WO2023176679A1 - Aluminum alloy foil and method for producing same - Google Patents

Aluminum alloy foil and method for producing same Download PDF

Info

Publication number
WO2023176679A1
WO2023176679A1 PCT/JP2023/009023 JP2023009023W WO2023176679A1 WO 2023176679 A1 WO2023176679 A1 WO 2023176679A1 JP 2023009023 W JP2023009023 W JP 2023009023W WO 2023176679 A1 WO2023176679 A1 WO 2023176679A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
alloy foil
mass
less
aluminum
Prior art date
Application number
PCT/JP2023/009023
Other languages
French (fr)
Japanese (ja)
Inventor
賢治 村松
聡太郎 秋山
Original Assignee
東洋アルミニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋アルミニウム株式会社 filed Critical 東洋アルミニウム株式会社
Publication of WO2023176679A1 publication Critical patent/WO2023176679A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon

Definitions

  • the present invention relates to an aluminum alloy foil and a method for manufacturing the same.
  • Printed wiring boards are used in electrical and electronic equipment.
  • aluminum foil or copper foil is used as the wiring material for printed wiring boards.
  • an IC tag is attached to the wiring section to function as an antenna circuit.
  • Wiring patterns are becoming more complex year by year, and it is becoming necessary to make the wiring thinner.
  • aluminum foil is much less precise than copper foil. The etched surface of aluminum foil tends to become uneven, and thinner wires are more likely to break during etching.
  • pure aluminum 1000 series materials and aluminum-iron 8000 series materials are often used, and these materials are also often used as wiring materials.
  • adhesive strength with the board can be easily obtained. Removal of this rolling oil requires annealing at at least 200° C. or higher, and this annealing significantly changes the mechanical properties of the aluminum foil.
  • Patent Document 1 high chemical solubility is achieved by containing Ni (nickel) and one or both of Zn (zinc) and Ga (gallium) to increase the potential difference between the intermetallic compound and the matrix.
  • an aluminum foil that is durable and capable of sharp etching.
  • aluminum foil containing 1.0 to 1.8% by weight of Fe (iron) and 0.4 to 0.6% by weight of Mn (manganese) has moderate strength and is etched. It is disclosed that a line edge surface with excellent sharpness can sometimes be obtained.
  • an object of the present invention is to provide an aluminum alloy foil for a printed wiring board that is excellent in fine line etching of circuit wiring and has high strength and is less likely to break.
  • the aluminum alloy foil according to the invention has the following characteristics [1] to [6].
  • [1] Aluminum alloy foil with Ca (calcium) content of 1.0% by mass or more and less than 4.5% by mass and Fe (iron) content of 0.02% by mass or more and less than 1.3% by mass.
  • the average crystal grain size measured using the aluminum alloy foil surface as an observation surface and a grain boundary misorientation of 15° or more using the EBSD (electron beam backscatter diffraction) method is 12 ⁇ m or less.
  • Aluminum alloy foil is 12 ⁇ m or less.
  • the aluminum alloy foil obtained by the present invention is excellent in fine line etching of circuit wiring, is resistant to wire breakage, and can provide a high-strength printed wiring board.
  • the aluminum alloy foil according to the present invention is a foil containing predetermined amounts of Ca (calcium) and Fe (iron), with the balance containing Al (aluminum) and other trace elements.
  • [Ca (calcium)] Ca contained in the aluminum alloy foil according to the present invention has the effect of making crystal grains extremely fine after cold rolling, and can maintain fine crystal grains even after heat treatment at 200° C. or higher. Strength can also be improved by dispersing the Al--Ca intermetallic compound, and an aluminum alloy foil with high strength and high ductility can be obtained.
  • the Ca content is preferably 1.0% by mass or more, and preferably less than 4.5% by mass, based on the total amount of the aluminum alloy foil of the present invention. If the Ca content is less than 1.0% by mass, the effect of grain refinement will be small, while if it is more than 4.5% by mass, flexibility will be lost and foil rolling will become difficult. For the same reason, the content of Ca is preferably 1.5% by mass or more and less than 3.0% by mass.
  • [Fe (iron)] Fe contained in the aluminum alloy foil according to the present invention is an element that improves strength and elongation, and is generally added to aluminum foil.
  • the content of Fe is preferably 0.02% by mass or more, and preferably less than 1.3% by mass, based on the total amount of the aluminum alloy foil of the present invention. If the Fe content is less than 0.02% by mass, it will be difficult to obtain strength, and it will be necessary to use high-purity metal in production, which will be a burden in terms of cost. If the content is 1.3% by mass or more, crystallized substances tend to become coarse, leading to a risk of deterioration of elongation and generation of pinholes during rolling. For the same reason, the Fe content is preferably 0.15% by mass or more and less than 0.8% by mass.
  • the aluminum alloy foil according to the present invention contains trace elements other than Ca and Fe, including inevitable impurities. These trace elements include Si (silicon), Mn (manganese), Cu (copper), V (vanadium), Ti (titanium), Zr (zirconium), Cr (chromium), Ni (nickel), and Mg (magnesium). , Zn (zinc), B (boron), Ga (gallium), Bi (bismuth), and the like. The content of each of these elements in the aluminum alloy foil is preferably 0.1% by mass or less.
  • composition of the aluminum alloy foil of the present invention shall be measured by inductively coupled plasma emission spectroscopy.
  • the measuring device include iCAP6500DUO manufactured by Thermo Fisher Scientific Co., Ltd. and ICPS-8100 manufactured by Shimadzu Corporation.
  • the thickness of the aluminum alloy foil according to the present invention is preferably 6 ⁇ m or more and 80 ⁇ m or less.
  • the thickness is preferably 10 ⁇ m or more and 40 ⁇ m or less.
  • the average crystal grain size of aluminum alloy foil refers to the circle of crystal grains measured by the EBSD (electron beam backscatter diffraction) method with the surface of the aluminum alloy foil as the observation surface, with a misorientation of grain boundaries of 15° or more. This is the average value of the equivalent diameter. It represents the average size of grains separated by so-called high-angle grain boundaries. The smaller the average crystal grain size, the denser the dissolution pits during wiring etching become, allowing thinner wires. Setting the average crystal grain size of the aluminum alloy foil of the present invention to 12 ⁇ m or less is preferable because finer wiring can be obtained compared to conventional pure aluminum or aluminum-iron materials. For the same reason, the thickness is more preferably 8 ⁇ m or less.
  • the aluminum alloy foil according to the present invention has a tensile strength in the rolling direction of 110 N/mm 2 or more and a proof stress (0.2% proof stress) of 70 N/mm 2 or more. Within the above range, the risk of disconnection can be reduced even when the wiring of the printed wiring board is made thinner. For the same reason, it is desirable that the tensile strength is 130 N/mm 2 or more and the yield strength is 85 N/mm 2 or more.
  • a molten aluminum alloy can be obtained by preparing an aluminum base metal, various additive metal elements, or an aluminum master alloy containing them so that the composition falls within the above composition range, and heating it at 680 to 1000 ° C. .
  • the obtained molten aluminum alloy is cast to produce an ingot.
  • This casting method is not particularly limited as long as it can produce an ingot or a cast plate, and any known method can be used.
  • DC casting Direct Chill
  • CC casting Continuous Casting
  • CC casting which can achieve a particularly high casting cooling rate, is used.
  • twin roll continuous casting is more preferable.
  • Cold rolling The obtained ingot or cast plate is cold rolled into a cold rolled foil having a predetermined thickness. Further, before this cold rolling, homogenization heat treatment and hot rolling may be performed as necessary, and intermediate annealing (IA) may be performed as necessary during the cold rolling process.
  • IA intermediate annealing
  • the homogenization heat treatment step and hot rolling may or may not be performed, but if there is segregation in the cast structure, the properties of the aluminum alloy foil will not be affected.
  • the temperature may be within a range of 450°C or higher and 600°C or lower. Note that if the temperature of the homogenization heat treatment or hot rolling is higher than 600° C., the intermetallic compound becomes coarse, which adversely affects the strength, elongation, and grain structure of the aluminum alloy foil.
  • the heat treatment time of the homogenization heat treatment step is preferably 20 hours or less in terms of production efficiency.
  • the intermediate annealing (IA) step may or may not be included, but for the purpose of improving rollability, the process must be performed within the range where the properties of the aluminum alloy foil are not affected, that is, It may be carried out at a temperature of 450°C or lower. Note that if the intermediate annealing temperature is higher than 450° C., the intermetallic compound becomes coarse, which adversely affects the strength, elongation, and crystal grain structure of the aluminum alloy foil.
  • the heat treatment time is desirably 20 hours or less in terms of production efficiency.
  • the final annealing (FA) step may or may not be included, but in order to increase the adhesive strength between the aluminum alloy foil and the substrate in the production of printed wiring boards, it is necessary to It is preferable to perform the heat treatment at a temperature of not less than 0.degree. C. and not more than 400.degree. Note that if the final annealing temperature is lower than 200° C., the rolling oil adhering to the aluminum alloy foil cannot be completely removed, making it difficult to obtain adhesive strength with the substrate.
  • the heat treatment time is preferably 80 hours or less in terms of production efficiency.
  • the aluminum alloy foil according to the present invention can be made into an aluminum laminate by laminating at least one layer of adherend on at least one surface thereof.
  • the above-mentioned adherend may or may not have flexibility; for example, resin films such as polyethylene, polypropylene, polyester, polycarbonate, polyimide, polyamide, paper phenol resin plates, glass epoxy plates, etc. are suitable. used for.
  • the method of laminating the aluminum alloy foil and the adherend is not particularly limited, and examples thereof include lamination using an adhesive. Further, before the lamination, the surface of the aluminum alloy foil may be roughened, washed, coated, or the like.
  • Resist ink is printed in a pattern on the surface of the aluminum foil of the laminate to form the desired wiring shape, and then immersed in an etching solution to dissolve the unprinted portions of the resist ink. By peeling off the resist accordingly, the aluminum foil can be formed into a wiring pattern to form a printed wiring board.
  • a known printing method can be used, such as gravure printing or screen printing.
  • etching solution can be a known one, and can be acidic or alkaline as appropriate, such as sodium hydroxide (caustic soda) aqueous solution, hydrochloric acid, ferric chloride solution, copper chloride solution, hydrogen peroxide, etc. Examples include a mixture of the following.
  • Test method [Tensile test, proof stress (0.2% proof stress)] A rectangular test piece with a width of 15 mm and a length of 200 mm was cut out so that the tensile direction was parallel to the rolling direction, and the tensile tester was Strograph VES5D manufactured by Toyo Seiki Seisakusho Co., Ltd., at a tensile speed of 10 mm/min. The test was conducted using a distance between chucks of 100 mm as the gage length, and data on tensile strength and proof stress (0.2% proof stress) were obtained. The test was conducted three times, and the average value was calculated.
  • a dry film resist with a thickness of 25 ⁇ m is bonded to an aluminum alloy foil, and the dry film resist is exposed to UV light through a photomask. By using a photomask, the dry film resist can be hardened only in predetermined locations. Thereafter, the uncured portions of the resist were removed to form a resist film in the desired wiring shape.
  • the wiring etching is completed by etching and dissolving the aluminum alloy foil in areas where the resist film is not formed with an aqueous solution of ferric chloride, and finally peeling off the resist film with caustic soda.
  • the desired wiring shape was a repeating arrangement of wiring (aluminum part) and spaces (dissolved parts), with the same width.
  • the length of the wiring was 50 mm, and the number of wires was 10.
  • a SEM photograph of an example of this wiring shape is shown in FIG.
  • the line width was tested at five levels: 50 ⁇ m, 75 ⁇ m, 100 ⁇ m, 125 ⁇ m, and 150 ⁇ m.
  • Table 2 shows the critical fineness at which wiring etching was possible without disconnection when observed with an optical microscope.
  • Examples 1 to 15, Comparative Examples 1 to 5 Aluminum alloys having compositions A to K shown in Table 1 were melted, and the molten metal was poured into a fixed mold to produce a cast platelet having a thickness of 6 mm, a width of 60 mm, and a length of 65 mm. After face-cutting the cast platelets using a milling machine, aluminum alloy foils were produced under the conditions shown in Table 2. Table 2 also shows the results of the tensile test, average grain size, and wiring etching test. Note that the conditions for performing homogenization heat treatment, intermediate annealing, and final annealing are as follows.
  • Comparative Examples 4 and 5 Similar tests were conducted using conventionally used aluminum foil with a 1N30 composition (manufactured by Toyo Aluminum Co., Ltd.) and aluminum foil with a composition of 8021 (manufactured by Toyo Aluminum Co., Ltd.). did.
  • slabs were produced by DC casting, and then subjected to homogenization heat treatment and hot rolling to form plates with a thickness of 6 mm.

Abstract

The purpose of the present invention is to provide an aluminum alloy foil for printed wiring boards which is excellent for fine-line etching for circuit wiring and which has high strength that makes breaks unlikely. Provided is an aluminum alloy foil, said aluminum alloy foil having a Ca content of not less than 1.0 mass% but less than 4.5 mass% and an Fe content of not less than 0.02 mass% but less than 1.3 mass%, with the remainder being Al and other trace elements, wherein the average crystal grain diameter, as measured via an electron backscatter diffraction method with the aluminum alloy foil surface as an observation surface and with a crystal grain boundary orientation difference of not less than 15°, may be not more than 12 μm.

