WO2018117060A1 - Acoustic wave resonator, filter device, and multiplexer - Google Patents

Acoustic wave resonator, filter device, and multiplexer Download PDF

Info

Publication number
WO2018117060A1
WO2018117060A1 PCT/JP2017/045402 JP2017045402W WO2018117060A1 WO 2018117060 A1 WO2018117060 A1 WO 2018117060A1 JP 2017045402 W JP2017045402 W JP 2017045402W WO 2018117060 A1 WO2018117060 A1 WO 2018117060A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflector
bus bar
comb
electrode
idt electrode
Prior art date
Application number
PCT/JP2017/045402
Other languages
French (fr)
Japanese (ja)
Inventor
明雄 金田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2018117060A1 publication Critical patent/WO2018117060A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/70Multiple-port networks for connecting several sources or loads, working on different frequencies or frequency bands, to a common load or source
    • H03H9/72Networks using surface acoustic waves

Definitions

  • the present invention relates to an elastic wave resonator having an IDT (InterDigital Transducer) electrode and a reflector, and a filter device and a multiplexer including the elastic wave resonator.
  • IDT InterDigital Transducer
  • a filter device having a plurality of acoustic wave resonators has been put into practical use, such as a band-pass filter disposed in a front end portion of a mobile communication device.
  • FIG. 4 of Patent Document 1 includes two IDT electrodes arranged in parallel so as to have the same acoustic wave propagation direction, and an acoustic wave propagation direction.
  • An acoustic wave resonator is disclosed that includes one reflector disposed between two IDT electrodes and a plurality of reflectors disposed outside the two IDT electrodes.
  • one reflector disposed between two IDT electrodes is shared by the two IDT electrodes, thereby downsizing the acoustic wave resonator.
  • each of the plurality of acoustic wave resonators constituting the filter device is required to have a steep resonance characteristic.
  • the elastic wave resonator disclosed in Patent Document 1 may have insufficient resonance characteristics.
  • the present invention has been made to solve the above-described problems, and an object thereof is to improve the steepness of resonance characteristics of an acoustic wave resonator or the like.
  • an acoustic wave resonator is an IDT electrode having a piezoelectric substrate and a pair of comb-like electrodes facing each other, and is provided on the piezoelectric substrate.
  • a first IDT electrode and a second IDT electrode disposed along a predetermined direction; a shared reflector provided on the piezoelectric substrate and disposed between the first IDT electrode and the second IDT electrode in the predetermined direction;
  • a second reflector provided on the opposite side of the shared reflector as viewed from the 2IDT electrode, each of the first IDT electrode and the second IDT electrode extending in the predetermined direction and One comb-tooth bus bar and the other comb-tooth bus bar facing each other in the orthogonal direction of the fixed direction, and each of the first reflector and the second reflector extends in the predetermined direction and mutually in the orthogonal direction
  • the other comb bus bar of the second IDT electrode and the other reflector bus bar of the second reflector are arranged along the predetermined direction and connected to each other. At least one of the states that are being used.
  • one reflector bus bar of the first reflector and one comb bus bar of the first IDT electrode face each other with different potentials, and a capacitance is added to the acoustic wave resonator.
  • one comb-tooth bus bar of the second IDT electrode and one reflector bus bar of the second reflector face each other with different potentials, and a capacitance is added to the acoustic wave resonator.
  • the other reflector bus bar of the first reflector and the other comb bus bar of the first IDT electrode are located between the other reflector bus bar and the other comb bus bar.
  • the other comb-tooth busbar of the second IDT electrode and the other reflector busbar of the second reflector are connected via one connection electrode, the other comb-tooth busbar and the other reflector busbar. And may be connected via a second connection electrode located between the two.
  • the adjacent bus bars can be connected at a short distance. Can do. Therefore, it is possible to reduce the electrical resistance for connecting the other reflector bus bar and the other comb-tooth bus bar, and to increase the capacity formed by one reflector bus bar and one comb-tooth bus bar. it can. Thereby, the steepness of the resonance characteristics in the acoustic wave resonator can be improved.
  • a first input / output wiring is connected to the one comb-tooth bus bar of each of the first IDT electrode and the second IDT electrode, and a second comb-tooth bus bar of each of the first IDT electrode and the second IDT electrode is connected to the first comb-tooth bus bar.
  • Two input / output wirings are connected, and the first IDT electrode and the second IDT electrode may be connected in parallel in a path connecting the first input / output wiring and the second input / output wiring.
  • the elastic wave resonator further faces the one reflector bus bar on the side opposite to the other reflector bus bar when viewed from the one reflector bus bar of the first reflector in the orthogonal direction.
  • a first counter electrode is provided, and the first counter electrode is connected to the ground, and in the orthogonal direction, the other reflector bus bar as viewed from the one reflector bus bar of the second reflector.
  • a second counter electrode facing the one reflector bus bar is provided on the opposite side of the first counter bus bar, and the second counter electrode may have at least one state of being connected to the ground. .
  • the elastic wave resonator further includes a first insulating layer provided on the one reflector bus bar of the first reflector, and a third opposing to the one reflector bus bar on the first insulating layer.
  • a counter electrode is provided, and the third counter electrode is connected to the one comb-shaped bus bar of the first IDT electrode, and a second insulation is provided on the one reflector bus bar of the second reflector.
  • a fourth counter electrode facing the one reflector bus bar is provided on the second insulating layer, and the fourth counter electrode is connected to the one comb-tooth bus bar of the second IDT electrode. It may have at least one of the states.
  • a filter device is a ladder-type filter device including one or more series arm resonators and one or more parallel arm resonators, and the series arm resonators At least one of the parallel arm resonators may include the elastic wave resonator.
  • the steepness in the pass band of the filter device can be improved.
  • a multiplexer may include the above filter device.
  • the steepness in the pass band of the multiplexer can be improved.
  • the steepness of the resonance characteristics of the acoustic wave resonator can be improved.
  • steepness in the pass band of the filter device and the multiplexer can be improved.
  • FIG. 1 is a circuit configuration diagram of a multiplexer and a filter device using the acoustic wave resonator according to the first embodiment.
  • 2A and 2B are diagrams illustrating the acoustic wave resonator according to the first embodiment, in which FIG. 2A is a plan view and FIG. 2B is a cross-sectional view taken along the line IIB-IIB shown in FIG.
  • FIG. 3 is an equivalent circuit of the acoustic wave resonator according to the first embodiment.
  • FIG. 4 is a plan view showing an acoustic wave resonator in a comparative example.
  • FIG. 5 is a diagram showing insertion loss of the acoustic wave resonator in the first embodiment and the comparative example.
  • FIG. 6 is a diagram showing the insertion loss of the filter device in the first embodiment and the comparative example.
  • 7A and 7B are diagrams illustrating the frequency characteristics of the multiplexer according to the first embodiment and the comparative example, where FIG. 7A is a diagram illustrating insertion loss and FIG. 7B is a diagram illustrating isolation characteristics.
  • FIG. 8 is a plan view illustrating an acoustic wave resonator according to the second embodiment.
  • FIG. 9 is an equivalent circuit of the acoustic wave resonator according to the second embodiment.
  • 10A and 10B are diagrams illustrating an acoustic wave resonator according to the third embodiment.
  • FIG. 10A is a plan view
  • FIG. 10B is a cross-sectional view taken along line XB-XB shown in FIG.
  • FIG. 11 is an equivalent circuit of the acoustic wave resonator according to the third embodiment.
  • the multiplexer and filter device according to the present embodiment are used for communication devices such as mobile phones.
  • a duplexer of Band 5 transmission pass band: 824 to 849 MHz, reception pass band: 869 to 894 MHz
  • transmission pass band: 824 to 849 MHz reception pass band: 869 to 894 MHz
  • FIG. 1 is a circuit configuration diagram of the multiplexer 1 according to the first embodiment.
  • the multiplexer 1 includes a transmission filter 7 that is one filter device, a reception filter 8 that is the other filter device, an input / output terminal 6a on the antenna side, and an input / output terminal on the transmitter side. 6b and an input / output terminal 6c on the receiver side.
  • the transmission filter 7 and the reception filter 8 are connected to the input / output terminal 6a on the antenna side by bundling respective lead wires.
  • the transmission filter 7 is a band pass filter that filters the transmission wave input from the input / output terminal 6b on the transmitter side in each transmission pass band and outputs it to the input / output terminal 6a on the antenna side.
  • the reception filter 8 is a band pass filter that filters the received wave input from the input / output terminal 6a on the antenna side in each reception pass band and outputs it to the input / output terminal 6c on the receiver side.
  • the transmission filter 7 is a ladder-type filter, and series arm resonators 2a, 2b, 2c, 2d provided on a path connecting the input / output terminal 6a on the antenna side and the input / output terminal 6b on the transmitter side, and Parallel arm resonators 3a, 3b, and 3c are connected between a connection path from the series arm resonator 2a to the series arm resonator 2d and a reference terminal (ground).
  • the reception filter 8 includes a series resonator 4 and a longitudinally coupled acoustic wave filter unit 5 provided on a path connecting the input / output terminal 6a on the antenna side and the input / output terminal 6c on the receiver side.
  • the elastic wave resonator 10 is included in the series arm resonator 2b of the transmission filter 7, for example.
  • the acoustic wave resonator 10 may be included in at least one of the series arm resonators 2 a to 2 d in the transmission filter 7 or in the series resonator 4 in the reception filter 8.
  • the elastic wave resonator 10 may be included in the parallel arm resonators 3 a to 3 d of the transmission filter 7 or may be included in the resonators 5 a and 5 b of the longitudinally coupled elastic wave filter unit 5. .
  • the configuration of the acoustic wave resonator 10 will be described.
  • FIG. 2A and 2B are diagrams illustrating the acoustic wave resonator 10 according to the first embodiment, in which FIG. 2A is a plan view and FIG. 2B is a cross-sectional view taken along the line IIB-IIB shown in FIG. FIG. 3 is an equivalent circuit of the acoustic wave resonator 10.
  • the acoustic wave resonator 10 is sometimes referred to as a piezoelectric substrate 90, and a first IDT electrode 11 and a second IDT electrode 22 (hereinafter referred to as IDT electrode 11 and IDT electrode 22) provided on the piezoelectric substrate 90.
  • the piezoelectric substrate 90 is made of, for example, LiTaO 3 piezoelectric single crystal, LiNbO 3 piezoelectric single crystal, or piezoelectric ceramic having a predetermined cut angle.
  • the cross-sectional structures of the IDT electrodes 11 and 22, the shared reflector 30, the first reflector 31, and the second reflector 32 will be described.
  • the IDT electrodes 11 and 22 have a laminated structure of an adhesion layer 91 and a main electrode layer 92 provided on the adhesion layer 91.
  • the first reflector 31, the shared reflector 30, and the second reflector 32 have a laminated structure of the adhesion layer 91 and the main electrode layer 92, similarly to the IDT electrodes 11 and 22.
  • the adhesion layer 91 is a layer for improving the adhesion between the piezoelectric substrate 90 and the main electrode layer 92, and, for example, Ti is used as a material.
  • the film thickness of the adhesion layer 91 is, for example, 12 nm.
  • the main electrode layer 92 is made of, for example, Al containing 1% Cu.
  • the film thickness of the main electrode layer 92 is, for example, 162 nm.
  • the protective layer 93 is formed so as to cover the IDT electrodes 11 and 22.
  • the protective layer 93 is a layer for the purpose of protecting the main electrode layer 92 from the external environment, adjusting frequency temperature characteristics, and improving moisture resistance, for example, a film containing silicon dioxide as a main component. .
  • a first input / output wiring 41, a second input / output wiring 42, a first connection electrode 51, and a second connection electrode 52 are provided on the piezoelectric substrate 90.
  • the IDT electrodes 11 and 22 are arranged along a predetermined direction D1.
  • the IDT electrode 11 is composed of a pair of comb-like electrodes 11a and 11b facing each other.
  • the IDT electrode 22 is composed of a pair of comb-like electrodes 22a and 22b facing each other.
  • the predetermined direction D1 in the present embodiment is the same direction as the elastic wave propagation direction.
  • the predetermined direction D1 is not limited to the same direction as the elastic wave propagation direction, and may be a direction slightly inclined with respect to the elastic wave propagation direction.
  • the plus side of the orthogonal direction D2 orthogonal to the predetermined direction D1 is referred to as one and the minus side of the orthogonal direction D2 is referred to as the other.
  • One comb-shaped electrode 11a of the IDT electrode 11 includes one comb-shaped bus bar 15a extending in a predetermined direction D1, a cross electrode finger 16 and an offset electrode connected to the comb-shaped bus bar 15a and extending in the orthogonal direction D2 (minus side). And a finger 17.
  • the other comb-shaped electrode 11b of the IDT electrode 11 includes the other comb-shaped bus bar 15b extending in the predetermined direction D1, the cross electrode finger 16 connected to the comb-shaped bus bar 15b and extending in the orthogonal direction D2 (plus side) and the offset electrode. And a finger 17.
  • One comb-shaped electrode 22a of the IDT electrode 22 includes one comb-shaped bus bar 25a extending in a predetermined direction D1, a cross electrode finger 26 connected to the comb-shaped bus bar 25a and extending in the orthogonal direction D2 (minus side), and an offset electrode.
  • the other comb-shaped electrode 22b of the IDT electrode 22 includes the other comb-shaped bus bar 25b extending in a predetermined direction D1, a cross electrode finger 26 connected to the comb-shaped bus bar 25b and extending in the orthogonal direction D2 (plus side), and an offset electrode. Finger 27.
  • the cross electrode fingers 16 and 26 cross each other as seen from the predetermined direction D1.
  • the offset electrode finger 17 is shorter than the cross electrode fingers 16 and 26 and is disposed to face the cross electrode finger 16 in the orthogonal direction D2.
  • the offset electrode finger 27 is shorter than the cross electrode fingers 16 and 26 and is disposed to face the cross electrode finger 26 in the orthogonal direction D2.
  • the wavelength of the acoustic wave resonator 10 is defined by the repetition pitch ⁇ of the cross electrode fingers 16 and 26 in the predetermined direction D1.
  • the first input / output wiring 41 is connected to one comb-tooth bus bar 15 a of the IDT electrode 11 and one comb-tooth bus bar 25 a of the IDT electrode 22, and the other comb-tooth bus bar 15 b of the IDT electrode 11 and the other of the IDT electrode 22 are connected.
  • a second input / output wiring 42 is connected to the comb-tooth bus bar 25b. That is, the IDT electrode 11 and the IDT electrode 22 are connected in parallel in a path connecting the first input / output wiring 41 and the second input / output wiring 42.
  • the common reflector 30 is disposed between the IDT electrode 11 and the IDT electrode 22 in the predetermined direction 1.
  • the shared reflector 30 is one reflector that is commonly used by the IDT electrodes 11 and 22.
  • the shared reflector 30 has one reflector bus bar 30a, the other reflector bus bar 30b, and a plurality of reflective electrode fingers 30c.
  • Each of the reflector bus bars 30a and 30b is disposed so as to extend in a predetermined direction D1 and to face each other in the orthogonal direction D2.
  • Each of the plurality of reflective electrode fingers 30c is connected to each of the reflector bus bars 30a and 30b and arranged to extend in the orthogonal direction D2.
  • the plurality of reflective electrode fingers 30c are arranged to be parallel to each other at a predetermined interval in the predetermined direction D1.
  • the first reflector 31 is provided on the side opposite to the shared reflector 30 when viewed from the IDT electrode 11 in the predetermined direction D1.
  • the first reflector 31 has one reflector bus bar 31a, the other reflector bus bar 31b, and a plurality of reflective electrode fingers 31c.
  • Each of the reflector bus bars 31a and 31b extends in the predetermined direction D1 and is disposed so as to face each other in the orthogonal direction D2.
  • Each of the plurality of reflective electrode fingers 31c is connected to the reflector bus bars 31a and 31b and arranged to extend in the orthogonal direction D2.
  • the plurality of reflective electrode fingers 31c are arranged in parallel to each other at a predetermined interval in the predetermined direction D1.
