数の共振子をラダー型に接続したラダー型フィルタが知られている(例えば下記特許文献1)。共振子は、例えば、弾性波を利用する弾性波共振子によって構成される。弾性波共振子としては、例えば、少なくとも上面に圧電性を有する圧電性基板と、該圧電性基板の上面に位置するIDT(Interdigital Transducer)電極とを有しているものが知られている。IDT電極は、弾性波の伝搬方向に配列されている複数の電極指を有している。このような弾性波共振子においては、1波長の長さが概ね複数の電極指のピッチの2倍となる弾性波が利用される。 A ladder type filter in which a plurality of resonators are connected in a ladder type is known (for example, Patent Document 1 below). The resonator is, for example, an elastic wave resonator that uses elastic waves. As an acoustic wave resonator, for example, one having a piezoelectric substrate having piezoelectricity on at least the upper surface and an IDT (Interdigital Transducer) electrode located on the upper surface of the piezoelectric substrate is known. The IDT electrode has a plurality of electrode fingers arranged in the propagation direction of elastic waves. In such an elastic wave resonator, an elastic wave whose length of one wavelength is approximately twice the pitch of the plurality of electrode fingers is used.
特開2013-168996号公報Japanese Patent Application Publication No. 2013-168996
 本開示の一態様に係るラダー型フィルタは、複数の直列共振子と、複数の並列共振子と、を有している。前記複数の直列共振子は、入力端子と出力端子との間で直列に接続されている。前記複数の並列共振子は、それぞれ、前記複数の直列共振子のうちのいずれかの直列共振子の前記入力端子の側又は前記出力端子の側と、基準電位部とを接続している。また、前記複数の並列共振子それぞれは、複数の電極指を含むIDT電極を有している。前記複数の並列共振子は、第1並列共振子と、第2並列共振子とを有している。前記第1並列共振子の前記複数の直列共振子に対する接続位置は、前記第2並列共振子の前記複数の直列共振子に対する接続位置よりも電気的に前記出力端子の側に位置している。前記複数の電極指の各幅を前記複数の電極指のピッチで割った値をDutyと称する。このとき、前記第1並列共振子のDutyが前記第2並列共振子のDutyよりも小さい。 A ladder filter according to one aspect of the present disclosure includes a plurality of series resonators and a plurality of parallel resonators. The plurality of series resonators are connected in series between an input terminal and an output terminal. Each of the plurality of parallel resonators connects the input terminal side or the output terminal side of one of the series resonators among the plurality of series resonators to a reference potential section. Further, each of the plurality of parallel resonators has an IDT electrode including a plurality of electrode fingers. The plurality of parallel resonators include a first parallel resonator and a second parallel resonator. A connection position of the first parallel resonator to the plurality of series resonators is located electrically closer to the output terminal than a connection position of the second parallel resonator to the plurality of series resonators. A value obtained by dividing each width of the plurality of electrode fingers by the pitch of the plurality of electrode fingers is called Duty. At this time, the duty of the first parallel resonator is smaller than the duty of the second parallel resonator.
 本開示の一態様に係るモジュールは、上記ラダー型フィルタと、前記入力端子及び前記出力端子の一方に接続されているアンテナと、前記入力端子及び前記出力端子の他方に接続されている集積回路素子と、を有している。 A module according to an aspect of the present disclosure includes the ladder filter, an antenna connected to one of the input terminal and the output terminal, and an integrated circuit element connected to the other of the input terminal and the output terminal. It has .
 本開示の一態様に係る通信装置は、上記ラダー型フィルタと、前記入力端子及び前記出力端子の一方に接続されているアンテナと、前記入力端子及び前記出力端子の他方に接続されている集積回路素子と、前記ラダー型フィルタ及び前記集積回路素子を収容している筐体と、を有している。 A communication device according to an aspect of the present disclosure includes the ladder filter, an antenna connected to one of the input terminal and the output terminal, and an integrated circuit connected to the other of the input terminal and the output terminal. and a housing housing the ladder filter and the integrated circuit element.
実施形態に係るラダー型フィルタを含む分波器の構成を示す模式図。FIG. 1 is a schematic diagram showing the configuration of a duplexer including a ladder filter according to an embodiment. 図1のラダー型フィルタが有する弾性波共振子の構成を示す平面図。FIG. 2 is a plan view showing the configuration of an elastic wave resonator included in the ladder filter of FIG. 1; 図2のIII-III線における断面図。A sectional view taken along the line III-III in FIG. 2. 弾性波共振子のインピーダンスの絶対値の周波数特性の例を示す図。FIG. 3 is a diagram showing an example of frequency characteristics of the absolute value of impedance of an elastic wave resonator. 弾性波共振子のインピーダンスの位相の周波数特性の例を示す図。FIG. 3 is a diagram showing an example of the frequency characteristics of the impedance phase of an elastic wave resonator. 比較例1及び実施例1に係るラダー型フィルタの透過特性を示す図。3 is a diagram showing transmission characteristics of ladder filters according to Comparative Example 1 and Example 1. FIG. 比較例2及び実施例2に係るラダー型フィルタの透過特性を示す図。3 is a diagram showing transmission characteristics of ladder filters according to Comparative Example 2 and Example 2. FIG. 比較例2及び実施例3に係るラダー型フィルタの透過特性を示す図。6 is a diagram showing transmission characteristics of ladder filters according to Comparative Example 2 and Example 3. FIG. 実施形態に係る通信装置の構成を模式的に示すブロック図。FIG. 1 is a block diagram schematically showing the configuration of a communication device according to an embodiment.
 以下、図面を参照して本開示に係る実施形態について説明する。なお、図面は、模式的なものであり、図面上の形状及び/又は寸法等は現実のものとは必ずしも一致していない。ただし、実際の形状及び/又は寸法等は、図面のとおりとされてもよいし、また、図面から形状及び/又は寸法等の特徴が抽出されても構わない。 Hereinafter, embodiments according to the present disclosure will be described with reference to the drawings. Note that the drawings are schematic, and the shapes and/or dimensions on the drawings do not necessarily correspond to the actual ones. However, the actual shape and/or dimensions may be as shown in the drawings, or the features such as the shape and/or dimensions may be extracted from the drawings.
(実施形態の概要)
 図1は、実施形態に係るラダー型フィルタを含む分波器101の要部の構成を示す模式図である。
(Summary of embodiment)
FIG. 1 is a schematic diagram showing the configuration of main parts of a duplexer 101 including a ladder filter according to an embodiment.
 分波器101は、例えば、デュプレクサとして構成されている。デュプレクサは、例えば、送信端子105からの送信信号をフィルタリングしてアンテナ端子103へ出力する送信フィルタ109と、アンテナ端子103からの受信信号をフィルタリングして受信端子107に出力する受信フィルタ111とを有している。 The branching filter 101 is configured as a duplexer, for example. The duplexer includes, for example, a transmission filter 109 that filters the transmission signal from the transmission terminal 105 and outputs it to the antenna terminal 103, and a reception filter 111 that filters the reception signal from the antenna terminal 103 and outputs it to the reception terminal 107. are doing.
 送信フィルタ109は、例えば、ラダー型フィルタを含んで構成されている。ラダー型フィルタは、複数の共振子15(より詳細には図示の例では15S1~15S4及び15P1~15P4)がラダー型に接続されて構成されている。 The transmission filter 109 is configured to include, for example, a ladder type filter. The ladder type filter is configured by connecting a plurality of resonators 15 (more specifically, 15S1 to 15S4 and 15P1 to 15P4 in the illustrated example) in a ladder type.
 より詳細には、複数の共振子15は、例えば、複数(図示の例では4つ)の直列共振子15S(より詳細には15S1~15S4)と、複数(図示の例では4つ)の並列共振子15P(より詳細には15P1~15P4)とを有している。複数の直列共振子15Sは、送信端子105とアンテナ端子103との間において直列に接続されている。なお、この複数の直列共振子15Sを含む信号経路を直列腕115ということがある。複数の並列共振子15Pは、直列腕115の複数の位置と基準電位部113とを接続している。直列腕115から並列共振子15Pを経由して基準電位部113に至る各信号経路は、並列腕(符号省略)と称されることがある。 More specifically, the plurality of resonators 15 include, for example, a plurality of (four in the illustrated example) series resonators 15S (more specifically, 15S1 to 15S4) and a plurality (four in the illustrated example) of parallel resonators 15S. It has a resonator 15P (more specifically, 15P1 to 15P4). The plurality of series resonators 15S are connected in series between the transmission terminal 105 and the antenna terminal 103. Note that a signal path including the plurality of series resonators 15S may be referred to as a series arm 115. The plurality of parallel resonators 15P connect the plurality of positions of the series arm 115 and the reference potential section 113. Each signal path from the series arm 115 to the reference potential section 113 via the parallel resonator 15P is sometimes referred to as a parallel arm (symbol omitted).
 図2は、各共振子15の構成の一例を示す模式的な平面図である。図3は、図2のIII-III線における断面図である。 FIG. 2 is a schematic plan view showing an example of the configuration of each resonator 15. FIG. 3 is a sectional view taken along line III--III in FIG. 2.
 これらの図には、便宜上、直交座標系D1D2D3を付している。後述する説明から理解されるように、D3方向は、複合基板3の上面の法線方向である。D1方向は、複合基板3の上面に沿って伝搬する弾性波の伝搬方向である。D2方向は、D1方向及びD3方向に直交する方向である。共振子15は、いずれの方向が上方又は下方とされてもよい。ただし、実施形態の説明では、便宜的に、+D3側を上方として、上面又は下面等の用語を用いることがある。 For convenience, an orthogonal coordinate system D1D2D3 is attached to these figures. As will be understood from the explanation below, the D3 direction is the normal direction of the upper surface of the composite substrate 3. The D1 direction is the propagation direction of elastic waves propagating along the upper surface of the composite substrate 3. The D2 direction is a direction orthogonal to the D1 direction and the D3 direction. The resonator 15 may be directed upward or downward. However, in the description of the embodiment, terms such as an upper surface or a lower surface may be used with the +D3 side as the upper side for convenience.
 共振子15は、例えば、少なくとも上面に圧電性を有している圧電性基板(本実施形態では複合基板3)と、複合基板3上に位置するIDT電極19とを有している。複合基板3は、例えば、当該複合基板3の上面を構成する圧電体層11を有している。IDT電極19は、互いに噛み合っている1対の櫛歯電極23を有している。各櫛歯電極23は、弾性波の伝搬方向に直交する方向(D2方向)に延びる複数の電極指27を有している。一方の櫛歯電極23の複数の電極指27と、他方の櫛歯電極23の複数の電極指27とは、基本的に交互に弾性波の伝搬方向(D1方向)に配列されている。 The resonator 15 includes, for example, a piezoelectric substrate (composite substrate 3 in this embodiment) having piezoelectricity on at least its upper surface, and an IDT electrode 19 located on the composite substrate 3. The composite substrate 3 has, for example, a piezoelectric layer 11 that constitutes the upper surface of the composite substrate 3. The IDT electrode 19 has a pair of comb-teeth electrodes 23 that engage with each other. Each comb-teeth electrode 23 has a plurality of electrode fingers 27 extending in a direction (D2 direction) orthogonal to the propagation direction of elastic waves. The plurality of electrode fingers 27 of one comb-teeth electrode 23 and the plurality of electrode fingers 27 of the other comb-teeth electrode 23 are basically arranged alternately in the propagation direction of the elastic wave (direction D1).
 1対の櫛歯電極23に電圧が印加されると、複数の電極指27によって圧電体層11に電圧が印加され、複合基板3の圧電体層11が振動する。すなわち、弾性波が励振される。種々の方向に伝搬する種々の波長の弾性波のうち、複数の電極指27のピッチpを概ね半波長(λ/2)として複数の電極指27の配列方向に伝搬する弾性波は、複数の電極指27によって励振された複数の波が同相で重なり合うことから振幅が大きくなりやすい。 When a voltage is applied to the pair of comb-teeth electrodes 23, the voltage is applied to the piezoelectric layer 11 by the plurality of electrode fingers 27, and the piezoelectric layer 11 of the composite substrate 3 vibrates. That is, elastic waves are excited. Among the elastic waves of various wavelengths propagating in various directions, the elastic waves propagating in the arrangement direction of the plurality of electrode fingers 27 with the pitch p of the plurality of electrode fingers 27 approximately half a wavelength (λ/2) are Since the plurality of waves excited by the electrode fingers 27 overlap in the same phase, the amplitude tends to become large.
 また、圧電体層11を伝搬する弾性波は、複数の電極指27によって電気信号に変換される。このとき、弾性波が励振されるときと同様に、複数の電極指27のピッチpを概ね半波長(λ/2)として複数の電極指27の配列方向に伝搬する弾性波が変換された電気信号の強度が強くなりやすい。 Furthermore, the elastic waves propagating through the piezoelectric layer 11 are converted into electrical signals by the plurality of electrode fingers 27. At this time, in the same way as when the elastic waves are excited, the pitch p of the plurality of electrode fingers 27 is approximately half a wavelength (λ/2), and the elastic waves propagating in the arrangement direction of the plurality of electrode fingers 27 are converted into electricity. The signal strength tends to be strong.
 上記のような作用(及びここでは説明を省略する他の作用)により、共振子15は、ピッチpを概ね半波長(λ/2)とする弾性波の周波数を共振周波数とする共振子として機能する。また、例えば、複数の共振子15を有するラダー型フィルタ(本実施形態では送信フィルタ109)は、直列共振子15Sの共振周波数を概ね通過帯域の中心周波数とし、直列共振子15Sの共振周波数と並列共振子15Pの共振周波数との差よりも若干狭い幅を通過帯域の幅の半分とするフィルタとして機能する。 Due to the above-mentioned actions (and other actions whose explanation will be omitted here), the resonator 15 functions as a resonator whose resonant frequency is the frequency of an elastic wave with a pitch p of approximately half a wavelength (λ/2). do. Further, for example, in a ladder filter having a plurality of resonators 15 (transmission filter 109 in this embodiment), the resonant frequency of the series resonator 15S is approximately the center frequency of the passband, and the resonant frequency of the series resonator 15S is parallel to the resonant frequency of the series resonator 15S. It functions as a filter whose width is slightly narrower than the difference from the resonant frequency of the resonator 15P and is half the width of the passband.
 なお、λは、通常、波長を示す記号である。実際の弾性波の波長は2pからずれることがある。実際の波長と2pとがずれている場合、実施形態の説明におけるλは、実際の波長ではなく、2pを意味するものとする。 Note that λ is usually a symbol indicating wavelength. The actual wavelength of an elastic wave may deviate from 2p. If the actual wavelength and 2p deviate from each other, λ in the description of the embodiments means 2p rather than the actual wavelength.
 上記のように圧電体層11に生じる、種々の方向に伝搬する種々の波長の弾性波のうち、ピッチpを概ね半波長とする弾性波(利用が意図されている弾性波)の周波数の概ね3倍の周波数を有する弾性波(「3倍波」ということがある。)の振幅が大きくなることがある。及び/又は3倍波が変換された電気信号の強度が大きくなることがある。すなわち、3倍波に起因するスプリアスが生じることがある。その結果、例えば、ラダー型フィルタにおいては、通過帯域の概ね3倍の周波数帯において特性が低下する。 Among the elastic waves of various wavelengths propagating in various directions generated in the piezoelectric layer 11 as described above, the frequency of the elastic wave (the elastic wave intended to be used) having a pitch p of approximately half a wavelength is approximately The amplitude of an elastic wave having three times the frequency (sometimes referred to as a "third harmonic wave") may become large. and/or the intensity of the electrical signal into which the third harmonic is converted may increase. That is, spurious waves due to the third harmonic may occur. As a result, for example, in a ladder filter, the characteristics deteriorate in a frequency band approximately three times the passband.
 ピッチpに対する電極指27の幅w(図2)の比(w/p)をDutyと称するものとする。また、複数の並列共振子15Pのうち、直列腕115(換言すれば複数の直列共振子15S)に対する接続位置が電気的に最も入力端子(図示の例では送信端子105)に近いもの(図示の例では並列共振子15P1)を除くいずれか(例えば並列共振子15P4)を「第1並列共振子」と称するものとする。また、直列腕115に対する接続位置が、直列腕115に対する第1並列共振子の接続位置よりも電気的に入力端子(送信端子105)の側に位置する並列共振子15Pを「第2並列共振子」と称するものとする。 The ratio (w/p) of the width w (FIG. 2) of the electrode fingers 27 to the pitch p is referred to as Duty. Further, among the plurality of parallel resonators 15P, the one whose connection position to the series arm 115 (in other words, the plurality of series resonators 15S) is electrically closest to the input terminal (transmission terminal 105 in the illustrated example) In the example, one of the parallel resonators (for example, the parallel resonator 15P4) other than the parallel resonator 15P1) will be referred to as a "first parallel resonator". In addition, a parallel resonator 15P whose connection position to the series arm 115 is electrically located closer to the input terminal (transmission terminal 105) than the connection position of the first parallel resonator to the series arm 115 is referred to as a "second parallel resonator". ”.
 なお、接続位置の位置関係に関して「電気的に」と断るのは、空間的な位置関係(座標上の位置関係)との混同とを避けるためである。ただし、以下では、便宜上、「電気的に」と断らないことがある。さらに、「直列腕115に対する接続位置」の語も省略し、単に並列共振子15Pがアンテナ端子103又は送信端子105に近い、又は遠い、のように表現することもある。 Note that the reason for saying "electrically" regarding the positional relationship of the connection positions is to avoid confusion with spatial positional relationship (positional relationship on coordinates). However, in the following, for convenience, "electrically" may not be specified. Furthermore, the term "connection position with respect to the series arm 115" may also be omitted, and the parallel resonator 15P may simply be expressed as being close to or far from the antenna terminal 103 or the transmission terminal 105.
 本実施形態では、第1並列共振子のDutyは、第2並列共振子のDutyよりも小さくされている。これにより、例えば、第1並列共振子のDutyが第2並列共振子のDutyと同じである態様に比較して、第1並列共振子において生じる3倍波に起因するスプリアスを低減できる。ひいては、ラダー型フィルタにおいて生じるスプリアスを低減できる。 In this embodiment, the duty of the first parallel resonator is smaller than the duty of the second parallel resonator. Thereby, for example, compared to a mode in which the duty of the first parallel resonator is the same as the duty of the second parallel resonator, the spurious caused by the third harmonic generated in the first parallel resonator can be reduced. As a result, spurious noise occurring in the ladder filter can be reduced.
 第2並列共振子で生じた3倍波に起因するスプリアスは、出力端子(アンテナ端子103)へ向かって伝達される過程において、ラダー型フィルタ(送信フィルタ109)のうちの第2並列共振子よりも出力端子の側に位置する部分によって減衰されやすい。逆に言えば、相対的に出力端子の側に位置する第1並列共振子において生じたスプリアスは減衰されにくい。従って、第1並列共振子においてDutyを小さくしてスプリアスを低減することによって効率的にスプリアスを低減できる。 The spurious caused by the third harmonic generated in the second parallel resonator is transmitted from the second parallel resonator of the ladder filter (transmission filter 109) in the process of being transmitted toward the output terminal (antenna terminal 103). It is also likely to be attenuated by the part located on the output terminal side. Conversely, spurious noise generated in the first parallel resonator relatively located closer to the output terminal is less likely to be attenuated. Therefore, by reducing the duty in the first parallel resonator to reduce spurious, it is possible to efficiently reduce spurious.
 別の観点では、複数の並列共振子15Pのうちの一部の並列共振子(第1並列共振子)のDutyを小さくしていることから、他の並列共振子15P(第2並列共振子)については、3倍波に起因するスプリアス以外の特性を向上させるようにDutyを設定できる。これにより、例えば、通過帯域における特性を確保することが容易化される。 From another point of view, since the duty of some parallel resonators (first parallel resonators) among the plurality of parallel resonators 15P is reduced, other parallel resonators 15P (second parallel resonators) Regarding, the duty can be set so as to improve characteristics other than spurious caused by the third harmonic. This makes it easier to ensure the characteristics in the passband, for example.
 以上が実施形態に係るラダー型フィルタ(送信フィルタ109)の概要である。以下では、概略、下記の順に実施形態に係る説明を行う。
 1.共振子15(図2及び図3)
 2.ラダー型フィルタ(送信フィルタ109、図1)
 3.分波器101(図1)
 4.並列共振子のDuty
 5.実施例及び比較例(図4~図8)
 6.ラダー型フィルタの利用例(図9)
 7.実施形態のまとめ
The above is an overview of the ladder type filter (transmission filter 109) according to the embodiment. Below, the embodiments will be briefly described in the following order.