Description

アルミニウム合金箔、及びその製造方法Aluminum alloy foil and its manufacturing method
 本発明はアルミニウム合金箔、及びその製造方法に関する。 The present invention relates to an aluminum alloy foil and a method for manufacturing the same.
 電気機器や電子機器には、プリント配線基板が用いられている。一般的にプリント配線基板の配線材料は、アルミニウム箔又は銅箔が使用される。例えば、その配線部にICタグが取り付けられてアンテナ回路として機能する。配線パターンは年々複雑化してきており、配線をより細くする必要が出てきている。
 しかし、配線のエッチングについて、アルミニウム箔は銅箔と比べて精度が大きく劣る。アルミニウム箔のエッチング面は凸凹になりやすく、配線を細くするとエッチング時に断線しやすくなる。
Printed wiring boards are used in electrical and electronic equipment. Generally, aluminum foil or copper foil is used as the wiring material for printed wiring boards. For example, an IC tag is attached to the wiring section to function as an antenna circuit. Wiring patterns are becoming more complex year by year, and it is becoming necessary to make the wiring thinner.
However, when it comes to etching wiring, aluminum foil is much less precise than copper foil. The etched surface of aluminum foil tends to become uneven, and thinner wires are more likely to break during etching.
 アルミニウム箔は純アルミニウムの1000系材料、アルミニウム-鉄系の8000系材料が多く使われており、配線材料としてもそれらの材質が用いられることが多い。またプリント配線基板用アルミニウム箔は冷間圧延終了後に焼鈍で圧延油を取り除くことで、基板との接着強度が得られやすくなる。この圧延油の除去には少なくとも200℃以上の焼鈍が必要であり、この焼鈍でアルミニウム箔の機械特性は大きく変化する。 For aluminum foil, pure aluminum 1000 series materials and aluminum-iron 8000 series materials are often used, and these materials are also often used as wiring materials. Further, by annealing aluminum foil for printed wiring boards to remove rolling oil after cold rolling, adhesive strength with the board can be easily obtained. Removal of this rolling oil requires annealing at at least 200° C. or higher, and this annealing significantly changes the mechanical properties of the aluminum foil.
 また、特許文献1に、Ni(ニッケル)と、Zn(亜鉛)及びGa(ガリウム)の一種又は二種を含有させ、金属間化合物と母相の電位差を大きくすることで、高い化学溶解性を持ち、鮮鋭なエッチングが可能なアルミニウム箔が開示されている。
 さらに、特許文献2に、Fe(鉄):1.0~1.8重量%、Mn(マンガン):0.4~0.6重量%含有したアルミニウム箔で、適度な強度を有するとともに、エッチング時に鮮鋭性に優れた線縁面が得られる旨が開示されている。
Furthermore, in Patent Document 1, high chemical solubility is achieved by containing Ni (nickel) and one or both of Zn (zinc) and Ga (gallium) to increase the potential difference between the intermetallic compound and the matrix. Disclosed is an aluminum foil that is durable and capable of sharp etching.
Furthermore, in Patent Document 2, aluminum foil containing 1.0 to 1.8% by weight of Fe (iron) and 0.4 to 0.6% by weight of Mn (manganese) has moderate strength and is etched. It is disclosed that a line edge surface with excellent sharpness can sometimes be obtained.
特開2012-149289号公報Japanese Patent Application Publication No. 2012-149289 特開2001-152270号公報Japanese Patent Application Publication No. 2001-152270
 ところで、近年、要求されるプリント配線基板の配線パターンに対応するためには、従来のアルミニウム箔のエッチング精度では難しくなりつつある。また、焼鈍後のアルミニウム箔は強度が低く、配線をさらに細くした場合、後工程もしくは使用中での外的な力で断線するリスクも生まれる。
 また、特許文献1、2ではエッチングの鮮鋭性向上が示されているが、実際にエッチングで回路の断線なく細線化が可能かについての記載はない。さらに、特許文献2では、Mn添加、微細析出物により高い強度が得られるとあるが、細線化を目指す上では更なる強度向上が求められる。
 そこで、本発明は、回路配線の細線エッチングに優れ、さらに断線しにくい高強度なプリント配線基板用アルミニウム合金箔を提供することを目的とする。
Incidentally, in recent years, it has become difficult to meet the required wiring patterns of printed wiring boards with the conventional etching accuracy of aluminum foil. Furthermore, the strength of aluminum foil after annealing is low, and if the wiring is made even thinner, there is a risk that the wire will break due to external force during post-processing or during use.
Further, although Patent Documents 1 and 2 show that the sharpness of etching is improved, there is no description as to whether it is actually possible to thin the circuit by etching without breaking the circuit. Further, Patent Document 2 states that high strength can be obtained by adding Mn and fine precipitates, but further strength improvement is required in order to achieve thinner wires.
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an aluminum alloy foil for a printed wiring board that is excellent in fine line etching of circuit wiring and has high strength and is less likely to break.
 すなわち、上記した課題を解決するため、発明にかかるアルミニウム合金箔を、以下[1]~[6]の特徴を有するものとした。
[1]アルミニウム合金箔であって、Ca(カルシウム)含有量が1.0質量%以上4.5質量%未満、Fe(鉄)含有量が0.02質量%以上1.3質量%未満で残部がAl(アルミニウム)とその他の微量元素を含むアルミニウム合金箔。
[2]アルミニウム合金箔表面を観察面とし、EBSD(電子線後方散乱回折)法により結晶粒界の方位差15°以上として計測された平均結晶粒径が12μm以下である[1]に記載のアルミニウム合金箔。
That is, in order to solve the above problems, the aluminum alloy foil according to the invention has the following characteristics [1] to [6].
[1] Aluminum alloy foil with Ca (calcium) content of 1.0% by mass or more and less than 4.5% by mass and Fe (iron) content of 0.02% by mass or more and less than 1.3% by mass. Aluminum alloy foil in which the balance contains Al (aluminum) and other trace elements.
[2] The average crystal grain size measured using the aluminum alloy foil surface as an observation surface and a grain boundary misorientation of 15° or more using the EBSD (electron beam backscatter diffraction) method is 12 μm or less. Aluminum alloy foil.
[3]アルミニウム合金箔の耐力が70N/mm以上である[1]に記載のアルミニウム合金箔。
[4]アルミニウム合金箔の引張強度が110N/mm以上である、[3]に記載のアルミニウム合金箔。
[5]アルミニウム合金箔の厚さが6μm以上80μm以下である、[1]~[4]のいずれかに一項記載のアルミニウム合金箔。
[6]Ca(カルシウム)含有量が1.0質量%以上4.5質量%未満、Fe(鉄)含有量が0.02質量%以上1.3質量%未満で残部がAl(アルミニウム)とその他の微量元素を含むアルミニウム合金の溶湯を鋳造することにより、アルミニウム合金の鋳塊を得る工程と、前記鋳塊を冷間圧延することにより、アルミニウム合金箔の冷間圧延箔を得る工程と、を備える、アルミニウム合金箔の製造方法。
[3] The aluminum alloy foil according to [1], wherein the aluminum alloy foil has a yield strength of 70 N/mm 2 or more.
[4] The aluminum alloy foil according to [3], wherein the aluminum alloy foil has a tensile strength of 110 N/mm 2 or more.