  • the second reflector 32 is provided on the side opposite to the shared reflector 30 when viewed from the IDT electrode 22 in the predetermined direction D1.
  • the second reflector 32 has one reflector bus bar 32a, the other reflector bus bar 32b, and a plurality of reflective electrode fingers 32c.
  • Each of the reflector bus bars 32a and 32b extends in the predetermined direction D1, and is disposed so as to face each other in the orthogonal direction D2.
  • Each of the plurality of reflective electrode fingers 32c is connected to the reflector bus bars 32a and 32b and arranged to extend in the orthogonal direction D2.
  • the plurality of reflective electrode fingers 32c are arranged to be parallel to each other with a predetermined interval in the predetermined direction D1.
  • the other reflector bus bar 31b and the other comb bus bar 15b are arranged and connected along a predetermined direction D1.
  • the other comb-tooth bus bar 25b and the other reflector bus bar 32b are arranged and connected along a predetermined direction D1.
  • a first connection electrode 51 is provided between the other reflector bus bar 31b and the other comb bus bar 15b, and the first connection electrode 51 is connected to the other reflector bus bar 31b and the other comb bus bar. 15b.
  • a second connection electrode 52 is provided between the other comb-tooth bus bar 25b and the other reflector bus bar 32b, and the second connection electrode 52 connects the other comb-tooth bus bar 25b and the other reflector bus bar 32b. Connected.
  • the width of the connection electrode 51 is the same as the width of the reflector bus bar 31b and the comb-shaped bus bar 15b, and the thickness of the connection electrode 51 is the same as the thickness of the reflector bus bar 31b and the comb-shaped bus bar 15b. That is, the reflector bus bar 31b, the connection electrode 51, and the comb-shaped bus bar 15b are integrally formed linearly along the predetermined direction D1.
  • the width of the connection electrode 52 is the same as the width of the comb-tooth bus bar 25b and the reflector bus bar 32b, and the thickness of the connection electrode 52 is the same as the thickness of the comb-tooth bus bar 25b and the reflector bus bar 32b.
  • connection electrodes 51 and 52 are formed by the same process (for example, lift-off method) as the comb-tooth bus bars 15b and 25b and the reflector bus bars 31b and 32b, and have the same laminated structure.
  • the acoustic wave resonator 10 has capacitors C1 and C2 corresponding to the respective acoustic wave elements F1 and F2 configured by the IDT electrodes 11 and 22 (see FIG. 3).
  • the capacitor C1 is configured such that one reflector bus bar 31a and one comb tooth bus bar 15a located on the opposite sides of the reflector bus bar 31b and the comb tooth bus bar 15b connected by the connection electrode 51 have different potentials. Formed by facing each other.
  • the capacitor C2 is configured such that one comb-tooth bus bar 25a and one reflector bus bar 32a, which are located on the opposite sides of the comb-tooth bus bar 25b and the reflector bus bar 32b connected by the connection electrode 51, face each other with different potentials. It is formed.
  • the acoustic wave resonator 10 includes the capacitors C1 and C2, the steepness of the resonance characteristics in the acoustic wave resonator 10 can be improved.
  • FIG. 4 is a plan view showing an acoustic wave resonator 510 in a comparative example.
  • the acoustic wave resonator 510 of the comparative example is different from the first embodiment in that the first connection electrode 51 and the second connection electrode 52 are not provided.
  • the acoustic wave resonator 510 since the other reflector bus bar 30b and the other comb-tooth bus bar 15b are not connected, a structure in which capacitance is hardly generated between the one reflector bus bar 31a and the one comb-tooth bus bar 15a. It has become.
  • the other comb-tooth bus bar 25b and the other reflector bus bar 32b are not connected to each other, it is difficult to generate a capacity between the one comb-tooth bus bar 25a and the one reflector bus bar 32a. .
  • FIG. 5 is a diagram showing the insertion loss of the acoustic wave resonator in the first embodiment and the comparative example.
  • the increase value of the insertion loss of the acoustic wave resonator 510 of the comparative example is 5.57 dB
  • the elasticity of the first embodiment is The increase value of the insertion loss of the wave resonator 10 is 5.84 dB, which is higher than the comparative example.
  • FIG. 6 is a diagram showing the insertion loss of the filter device in the first embodiment and the comparative example.
  • the series arm resonator 2b shown in FIG. 1 includes the elastic wave resonator 10 of the present embodiment.
  • the series arm resonator 2b shown in FIG. 1 includes the elastic wave resonator 510 (see FIG. 4) of the comparative example.
  • the increase value of the insertion loss in the pass band of the filter device of the comparative example is 27.37 dB with respect to the change from the frequency 856 MHz to 865 MHz, whereas the filter of the first embodiment
  • the increase value of the insertion loss in the pass band of the device is 29.18 dB, which is higher than the comparative example.
  • FIG. 7 is a diagram showing the frequency characteristics of the multiplexers in the first embodiment and the comparative example, where (a) is an insertion loss and (b) is a diagram showing isolation characteristics.
  • the isolation characteristic was obtained by measuring the insertion loss between Tx and Rx in the multiplexer shown in FIG.
  • the increase value of the insertion loss in the transmission passband of the multiplexer of the comparative example is 27.64 dB.
  • the increase value of the insertion loss in the transmission passband of the multiplexer 1 of the first embodiment is 29.48 dB, which is higher than the comparative example.
  • the first embodiment has a frequency difference ⁇ f of 0.3 MHz between the frequency where the Tx loss is 2 dB and the frequency where the Rx band Iso is 50 dB as compared with the comparative example. Improved (becomes smaller) and improved isolation.
  • the acoustic wave resonator 10 includes a piezoelectric substrate 90, an IDT electrode 11 having a pair of comb-like electrodes 11a and 11b facing each other, and an IDT having a pair of comb-like electrodes 22a and 22b.
  • the electrode 22 is provided on the piezoelectric substrate 90 and disposed along the predetermined direction D1, and the IDT electrode 11 and the IDT electrode 22 are provided on the piezoelectric substrate 90, and the IDT electrode 11 and the IDT electrode in the predetermined direction D1.
  • the IDT electrode 11 has one comb-tooth bus bar 15a and the other comb-tooth bus bar 15b extending in the predetermined direction D1 and facing each other in the orthogonal direction D2.
  • the IDT electrode 22 has one comb-tooth bus bar 25a and the other comb-tooth bus bar 25b extending in the predetermined direction D1 and facing each other in the orthogonal direction D2.
  • the first reflector 31 has one reflector bus bar 31a and the other reflector bus bar 31b extending in the predetermined direction D1 and facing each other in the orthogonal direction D2.
  • the second reflector 32 has one reflector bus bar 32a and the other reflector bus bar 32b extending in the predetermined direction D1 and facing each other in the orthogonal direction D2.
  • the other reflector bus bar 31b of the first reflector 31 and the other comb bus bar 15b of the IDT electrode 11 are arranged along the predetermined direction D1 and connected to each other.
  • the other comb-tooth bus bar 25b of the IDT electrode 22 and the other reflector bus bar 32b of the second reflector 32 are arranged along the predetermined direction D1 and connected to each other.
  • one reflector bus bar 31a and one comb bus bar 15a which are located on opposite sides of the reflector bus bar 31b and the comb bus bar 15b connected to each other, face each other with different potentials. Therefore, a capacitance is added to the acoustic wave resonator 10.
  • the acoustic wave resonator 10 Capacity is added to In this way, by adding the capacitance to the acoustic wave resonator 10, the steepness of the resonance characteristics in the acoustic wave resonator 10 can be improved.
  • At least one of the state where the reflector bus bar 31b and the comb bus bar 15b are connected and the state where the comb bus bar 25b and the reflector bus bar 32b are connected is used. If it has, it has the said effect.
  • FIG. 8 is a plan view showing an acoustic wave resonator 10A according to the second embodiment.
  • FIG. 9 is an equivalent circuit of the acoustic wave resonator 10A.
  • This elastic wave resonator 10A is further provided with a first counter electrode 61 and a second counter electrode 62 in addition to the elastic wave resonator 10 of the first embodiment.
  • the first counter electrode 61 is provided on the opposite side to the other reflector bus bar 31b when viewed from one reflector bus bar 31a of the first reflector 31 in the orthogonal direction D2, and is connected to the ground. Yes.
  • the first counter electrode 61 faces the reflector bus bar 31a by being arranged in parallel with a predetermined distance from the reflector bus bar 31a.
  • the second counter electrode 62 is provided on the opposite side of the second reflector 32 from the other reflector bus bar 32b when viewed from the one reflector bus bar 32a in the orthogonal direction D2, and is connected to the ground.
  • the second counter electrode 62 is opposed to the reflector bus bar 32a by being arranged parallel to the reflector bus bar 32a at a predetermined distance.
  • the same material as that of the protective layer 93 (for example, silicon dioxide) is filled between the reflector bus bar 31a and the first counter electrode 61 and between the reflector bus bar 32a and the second counter electrode 62. ing.
  • the acoustic wave resonator 10A has capacitors C3 and C4 as shown in FIG.
  • the capacitor C3 is formed by one reflector bus bar 31a and the one comb-tooth bus bar 15a facing each other with different potentials, and one reflector bus bar 31a and the first counter electrode 61 facing each other with different potentials.
  • one comb-tooth bus bar 25a and one reflector bus bar 32a face each other with different potentials
  • one reflector bus bar 32a and the second counter electrode 62 face each other with different potentials. It is formed with.
  • the acoustic wave resonator 10A has the capacitors C3 and C4, the steepness of the resonance characteristics of the acoustic wave resonator 10A can be improved.
  • At least one of the state where the reflector bus bar 31a and the first counter electrode 61 face each other and the state where the reflector bus bar 32a and the second counter electrode 62 face each other is set. If it has, it has the said effect.
  • FIG. 10A and 10B are diagrams illustrating an acoustic wave resonator 10B according to the third embodiment, in which FIG. 10A is a plan view and FIG. 10B is a plan view that is a cross-sectional view taken along line XB-XB shown in FIG. is there.
  • FIG. 11 is an equivalent circuit of the acoustic wave resonator 10B.
  • illustration of the adhesion layer 91, the main electrode layer 92, and the protective layer 93 is omitted.
  • This elastic wave resonator 10B further includes a third counter electrode 63 and a fourth counter electrode 64 in addition to the elastic wave resonator 10 of the first embodiment.
  • a first insulating layer 66 is provided on one reflector bus bar 31a of the first reflector 31, and a first opposing bus bar 31a in the thickness direction is provided on the first insulating layer 66.
  • Three counter electrodes 63 are provided.
  • the third counter electrode 63 is formed along the predetermined direction D1, and the positive end of the third counter electrode 63 in the predetermined direction D1 is connected to one comb-tooth bus bar 15a.
  • a second insulating layer 67 is provided on one reflector bus bar 32a of the second reflector 32, and a fourth counter electrode facing the one reflector bus bar 32a in the thickness direction is provided on the second insulating layer 67. 64 is provided.
  • the fourth counter electrode 64 is formed along the predetermined direction D1, and the negative end of the fourth counter electrode 64 in the predetermined direction D1 is connected to one comb-shaped bus bar 25a.
  • the material of the first insulating layer 66 and the second insulating layer 67 is appropriately selected from, for example, silicon dioxide and polyimide.
  • the acoustic wave resonator 10B has capacitors C5 and C6 as shown in FIG.
  • the capacitor C5 is formed by facing one reflector bus bar 31a and one comb-tooth bus bar 15a with different potentials, and facing one reflector bus bar 31a and the third counter electrode 63 with different potentials.
  • one comb bus bar 25a and one reflector bus bar 32a face each other with different potentials
  • one reflector bus bar 32a and the fourth counter electrode 64 face each other with different potentials. It is formed with.
  • the acoustic wave resonator 10B includes the capacitors C5 and C6, the steepness of the resonance characteristics of the acoustic wave resonator 10B can be improved.
  • At least one of the state where the reflector bus bar 31a and the third counter electrode 63 face each other and the state where the reflector bus bar 32a and the fourth counter electrode 64 face each other is set. If it has, it has the said effect.
  • the acoustic wave resonators 10 to 10B are not limited to surface acoustic wave resonators, and may be boundary acoustic wave resonators.
  • the offset electrode fingers 17 and 27 are provided on the comb-shaped electrodes 11a, 11b, 22a, and 22b, thereby suppressing spurious and the like that are unnecessary frequency components caused by harmonics and the like. is doing.
  • the electrode fingers of the comb-shaped electrodes 11a, 11b, 22a, and 22b are not limited thereto, and may include the cross electrode fingers 16 and 26 without the offset electrode fingers 17 and 27.
  • the reflector bus bars 31a and 32a may be formed to be wider and thicker than the reflective electrode fingers 31c and 32c.
  • One comb-tooth bus bar 15a, 25a may be formed to be wider and thicker than the cross electrode fingers 16, 26 and the offset electrode fingers 17, 27.
  • the materials constituting the adhesion layer 91, the main electrode layer 92, and the protective layer 93 of the acoustic wave resonator 10 are not limited to the materials described above.
  • the IDT electrodes 11 and 22 do not have to have the above laminated structure.
  • the IDT electrodes 11 and 22 may be made of, for example, a metal or an alloy such as Ti, Al, Cu, Pt, Au, Ag, or Pd. It may be configured.
  • the protective layer 93 may not be formed.
  • the piezoelectric substrate 90 of the acoustic wave resonator 10 may have a laminated structure in which a high sound velocity supporting substrate, a low sound velocity film, and a piezoelectric film are laminated in this order.
  • the piezoelectric film may be, for example, a 50 ° Y-cut X-propagating LiTaO 3 piezoelectric single crystal or a piezoelectric ceramic (a lithium tantalate single crystal cut along a plane whose axis is rotated by 50 ° from the Y axis with the X axis as the central axis, Alternatively, it is made of ceramic and is made of a single crystal or ceramic in which surface acoustic waves propagate in the X-axis direction.
  • the piezoelectric film has a thickness of 600 nm, for example.
  • the high sound velocity support substrate is a substrate that supports the low sound velocity film, the piezoelectric film, and the IDT electrode.
  • the high-sonic support substrate is a substrate in which the acoustic velocity of the bulk wave in the high-sonic support substrate is higher than that of the surface wave or boundary wave that propagates through the piezoelectric film. It functions in such a way that it is confined in the portion where the sonic film is laminated and does not leak below the high sonic support substrate.
  • the high sound speed support substrate is, for example, a silicon substrate and has a thickness of, for example, 200 ⁇ m.
  • the low acoustic velocity film is a membrane in which the acoustic velocity of the bulk wave in the low acoustic velocity film is lower than the bulk wave propagating through the piezoelectric membrane, and is disposed between the piezoelectric membrane and the high acoustic velocity support substrate. Due to this structure and the property that energy is concentrated in a medium where acoustic waves are essentially low in sound velocity, leakage of surface acoustic wave energy to the outside of the IDT electrode is suppressed.
  • the low acoustic velocity film is, for example, a film mainly composed of silicon dioxide and has a thickness of, for example, 670 nm.
  • the Q value at the resonance frequency and the anti-resonance frequency can be significantly increased as compared with a structure in which the piezoelectric substrate 90 is used as a single layer. That is, since a surface acoustic wave resonator having a high Q value can be configured, a filter with a small insertion loss can be configured using the surface acoustic wave resonator.
  • the predetermined direction D1 is the same direction as the elastic wave propagation direction.
  • the present invention is not limited thereto, and the predetermined direction D1 is a direction slightly inclined with respect to the elastic wave propagation direction.
  • each of the comb-tooth bus bars 15a, 15b, 25a, 25b and the reflector bus bars 30a, 30b, 31a, 31b, 32a, 32b in the first embodiment is 0 ° or more and 10 ° or less with respect to the elastic wave propagation direction. It may be formed extending in an inclined direction.
  • each of the crossed electrode fingers 16, 26, the offset electrode fingers 17, 27, and the reflective electrode fingers 30c, 31c, 32c may be formed so as to extend in a direction orthogonal to the elastic wave propagation direction.
  • the wavelength of the acoustic wave resonator 10 may be defined by the repetition pitch ⁇ of each of the cross electrode fingers 16 and 26 in the acoustic wave propagation direction.
  • the present invention can be widely used in mobile communication devices such as mobile phones as acoustic wave resonators, filter devices, duplexers, and multiplexers with improved resonance characteristics.