1. Resonator 15 (Figures 2 and 3)
2. Ladder type filter (transmission filter 109, Figure 1)
3. Duplexer 101 (Figure 1)
4. Duty of parallel resonator
5. Examples and comparative examples (Figures 4 to 8)
6. Example of using ladder filter (Figure 9)
7. Summary of embodiments
(1.共振子)
 図2に示す共振子15は、いわゆる1ポート弾性波共振子として構成されている。共振子15は、概念的かつ模式的に示す端子17A及び17Bの一方から所定の周波数の電気信号が入力されると共振を生じ、その共振を生じた信号を端子17A及び17Bの他方から出力可能である。
(1. Resonator)
The resonator 15 shown in FIG. 2 is configured as a so-called one-port acoustic wave resonator. The resonator 15 generates resonance when an electrical signal of a predetermined frequency is input from one of the terminals 17A and 17B shown conceptually and schematically, and can output the signal that caused the resonance from the other terminal 17A and 17B. It is.
 共振子15は、既述のように、少なくとも上面に圧電性を有している圧電性基板(本実施形態では複合基板3)と、IDT電極19とを有している。別の観点では、共振子15は、複合基板3と、当該複合基板3の上面に重なっており、IDT電極19を含む導体層5とを有している。 As described above, the resonator 15 includes a piezoelectric substrate (composite substrate 3 in this embodiment) having piezoelectricity on at least its upper surface, and an IDT electrode 19. From another perspective, the resonator 15 includes a composite substrate 3 and a conductor layer 5 that overlaps the upper surface of the composite substrate 3 and includes an IDT electrode 19.
 1ポート弾性波共振子としての共振子15においては、導体層5は、IDT電極19に加えて、その両側に位置する1対の反射器21を有している。1対の反射器21は、弾性波を反射して、エネルギーをIDT電極19の配置領域に閉じ込めることに寄与する。なお、共振子15のうち、IDT電極19が配置される領域(反射器21が位置する領域を除いた構成)も共振子である。この共振子を共振子16として参照することがある。 In the resonator 15 as a one-port acoustic wave resonator, the conductor layer 5 includes, in addition to the IDT electrode 19, a pair of reflectors 21 located on both sides thereof. The pair of reflectors 21 reflect the elastic waves and contribute to confining the energy in the region where the IDT electrode 19 is arranged. Note that the region of the resonator 15 where the IDT electrode 19 is arranged (the configuration excluding the region where the reflector 21 is located) is also a resonator. This resonator may be referred to as a resonator 16.
 共振子15は、上記のように、複合基板3の上面側の少なくとも一部を含む。上記少なくとも一部は、例えば、圧電体層11及び低音速膜9(後述)を含む。ただし、実施形態の説明では、便宜上、IDT電極19及び1対の反射器21のみ(複合基板3を除いた構成)が共振子15であるかのように表現することがある。 As described above, the resonator 15 includes at least a portion of the upper surface side of the composite substrate 3. At least a portion of the piezoelectric layer 11 includes, for example, a piezoelectric layer 11 and a low sound velocity film 9 (described later). However, in the description of the embodiment, for convenience, it may be expressed as if only the IDT electrode 19 and the pair of reflectors 21 (the configuration excluding the composite substrate 3) are the resonator 15.
 共振子15において利用が意図されている弾性波は適宜なものであってよい。例えば、当該弾性波は、弾性表面波であってもよいし、バルク波であってもよいし、板波(ラム波)であってもよいし、上記のような区別ができなくてもよい。利用される弾性波は、例えば、圧電体層11の材料、カット角及び厚み、圧電体層11の下面側の構成(低音速膜9等の構成)及び圧電体層11の上面側の構成(導体層5等の構成)によって異なる。 The elastic waves intended to be used in the resonator 15 may be any appropriate type. For example, the elastic wave may be a surface acoustic wave, a bulk wave, a plate wave (Lamb wave), or it may be indistinguishable as described above. . The elastic waves to be utilized are, for example, the material, cut angle and thickness of the piezoelectric layer 11, the configuration of the lower surface side of the piezoelectric layer 11 (configuration of the low sound velocity film 9, etc.), and the configuration of the upper surface side of the piezoelectric layer 11 (configuration of the low sound velocity film 9, etc.). The structure of the conductor layer 5, etc. differs depending on the configuration.
 以下では、概略、下記の順に共振子15について説明する。
 1.1.圧電性基板(複合基板3)
 1.2.導体層5
 1.3.共振子15のその他の構成
Below, the resonator 15 will be roughly explained in the following order.
1.1. Piezoelectric substrate (composite substrate 3)
1.2. Conductor layer 5
1.3. Other configurations of resonator 15
(1.1.圧電性基板(複合基板))
 図2及び図3に示す共振子15を構成する圧電性基板は、少なくとも上面に圧電性を有している種々の構成とされてよい。例えば、圧電性基板は、圧電体層と、圧電体層の下面に重なる1以上の層とを含む複合基板とされてもよいし(図示の例)、基本的に基板全体が圧電体によって構成されているものとされてもよい。なお、実施形態の説明において、「層」は、例えば、膜状のもの(例えば比較的薄いもの)、及び基板状のもの(例えば比較的厚いもの)を含んでよい。
(1.1. Piezoelectric substrate (composite substrate))
The piezoelectric substrate constituting the resonator 15 shown in FIGS. 2 and 3 may have various configurations in which at least the upper surface has piezoelectricity. For example, the piezoelectric substrate may be a composite substrate including a piezoelectric layer and one or more layers overlapping the bottom surface of the piezoelectric layer (as shown in the figure), or the entire substrate is basically made of piezoelectric material. It may be assumed that the Note that in the description of the embodiments, the "layer" may include, for example, a film-like layer (for example, a relatively thin layer) and a substrate-like layer (for example, a relatively thick layer).
 図示の例の複合基板3は、支持基板7(図3)と、支持基板7上に位置する低音速膜9(図3)と、低音速膜9上に位置する圧電体層11(図2及び図3)とを有している。低音速膜9における音速は、圧電体層11における音速よりも低い。低音速膜9は、例えば、圧電体層11を伝搬する弾性波を反射して弾性波のエネルギーを圧電体層11に閉じ込めることに寄与している。支持基板7は、例えば、複合基板3の強度を補強することに寄与している。 The composite substrate 3 in the illustrated example includes a support substrate 7 (FIG. 3), a low sound velocity film 9 (FIG. 3) located on the support substrate 7, and a piezoelectric layer 11 located on the low sound speed film 9 (FIG. 2). and FIG. 3). The sound speed in the low sound speed film 9 is lower than the sound speed in the piezoelectric layer 11. The low sound velocity film 9 contributes to, for example, reflecting the elastic waves propagating through the piezoelectric layer 11 and confining the energy of the elastic waves in the piezoelectric layer 11 . The support substrate 7 contributes to reinforcing the strength of the composite substrate 3, for example.
 特に図示しないが、複合基板は、図示の例とは異なる構成を有していてもよい。例えば、複合基板の構成は、図示の例の複合基板3の構成に対して、高音速膜を追加したものであってもよい。高音速膜は、圧電体層11における音速よりも音速が高い。高音速膜は、例えば、圧電体層11と低音速膜9との間、及び/又は低音速膜9と支持基板7との間に位置してよい。 Although not particularly illustrated, the composite substrate may have a configuration different from the illustrated example. For example, the configuration of the composite substrate may be such that a high-sonic membrane is added to the configuration of the composite substrate 3 in the illustrated example. The high sound velocity film has a higher sound velocity than the sound velocity in the piezoelectric layer 11 . The high-sonic membrane may be located, for example, between the piezoelectric layer 11 and the low-sonic membrane 9 and/or between the low-sonic membrane 9 and the support substrate 7.
 なお、例えば、圧電体層11の下面に沿って低音速膜9が広がっていると表現するとき、その間には、高音速膜が介在していてもよいし、介在していなくてもよい。また、例えば、圧電体層11と低音速膜9とが重なっていると表現するときは、特に断りが無い限り、両者が音響的に見て直接的に重なっていることを指すものとする。他の互いに重なる2つの層についても同様である。 Note that, for example, when it is expressed that the low sound velocity film 9 is spread along the lower surface of the piezoelectric layer 11, a high sound velocity film may or may not be interposed therebetween. Further, for example, when it is expressed that the piezoelectric layer 11 and the low sound velocity membrane 9 overlap, unless otherwise specified, it refers to the fact that they directly overlap when viewed acoustically. The same applies to the other two layers that overlap each other.
 圧電体層11と低音速膜9とが音響的に見て直接的に重なっている場合、両者の間には、圧電体層11を伝搬する弾性波に対して音響的に影響を及ぼす層(例えば高音速膜)は介在していない。逆に言えば、より微視的に見たときに、上記2つの層の間には、圧電体層11を伝搬する弾性波に音響的に殆ど影響を及ぼさない他の層が介在していてもよい。他の層としては、例えば、両者の接合に寄与する接合層が挙げられる。2つの層が互いに音響的に見て直接的に重なっているか否かは、技術常識等に照らして合理的に判断されてよい。上記の他の層(例えば接合層)は、例えば、圧電体層11を伝搬する弾性波に対して音響的に殆ど影響を及ぼさない程度の厚さを有している。そのような厚さは、他の層の材料等によって異なるが、具体例を挙げると、0.005λ以下又は0.001λ以下である。実施形態の説明では、接合層の存在は基本的に無視する。他の互いに重なる2つの層についても同様である。 When the piezoelectric layer 11 and the low sound velocity membrane 9 directly overlap from an acoustic point of view, there is a layer ( For example, there is no intervening membrane (high-sonic membrane). Conversely, when viewed more microscopically, there is another layer interposed between the two layers that has almost no acoustic effect on the elastic waves propagating through the piezoelectric layer 11. Good too. Examples of other layers include a bonding layer that contributes to bonding the two. Whether or not two layers directly overlap each other when viewed acoustically may be determined rationally in light of common technical knowledge and the like. The other layers (for example, the bonding layer) have a thickness that has almost no acoustic effect on the elastic waves propagating through the piezoelectric layer 11, for example. Such thickness varies depending on the materials of other layers, etc., but to give a specific example, it is 0.005λ or less or 0.001λ or less. In the description of the embodiments, the existence of the bonding layer is basically ignored. The same applies to the other two layers that overlap each other.
 また、例えば、複合基板は、更に他の構成であってもよい。例えば、複合基板は、支持基板7と、支持基板7に重なる多層膜と、多層膜に重なる圧電体層11とを有するものであってもよい。多層膜は、例えば、音響インピーダンス及び/又は音速が互いに異なる複数(例えば3以上又は5以上)の層を交互に積層した構成を有していてよい。また、複合基板は、支持基板7と、支持基板7に重なる圧電体層11とを有するものであってもよい。また、複合基板は、圧電体層11の下面に接する、平面透視において共振子15の少なくとも一部と重なる空洞を有するものであってもよい。 Also, for example, the composite substrate may have still another configuration. For example, the composite substrate may include a support substrate 7, a multilayer film overlapping the support substrate 7, and a piezoelectric layer 11 overlapping the multilayer film. The multilayer film may have, for example, a structure in which a plurality of layers (for example, 3 or more or 5 or more) having different acoustic impedances and/or sound velocities are alternately laminated. Further, the composite substrate may include a support substrate 7 and a piezoelectric layer 11 overlapping the support substrate 7. Further, the composite substrate may have a cavity that is in contact with the lower surface of the piezoelectric layer 11 and overlaps at least a portion of the resonator 15 when seen in plan view.
 以下では、複合基板3の各層について、下記の順に説明する。また、不図示の高音速膜についても説明する。
 1.1.1.圧電体層11
 1.1.2.低音速膜9
 1.1.3.支持基板7
 1.1.4.高音速膜
Below, each layer of the composite substrate 3 will be explained in the following order. Furthermore, a high-sonic membrane (not shown) will also be explained.
1.1.1. Piezoelectric layer 11
1.1.2. Low sound velocity membrane 9
1.1.3. Support board 7
1.1.4. High sound velocity membrane
(1.1.1.圧電体層)
 圧電体層11は、例えば、圧電性を有する単結晶によって構成されている。このような単結晶を構成する材料としては、例えば、タンタル酸リチウム(LiTaO。以下、LTと略すことがある。)、ニオブ酸リチウム(LiNbO。以下、LNと略すことがある。)及び水晶(SiO)を挙げることができる。これらの単結晶のカット角は任意である。なお、圧電体層11は、多結晶によって構成されていても構わない。
(1.1.1. Piezoelectric layer)
The piezoelectric layer 11 is made of, for example, a piezoelectric single crystal. Examples of materials constituting such a single crystal include lithium tantalate (LiTaO 3 , hereinafter sometimes abbreviated as LT), lithium niobate (LiNbO 3 , hereinafter sometimes abbreviated as LN), and Quartz (SiO 2 ) can be mentioned. The cut angle of these single crystals is arbitrary. Note that the piezoelectric layer 11 may be made of polycrystal.
 圧電体層11の厚さは任意である。例えば、圧電体層11の厚さは、0.05λ以上又は0.1λ以上とされてよい。このような厚さであれば、例えば、圧電体層11を伝搬する弾性波を利用可能である。また、例えば、圧電体層11の厚さは、1.0λ以下とされてよい。この場合、例えば、挿入損失を低減したり、比較的速度が速いモードの弾性波を利用したりできる。 The thickness of the piezoelectric layer 11 is arbitrary. For example, the thickness of the piezoelectric layer 11 may be 0.05λ or more or 0.1λ or more. With such a thickness, for example, elastic waves propagating through the piezoelectric layer 11 can be used. Further, for example, the thickness of the piezoelectric layer 11 may be 1.0λ or less. In this case, for example, it is possible to reduce insertion loss or to use elastic waves in a relatively fast mode.
(1.1.2.低音速膜)
 低音速膜9の材料は、低音速膜9における音速が圧電体層11における音速よりも低い限り、任意である。音速と相互に影響を及ぼす物性値(密度、ヤング率及び音響インピーダンス等)も任意に設定されてよい。
(1.1.2. Low sound velocity membrane)
The material of the low sound velocity film 9 is arbitrary as long as the sound velocity in the low sound velocity film 9 is lower than the sound velocity in the piezoelectric layer 11. Physical property values (density, Young's modulus, acoustic impedance, etc.) that mutually influence the speed of sound may also be set arbitrarily.
 低音速膜9における音速と圧電体層11における音速との比較における音速は、例えば、各層を伝搬するバルク波の音速とされてよい。バルク波は、概して言えば、縦波、遅い横波及び速い横波の3種類を含む。遅い横波又は速い横波は、例えば、SV(Shear Vertical)波及びSH(Shear vertical)波のいずれか一方である。比較に用いられるバルク波は、例えば、上記3種のバルク波のうち、圧電体層11を伝搬し、かつ利用が意図されている弾性波が主として含む成分に対応するバルク波とされてよい。低音速膜9は、既述のように、圧電体層11を伝搬する弾性波を閉じ込める作用が期待されていることからである。例えば、利用が意図されている圧電体層11における弾性波がSH波を主として含む場合においては、圧電体層11のSH波の音速と低音速膜9のSH波の音速とが比較されてよい。SH波を例に取ったが、SV波又は縦波についても同様である。また、縦波と横波とが結合した弾性波の利用が意図されている場合は、例えば、横波の音速が比較されてよい。 The sound speed in the comparison between the sound speed in the low sound speed film 9 and the sound speed in the piezoelectric layer 11 may be, for example, the sound speed of a bulk wave propagating through each layer. Bulk waves generally include three types: longitudinal waves, slow shear waves, and fast shear waves. The slow transverse wave or the fast transverse wave is, for example, either an SV (shear vertical) wave or an SH (shear vertical) wave. The bulk wave used for comparison may be, for example, a bulk wave that propagates through the piezoelectric layer 11 and corresponds to a component mainly included in an elastic wave that is intended to be used, among the three types of bulk waves. This is because the low sound velocity film 9 is expected to have the effect of confining the elastic waves propagating through the piezoelectric layer 11, as described above. For example, in the case where the elastic waves in the piezoelectric layer 11 that are intended to be used mainly include SH waves, the sound speed of the SH waves in the piezoelectric layer 11 and the sound speed of the SH waves in the low-sonic film 9 may be compared. . Although SH waves have been taken as an example, the same applies to SV waves or longitudinal waves. Furthermore, if it is intended to use an elastic wave that is a combination of a longitudinal wave and a transverse wave, the sound speed of the transverse waves may be compared, for example.
 なお、比較の条件は、必ずしも上記のように厳格化される必要は無い。別の観点では、圧電体層11における音速と低音速膜9における音速の比較において、両者の音速は厳密に特定される必要はない。例えば、低音速膜9の横波音速と圧電体層11の横波音速とを比較する場合において、低音速膜9における速い横波と遅い横波との差が相対的に小さく(低音速膜9の横波音速と圧電体層11の横波音速との差異が相対的に大きく)、低音速膜9における速い横波と遅い横波とを特に区別しなくても、低音速膜9の横波音速が圧電体層11の横波音速よりも低いことが明らかなときは、低音速膜9における速い横波と遅い横波とを区別する必要はない。別の観点では、利用が意図されている圧電体層11の弾性波が主として含む成分は厳密に特定されなくてもよい。 Note that the conditions for comparison do not necessarily need to be as strict as described above. From another point of view, when comparing the sound speed in the piezoelectric layer 11 and the sound speed in the low sound speed film 9, the sound speeds of both do not need to be strictly specified. For example, when comparing the transverse sound velocity of the low sound velocity film 9 and the transverse sound velocity of the piezoelectric layer 11, the difference between fast transverse waves and slow transverse waves in the low sound velocity film 9 is relatively small (transverse sound velocity of the low sound velocity film 9). and the transverse wave sound speed of the piezoelectric layer 11), even if fast transverse waves and slow transverse waves in the low sound speed film 9 are not particularly distinguished, the transverse sound speed of the low sound speed film 9 is relatively large. When it is clear that the transverse wave is lower than the sound speed, there is no need to distinguish between fast and slow transverse waves in the low-sonic membrane 9. From another point of view, the components mainly included in the elastic waves of the piezoelectric layer 11 that are intended to be used do not need to be strictly specified.
 圧電体層11における音速は、例えば、音速が特定される方向、並びに圧電体層11のカット角及び厚みによって異なり、また、圧電体層11の下面側の層(ここでは低音速膜9)の影響を受ける。低音速膜9についても同様のことがいえる。従って、2つの層(ここでは圧電体層11及び低音速膜9)における音速を比較するとき、どのような条件で比較するかによって、2つの層の音速の高低の関係は異なり得る。そこで、2つの層における音速が比較される場合、例えば、実際の製品におけるD1方向(複数の電極指27の配列方向)における音速が比較されてよい。換言すれば、特定のカット角及び厚み等の影響を考慮した具体的な音速が比較されてよい。 The sound velocity in the piezoelectric layer 11 varies depending on, for example, the direction in which the sound velocity is specified and the cut angle and thickness of the piezoelectric layer 11. to be influenced. The same can be said about the low sound velocity membrane 9. Therefore, when comparing the sound speeds in the two layers (here, the piezoelectric layer 11 and the low sound speed membrane 9), the relationship between the sound speeds of the two layers may vary depending on the conditions under which the comparison is made. Therefore, when the sound speeds in the two layers are compared, for example, the sound speeds in the D1 direction (the arrangement direction of the plurality of electrode fingers 27) in the actual product may be compared. In other words, specific sound velocities may be compared in consideration of the effects of a specific cut angle, thickness, and the like.
 ただし、カット角及び厚み等の影響は、必ずしも考慮されなくてもよい。別の観点では、2つの層(ここでは圧電体層11及び低音速膜9)における音速の比較において、両者の音速は厳密に特定されなくてもよい。例えば、低音速膜9における音速が、圧電体層11のカット角及び/又は厚み、並びに低音速膜9の厚みによらずに、圧電体層11における音速よりも低いことが明らかである場合において、実際の製品におけるD1方向における音速が特定される必要はない。このような場合においては、音速は、密度及びヤング率等に基づく簡素な理論式から算出されて比較されても構わない。 However, the effects of cut angle, thickness, etc. do not necessarily have to be taken into consideration. From another perspective, when comparing the sound speeds in two layers (here, the piezoelectric layer 11 and the low sound speed film 9), the speeds of sound between the two layers do not need to be strictly specified. For example, in a case where it is clear that the sound speed in the low sound speed film 9 is lower than the sound speed in the piezoelectric layer 11, regardless of the cut angle and/or thickness of the piezoelectric layer 11 and the thickness of the low sound speed film 9. , it is not necessary to specify the sound velocity in the D1 direction in the actual product. In such a case, the sound speed may be calculated from a simple theoretical formula based on density, Young's modulus, etc. and compared.