[5] The aluminum alloy foil according to any one of [1] to [4], wherein the aluminum alloy foil has a thickness of 6 μm or more and 80 μm or less.
[6] Ca (calcium) content is 1.0 mass% or more and less than 4.5 mass%, Fe (iron) content is 0.02 mass% or more and less than 1.3 mass%, and the balance is Al (aluminum). a step of obtaining an aluminum alloy ingot by casting a molten aluminum alloy containing other trace elements; a step of obtaining a cold rolled aluminum alloy foil by cold rolling the ingot; A method for producing an aluminum alloy foil, comprising:
 この発明で得られるアルミニウム合金箔は、回路配線の細線エッチングに優れ、さらに断線しにくく、高強度なプリント配線基板を得ることができる。 The aluminum alloy foil obtained by the present invention is excellent in fine line etching of circuit wiring, is resistant to wire breakage, and can provide a high-strength printed wiring board.
実施例の配線エッチング試験で用いられた配線形状を示す図Diagram showing the wiring shape used in the wiring etching test of the example 図1の配線形状の例のSEM写真SEM photo of example wiring shape in Figure 1
 以下、本発明の実施の形態を詳細に説明する。
 本発明に係るアルミニウム合金箔は、所定量のCa(カルシウム)、Fe(鉄)を含み、残部がAl(アルミニウム)とその他の微量元素を含む箔である。
Embodiments of the present invention will be described in detail below.
The aluminum alloy foil according to the present invention is a foil containing predetermined amounts of Ca (calcium) and Fe (iron), with the balance containing Al (aluminum) and other trace elements.
[Ca(カルシウム)]
 本発明にかかるアルミニウム合金箔に含まれるCaは、冷間圧延後の結晶粒をきわめて微細にする効果を持ち、また200℃以上の熱処理を施しても微細結晶粒を保つことができる。Al-Ca金属間化合物が分散することで強度向上を図ることもでき、高強度かつ高延性なアルミニウム合金箔が得られる。
 このCaの含有量は、本発明のアルミニウム合金箔全量に対し、1.0質量%以上がよく、4.5質量%未満がよい。Caの含有量が1.0質量%より少なければ、結晶粒微細化の効果が小さく、一方4.5質量%以上では、柔軟性が失われてしまい、箔圧延が困難になる。同様の理由でCaの含有量は1.5質量%以上3.0質量%未満が好ましい。
[Ca (calcium)]
Ca contained in the aluminum alloy foil according to the present invention has the effect of making crystal grains extremely fine after cold rolling, and can maintain fine crystal grains even after heat treatment at 200° C. or higher. Strength can also be improved by dispersing the Al--Ca intermetallic compound, and an aluminum alloy foil with high strength and high ductility can be obtained.
The Ca content is preferably 1.0% by mass or more, and preferably less than 4.5% by mass, based on the total amount of the aluminum alloy foil of the present invention. If the Ca content is less than 1.0% by mass, the effect of grain refinement will be small, while if it is more than 4.5% by mass, flexibility will be lost and foil rolling will become difficult. For the same reason, the content of Ca is preferably 1.5% by mass or more and less than 3.0% by mass.
[Fe(鉄)]
 本発明にかかるアルミニウム合金箔に含まれるFeは、強度、伸びを改善する元素であり、アルミニウム箔には一般に添加されている。Feの含有量は、本発明のアルミニウム合金箔全量に対し、0.02質量%以上がよく、1.3質量%未満がよい。Feの含有量が0.02質量%より少なければ、強度が得られにくく、また生産するにあたり高純度地金を使う必要が出てくるためコスト的にも負荷となる。含有量が1.3質量%以上では、晶出物が粗大になりやすく、伸びの悪化や圧延中でのピンホール発生の恐れが出てくる。同様の理由でFeの含有量は0.15質量%以上0.8質量%未満が好ましい。
[Fe (iron)]
Fe contained in the aluminum alloy foil according to the present invention is an element that improves strength and elongation, and is generally added to aluminum foil. The content of Fe is preferably 0.02% by mass or more, and preferably less than 1.3% by mass, based on the total amount of the aluminum alloy foil of the present invention. If the Fe content is less than 0.02% by mass, it will be difficult to obtain strength, and it will be necessary to use high-purity metal in production, which will be a burden in terms of cost. If the content is 1.3% by mass or more, crystallized substances tend to become coarse, leading to a risk of deterioration of elongation and generation of pinholes during rolling. For the same reason, the Fe content is preferably 0.15% by mass or more and less than 0.8% by mass.
[その他微量元素]
 本発明にかかるアルミニウム合金箔は、Ca及びFe以外成分として、不可避不純物を含むその他の微量元素を含有する。この微量元素としては、Si(シリコン)、Mn(マンガン)、Cu(銅)、V(バナジウム)、Ti(チタン)、Zr(ジルコニウム)、Cr(クロム)、Ni(ニッケル)、Mg(マグネシウム)、Zn(亜鉛)、B(ホウ素)、Ga(ガリウム)、Bi(ビスマス)等の元素があげられる。
 これら各元素の含有量は、アルミニウム合金箔中に、それぞれ0.1質量%以下とすることが好ましい。
[Other trace elements]
The aluminum alloy foil according to the present invention contains trace elements other than Ca and Fe, including inevitable impurities. These trace elements include Si (silicon), Mn (manganese), Cu (copper), V (vanadium), Ti (titanium), Zr (zirconium), Cr (chromium), Ni (nickel), and Mg (magnesium). , Zn (zinc), B (boron), Ga (gallium), Bi (bismuth), and the like.
The content of each of these elements in the aluminum alloy foil is preferably 0.1% by mass or less.
[組成の測定]
 本発明のアルミニウム合金箔の組成は、誘導結合プラズマ発光分光分析法によって測定するものとする。測定装置としては、サーモフィッシャーサイエンティフィック(株)製:iCAP6500DUO、もしくは(株)島津製作所製:ICPS-8100などが挙げられる。
[Measurement of composition]
The composition of the aluminum alloy foil of the present invention shall be measured by inductively coupled plasma emission spectroscopy. Examples of the measuring device include iCAP6500DUO manufactured by Thermo Fisher Scientific Co., Ltd. and ICPS-8100 manufactured by Shimadzu Corporation.
[箔厚]
 本発明にかかるアルミニウム合金箔の厚さは、6μm以上80μm以下であることが望ましい。6μm未満であるとプリント配線基板の製造工程における作業性が悪化し、80μmより厚くなると目的である細線エッチングが困難となる。同様の理由で10μm以上40μm以下が好ましい。
[Foil thickness]
The thickness of the aluminum alloy foil according to the present invention is preferably 6 μm or more and 80 μm or less. When the thickness is less than 6 μm, workability in the manufacturing process of printed wiring boards deteriorates, and when it is thicker than 80 μm, the intended fine line etching becomes difficult. For the same reason, the thickness is preferably 10 μm or more and 40 μm or less.
[平均結晶粒径]