Abstract

An acoustic wave resonator (10) that comprises: IDT electrodes (11, 22) that are arranged along a prescribed direction (D1); a shared reflector (30) that is arranged between the IDT electrodes (11, 22); a first reflector (31) that, seen from IDT electrode (11), is provided on the opposite side from the shared reflector (30); and a second reflector (32) that, seen from IDT electrode (22), is provided on the opposite side from the shared reflector (30). IDT electrode (11) has comb busbars (15a, 15b), and IDT electrode (22) has comb busbars (25a, 25b). The first reflector (31) has reflector busbars (31a, 31b), and the second reflector (32) has reflector busbars (32a, 32b). Reflector busbar (31b) and comb busbar (15b) are arranged along the prescribed direction (D1) and connected to each other, and comb busbar (25b) and reflector busbar (32b) are arranged along the prescribed direction (D1) and connected to each other.

Description

弾性波共振器、フィルタ装置およびマルチプレクサElastic wave resonator, filter device, and multiplexer
 本発明は、IDT(InterDigital Transducer)電極と反射器とを有する弾性波共振器、および、この弾性波共振器を備えるフィルタ装置およびマルチプレクサに関する。 The present invention relates to an elastic wave resonator having an IDT (InterDigital Transducer) electrode and a reflector, and a filter device and a multiplexer including the elastic wave resonator.
 従来、移動体通信機のフロントエンド部に配置される帯域通過フィルタなどに、複数の弾性波共振器を有するフィルタ装置が実用化されている。 Conventionally, a filter device having a plurality of acoustic wave resonators has been put into practical use, such as a band-pass filter disposed in a front end portion of a mobile communication device.
 この種の弾性波共振器の一例として、特許文献1の図4には、弾性波伝搬方向が互いに同じとなるように配置されて並列接続された2つのIDT電極と、弾性波伝搬方向において、2つのIDT電極の間に配置された1つの反射器と、2つのIDT電極よりも外側に配置された複数の反射器とを備える弾性波共振器が開示されている。 As an example of this type of acoustic wave resonator, FIG. 4 of Patent Document 1 includes two IDT electrodes arranged in parallel so as to have the same acoustic wave propagation direction, and an acoustic wave propagation direction. An acoustic wave resonator is disclosed that includes one reflector disposed between two IDT electrodes and a plurality of reflectors disposed outside the two IDT electrodes.
 この弾性波共振器では、2つのIDT電極の間に配置された1つの反射器を、2つのIDT電極にて共用することで、弾性波共振器を小型化している。 In this acoustic wave resonator, one reflector disposed between two IDT electrodes is shared by the two IDT electrodes, thereby downsizing the acoustic wave resonator.
特開2011-139513号公報JP 2011-139513 A
 近年における移動体通信機のマルチバンド化に対応するため、フィルタ装置を構成する複数の弾性波共振器のそれぞれに、共振特性の急峻性が求められている。しかしながら、特許文献1に開示された弾性波共振器では、共振特性の急峻性が不十分な場合がある。 In order to cope with the recent multi-band mobile communication devices, each of the plurality of acoustic wave resonators constituting the filter device is required to have a steep resonance characteristic. However, the elastic wave resonator disclosed in Patent Document 1 may have insufficient resonance characteristics.
 そこで、本発明は、上記課題を解決するためになされたものであって、弾性波共振器等の共振特性の急峻性を向上することを目的とする。 Therefore, the present invention has been made to solve the above-described problems, and an object thereof is to improve the steepness of resonance characteristics of an acoustic wave resonator or the like.
 上記目的を達成するために、本発明の一態様に係る弾性波共振器は、圧電基板と、互いに対向する一対の櫛歯状電極を有するIDT電極であって、前記圧電基板上に設けられ、所定方向に沿って配置された第1IDT電極および第2IDT電極と、前記圧電基板上に設けられ、前記所定方向において前記第1IDT電極と前記第2IDT電極との間に配置された共用反射器と、前記圧電基板上に設けられ、前記所定方向において前記第1IDT電極から見て前記共用反射器と反対側に設けられた第1反射器と、前記圧電基板上に設けられ、前記所定方向において前記第2IDT電極から見て前記共用反射器と反対側に設けられた第2反射器とを備え、前記第1IDT電極および前記第2IDT電極のそれぞれは、前記所定方向に延びて前記所定方向の直交方向に互いに対向する一方の櫛歯バスバーおよび他方の櫛歯バスバーを有し、前記第1反射器および前記第2反射器のそれぞれは、前記所定方向に延びて前記直交方向に互いに対向する一方の反射器バスバーおよび他方の反射器バスバーを有し、前記第1反射器の前記他方の反射器バスバーと、前記第1IDT電極の前記他方の櫛歯バスバーとが前記所定方向に沿って配置され、互いに接続されている状態、および、前記第2IDT電極の前記他方の櫛歯バスバーと、前記第2反射器の前記他方の反射器バスバーとが前記所定方向に沿って配置され、互いに接続されている状態のうちの少なくとも一方の状態を有する。 To achieve the above object, an acoustic wave resonator according to an aspect of the present invention is an IDT electrode having a piezoelectric substrate and a pair of comb-like electrodes facing each other, and is provided on the piezoelectric substrate. A first IDT electrode and a second IDT electrode disposed along a predetermined direction; a shared reflector provided on the piezoelectric substrate and disposed between the first IDT electrode and the second IDT electrode in the predetermined direction; A first reflector provided on the piezoelectric substrate, provided on the opposite side of the shared reflector as viewed from the first IDT electrode in the predetermined direction; and provided on the piezoelectric substrate, and in the predetermined direction, the first reflector. A second reflector provided on the opposite side of the shared reflector as viewed from the 2IDT electrode, each of the first IDT electrode and the second IDT electrode extending in the predetermined direction and One comb-tooth bus bar and the other comb-tooth bus bar facing each other in the orthogonal direction of the fixed direction, and each of the first reflector and the second reflector extends in the predetermined direction and mutually in the orthogonal direction One reflector bus bar and the other reflector bus bar facing each other, the other reflector bus bar of the first reflector and the other comb-shaped bus bar of the first IDT electrode along the predetermined direction The other comb bus bar of the second IDT electrode and the other reflector bus bar of the second reflector are arranged along the predetermined direction and connected to each other. At least one of the states that are being used.
 これによれば、第1反射器の一方の反射器バスバーと第1IDT電極の一方の櫛歯バスバーとが、異なる電位をもって対向し、弾性波共振器に容量が付加される。または、第2IDT電極の一方の櫛歯バスバーと第2反射器の一方の反射器バスバーとが、異なる電位をもって対向し、弾性波共振器に容量が付加される。このように、弾性波共振器に容量が付加されることで、弾性波共振器における共振特性の急峻性を向上することができる。 According to this, one reflector bus bar of the first reflector and one comb bus bar of the first IDT electrode face each other with different potentials, and a capacitance is added to the acoustic wave resonator. Alternatively, one comb-tooth bus bar of the second IDT electrode and one reflector bus bar of the second reflector face each other with different potentials, and a capacitance is added to the acoustic wave resonator. Thus, by adding a capacitance to the acoustic wave resonator, the steepness of the resonance characteristics in the acoustic wave resonator can be improved.
 また、前記第1反射器の前記他方の反射器バスバーと、前記第1IDT電極の前記他方の櫛歯バスバーとは、当該他方の反射器バスバーと当該他方の櫛歯バスバーとの間に位置する第1接続電極を介して接続され、前記第2IDT電極の前記他方の櫛歯バスバーと、前記第2反射器の前記他方の反射器バスバーとは、当該他方の櫛歯バスバーと当該他方の反射器バスバーとの間に位置する第2接続電極を介して接続されていてもよい。 The other reflector bus bar of the first reflector and the other comb bus bar of the first IDT electrode are located between the other reflector bus bar and the other comb bus bar. The other comb-tooth busbar of the second IDT electrode and the other reflector busbar of the second reflector are connected via one connection electrode, the other comb-tooth busbar and the other reflector busbar. And may be connected via a second connection electrode located between the two.
 このように、第1接続電極および第2接続電極のそれぞれを介して、上記に示す他方の反射器バスバーと他方の櫛歯バスバーとを接続することで、隣り合うバスバーを短い距離で接続することができる。そのため、他方の反射器バスバーと他方の櫛歯バスバーとを接続するための電気抵抗を小さくすることができ、一方の反射器バスバーと一方の櫛歯バスバーとによって形成される容量を大きくすることができる。これにより、弾性波共振器における共振特性の急峻性を向上することができる。 In this way, by connecting the other reflector bus bar shown above and the other comb-tooth bus bar through the first connection electrode and the second connection electrode, the adjacent bus bars can be connected at a short distance. Can do. Therefore, it is possible to reduce the electrical resistance for connecting the other reflector bus bar and the other comb-tooth bus bar, and to increase the capacity formed by one reflector bus bar and one comb-tooth bus bar. it can. Thereby, the steepness of the resonance characteristics in the acoustic wave resonator can be improved.
 また、前記第1IDT電極および前記第2IDT電極のそれぞれの前記一方の櫛歯バスバーに第1入出力配線が接続され、前記第1IDT電極および前記第2IDT電極のそれぞれの前記他方の櫛歯バスバーに第2入出力配線が接続され、前記第1入出力配線と前記第2入出力配線とを結ぶ経路において、前記第1IDT電極と前記第2IDT電極とは並列接続されていてもよい。 A first input / output wiring is connected to the one comb-tooth bus bar of each of the first IDT electrode and the second IDT electrode, and a second comb-tooth bus bar of each of the first IDT electrode and the second IDT electrode is connected to the first comb-tooth bus bar. Two input / output wirings are connected, and the first IDT electrode and the second IDT electrode may be connected in parallel in a path connecting the first input / output wiring and the second input / output wiring.
 これによれば、第1入出力配線と第2入出力配線とを結ぶ経路において、第1IDT電極と第2IDT電極とを並列接続しつつ、弾性波共振器に容量を付加することができる。これにより、弾性波共振器における共振特性の急峻性を向上することができる。 According to this, it is possible to add capacitance to the acoustic wave resonator while connecting the first IDT electrode and the second IDT electrode in parallel in the path connecting the first input / output wiring and the second input / output wiring. Thereby, the steepness of the resonance characteristics in the acoustic wave resonator can be improved.
 また、弾性波共振器は、さらに、前記直交方向において、前記第1反射器の前記一方の反射器バスバーから見て前記他方の反射器バスバーと反対側に、当該一方の反射器バスバーと対向する第1対向電極が設けられ、前記第1対向電極はグランドに接続されている状態、および、前記直交方向において、前記第2反射器の前記一方の反射器バスバーから見て前記他方の反射器バスバーと反対側に、当該一方の反射器バスバーと対向する第2対向電極が設けられ、前記第2対向電極は、グランドに接続されている状態のうちの少なくとも一方の状態を有していてもよい。 The elastic wave resonator further faces the one reflector bus bar on the side opposite to the other reflector bus bar when viewed from the one reflector bus bar of the first reflector in the orthogonal direction. A first counter electrode is provided, and the first counter electrode is connected to the ground, and in the orthogonal direction, the other reflector bus bar as viewed from the one reflector bus bar of the second reflector. A second counter electrode facing the one reflector bus bar is provided on the opposite side of the first counter bus bar, and the second counter electrode may have at least one state of being connected to the ground. .
 これによれば、第1反射器の一方の反射器バスバーと第1対向電極とが、異なる電位をもって対向するので、弾性波共振器に容量が付加される。または、第2反射器の一方の反射器バスバーと第2対向電極とが、異なる電位をもって対向するので、弾性波共振器に容量が付加される。これにより、弾性波共振器における共振特性の急峻性を向上することができる。 According to this, since one reflector bus bar of the first reflector and the first counter electrode face each other with different potentials, a capacitance is added to the acoustic wave resonator. Alternatively, since one reflector bus bar of the second reflector and the second counter electrode face each other with different potentials, a capacitance is added to the acoustic wave resonator. Thereby, the steepness of the resonance characteristics in the acoustic wave resonator can be improved.
 また、弾性波共振器は、さらに、前記第1反射器の前記一方の反射器バスバー上に第1絶縁層が設けられ、前記第1絶縁層上に当該一方の反射器バスバーと対向する第3対向電極が設けられ、前記第3対向電極は、前記第1IDT電極の前記一方の櫛歯バスバーに接続されている状態、および、前記第2反射器の前記一方の反射器バスバー上に第2絶縁層が設けられ、前記第2絶縁層上に当該一方の反射器バスバーと対向する第4対向電極が設けられ、前記第4対向電極は、前記第2IDT電極の前記一方の櫛歯バスバーに接続されている状態のうちの少なくとも一方の状態を有していてもよい。 The elastic wave resonator further includes a first insulating layer provided on the one reflector bus bar of the first reflector, and a third opposing to the one reflector bus bar on the first insulating layer. A counter electrode is provided, and the third counter electrode is connected to the one comb-shaped bus bar of the first IDT electrode, and a second insulation is provided on the one reflector bus bar of the second reflector. And a fourth counter electrode facing the one reflector bus bar is provided on the second insulating layer, and the fourth counter electrode is connected to the one comb-tooth bus bar of the second IDT electrode. It may have at least one of the states.
 これによれば、第1反射器の一方の反射器バスバーと第3対向電極とが、異なる電位をもって対向するので、弾性波共振器に容量が付加される。または、第2反射器の一方の反射器バスバーと第4対向電極とが、異なる電位をもって対向するので、弾性波共振器に容量が付加される。これにより、弾性波共振器の通過帯域における急峻性を向上することができる。 According to this, since one reflector bus bar of the first reflector and the third counter electrode face each other with different potentials, capacitance is added to the acoustic wave resonator. Alternatively, since one reflector bus bar of the second reflector and the fourth counter electrode face each other with different potentials, capacitance is added to the acoustic wave resonator. Thereby, the steepness in the pass band of the acoustic wave resonator can be improved.
 また、本発明の一態様に係るフィルタ装置は、1または複数の直列腕共振子、および、1または複数の並列腕共振子によって構成されるラダー型のフィルタ装置であって、前記直列腕共振子および前記並列腕共振子の少なくとも1つは、上記弾性波共振器を含んでいてもよい。 A filter device according to an aspect of the present invention is a ladder-type filter device including one or more series arm resonators and one or more parallel arm resonators, and the series arm resonators At least one of the parallel arm resonators may include the elastic wave resonator.
 このように、共振特性の急峻性が向上した弾性波共振器でフィルタ装置を構成することで、フィルタ装置の通過帯域における急峻性を向上することができる。 Thus, by configuring the filter device with an acoustic wave resonator having improved resonance characteristics, the steepness in the pass band of the filter device can be improved.
 また、本発明の一態様に係るマルチプレクサは、上記フィルタ装置を含んでいてもよい。 Further, a multiplexer according to one embodiment of the present invention may include the above filter device.
 これによれば、マルチプレクサの通過帯域における急峻性を向上することができる。 According to this, the steepness in the pass band of the multiplexer can be improved.
 本発明によれば、弾性波共振器の共振特性の急峻性を向上することができる。また、フィルタ装置およびマルチプレクサの通過帯域における急峻性を向上することができる。 According to the present invention, the steepness of the resonance characteristics of the acoustic wave resonator can be improved. In addition, steepness in the pass band of the filter device and the multiplexer can be improved.
図1は、実施の形態1に係る弾性波共振器を用いたマルチプレクサおよびフィルタ装置の回路構成図である。FIG. 1 is a circuit configuration diagram of a multiplexer and a filter device using the acoustic wave resonator according to the first embodiment. 図2は、実施の形態1に係る弾性波共振器を表す図であって、(a)は平面図、(b)は(a)に示すIIB-IIB線の断面図である。2A and 2B are diagrams illustrating the acoustic wave resonator according to the first embodiment, in which FIG. 2A is a plan view and FIG. 2B is a cross-sectional view taken along the line IIB-IIB shown in FIG. 図3は、実施の形態1に係る弾性波共振器の等価回路である。FIG. 3 is an equivalent circuit of the acoustic wave resonator according to the first embodiment. 図4は、比較例における弾性波共振器を表す平面図である。FIG. 4 is a plan view showing an acoustic wave resonator in a comparative example. 図5は、実施の形態1および比較例における弾性波共振器の挿入損失を示す図である。FIG. 5 is a diagram showing insertion loss of the acoustic wave resonator in the first embodiment and the comparative example. 図6は、実施の形態1および比較例におけるフィルタ装置の挿入損失を示す図である。FIG. 6 is a diagram showing the insertion loss of the filter device in the first embodiment and the comparative example. 図7は、実施の形態1および比較例におけるマルチプレクサの周波数特性を示す図であって、(a)は挿入損失、(b)はアイソレーション特性を示す図である。7A and 7B are diagrams illustrating the frequency characteristics of the multiplexer according to the first embodiment and the comparative example, where FIG. 7A is a diagram illustrating insertion loss and FIG. 7B is a diagram illustrating isolation characteristics. 図8は、実施の形態2に係る弾性波共振器を表す平面図である。FIG. 8 is a plan view illustrating an acoustic wave resonator according to the second embodiment. 図9は、実施の形態2に係る弾性波共振器の等価回路である。FIG. 9 is an equivalent circuit of the acoustic wave resonator according to the second embodiment. 図10は、実施の形態3に係る弾性波共振器を表す図であって、(a)は平面図、(b)は(a)に示すXB-XB線の断面図である。10A and 10B are diagrams illustrating an acoustic wave resonator according to the third embodiment. FIG. 10A is a plan view, and FIG. 10B is a cross-sectional view taken along line XB-XB shown in FIG. 図11は、実施の形態3に係る弾性波共振器の等価回路である。FIG. 11 is an equivalent circuit of the acoustic wave resonator according to the third embodiment.