 弾性波の速度は、圧電体層11上に位置する導体層5等の影響も受け、また、共振子15内の領域毎に異なる。2つの層(ここでは圧電体層11及び低音速膜9)における音速の比較においては、例えば、IDT電極19の交差領域の音速が用いられてよい。交差領域は、特に図示しないが、一方の櫛歯電極23の複数の電極指27の先端を結ぶ仮想線と、他方の櫛歯電極23の複数の電極指27の先端を結ぶ仮想線とに挟まれる領域とされてよい。交差領域内においても音速が異なる場合は、交差領域の中央側領域における音速(中央側領域内でも音速が異なる場合は平均値)が用いられてよい。ここでの中央側領域は、後述する「4.5.Dutyに関する補足」において述べる中央側領域と同じであってよい。 The speed of the elastic wave is also affected by the conductor layer 5 and the like located on the piezoelectric layer 11, and also differs from region to region within the resonator 15. In comparing the sound speeds in the two layers (here, the piezoelectric layer 11 and the low sound speed membrane 9), for example, the sound speed in the intersection region of the IDT electrodes 19 may be used. Although not particularly shown, the intersection region is sandwiched between an imaginary line connecting the tips of the plurality of electrode fingers 27 of one comb-teeth electrode 23 and an imaginary line connecting the tips of the plurality of electrode fingers 27 of the other comb-teeth electrode 23. It may be considered as an area where If the speed of sound differs even within the intersection region, the sound speed in the central region of the intersection region (if the speed of sound differs also within the central region, the average value) may be used. The central area here may be the same as the central area described in "4.5. Supplement regarding Duty" described later.
 ただし、例えば、導体層5等の影響の有無に関わらずに、低音速膜9における音速が圧電体層11における音速よりも低いことが明らかな場合、又は平面透視したときの同一領域において低音速膜9における音速が圧電体層11における音速よりも低いことが明らかな場合などにおいては、そのような交差領域における音速が厳密に求められる必要はない。 However, for example, if it is clear that the sound velocity in the low-sonic membrane 9 is lower than the sound velocity in the piezoelectric layer 11 regardless of the presence or absence of the influence of the conductor layer 5, etc., or if the sound velocity is low in the same area when viewed through a plane, In cases such as when it is clear that the sound velocity in the membrane 9 is lower than the sound velocity in the piezoelectric layer 11, the sound velocity in such an intersection region does not need to be determined strictly.
 低音速膜9の具体的な材料としては、例えば、二酸化ケイ素(SiO)、酸化タンタル(Ta)、酸窒化ケイ素(SiO)及びガラスが挙げられる。また、SiOにフッ素、炭素又はホウ素などを加えた化合物が用いられてもよい。圧電体層11で挙げた種々の材料(例えばLT及びLN)と、ここで挙げた材料とは、任意のもの同士が組み合わされてよい。なお、これまでに、圧電体層11における音速と低音速膜9における音速との比較の条件について細かく説明した。ただし、低音速膜9の材料が本段落で例示した材料である場合においては、これまでに述べた比較の条件の一部又は全部は無視されてもよい。 Specific materials for the low sound velocity film 9 include, for example, silicon dioxide (SiO 2 ), tantalum oxide (Ta 2 O 3 ), silicon oxynitride (Si 2 N 2 O), and glass. Further, a compound in which fluorine, carbon, boron, or the like is added to SiO 2 may be used. The various materials mentioned for the piezoelectric layer 11 (for example, LT and LN) and the materials mentioned here may be arbitrarily combined. Note that the conditions for comparing the sound speed in the piezoelectric layer 11 and the sound speed in the low sound speed film 9 have been described in detail so far. However, if the material of the low sound velocity membrane 9 is the material exemplified in this paragraph, some or all of the comparison conditions described above may be ignored.
 低音速膜9の厚さは任意である。例えば、低音速膜9の厚さは、圧電体層11の厚さに対して、薄くてもよいし(図示の例)、同等でもよいし、厚くてもよい。また、例えば、低音速膜9の厚さは、0.01λ以上又は0.1λ以上とされてよく、また、0.6λ以下又は0.5λ以下とされてよい。上記の下限と上限とは任意のもの同士が組み合わされてよい。このような厚さが採用されると、例えば、挿入損失を低減することが容易である。 The thickness of the low-sonic membrane 9 is arbitrary. For example, the thickness of the low sound velocity film 9 may be thinner than the thickness of the piezoelectric layer 11 (as shown in the illustrated example), or may be equal to or thicker. Further, for example, the thickness of the low sound velocity film 9 may be 0.01λ or more or 0.1λ or more, or may be 0.6λ or less or 0.5λ or less. The above lower limit and upper limit may be arbitrarily combined. When such a thickness is adopted, it is easy to reduce insertion loss, for example.
(1.1.3.支持基板)
 支持基板7の材料及び寸法は任意である。圧電体層11を伝搬する弾性波は、基本的に低音速膜9によって反射されるから、支持基板7の材料及び寸法が、圧電体層11を伝搬する弾性波に直接的に及ぼす影響は比較的小さい。
(1.1.3. Support substrate)
The material and dimensions of the support substrate 7 are arbitrary. Since the elastic waves propagating through the piezoelectric layer 11 are basically reflected by the low-sonic film 9, the direct influence of the material and dimensions of the support substrate 7 on the elastic waves propagating through the piezoelectric layer 11 is comparatively small. The target is small.
 支持基板7の材料は、圧電体層11等に比較して熱膨張係数が低いものとされてもよい。この場合、例えば、温度変化によって共振子15の周波数特性が変化してしまうおそれを低減することができる。このような材料としては、例えば、シリコン(Si)等の半導体、サファイア等の単結晶及び酸化アルミニウム質焼結体等のセラミックを挙げることができる。なお、支持基板7は、互いに異なる材料からなる複数の層が積層されて構成されていてもよい。支持基板7の厚さは、例えば、圧電体層11よりも厚い。 The material of the support substrate 7 may have a coefficient of thermal expansion lower than that of the piezoelectric layer 11 and the like. In this case, for example, it is possible to reduce the possibility that the frequency characteristics of the resonator 15 will change due to temperature changes. Examples of such materials include semiconductors such as silicon (Si), single crystals such as sapphire, and ceramics such as aluminum oxide sintered bodies. Note that the support substrate 7 may be configured by laminating a plurality of layers made of mutually different materials. The thickness of the support substrate 7 is thicker than the piezoelectric layer 11, for example.
(1.1.4.高音速膜)
 既述のように、図示の例とは異なり、複合基板は、高音速膜を有していてよい。高音速膜の材料は、高音速膜における音速が圧電体層11における音速よりも高い限り、任意である。音速と相互に影響を及ぼす物性値(密度、ヤング率及び音響インピーダンス等)も任意に設定されてよい。音速を比較するときの条件については、低音速膜9に関して述べた説明が援用されてよい。高音速膜の具体的な材料としては、例えば、酸化アルミニウム(Al)、窒化ケイ素(Si)及び窒化アルミニウム(AlN)が挙げられる。なお、高音速膜の材料が本段落で例示した材料である場合においては、低音速膜9を例に取って説明した音速の比較の条件の一部又は全部は無視されてもよい。
(1.1.4. High-sonic membrane)
As mentioned above, unlike the example shown, the composite substrate may have a high sonic membrane. The material for the high-sonic membrane is arbitrary as long as the sound velocity in the high-sonic membrane is higher than that in the piezoelectric layer 11. Physical property values (density, Young's modulus, acoustic impedance, etc.) that mutually influence the speed of sound may also be set arbitrarily. Regarding the conditions for comparing the sound speeds, the explanation given regarding the low sound speed membrane 9 may be used. Specific materials for the high-speed sonic film include, for example, aluminum oxide (Al 2 O 3 ), silicon nitride (Si 3 N 4 ), and aluminum nitride (AlN). In addition, in the case where the material of the high sound speed membrane is the material exemplified in this paragraph, some or all of the conditions for comparison of sound speeds explained by taking the low sound speed membrane 9 as an example may be ignored.
 高音速膜の厚さは任意である。例えば、高音速膜の厚さは、圧電体層11及び/又は低音速膜9の厚さに対して、薄くてもよいし、同等でもよいし、厚くてもよい。また、例えば、圧電体層11と低音速膜9との間に介在する高音速膜の厚さは、0.01λ以上かつ0.2λ以下とされてよい。このような厚さが採用されると、例えば、挿入損失を低減することが容易である。 The thickness of the high-sonic membrane is arbitrary. For example, the thickness of the high sonic velocity film may be thinner, equal to, or thicker than the thickness of the piezoelectric layer 11 and/or the low sonic velocity film 9. Further, for example, the thickness of the high-sonic film interposed between the piezoelectric layer 11 and the low-sonic film 9 may be 0.01λ or more and 0.2λ or less. When such a thickness is adopted, it is easy to reduce insertion loss, for example.
(1.2.導体層)
 導体層5は、例えば、金属により形成されている。金属の具体的な種類は任意である。例えば、金属は、アルミニウム(Al)又はAlを主成分とする合金(Al合金)とされてよい。Al合金は、例えば、アルミニウム-銅(Cu)合金とされてよい。なお、導体層5は、複数の金属層から構成されていてもよい。例えば、Al又はAl合金と、圧電体層11との間に、これらの接合性を強化するためのチタン(Ti)からなる比較的薄い層が設けられていてもよい。導体層5の厚さは、共振子15に要求される特性に応じて適宜に設定されてよい。例えば、導体層5の厚さは、0.02λ以上0.10λ以下、及び/又は50nm以上600nm以下とされてよい。
(1.2. Conductor layer)
The conductor layer 5 is made of metal, for example. The specific type of metal is arbitrary. For example, the metal may be aluminum (Al) or an alloy containing Al as a main component (Al alloy). The Al alloy may be, for example, an aluminum-copper (Cu) alloy. Note that the conductor layer 5 may be composed of a plurality of metal layers. For example, a relatively thin layer made of titanium (Ti) may be provided between Al or Al alloy and the piezoelectric layer 11 to strengthen the bonding properties between them. The thickness of the conductor layer 5 may be set as appropriate depending on the characteristics required of the resonator 15. For example, the thickness of the conductor layer 5 may be 0.02λ or more and 0.10λ or less, and/or 50nm or more and 600nm or less.
 既述のように、導体層5は、IDT電極19と、1対の反射器21とを含んでいる。以下では、概略、下記の順で導体層5について説明する。
 1.2.1.IDT電極
 1.2.2.反射器
As described above, the conductor layer 5 includes the IDT electrode 19 and a pair of reflectors 21. Below, the conductor layer 5 will be roughly explained in the following order.
1.2.1. IDT electrode 1.2.2. reflector
(1.2.1.IDT電極)
 IDT電極19は、既述のように、1対の櫛歯電極23を含んでいる。なお、図2においては、視認性を良くするために、一方の櫛歯電極23にはハッチングを付している。各櫛歯電極23は、例えば、バスバー25と、バスバー25から互いに並列に延びる複数の電極指27と、複数の電極指27間においてバスバー25から突出するダミー電極29とを含んでいる。1対の櫛歯電極23は、複数の電極指27が互いに噛み合うように(交差するように)配置されている。
(1.2.1.IDT electrode)
The IDT electrode 19 includes a pair of comb-teeth electrodes 23, as described above. Note that in FIG. 2, one comb-teeth electrode 23 is hatched for better visibility. Each comb-teeth electrode 23 includes, for example, a busbar 25, a plurality of electrode fingers 27 extending in parallel from the busbar 25, and a dummy electrode 29 protruding from the busbar 25 between the plurality of electrode fingers 27. The pair of comb-teeth electrodes 23 are arranged so that the plurality of electrode fingers 27 interlock with each other (cross each other).
 バスバー25は、例えば、概略、一定の幅で弾性波の伝搬方向(D1方向)に直線状に延びる形状を有している。一対のバスバー25は、弾性波の伝搬方向に交差する方向(D2方向)において互いに対向している。図示の例とは異なり、バスバー25は、幅が変化したり、弾性波の伝搬方向に対して傾斜したりしていてもよい。後者の態様においては、交差領域も傾斜していてよい。 The bus bar 25 has, for example, a shape that generally has a constant width and extends linearly in the elastic wave propagation direction (D1 direction). A pair of bus bars 25 are opposed to each other in a direction (D2 direction) that intersects the propagation direction of elastic waves. Unlike the illustrated example, the bus bar 25 may have a varying width or may be inclined with respect to the propagation direction of the elastic wave. In the latter embodiment, the intersection area may also be sloped.
 各電極指27は、例えば、概略、一定の幅で弾性波の伝搬方向に直交する方向(D2方向)に直線状に延びる形状を有している。ただし、電極指27は、長さ方向(D2方向)の位置に応じて幅wが変化していてもよい。このような電極指27としては、例えば、ピストンモードを利用するものが挙げられる。なお、長さ方向において幅wが一定でない場合のDuty(w/p)の算出方法については後述する(「4.5.Dutyに関する補足」を参照。)。各櫛歯電極23において、複数の電極指27は、弾性波の伝搬方向(D1方向)に配列されている。また、一方の櫛歯電極23の複数の電極指27と他方の櫛歯電極23の複数の電極指27とは、基本的には交互に配列されている。 Each electrode finger 27 has, for example, a shape that generally has a constant width and extends linearly in the direction (D2 direction) orthogonal to the propagation direction of the elastic wave. However, the width w of the electrode finger 27 may change depending on the position in the length direction (D2 direction). An example of such an electrode finger 27 is one that uses a piston mode. Note that a method for calculating Duty (w/p) when the width w is not constant in the length direction will be described later (see "4.5. Supplement regarding Duty"). In each comb-teeth electrode 23, the plurality of electrode fingers 27 are arranged in the propagation direction of the elastic wave (direction D1). Moreover, the plurality of electrode fingers 27 of one comb-teeth electrode 23 and the plurality of electrode fingers 27 of the other comb-teeth electrode 23 are basically arranged alternately.
 複数の電極指27のピッチp(例えば互いに隣り合う2本の電極指27の中心間距離)は、IDT電極19内において基本的に一定である。ただし、IDT電極19の一部に、他の大部分よりもピッチpが狭くなる狭ピッチ部、又は他の大部分よりもピッチpが広くなる広ピッチ部が設けられてもよい。また、IDT電極19の一部に、電極指27が実質的に間引かれた間引き部が存在してもよい。なお、ピッチpが一定でない場合等のピッチp及びDuty(w/p)の算出方法については後述する(「4.5.Dutyに関する補足」を参照。)。 The pitch p of the plurality of electrode fingers 27 (for example, the distance between the centers of two adjacent electrode fingers 27) is basically constant within the IDT electrode 19. However, a part of the IDT electrode 19 may be provided with a narrow pitch part in which the pitch p is narrower than in most other parts, or a wide pitch part in which the pitch p is wider than in most other parts. Further, a thinned out portion where the electrode fingers 27 are substantially thinned out may exist in a part of the IDT electrode 19. Note that a method of calculating the pitch p and Duty (w/p) when the pitch p is not constant will be described later (see "4.5. Supplement regarding Duty").
 既述の説明から理解されるように、ピッチpは、意図された共振周波数に応じて設定されてよい。例えば、ピッチpは、0.1μm以上、0.3μm以上又は0.5μm以上とされてよく、10μm以下、5μm以下、又は2μm以下とされてよい。上記の下限と上限とは任意のもの同士が組み合わされてよい。 As understood from the above description, the pitch p may be set according to the intended resonance frequency. For example, the pitch p may be 0.1 μm or more, 0.3 μm or more, or 0.5 μm or more, and may be 10 μm or less, 5 μm or less, or 2 μm or less. The above lower limit and upper limit may be arbitrarily combined.
 電極指27の本数は、共振子15に要求される電気特性等に応じて適宜に設定されてよい。図2は模式図であることから、電極指27の本数は少なく示されている。実際には、図示よりも多くの電極指27が配列されてよい。後述する反射器21のストリップ電極33についても同様である。 The number of electrode fingers 27 may be appropriately set depending on the electrical characteristics required of the resonator 15. Since FIG. 2 is a schematic diagram, the number of electrode fingers 27 is shown to be small. In reality, more electrode fingers 27 than shown may be arranged. The same applies to the strip electrode 33 of the reflector 21, which will be described later.
 複数の電極指27の長さは、例えば、互いに同等である。図示の例とは異なり、IDT電極19は、複数の電極指27の長さ(別の観点では、いわゆる交差幅)が弾性波の伝搬方向(D1方向)の位置に応じて変化する、いわゆるアポダイズが施されていてもよい。電極指27の長さ及び幅は、要求される電気特性等に応じて適宜に設定されてよい。 The lengths of the plurality of electrode fingers 27 are, for example, equal to each other. Unlike the illustrated example, the IDT electrode 19 has a so-called apodized structure in which the length of the plurality of electrode fingers 27 (from another point of view, the so-called crossing width) changes depending on the position in the propagation direction of the elastic wave (D1 direction). may be applied. The length and width of the electrode fingers 27 may be set as appropriate depending on required electrical characteristics and the like.
 ダミー電極29は、例えば、概略、一定の幅で弾性波の伝搬方向に直交する方向に突出する形状を有している。その幅は、例えば、電極指27の幅と同等である。複数のダミー電極29は、複数の電極指27と同等のピッチで配列されており、一方の櫛歯電極23のダミー電極29の先端は、他方の櫛歯電極23の電極指27の先端とギャップを介して対向している。なお、IDT電極19は、ダミー電極29を含まないものであってもよい。 The dummy electrode 29 has, for example, a shape that approximately has a constant width and protrudes in a direction perpendicular to the propagation direction of the elastic wave. Its width is, for example, equivalent to the width of the electrode finger 27. The plurality of dummy electrodes 29 are arranged at the same pitch as the plurality of electrode fingers 27, and the tip of the dummy electrode 29 of one comb-teeth electrode 23 is in a gap with the tip of the electrode finger 27 of the other comb-teeth electrode 23. are facing each other through. Note that the IDT electrode 19 may not include the dummy electrode 29.
(1.2.2.反射器)
 1対の反射器21は、弾性波の伝搬方向においてIDT電極19の両側に位置している。各反射器21は、例えば、電気的に浮遊状態とされてもよいし、基準電位が付与されてもよい。各反射器21は、例えば、格子状に形成されている。すなわち、反射器21は、互いに対向する1対のバスバー31と、1対のバスバー31間において延びる複数のストリップ電極33とを含んでいる。複数のストリップ電極33のピッチ、及び互いに隣接する電極指27とストリップ電極33とのピッチは、例えば、複数の電極指27のピッチと同等である。
(1.2.2.Reflector)
The pair of reflectors 21 are located on both sides of the IDT electrode 19 in the propagation direction of the elastic wave. For example, each reflector 21 may be electrically floating or may be provided with a reference potential. Each reflector 21 is formed, for example, in a lattice shape. That is, the reflector 21 includes a pair of bus bars 31 facing each other and a plurality of strip electrodes 33 extending between the pair of bus bars 31. The pitch between the plurality of strip electrodes 33 and the pitch between the electrode fingers 27 and the strip electrodes 33 that are adjacent to each other are, for example, equivalent to the pitch between the plurality of electrode fingers 27.
(1.3.共振子のその他の構成)
 特に図示しないが、圧電体層11の上面は、導体層5の上から、SiO及び/又はSi等からなる保護膜によって覆われていてもよい。保護膜は、例えば、導体層5の腐食の低減、及び/又は共振子15の特性に関する温度補償に寄与してよい。保護膜が設けられる場合等において、IDT電極19及び反射器21の上面又は下面には、絶縁体又は金属からなる付加膜が設けられてもよい。付加膜は、例えば、弾性波の反射係数の向上に寄与する。
(1.3. Other configurations of resonator)
Although not particularly illustrated, the upper surface of the piezoelectric layer 11 may be covered from above the conductor layer 5 with a protective film made of SiO 2 and/or Si 3 N 4 or the like. The protective film may contribute, for example, to reducing corrosion of the conductor layer 5 and/or to temperature compensation regarding the properties of the resonator 15. In cases where a protective film is provided, an additional film made of an insulator or metal may be provided on the upper or lower surfaces of the IDT electrode 19 and reflector 21. The additional film contributes to improving the reflection coefficient of elastic waves, for example.