 本発明におけるアルミニウム合金箔平均結晶粒径とは、アルミニウム合金箔表面を観察面として、EBSD(電子線後方散乱回折)法により、結晶粒界の方位差15°以上として計測された結晶粒の円相当径の平均値である。いわゆる大傾角粒界で区切られた結晶粒の平均サイズを表す。この平均結晶粒径が小さいほど、配線エッチングの際の溶解ピットが緻密になり細線化が可能となる。
 本発明のアルミニウム合金箔平均結晶粒径を12μm以下にすると、従来の純アルミニウムやアルミニウム-鉄系材料と比べて細かな配線を得ることができ、好ましい。同様の理由で8μm以下がより好ましい。
[Average grain size]
In the present invention, the average crystal grain size of aluminum alloy foil refers to the circle of crystal grains measured by the EBSD (electron beam backscatter diffraction) method with the surface of the aluminum alloy foil as the observation surface, with a misorientation of grain boundaries of 15° or more. This is the average value of the equivalent diameter. It represents the average size of grains separated by so-called high-angle grain boundaries. The smaller the average crystal grain size, the denser the dissolution pits during wiring etching become, allowing thinner wires.
Setting the average crystal grain size of the aluminum alloy foil of the present invention to 12 μm or less is preferable because finer wiring can be obtained compared to conventional pure aluminum or aluminum-iron materials. For the same reason, the thickness is more preferably 8 μm or less.
[引張強度、耐力]
 本発明にかかるアルミニウム合金箔は、圧延方向への引張強度が110N/mm以上、耐力(0.2%耐力)が70N/mm以上であることが望ましい。上記範囲であると、プリント配線基板の配線を細くした場合にも断線するリスクを軽減することができる。同様の理由で引張強度が130N/mm以上、耐力が85N/mm以上であることが望ましい。
[Tensile strength, yield strength]
It is desirable that the aluminum alloy foil according to the present invention has a tensile strength in the rolling direction of 110 N/mm 2 or more and a proof stress (0.2% proof stress) of 70 N/mm 2 or more. Within the above range, the risk of disconnection can be reduced even when the wiring of the printed wiring board is made thinner. For the same reason, it is desirable that the tensile strength is 130 N/mm 2 or more and the yield strength is 85 N/mm 2 or more.
[製造方法]
 次に、本発明にかかるアルミニウム合金箔の製造方法について説明する。
 本発明にかかるアルミニウム合金箔の製造方法は、まず、前記組成範囲になるようにアルミニウム地金、各種添加金属元素、又はそれらを含んだアルミニウム母合金を調製し、加熱しアルミニウム合金溶湯にする。次いで、その溶湯を鋳造し、鋳塊を作製する。
 次に、得られた鋳塊を冷間圧延により所定厚みの箔にする。この冷間圧延後、調質及び圧延油除去のため、必要に応じて、最終焼鈍(FA)を行う。これらの方法により、本発明にかかるアルミニウム合金箔を製造することができる。
[Production method]
Next, a method for manufacturing an aluminum alloy foil according to the present invention will be explained.
In the method for producing aluminum alloy foil according to the present invention, first, an aluminum base metal, various additive metal elements, or an aluminum mother alloy containing them are prepared so as to have the composition range described above, and heated to form a molten aluminum alloy. Next, the molten metal is cast to produce an ingot.
Next, the obtained ingot is cold rolled into a foil having a predetermined thickness. After this cold rolling, final annealing (FA) is performed as necessary for tempering and removal of rolling oil. By these methods, the aluminum alloy foil according to the present invention can be manufactured.
[鋳造]
 前記の通り、前記組成範囲になるようにアルミニウム地金、各種添加金属元素、又はそれらを含んだアルミニウム母合金を調製し、680~1000℃で加熱することにより、アルミニウム合金溶湯を得ることができる。
 得られたアルミニウム合金溶湯を鋳造し、鋳塊を作製する。この鋳造の方法は、鋳塊又は鋳造板を作製できるものであれば特に鋳造方法は限定されることはなく、公知のものを用いることができる。この鋳造方法の例としては、DC鋳造(Direct Chill)やCC鋳造(Continuous Casting)を用いることができる。ただ、本発明の主要元素であるCa、Feをより多く含有させるためには鋳造冷却速度の高い鋳造方法を選択することが好ましく、この観点から、特に高い鋳造冷却速度が出せるCC鋳造を使用するのが好ましく、このCC鋳造の中でも双ロール連続鋳造がより好ましい。
[casting]
As mentioned above, a molten aluminum alloy can be obtained by preparing an aluminum base metal, various additive metal elements, or an aluminum master alloy containing them so that the composition falls within the above composition range, and heating it at 680 to 1000 ° C. .
The obtained molten aluminum alloy is cast to produce an ingot. This casting method is not particularly limited as long as it can produce an ingot or a cast plate, and any known method can be used. As an example of this casting method, DC casting (Direct Chill) or CC casting (Continuous Casting) can be used. However, in order to contain more Ca and Fe, which are the main elements of the present invention, it is preferable to select a casting method with a high casting cooling rate, and from this point of view, CC casting, which can achieve a particularly high casting cooling rate, is used. Among these CC castings, twin roll continuous casting is more preferable.
[冷間圧延]
 得られた鋳塊又は鋳造板は、冷間圧延により所定厚みの冷間圧延箔にする。また、この冷間圧延の前に均質化熱処理及び熱間圧延を必要に応じて行ってもよく、冷間圧延工程の途中で中間焼鈍(IA)を必要に応じて行ってもよい。
[Cold rolling]
The obtained ingot or cast plate is cold rolled into a cold rolled foil having a predetermined thickness. Further, before this cold rolling, homogenization heat treatment and hot rolling may be performed as necessary, and intermediate annealing (IA) may be performed as necessary during the cold rolling process.
[均質化熱処理、熱間圧延]
 本発明にかかるアルミニウム合金箔の製造方法において、均質化熱処理工程及び熱間圧延は、あっても無くてもよいが、鋳造組織に偏析が考えられる場合、アルミニウム合金箔の特性に影響が出ない範囲、具体的には450℃以上600℃以下で行っても良い。なお、均質化熱処理や熱間圧延の温度が600℃より高いと金属間化合物が粗大化し、アルミニウム合金箔の強度、伸び、結晶粒組織に悪影響を及ぼす。均質化熱処理工程の熱処理時間は生産効率上20時間以下が望ましい。
[Homogenization heat treatment, hot rolling]
In the method for producing aluminum alloy foil according to the present invention, the homogenization heat treatment step and hot rolling may or may not be performed, but if there is segregation in the cast structure, the properties of the aluminum alloy foil will not be affected. The temperature may be within a range of 450°C or higher and 600°C or lower. Note that if the temperature of the homogenization heat treatment or hot rolling is higher than 600° C., the intermetallic compound becomes coarse, which adversely affects the strength, elongation, and grain structure of the aluminum alloy foil. The heat treatment time of the homogenization heat treatment step is preferably 20 hours or less in terms of production efficiency.