 (実施の形態1)
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態およびその変形例は、いずれも包括的または具体的な例を示すものである。以下の実施の形態およびその変形例で示される数値、形状、材料、構成要素、構成要素の配置および接続形態などは、一例であり、本発明を限定する主旨ではない。以下の実施の形態およびその変形例における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、図面に示される構成要素の大きさ、または大きさの比は、必ずしも厳密ではない。
(Embodiment 1)
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. It should be noted that each of the embodiments and modifications thereof described below is a comprehensive or specific example. Numerical values, shapes, materials, constituent elements, arrangement of constituent elements, and connection forms shown in the following embodiments and modifications thereof are merely examples, and are not intended to limit the present invention. Among the constituent elements in the following embodiments and modifications thereof, constituent elements not described in the independent claims are described as arbitrary constituent elements. Further, the size of components shown in the drawings or the ratio of sizes is not necessarily strict.
 [1-1.マルチプレクサおよびフィルタ装置の回路構成]
 本実施の形態に係るマルチプレクサおよびフィルタ装置は、携帯電話などの通信機器に利用される。本実施の形態では、マルチプレクサとして、Band5(送信通過帯域:824~849MHz、受信通過帯域:869~894MHz)のデュプレクサを例に挙げて説明する。
[1-1. Circuit configuration of multiplexer and filter device]
The multiplexer and filter device according to the present embodiment are used for communication devices such as mobile phones. In the present embodiment, a duplexer of Band 5 (transmission pass band: 824 to 849 MHz, reception pass band: 869 to 894 MHz) will be described as an example of a multiplexer.
 図1は、実施の形態1に係るマルチプレクサ1の回路構成図である。 FIG. 1 is a circuit configuration diagram of the multiplexer 1 according to the first embodiment.
 マルチプレクサ1は、図1に示すように、一方のフィルタ装置である送信フィルタ7と、もう一方のフィルタ装置である受信フィルタ8と、アンテナ側の入出力端子6aと、送信機側の入出力端子6bと、受信機側の入出力端子6cとを備える。送信フィルタ7および受信フィルタ8は、それぞれの引き出し線が束ねられてアンテナ側の入出力端子6aに接続されている。 As shown in FIG. 1, the multiplexer 1 includes a transmission filter 7 that is one filter device, a reception filter 8 that is the other filter device, an input / output terminal 6a on the antenna side, and an input / output terminal on the transmitter side. 6b and an input / output terminal 6c on the receiver side. The transmission filter 7 and the reception filter 8 are connected to the input / output terminal 6a on the antenna side by bundling respective lead wires.
 送信フィルタ7は、送信機側の入出力端子6bから入力された送信波を、各送信通過帯域でフィルタリングしてアンテナ側の入出力端子6aへ出力する帯域通過フィルタである。受信フィルタ8は、アンテナ側の入出力端子6aから入力された受信波を、各受信通過帯域でフィルタリングして受信機側の入出力端子6cへ出力する帯域通過フィルタである。 The transmission filter 7 is a band pass filter that filters the transmission wave input from the input / output terminal 6b on the transmitter side in each transmission pass band and outputs it to the input / output terminal 6a on the antenna side. The reception filter 8 is a band pass filter that filters the received wave input from the input / output terminal 6a on the antenna side in each reception pass band and outputs it to the input / output terminal 6c on the receiver side.
 送信フィルタ7は、ラダー型フィルタであり、アンテナ側の入出力端子6aと送信機側の入出力端子6bとを結ぶ経路上に設けられた直列腕共振子2a、2b、2c、2d、および、直列腕共振子2aから直列腕共振子2dまでの接続経路と基準端子(グランド)との間に接続された並列腕共振子3a、3b、3cを有する。受信フィルタ8は、アンテナ側の入出力端子6aと受信機側の入出力端子6cとを結ぶ経路上に設けられた直列共振子4および縦結合型弾性波フィルタ部5を有する。 The transmission filter 7 is a ladder-type filter, and series arm resonators 2a, 2b, 2c, 2d provided on a path connecting the input / output terminal 6a on the antenna side and the input / output terminal 6b on the transmitter side, and Parallel arm resonators 3a, 3b, and 3c are connected between a connection path from the series arm resonator 2a to the series arm resonator 2d and a reference terminal (ground). The reception filter 8 includes a series resonator 4 and a longitudinally coupled acoustic wave filter unit 5 provided on a path connecting the input / output terminal 6a on the antenna side and the input / output terminal 6c on the receiver side.
 本実施の形態に係る弾性波共振器10は、例えば、送信フィルタ7の直列腕共振子2bに含まれる。なお、弾性波共振器10は、送信フィルタ7における直列腕共振子2a~2dの少なくとも1つ、または、受信フィルタ8における直列共振子4に含まれていてもよい。また、弾性波共振器10は、送信フィルタ7の並列腕共振子3a~3dに含まれていてもよいし、縦結合型弾性波フィルタ部5の共振子5a、5bに含まれていてもよい。以下、弾性波共振器10の構成について説明する。 The elastic wave resonator 10 according to the present embodiment is included in the series arm resonator 2b of the transmission filter 7, for example. The acoustic wave resonator 10 may be included in at least one of the series arm resonators 2 a to 2 d in the transmission filter 7 or in the series resonator 4 in the reception filter 8. The elastic wave resonator 10 may be included in the parallel arm resonators 3 a to 3 d of the transmission filter 7 or may be included in the resonators 5 a and 5 b of the longitudinally coupled elastic wave filter unit 5. . Hereinafter, the configuration of the acoustic wave resonator 10 will be described.
 [1-2.弾性波共振器の構成]
 図2は、実施の形態1に係る弾性波共振器10を表す図であって、(a)は平面図、(b)は(a)に示すIIB-IIB線の断面図である。図3は、弾性波共振器10の等価回路である。
[1-2. Configuration of elastic wave resonator]
2A and 2B are diagrams illustrating the acoustic wave resonator 10 according to the first embodiment, in which FIG. 2A is a plan view and FIG. 2B is a cross-sectional view taken along the line IIB-IIB shown in FIG. FIG. 3 is an equivalent circuit of the acoustic wave resonator 10.
 弾性波共振器10は、図2に示すように、圧電基板90と、圧電基板90上に設けられた第1IDT電極11および第2IDT電極22(以下、IDT電極11、IDT電極22と呼ぶ場合がある)と、圧電基板90上に設けられた共用反射器30、第1反射器31および第2反射器32とを備えている。 As shown in FIG. 2, the acoustic wave resonator 10 is sometimes referred to as a piezoelectric substrate 90, and a first IDT electrode 11 and a second IDT electrode 22 (hereinafter referred to as IDT electrode 11 and IDT electrode 22) provided on the piezoelectric substrate 90. A common reflector 30, a first reflector 31, and a second reflector 32 provided on the piezoelectric substrate 90.
 圧電基板90は、例えば、所定のカット角を有するLiTaO圧電単結晶、LiNbO圧電単結晶、または圧電セラミックスからなる。 The piezoelectric substrate 90 is made of, for example, LiTaO 3 piezoelectric single crystal, LiNbO 3 piezoelectric single crystal, or piezoelectric ceramic having a predetermined cut angle.
 先に、IDT電極11、22、共用反射器30、第1反射器31および第2反射器32の断面構造について説明する。IDT電極11、22は、図2の(b)に示すように、密着層91と、密着層91上に設けられた主電極層92との積層構造となっている。また、第1反射器31、共用反射器30および第2反射器32は、IDT電極11、22と同様に密着層91と主電極層92との積層構造となっている。 First, the cross-sectional structures of the IDT electrodes 11 and 22, the shared reflector 30, the first reflector 31, and the second reflector 32 will be described. As shown in FIG. 2B, the IDT electrodes 11 and 22 have a laminated structure of an adhesion layer 91 and a main electrode layer 92 provided on the adhesion layer 91. Further, the first reflector 31, the shared reflector 30, and the second reflector 32 have a laminated structure of the adhesion layer 91 and the main electrode layer 92, similarly to the IDT electrodes 11 and 22.
 密着層91は、圧電基板90と主電極層92との密着性を向上させるための層であり、材料として、例えば、Tiが用いられる。密着層91の膜厚は、例えば、12nmである。主電極層92は、材料として、例えば、Cuを1%含有したAlが用いられる。主電極層92の膜厚は、例えば162nmである。保護層93は、IDT電極11、22を覆うように形成されている。保護層93は、主電極層92を外部環境から保護する、周波数温度特性を調整する、および、耐湿性を高めるなどを目的とする層であり、例えば、二酸化ケイ素を主成分とする膜である。 The adhesion layer 91 is a layer for improving the adhesion between the piezoelectric substrate 90 and the main electrode layer 92, and, for example, Ti is used as a material. The film thickness of the adhesion layer 91 is, for example, 12 nm. The main electrode layer 92 is made of, for example, Al containing 1% Cu. The film thickness of the main electrode layer 92 is, for example, 162 nm. The protective layer 93 is formed so as to cover the IDT electrodes 11 and 22. The protective layer 93 is a layer for the purpose of protecting the main electrode layer 92 from the external environment, adjusting frequency temperature characteristics, and improving moisture resistance, for example, a film containing silicon dioxide as a main component. .
 次に、図2の(a)を参照しつつ、圧電基板90上におけるIDT電極11、22、共用反射器30、第1反射器31および第2反射器32の配置について説明する。なお、圧電基板90上には、上記の他に第1入出力配線41、第2入出力配線42、第1接続電極51および第2接続電極52が設けられている。 Next, the arrangement of the IDT electrodes 11 and 22, the shared reflector 30, the first reflector 31, and the second reflector 32 on the piezoelectric substrate 90 will be described with reference to FIG. In addition to the above, a first input / output wiring 41, a second input / output wiring 42, a first connection electrode 51, and a second connection electrode 52 are provided on the piezoelectric substrate 90.
 IDT電極11、22は、所定方向D1に沿って配置されている。IDT電極11は、互いに対向する一対の櫛歯状電極11aおよび11bにより構成されている。IDT電極22は、互いに対向する一対の櫛歯状電極22aおよび22bにより構成されている。本実施の形態における所定方向D1は、弾性波伝搬方向と同じ方向である。なお、所定方向D1は、弾性波伝搬方向と同じ方向に限られず、弾性波伝搬方向に対して多少傾いた方向であってもよい。 IDT electrodes 11 and 22 are arranged along a predetermined direction D1. The IDT electrode 11 is composed of a pair of comb- like electrodes 11a and 11b facing each other. The IDT electrode 22 is composed of a pair of comb- like electrodes 22a and 22b facing each other. The predetermined direction D1 in the present embodiment is the same direction as the elastic wave propagation direction. The predetermined direction D1 is not limited to the same direction as the elastic wave propagation direction, and may be a direction slightly inclined with respect to the elastic wave propagation direction.
 以下、図2の(a)において、IDT電極11、22のそれぞれの中心位置を基準として、所定方向D1に直交する直交方向D2のプラス側を一方、直交方向D2のマイナス側を他方と呼ぶことにする。 Hereinafter, in FIG. 2A, with reference to the center positions of the IDT electrodes 11 and 22, the plus side of the orthogonal direction D2 orthogonal to the predetermined direction D1 is referred to as one and the minus side of the orthogonal direction D2 is referred to as the other. To.
 IDT電極11の一方の櫛歯状電極11aは、所定方向D1に延びる一方の櫛歯バスバー15aと、櫛歯バスバー15aに接続されて直交方向D2(マイナス側)に延びる交差電極指16およびオフセット電極指17と、を有している。IDT電極11の他方の櫛歯状電極11bは、所定方向D1に延びる他方の櫛歯バスバー15bと、櫛歯バスバー15bに接続されて直交方向D2(プラス側)に延びる交差電極指16およびオフセット電極指17と、を有している。 One comb-shaped electrode 11a of the IDT electrode 11 includes one comb-shaped bus bar 15a extending in a predetermined direction D1, a cross electrode finger 16 and an offset electrode connected to the comb-shaped bus bar 15a and extending in the orthogonal direction D2 (minus side). And a finger 17. The other comb-shaped electrode 11b of the IDT electrode 11 includes the other comb-shaped bus bar 15b extending in the predetermined direction D1, the cross electrode finger 16 connected to the comb-shaped bus bar 15b and extending in the orthogonal direction D2 (plus side) and the offset electrode. And a finger 17.
 IDT電極22の一方の櫛歯状電極22aは、所定方向D1に延びる一方の櫛歯バスバー25aと、櫛歯バスバー25aに接続されて直交方向D2(マイナス側)に延びる交差電極指26およびオフセット電極指27と、を有している。IDT電極22の他方の櫛歯状電極22bは、所定方向D1に延びる他方の櫛歯バスバー25bと、櫛歯バスバー25bに接続されて直交方向D2(プラス側)に延びる交差電極指26およびオフセット電極指27と、を有している。 One comb-shaped electrode 22a of the IDT electrode 22 includes one comb-shaped bus bar 25a extending in a predetermined direction D1, a cross electrode finger 26 connected to the comb-shaped bus bar 25a and extending in the orthogonal direction D2 (minus side), and an offset electrode. Finger 27. The other comb-shaped electrode 22b of the IDT electrode 22 includes the other comb-shaped bus bar 25b extending in a predetermined direction D1, a cross electrode finger 26 connected to the comb-shaped bus bar 25b and extending in the orthogonal direction D2 (plus side), and an offset electrode. Finger 27.
 交差電極指16、26は、所定方向D1から見て、互いに交差している。オフセット電極指17は、交差電極指16、26よりも長さが短く、交差電極指16に対して直交方向D2に対向して配置されている。オフセット電極指27は、交差電極指16、26よりも長さが短く、交差電極指26に対して直交方向D2に対向して配置されている。弾性波共振器10の波長は、所定方向D1における交差電極指16、26の繰り返しピッチλで規定される。 The cross electrode fingers 16 and 26 cross each other as seen from the predetermined direction D1. The offset electrode finger 17 is shorter than the cross electrode fingers 16 and 26 and is disposed to face the cross electrode finger 16 in the orthogonal direction D2. The offset electrode finger 27 is shorter than the cross electrode fingers 16 and 26 and is disposed to face the cross electrode finger 26 in the orthogonal direction D2. The wavelength of the acoustic wave resonator 10 is defined by the repetition pitch λ of the cross electrode fingers 16 and 26 in the predetermined direction D1.
 IDT電極11の一方の櫛歯バスバー15aおよびIDT電極22の一方の櫛歯バスバー25aには第1入出力配線41が接続され、IDT電極11の他方の櫛歯バスバー15bおよびIDT電極22の他方の櫛歯バスバー25bには第2入出力配線42が接続されている。すなわち、IDT電極11とIDT電極22とは、第1入出力配線41と第2入出力配線42とを結ぶ経路において、並列接続されている。 The first input / output wiring 41 is connected to one comb-tooth bus bar 15 a of the IDT electrode 11 and one comb-tooth bus bar 25 a of the IDT electrode 22, and the other comb-tooth bus bar 15 b of the IDT electrode 11 and the other of the IDT electrode 22 are connected. A second input / output wiring 42 is connected to the comb-tooth bus bar 25b. That is, the IDT electrode 11 and the IDT electrode 22 are connected in parallel in a path connecting the first input / output wiring 41 and the second input / output wiring 42.
 共用反射器30は、所定方向1において、IDT電極11とIDT電極22との間に配置されている。共用反射器30は、IDT電極11、22で共通して使用される1つの反射器である。 The common reflector 30 is disposed between the IDT electrode 11 and the IDT electrode 22 in the predetermined direction 1. The shared reflector 30 is one reflector that is commonly used by the IDT electrodes 11 and 22.
 共用反射器30は、一方の反射器バスバー30aと、他方の反射器バスバー30bと、複数の反射電極指30cとを有している。反射器バスバー30a、30bのそれぞれは、所定方向D1に延び、直交方向D2に互いに対向するように配置されている。複数の反射電極指30cのそれぞれは、反射器バスバー30a、30bのそれぞれに接続され、直交方向D2に延びるように配置されている。また、複数の反射電極指30cは、所定方向D1に所定間隔をあけて、互いに平行となるように配置されている。 The shared reflector 30 has one reflector bus bar 30a, the other reflector bus bar 30b, and a plurality of reflective electrode fingers 30c. Each of the reflector bus bars 30a and 30b is disposed so as to extend in a predetermined direction D1 and to face each other in the orthogonal direction D2. Each of the plurality of reflective electrode fingers 30c is connected to each of the reflector bus bars 30a and 30b and arranged to extend in the orthogonal direction D2. The plurality of reflective electrode fingers 30c are arranged to be parallel to each other at a predetermined interval in the predetermined direction D1.
 第1反射器31は、所定方向D1においてIDT電極11から見て共用反射器30と反対側に設けられている。第1反射器31は、一方の反射器バスバー31a、他方の反射器バスバー31bおよび複数の反射電極指31cを有している。反射器バスバー31a、31bのそれぞれは、所定方向D1に延び、直交方向D2に互いに対向するように配置されている。複数の反射電極指31cのそれぞれは、反射器バスバー31a、31bに接続され、直交方向D2に延びるように配置されている。また、複数の反射電極指31cは、所定方向D1に所定間隔をあけて、互いに平行となるように配置されている。 The first reflector 31 is provided on the side opposite to the shared reflector 30 when viewed from the IDT electrode 11 in the predetermined direction D1. The first reflector 31 has one reflector bus bar 31a, the other reflector bus bar 31b, and a plurality of reflective electrode fingers 31c. Each of the reflector bus bars 31a and 31b extends in the predetermined direction D1 and is disposed so as to face each other in the orthogonal direction D2. Each of the plurality of reflective electrode fingers 31c is connected to the reflector bus bars 31a and 31b and arranged to extend in the orthogonal direction D2. The plurality of reflective electrode fingers 31c are arranged in parallel to each other at a predetermined interval in the predetermined direction D1.