 共振子15は、適宜にパッケージングされてよい。パッケージングは、例えば、不図示の基板上に隙間を介して圧電体層11の上面を対向させるように図示の構成を実装し、その上から樹脂封止するものであってもよいし、圧電体層11上に箱型のカバーを設けるウェハレベルパッケージ型のものであってもよい。後述する説明からも理解されるように、パッケージングは、例えば、フィルタ(109又は111)毎に行われてもよいし、フィルタの部分毎に行われてもよいし、分波器101(換言すれば2以上のフィルタ全体)毎に行われてもよい。 The resonator 15 may be packaged as appropriate. For example, the packaging may be such that the illustrated configuration is mounted on a substrate (not shown) so that the upper surfaces of the piezoelectric layers 11 face each other with a gap therebetween, and the piezoelectric layer 11 is sealed with resin from above. A wafer level package type in which a box-shaped cover is provided on the body layer 11 may be used. As will be understood from the description below, packaging may be performed, for example, for each filter (109 or 111), or for each part of the filter, or for packaging the duplexer 101 (in other words, It may be performed for each filter (all two or more filters).
(2.ラダー型フィルタ(送信フィルタ))
 以下では、概略、下記の順でラダー型フィルタ(送信フィルタ109)について説明する。
 2.1.送信フィルタ109の構成(図1)
 2.2.共振子15の周波数特性及びフィルタ(109)の通過帯域
(2. Ladder type filter (transmission filter))
Below, the ladder type filter (transmission filter 109) will be roughly explained in the following order.
2.1. Configuration of transmission filter 109 (Figure 1)
2.2. Frequency characteristics of resonator 15 and passband of filter (109)
(2.1.送信フィルタの構成)
 図1に示す送信フィルタ109は、既述のとおり、ラダー型フィルタを含んで構成されている。なお、送信フィルタ109は、ラダー型フィルタ以外のフィルタを含んでいてもよい。ただし、便宜上、実施形態の説明では、特に断りが無い限り、送信フィルタ109は、ラダー型フィルタのみによって構成されているものとする。従って、実施形態の説明では、両者を区別しないことがある。
(2.1. Configuration of transmission filter)
As described above, the transmission filter 109 shown in FIG. 1 includes a ladder type filter. Note that the transmission filter 109 may include filters other than the ladder type filter. However, for convenience, in the description of the embodiment, unless otherwise specified, it is assumed that the transmission filter 109 is configured only by a ladder type filter. Therefore, in the description of the embodiments, the two may not be distinguished.
 また、ラダー型フィルタは、直列共振子15S及び並列共振子15P以外の構成要素(例えばインダクタ、キャパシタ及び/又は抵抗体)を含んでいてもよい。ただし、実施形態の説明では、便宜上、特に断りが無い限り、ラダー型フィルタ(送信フィルタ109)は、直列共振子15S及び並列共振子15P(並びにこれらを接続する配線)のみを含むものとする。 Furthermore, the ladder filter may include components (for example, an inductor, a capacitor, and/or a resistor) other than the series resonator 15S and the parallel resonator 15P. However, in the description of the embodiment, for convenience, unless otherwise specified, the ladder filter (transmission filter 109) includes only the series resonator 15S and the parallel resonator 15P (and wiring connecting these).
 送信フィルタ109(ラダー型フィルタ)を構成する複数の共振子15は、例えば、同一の圧電性基板(複合基板3)に設けられている。ただし、複数の共振子15は、互いに異なる圧電性基板に設けられていてもよい。例えば、複数の直列共振子15Sが第1圧電性基板に設けられ、複数の並列共振子15Pが第2圧電性基板に設けられていてもよい。なお、本実施形態の説明では、特に断りが無い限り、ラダー型フィルタの全ての共振子15は、同一の圧電性基板に設けられているものとする。 The plurality of resonators 15 that constitute the transmission filter 109 (ladder type filter) are provided, for example, on the same piezoelectric substrate (composite substrate 3). However, the plurality of resonators 15 may be provided on different piezoelectric substrates. For example, a plurality of series resonators 15S may be provided on the first piezoelectric substrate, and a plurality of parallel resonators 15P may be provided on the second piezoelectric substrate. In the description of this embodiment, it is assumed that all the resonators 15 of the ladder filter are provided on the same piezoelectric substrate unless otherwise specified.
 直列共振子15Sの数は任意である。例えば、直列共振子15Sの数は、一般には複数であり(図示の例)、また、1つとすることも可能である。図示の例では、複数の直列共振子15Sの数は4つとされている。これは一例に過ぎない。複数の直列共振子15Sの数は、2、3、又は5以上であっても構わない。 The number of series resonators 15S is arbitrary. For example, the number of series resonators 15S is generally plural (as shown in the figure), or may be one. In the illustrated example, the number of series resonators 15S is four. This is just one example. The number of series resonators 15S may be 2, 3, or 5 or more.
 並列共振子15Pの数も任意である。なお、通常のラダー型フィルタにおいては、並列共振子15Pの数は、1つとすることも可能である。ただし、実施形態のラダー型フィルタにおいては、並列共振子15Pの数は複数であるものとする。図示の例では、複数の並列共振子15Pの数は4つとされている。これは一例に過ぎない。複数の並列共振子15Pの数は、2、3、又は5以上であっても構わない。 The number of parallel resonators 15P is also arbitrary. Note that in a normal ladder filter, the number of parallel resonators 15P may be one. However, in the ladder type filter of the embodiment, the number of parallel resonators 15P is plural. In the illustrated example, the number of parallel resonators 15P is four. This is just one example. The number of parallel resonators 15P may be 2, 3, or 5 or more.
 各並列共振子15Pは、いずれかの直列共振子15Sのアンテナ端子103の側又は送信端子105の側と、基準電位部113とを接続している。換言すれば、複数の並列共振子15Pは、直列腕115における電気的に互いに異なる複数の位置と基準電位部113とを接続している。さらに換言すると、並列共振子15Pの直列腕115に対する接続位置は、隣り合う直列共振子15Sの間の位置、複数の直列共振子15S全体に対してアンテナ端子103側となる位置、複数の直列共振子15S全体に対して送信端子105側となる位置のいずれかである。 Each parallel resonator 15P connects the antenna terminal 103 side or the transmission terminal 105 side of any series resonator 15S to the reference potential section 113. In other words, the plurality of parallel resonators 15P connect a plurality of electrically different positions on the series arm 115 and the reference potential section 113. In other words, the connection position of the parallel resonator 15P to the series arm 115 is a position between adjacent series resonators 15S, a position on the antenna terminal 103 side with respect to the entire plurality of series resonators 15S, and a position where the parallel resonator 15P is connected to the series arm 115. This is any position on the transmission terminal 105 side with respect to the entire child 15S.
 図示の例では、複数の直列共振子15S全体に対して送信端子105側となる位置に接続されている並列共振子15P1と、隣り合う直列共振子15Sの間の位置に接続される並列共振子15P2~15P4とが設けられている。特に図示しないが、複数の直列共振子15S全体に対してアンテナ端子103側となる位置に接続される並列共振子15Pが設けられてもよい。また、逆に、並列共振子15P1は省略されてもよい。 In the illustrated example, a parallel resonator 15P1 is connected to a position on the transmission terminal 105 side with respect to the entire plurality of series resonators 15S, and a parallel resonator is connected to a position between adjacent series resonators 15S. 15P2 to 15P4 are provided. Although not particularly illustrated, a parallel resonator 15P connected to the antenna terminal 103 side with respect to the entire plurality of series resonators 15S may be provided. Moreover, conversely, the parallel resonator 15P1 may be omitted.
 上記の説明から理解されるように、並列共振子15Pの数は、典型的には、直列共振子15Sの数に対して、同じ(図示の例)、1つ少ない、又は1つ多い。ただし、必ずしもこの限りではない。例えば、インダクタ及びキャパシタを含んで構成された並列共振回路を共振子15に代えて用いることも可能である。 As understood from the above description, the number of parallel resonators 15P is typically the same (as in the illustrated example), one less, or one more than the number of series resonators 15S. However, this is not necessarily the case. For example, it is also possible to use a parallel resonant circuit configured to include an inductor and a capacitor in place of the resonator 15.
 なお、本実施形態では、少なくとも2つの並列共振子15P(第1並列共振子及び第2並列共振子)は、図2及び図3を参照して説明したような弾性波共振子である。また、本実施形態の説明では、特に断りが無い限り、全ての共振子15は、図2及び図3を参照して説明したような弾性波共振子であるものとする。 Note that in this embodiment, at least two parallel resonators 15P (a first parallel resonator and a second parallel resonator) are elastic wave resonators as described with reference to FIGS. 2 and 3. Furthermore, in the description of this embodiment, unless otherwise specified, all the resonators 15 are assumed to be elastic wave resonators as described with reference to FIGS. 2 and 3.
 特に図示しないが、各共振子15(例えば直列共振子15S)は、直列(若しくは並列)に接続された2以上の共振子(本段落において「分割共振子」と称する。)に分割されていてもよい。各分割共振子は、例えば、図2及び図3を参照して説明したような弾性波共振子の構成を有している。分割することによって、例えば、分割共振子に印加される電圧を分圧して耐電圧性を向上させることができる。なお、1つの直列共振子15Sを直列に分割した分割共振子の間には、通常、並列共振子15Pは接続されていない。 Although not particularly illustrated, each resonator 15 (for example, a series resonator 15S) is divided into two or more resonators (referred to as "split resonators" in this paragraph) connected in series (or in parallel). Good too. Each divided resonator has, for example, the configuration of an elastic wave resonator as described with reference to FIGS. 2 and 3. By dividing, for example, the voltage applied to the divided resonators can be divided to improve voltage resistance. Note that the parallel resonators 15P are usually not connected between divided resonators obtained by dividing one series resonator 15S into series.
 図1において、並列共振子15Pの直列腕115に対する接続位置は、各直列共振子15Sに接続されている配線(符号省略)に位置するノード(符号省略)によって示されている。実際の接続位置は、電気的な観点から上記のノードと実質的に同じ位置であればよい。例えば、並列共振子15Pから延びる配線が直列共振子15Sの1つのバスバー25に直接につながっていたり、並列共振子15Pの1つのバスバー25と直列共振子15Sのバスバー25とが直接につながっていたりしてもよい。 In FIG. 1, the connection position of the parallel resonator 15P to the series arm 115 is indicated by a node (number omitted) located on the wiring (number omitted) connected to each series resonator 15S. The actual connection position may be substantially the same position as the above-mentioned node from an electrical point of view. For example, the wiring extending from the parallel resonator 15P may be directly connected to one bus bar 25 of the series resonator 15S, or one bus bar 25 of the parallel resonator 15P may be directly connected to the bus bar 25 of the series resonator 15S. You may.
 図1において、複数の並列共振子15Pが接続される複数の基準電位部113は、互いに別の基準電位部113として描かれている。これらの基準電位部113は、実際の製品において、互いに異なる部位であってもよいし、一部又は全部が互いに同一の部位であってもよい。また、互いに異なる部位としての複数の基準電位部113は、送信フィルタ109内又は分波器101内において、互いに絶縁されていてもよいし、一部又は全部が互いに接続されていてもよい。 In FIG. 1, the plurality of reference potential sections 113 to which the plurality of parallel resonators 15P are connected are drawn as mutually different reference potential sections 113. These reference potential sections 113 may be located at different locations in the actual product, or may be partially or entirely the same location. Furthermore, the plurality of reference potential sections 113 as mutually different parts may be insulated from each other within the transmission filter 109 or within the duplexer 101, or may be partially or entirely connected to each other.
(2.2.共振子の周波数特性及びフィルタの通過帯域)
 共振子15は、既述のとおり、ピッチpを概ね半波長とする弾性波の周波数を共振周波数とする共振子として機能する。共振周波数においては、共振子15のインピーダンスは極小値を取る(後述する図4の領域Rrを参照)。また、共振子15のインピーダンスは、反共振周波数において極大値(図4の領域Raを参照)を取る。反共振周波数は、共振周波数及び共振子15の容量等によって決定される。反共振周波数は、例えば、共振周波数よりも高い。
(2.2. Resonator frequency characteristics and filter passband)
As described above, the resonator 15 functions as a resonator whose resonant frequency is the frequency of an elastic wave whose pitch p is approximately half a wavelength. At the resonance frequency, the impedance of the resonator 15 takes a minimum value (see region Rr in FIG. 4, which will be described later). Further, the impedance of the resonator 15 takes a maximum value (see region Ra in FIG. 4) at the anti-resonance frequency. The anti-resonance frequency is determined by the resonance frequency, the capacitance of the resonator 15, and the like. The anti-resonant frequency is, for example, higher than the resonant frequency.
 複数の直列共振子15Sは、共振周波数が互いに同等となり、また、反共振周波数が互いに同等となるように構成されている。例えば、複数の直列共振子15Sは、共振周波数及び反共振周波数に影響を及ぼすパラメータ(ピッチp及びDuty等)の値が概ね互いに同等とされている。ただし、通過特性を向上させるために、比較的小さい差(例えば直列共振子15Sと並列共振子15Pとの差よりも小さい差)で、共振周波数及び/又は反共振周波数(別の観点ではこれらに影響を及ぼすパラメータの値)が複数の直列共振子15S同士で異なっていることもある。 The plurality of series resonators 15S are configured so that their resonant frequencies are equal to each other and their anti-resonant frequencies are equal to each other. For example, the plurality of series resonators 15S have substantially the same values of parameters (pitch p, duty, etc.) that affect the resonant frequency and the anti-resonant frequency. However, in order to improve the transmission characteristics, the resonant frequency and/or the anti-resonant frequency (from another point of view) are In some cases, the values of influencing parameters) may be different among the plurality of series resonators 15S.
 前段落の説明は、直列共振子15Sの語と並列共振子15Pの語とを置換して、並列共振子15Pに援用されてよい。 The description in the previous paragraph may be applied to the parallel resonator 15P by replacing the words "series resonator 15S" and "parallel resonator 15P".
 直列共振子15S及び並列共振子15Pは、直列共振子15Sの共振周波数と並列共振子15Pの反共振周波数とが概ね一致するように共振周波数及び反共振周波数が設定される。これにより、これらの共振子15全体(ラダー型フィルタ)は、並列共振子15Pの共振周波数から直列共振子15Sの反共振周波数までの周波数範囲よりも若干狭い範囲を通過帯域とするバンドパスフィルタとして機能する。 The resonant frequency and anti-resonant frequency of the series resonator 15S and the parallel resonator 15P are set so that the resonant frequency of the series resonator 15S and the anti-resonant frequency of the parallel resonator 15P approximately match. As a result, these resonators 15 as a whole (ladder type filter) function as a bandpass filter whose pass band is slightly narrower than the frequency range from the resonant frequency of the parallel resonator 15P to the anti-resonant frequency of the series resonator 15S. Function.
(3.分波器)
 図1に示す分波器101は、既述のように、送信フィルタ109と、受信フィルタ111とを有している。
(3. Duplexer)
The duplexer 101 shown in FIG. 1 includes a transmission filter 109 and a reception filter 111, as described above.
 受信フィルタ111は、送信フィルタ109の通過帯域とは異なる(重複しない)通過帯域を有するバンドパスフィルタである。受信フィルタ111の構成は任意である。例えば、受信フィルタ111は、送信フィルタ109と同様に、弾性波を利用する弾性波フィルタを含んでいてもよいし、弾性波フィルタを含んでいなくてもよい。後者としては、例えば、インダクタ及びキャパシタを含む並列共振回路を利用するフィルタが挙げられる。なお、本実施形態の説明では、特に断り無く、受信フィルタ111が弾性波フィルタであることを前提とした表現をすることがある。 The reception filter 111 is a bandpass filter that has a passband that is different from (does not overlap) the passband of the transmission filter 109. The configuration of the reception filter 111 is arbitrary. For example, like the transmission filter 109, the reception filter 111 may include an elastic wave filter that uses elastic waves, or may not include an elastic wave filter. The latter includes, for example, a filter that utilizes a parallel resonant circuit including an inductor and a capacitor. Note that in the description of this embodiment, unless otherwise specified, expressions may be made on the premise that the reception filter 111 is an elastic wave filter.
 受信フィルタ111が弾性波フィルタを含む態様において、その具体的な構成は任意である。例えば、受信フィルタ111は、ラダー型フィルタ及び/又は多重モード型フィルタ(2重モード型フィルタを含むものとする。)を含むものとされてよい。多重モード型フィルタは、特に図示しないが、弾性波の伝搬方向に配列されて互いに隣接している2以上のIDT電極19(別の観点では共振子16)と、その両側に位置する1対の反射器21とを有している。 In the embodiment in which the reception filter 111 includes an elastic wave filter, its specific configuration is arbitrary. For example, the reception filter 111 may include a ladder filter and/or a multimode filter (including a dual mode filter). Although not particularly shown, the multimode filter includes two or more IDT electrodes 19 (resonators 16 from another perspective) arranged in the propagation direction of elastic waves and adjacent to each other, and a pair of IDT electrodes 19 located on both sides of the IDT electrodes 19 (resonators 16 from another perspective). It has a reflector 21.
 受信フィルタ111が複数の共振子15(又は16)を含む態様において、複数の共振子15は、送信フィルタ109と同様に、同一の圧電性基板(複合基板3)に設けられていてもよいし、同一の圧電性基板に設けられていなくてもよい。また、受信フィルタ111(その一部又は全部)と、送信フィルタ109(その一部又は全部)は、同一の圧電性基板(複合基板3)に設けられていてもよいし、同一の圧電性基板に設けられていなくてもよい。前者としては、例えば、受信フィルタ111の全体と、送信フィルタ109の全体とが同一の圧電性基板に設けられている態様が挙げられる。後者としては、例えば、受信フィルタ111が設けられた圧電性基板と、送信フィルタ109が設けられた圧電性基板とが同一の実装基板(不図示)に実装されている態様が挙げられる。 In an embodiment in which the reception filter 111 includes a plurality of resonators 15 (or 16), the plurality of resonators 15 may be provided on the same piezoelectric substrate (composite substrate 3) similarly to the transmission filter 109. , may not be provided on the same piezoelectric substrate. Furthermore, the reception filter 111 (a part or all of it) and the transmission filter 109 (a part or all of it) may be provided on the same piezoelectric substrate (composite substrate 3), or may be provided on the same piezoelectric substrate It does not have to be provided. The former includes, for example, a mode in which the entire receiving filter 111 and the entire transmitting filter 109 are provided on the same piezoelectric substrate. The latter includes, for example, a mode in which the piezoelectric substrate provided with the reception filter 111 and the piezoelectric substrate provided with the transmission filter 109 are mounted on the same mounting substrate (not shown).
 分波器101は、既述のアンテナ端子103、送信端子105及び受信端子107を構成要素として含んでよい。アンテナ端子103は、例えば、直接的又は間接的に、ここでは不図示のアンテナに接続される。送信端子105は、例えば、直接的又は間接的に、ここでは不図示の送信用の高周波回路に接続される。受信端子107は、例えば、直接的又は間接的に、ここでは不図示の受信用の高周波回路に接続される。 The duplexer 101 may include the above-mentioned antenna terminal 103, transmission terminal 105, and reception terminal 107 as constituent elements. The antenna terminal 103 is connected, for example, directly or indirectly to an antenna (not shown). The transmission terminal 105 is connected, for example, directly or indirectly to a high frequency circuit for transmission (not shown here). The reception terminal 107 is connected, for example, directly or indirectly to a high frequency circuit for reception (not shown here).
 図示されたアンテナ端子103、送信端子105及び受信端子107は、分波器101と分波器101の外部との接続に寄与する外部端子であってもよいし、そのような外部端子と接続される分波器101の内部的な端子であってもよい。また、いずれにせよ、各種の端子の具体的な構成は任意である。例えば、各種の端子は、複合基板3の上面に位置する導体層5によって構成されていてよい。 The illustrated antenna terminal 103, transmission terminal 105, and reception terminal 107 may be external terminals that contribute to the connection between the duplexer 101 and the outside of the duplexer 101, or may be connected to such external terminals. It may also be an internal terminal of the duplexer 101. Furthermore, in any case, the specific configurations of the various terminals are arbitrary. For example, various terminals may be constituted by a conductor layer 5 located on the upper surface of the composite substrate 3.
 図示の例では、各種の端子は、1つのみからなり、不平衡信号を出力するものとなっている。ただし、少なくとも1種の端子(例えば送信端子105又は受信端子107)は、平衡信号を出力可能に2つの端子によって構成されていてもよい。例えば、送信フィルタ109のラダー型フィルタと送信端子105との間に多重モード型弾性波フィルタが介在することによって2つの送信端子105が設けられていてもよい。また、例えば、受信フィルタ111が多重モード型弾性波フィルタによって構成されることによって2つの受信端子107が設けられていてもよい。 In the illustrated example, each terminal consists of only one and outputs an unbalanced signal. However, at least one type of terminal (for example, the transmission terminal 105 or the reception terminal 107) may be composed of two terminals capable of outputting a balanced signal. For example, two transmission terminals 105 may be provided by interposing a multimode elastic wave filter between the ladder type filter of the transmission filter 109 and the transmission terminal 105. Further, for example, two reception terminals 107 may be provided by the reception filter 111 being constituted by a multimode elastic wave filter.