[中間焼鈍(IA)]
 本発明にかかるアルミニウム合金箔の製造方法において、中間焼鈍(IA)工程はあっても無くてもよいが、圧延性の改善の目的で、アルミニウム合金箔の特性に影響が出ない範囲、すなわち、450℃以下で行っても良い。なお、中間焼鈍温度が450℃より高いと金属間化合物が粗大化し、アルミニウム合金箔の強度、伸び、結晶粒組織に悪影響を及ぼす。熱処理時間は生産効率上20時間以下が望ましい。
[Intermediate annealing (IA)]
In the method for producing aluminum alloy foil according to the present invention, the intermediate annealing (IA) step may or may not be included, but for the purpose of improving rollability, the process must be performed within the range where the properties of the aluminum alloy foil are not affected, that is, It may be carried out at a temperature of 450°C or lower. Note that if the intermediate annealing temperature is higher than 450° C., the intermetallic compound becomes coarse, which adversely affects the strength, elongation, and crystal grain structure of the aluminum alloy foil. The heat treatment time is desirably 20 hours or less in terms of production efficiency.
[最終焼鈍(FA)]
 本発明にかかるアルミニウム合金箔の製造方法において、最終焼鈍(FA)工程はあっても無くてもよいが、プリント配線基板の製造上でアルミニウム合金箔と基板との接着強度を高めるためには200℃以上400℃以下で熱処理することが好ましい。なお、最終焼鈍温度が200℃より低いとアルミニウム合金箔に付着した圧延油が除去しきれず基板との接着強度が得られにくい。最終焼鈍温度が400℃を超える場合、本発明が目的とする強度、結晶粒組織が得られにくく、さらにコイル状で熱処理した時にはアルミニウム箔同士の過剰な密着が発生する。熱処理時間は生産効率上80時間以下が望ましい。
[Final annealing (FA)]
In the method for producing aluminum alloy foil according to the present invention, the final annealing (FA) step may or may not be included, but in order to increase the adhesive strength between the aluminum alloy foil and the substrate in the production of printed wiring boards, it is necessary to It is preferable to perform the heat treatment at a temperature of not less than 0.degree. C. and not more than 400.degree. Note that if the final annealing temperature is lower than 200° C., the rolling oil adhering to the aluminum alloy foil cannot be completely removed, making it difficult to obtain adhesive strength with the substrate. If the final annealing temperature exceeds 400° C., it is difficult to obtain the strength and grain structure that the present invention aims at, and furthermore, when the aluminum foils are heat-treated in a coiled form, excessive adhesion occurs between the aluminum foils. The heat treatment time is preferably 80 hours or less in terms of production efficiency.
[アルミニウム積層体]
 本発明にかかるアルミニウム合金箔は、その少なくとも一方の面に少なくとも一層以上の被着体を積層し、アルミニウム積層体とする事ができる。
 上記被着体は可撓性を有するものでも、有さないものでもよく、例えば、ポリエチレン、ポリプロピレン、ポリエステル、ポリカーボネート、ポリイミド、ポリアミド等の樹脂フィルム、又は紙フェノール樹脂板、ガラスエポキシ板等が好適に用いられる。
[Aluminum laminate]
The aluminum alloy foil according to the present invention can be made into an aluminum laminate by laminating at least one layer of adherend on at least one surface thereof.
The above-mentioned adherend may or may not have flexibility; for example, resin films such as polyethylene, polypropylene, polyester, polycarbonate, polyimide, polyamide, paper phenol resin plates, glass epoxy plates, etc. are suitable. used for.
 アルミニウム合金箔と被着体との積層方法は特に限定されず、例えば接着剤によるラミネート等が挙げられる。
 また、前記積層に前もって、アルミニウム合金箔の表面を粗化したり、洗浄を行ったり、コーティング等を行ってもよい。
The method of laminating the aluminum alloy foil and the adherend is not particularly limited, and examples thereof include lamination using an adhesive.
Further, before the lamination, the surface of the aluminum alloy foil may be roughened, washed, coated, or the like.
[プリント配線基板]
 前記積層体のアルミニウム箔の表面に所望の配線形状となるようにレジストインキをパターン状に印刷し、次にエッチング液に浸漬してレジストインキが印刷されていない部分を溶解させた後、必要に応じてレジストを剥離することにより、アルミニウム箔を配線パターンに形成しプリント配線基板とすることができる。
 印刷方法は公知のものを用いる事ができ、例えばグラビア印刷やスクリーン印刷等である。
[Printed wiring board]
Resist ink is printed in a pattern on the surface of the aluminum foil of the laminate to form the desired wiring shape, and then immersed in an etching solution to dissolve the unprinted portions of the resist ink. By peeling off the resist accordingly, the aluminum foil can be formed into a wiring pattern to form a printed wiring board.
A known printing method can be used, such as gravure printing or screen printing.
 上記レジストインキとしては、公知のものを用いる事ができ、有機系や無機系レジスト等をエッチング液やアルミニウム表面への塗工性等から適宜採用できる。
 上記エッチング液は、公知のものを用いる事ができ、酸性、アルカリ性等適宜採用でき、例えば水酸化ナトリウム(苛性ソーダ)水溶液や塩酸、塩化第二鉄液、塩化銅液、過酸化水素等、あるいはそれらの混合液が挙げられる。
As the above-mentioned resist ink, known ones can be used, and organic or inorganic resists can be suitably employed in consideration of the etching solution and the coatability on the aluminum surface.
The above-mentioned etching solution can be a known one, and can be acidic or alkaline as appropriate, such as sodium hydroxide (caustic soda) aqueous solution, hydrochloric acid, ferric chloride solution, copper chloride solution, hydrogen peroxide, etc. Examples include a mixture of the following.
 以下、実施例及び比較例を挙げて、本発明の内容を一層明確にする。まず、この実施例で用いた試験方法を下記に示す。 Hereinafter, examples and comparative examples will be given to further clarify the content of the present invention. First, the test method used in this example is shown below.
(試験方法)
[引張試験、耐力(0.2%耐力)]
 引張方向が圧延方向と平行になるように15mm幅×200mm長さの短冊型試験片を切り出し、引張試験機は(株)東洋精機製作所製のストログラフVES5Dを使い、引張速度10mm/minで、チャック間距離100mmを標点距離として試験し、引張強度、耐力(0.2%耐力)のデータを得た。試験は3回実施し、その平均値を算出した。
(Test method)
[Tensile test, proof stress (0.2% proof stress)]
A rectangular test piece with a width of 15 mm and a length of 200 mm was cut out so that the tensile direction was parallel to the rolling direction, and the tensile tester was Strograph VES5D manufactured by Toyo Seiki Seisakusho Co., Ltd., at a tensile speed of 10 mm/min. The test was conducted using a distance between chucks of 100 mm as the gage length, and data on tensile strength and proof stress (0.2% proof stress) were obtained. The test was conducted three times, and the average value was calculated.
[平均結晶粒径]
 EBSD分析装置((株)TSLソリューションズVelocity)を備えた電界放出形走査電子顕微鏡(日本電子(株)製JSM-7200F)を使用して、アルミニウム合金箔表面を倍率500倍、200μm×200μmの視野でStepSize0.4μmとしてEBSD測定した。その測定結果を解析ソフトウェアOIM Analysis 8((株)TSLソリューションズ)を用いてGrain Tolerance Angle=15°で解析した。Grain Size (diameter)の分布でSummary StatisticsのAverage:Areaで算出される数値を平均結晶粒径とした。またランダムに3視野でEBSD測定し、その平均値を求めた。測定前の前処理としてアルミニウム合金箔表面は電解研磨で鏡面加工した。
[Average grain size]
Using a field emission scanning electron microscope (JSM-7200F manufactured by JEOL Ltd.) equipped with an EBSD analyzer (TSL Solutions Velocity Co., Ltd.), the surface of the aluminum alloy foil was examined at a magnification of 500 times and a field of view of 200 μm x 200 μm. EBSD measurement was performed with a StepSize of 0.4 μm. The measurement results were analyzed using analysis software OIM Analysis 8 (TSL Solutions Co., Ltd.) at a Grain Tolerance Angle of 15°. The value calculated by Average:Area in Summary Statistics in the Grain Size (diameter) distribution was defined as the average crystal grain size. Further, EBSD was measured in three visual fields at random, and the average value was determined. As a pretreatment before measurement, the surface of the aluminum alloy foil was electrolytically polished to a mirror finish.
[配線エッチング試験]
 アルミニウム合金箔にドライフィルムレジスト25μmを貼り合わせ、その上からフォトマスクを介してUV光をドライフィルムレジストに露光させる。フォトマスクを介することで所定の箇所にだけドライフィルムレジストを硬化させることができる。その後、未硬化箇所のレジストを除去し、目的の配線形状にレジスト膜を形成した。レジスト膜が形成されていない箇所のアルミニウム合金箔を塩化第二鉄の水溶液でエッチング溶解させ、最後に苛性ソーダでレジスト膜を剥離することで配線エッチングが完了する。
 目的の配線形状は図1に示すように、配線(アルミ部)とスペース(溶解部)が繰り返し配置されており、その幅は同じにした。配線の長さは50mmで、本数は10本とした。この配線形状の例のSEM写真を図2に示す。
 線幅は50μm、75μm、100μm、125μm、150μmの5水準で試験した。光学顕微鏡で観察し、断線せずに配線エッチングが可能であった限界細さを表2に示した。
[Wiring etching test]
A dry film resist with a thickness of 25 μm is bonded to an aluminum alloy foil, and the dry film resist is exposed to UV light through a photomask. By using a photomask, the dry film resist can be hardened only in predetermined locations. Thereafter, the uncured portions of the resist were removed to form a resist film in the desired wiring shape. The wiring etching is completed by etching and dissolving the aluminum alloy foil in areas where the resist film is not formed with an aqueous solution of ferric chloride, and finally peeling off the resist film with caustic soda.
As shown in FIG. 1, the desired wiring shape was a repeating arrangement of wiring (aluminum part) and spaces (dissolved parts), with the same width. The length of the wiring was 50 mm, and the number of wires was 10. A SEM photograph of an example of this wiring shape is shown in FIG.
The line width was tested at five levels: 50 μm, 75 μm, 100 μm, 125 μm, and 150 μm. Table 2 shows the critical fineness at which wiring etching was possible without disconnection when observed with an optical microscope.
(実施例1~15、比較例1~5)
 表1に示す組成A~Kのアルミニウム合金を溶解し、その溶湯を固定鋳型に注入して厚さ6mm、幅60mm、長さ65mmの鋳造小板を作製した。鋳造小板をフライス盤で面削した後、表2に示す条件でアルミニウム合金箔を作製した。表2にはそれらの引張試験結果、平均結晶粒径、配線エッチング試験結果も示す。
 なお、均質化熱処理、中間焼鈍、最終焼鈍を行う場合の条件は、下記の通りである。
・均質化熱処理
 厚さ6mmから面削後、空気中雰囲気で、表2に記載の温度まで2時間かけて昇温し、10時間保持した後、炉内で冷却した。
・中間焼鈍(IA)
 厚さ1mmまで圧延後、空気中雰囲気で表2に記載の温度まで2時間かけて昇温し、5時間保持した後、炉内で冷却した。
・最終焼鈍(FA)
 冷間圧延完了後、空気中雰囲気で表2に記載の温度まで2時間かけて昇温し、5時間保持した後、炉内で冷却した。
 なお、比較例4、5において、従来、使用されている1N30組成のアルミニウム箔(東洋アルミニウム(株)製)、8021組成のアルミニウム箔(東洋アルミニウム(株)製)を用いて同様の試験を実施した。比較例4、5の試験ではDC鋳造によりスラブ作製した後、均質化熱処理、熱間圧延を経て厚さ6mmの板とした。
(Examples 1 to 15, Comparative Examples 1 to 5)
Aluminum alloys having compositions A to K shown in Table 1 were melted, and the molten metal was poured into a fixed mold to produce a cast platelet having a thickness of 6 mm, a width of 60 mm, and a length of 65 mm. After face-cutting the cast platelets using a milling machine, aluminum alloy foils were produced under the conditions shown in Table 2. Table 2 also shows the results of the tensile test, average grain size, and wiring etching test.
Note that the conditions for performing homogenization heat treatment, intermediate annealing, and final annealing are as follows.
- Homogenization heat treatment After face cutting from a thickness of 6 mm, the temperature was raised to the temperature listed in Table 2 over 2 hours in an air atmosphere, maintained for 10 hours, and then cooled in a furnace.
・Intermediate annealing (IA)
After rolling to a thickness of 1 mm, the temperature was raised to the temperature listed in Table 2 in an air atmosphere over 2 hours, held for 5 hours, and then cooled in a furnace.
・Final annealing (FA)
After completion of cold rolling, the temperature was raised to the temperature listed in Table 2 in an air atmosphere over 2 hours, maintained for 5 hours, and then cooled in a furnace.
In addition, in Comparative Examples 4 and 5, similar tests were conducted using conventionally used aluminum foil with a 1N30 composition (manufactured by Toyo Aluminum Co., Ltd.) and aluminum foil with a composition of 8021 (manufactured by Toyo Aluminum Co., Ltd.). did. In the tests of Comparative Examples 4 and 5, slabs were produced by DC casting, and then subjected to homogenization heat treatment and hot rolling to form plates with a thickness of 6 mm.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

Claims (6)

  1.  アルミニウム合金箔であって、
     Ca(カルシウム)含有量が1.0質量%以上4.5質量%未満、Fe(鉄)含有量が0.02質量%以上1.3質量%未満で残部がAl(アルミニウム)とその他の微量元素を含むアルミニウム合金箔。
    An aluminum alloy foil,
    Ca (calcium) content is 1.0% by mass or more and less than 4.5% by mass, Fe (iron) content is 0.02% by mass or more and less than 1.3% by mass, and the balance is Al (aluminum) and other trace amounts. Aluminum alloy foil containing elements.
  2.  アルミニウム合金箔表面を観察面とし、EBSD(電子線後方散乱回折)法により結晶粒界の方位差15°以上として計測された平均結晶粒径が12μm以下である請求項1に記載のアルミニウム合金箔。 The aluminum alloy foil according to claim 1, wherein the aluminum alloy foil has an average crystal grain size of 12 μm or less, as measured by an EBSD (electron beam backscatter diffraction) method with a grain boundary misorientation of 15° or more, using the surface of the aluminum alloy foil as an observation surface. .
  3.  アルミニウム合金箔の耐力が70N/mm以上である請求項1に記載のアルミニウム合金箔。 The aluminum alloy foil according to claim 1, wherein the aluminum alloy foil has a yield strength of 70 N/mm 2 or more.
  4.  アルミニウム合金箔の引張強度が110N/mm以上である、請求項3に記載のアルミニウム合金箔。 The aluminum alloy foil according to claim 3, wherein the aluminum alloy foil has a tensile strength of 110 N/mm 2 or more.
  5.  アルミニウム合金箔の厚さが6μm以上80μm以下である、請求項1~4のいずれかに一項記載のアルミニウム合金箔。 The aluminum alloy foil according to any one of claims 1 to 4, wherein the aluminum alloy foil has a thickness of 6 μm or more and 80 μm or less.
  6.  Ca(カルシウム)含有量が1.0質量%以上4.5質量%未満、Fe(鉄)含有量が0.02質量%以上1.3質量%未満で残部がAl(アルミニウム)とその他の微量元素を含むアルミニウム合金の溶湯を鋳造することにより、アルミニウム合金の鋳塊を得る工程と、
     前記鋳塊を冷間圧延することにより、アルミニウム合金箔の冷間圧延箔を得る工程と、を備える、アルミニウム合金箔の製造方法。
    Ca (calcium) content is 1.0% by mass or more and less than 4.5% by mass, Fe (iron) content is 0.02% by mass or more and less than 1.3% by mass, and the balance is Al (aluminum) and other trace amounts. a step of obtaining an aluminum alloy ingot by casting a molten aluminum alloy containing the elements;
    A method for producing an aluminum alloy foil, comprising the step of cold rolling the ingot to obtain a cold rolled aluminum alloy foil.
PCT/JP2023/009023 2022-03-18 2023-03-09 Aluminum alloy foil and method for producing same WO2023176679A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022043790A JP2023137538A (en) 2022-03-18 2022-03-18 Aluminum alloy foil, and production method thereof
JP2022-043790 2022-03-18

Publications (1)

Publication Number Publication Date
WO2023176679A1 true WO2023176679A1 (en) 2023-09-21

Family

ID=88023285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/009023 WO2023176679A1 (en) 2022-03-18 2023-03-09 Aluminum alloy foil and method for producing same

Country Status (2)

Country Link
JP (1) JP2023137538A (en)
WO (1) WO2023176679A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011105982A (en) * 2009-11-16 2011-06-02 Nissan Motor Co Ltd Aluminum alloy and method for producing the same
WO2018012323A1 (en) * 2016-07-12 2018-01-18 日本軽金属株式会社 Pellicle frame and pellicle
JP2019073765A (en) * 2017-10-16 2019-05-16 株式会社Uacj Al-Fe-Ca-BASED ALUMINUM ALLOY, ALUMINUM ALLOY SHEET AND METHOD FOR PRODUCTION THEREOF
JP2021075778A (en) * 2018-12-26 2021-05-20 三菱アルミニウム株式会社 Aluminum alloy foil for battery packaging material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011105982A (en) * 2009-11-16 2011-06-02 Nissan Motor Co Ltd Aluminum alloy and method for producing the same
WO2018012323A1 (en) * 2016-07-12 2018-01-18 日本軽金属株式会社 Pellicle frame and pellicle
JP2019073765A (en) * 2017-10-16 2019-05-16 株式会社Uacj Al-Fe-Ca-BASED ALUMINUM ALLOY, ALUMINUM ALLOY SHEET AND METHOD FOR PRODUCTION THEREOF
JP2021075778A (en) * 2018-12-26 2021-05-20 三菱アルミニウム株式会社 Aluminum alloy foil for battery packaging material

Also Published As

Publication number Publication date
JP2023137538A (en) 2023-09-29

Similar Documents

Publication Publication Date Title
KR101049655B1 (en) Copper alloy with high strength, high conductivity and bendability
KR101158113B1 (en) Copper alloy plate for electrical and electronic components
JP2898627B2 (en) Copper alloy foil
JP5367999B2 (en) Cu-Ni-Si alloy for electronic materials
EP2045344B1 (en) Process for producing copper alloy sheets for electrical/electronic part
JP4006460B1 (en) Copper alloy excellent in high strength, high conductivity and bending workability, and method for producing the same
JP5654571B2 (en) Cu-Ni-Si alloy for electronic materials
JP2011184775A (en) High strength and high heat resistant copper alloy material
US20130149189A1 (en) High-strength copper alloy plate excellent in oxide film adhesiveness
JP2008045204A (en) Copper alloy sheet for electrical/electronic part with excellent oxide film adhesion
JP4006467B1 (en) Copper alloy with high strength, high conductivity, and excellent bending workability
JP4006468B1 (en) Copper alloy with high strength, high conductivity, and excellent bending workability
JP5479002B2 (en) Copper alloy foil
WO2023176679A1 (en) Aluminum alloy foil and method for producing same
JP6210910B2 (en) Fe-P copper alloy sheet with excellent strength, heat resistance and bending workability
JP5291494B2 (en) High strength high heat resistance copper alloy sheet
JP4937628B2 (en) Copper alloy with excellent hot workability
JP5179244B2 (en) Aluminum foil for circuit and method for manufacturing circuit material
WO2022196489A1 (en) Aluminum alloy foil, aluminum layered body, and method for producing aluminum alloy foil
JPH11264040A (en) Copper alloy foil
JP2009242871A (en) High strength and high electric conductivity two-phase copper alloy foil
JP2011084800A (en) High purity aluminum rolled sheet and method for producing the rolled sheet
JP2008081835A (en) Copper alloy
JP2008056974A (en) Copper alloy superior in hot workability
KR100885824B1 (en) Copper alloy having superior hot workability and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770635

Country of ref document: EP

Kind code of ref document: A1