 第2反射器32は、所定方向D1においてIDT電極22から見て共用反射器30と反対側に設けられている。第2反射器32は、一方の反射器バスバー32aと、他方の反射器バスバー32bと、複数の反射電極指32cとを有している。反射器バスバー32a、32bのそれぞれは、所定方向D1に延び、直交方向D2に互いに対向するように配置されている。複数の反射電極指32cのそれぞれは、反射器バスバー32a、32bに接続され、直交方向D2に延びるように配置されている。また、複数の反射電極指32cは、所定方向D1に所定間隔をあけて、互いに平行となるように配置されている。 The second reflector 32 is provided on the side opposite to the shared reflector 30 when viewed from the IDT electrode 22 in the predetermined direction D1. The second reflector 32 has one reflector bus bar 32a, the other reflector bus bar 32b, and a plurality of reflective electrode fingers 32c. Each of the reflector bus bars 32a and 32b extends in the predetermined direction D1, and is disposed so as to face each other in the orthogonal direction D2. Each of the plurality of reflective electrode fingers 32c is connected to the reflector bus bars 32a and 32b and arranged to extend in the orthogonal direction D2. The plurality of reflective electrode fingers 32c are arranged to be parallel to each other with a predetermined interval in the predetermined direction D1.
 本実施の形態では、他方の反射器バスバー31bと他方の櫛歯バスバー15bとが、所定方向D1に沿って配置され、接続されている。また、他方の櫛歯バスバー25bと他方の反射器バスバー32bとが、所定方向D1に沿って配置され、接続されている。 In the present embodiment, the other reflector bus bar 31b and the other comb bus bar 15b are arranged and connected along a predetermined direction D1. The other comb-tooth bus bar 25b and the other reflector bus bar 32b are arranged and connected along a predetermined direction D1.
 具体的には、他方の反射器バスバー31bと他方の櫛歯バスバー15bとの間に第1接続電極51が設けられ、第1接続電極51は、他方の反射器バスバー31bと他方の櫛歯バスバー15bとを接続している。また、他方の櫛歯バスバー25bと他方の反射器バスバー32bとの間に第2接続電極52が設けられ、第2接続電極52は、他方の櫛歯バスバー25bと他方の反射器バスバー32bとを接続している。 Specifically, a first connection electrode 51 is provided between the other reflector bus bar 31b and the other comb bus bar 15b, and the first connection electrode 51 is connected to the other reflector bus bar 31b and the other comb bus bar. 15b. A second connection electrode 52 is provided between the other comb-tooth bus bar 25b and the other reflector bus bar 32b, and the second connection electrode 52 connects the other comb-tooth bus bar 25b and the other reflector bus bar 32b. Connected.
 接続電極51の幅は、反射器バスバー31b、櫛歯バスバー15bの幅と同じであり、接続電極51の厚みは、反射器バスバー31b、櫛歯バスバー15bの厚みと同じである。すなわち、反射器バスバー31b、接続電極51、櫛歯バスバー15bは、所定方向D1に沿って直線状に一体となって形成されている。接続電極52の幅は、櫛歯バスバー25b、反射器バスバー32bの幅と同じであり、接続電極52の厚みは、櫛歯バスバー25b、反射器バスバー32bの厚みと同じである。すなわち、櫛歯バスバー25b、接続電極52、反射器バスバー32bは、所定方向D1に沿って直線状に一体となって形成されている。接続電極51、52は、櫛歯バスバー15b、25bおよび反射器バスバー31b、32bと同一プロセス(例えばリフトオフ法など)により形成され、同じ積層構造を有している。 The width of the connection electrode 51 is the same as the width of the reflector bus bar 31b and the comb-shaped bus bar 15b, and the thickness of the connection electrode 51 is the same as the thickness of the reflector bus bar 31b and the comb-shaped bus bar 15b. That is, the reflector bus bar 31b, the connection electrode 51, and the comb-shaped bus bar 15b are integrally formed linearly along the predetermined direction D1. The width of the connection electrode 52 is the same as the width of the comb-tooth bus bar 25b and the reflector bus bar 32b, and the thickness of the connection electrode 52 is the same as the thickness of the comb-tooth bus bar 25b and the reflector bus bar 32b. That is, the comb-tooth bus bar 25b, the connection electrode 52, and the reflector bus bar 32b are integrally formed linearly along the predetermined direction D1. The connection electrodes 51 and 52 are formed by the same process (for example, lift-off method) as the comb-tooth bus bars 15b and 25b and the reflector bus bars 31b and 32b, and have the same laminated structure.
 これらの構造により、弾性波共振器10は、IDT電極11、22で構成されるそれぞれの弾性波素子F1、F2に対応して、容量C1、C2を有する(図3参照)。具体的には、容量C1は、接続電極51で接続された反射器バスバー31bおよび櫛歯バスバー15bの反対側に位置する、一方の反射器バスバー31aと一方の櫛歯バスバー15aとが、異なる電位をもって対向することで形成される。容量C2は、接続電極51で接続された櫛歯バスバー25bおよび反射器バスバー32bの反対側に位置する、一方の櫛歯バスバー25aと一方の反射器バスバー32aとが、異なる電位をもって対向することで形成される。このように、弾性波共振器10が容量C1、C2を有することで、弾性波共振器10における共振特性の急峻性を向上することができる。 With these structures, the acoustic wave resonator 10 has capacitors C1 and C2 corresponding to the respective acoustic wave elements F1 and F2 configured by the IDT electrodes 11 and 22 (see FIG. 3). Specifically, the capacitor C1 is configured such that one reflector bus bar 31a and one comb tooth bus bar 15a located on the opposite sides of the reflector bus bar 31b and the comb tooth bus bar 15b connected by the connection electrode 51 have different potentials. Formed by facing each other. The capacitor C2 is configured such that one comb-tooth bus bar 25a and one reflector bus bar 32a, which are located on the opposite sides of the comb-tooth bus bar 25b and the reflector bus bar 32b connected by the connection electrode 51, face each other with different potentials. It is formed. As described above, since the acoustic wave resonator 10 includes the capacitors C1 and C2, the steepness of the resonance characteristics in the acoustic wave resonator 10 can be improved.
 [1-3.効果等]
 ここで、本実施の形態に係る弾性波共振器10の効果等を説明するため、比較例における弾性波共振器510を例に挙げて説明する。
[1-3. Effect]
Here, in order to explain the effect of the acoustic wave resonator 10 according to the present embodiment, the acoustic wave resonator 510 in the comparative example will be described as an example.
 図4は、比較例における弾性波共振器510を表す平面図である。 FIG. 4 is a plan view showing an acoustic wave resonator 510 in a comparative example.
 比較例の弾性波共振器510は、第1接続電極51および第2接続電極52を有していない点で、実施の形態1と異なる。弾性波共振器510では、他方の反射器バスバー30bと他方の櫛歯バスバー15bが接続されていないため、一方の反射器バスバー31aと一方の櫛歯バスバー15aとの間で容量が発生しにくい構造となっている。また、他方の櫛歯バスバー25bと他方の反射器バスバー32bとが接続されていないため、一方の櫛歯バスバー25aと一方の反射器バスバー32aとの間で容量が発生しにくい構造となっている。 The acoustic wave resonator 510 of the comparative example is different from the first embodiment in that the first connection electrode 51 and the second connection electrode 52 are not provided. In the acoustic wave resonator 510, since the other reflector bus bar 30b and the other comb-tooth bus bar 15b are not connected, a structure in which capacitance is hardly generated between the one reflector bus bar 31a and the one comb-tooth bus bar 15a. It has become. In addition, since the other comb-tooth bus bar 25b and the other reflector bus bar 32b are not connected to each other, it is difficult to generate a capacity between the one comb-tooth bus bar 25a and the one reflector bus bar 32a. .
 図5は、実施の形態1および比較例における弾性波共振器の挿入損失を示す図である。 FIG. 5 is a diagram showing the insertion loss of the acoustic wave resonator in the first embodiment and the comparative example.
 図5に示すように、例えば、周波数846MHzから857MHzへの変化に対して、比較例の弾性波共振器510の挿入損失の増大値が5.57dBであるのに対し、実施の形態1の弾性波共振器10の挿入損失の増大値は、5.84dBであり、比較例に比べて急峻性が高くなっている。 As shown in FIG. 5, for example, with respect to a change from a frequency of 846 MHz to 857 MHz, the increase value of the insertion loss of the acoustic wave resonator 510 of the comparative example is 5.57 dB, whereas the elasticity of the first embodiment is The increase value of the insertion loss of the wave resonator 10 is 5.84 dB, which is higher than the comparative example.
 図6は、実施の形態1および比較例におけるフィルタ装置の挿入損失を示す図である。 FIG. 6 is a diagram showing the insertion loss of the filter device in the first embodiment and the comparative example.
 実施の形態1のフィルタ装置(送信フィルタ7)では、図1に示す直列腕共振子2bが、本実施の形態の弾性波共振器10を含む構成となっている。それに対し、比較例のフィルタ装置では、図1に示す直列腕共振子2bが、比較例の弾性波共振器510(図4参照)を含む構成となっている。 In the filter device (transmission filter 7) of the first embodiment, the series arm resonator 2b shown in FIG. 1 includes the elastic wave resonator 10 of the present embodiment. On the other hand, in the filter device of the comparative example, the series arm resonator 2b shown in FIG. 1 includes the elastic wave resonator 510 (see FIG. 4) of the comparative example.
 図6に示すように、例えば、周波数856MHzから865MHzへの変化に対して、比較例のフィルタ装置の通過帯域における挿入損失の増大値が27.37dBであるのに対し、実施の形態1のフィルタ装置の通過帯域における挿入損失の増大値は、29.18dBであり、比較例に比べて急峻性が高くなっている。 As shown in FIG. 6, for example, the increase value of the insertion loss in the pass band of the filter device of the comparative example is 27.37 dB with respect to the change from the frequency 856 MHz to 865 MHz, whereas the filter of the first embodiment The increase value of the insertion loss in the pass band of the device is 29.18 dB, which is higher than the comparative example.
 図7は、実施の形態1および比較例におけるマルチプレクサの周波数特性を示す図であって、(a)は挿入損失、(b)はアイソレーション特性を示す図である。なお、アイソレーション特性は、図1に示すマルチプレクサにおいて、Tx-Rx間の挿入損失を測定することで求めた。 FIG. 7 is a diagram showing the frequency characteristics of the multiplexers in the first embodiment and the comparative example, where (a) is an insertion loss and (b) is a diagram showing isolation characteristics. The isolation characteristic was obtained by measuring the insertion loss between Tx and Rx in the multiplexer shown in FIG.
 図7の(a)に示すように、例えば、周波数856MHzから865MHzへの変化に対して、比較例のマルチプレクサの送信通過帯域における挿入損失の増大値が27.64dBであるのに対し、実施の形態1のマルチプレクサ1の送信通過帯域における挿入損失の増大値は、29.48dBであり、比較例に比べて急峻性が高くなっている。 As shown in FIG. 7A, for example, with respect to a change from a frequency of 856 MHz to 865 MHz, the increase value of the insertion loss in the transmission passband of the multiplexer of the comparative example is 27.64 dB. The increase value of the insertion loss in the transmission passband of the multiplexer 1 of the first embodiment is 29.48 dB, which is higher than the comparative example.
 また、図7の(b)に示すように、実施の形態1は、比較例に対して、Txロスが2dBである周波数とRx帯Isoが50dBである周波数との周波数差Δfが0.3MHz改善し(小さくなり)、アイソレーション性が向上している。 As shown in FIG. 7B, the first embodiment has a frequency difference Δf of 0.3 MHz between the frequency where the Tx loss is 2 dB and the frequency where the Rx band Iso is 50 dB as compared with the comparative example. Improved (becomes smaller) and improved isolation.
 [1-4.まとめ]
 本実施の形態に係る弾性波共振器10は、圧電基板90と、互いに対向する一対の櫛歯状電極11a、11bを有するIDT電極11、および、一対の櫛歯状電極22a、22bを有するIDT電極22であって、圧電基板90上に設けられ、所定方向D1に沿って配置されたIDT電極11およびIDT電極22と、圧電基板90上に設けられ、所定方向D1においてIDT電極11とIDT電極22との間に配置された共用反射器30と、圧電基板90上に設けられ、所定方向D1においてIDT電極11から見て共用反射器30と反対側に設けられた第1反射器31と、圧電基板90上に設けられ、所定方向D1においてIDT電極22から見て共用反射器30と反対側に設けられた第2反射器32とを備えている。IDT電極11は、所定方向D1に延びて直交方向D2に互いに対向する一方の櫛歯バスバー15aおよび他方の櫛歯バスバー15bを有している。IDT電極22は、所定方向D1に延びて直交方向D2に互いに対向する一方の櫛歯バスバー25aおよび他方の櫛歯バスバー25bを有している。第1反射器31は、所定方向D1に延びて直交方向D2に互いに対向する一方の反射器バスバー31aおよび他方の反射器バスバー31bを有している。第2反射器32は、所定方向D1に延びて直交方向D2に互いに対向する一方の反射器バスバー32aおよび他方の反射器バスバー32bを有している。そして、第1反射器31の他方の反射器バスバー31bと、IDT電極11の他方の櫛歯バスバー15bとが所定方向D1に沿って配置され、互いに接続されている。また、IDT電極22の他方の櫛歯バスバー25bと、第2反射器32の他方の反射器バスバー32bとが所定方向D1に沿って配置され、互いに接続されている。
[1-4. Summary]
The acoustic wave resonator 10 according to the present embodiment includes a piezoelectric substrate 90, an IDT electrode 11 having a pair of comb- like electrodes 11a and 11b facing each other, and an IDT having a pair of comb- like electrodes 22a and 22b. The electrode 22 is provided on the piezoelectric substrate 90 and disposed along the predetermined direction D1, and the IDT electrode 11 and the IDT electrode 22 are provided on the piezoelectric substrate 90, and the IDT electrode 11 and the IDT electrode in the predetermined direction D1. 22 and the first reflector 31 provided on the piezoelectric substrate 90 and provided on the opposite side of the common reflector 30 when viewed from the IDT electrode 11 in the predetermined direction D1; The second reflector 32 is provided on the piezoelectric substrate 90 and provided on the opposite side of the shared reflector 30 when viewed from the IDT electrode 22 in the predetermined direction D1. The IDT electrode 11 has one comb-tooth bus bar 15a and the other comb-tooth bus bar 15b extending in the predetermined direction D1 and facing each other in the orthogonal direction D2. The IDT electrode 22 has one comb-tooth bus bar 25a and the other comb-tooth bus bar 25b extending in the predetermined direction D1 and facing each other in the orthogonal direction D2. The first reflector 31 has one reflector bus bar 31a and the other reflector bus bar 31b extending in the predetermined direction D1 and facing each other in the orthogonal direction D2. The second reflector 32 has one reflector bus bar 32a and the other reflector bus bar 32b extending in the predetermined direction D1 and facing each other in the orthogonal direction D2. The other reflector bus bar 31b of the first reflector 31 and the other comb bus bar 15b of the IDT electrode 11 are arranged along the predetermined direction D1 and connected to each other. Further, the other comb-tooth bus bar 25b of the IDT electrode 22 and the other reflector bus bar 32b of the second reflector 32 are arranged along the predetermined direction D1 and connected to each other.
 このように弾性波共振器10では、互いに接続された反射器バスバー31bおよび櫛歯バスバー15bの反対側に位置する、一方の反射器バスバー31aと一方の櫛歯バスバー15aとが、異なる電位をもって対向するので、弾性波共振器10に容量が付加される。また、互いに接続された櫛歯バスバー25bおよび反射器バスバー32bの反対側に位置する、一方の櫛歯バスバー25aと一方の反射器バスバー32aとが、異なる電位をもって対向するので、弾性波共振器10に容量が付加される。このように、弾性波共振器10に容量が付加されることで、弾性波共振器10における共振特性の急峻性を向上することができる。 As described above, in the acoustic wave resonator 10, one reflector bus bar 31a and one comb bus bar 15a, which are located on opposite sides of the reflector bus bar 31b and the comb bus bar 15b connected to each other, face each other with different potentials. Therefore, a capacitance is added to the acoustic wave resonator 10. Since one comb-tooth bus bar 25a and one reflector bus bar 32a located on the opposite sides of the comb-tooth bus bar 25b and the reflector bus bar 32b connected to each other face each other with different potentials, the acoustic wave resonator 10 Capacity is added to In this way, by adding the capacitance to the acoustic wave resonator 10, the steepness of the resonance characteristics in the acoustic wave resonator 10 can be improved.
 なお、弾性波共振器10では、反射器バスバー31bと櫛歯バスバー15bとが接続された状態、および、櫛歯バスバー25bと反射器バスバー32bとが接続された状態のうち、少なくとも一方の状態を有していれば上記効果を有する。 In the acoustic wave resonator 10, at least one of the state where the reflector bus bar 31b and the comb bus bar 15b are connected and the state where the comb bus bar 25b and the reflector bus bar 32b are connected is used. If it has, it has the said effect.
 (実施の形態2)
 図8は、実施の形態2に係る弾性波共振器10Aを表す平面図である。図9は、弾性波共振器10Aの等価回路である。
(Embodiment 2)
FIG. 8 is a plan view showing an acoustic wave resonator 10A according to the second embodiment. FIG. 9 is an equivalent circuit of the acoustic wave resonator 10A.
 この弾性波共振器10Aは、実施の形態1の弾性波共振器10に、さらに、第1対向電極61および第2対向電極62を備えている。 This elastic wave resonator 10A is further provided with a first counter electrode 61 and a second counter electrode 62 in addition to the elastic wave resonator 10 of the first embodiment.
 具体的には、第1対向電極61は、直交方向D2において、第1反射器31の一方の反射器バスバー31aから見て他方の反射器バスバー31bと反対側に設けられ、グランドに接続されている。第1対向電極61は、反射器バスバー31aに対して所定距離をあけて平行に配置されることで反射器バスバー31aと対向している。 Specifically, the first counter electrode 61 is provided on the opposite side to the other reflector bus bar 31b when viewed from one reflector bus bar 31a of the first reflector 31 in the orthogonal direction D2, and is connected to the ground. Yes. The first counter electrode 61 faces the reflector bus bar 31a by being arranged in parallel with a predetermined distance from the reflector bus bar 31a.
 また、第2対向電極62は、直交方向D2において、第2反射器32の一方の反射器バスバー32aから見て他方の反射器バスバー32bと反対側に設けられ、グランドに接続されている。第2対向電極62は、反射器バスバー32aに対して所定距離をあけて平行に配置されることで反射器バスバー32aと対向している。 Further, the second counter electrode 62 is provided on the opposite side of the second reflector 32 from the other reflector bus bar 32b when viewed from the one reflector bus bar 32a in the orthogonal direction D2, and is connected to the ground. The second counter electrode 62 is opposed to the reflector bus bar 32a by being arranged parallel to the reflector bus bar 32a at a predetermined distance.
 なお、反射器バスバー31aと第1対向電極61との間、および、反射器バスバー32aと第2対向電極62との間には、前述した保護層93(例えば二酸化ケイ素)と同じ材料が充填されている。 The same material as that of the protective layer 93 (for example, silicon dioxide) is filled between the reflector bus bar 31a and the first counter electrode 61 and between the reflector bus bar 32a and the second counter electrode 62. ing.