 分波器は、デュプレクサ以外のものであってもよい。例えば、分波器は、ダイプレクサであってもよいし、3以上のフィルタを含むもの(例えばトリプレクサ又はクアッドプレクサ)であってもよい。 The branching filter may be something other than a duplexer. For example, the duplexer may be a diplexer, or may include three or more filters (for example, a triplexer or a quadplexer).
 分波器101は、例えば、1つのチップ型の電子部品に含まれている。ただし、送信フィルタ109及び受信フィルタ111は互いに別のチップ型の電子部品に含まれていてもよい。いずれの態様においても、送信フィルタ109、受信フィルタ111又は分波器101は、1つの弾性波装置1として捉えられて構わない。 The duplexer 101 is included in one chip-type electronic component, for example. However, the transmission filter 109 and the reception filter 111 may be included in different chip-type electronic components. In any aspect, the transmission filter 109, the reception filter 111, or the duplexer 101 may be regarded as one elastic wave device 1.
(4.並列共振子のDuty)
 既述のように、本実施形態では、第1並列共振子の直列腕115に対する接続位置は、第2並列共振子の直列腕115に対する接続位置よりも電気的に出力端子(アンテナ端子103)の側となっている。また、第1並列共振子のDutyは、第2並列共振子のDutyよりも小さくなっている。便宜上、上記に述べた構成を「要件A」と称することがある。
(4. Duty of parallel resonator)
As described above, in this embodiment, the connection position of the first parallel resonator to the series arm 115 is electrically closer to the output terminal (antenna terminal 103) than the connection position of the second parallel resonator to the series arm 115. It's on the side. Further, the duty of the first parallel resonator is smaller than the duty of the second parallel resonator. For convenience, the configuration described above may be referred to as "requirement A."
 なお、実施形態の説明では、「第1並列共振子」の語は、第1並列共振子として捉えることができる並列共振子15Pが複数存在する場合において、そのうちの1つの並列共振子のみを指す場合もあれば、2以上の並列共振子15Pを指す場合もある。「第2並列共振子」についても同様である。 In the description of the embodiment, the term "first parallel resonator" refers to only one of the parallel resonators 15P when there are multiple parallel resonators 15P that can be regarded as the first parallel resonator. In some cases, it refers to two or more parallel resonators 15P. The same applies to the "second parallel resonator".
 以下では、概略、以下の順に並列共振子15PのDutyについて説明する。
 4.1.第1並列共振子及び第2並列共振子となる並列共振子
 4.2.並列共振子のDutyの値の数
 4.3.Dutyの値の設定方法
 4.4.Dutyの値の具体例
 4.5.Dutyに関する補足
Below, the duty of the parallel resonator 15P will be roughly explained in the following order.
4.1. Parallel resonators serving as the first parallel resonator and the second parallel resonator 4.2. Number of duty values of parallel resonators 4.3. How to set the Duty value 4.4. Specific example of Duty value 4.5. Supplement regarding Duty
(4.1.第1並列共振子及び第2並列共振子となる並列共振子)
 ラダー型フィルタが3以上の並列共振子15Pを含む態様において、要件Aを満たす第1並列共振子及び第2並列共振子は、いずれの並列共振子15Pとされてもよい。また、第1並列共振子は、1つであってもよいし、2以上であってもよい。同様に、第2並列共振子は、1つであってもよいし、2以上であってもよい。第1並列共振子及び第2並列共振子のいずれとも分類できない並列共振子15Pが存在しても構わない。第1並列共振子の数と、第2並列共振子の数とは、互いに同等であってもよいし、一方が他方よりも多くてもよい。
(4.1. Parallel resonators serving as the first parallel resonator and the second parallel resonator)
In an embodiment in which the ladder filter includes three or more parallel resonators 15P, the first parallel resonator and the second parallel resonator that satisfy requirement A may be any of the parallel resonators 15P. Further, the number of first parallel resonators may be one, or two or more. Similarly, the number of second parallel resonators may be one, or two or more. There may be a parallel resonator 15P that cannot be classified as either the first parallel resonator or the second parallel resonator. The number of first parallel resonators and the number of second parallel resonators may be equal to each other, or one may be greater than the other.
 例えば、図示の例において、並列共振子15P4が第1並列共振子であり、並列共振子15P1~15P3のいずれか1つ、2つ又は3つが第2並列共振子であってよい。換言すれば、最も出力端子(アンテナ端子103)に近い並列共振子15Pが第1並列共振子とされ、他の並列共振子15Pの一部(1つ若しくは複数)又は全部が第2並列共振子とされてよい。 For example, in the illustrated example, the parallel resonator 15P4 may be the first parallel resonator, and any one, two, or three of the parallel resonators 15P1 to 15P3 may be the second parallel resonators. In other words, the parallel resonator 15P closest to the output terminal (antenna terminal 103) is the first parallel resonator, and some (one or more) or all of the other parallel resonators 15P are the second parallel resonators. may be considered.
 なお、図示の例では、最も出力端子(アンテナ端子103)に近い並列共振子15Pは、最も出力端子に近い直列共振子15Sと、次に出力端子に近い直列共振子15Sとの間に接続される並列共振子15Pとなっている。既述の説明から理解されるように、最も出力端子に近い並列共振子15Pは、複数の直列共振子15S全体と出力端子との間に接続されるものであってもよい。 In the illustrated example, the parallel resonator 15P closest to the output terminal (antenna terminal 103) is connected between the series resonator 15S closest to the output terminal and the series resonator 15S next closest to the output terminal. This is a parallel resonator 15P. As understood from the above description, the parallel resonator 15P closest to the output terminal may be connected between the entire plurality of series resonators 15S and the output terminal.
 また、例えば、図示の例において、並列共振子15P4及び15P3が第1並列共振子であり、並列共振子15P1及び15P2のいずれか1つ又は2つが第2並列共振子であってよい。換言すれば、最も出力端子(アンテナ端子103)に近い並列共振子15Pを含む連続する2以上の並列共振子15Pが第1並列共振子とされ、他の並列共振子15Pの一部(1つ若しくは複数)又は全部が第2並列共振子とされてよい。 Furthermore, for example, in the illustrated example, the parallel resonators 15P4 and 15P3 may be the first parallel resonators, and any one or two of the parallel resonators 15P1 and 15P2 may be the second parallel resonators. In other words, two or more consecutive parallel resonators 15P including the parallel resonator 15P closest to the output terminal (antenna terminal 103) are the first parallel resonators, and some (one (or a plurality of parallel resonators) or all may be used as the second parallel resonator.
 上述の2例は、換言すれば、第1並列共振子が、最もアンテナ端子103に近い並列共振子15Pを含む1以上の並列共振子15Pであってよいことを述べている。このような態様において、又はこのような態様とは異なる態様において、第2並列共振子は、例えば、最も入力端子(送信端子105)に近い並列共振子15P(図示の例では並列共振子15P1)を含む1以上(1又は複数)の並列共振子15Pであってよい。 In other words, the above two examples state that the first parallel resonator may be one or more parallel resonators 15P including the parallel resonator 15P closest to the antenna terminal 103. In such an embodiment, or in an embodiment different from such an embodiment, the second parallel resonator is, for example, the parallel resonator 15P (parallel resonator 15P1 in the illustrated example) closest to the input terminal (transmission terminal 105). It may be one or more (one or more) parallel resonators 15P including.
 なお、図示の例では、最も入力端子(送信端子105)に近い並列共振子15Pは、複数の直列共振子15S全体と入力端子との間に接続される並列共振子15Pとなっている。既述の説明から理解されるように、最も入力端子に近い並列共振子15Pは、最も入力端子に近い直列共振子15Sと、次に入力端子に近い直列共振子15Sとの間に接続されるものであってもよい。 In the illustrated example, the parallel resonator 15P closest to the input terminal (transmission terminal 105) is the parallel resonator 15P connected between the entire plurality of series resonators 15S and the input terminal. As understood from the above description, the parallel resonator 15P closest to the input terminal is connected between the series resonator 15S closest to the input terminal and the series resonator 15S next closest to the input terminal. It may be something.
(4.2.並列共振子のDutyの値の数)
 ラダー型フィルタが3以上の並列共振子15Pを有している態様において、Dutyの互いに異なる値の数(種類)は、2つであってもよいし、3以上であってもよい。Dutyの互いに異なる値の数が2つとは、例えば、4つの並列共振子15Pのうち、3つの並列共振子15PのDutyがいずれも第1の値(例えば0.60)であり、1つの並列共振子15PのDutyが第2の値(例えば0.50)であるような態様をいう。Dutyの互いに異なる値の数が3つとは、例えば、4つの並列共振子15Pのうち、2つの並列共振子15PのDutyがいずれも第1の値(例えば0.60)であり、1つの並列共振子15PのDutyが第2の値(例えば0.55)であり、残りの1つの並列共振子15PのDutyが第3の値(例えば0.50)であるような態様をいう。
(4.2. Number of duty values of parallel resonators)
In an embodiment in which the ladder filter has three or more parallel resonators 15P, the number (types) of different values of Duty may be two or three or more. The number of different values of Duty is two means, for example, that among the four parallel resonators 15P, the duties of three parallel resonators 15P are all the first value (for example, 0.60), and one parallel resonator 15P has two different values. This refers to a mode in which the duty of the resonator 15P is the second value (for example, 0.50). The number of mutually different values of Duty is three, for example, the Duty of two parallel resonators 15P among four parallel resonators 15P are both the first value (for example, 0.60), and one parallel This refers to an embodiment in which the duty of the resonator 15P is a second value (for example, 0.55), and the duty of the remaining one parallel resonator 15P is a third value (for example, 0.50).
 Dutyの互いに異なる値の数(種類)は、並列共振子15Pの数に対して、少なくてもよいし、同数であってもよい。Dutyの互いに異なる値の数が3つ以上である態様において、Dutyは、出力端子(アンテナ端子103)に近づくほど小さくなってもよいし、途中で一時的に大きくなったり、途中から最も出力端子側の位置まで大きくなったりしてもよい。 The number (types) of different values of Duty may be less than or equal to the number of parallel resonators 15P. In an embodiment in which the number of different values of Duty is three or more, Duty may become smaller as it approaches the output terminal (antenna terminal 103), temporarily become larger in the middle, or the duty may become smaller as it approaches the output terminal (antenna terminal 103). It may also grow to the side.
 並列共振子15P1~15P4のDutyの値をDuty1~Duty4のように表し、Duty1~Duty4の大小関係の例を以下に簡潔に示す。
 (a1)Duty1=Duty2=Duty3>Duty4
 (a2)Duty1=Duty2>Duty3=Duty4
 (a3)Duty1>Duty2=Duty3=Duty4
 (a4)Duty1>Duty2>Duty3>Duty4
 (a5)Duty1=Duty2>Duty3,Duty3<Duty4
 (a6)Duty1<Duty2,Duty2=Duty3>Duty4
The duty values of the parallel resonators 15P1 to 15P4 are expressed as Duty1 to Duty4, and an example of the magnitude relationship of Duty1 to Duty4 will be briefly shown below.
(a1) Duty1=Duty2=Duty3>Duty4
(a2) Duty1=Duty2>Duty3=Duty4
(a3) Duty1>Duty2=Duty3=Duty4
(a4) Duty1>Duty2>Duty3>Duty4
(a5) Duty1=Duty2>Duty3, Duty3<Duty4
(a6) Duty1<Duty2, Duty2=Duty3>Duty4
 上記(a1)は、最も出力端子(アンテナ端子103)に近い並列共振子15P(第1並列共振子)のDutyの値と、他の全ての並列共振子15P(第2並列共振子)のDutyの値との2種のみが設定されている例である。上記(a2)は、最も出力端子に近い並列共振子15P4を含む2以上の連続する並列共振子15P(第1並列共振子)のDutyの値と、他の全て(1又は複数)の並列共振子15P(第2並列共振子)のDutyの値との2種のみが設定されている例である。 The above (a1) is the duty value of the parallel resonator 15P (first parallel resonator) closest to the output terminal (antenna terminal 103) and the duty value of all other parallel resonators 15P (second parallel resonators). In this example, only two types of values are set. The above (a2) is the duty value of two or more consecutive parallel resonators 15P (first parallel resonators) including the parallel resonator 15P4 closest to the output terminal, and the duty values of all other (one or more) parallel resonators. This is an example in which only two values are set, including the duty value of the child 15P (second parallel resonator).
 上記(a1)及び(a2)は、第1並列共振子の数が第2並列共振子の数以下とされている例である。この場合、例えば、Dutyを小さくしたことによる影響が通過帯域に及ぼす影響が低減される。もちろん、上記(a3)に示されているように、第1並列共振子の数は、第2並列共振子の数よりも多くても構わない。 The above (a1) and (a2) are examples in which the number of first parallel resonators is equal to or less than the number of second parallel resonators. In this case, for example, the influence of reducing the Duty on the passband is reduced. Of course, as shown in (a3) above, the number of first parallel resonators may be greater than the number of second parallel resonators.
 上記(a4)は、Dutyの値の数(種類)が3つ以上の例である。Duty1>Duty2に着目した場合においては、並列共振子15P2が第1並列共振子であり、並列共振子15P1が第2並列共振子であるということができる。同様に、Duty2>Duty3、Duty3>Duty4、Duty1>Duty3、Duty1>Duty4又はDuty2>Duty4に着目し、各大小関係に係る2つの並列共振子15Pを第2並列共振子及び第1並列共振子として捉えることができる。このように、既述の要件Aは、複合的に成立しても構わない。 The above (a4) is an example in which the number (types) of Duty values is three or more. When focusing on Duty1>Duty2, it can be said that the parallel resonator 15P2 is the first parallel resonator and the parallel resonator 15P1 is the second parallel resonator. Similarly, focusing on Duty2>Duty3, Duty3>Duty4, Duty1>Duty3, Duty1>Duty4, or Duty2>Duty4, the two parallel resonators 15P related to each magnitude relationship are used as the second parallel resonator and the first parallel resonator. can be captured. In this way, the above-mentioned requirement A may be satisfied in combination.
 上記(a5)は、要件Aが成立している位置(Duty2>Duty3)よりも出力端子(アンテナ端子103)側において要件Aが不成立(Duty3<Duty4)となってもよいことを示した例である。また、上記(a6)は、要件Aが成立している位置(Duty2=Duty3>Duty4)よりも入力端子(送信端子105)側において要件Aが不成立(Duty1<Duty2)となってもよいことを示した例である。 The above (a5) is an example showing that requirement A may not be satisfied (Duty3<Duty4) on the output terminal (antenna terminal 103) side of the position where requirement A is satisfied (Duty2>Duty3). be. Furthermore, (a6) above indicates that requirement A may not be satisfied (Duty1<Duty2) on the input terminal (transmission terminal 105) side of the position where requirement A is satisfied (Duty2=Duty3>Duty4). This is an example shown.
(4.3.Dutyの値の設定方法)
 第1並列共振子及び当該第1並列共振子よりも入力端子側(送信端子105側)の第2並列共振子のDutyの具体的な値の設定方法は種々の方法とされてよい。例えば、シミュレーション計算及び/又は実験(試作)によって、複数の並列共振子15PのDutyの値として種々の値が設定された場合の通過帯域の特性及び3倍波の周波数帯(並びに必要に応じて他の周波数帯)における特性が特定されてよい。そして、その結果に基づいて、特性が向上するDutyの具体的な値が探査されてよい。シミュレーション計算及び/又は実験を行う具体的な手順も任意である。
(4.3. How to set the Duty value)
Various methods may be used to set specific values of the duty of the first parallel resonator and the second parallel resonator on the input terminal side (transmission terminal 105 side) than the first parallel resonator. For example, by simulation calculations and/or experiments (prototypes), when various values are set as the duty values of the plurality of parallel resonators 15P, the characteristics of the passband and the frequency band of the third harmonic (and if necessary characteristics in other frequency bands) may be identified. Then, based on the results, a specific value of Duty that improves the characteristics may be searched for. The specific procedure for performing simulation calculations and/or experiments is also arbitrary.
 例えば、まず、複数の並列共振子15PのDutyが互いに同一である場合に通過帯域(及び必要に応じて他の周波数帯)の特性が最も良くなるDutyの値がシミュレーション計算及び/又は実験によって探査されてよい。この探査によって得られたDutyの値が基準値とされてよい。次に、上記の基準値を第2並列共振子のDutyの値として設定するとともに、基準値よりも小さい種々の値を第1並列共振子のDutyの値として設定したシミュレーション計算及び/又は実験が行われ、通過帯域及び3倍波の周波数帯(並びに必要に応じて他の周波数帯)における特性が向上する第1並列共振子のDutyの値が探査されてよい。 For example, first, when the duties of the plurality of parallel resonators 15P are the same, the duty value that provides the best characteristics of the passband (and other frequency bands as necessary) is investigated by simulation calculation and/or experiment. It's okay to be. The Duty value obtained through this exploration may be used as the reference value. Next, simulation calculations and/or experiments were performed in which the above reference value was set as the Duty value of the second parallel resonator, and various values smaller than the reference value were set as the Duty value of the first parallel resonator. The duty value of the first parallel resonator that improves the characteristics in the pass band and third harmonic frequency band (and other frequency bands as necessary) may be searched for.
 上記の手順の例において、第1並列共振子のDutyの値として基準値よりも小さい値を種々設定するだけでなく、第2並列共振子のDutyの値も基準値とは異なる値(例えば基準値よりも大きい値)が種々設定されてもよい。また、上記のように基準値を求めることなく、当初から第1並列共振子及び第2並列共振子のDutyの値として種々の値を仮定して、シミュレーション計算及び/又は実験が行われ、通過帯域及び3倍波の周波数帯(並びに必要に応じて他の周波数帯)の特性が向上するDutyの値が探査されてもよい。 In the example of the above procedure, not only the Duty value of the first parallel resonator is set to various values smaller than the reference value, but also the Duty value of the second parallel resonator is set to a value different from the reference value (for example, the Duty value of the second parallel resonator is set to a value different from the reference value). value) may be set in various ways. In addition, without determining the reference value as described above, simulation calculations and/or experiments are performed assuming various values as the Duty values of the first parallel resonator and the second parallel resonator from the beginning. A Duty value that improves the characteristics of the frequency band and third harmonic frequency band (and other frequency bands as necessary) may be searched for.
 上記のDutyの値の設定方法の例からも理解されるように、第1並列共振子及び第2並列共振子のDutyの値は、ラダー型フィルタ(送信フィルタ109)の全体としての特性が所望の仕様を満たすように適宜に設定されてよい。ただし、上記の説明とは異なり、共振子15毎の特性が所望のものとなるように、第1並列共振子及び第2並列共振子のDutyの値が設定されてもよい。いずれにせよ、第1並列共振子及び第2並列共振子のDutyの具体的な値は種々の値とされてよく、特定の数値範囲を満たさなければならないということはない。 As can be understood from the above example of how to set the duty value, the duty values of the first parallel resonator and the second parallel resonator are set according to the desired characteristics of the ladder filter (transmission filter 109) as a whole. may be set as appropriate to meet the specifications. However, unlike the above description, the duty values of the first parallel resonator and the second parallel resonator may be set so that the characteristics of each resonator 15 are desired. In any case, the specific values of the duty of the first parallel resonator and the second parallel resonator may be various values, and there is no need to satisfy a specific numerical range.
(4.4.Dutyの値の具体例)
 上記のように、並列共振子15PのDutyの具体的な値は適宜に設定されてよく、種々の値とされてよい。
(4.4. Specific example of Duty value)
As described above, the specific value of the duty of the parallel resonator 15P may be set as appropriate and may take various values.
 例えば、一般に、Dutyの値は、0.50又はこれに近い値にされることが多い。第1並列共振子のDutyをDuty_S、第2並列共振子のDutyをDuty_Lとしたとき、これらの値は、0.50との関係において、以下のいずれの関係を満たしてもよい。なお、下記の不等式において、Duty_S<Duty_Lが満たされる限り、0.50の左側又は右側の不等号(<)は、等号(=)に置換されてもよい。
 (b1)Duty_S<0.50<Duty_L
 (b2)Duty_S<Duty_L<0.50
 (b3)0.50<Duty_S<Duty_L
For example, in general, the value of Duty is often set to 0.50 or a value close to this. When the duty of the first parallel resonator is Duty_S and the duty of the second parallel resonator is Duty_L, these values may satisfy any of the following relationships with respect to 0.50. Note that in the following inequality, the inequality sign (<) on the left or right side of 0.50 may be replaced with an equal sign (=) as long as Duty_S<Duty_L is satisfied.
(b1) Duty_S<0.50<Duty_L
(b2) Duty_S<Duty_L<0.50
(b3) 0.50<Duty_S<Duty_L
 また、全ての並列共振子15PのDutyの平均値をDuty_Av1とする。このとき、下記の関係が満たされてもよい。
 (b4)Duty_S<Duty_Av1<Duty_L
 上記の関係において、Duty_Av1は、0.50に対して、小さくてもよいし、同等でもよいし、大きくてもよい。
Furthermore, the average value of the duties of all the parallel resonators 15P is set as Duty_Av1. At this time, the following relationship may be satisfied.
(b4) Duty_S<Duty_Av1<Duty_L
In the above relationship, Duty_Av1 may be smaller than, equal to, or larger than 0.50.
 また、第1並列共振子を除く全ての並列共振子15PのDutyの平均値をDuty_Av2とする。このとき、下記の関係が満たされてもよい。
 (b5)Duty_S<Duty_Av2
 上記の関係において、Duty_Av2は、0.50及び/又はDuty_Lに対して、小さくてもよいし、同等でもよいし、大きくてもよい。また、例えば、Duty_Av2が0.50を超える値であるとき、Duty_Sは、0.50以下とされてよい。なお、本段落でいう第1並列共振子は、第1並列共振子として捉えることができる並列共振子15Pが2以上である場合において、そのうちの1つのみを指してもよいし、一部(2以上)又は全部を指してもよい。
Further, the average value of the duties of all the parallel resonators 15P except the first parallel resonator is set as Duty_Av2. At this time, the following relationship may be satisfied.
(b5) Duty_S<Duty_Av2
In the above relationship, Duty_Av2 may be smaller than, equal to, or larger than 0.50 and/or Duty_L. Further, for example, when Duty_Av2 is a value exceeding 0.50, Duty_S may be set to 0.50 or less. In addition, in the case where there are two or more parallel resonators 15P that can be considered as the first parallel resonators, the first parallel resonator referred to in this paragraph may refer to only one of them, or may refer to some ( 2 or more) or all of them.
 並列共振子15PのDutyの上限及び下限は特に限定されないが、以下に例を示す。Duty_Sは、0.40以上又は0.45以上とされてよく、0.60以下又は0.50以下とされてよい。上記の下限と上限とは、矛盾が生じないように任意のもの同士が組み合わされてよい。Duty_Lは、Duty_S<Duty_Lと矛盾しない限りにおいて、0.45以上又は0.50以上とされてよく、0.65以下又は0.60以下とされてよい。上記の下限と上限とは、矛盾が生じないように任意のもの同士が組み合わされてよい。これらの値の範囲であれば、ラダー型フィルタとして一定程度の特性が確保されやすい。 Although the upper and lower limits of the duty of the parallel resonator 15P are not particularly limited, examples are shown below. Duty_S may be set to 0.40 or more or 0.45 or more, and may be set to 0.60 or less or 0.50 or less. The above lower limit and upper limit may be arbitrarily combined so that no contradiction occurs. Duty_L may be set to 0.45 or more or 0.50 or more, and may be set to 0.65 or less or 0.60 or less, as long as it does not conflict with Duty_S<Duty_L. The above lower limit and upper limit may be arbitrarily combined so that no contradiction occurs. Within these value ranges, it is easy to ensure a certain level of characteristics as a ladder filter.
(4.5.Dutyに関する補足)
 複数の並列共振子15PのDutyは、製造誤差によって互いに異なり得る。製造誤差によるDutyの相違は、当然に、本実施形態でいうDutyの相違(意図的なDutyの相違)ではない。複数の並列共振子15PのDutyが互いに相違しているときに当該相違が製造誤差によるものか否かは、共振子15の製造に係る装置構成及び製造条件などの種々の事情を考慮して合理的に判断されてよい。
(4.5. Supplement regarding Duty)
The duties of the plurality of parallel resonators 15P may differ from each other due to manufacturing errors. The difference in duty due to manufacturing error is naturally not the difference in duty (intentional difference in duty) as used in this embodiment. When the Duties of the plurality of parallel resonators 15P are different from each other, whether or not the differences are due to manufacturing errors can be determined by taking into account various circumstances such as the equipment configuration and manufacturing conditions related to manufacturing the resonators 15. may be judged accordingly.
 ただし、上記のように合理的に判断することが困難な場合においては(若しくは合理的に判断することができる場合においても)、例えば、以下のように判定されてもよい。計測されたDutyの値の少数第3位を四捨五入する。そして、0.02以上の差が存在するときに、両者は相違すると判定されてよい。例えば、0.475及び0.484は、少数第3位を四捨五入すると、いずれも0.48であり、互いに同一の値と判定されてよい。また、例えば、0.484及び0.485は、少数第3位を四捨五入すると、0.48及び0.49となるが、その差は0.01(0.02未満)であるので、互いに同一の値と判定されてよい。 However, in cases where it is difficult to make a rational judgment as described above (or even in cases where it is possible to make a rational judgment), the judgment may be made as follows, for example. Round off the measured Duty value to the third decimal place. Then, when a difference of 0.02 or more exists, it may be determined that the two are different. For example, 0.475 and 0.484 are both 0.48 when rounded to the third decimal place, and may be determined to be the same value. Also, for example, 0.484 and 0.485 become 0.48 and 0.49 when rounded to the third decimal place, but the difference between them is 0.01 (less than 0.02), so they are the same. It may be determined that the value is .
 既述のように、図2の例とは異なり、電極指27の幅wは、電極指27の長さ方向(D2方向)の位置に応じて変化してよい。別の観点では、Duty(w/p)は、電極指27の長さ方向において変化してよい。この場合、共振子15のDuty同士を比較したり、共振子15のDutyが所定の範囲に収まるかを判定したりするとき、Dutyの値としては、交差領域の中央側領域の値が用いられてよい。通常、弾性波は、中央側領域を伝搬するものが利用されることが意図されており、Dutyも中央側領域の値を基準に設定されることからである。 As described above, unlike the example in FIG. 2, the width w of the electrode finger 27 may change depending on the position of the electrode finger 27 in the length direction (D2 direction). From another point of view, Duty (w/p) may vary in the length direction of the electrode fingers 27. In this case, when comparing the duties of the resonators 15 or determining whether the duties of the resonators 15 fall within a predetermined range, the value of the central area of the intersection area is used as the duty value. It's fine. This is because normally, elastic waves that propagate in the center region are intended to be used, and the duty is also set based on the value of the center region.
 より詳細には、例えば、特に図示しないが、ピストンモードを利用するIDT電極19の電極指27は、典型的には、交差領域のD2方向における中央に位置する第1部位と、交差領域のD2方向の縁部に対して交差領域の内側に隣接する第2部位とを有している。第1部位は、例えば、一定の幅で延びており、また、交差領域の幅(D2方向)の大部分(例えば1/2以上又は2/3以上)を占める。この場合、上記の第1部位のDutyが中央側領域のDutyとして(並列共振子15P同士で比較されるDutyとして)用いられてよい。すなわち、D2方向において第1部位が位置している領域が前段落で述べた中央側領域とされてよい。 More specifically, for example, although not particularly illustrated, the electrode finger 27 of the IDT electrode 19 that uses the piston mode typically has a first portion located at the center in the D2 direction of the intersection region, and a first portion located at the center in the D2 direction of the intersection region. and a second portion adjacent to the inner side of the intersection area with respect to the edge of the direction. The first portion extends, for example, with a constant width, and occupies most (for example, 1/2 or more or 2/3 or more) of the width (D2 direction) of the intersection area. In this case, the duty of the first portion described above may be used as the duty of the central region (as the duty to be compared between the parallel resonators 15P). That is, the region where the first portion is located in the D2 direction may be the center region described in the previous paragraph.
 上記のようなピストンモードを利用する典型的なIDT電極19以外の態様としては、例えば、電極指27の幅wが徐々に変化している態様が挙げられる。また、電極指27のうち交差領域の中央に位置する第1部分が、一定の幅で延びてはいるものの、その長さ(D2方向)が比較的短く、交差領域の幅の大部分を占めているとはいえない態様が挙げられる。これらの態様においては、例えば、交差領域のD2方向の中央を中央とし、交差領域の幅の2/3の幅を有している領域を前々段落で述べた中央側領域としてよい。そして、当該中央側領域におけるDutyの平均値をDutyの値として種々の判定に用いてよい。 An example of a mode other than the typical IDT electrode 19 that utilizes the piston mode as described above is a mode in which the width w of the electrode finger 27 gradually changes. Furthermore, although the first portion of the electrode fingers 27 located at the center of the intersection area extends with a constant width, its length (in the D2 direction) is relatively short and occupies most of the width of the intersection area. There are some cases where it cannot be said that the In these embodiments, for example, a region having the center of the intersection region in the D2 direction as the center and having a width of 2/3 of the width of the intersection region may be the center side region described in the second paragraph before. Then, the average value of Duty in the central region may be used as a Duty value for various determinations.
 また、既述のように、IDT電極19は、ピッチpに関して、狭ピッチ部、広ピッチ部、及び/又は間引き部を有してよい。実施形態の説明において、ピッチpというとき、このような特異な部分を除いた残りの部分(複数の電極指27の大部分)のピッチをいうものとする。また、複数の電極指27の大部分(例えば全ての電極指27のうち特異な部分を除くように選定した8割以上の部分)においてもピッチが変化しているような場合においては、上記大部分の複数の電極指27のピッチの平均値をピッチpの値として用いてよい。以上のことは、Dutyの算出に用いられるピッチpについても当然に適用される。 Furthermore, as described above, the IDT electrode 19 may have a narrow pitch portion, a wide pitch portion, and/or a thinned-out portion regarding the pitch p. In the description of the embodiment, the pitch p refers to the pitch of the remaining portion (most of the plurality of electrode fingers 27) excluding such a unique portion. In addition, if the pitch changes in most of the plurality of electrode fingers 27 (for example, 80% or more of all the electrode fingers 27 selected to exclude unique parts), the above-mentioned large The average value of the pitches of the plurality of electrode fingers 27 in the portion may be used as the value of the pitch p. The above naturally applies to the pitch p used to calculate Duty.
 幅wについても、複数の電極指27の一部に特異な部分が存在したり、複数の電極指27において変動していたりすることがある。従って、前段落のピッチpに関する説明は、ピッチpの語を幅wに置換して幅wに援用されてよい。 As for the width w, some of the plurality of electrode fingers 27 may have a unique part, or may vary among the plurality of electrode fingers 27. Therefore, the explanation regarding pitch p in the previous paragraph may be applied to width w by replacing the word pitch p with width w.
 特に図示しないが、1つの並列共振子15Pに代えて、互いに並列接続された2以上の共振子(本段落において「分割共振子」と称する。)を用いるなど、典型的なラダー型フィルタを変形したラダー型フィルタが構成されることがある。このような場合において、並列共振子15PのDutyとしては、1つの並列共振子15Pと同様に機能する(例えば直列共振子15Sの入力側又は出力側の電気的に1つの位置と基準電位部113とを接続する)2以上の共振子のDutyの平均が用いられてよい。 Although not particularly shown, a typical ladder filter may be modified by using two or more resonators connected in parallel (referred to as "divided resonators" in this paragraph) instead of one parallel resonator 15P. A ladder type filter may be constructed. In such a case, the duty of the parallel resonator 15P is to function in the same way as one parallel resonator 15P (for example, one electrical position on the input side or output side of the series resonator 15S and the reference potential section 113). The average duty of two or more resonators may be used.
(5.実施例及び比較例)
 本願発明者は、実施形態に係るラダー型フィルタ(送信フィルタ109)によって、通過帯域の特性を確保しつつ、3倍波に起因するスプリアスを低減できることをシミュレーション計算によって確認している。その一部を以下に例示する。以下では、概略、下記の順で説明を行う。
 5.1.シミュレーションの第1共通条件
 5.2.共振子15単体の特性の例
 5.3.ラダー型フィルタの特性の例
(5. Examples and comparative examples)
The inventor of the present application has confirmed through simulation calculations that the ladder type filter (transmission filter 109) according to the embodiment can reduce spurious waves caused by third harmonics while ensuring passband characteristics. Some of them are illustrated below. Below, an outline will be explained in the following order.
5.1. First common condition for simulation 5.2. Example of characteristics of single resonator 15 5.3. Example of ladder filter characteristics
(5.1.シミュレーションの第1共通条件)
 後述する種々のシミュレーションに共通する条件(以下、「第1共通条件」ということがある。)は、以下のとおりである。
・複合基板3
・・圧電体層11
・・・材料:LT
・・・カット角:26°回転YカットX伝搬
・・・厚み:1.84μm
・・低音速膜9
・・・材料:SiO
・・・厚み:0.58μm
・・支持基板7
・・・材料:Si
・・・方位:[111]
・・・厚み:130μm
・導体層5
・・材料:Al-Cu合金
・・厚み:5000Å
・共振子15
・・反射器21のストリップ電極33のピッチ:各共振子15においてIDT電極19の電極指27のピッチpと同じ(共振子15毎に異なる)
・・1つの反射器21におけるストリップ電極33の数:20
・直列共振子15SのDuty:0.50
(5.1. First common condition of simulation)
Conditions common to various simulations to be described later (hereinafter sometimes referred to as "first common conditions") are as follows.
Composite board 3
...Piezoelectric layer 11
...Material: LT
... Cut angle: 26° rotation Y cut X propagation ... Thickness: 1.84 μm
・Low sound velocity membrane 9
...Material: SiO2
...Thickness: 0.58μm
...Support board 7
...Material: Si
...Direction: [111]
...Thickness: 130μm
Conductor layer 5
・・Material: Al-Cu alloy・・Thickness: 5000Å
Resonator 15
... Pitch of strip electrode 33 of reflector 21: Same as pitch p of electrode fingers 27 of IDT electrode 19 in each resonator 15 (different for each resonator 15)
...Number of strip electrodes 33 in one reflector 21: 20
・Duty of series resonator 15S: 0.50
(5.2.共振子単体の特性の例)
 図4及び図5は、共振子15単体の特性の例を示す図である。これらの図において、横軸は周波数(MHz)を示している。図4の縦軸はインピーダンスの絶対値|Z|(Ω)を示している。図5の縦軸はインピーダンスの位相(°)を示している。図4の下段の図は、図4の上段の図の領域R1の拡大図となっている。図5の下段の図は、図5の上段の図の領域R2の拡大図となっている。
(5.2. Example of characteristics of a single resonator)
4 and 5 are diagrams showing examples of characteristics of the resonator 15 alone. In these figures, the horizontal axis indicates frequency (MHz). The vertical axis in FIG. 4 indicates the absolute value of impedance |Z|(Ω). The vertical axis in FIG. 5 indicates the phase (°) of impedance. The lower diagram in FIG. 4 is an enlarged view of the region R1 in the upper diagram in FIG. The lower diagram in FIG. 5 is an enlarged view of region R2 in the upper diagram in FIG.
 図中の凡例に示されているように、図中の線は、Dutyの値が互いに異なる共振子15のインピーダンスに係る周波数特性を示している。Dutyの値は、0.45以上0.65以下の範囲で0.05ずつ異なっている。 As shown in the legend in the figure, the lines in the figure indicate frequency characteristics related to the impedance of the resonators 15 with different Duty values. The Duty value varies by 0.05 in the range of 0.45 or more and 0.65 or less.
 図示の例のシミュレーション計算において、第1共通条件以外の条件は、以下のとおりである。
・電極指27のピッチp:2.8μm
・電極指27の本数:200
・電極指27の交差幅:112μm
In the simulation calculation of the illustrated example, conditions other than the first common condition are as follows.
- Pitch p of electrode fingers 27: 2.8 μm
・Number of electrode fingers 27: 200
・Intersection width of electrode fingers 27: 112 μm
 図4の左側の図において示されているように、また、既に触れたように、共振子15のインピーダンスの絶対値は、共振周波数において極小値を取り(領域Rrを参照)、また、反共振周波数において極大値を取る(領域Raを参照)。図示の例では、概略700MHz付近に共振周波数及び反共振周波数が設定されている。 As shown in the left diagram of FIG. 4 and as already mentioned, the absolute value of the impedance of the resonator 15 takes a minimum value at the resonant frequency (see region Rr), and also at the antiresonance It takes a local maximum value at the frequency (see region Ra). In the illustrated example, the resonant frequency and anti-resonant frequency are set around approximately 700 MHz.
 また、図5の左側の図において示されているように、共振子15のインピーダンスの位相は、共振周波数と反共振周波数との間の範囲(本段落において「第1範囲」という。)では90°に近づき、第1範囲の外側では-90°に近づく。一般に、第1範囲ではインピーダンスの位相が90°に近いほど特性がよいとされ、第1範囲の外側ではインピーダンスの位相が-90°に近いほど特性がよいとされる。 Furthermore, as shown in the diagram on the left side of FIG. 5, the phase of the impedance of the resonator 15 is 90° in the range between the resonant frequency and the anti-resonant frequency (referred to as the "first range" in this paragraph). and, outside the first range, approaches −90°. Generally, in the first range, the closer the impedance phase is to 90°, the better the characteristics are, and outside the first range, the closer the impedance phase is to −90°, the better the characteristics.
 図4の領域R1及び図5の領域R2は、共振周波数及び反共振周波数(700MHz付近)の概ね3倍の周波数を有する周波数帯を示している。すなわち、3倍波に起因するスプリアスが現れ得る周波数帯を示している。そして、領域R1、領域R2、これらの拡大図である図4の下段の図、及び図5の下段の図に示されているように、Dutyの値を小さくすることによって、スプリアスが低減されている。より詳細には、図示の例では、Dutyの値を小さくするほど、スプリアスが低減されている。また、Dutyが0.50以下では、スプリアスは殆ど現れていない。 Region R1 in FIG. 4 and region R2 in FIG. 5 indicate a frequency band having a frequency that is approximately three times the resonant frequency and the anti-resonant frequency (near 700 MHz). That is, it shows a frequency band in which spurious waves due to third harmonics may appear. As shown in the lower diagram of FIG. 4, which is an enlarged view of region R1 and region R2, and the lower diagram of FIG. 5, the spurious is reduced by decreasing the Duty value. There is. More specifically, in the illustrated example, the smaller the Duty value, the more the spurious is reduced. Furthermore, when the Duty is 0.50 or less, spurious signals hardly appear.
(5.3.ラダー型フィルタの特性の例)
 図6~図8は、それぞれラダー型フィルタの特性を示す図である。これらの図面の横軸は周波数(MHz)を示している。縦軸は透過特性(dB)を示している。
(5.3. Example of characteristics of ladder type filter)
6 to 8 are diagrams each showing the characteristics of a ladder type filter. The horizontal axis of these drawings indicates frequency (MHz). The vertical axis indicates transmission characteristics (dB).
 これらの図に係るシミュレーション計算において、直列共振子15S及び並列共振子15Pの数及び接続関係は、図1の送信フィルタ109と同様である。また、これらの図に係るシミュレーション計算において共通する条件(以下、「第2共通条件」という。)は以下のとおりである。
・直列共振子15S1
・・電極指27のピッチp:2.70981μm
・・電極指27の本数:126
・・電極指27の交差幅:92.8μm
・直列共振子15S2
・・電極指27のピッチp:2.71384μm
・・電極指27の本数:164
・・電極指27の交差幅:79μm
・直列共振子15S3
・・電極指27のピッチp:2.71401μm
・・電極指27の本数:140
・・電極指27の交差幅:81μm
・直列共振子15S4
・・電極指27のピッチp:2.70750μm
・・電極指27の本数:130
・・電極指27の交差幅:82μm
・並列共振子15P1
・・電極指27のピッチp:2.87142μm
・・電極指27の本数:106
・・電極指27の交差幅:130μm
・並列共振子15P2
・・電極指27のピッチp:2.85045μm
・・電極指27の本数:120
・・電極指27の交差幅:128μm
・並列共振子15P3
・・電極指27のピッチp:2.84357μm
・・電極指27の本数:170
・・電極指27の交差幅:160μm
・並列共振子15P4
・・電極指27のピッチp:2.87380μm
・・電極指27の本数:266
・・電極指27の交差幅:130μm
In the simulation calculations related to these figures, the number and connection relationship of the series resonators 15S and parallel resonators 15P are the same as in the transmission filter 109 of FIG. 1. Further, conditions common to the simulation calculations related to these figures (hereinafter referred to as "second common conditions") are as follows.
・Series resonator 15S1
...Pitch p of electrode fingers 27: 2.70981μm
・Number of electrode fingers 27: 126
... Crossing width of electrode fingers 27: 92.8 μm
・Series resonator 15S2
...Pitch p of electrode fingers 27: 2.71384μm
・Number of electrode fingers 27: 164
... Crossing width of electrode fingers 27: 79 μm
・Series resonator 15S3
...Pitch p of electrode fingers 27: 2.71401μm
・Number of electrode fingers 27: 140
... Crossing width of electrode fingers 27: 81 μm
・Series resonator 15S4
...Pitch p of electrode fingers 27: 2.70750μm
・Number of electrode fingers 27: 130
... Crossing width of electrode fingers 27: 82 μm
・Parallel resonator 15P1
...Pitch p of electrode fingers 27: 2.87142μm
・Number of electrode fingers 27: 106
... Crossing width of electrode fingers 27: 130 μm
・Parallel resonator 15P2
...Pitch p of electrode fingers 27: 2.85045μm
・Number of electrode fingers 27: 120
... Crossing width of electrode fingers 27: 128 μm
・Parallel resonator 15P3
... Pitch p of electrode fingers 27: 2.84357μm
・Number of electrode fingers 27: 170
... Crossing width of electrode fingers 27: 160 μm
・Parallel resonator 15P4
...Pitch p of electrode fingers 27: 2.87380μm
・Number of electrode fingers 27: 266
... Crossing width of electrode fingers 27: 130 μm
 各共振子15の共振周波数及び反共振周波数は、概略、図4及び図5に特性を示した共振子15の特性と同様である。従って、ラダー型フィルタの通過帯域は、概略700MHz付近に位置する。また、3倍波に起因するスプリアスは、概略2100MHz付近に現れる。 The resonant frequency and anti-resonant frequency of each resonator 15 are roughly the same as the characteristics of the resonator 15 whose characteristics are shown in FIGS. 4 and 5. Therefore, the passband of the ladder filter is approximately located around 700 MHz. Further, spurious waves caused by the third harmonic appear around approximately 2100 MHz.
 図6において、線LC1は第1比較例の特性を示している。線LE1は第1実施例の特性を示している。第1比較例及び第1実施例において、第1共通条件及び第2共通条件以外のシミュレーション条件は、以下のとおりである。
・第1比較例
・・並列共振子15P1のDuty:0.60
・・並列共振子15P2のDuty:0.60
・・並列共振子15P3のDuty:0.60
・・並列共振子15P4のDuty:0.60
・第1実施例
・・並列共振子15P1のDuty:0.60
・・並列共振子15P2のDuty:0.60
・・並列共振子15P3のDuty:0.48
・・並列共振子15P4のDuty:0.48
In FIG. 6, line LC1 indicates the characteristics of the first comparative example. Line LE1 shows the characteristics of the first embodiment. In the first comparative example and the first example, simulation conditions other than the first common condition and the second common condition are as follows.
- First comparative example... Duty of parallel resonator 15P1: 0.60
... Duty of parallel resonator 15P2: 0.60
... Duty of parallel resonator 15P3: 0.60
... Duty of parallel resonator 15P4: 0.60
・First example... Duty of parallel resonator 15P1: 0.60
... Duty of parallel resonator 15P2: 0.60
... Duty of parallel resonator 15P3: 0.48
... Duty of parallel resonator 15P4: 0.48
 上記の条件から理解されるように、第1比較例は、複数の並列共振子15PのDutyが互いに同じとされている。一方、第1実施例では、少なくとも1つの第2並列共振子(15P1及び15P2)よりも出力端子(アンテナ端子103)に位置している少なくとも1つの第1並列共振子(15P3及び15P4)のDutyが、第2並列共振子のDutyよりも(別の観点では第1比較例のDutyよりも)小さくされている。すなわち、要件Aが成立している。 As understood from the above conditions, in the first comparative example, the plurality of parallel resonators 15P have the same duty. On the other hand, in the first embodiment, the duty of at least one first parallel resonator (15P3 and 15P4) located closer to the output terminal (antenna terminal 103) than at least one second parallel resonator (15P1 and 15P2) is is smaller than the duty of the second parallel resonator (from another point of view, than the duty of the first comparative example). In other words, requirement A is satisfied.
 図6に示されているように、通過帯域(700MHz付近)における透過特性は第1比較例と第1実施例とで殆ど同じである。一方で、通過帯域の周波数の概ね3倍の周波数を有する帯域(2100MHz付近)において、第1実施例は、第1比較例よりも透過特性が低くなっている(フィルタとしての特性が向上している。)。 As shown in FIG. 6, the transmission characteristics in the passband (around 700 MHz) are almost the same between the first comparative example and the first example. On the other hand, in a band having a frequency approximately three times the frequency of the passband (around 2100 MHz), the first example has lower transmission characteristics than the first comparative example (the characteristics as a filter have improved). ).
 図7において、線LC2は第2比較例の特性を示している。線LE2は第2実施例の特性を示している。図7の右下の図は、図7の左上の図の領域R5の拡大図となっている。領域R5は、通過帯域(700MHz付近)の周波数の概ね3倍の周波数を有する帯域(2100MHz付近)に対応している。 In FIG. 7, line LC2 shows the characteristics of the second comparative example. Line LE2 shows the characteristics of the second embodiment. The lower right diagram in FIG. 7 is an enlarged view of region R5 in the upper left diagram in FIG. Region R5 corresponds to a band (near 2100 MHz) having a frequency that is approximately three times the frequency of the passband (near 700 MHz).
 第2比較例及び第2実施例において、第1共通条件及び第2共通条件以外のシミュレーション条件は、以下のとおりである。
・第2比較例
・・並列共振子15P1のDuty:0.63
・・並列共振子15P2のDuty:0.63
・・並列共振子15P3のDuty:0.63
・・並列共振子15P4のDuty:0.63
・第2実施例
・・並列共振子15P1のDuty:0.63
・・並列共振子15P2のDuty:0.63
・・並列共振子15P3のDuty:0.63
・・並列共振子15P4のDuty:0.50
In the second comparative example and the second example, simulation conditions other than the first common condition and the second common condition are as follows.
-Second comparative example...Duty of parallel resonator 15P1: 0.63
... Duty of parallel resonator 15P2: 0.63
... Duty of parallel resonator 15P3: 0.63
... Duty of parallel resonator 15P4: 0.63
- Second example... Duty of parallel resonator 15P1: 0.63
... Duty of parallel resonator 15P2: 0.63
... Duty of parallel resonator 15P3: 0.63
... Duty of parallel resonator 15P4: 0.50
 上記の条件から理解されるように、第2比較例は、複数の並列共振子15PのDutyが互いに同じとされている。一方、第2実施例では、少なくとも1つの第2並列共振子(15P1~15P3)よりも出力端子(アンテナ端子103)に位置している少なくとも1つの第1並列共振子(15P4)のDutyが、第2並列共振子のDutyよりも(別の観点では第2比較例のDutyよりも)小さくされている。すなわち、要件Aが成立している。 As understood from the above conditions, in the second comparative example, the plurality of parallel resonators 15P have the same duty. On the other hand, in the second embodiment, the duty of at least one first parallel resonator (15P4) located closer to the output terminal (antenna terminal 103) than at least one second parallel resonator (15P1 to 15P3) is The duty of the second parallel resonator is smaller than the duty of the second parallel resonator (from another point of view, the duty of the second comparative example). In other words, requirement A is satisfied.
 図7に示されているように、通過帯域(700MHz付近)における透過特性は第2比較例と第2実施例とで殆ど同じである。一方で、通過帯域の周波数の概ね3倍の周波数を有する帯域(2100MHz付近)において、第2実施例は、第2比較例よりも透過特性が低くなっている(フィルタとしての特性が向上している。)。 As shown in FIG. 7, the transmission characteristics in the passband (around 700 MHz) are almost the same between the second comparative example and the second example. On the other hand, in a band having a frequency approximately three times the frequency of the passband (around 2100 MHz), the second example has lower transmission characteristics than the second comparative example (the characteristics as a filter have improved). ).
 図8において、線LC2は図7の線LC2と同様のものであり、第2比較例の特性を示している。線LE3は第3実施例の特性を示している。図8の右下の図は、図8の左上の図の領域R7の拡大図となっている。領域R7は、通過帯域(700MHz付近)の周波数の概ね3倍の周波数を有する帯域(2100MHz付近)に対応している。 In FIG. 8, line LC2 is similar to line LC2 in FIG. 7, and indicates the characteristics of the second comparative example. Line LE3 shows the characteristics of the third embodiment. The lower right diagram in FIG. 8 is an enlarged view of region R7 in the upper left diagram in FIG. Region R7 corresponds to a band (near 2100 MHz) having a frequency that is approximately three times the frequency of the passband (near 700 MHz).
 第3実施例において、第1共通条件及び第2共通条件以外のシミュレーション条件は、以下のとおりである。
・第3実施例
・・並列共振子15P1のDuty:0.63
・・並列共振子15P2のDuty:0.63
・・並列共振子15P3のDuty:0.50
・・並列共振子15P4のDuty:0.50
In the third example, simulation conditions other than the first common condition and the second common condition are as follows.
-Third example...Duty of parallel resonator 15P1: 0.63
... Duty of parallel resonator 15P2: 0.63
... Duty of parallel resonator 15P3: 0.50
... Duty of parallel resonator 15P4: 0.50
 第2実施例の条件と第3実施例の条件との比較から理解されるように、第3実施例は、第2実施例に比較して、Dutyが小さくされる第1並列共振子の数が多く(具体的に+1)されている。別の観点では、第2実施例では、第1並列共振子の数が第2並列共振子の数よりも少なかったが、第3実施例では、両者の数は同じとされている。さらに別の観点では、第2実施例では、第1並列共振子の数が1つであったが、第3実施例では、第1並列共振子の数が複数(具体的には2つ)とされている。 As can be understood from a comparison between the conditions of the second example and the conditions of the third example, the number of first parallel resonators whose duty is reduced in the third example is smaller than that of the second example. There are many (specifically +1). From another point of view, in the second embodiment, the number of first parallel resonators was smaller than the number of second parallel resonators, but in the third embodiment, the number of both is the same. From a further point of view, in the second embodiment, the number of first parallel resonators is one, but in the third embodiment, the number of first parallel resonators is plural (specifically, two). It is said that
 図8に示されているように、通過帯域(700MHz付近)における透過特性は第2比較例と第3実施例とで殆ど同じである。一方で、通過帯域の周波数の概ね3倍の周波数を有する帯域(2100MHz付近)において、第3実施例は、第2比較例よりも透過特性が低くなっている(フィルタとしての特性が向上している。)。また、図7と図8とを比較すると、第1並列共振子の数を増やすことによって、2100MHz付近においては、透過特性は低下する(フィルタとしての特性が向上する。)。 As shown in FIG. 8, the transmission characteristics in the passband (near 700 MHz) are almost the same between the second comparative example and the third example. On the other hand, in a band having a frequency approximately three times the frequency of the passband (around 2100 MHz), the third example has lower transmission characteristics than the second comparative example (the characteristics as a filter have improved). ). Further, when comparing FIG. 7 and FIG. 8, by increasing the number of first parallel resonators, the transmission characteristics are reduced in the vicinity of 2100 MHz (the characteristics as a filter are improved).
(6.ラダー型フィルタの利用例)
 ラダー型フィルタ(送信フィルタ109)は、例えば、通信用のモジュール及び/又は通信装置に利用されてよい。以下に一例を示す。
(6. Example of using ladder type filter)
The ladder filter (transmission filter 109) may be used, for example, in a communication module and/or a communication device. An example is shown below.
 図9は、分波器101の利用例としての通信装置151の要部を示すブロック図である。通信装置151は、モジュール171と、モジュール171を収容する筐体173とを有している。モジュール171は、電波を利用した無線通信を行うものであり、分波器101を含んでいる。 FIG. 9 is a block diagram showing the main parts of a communication device 151 as an example of how the duplexer 101 is used. The communication device 151 includes a module 171 and a housing 173 that accommodates the module 171. The module 171 performs wireless communication using radio waves, and includes a duplexer 101.
 モジュール171において、送信すべき情報を含む送信情報信号TISは、RF-IC(Radio Frequency Integrated Circuit)153(集積回路素子の一例)によって変調および周波数の引き上げ(搬送波周波数の高周波信号への変換)がなされて送信信号TSとされる。送信信号TSは、バンドパスフィルタ155によって送信用の通過帯以外の不要成分が除去され、増幅器157によって増幅されて分波器101(送信端子105)に入力される。そして、分波器101(送信フィルタ109)は、入力された送信信号TSから送信用の通過帯以外の不要成分を除去し、その除去後の送信信号TSをアンテナ端子103からアンテナ159に出力する。アンテナ159は、入力された電気信号(送信信号TS)を無線信号(電波)に変換して送信する。 In the module 171, the transmission information signal TIS containing the information to be transmitted is modulated and frequency increased (conversion of carrier frequency to a high frequency signal) by an RF-IC (Radio Frequency Integrated Circuit) 153 (an example of an integrated circuit element). The transmitted signal is then used as a transmission signal TS. The transmission signal TS has unnecessary components outside the transmission passband removed by a bandpass filter 155, is amplified by an amplifier 157, and is input to the duplexer 101 (transmission terminal 105). Then, the duplexer 101 (transmission filter 109) removes unnecessary components other than the transmission passband from the input transmission signal TS, and outputs the removed transmission signal TS from the antenna terminal 103 to the antenna 159. . The antenna 159 converts the input electric signal (transmission signal TS) into a wireless signal (radio wave) and transmits the signal.
 また、モジュール171において、アンテナ159によって受信された無線信号(電波)は、アンテナ159によって電気信号(受信信号RS)に変換されて分波器101(アンテナ端子103)に入力される。分波器101(受信フィルタ111)は、入力された受信信号RSから受信用の通過帯以外の不要成分を除去して受信端子107から増幅器161へ出力する。出力された受信信号RSは、増幅器161によって増幅され、バンドパスフィルタ163によって受信用の通過帯以外の不要成分が除去される。そして、受信信号RSは、RF-IC153によって周波数の引き下げおよび復調がなされて受信情報信号RISとされる。 Furthermore, in the module 171, the wireless signal (radio wave) received by the antenna 159 is converted into an electric signal (received signal RS) by the antenna 159, and is input to the duplexer 101 (antenna terminal 103). The duplexer 101 (reception filter 111) removes unnecessary components outside the reception passband from the input reception signal RS, and outputs the result from the reception terminal 107 to the amplifier 161. The output reception signal RS is amplified by an amplifier 161, and a bandpass filter 163 removes unnecessary components outside the reception passband. The received signal RS is then lowered in frequency and demodulated by the RF-IC 153 to become a received information signal RIS.
 なお、送信情報信号TISおよび受信情報信号RISは、適宜な情報を含む低周波信号(ベースバンド信号)でよく、例えば、アナログの音声信号もしくはデジタル化された音声信号である。無線信号の通過帯は、適宜に設定されてよい。変調方式は、位相変調、振幅変調、周波数変調もしくはこれらのいずれか2つ以上の組み合わせのいずれであってもよい。回路方式は、ダイレクトコンバージョン方式を図示したが、それ以外の適宜なものとされてよく、例えば、ダブルスーパーヘテロダイン方式であってもよい。また、図9は、要部のみを模式的に示すものであり、適宜な位置にローパスフィルタやアイソレータ等が追加されてもよいし、また、増幅器等の位置が変更されてもよい。 Note that the transmission information signal TIS and the reception information signal RIS may be low frequency signals (baseband signals) containing appropriate information, such as analog audio signals or digitized audio signals. The passband of the wireless signal may be set as appropriate. The modulation method may be phase modulation, amplitude modulation, frequency modulation, or a combination of two or more of these. Although a direct conversion system is shown as the circuit system, any other appropriate circuit system may be used, for example, a double superheterodyne system may be used. Further, FIG. 9 schematically shows only the main parts, and a low-pass filter, an isolator, etc. may be added at an appropriate position, or the position of an amplifier, etc. may be changed.
 モジュール171は、例えば、RF-IC153からアンテナ159までの構成要素を同一の回路基板上に有している。すなわち、ラダー型フィルタ(送信フィルタ109)は、他の構成要素と組み合わされてモジュール化されている。なお、ラダー型フィルタは、モジュール化されずに、通信装置151に含まれていても構わない。また、モジュール171の構成要素として例示した構成要素は、モジュールの外部に位置していたり、筐体173に収容されていなかったりしてもよい。例えば、アンテナ159は、筐体173の外部に露出するものであってもよい。 The module 171 has, for example, components from the RF-IC 153 to the antenna 159 on the same circuit board. That is, the ladder filter (transmission filter 109) is modularized by combining with other components. Note that the ladder filter may be included in the communication device 151 without being modularized. Further, the components illustrated as the components of the module 171 may be located outside the module or may not be housed in the housing 173. For example, the antenna 159 may be exposed outside the housing 173.
(7.実施形態のまとめ)
 以上のとおり、ラダー型フィルタ(送信フィルタ109)は、複数の直列共振子15Sと、複数の並列共振子15Pとを有している。複数の直列共振子15Sは、入力端子(送信端子105)と出力端子(アンテナ端子103)との間で直列に接続されている。複数の並列共振子15Pは、それぞれ、複数の直列共振子15Sのうちのいずれかの直列共振子15Sの送信端子105の側又はアンテナ端子103の側と、基準電位部113とを接続している。複数の並列共振子15Pそれぞれは、複数の電極指27を含むIDT電極19を有している。複数の並列共振子15Pは、第1並列共振子(例えば並列共振子15P4)と、第2並列共振子(例えば並列共振子15P1)とを有している。第1並列共振子の複数の直列共振子15Sに対する接続位置は、第2並列共振子の複数の直列共振子15Sに対する接続位置よりも電気的にアンテナ端子103の側に位置している。複数の電極指27の各幅wを複数の電極指27のピッチpで割った値をDutyと称するとき、第1並列共振子のDutyが第2並列共振子のDutyよりも小さい。
(7. Summary of embodiments)
As described above, the ladder filter (transmission filter 109) includes a plurality of series resonators 15S and a plurality of parallel resonators 15P. The plurality of series resonators 15S are connected in series between an input terminal (transmission terminal 105) and an output terminal (antenna terminal 103). Each of the plurality of parallel resonators 15P connects the transmission terminal 105 side or the antenna terminal 103 side of one of the plurality of series resonators 15S to the reference potential section 113. . Each of the plurality of parallel resonators 15P has an IDT electrode 19 including a plurality of electrode fingers 27. The plurality of parallel resonators 15P include a first parallel resonator (eg, parallel resonator 15P4) and a second parallel resonator (eg, parallel resonator 15P1). The connection position of the first parallel resonator to the plurality of series resonators 15S is located electrically closer to the antenna terminal 103 than the connection position of the second parallel resonator to the plurality of series resonators 15S. When the value obtained by dividing each width w of the plurality of electrode fingers 27 by the pitch p of the plurality of electrode fingers 27 is called Duty, the Duty of the first parallel resonator is smaller than the Duty of the second parallel resonator.
 従って、例えば、実施形態の概要の説明で述べたように、3倍波に起因するスプリアスを効率的に低減することができ、また、通過帯域における特性を確保することが容易化される。 Therefore, for example, as described in the explanation of the overview of the embodiment, spurious caused by the third harmonic can be efficiently reduced, and characteristics in the passband can be easily ensured.
 第1並列共振子(15P4)の複数の直列共振子15Sに対する接続位置は、複数の並列共振子15Pの複数の直列共振子15Sに対する接続位置の中で電気的に最も出力端子(アンテナ端子103)に近くてよい。 The connection position of the first parallel resonator (15P4) to the plurality of series resonators 15S is the electrically closest output terminal (antenna terminal 103) among the connection positions of the plurality of parallel resonators 15P to the plurality of series resonators 15S. It's good to be close to.
 この場合、例えば、これまでに述べた効果が向上する。具体的には、例えば、以下のとおりである。相対的に出力端子(アンテナ端子103)から遠い並列共振子15P(例えば第2並列共振子)において生じたスプリアスは、出力端子に伝わる過程において、ラダー型フィルタのうちの上記遠い並列共振子15Pよりもアンテナ端子103の側に位置する部分によって減衰される。逆に言えば、最もアンテナ端子103の側に位置する並列共振子15P4のスプリアスは減衰されにくい。このような並列共振子15P4を、Dutyが小さくされることによってスプリアスが低減される第1並列共振子とすることによって、ラダー型フィルタ全体として効率的にスプリアスを低減できる。 In this case, for example, the effects described above are improved. Specifically, for example, it is as follows. The spurious generated in the parallel resonator 15P (for example, the second parallel resonator) that is relatively far from the output terminal (antenna terminal 103) is transmitted from the parallel resonator 15P that is far away from the ladder filter in the process of being transmitted to the output terminal. The signal is also attenuated by the portion located on the antenna terminal 103 side. Conversely, the spurious of the parallel resonator 15P4 located closest to the antenna terminal 103 is difficult to attenuate. By using such a parallel resonator 15P4 as a first parallel resonator whose duty is reduced to reduce spurious, it is possible to efficiently reduce spurious as a whole of the ladder filter.
 第2並列共振子(15P1)の複数の直列共振子15Sに対する接続位置は、複数の並列共振子15Pの複数の直列共振子15Sに対する接続位置の中で電気的に最も出力端子(アンテナ端子103)から遠くてよい。 The connection position of the second parallel resonator (15P1) to the plurality of series resonators 15S is the electrically closest output terminal (antenna terminal 103) among the connection positions of the plurality of parallel resonators 15P to the plurality of series resonators 15S. It's good to be far away.
 この場合、例えば、これまでに述べた効果が向上する。具体的には、例えば、以下のとおりである。相対的に出力端子(アンテナ端子103)から遠い並列共振子15P(例えば第2並列共振子)において生じたスプリアスは、出力端子に伝わる過程において、ラダー型フィルタのうちの上記遠い並列共振子15Pよりもアンテナ端子103の側に位置する部分によって減衰される。このような理由から、最もスプリアスが減衰される並列共振子15P1においては、3倍波のスプリアスを低減する観点からDutyを小さくする必要性が相対的に低い。従って、並列共振子15P1においては、別の観点からDutyを調整できる。これにより、例えば、通過帯域の特性を確保することが容易化される効果が向上する。 In this case, for example, the effects described above are improved. Specifically, for example, it is as follows. The spurious generated in the parallel resonator 15P (for example, the second parallel resonator) that is relatively far from the output terminal (antenna terminal 103) is transmitted to the output terminal from the parallel resonator 15P that is far away from the ladder filter. The signal is also attenuated by the portion located on the antenna terminal 103 side. For this reason, in the parallel resonator 15P1 where the spurious is attenuated the most, there is relatively little need to reduce the Duty from the viewpoint of reducing the third harmonic spurious. Therefore, in the parallel resonator 15P1, the duty can be adjusted from another viewpoint. This improves, for example, the effect of making it easier to ensure the characteristics of the passband.
 第1並列共振子(例えば15P4)のDutyは、複数の並列共振子15PのDutyの中で最も小さくてよい。 The duty of the first parallel resonator (for example, 15P4) may be the smallest among the duties of the plurality of parallel resonators 15P.
 図4及び図5に示したように、Dutyが小さくほど、3倍波に起因するスプリアスは低減されやすい。従って、第1並列共振子のDutyが最も小さいことによって、これまでに述べた効果が向上する。なお、1つの第1並列共振子のDutyが「最も小さい」というとき、第1並列共振子のDutyの値と同じ値のDutyを有する他の並列共振子15P(他の第1並列共振子と捉えることができるもの、又は接続位置の観点からそのように捉えることができないもの)が存在しても構わない。 As shown in FIGS. 4 and 5, the smaller the Duty, the easier the spurious caused by the third harmonic is reduced. Therefore, the effects described above are improved by minimizing the duty of the first parallel resonator. Note that when it is said that the Duty of one first parallel resonator is "the smallest", it means that the other parallel resonators 15P (other first parallel resonators) have the same Duty as that of the first parallel resonator. It does not matter if there is something that can be captured or something that cannot be captured as such from the point of view of the connection position.
 第1並列共振子(例えば15P4)を除く複数の並列共振子15PのDutyの平均(Duty_Av2)は0.50を超えていてよい。第1並列共振子のDutyは0.5以下であってよい。 The average duty (Duty_Av2) of the plurality of parallel resonators 15P excluding the first parallel resonator (for example, 15P4) may exceed 0.50. The duty of the first parallel resonator may be 0.5 or less.
 この場合、例えば、第1並列共振子における3倍波に起因するスプリアスをより確実に低減することができる。なお、第1又は第3実施例のように第1並列共振子と捉えることができる2以上の並列共振子15Pが存在する場合において、前段落における第1並列共振子は、上記2以上の並列共振子15Pのうちの1つを指してもよいし、一部(2以上)又は全部を指してもよい。 In this case, for example, spurious caused by the third harmonic in the first parallel resonator can be more reliably reduced. In addition, in the case where there are two or more parallel resonators 15P that can be considered as the first parallel resonators as in the first or third embodiment, the first parallel resonators in the previous paragraph are the two or more parallel resonators described above. It may refer to one of the resonators 15P, some (two or more), or all of the resonators 15P.
 第1並列共振子(例えば15P4)は、圧電体層11と、低音速膜9と、支持基板7とを有していてよい。圧電体層11の上面にはIDT電極19が位置していてよい。低音速膜9は、圧電体層11の下面に沿って広がっていてよく、圧電体層11における音速よりも低い音速を有していてよい。支持基板7は、低音速膜9の下面に沿って広がっていてよい。 The first parallel resonator (for example, 15P4) may include a piezoelectric layer 11, a low sound velocity film 9, and a support substrate 7. An IDT electrode 19 may be located on the top surface of the piezoelectric layer 11. The low sound velocity film 9 may extend along the lower surface of the piezoelectric layer 11 and may have a sound velocity lower than the sound velocity in the piezoelectric layer 11 . The support substrate 7 may extend along the lower surface of the low-sonic membrane 9 .
 この場合、例えば、弾性波のエネルギーを圧電体層11に閉じ込めて第1並列共振子の挿入損失を低減できる。その一方で、3倍波のエネルギーも閉じ込められやすくなり、ひいては、3倍波に起因するスプリアスが現れやすい。従って、第1並列共振子のDutyを第2並列共振子のDutyよりも小さくすることによるスプリアス低減の効果が有効に奏される。特に、複数の電極指27のピッチpの2倍をλとするとき、圧電体層11の厚みが1λ以下とされたり、及び/又は低音速膜9の厚みが0.5λ以下とされたりすると、3倍波に起因するスプリアスが現れやすく、上記効果が有効に奏される。 In this case, for example, the energy of the elastic wave can be confined in the piezoelectric layer 11 to reduce the insertion loss of the first parallel resonator. On the other hand, the energy of the third harmonic wave is also likely to be trapped, and as a result, spurious waves due to the third harmonic wave are likely to appear. Therefore, the effect of spurious reduction by making the duty of the first parallel resonator smaller than the duty of the second parallel resonator is effectively achieved. In particular, when λ is twice the pitch p of the plurality of electrode fingers 27, if the thickness of the piezoelectric layer 11 is 1λ or less, and/or the thickness of the low sound velocity film 9 is 0.5λ or less, , spurious waves due to third harmonic waves are likely to appear, and the above effects are effectively achieved.
 圧電体層11はタンタル酸リチウム単結晶によって構成されていてよい。低音速膜9は二酸化ケイ素によって構成されていてよい。支持基板7はシリコンによって構成されていてよい。 The piezoelectric layer 11 may be made of lithium tantalate single crystal. The low sound velocity membrane 9 may be composed of silicon dioxide. The support substrate 7 may be made of silicon.
 この場合、各層の材料は、既述のシミュレーション計算の条件と同じである。従って、第1並列共振子のDutyを第2並列共振子のDutyよりも小さくすることによって、3倍波に起因するスプリアスが低減される効果が奏されることが確認されている。なお、3倍波に起因するスプリアスが低減される理由は、Dutyが相対的に小さく、あるいは0.5以下にされることによって、弾性波の振幅を電極指27の幅wに亘って積分したときの値が0に近づくことによるものと考えられる。従って、本実施形態の構成が適用される材料は上記に限定されない。 In this case, the materials of each layer are the same as the conditions of the simulation calculation described above. Therefore, it has been confirmed that by making the duty of the first parallel resonator smaller than the duty of the second parallel resonator, the effect of reducing the spurious caused by the third harmonic can be achieved. Note that the reason why the spurious caused by the third harmonic is reduced is that the duty is relatively small or 0.5 or less, so that the amplitude of the elastic wave is integrated over the width w of the electrode finger 27. This is thought to be due to the value of time approaching 0. Therefore, the materials to which the configuration of this embodiment is applied are not limited to the above.
 出力端子は、アンテナ159に接続されるアンテナ端子103を構成していてよい。 The output terminal may constitute the antenna terminal 103 connected to the antenna 159.
 換言すれば、ラダー型フィルタは、送信フィルタ109であってよい。この場合、例えば、受信フィルタ111に比較して信号強度が大きい送信フィルタ109において3倍波に起因するスプリアスが低減される。その結果、送信フィルタ109を含む回路及び装置全体の特性が向上する。 In other words, the ladder filter may be the transmission filter 109. In this case, for example, the spurious caused by the third harmonic is reduced in the transmitting filter 109, which has a higher signal strength than the receiving filter 111. As a result, the characteristics of the entire circuit and device including the transmission filter 109 are improved.
 なお、以上の実施形態において、送信フィルタ109はラダー型フィルタの一例である。送信端子105は入力端子の一例である。アンテナ端子103は出力端子の一例である。並列共振子15P4は第1並列共振子の一例である。並列共振子15P1は第2並列共振子の一例である。 Note that in the above embodiments, the transmission filter 109 is an example of a ladder type filter. Transmission terminal 105 is an example of an input terminal. Antenna terminal 103 is an example of an output terminal. The parallel resonator 15P4 is an example of a first parallel resonator. The parallel resonator 15P1 is an example of a second parallel resonator.
 本開示に係る技術は、以上の実施形態及び変形例に限定されず、種々の態様で実施されてよい。 The technology according to the present disclosure is not limited to the above embodiments and modifications, and may be implemented in various ways.
 ラダー型フィルタの一例として送信フィルタ109を構成しているものを例示した。ただし、ラダー型フィルタは、受信フィルタ111を構成するものであってもよい。この場合は、アンテナ端子103が入力端子の一例であり、受信端子107が出力端子の一例である。また、ラダー型フィルタは、送信フィルタ及び受信フィルタの概念になじまないフィルタであっても構わない。 The transmission filter 109 is illustrated as an example of a ladder type filter. However, the ladder type filter may constitute the reception filter 111. In this case, the antenna terminal 103 is an example of an input terminal, and the receiving terminal 107 is an example of an output terminal. Moreover, the ladder type filter may be a filter that does not fit the concepts of a transmission filter and a reception filter.
 15S…直列共振子、15P…並列共振子、15P1…第2並列共振子、15P4…第1、19…IDT電極、27…電極指、103…アンテナ端子(入力端子)、105…送信端子(入力端子)、113…基準電位部。 15S... Series resonator, 15P... Parallel resonator, 15P1... Second parallel resonator, 15P4... First, 19... IDT electrode, 27... Electrode finger, 103... Antenna terminal (input terminal), 105... Transmission terminal (input terminal), 113...Reference potential section.

Claims (12)

  1.  入力端子と出力端子との間で直列に接続されている複数の直列共振子と、
     それぞれ、前記複数の直列共振子のうちのいずれかの直列共振子の前記入力端子の側又は前記出力端子の側と、基準電位部とを接続している複数の並列共振子と、
     を有しており、
     前記複数の並列共振子それぞれは、複数の電極指を含むIDT電極を有しており、
     前記複数の並列共振子は、第1並列共振子と、第2並列共振子とを有しており、
     前記第1並列共振子の前記複数の直列共振子に対する接続位置は、前記第2並列共振子の前記複数の直列共振子に対する接続位置よりも電気的に前記出力端子の側に位置しており、
     前記複数の電極指の各幅を前記複数の電極指のピッチで割った値をDutyと称するとき、前記第1並列共振子のDutyが前記第2並列共振子のDutyよりも小さい
     ラダー型フィルタ。
    a plurality of series resonators connected in series between an input terminal and an output terminal;
    a plurality of parallel resonators each connecting the input terminal side or the output terminal side of any one of the plurality of series resonators to a reference potential section;
    It has
    Each of the plurality of parallel resonators has an IDT electrode including a plurality of electrode fingers,
    The plurality of parallel resonators include a first parallel resonator and a second parallel resonator,
    A connection position of the first parallel resonator to the plurality of series resonators is located electrically closer to the output terminal than a connection position of the second parallel resonator to the plurality of series resonators,
    When the value obtained by dividing each width of the plurality of electrode fingers by the pitch of the plurality of electrode fingers is called Duty, the Duty of the first parallel resonator is smaller than the Duty of the second parallel resonator.
  2.  前記第1並列共振子の前記複数の直列共振子に対する接続位置は、前記複数の並列共振子の前記複数の直列共振子に対する接続位置の中で電気的に最も前記出力端子に近い
     請求項1に記載のラダー型フィルタ。
    The connection position of the first parallel resonator to the plurality of series resonators is electrically closest to the output terminal among the connection positions of the plurality of parallel resonators to the plurality of series resonators. Ladder type filter as described.
  3.  前記第2並列共振子の前記複数の直列共振子に対する接続位置は、前記複数の並列共振子の前記複数の直列共振子に対する接続位置の中で電気的に最も前記出力端子から遠い
     請求項1又は2に記載のラダー型フィルタ。
    The connection position of the second parallel resonator to the plurality of series resonators is electrically farthest from the output terminal among the connection positions of the plurality of parallel resonators to the plurality of series resonators. The ladder type filter described in 2.
  4.  前記第1並列共振子のDutyは、前記複数の並列共振子のDutyの中で最も小さい
     請求項1~3のいずれか1項に記載のラダー型フィルタ。
    The ladder filter according to claim 1, wherein the first parallel resonator has the smallest duty among the plurality of parallel resonators.
  5.  前記第1並列共振子を除く前記複数の並列共振子のDutyの平均が0.50を超えており、
     前記第1並列共振子のDutyが0.50以下である
     請求項1~4のいずれか1項に記載のラダー型フィルタ。
    The average duty of the plurality of parallel resonators excluding the first parallel resonator exceeds 0.50,
    The ladder type filter according to any one of claims 1 to 4, wherein the first parallel resonator has a duty of 0.50 or less.
  6.  前記第1並列共振子は、
      前記IDT電極が上面に位置している圧電体層と、
      前記圧電体層の下面に沿って広がっており、前記圧電体層における音速よりも低い音速を有している低音速膜と、
      前記低音速膜の下面に沿って広がっている支持基板と、を有している
     請求項1~5のいずれか1項に記載のラダー型フィルタ。
    The first parallel resonator is
    a piezoelectric layer on which the IDT electrode is located;
    a low sound velocity film that extends along the lower surface of the piezoelectric layer and has a sound velocity lower than the sound velocity in the piezoelectric layer;
    The ladder-type filter according to any one of claims 1 to 5, further comprising a support substrate extending along the lower surface of the low-sonic membrane.
  7.  前記複数の電極指のピッチの2倍をλとするとき、前記圧電体層の厚みが1λ以下である
     請求項6に記載のラダー型フィルタ。
    The ladder filter according to claim 6, wherein the piezoelectric layer has a thickness of 1λ or less, where λ is twice the pitch of the plurality of electrode fingers.
  8.  前記複数の電極指のピッチの2倍をλとするとき、前記低音速膜の厚みが0.5λ以下である
     請求項6又は7に記載のラダー型フィルタ。
    The ladder type filter according to claim 6 or 7, wherein the thickness of the low sound velocity film is 0.5λ or less, where λ is twice the pitch of the plurality of electrode fingers.
  9.  前記圧電体層がタンタル酸リチウム単結晶によって構成されており、
     前記低音速膜が二酸化ケイ素によって構成されており、
     前記支持基板がシリコンによって構成されている
     請求項6~8のいずれか1項に記載のラダー型フィルタ。
    The piezoelectric layer is made of lithium tantalate single crystal,
    The low sound velocity membrane is made of silicon dioxide,
    The ladder type filter according to any one of claims 6 to 8, wherein the support substrate is made of silicon.
  10.  前記出力端子がアンテナに接続されるアンテナ端子を構成している
     請求項1~9のいずれか1項に記載のラダー型フィルタ。
    The ladder type filter according to any one of claims 1 to 9, wherein the output terminal constitutes an antenna terminal connected to an antenna.
  11.  請求項1~10のいずれか1項に記載のラダー型フィルタと、
     前記入力端子及び前記出力端子の一方に接続されているアンテナと、
     前記入力端子及び前記出力端子の他方に接続されている集積回路素子と、
     を有しているモジュール。
    The ladder type filter according to any one of claims 1 to 10,
    an antenna connected to one of the input terminal and the output terminal;
    an integrated circuit element connected to the other of the input terminal and the output terminal;
    A module that has.
  12.  請求項1~10のいずれか1項に記載のラダー型フィルタと、
     前記入力端子及び前記出力端子の一方に接続されているアンテナと、
     前記入力端子及び前記出力端子の他方に接続されている集積回路素子と、
     前記ラダー型フィルタ及び前記集積回路素子を収容している筐体と、
     を有している通信装置。
    The ladder type filter according to any one of claims 1 to 10,
    an antenna connected to one of the input terminal and the output terminal;
    an integrated circuit element connected to the other of the input terminal and the output terminal;
    a casing housing the ladder filter and the integrated circuit element;
    A communication device that has
PCT/JP2023/009794 2022-03-18 2023-03-14 Ladder filter, module, and communication device WO2023176814A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-043581 2022-03-18
JP2022043581 2022-03-18

Publications (1)

Publication Number Publication Date
WO2023176814A1 true WO2023176814A1 (en) 2023-09-21

Family

ID=88023849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/009794 WO2023176814A1 (en) 2022-03-18 2023-03-14 Ladder filter, module, and communication device

Country Status (1)

Country Link
WO (1) WO2023176814A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012147175A (en) * 2011-01-11 2012-08-02 Murata Mfg Co Ltd Acoustic wave demultiplexer
WO2016208447A1 (en) * 2015-06-25 2016-12-29 株式会社村田製作所 Multiplexer, high-frequency front-end circuit, and communication device
WO2019220853A1 (en) * 2018-05-14 2019-11-21 株式会社村田製作所 Multiplexer, high-frequency front-end circuit and communication device
JP2020078048A (en) * 2018-11-08 2020-05-21 株式会社村田製作所 Multiplexer
JP2020113805A (en) * 2017-03-30 2020-07-27 株式会社村田製作所 Multiplexer, high-frequency front-end circuit, and communication device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012147175A (en) * 2011-01-11 2012-08-02 Murata Mfg Co Ltd Acoustic wave demultiplexer
WO2016208447A1 (en) * 2015-06-25 2016-12-29 株式会社村田製作所 Multiplexer, high-frequency front-end circuit, and communication device
JP2020113805A (en) * 2017-03-30 2020-07-27 株式会社村田製作所 Multiplexer, high-frequency front-end circuit, and communication device
WO2019220853A1 (en) * 2018-05-14 2019-11-21 株式会社村田製作所 Multiplexer, high-frequency front-end circuit and communication device
JP2020078048A (en) * 2018-11-08 2020-05-21 株式会社村田製作所 Multiplexer

Similar Documents

Publication Publication Date Title
JP6408592B2 (en) Filter, duplexer and communication device
JP6352971B2 (en) Elastic wave element, filter element, and communication apparatus
JP6856825B2 (en) Elastic wave device, demultiplexer and communication device
JP7433216B2 (en) Elastic wave elements, elastic wave filters, duplexers and communication devices
KR20040030002A (en) Surface acoustic wave device, and mobile communication device and sensor both using same
JP7278305B2 (en) Acoustic wave device, branching filter and communication device
JP6870684B2 (en) Multiplexer
JP4525594B2 (en) Surface acoustic wave device
WO2016080444A1 (en) Elastic wave element, filter element, and communication device
JP2017195580A (en) Elastic wave filter device
JP2021122090A (en) Acoustic wave filter
JP7386741B2 (en) Filters, duplexers and communication equipment
JP2019121873A (en) Elastic wave device, filter, and multiplexer
WO2020044979A1 (en) Filter device and multiplexer
WO2023176814A1 (en) Ladder filter, module, and communication device
WO2018117060A1 (en) Acoustic wave resonator, filter device, and multiplexer
US20220345112A1 (en) Acoustic wave filter and communication apparatus
JP2019180064A (en) Acoustic wave filter, branching filter, and communication device
JP7441010B2 (en) Acoustic wave devices, filters and multiplexers
CN110809858B (en) multiplexer
WO2023210524A1 (en) Elastic wave element and communication device
WO2024034528A1 (en) Elastic wave device, composite filter, and communication device
WO2023167221A1 (en) Composite substrate, acoustic wave element, module, and communication device
WO2023085210A1 (en) Elastic wave device, filter, splitter, and communication device
JP7416080B2 (en) Acoustic wave devices, filter devices and multiplexers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770769

Country of ref document: EP

Kind code of ref document: A1