 この構造により、弾性波共振器10Aは、図9に示すように、容量C3、C4を有する。容量C3は、一方の反射器バスバー31aと一方の櫛歯バスバー15aとが異なる電位をもって対向すること、および、一方の反射器バスバー31aと第1対向電極61とが異なる電位をもって対向することで形成されている。また、容量C4は、一方の櫛歯バスバー25aと一方の反射器バスバー32aとが異なる電位をもって対向すること、および、一方の反射器バスバー32aと第2対向電極62とが異なる電位をもって対向することで形成されている。このように、弾性波共振器10Aが、容量C3、C4を有することで、弾性波共振器10Aの共振特性の急峻性を向上することができる。 With this structure, the acoustic wave resonator 10A has capacitors C3 and C4 as shown in FIG. The capacitor C3 is formed by one reflector bus bar 31a and the one comb-tooth bus bar 15a facing each other with different potentials, and one reflector bus bar 31a and the first counter electrode 61 facing each other with different potentials. Has been. In the capacitor C4, one comb-tooth bus bar 25a and one reflector bus bar 32a face each other with different potentials, and one reflector bus bar 32a and the second counter electrode 62 face each other with different potentials. It is formed with. Thus, since the acoustic wave resonator 10A has the capacitors C3 and C4, the steepness of the resonance characteristics of the acoustic wave resonator 10A can be improved.
 なお、弾性波共振器10Aでは、反射器バスバー31aと第1対向電極61とが対向する状態、および、反射器バスバー32aと第2対向電極62とが対向する状態のうちの少なくとも一方の状態を有していれば上記効果を有する。 In the acoustic wave resonator 10A, at least one of the state where the reflector bus bar 31a and the first counter electrode 61 face each other and the state where the reflector bus bar 32a and the second counter electrode 62 face each other is set. If it has, it has the said effect.
 (実施の形態3)
 図10は、実施の形態3に係る弾性波共振器10Bを表す図であって、(a)は平面図、(b)は(a)に示すXB-XB線の断面図である平面図である。図11は、弾性波共振器10Bの等価回路である。なお、図10の(b)では、密着層91、主電極層92および保護層93の図示を省略している。
(Embodiment 3)
10A and 10B are diagrams illustrating an acoustic wave resonator 10B according to the third embodiment, in which FIG. 10A is a plan view and FIG. 10B is a plan view that is a cross-sectional view taken along line XB-XB shown in FIG. is there. FIG. 11 is an equivalent circuit of the acoustic wave resonator 10B. In FIG. 10B, illustration of the adhesion layer 91, the main electrode layer 92, and the protective layer 93 is omitted.
 この弾性波共振器10Bは、実施の形態1の弾性波共振器10に、さらに、第3対向電極63および第4対向電極64を備えている。 This elastic wave resonator 10B further includes a third counter electrode 63 and a fourth counter electrode 64 in addition to the elastic wave resonator 10 of the first embodiment.
 具体的には、第1反射器31の一方の反射器バスバー31a上に第1絶縁層66が設けられ、第1絶縁層66上には、一方の反射器バスバー31aと厚み方向に対向する第3対向電極63が設けられている。第3対向電極63は、所定方向D1に沿って形成され、第3対向電極63の所定方向D1のプラス側の端部は、一方の櫛歯バスバー15aに接続されている。 Specifically, a first insulating layer 66 is provided on one reflector bus bar 31a of the first reflector 31, and a first opposing bus bar 31a in the thickness direction is provided on the first insulating layer 66. Three counter electrodes 63 are provided. The third counter electrode 63 is formed along the predetermined direction D1, and the positive end of the third counter electrode 63 in the predetermined direction D1 is connected to one comb-tooth bus bar 15a.
 また、第2反射器32の一方の反射器バスバー32a上に第2絶縁層67が設けられ、第2絶縁層67上には、一方の反射器バスバー32aと厚み方向に対向する第4対向電極64が設けられている。第4対向電極64は、所定方向D1に沿って形成され、第4対向電極64の所定方向D1のマイナス側の端部は一方の櫛歯バスバー25aに接続されている。第1絶縁層66および第2絶縁層67の材質は、例えば、二酸化ケイ素、ポリイミドから適宜選択される。 Further, a second insulating layer 67 is provided on one reflector bus bar 32a of the second reflector 32, and a fourth counter electrode facing the one reflector bus bar 32a in the thickness direction is provided on the second insulating layer 67. 64 is provided. The fourth counter electrode 64 is formed along the predetermined direction D1, and the negative end of the fourth counter electrode 64 in the predetermined direction D1 is connected to one comb-shaped bus bar 25a. The material of the first insulating layer 66 and the second insulating layer 67 is appropriately selected from, for example, silicon dioxide and polyimide.
 この構造により、弾性波共振器10Bは、図11に示すように、容量C5、C6を有する。容量C5は、一方の反射器バスバー31aと一方の櫛歯バスバー15aとが異なる電位をもって対向すること、および、一方の反射器バスバー31aと第3対向電極63とが異なる電位をもって対向することで形成されている。また、容量C6は、一方の櫛歯バスバー25aと一方の反射器バスバー32aとが異なる電位をもって対向すること、および、一方の反射器バスバー32aと第4対向電極64とが異なる電位をもって対向することで形成されている。このように、弾性波共振器10Bが、容量C5、C6を有することで、弾性波共振器10Bの共振特性の急峻性を向上することができる。 With this structure, the acoustic wave resonator 10B has capacitors C5 and C6 as shown in FIG. The capacitor C5 is formed by facing one reflector bus bar 31a and one comb-tooth bus bar 15a with different potentials, and facing one reflector bus bar 31a and the third counter electrode 63 with different potentials. Has been. In the capacitor C6, one comb bus bar 25a and one reflector bus bar 32a face each other with different potentials, and one reflector bus bar 32a and the fourth counter electrode 64 face each other with different potentials. It is formed with. As described above, since the acoustic wave resonator 10B includes the capacitors C5 and C6, the steepness of the resonance characteristics of the acoustic wave resonator 10B can be improved.
 なお、弾性波共振器10Bでは、反射器バスバー31aと第3対向電極63とが対向する状態、および、反射器バスバー32aと第4対向電極64とが対向する状態のうちの少なくとも一方の状態を有していれば上記効果を有する。 In the acoustic wave resonator 10B, at least one of the state where the reflector bus bar 31a and the third counter electrode 63 face each other and the state where the reflector bus bar 32a and the fourth counter electrode 64 face each other is set. If it has, it has the said effect.
 (その他の形態など)
 以上、本発明の実施の形態に係る弾性波共振器、フィルタ装置およびマルチプレクサについて説明したが、本発明は、上記実施の形態には限定されない。例えば、上記実施の形態に次のような変形を施した態様も、本発明に含まれる。
(Other forms etc.)
The acoustic wave resonator, the filter device, and the multiplexer according to the embodiment of the present invention have been described above, but the present invention is not limited to the above embodiment. For example, an aspect in which the following embodiment is modified as described below is also included in the present invention.
 例えば、弾性波共振器10~10Bは、弾性表面波共振器に限られず、弾性境界波共振器であってもよい。 For example, the acoustic wave resonators 10 to 10B are not limited to surface acoustic wave resonators, and may be boundary acoustic wave resonators.
 例えば、弾性波共振器10~10Bでは、櫛歯状電極11a、11b、22a、22bにオフセット電極指17、27を設けることで、高調波などに起因する不要な周波数成分であるスプリアスなどを抑制している。ただし、それに限られず、櫛歯状電極11a、11b、22a、22bの電極指は、オフセット電極指17、27を有せず、交差電極指16、26のみで構成されていてもよい。 For example, in the acoustic wave resonators 10 to 10B, the offset electrode fingers 17 and 27 are provided on the comb-shaped electrodes 11a, 11b, 22a, and 22b, thereby suppressing spurious and the like that are unnecessary frequency components caused by harmonics and the like. is doing. However, the electrode fingers of the comb-shaped electrodes 11a, 11b, 22a, and 22b are not limited thereto, and may include the cross electrode fingers 16 and 26 without the offset electrode fingers 17 and 27.
 例えば、反射器バスバー31a、32aは、反射電極指31c、32cよりも幅が広く、また、厚さが厚くなるように形成されていてもよい。一方の櫛歯バスバー15a、25aは、交差電極指16、26およびオフセット電極指17、27よりも幅が広く、また、厚さが厚くなるように形成されていてもよい。反射器バスバー31a、32a、櫛歯バスバー15a、25aの幅を広くまたは厚さを厚くすることで、対向面積を増やし、容量C1、C2を大きくすることができる。これにより、弾性波共振器10~10Bの共振特性の急峻性を向上することができる。 For example, the reflector bus bars 31a and 32a may be formed to be wider and thicker than the reflective electrode fingers 31c and 32c. One comb- tooth bus bar 15a, 25a may be formed to be wider and thicker than the cross electrode fingers 16, 26 and the offset electrode fingers 17, 27. By increasing the width of the reflector bus bars 31a and 32a and the comb- tooth bus bars 15a and 25a or increasing the thickness, the facing area can be increased and the capacities C1 and C2 can be increased. Thereby, the steepness of the resonance characteristics of the acoustic wave resonators 10 to 10B can be improved.
 また、弾性波共振器10の密着層91、主電極層92および保護層93を構成する材料は、上述した材料に限定されない。さらに、IDT電極11、22は、上記積層構造でなくてもよい。IDT電極11、22は、例えば、Ti、Al、Cu、Pt、Au、Ag、Pdなどの金属または合金から構成されてもよく、また、上記の金属または合金から構成される複数の積層体から構成されてもよい。また、保護層93は、形成されていなくてもよい。 Further, the materials constituting the adhesion layer 91, the main electrode layer 92, and the protective layer 93 of the acoustic wave resonator 10 are not limited to the materials described above. Furthermore, the IDT electrodes 11 and 22 do not have to have the above laminated structure. The IDT electrodes 11 and 22 may be made of, for example, a metal or an alloy such as Ti, Al, Cu, Pt, Au, Ag, or Pd. It may be configured. Further, the protective layer 93 may not be formed.
 また、弾性波共振器10の圧電基板90は、高音速支持基板と、低音速膜と、圧電膜とがこの順で積層された積層構造であってもよい。圧電膜は、例えば、50°YカットX伝搬LiTaO圧電単結晶または圧電セラミックス(X軸を中心軸としてY軸から50°回転した軸を法線とする面で切断したタンタル酸リチウム単結晶、またはセラミックスであって、X軸方向に弾性表面波が伝搬する単結晶またはセラミックス)からなる。圧電膜は、例えば、厚みが600nmである。高音速支持基板は、低音速膜、圧電膜ならびにIDT電極を支持する基板である。高音速支持基板は、さらに、圧電膜を伝搬する表面波や境界波の弾性波よりも、高音速支持基板中のバルク波の音速が高速となる基板であり、弾性表面波を圧電膜および低音速膜が積層されている部分に閉じ込め、高音速支持基板より下方に漏れないように機能する。高音速支持基板は、例えば、シリコン基板であり、厚みは、例えば200μmである。低音速膜は、圧電膜を伝搬するバルク波よりも、低音速膜中のバルク波の音速が低速となる膜であり、圧電膜と高音速支持基板との間に配置される。この構造と、弾性波が本質的に低音速な媒質にエネルギーが集中するという性質とにより、弾性表面波エネルギーのIDT電極外への漏れが抑制される。低音速膜は、例えば、二酸化ケイ素を主成分とする膜であり、厚みは、例えば670nmである。この積層構造によれば、圧電基板90を単層で使用している構造と比較して、共振周波数および反共振周波数におけるQ値を大幅に高めることが可能となる。すなわち、Q値が高い弾性表面波共振器を構成し得るので、当該弾性表面波共振器を用いて、挿入損失が小さいフィルタを構成することが可能となる。 Further, the piezoelectric substrate 90 of the acoustic wave resonator 10 may have a laminated structure in which a high sound velocity supporting substrate, a low sound velocity film, and a piezoelectric film are laminated in this order. The piezoelectric film may be, for example, a 50 ° Y-cut X-propagating LiTaO 3 piezoelectric single crystal or a piezoelectric ceramic (a lithium tantalate single crystal cut along a plane whose axis is rotated by 50 ° from the Y axis with the X axis as the central axis, Alternatively, it is made of ceramic and is made of a single crystal or ceramic in which surface acoustic waves propagate in the X-axis direction. The piezoelectric film has a thickness of 600 nm, for example. The high sound velocity support substrate is a substrate that supports the low sound velocity film, the piezoelectric film, and the IDT electrode. The high-sonic support substrate is a substrate in which the acoustic velocity of the bulk wave in the high-sonic support substrate is higher than that of the surface wave or boundary wave that propagates through the piezoelectric film. It functions in such a way that it is confined in the portion where the sonic film is laminated and does not leak below the high sonic support substrate. The high sound speed support substrate is, for example, a silicon substrate and has a thickness of, for example, 200 μm. The low acoustic velocity film is a membrane in which the acoustic velocity of the bulk wave in the low acoustic velocity film is lower than the bulk wave propagating through the piezoelectric membrane, and is disposed between the piezoelectric membrane and the high acoustic velocity support substrate. Due to this structure and the property that energy is concentrated in a medium where acoustic waves are essentially low in sound velocity, leakage of surface acoustic wave energy to the outside of the IDT electrode is suppressed. The low acoustic velocity film is, for example, a film mainly composed of silicon dioxide and has a thickness of, for example, 670 nm. According to this laminated structure, the Q value at the resonance frequency and the anti-resonance frequency can be significantly increased as compared with a structure in which the piezoelectric substrate 90 is used as a single layer. That is, since a surface acoustic wave resonator having a high Q value can be configured, a filter with a small insertion loss can be configured using the surface acoustic wave resonator.
 また、本実施の形態では、所定方向D1が弾性波伝搬方向と同じ方向である例を示したが、それに限られず、所定方向D1は、弾性波伝搬方向に対して多少傾いた方向であってもよい。例えば、実施の形態1における櫛歯バスバー15a、15b、25a、25bおよび反射器バスバー30a、30b、31a、31b、32a、32bのそれぞれが、弾性波伝搬方向に対して、0°以上10°以下傾いた方向に延びて形成されていてもよい。その場合、交差電極指16、26、オフセット電極指17、27および反射電極指30c、31c、32cのそれぞれは、弾性波伝搬方向に対して直交する方向に延びて形成されていればよい。また、その場合、弾性波共振器10の波長は、弾性波伝搬方向における交差電極指16、26のそれぞれの繰り返しピッチλで規定すればよい。 In the present embodiment, an example in which the predetermined direction D1 is the same direction as the elastic wave propagation direction has been described. However, the present invention is not limited thereto, and the predetermined direction D1 is a direction slightly inclined with respect to the elastic wave propagation direction. Also good. For example, each of the comb- tooth bus bars 15a, 15b, 25a, 25b and the reflector bus bars 30a, 30b, 31a, 31b, 32a, 32b in the first embodiment is 0 ° or more and 10 ° or less with respect to the elastic wave propagation direction. It may be formed extending in an inclined direction. In that case, each of the crossed electrode fingers 16, 26, the offset electrode fingers 17, 27, and the reflective electrode fingers 30c, 31c, 32c may be formed so as to extend in a direction orthogonal to the elastic wave propagation direction. In this case, the wavelength of the acoustic wave resonator 10 may be defined by the repetition pitch λ of each of the cross electrode fingers 16 and 26 in the acoustic wave propagation direction.
 本発明は、共振特性の急峻性が向上した弾性波共振器、フィルタ装置、デュプレクサおよびマルチプレクサとして、携帯電話などの移動体通信機に広く利用できる。 The present invention can be widely used in mobile communication devices such as mobile phones as acoustic wave resonators, filter devices, duplexers, and multiplexers with improved resonance characteristics.
 1   マルチプレクサ
 2a、2b、2c、2d 直列腕共振子
 3a、3b、3c 並列腕共振子
 4    直列共振子
 5    縦結合型弾性波フィルタ部
 6a、6b、6c 入出力端子
 7    送信フィルタ(フィルタ装置)
 8    受信フィルタ(フィルタ装置)
 10、10A、10B 弾性波共振器
 11  第1IDT電極
 11a 一方の櫛歯状電極
 11b 他方の櫛歯状電極
 15a 一方の櫛歯バスバー
 15b 他方の櫛歯バスバー
 16  交差電極指
 17  オフセット電極指
 22  第2IDT電極
 22a 一方の櫛歯状電極
 22b 他方の櫛歯状電極
 25a 一方の櫛歯バスバー
 25b 他方の櫛歯バスバー
 26  交差電極指
 27  オフセット電極指
 30  共用反射器
 30a 一方の反射器バスバー
 30b 他方の反射器バスバー
 30c 反射電極指
 31  第1反射器
 31a 一方の反射器バスバー
 31b 他方の反射器バスバー
 31c 反射電極指
 32  第2反射器
 32a 一方の反射器バスバー
 32b 他方の反射器バスバー
 32c 反射電極指
 41  第1入出力配線
 42  第2入出力配線
 51  第1接続電極
 52  第2接続電極
 61  第1対向電極
 62  第2対向電極
 63  第3対向電極
 64  第4対向電極
 66  第1絶縁層
 67  第2絶縁層
 90  圧電基板
 91  密着層
 92  主電極層
 93  保護層
 D1  所定方向
 D2  直交方向
 F1、F2 弾性波素子
DESCRIPTION OF SYMBOLS 1 Multiplexer 2a, 2b, 2c, 2d Series arm resonator 3a, 3b, 3c Parallel arm resonator 4 Series resonator 5 Longitudinal coupling type | mold elastic wave filter part 6a, 6b, 6c Input / output terminal 7 Transmission filter (filter apparatus)
8 Reception filter (filter device)
10, 10A, 10B Elastic wave resonator 11 First IDT electrode 11a One comb-shaped electrode 11b The other comb-shaped electrode 15a One comb-shaped bus bar 15b The other comb-shaped bus bar 16 Cross electrode finger 17 Offset electrode finger 22 Second IDT Electrode 22a One comb-shaped electrode 22b The other comb-shaped electrode 25a One comb-shaped bus bar 25b The other comb-shaped bus bar 26 Crossed electrode finger 27 Offset electrode finger 30 Shared reflector 30a One reflector bus bar 30b The other reflector Bus bar 30c Reflective electrode finger 31 First reflector 31a One reflector bus bar 31b The other reflector bus bar 31c Reflective electrode finger 32 Second reflector 32a One reflector bus bar 32b The other reflector bus bar 32c Reflective electrode finger 41 First Input / output wiring 42 Second input / output wiring 51 First connection electrode 2 2nd connection electrode 61 1st counter electrode 62 2nd counter electrode 63 3rd counter electrode 64 4th counter electrode 66 1st insulating layer 67 2nd insulating layer 90 Piezoelectric substrate 91 Adhesion layer 92 Main electrode layer 93 Protection layer D1 Predetermined Direction D2 Orthogonal direction F1, F2 Elastic wave element

Claims (7)

  1.  圧電基板と、
     互いに対向する一対の櫛歯状電極を有するIDT電極であって、前記圧電基板上に設けられ、所定方向に沿って配置された第1IDT電極および第2IDT電極と、
     前記圧電基板上に設けられ、前記所定方向において前記第1IDT電極と前記第2IDT電極との間に配置された共用反射器と、
     前記圧電基板上に設けられ、前記所定方向において前記第1IDT電極から見て前記共用反射器と反対側に設けられた第1反射器と、
     前記圧電基板上に設けられ、前記所定方向において前記第2IDT電極から見て前記共用反射器と反対側に設けられた第2反射器と
     を備え、
     前記第1IDT電極および前記第2IDT電極のそれぞれは、前記所定方向に延びて前記所定方向の直交方向に互いに対向する一方の櫛歯バスバーおよび他方の櫛歯バスバーを有し、
     前記第1反射器および前記第2反射器のそれぞれは、前記所定方向に延びて前記直交方向に互いに対向する一方の反射器バスバーおよび他方の反射器バスバーを有し、
     前記第1反射器の前記他方の反射器バスバーと、前記第1IDT電極の前記他方の櫛歯バスバーとが前記所定方向に沿って配置され、互いに接続されている状態、および、前記第2IDT電極の前記他方の櫛歯バスバーと、前記第2反射器の前記他方の反射器バスバーとが前記所定方向に沿って配置され、互いに接続されている状態のうちの少なくとも一方の状態を有する
     弾性波共振器。
    A piezoelectric substrate;
    An IDT electrode having a pair of comb-like electrodes facing each other, the first IDT electrode and the second IDT electrode provided on the piezoelectric substrate and arranged along a predetermined direction;
    A shared reflector provided on the piezoelectric substrate and disposed between the first IDT electrode and the second IDT electrode in the predetermined direction;
    A first reflector provided on the piezoelectric substrate and provided on a side opposite to the shared reflector as viewed from the first IDT electrode in the predetermined direction;
    A second reflector provided on the piezoelectric substrate and provided on the opposite side of the shared reflector as viewed from the second IDT electrode in the predetermined direction;
    Each of the first IDT electrode and the second IDT electrode has one comb-shaped bus bar and the other comb-shaped bus bar that extend in the predetermined direction and face each other in a direction orthogonal to the predetermined direction,
    Each of the first reflector and the second reflector has one reflector bus bar and the other reflector bus bar extending in the predetermined direction and facing each other in the orthogonal direction,
    A state in which the other reflector bus bar of the first reflector and the other comb-tooth bus bar of the first IDT electrode are arranged along the predetermined direction and connected to each other; and the second IDT electrode The other comb-tooth bus bar and the other reflector bus bar of the second reflector are arranged along the predetermined direction and have at least one state of being connected to each other. .
  2.  前記第1反射器の前記他方の反射器バスバーと、前記第1IDT電極の前記他方の櫛歯バスバーとは、当該他方の反射器バスバーと当該他方の櫛歯バスバーとの間に位置する第1接続電極を介して接続され、
     前記第2IDT電極の前記他方の櫛歯バスバーと、前記第2反射器の前記他方の反射器バスバーとは、当該他方の櫛歯バスバーと当該他方の反射器バスバーとの間に位置する第2接続電極を介して接続されている
     請求項1に記載の弾性波共振器。
    The other reflector bus bar of the first reflector and the other comb-shaped bus bar of the first IDT electrode are located between the other reflector bus bar and the other comb-shaped bus bar. Connected through electrodes,
    The other comb-tooth bus bar of the second IDT electrode and the other reflector bus bar of the second reflector are located between the other comb-tooth bus bar and the other reflector bus bar. The elastic wave resonator according to claim 1, wherein the elastic wave resonators are connected via electrodes.
  3.  前記第1IDT電極および前記第2IDT電極のそれぞれの前記一方の櫛歯バスバーに第1入出力配線が接続され、
     前記第1IDT電極および前記第2IDT電極のそれぞれの前記他方の櫛歯バスバーに第2入出力配線が接続され、
     前記第1入出力配線と前記第2入出力配線とを結ぶ経路において、前記第1IDT電極と前記第2IDT電極とは並列接続されている
     請求項2に記載の弾性波共振器。
    A first input / output wiring is connected to the one comb-tooth bus bar of each of the first IDT electrode and the second IDT electrode;
    A second input / output wiring is connected to the other comb-tooth bus bar of each of the first IDT electrode and the second IDT electrode;
    The acoustic wave resonator according to claim 2, wherein the first IDT electrode and the second IDT electrode are connected in parallel in a path connecting the first input / output wiring and the second input / output wiring.
  4.  さらに、
     前記直交方向において、前記第1反射器の前記一方の反射器バスバーから見て前記他方の反射器バスバーと反対側に、当該一方の反射器バスバーと対向する第1対向電極が設けられ、前記第1対向電極はグランドに接続されている状態、および、前記直交方向において、前記第2反射器の前記一方の反射器バスバーから見て前記他方の反射器バスバーと反対側に、当該一方の反射器バスバーと対向する第2対向電極が設けられ、前記第2対向電極は、グランドに接続されている状態のうちの少なくとも一方の状態を有する
     請求項1~3のいずれか1項に記載の弾性波共振器。
    further,
    In the orthogonal direction, a first counter electrode facing the one reflector bus bar is provided on the side opposite to the other reflector bus bar when viewed from the one reflector bus bar of the first reflector. One counter electrode is connected to the ground, and in the orthogonal direction, the one reflector is located on the opposite side of the second reflector bus bar as viewed from the one reflector bus bar of the second reflector. The elastic wave according to any one of claims 1 to 3, wherein a second counter electrode facing the bus bar is provided, and the second counter electrode has at least one state of being connected to the ground. Resonator.
  5.  さらに、
     前記第1反射器の前記一方の反射器バスバー上に第1絶縁層が設けられ、前記第1絶縁層上に当該一方の反射器バスバーと対向する第3対向電極が設けられ、前記第3対向電極は、前記第1IDT電極の前記一方の櫛歯バスバーに接続されている状態、および、前記第2反射器の前記一方の反射器バスバー上に第2絶縁層が設けられ、前記第2絶縁層上に当該一方の反射器バスバーと対向する第4対向電極が設けられ、前記第4対向電極は、前記第2IDT電極の前記一方の櫛歯バスバーに接続されている状態のうちの少なくとも一方の状態を有する
     請求項1~4のいずれか1項に記載の弾性波共振器。
    further,
    A first insulating layer is provided on the one reflector bus bar of the first reflector, a third counter electrode facing the one reflector bus bar is provided on the first insulating layer, and the third counter electrode is provided. The electrode is connected to the one comb-tooth busbar of the first IDT electrode, and a second insulating layer is provided on the one reflector busbar of the second reflector, and the second insulating layer A fourth counter electrode facing the one reflector bus bar is provided above, and the fourth counter electrode is at least one of the states connected to the one comb-shaped bus bar of the second IDT electrode The elastic wave resonator according to any one of claims 1 to 4, comprising:
  6.  1または複数の直列腕共振子、および、1または複数の並列腕共振子によって構成されるラダー型のフィルタ装置であって、
     前記直列腕共振子および前記並列腕共振子の少なくとも1つは、請求項1~5のいずれか1項に記載の弾性波共振器を含む
     フィルタ装置。
    A ladder-type filter device including one or more series arm resonators and one or more parallel arm resonators,
    6. The filter device including at least one of the series arm resonator and the parallel arm resonator including the acoustic wave resonator according to claim 1.
  7.  請求項6に記載のフィルタ装置を含む
     マルチプレクサ。
    A multiplexer comprising the filter device according to claim 6.
PCT/JP2017/045402 2016-12-19 2017-12-18 Acoustic wave resonator, filter device, and multiplexer WO2018117060A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-245845 2016-12-19
JP2016245845 2016-12-19

Publications (1)

Publication Number Publication Date
WO2018117060A1 true WO2018117060A1 (en) 2018-06-28

Family

ID=62626454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045402 WO2018117060A1 (en) 2016-12-19 2017-12-18 Acoustic wave resonator, filter device, and multiplexer

Country Status (1)

Country Link
WO (1) WO2018117060A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020100744A1 (en) * 2018-11-16 2020-05-22 株式会社村田製作所 Elastic wave device
WO2022070885A1 (en) * 2020-09-29 2022-04-07 株式会社村田製作所 Vertically coupled resonator-type elastic wave filter and elastic wave filter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07303023A (en) * 1994-05-07 1995-11-14 Toko Inc Surface acoustic wave resonator
WO2008056697A1 (en) * 2006-11-08 2008-05-15 Panasonic Corporation Surface acoustic wave resonator
WO2013161881A1 (en) * 2012-04-25 2013-10-31 京セラ株式会社 Acoustic wave element, branching filter and communication module
WO2014133084A1 (en) * 2013-02-27 2014-09-04 京セラ株式会社 Elastic wave element, demultiplexer and communication module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07303023A (en) * 1994-05-07 1995-11-14 Toko Inc Surface acoustic wave resonator
WO2008056697A1 (en) * 2006-11-08 2008-05-15 Panasonic Corporation Surface acoustic wave resonator
WO2013161881A1 (en) * 2012-04-25 2013-10-31 京セラ株式会社 Acoustic wave element, branching filter and communication module
WO2014133084A1 (en) * 2013-02-27 2014-09-04 京セラ株式会社 Elastic wave element, demultiplexer and communication module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020100744A1 (en) * 2018-11-16 2020-05-22 株式会社村田製作所 Elastic wave device
CN112997403A (en) * 2018-11-16 2021-06-18 株式会社村田制作所 Elastic wave device
JPWO2020100744A1 (en) * 2018-11-16 2021-09-27 株式会社村田製作所 Elastic wave device
WO2022070885A1 (en) * 2020-09-29 2022-04-07 株式会社村田製作所 Vertically coupled resonator-type elastic wave filter and elastic wave filter

Similar Documents

Publication Publication Date Title
JP6573668B2 (en) Elastic wave device and communication device
JP6465065B2 (en) Elastic wave device
JP2008079227A (en) Filter and demultiplexer
JP6870684B2 (en) Multiplexer
JP6760480B2 (en) Extractor
JP7132944B2 (en) Acoustic wave filters, demultiplexers and communication devices
JP6656135B2 (en) Filters and multiplexers
JP6773238B2 (en) SAW filters, multiplexers, high frequency front-end circuits and communications equipment
JP2017225109A (en) Multiplexer and high frequency front end module
JP2017195580A (en) Elastic wave filter device
WO2017115870A1 (en) Acoustic wave filter device and duplexer
JP2018182460A (en) Acoustic wave resonator, filter, and multiplexer
WO2018117060A1 (en) Acoustic wave resonator, filter device, and multiplexer
JP6935220B2 (en) Elastic wave elements, filters and multiplexers
US10476473B2 (en) Elastic wave element and elastic wave filter device
CN109217837B (en) Multiplexer
WO2018117059A1 (en) Acoustic wave resonator, filter device, and multiplexer
CN110809858B (en) multiplexer
JP7215413B2 (en) elastic wave filter
WO2023282330A1 (en) Elastic wave element, elastic wave filter device, and multiplexer
WO2023054301A1 (en) Elastic wave filter device and multiplexer
WO2023074373A1 (en) Elastic wave resonator, elastic wave filter device, and multiplexer
WO2023282328A1 (en) Acoustic wave element, acoustic wave filter device, and multiplexer
JP7132841B2 (en) SAW DEVICE, DISPENSER, AND COMMUNICATION DEVICE
WO2022091582A1 (en) Elastic wave filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17883271

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17883271

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP