WO2023176561A1 - Optical deflection device and distance measurement device - Google Patents

Optical deflection device and distance measurement device Download PDF

Info

Publication number
WO2023176561A1
WO2023176561A1 PCT/JP2023/008408 JP2023008408W WO2023176561A1 WO 2023176561 A1 WO2023176561 A1 WO 2023176561A1 JP 2023008408 W JP2023008408 W JP 2023008408W WO 2023176561 A1 WO2023176561 A1 WO 2023176561A1
Authority
WO
WIPO (PCT)
Prior art keywords
deflection device
mirror
optical deflection
section
mass
Prior art date
Application number
PCT/JP2023/008408
Other languages
French (fr)
Japanese (ja)
Inventor
浩希 岡田
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2023176561A1 publication Critical patent/WO2023176561A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems

Definitions

  • the present disclosure relates to a light deflection device and a distance measuring device.
  • Patent Document 1 discloses a configuration in which a plurality of MEMS mirrors are arranged in a matrix on a base, and each MEMS mirror is supported so as to protrude from the base.
  • Patent Document 2 discloses an optical deflector in which a plurality of mirrors that deflect laser light are swung by a piezoelectric actuator, and each mirror is supported by a support so as to protrude from a support base.
  • An optical deflection device includes: a mirror portion that swings around a predetermined movable axis and has a reflective surface that reflects light; A support part having a first part and a second part with the movable shaft in between, and supporting the mirror part with the first part.
  • a distance measuring device includes: A light deflection device according to the embodiment described above, A light emitting part that outputs electromagnetic waves, a light receiving section into which at least a part of the reflected wave, which is the electromagnetic wave output from the light emitting section and deflected by the optical deflection device reflected by an object, is incident; Equipped with The distance measuring device measures the distance to the object based on the output of electromagnetic waves from the light emitting section and the incidence of the reflected wave on the light receiving section.
  • FIG. 1 is a diagram showing a schematic configuration of a light deflection device according to a first embodiment.
  • FIG. 3 is a front view (top view) of a mirror section and a drive section of the optical deflection device according to the first embodiment.
  • FIG. 2 is a front view (top view) centered on the mirror portion of the optical deflection device according to the first embodiment.
  • 3 is a bottom surface of the optical deflection device according to the first embodiment, with the mirror portion in the center.
  • FIG. 3 is a diagram showing a schematic configuration of an optical deflection device according to a second embodiment. It is a figure showing the schematic structure of the optical deflection device concerning a 3rd embodiment.
  • FIG. 1 is a block diagram showing a functional configuration of a distance measuring device according to an embodiment.
  • FIG. 2 is a diagram showing a schematic configuration of an optical deflection device as a comparative example with respect to the optical deflection device according to one embodiment.
  • the optical deflection device as described above would be advantageous if its detection accuracy could be maintained at a high level for a long period of time. To this end, it is desired to improve the durability of the optical deflection device as described above.
  • An object of the present disclosure is to provide a light deflection device that can improve durability, and a distance measuring device equipped with such a light deflection device. According to one embodiment, it is possible to provide a light deflection device that can improve durability and a distance measuring device including such a light deflection device.
  • a light deflection device according to an embodiment of the present disclosure will be described with reference to the drawings. First, a light deflection device will be described as a comparative example for explaining the light deflection device according to the embodiment of the present disclosure.
  • FIG. 8 is a diagram showing the configuration of a conventional general optical deflection device as a comparative example for explaining the optical deflection device according to the embodiment of the present disclosure.
  • the optical deflection device 1' includes a mirror section 10' and a support section 20'.
  • the optical deflection device 1' may include a conventional general MEMS mirror.
  • the mirror section 10' includes, for example, a mirror 12' that reflects electromagnetic waves such as light.
  • the mirror 12' reflects electromagnetic waves such as light that includes a component in the negative direction of the Z-axis in a direction that includes a component in the positive direction of the Z-axis.
  • the Z axis is an axis perpendicular to the surface of the undriven mirror 12'.
  • the support portion 20' has a first end 21' and a second end 22'.
  • a mirror portion 10' may be provided at the first end 21'.
  • the second end 22' may be the opposite end of the first end 21'.
  • a movable axis P' on which the mirror portion 10' swings is located near the second end 22'. That is, the mirror portion 10' can swing about the movable axis P' as a rotation axis.
  • the movable shaft P' may be a torsion bar and may be connected to the second end 22'. In FIG. 8, the swinging of the mirror portion 10' in the directions of arrows S1 and S2 is shown by a two-dot chain line.
  • the optical deflection device 1' shown in FIG. 8 may further include a drive section 70', a first frame 71', a housing 80', a lid 90', and the like.
  • the drive section 70' is connected to the movable shaft P' and drives the mirror section 10'.
  • the mirror section 10' is driven by the drive section 70' to swing about the movable axis P' as a rotation axis.
  • the driving section 70' may drive the mirror section 10' using, for example, a disposed piezoelectric element. Any method such as an electrostatic method or an electromagnetic method may be adopted as a method for driving the mirror section 10'.
  • the first frame 71' may be a frame-shaped member that surrounds at least a portion of the drive section 70'.
  • the first frame 71' may be fixed to the housing 80'.
  • the first frame 71' may be a member interposed between the drive section 70' and the housing 80'. Even if the first frame 71' is fixed to the housing 80', the mirror section 10' can be swung by driving the driving section 70'.
  • the drive unit 70' is piezoelectric, even if the first frame 71' is fixed to the housing 80' so as not to move, the drive unit 70' may be deformed such as at least partially bent. This allows the mirror section 10' to be moved.
  • the housing 80' may protect the mirror part 10' by surrounding at least a portion of the mirror part 10'. That is, the mirror portion 10' can be protected from impacts from outside the optical deflection device 1' by the housing 80'.
  • the first frame 71' may be fixed inside the housing 80', for example.
  • the lid 90' may protect the mirror 12' by surrounding at least a portion of the mirror 12'.
  • the lid 90' is made of a material that transmits the light that is deflected by the mirror 12' and output from the optical deflection device 1'.
  • the lid 90' may transmit light that is incident on the mirror 12' from outside the optical deflection device 1'.
  • the optical deflection device 1' can deflect and output electromagnetic waves such as light emitted from any light source. Further, by swinging the mirror section 10' by an arbitrary drive section such as the drive section 70', the optical deflection device 1' can deflect the electromagnetic waves to be output.
  • the mirror portion 10' can swing about the movable axis P' as a rotation axis.
  • the center of gravity Q' of the system constituted by the mirror section 10' and the support section 20' does not coincide with the movable axis P'.
  • the center of gravity Q' of the system constituted by the mirror part 10' and the support part 20' is moved in the positive direction of the Z-axis with respect to the movable axis P'. It shifts.
  • the movable shaft P' has an elongated rod-like shape, extends from the second end 22' of the support section 20' in the positive direction and the negative direction of the Y-axis, and is connected to the drive section 70'. Therefore, if an unnecessarily large load is applied to the movable shaft P', it may cause various inconveniences, such as malfunction or breakage of the movable shaft P' interposed between the support section 20 and the drive section 70, for example. With the optical deflection device having such a configuration, it becomes difficult to maintain detection accuracy at a high level for a long period of time, which may make it difficult to maintain the durability of the optical deflection device.
  • the center of rotation of the mirror part is eccentric, which affects the distribution of stress on the mirror part. Bias may occur. Then, if the mirror swing angle (deflection angle) is increased, the risk of deterioration of torsion bars and the like increases, which may cause problems such as, for example, not being able to achieve a desired mirror deflection angle.
  • the durability of the optical deflection device is improved by reducing the eccentricity of the center of rotation of the mirror portion.
  • FIGS. 1 to 4 are diagrams showing configuration examples of the optical deflection device according to the first embodiment.
  • the optical deflection device 1 shown in FIG. 1 may have a structure including the same parts as the optical deflection device 1' shown in FIG. 8 as a whole. Regarding the optical deflection device 1 according to the first embodiment, descriptions of contents that are the same or similar to those of the optical deflection device 1' shown in FIG. 8 may be simplified or omitted as appropriate.
  • FIG. 1 is a cross-sectional view of the optical deflection device 1 viewed from the side (from a viewpoint in the positive direction of the Y-axis).
  • FIG. 2 is a diagram of the configuration including the mirror section 10, the drive section 70, and the first frame 71 in the optical deflection device 1, viewed from above (from a viewpoint in the negative direction of the Z-axis).
  • FIG. 3 is a diagram showing a partially enlarged configuration of FIG. 2.
  • FIG. FIG. 3 is a diagram of the mirror unit 10, the first torsion bar 41, and the second torsion bar 42 viewed from above (from a viewpoint in the negative direction of the Z-axis).
  • FIG. 4 is a diagram of the mirror section 10, the support section 20, the first torsion bar 41, and the second torsion bar 42 viewed from below (from a viewpoint in the Z-axis positive direction).
  • the optical deflection device 1 includes a mirror section 10. As shown in FIGS. 1 and 4, the optical deflection device 1 includes a support section 20. As shown in FIGS. 1 to 4, the optical deflection device 1 according to the first embodiment includes a mirror section 10. As shown in FIGS. 1 and 4, the optical deflection device 1 includes a support section 20. As shown in FIGS.
  • the mirror unit 10 may include, for example, a mirror 12 that reflects electromagnetic waves such as light.
  • the mirror 12 reflects electromagnetic waves such as light that includes a component in the negative direction of the Z-axis in a direction that includes a component in the positive direction of the Z-axis.
  • the mirror section 10 reflects electromagnetic waves such as light, for example.
  • the mirror 12 may be any mirror that reflects electromagnetic waves such as light, such as a conventional general MEMS mirror. At least a portion of the reflective surface of the mirror 12 may be flat.
  • the mirror portion 10 may be formed of any material that can withstand use as a MEMS mirror, for example.
  • the shape of the mirror section 10 is not particularly limited, and may be any shape.
  • the mirror section 10 may have, for example, a square shape, a rectangular shape, a parallelogram shape, a polygonal shape, or a circular (disc) shape when viewed in the Z-axis direction.
  • the mirror 12 may be formed of any material that can withstand use as a MEMS mirror, for example.
  • the shape of the mirror 12 is not particularly limited, and may be any shape.
  • the mirror 12 may have a square shape, a rectangular shape, a parallelogram shape, a polygonal shape, or a circular (disc) shape when viewed in the Z-axis direction.
  • the support portion 20 has a first end 21 and a second end 22.
  • the end of the support part 20 facing the Z-axis positive direction is conveniently referred to as a first end 21, and the end of the support part 20 facing the Z-axis negative direction is conveniently referred to as a second end 22.
  • the support portion 20 may include a first portion 20A and a second portion 20B.
  • the support portion 20 may include a first portion 20A and a second portion 20B with the movable axis P interposed therebetween.
  • the first portion 20A includes the first end 21 and may be a portion on the positive side of the Z-axis from the position of the movable axis P.
  • the second portion 20B includes the second end 22 and may be a portion on the negative side of the Z-axis from the position of the movable axis P.
  • the first portion 20A may support the mirror portion 10.
  • the first end 21 and the mirror section 10 may be connected.
  • the second end 22 may be an end on the opposite side of the first end 21 with the movable axis P interposed therebetween.
  • the support part 20 may be formed of any material that can withstand supporting the mirror part 10, such as a MEMS mirror, for example.
  • the support portion 20 is not limited to the shape shown in FIG. 1, but may have various shapes.
  • the support portion 20 may have any shape, such as a cylinder or a prism.
  • a movable axis P on which the mirror portion 10 swings is located between the first end 21 and the second end 22.
  • the movable shaft includes a first torsion bar 41 extending in the positive direction of the Y-axis and a second torsion bar 42 extending in the negative direction of the Y-axis.
  • the mirror section 10 can swing about the movable axis P as a rotation axis.
  • the support section 20 supports the mirror section 10 so as to be swingable around a predetermined movable axis P.
  • the movable axis P may be an axis parallel to the Y axis.
  • the support portion 20 may extend in a direction perpendicular to the reflective surface of the mirror 12.
  • the movable axis P may extend in a direction parallel to the reflective surface of the mirror 12.
  • the optical deflection device 1 may further include a drive unit 70, a first frame 71, a housing 80, a lid 90, and the like. These members may be similar to the drive unit 70', first frame 71', housing 80', lid 90', etc. of the optical deflection device 1' described in FIG. 8.
  • the housing 80 may have a box-like shape, for example, and may include a wall portion surrounding the first frame 71 and a bottom portion connected to the wall portion and facing the lid 90.
  • the first torsion bar 41 and the second torsion bar 42 are connected to the support section 20 that supports the mirror section 10.
  • the drive section 70 includes a rectangular second frame 72 formed to surround the support section 20, and a connection connecting the second frame 72 and the first frame 71. 73.
  • the connecting portion 73 may have a bent shape that is folded back multiple times.
  • the first torsion bar 41 and the second torsion bar 42 are connected to a second frame 72 of the drive unit 70.
  • the first torsion bar 41 and the second torsion bar 42 are connected to opposing sides of the second frame 72 of the drive unit 70, respectively.
  • the mirror section 10 is connected to the first end 21 of the support section 20 and thereby connected to the drive section 70 via the first torsion bar 41 and the second torsion bar 42 .
  • the drive section 70 includes a piezoelectric element in the connection section 73.
  • the first torsion bar 41 and the second torsion bar 42 swingably support the support section 20.
  • the support section 20 supports the mirror section 10 at the first end 21 .
  • the connecting portion 73 is deflected by the piezoelectric element, the mirror portion 10 swings.
  • the first frame 71 may be fixed to the housing 80.
  • the first portion 20A and the second portion 20B each have a predetermined mass.
  • the light deflection device 1 can bring the center of gravity Q1 closer to the movable axis P when the mirror section 10 swings due to the mass of the second portion 20B.
  • the optical deflection device 1 can reduce the amount of deviation of the center of gravity Q1 from the movable axis P compared to the center of gravity Q' when the second portion 20B is not provided.
  • the optical deflection device 1 can reduce the load applied to the movable axis P when the mirror section 10 swings.
  • the optical deflection device 1 can alleviate various inconvenient factors, such as malfunction or damage in at least one of the support section 20, the first torsion bar 41, the second torsion bar 42, and the drive section 70, for example.
  • the light deflection device 1 can maintain detection accuracy at a high level for a long period of time by improving the durability of the light deflection device.
  • the optical deflection device 1 can prevent the first torsion bar 41 and/or the second torsion bar 42 interposed between the support section 20 and the drive section 70 can reduce the risk of deterioration.
  • the center of gravity Q1 may be closer to the movable axis P than the center of gravity Q'.
  • the mass of the second portion 20B may be the same as the mass of the first portion 20A.
  • the mass of the second portion 20B may be greater than the mass of the first portion 20A.
  • the mass of the second portion 20B may be smaller than the mass of the mirror portion 10 and the first portion 20A.
  • the mass of the second portion 20B may be the same as the mass of the mirror portion 10 and the first portion 20A.
  • the predetermined movable axis P may be an intangible virtual axis.
  • the predetermined movable axis P may be a physical entity such as the first torsion bar 41 and the second torsion bar 42, for example.
  • FIGS. 1 and 2 an example is shown in which the drive section 70 that drives the mirror section 10 is of a piezoelectric type.
  • the mirror unit 10 may be driven by any method such as piezoelectric, electrostatic, or electromagnetic.
  • the mirror portion may swing only about the Y-axis direction as the rotation axis, or may further swing about the X-axis direction as the rotation axis.
  • the optical deflection device 1 is shown as having only one mirror section 10 for the purpose of simplifying the explanation. However, the optical deflection device 1 may include two or more mirror parts 10 and two or more support parts 20. The optical deflection device 1 may include a mirror array including a plurality of mirror parts 10 and a support part 20.
  • FIG. 5 is a diagram illustrating a configuration example of an optical deflection device according to the second embodiment.
  • the optical deflection device 2 shown in FIG. 5 may have a configuration including the same parts as the optical deflection device 1 and/or the optical deflection device 1'.
  • explanations of contents that are the same or similar to those of the optical deflection device 1 and/or the optical deflection device 1' may be simplified or omitted as appropriate.
  • the optical deflection device 2 may include a weight portion 30 having a predetermined mass in the second portion 20B of the optical deflection device 1.
  • the light deflection device 2 may have a weight portion 30 having a predetermined mass supported by the second portion 20B of the light deflection device 1.
  • the weight portion 30 may be made of any material having a predetermined mass.
  • the weight portion 30 may have the same mass as the mirror portion 10, for example.
  • the mass of the weight portion 30 may be approximated to the mass of the mirror portion 10, for example.
  • the weight portion 30 may be spherical or hemispherical.
  • the weight portion 30 may have a shape including a cone or a pyramid with the apex facing away from the first end.
  • the weight part 30 has a spherical shape or a shape including a cone or a pyramid, even if the weight part 30 and the bottom of the casing 80 are close to each other and face each other, the weight part 30 will not move when the mirror part 10 swings. Contact with the bottom of the housing 80 is less likely to occur.
  • the optical deflection device 2 can bring the center of gravity of the system composed of the mirror section 10, the support section 20, and the weight section 30 closer to the movable axis P when the mirror section 10 swings.
  • the optical deflection device 2 can bring the center of gravity Q2 of the system constituted by the mirror section 10, the support section 20, and the weight section 30 closer to the movable axis P.
  • the second portion 20B can be made shorter than the first portion 20A.
  • the optical deflection device 2 can reduce the load applied to the movable axis P when the mirror section 10 swings.
  • the optical deflection device 2 can further alleviate various inconvenient factors, such as malfunctions or damage to the drive unit 70, for example.
  • the light deflection device 2 can further improve the durability of the light deflection device and maintain detection accuracy at a high level for a longer period of time.
  • the center of gravity Q2 may be closer to the predetermined movable axis P than the center of gravity Q'.
  • the center of gravity Q2 may be closer to the predetermined movable axis P than the center of gravity Q1.
  • the mass of the weight portion 30 may be, for example, between 50% and 100% of the mass of the mirror portion 10.
  • the mass of the weight portion 30 may be within a predetermined difference from the mass of the mirror portion 10 so as to be close to the mass of the mirror portion 10 to some extent.
  • the mass of the weight portion 30 may be equal to the mass of the mirror portion 10.
  • the mass of the weight portion 30 may be approximately equal to the mass of the mirror portion 10.
  • the mass of the support section 20 including the weight section 30 may be between 50% and 100% of the mass of the support section 20 including the mirror section 10.
  • the mass of the support section 20 including the weight section 30 may be within a predetermined difference from the mass of the support section 20 including the mirror section 10 so that the mass of the support section 20 including the weight section 30 is somewhat close to the support section 20 including the mirror section 10 .
  • the mass of the support section 20 including the weight section 30 may be equal to the mass of the support section 20 including the mirror section 10.
  • the mass of the support section 20 including the weight section 30 may be approximately equal to the mass of the support section 20 including the mirror section 10.
  • the mass of the second portion 20B including the weight portion 30 may be, for example, between 50% and 100% of the mass of the mirror portion 10 and the first portion 20A.
  • the mass of the second portion 20B including the weight portion 30 is set to be within a predetermined difference from the mass of the mirror portion 10 and the first portion 20A, so that it is somewhat close to the mirror portion 10 and the first portion 20A. Good too.
  • the mass of the second portion 20B including the weight portion 30 may be equal to the mass of the mirror portion 10 and the first portion 20A.
  • the mass of the second portion 20B including the weight portion 30 may be approximately equal to the mass of the mirror portion 10 and the first portion 20A.
  • the moment of force by the weight part 30 around the predetermined movable axis P may be within a predetermined difference from the moment of force by the mirror part 10 around the predetermined movable axis P.
  • the moment of force exerted by the weight portion 30 around the predetermined movable axis P may be equal to the moment of force exerted by the mirror portion 10 around the predetermined movable axis P.
  • FIG. 6 is a diagram illustrating a configuration example of an optical deflection device according to a third embodiment.
  • the optical deflection device 3 shown in FIG. 6 may have a configuration including the same parts as the optical deflection device 2 shown in FIG. 5. Regarding the optical deflection device 3, explanations of contents that are the same or similar to those of the optical deflection device 2 may be simplified or omitted as appropriate.
  • the weight portion 31 may be formed by forming the weight portion 30 of the optical deflection device 2 into the same or similar shape to the mirror portion 10.
  • the weight portion 31 may be made of any material having a predetermined mass.
  • the mass of the weight portion 31 may be, for example, the same as the mass of the mirror portion 10, or may be approximated.
  • the shape of the weight portion 31 may be the same as or similar to the shape of the mirror portion 10.
  • the weight portion 31 may have a shape that is curved so that the outer edge portion approaches the mirror portion 10. Since the weight portion 31 has a warped shape, even if the weight portion 31 and the bottom of the housing 80 are close to each other and face each other, when the mirror portion 10 swings, the weight portion 31 and the bottom of the housing 80 Contact with the person is less likely to occur. Therefore, the optical deflection device 2 can be downsized.
  • the optical deflection device 3 can bring the center of gravity Q3 of the system composed of the mirror section 10, the support section 20, and the weight section 31 closer to the movable axis P when the mirror section 10 swings.
  • the optical deflection device 3 can reduce the load applied to the movable axis P when the mirror section 10 swings.
  • the optical deflection device 3 can further alleviate various inconvenient factors, such as malfunction or damage to the drive unit 70, for example.
  • the optical deflection device 3 can maintain detection accuracy at a high level for a longer period of time, and can further improve the durability of the optical deflection device.
  • the center of gravity Q3 may be closer to the predetermined movable axis P than the center of gravity Q'.
  • the center of gravity Q3 may be closer to the predetermined movable axis P than the center of gravity Q1.
  • the center of gravity Q3 may be closer to the movable axis P than the center of gravity Q2.
  • FIG. 7 is a block diagram showing the functional configuration of a distance measuring device including the optical deflection devices 1 to 3 according to the first to third embodiments. A distance measuring device according to an embodiment will be described below.
  • a distance measuring device 5 includes any one of the optical deflection devices 1 to 3 described above.
  • the distance measuring device 5 includes a light emitting section 51 and a light receiving section 52.
  • the distance measuring device 5 may include a control circuit 60.
  • the light emitting unit 51 outputs electromagnetic waves such as infrared beams, for example. At least a portion of the electromagnetic waves output by the light emitting section 51 is deflected by one of the optical deflectors 1 to 3. At least a portion of a reflected wave, which is an electromagnetic wave deflected by one of the optical deflectors 1 to 3 and reflected by an object 100, enters the light receiving unit 52.
  • the control circuit 60 may control the drive of the drive section 70 described above.
  • the distance measuring device 5 may measure the distance to the object 100 based on the output timing of the electromagnetic wave outputted by the light emitting section 51 and the incident timing at which the reflected wave is incident on the light receiving section 52.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

The purpose of the present disclosure is to provide: an optical deflection device capable of improving durability; and a distance measurement device comprising such an optical deflection device. This optical deflection device (1) has a mirror part (10) and a support part (20). The mirror part (10) has a reflective surface that reflects light. The mirror part (10) swings around a predetermined movable shaft (P). The support part (20) has a first portion (20A) and a second portion (20B) with the movable shaft therebetween, and supports the mirror part (10) by means of the first portion (20A).

Description

光偏向装置及び測距装置Light deflection device and ranging device 関連出願の相互参照Cross-reference of related applications
 本出願は、2022年3月18日に日本国に特許出願された特願2022-44685の優先権を主張するものであり、この先の出願の開示全体を、ここに参照のために取り込む。 This application claims priority to Japanese Patent Application No. 2022-44685 filed in Japan on March 18, 2022, and the entire disclosure of this earlier application is incorporated herein by reference.
 本開示は、光偏向装置及び測距装置に関する。 The present disclosure relates to a light deflection device and a distance measuring device.
 近年、光などの電磁波を検出した結果から周囲の物体などに関する情報を取得する装置が開発されている。例えば、レーザ光などを射出して所定の物体によって反射された反射波を受信することで、当該物体までの距離などを計測するレーダ装置などが知られている。このような装置に備えられる光偏向装置として、広角走査が可能で、かつ角度分解能にも優れたMEMS(Micro Electro Mechanical Systems)ミラーが採用されることがある。例えば、特許文献1は、複数のMEMSミラーがマトリクス上に基部に配置され、それぞれのMEMSミラーは基部から突出するように支持された構成を開示している。また、特許文献2は、レーザ光を偏向する複数のミラーが圧電アクチュエータによって揺動され、それぞれのミラーは支柱部によって支持台から突出するように支持された光偏向器を開示している。 In recent years, devices have been developed that acquire information about surrounding objects from the results of detecting electromagnetic waves such as light. For example, radar devices are known that measure the distance to a predetermined object by emitting a laser beam or the like and receiving a reflected wave reflected by the object. As a light deflection device included in such an apparatus, a MEMS (Micro Electro Mechanical Systems) mirror, which is capable of wide-angle scanning and has excellent angular resolution, is sometimes employed. For example, Patent Document 1 discloses a configuration in which a plurality of MEMS mirrors are arranged in a matrix on a base, and each MEMS mirror is supported so as to protrude from the base. Further, Patent Document 2 discloses an optical deflector in which a plurality of mirrors that deflect laser light are swung by a piezoelectric actuator, and each mirror is supported by a support so as to protrude from a support base.
特開2016-71145号公報Japanese Patent Application Publication No. 2016-71145 特開2016-110008号公報JP 2016-110008 Publication
 一実施形態に係る光偏向装置は、
 所定の可動軸の周りで揺動する、光を反射させる反射面を有するミラー部と、
 前記可動軸を挟んで第1部分と第2部分を有し、前記ミラー部を前記第1部分で支持する支持部と、を備える。
An optical deflection device according to one embodiment includes:
a mirror portion that swings around a predetermined movable axis and has a reflective surface that reflects light;
A support part having a first part and a second part with the movable shaft in between, and supporting the mirror part with the first part.
 一実施形態に係る測距装置は、
 上述した一実施形態に係る光偏向装置と、
 電磁波を出力する発光部と、
 前記発光部から出力され、光偏向装置によって偏向された電磁波が物体によって反射した反射波の少なくとも一部が入射する受光部と、
 を備える。
 前記測距装置は、前記発光部による電磁波の出力、及び前記受光部への前記反射波の入射に基づいて、前記物体との距離を測定する。
A distance measuring device according to an embodiment includes:
A light deflection device according to the embodiment described above,
A light emitting part that outputs electromagnetic waves,
a light receiving section into which at least a part of the reflected wave, which is the electromagnetic wave output from the light emitting section and deflected by the optical deflection device reflected by an object, is incident;
Equipped with
The distance measuring device measures the distance to the object based on the output of electromagnetic waves from the light emitting section and the incidence of the reflected wave on the light receiving section.
第1実施形態に係る光偏向装置の概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of a light deflection device according to a first embodiment. 第1実施形態に係る光偏向装置のミラー部及び駆動部の正面図(上面図)である。FIG. 3 is a front view (top view) of a mirror section and a drive section of the optical deflection device according to the first embodiment. 第1実施形態に係る光偏向装置のミラー部を中心とする正面図(上面図)である。FIG. 2 is a front view (top view) centered on the mirror portion of the optical deflection device according to the first embodiment. 第1実施形態に係る光偏向装置のミラー部を中心とする下面である。3 is a bottom surface of the optical deflection device according to the first embodiment, with the mirror portion in the center. 第2実施形態に係る光偏向装置の概略構成を示す図である。FIG. 3 is a diagram showing a schematic configuration of an optical deflection device according to a second embodiment. 第3実施形態に係る光偏向装置の概略構成を示す図である。It is a figure showing the schematic structure of the optical deflection device concerning a 3rd embodiment. 一実施形態に係る測距装置の機能的な構成を示すブロック図である。FIG. 1 is a block diagram showing a functional configuration of a distance measuring device according to an embodiment. 一実施形態に係る光偏向装置に対する比較例としての光偏向装置の概略構成を示す図である。FIG. 2 is a diagram showing a schematic configuration of an optical deflection device as a comparative example with respect to the optical deflection device according to one embodiment.
 上述のような光偏向装置は、検出精度が高い水準で長期間維持されれば有利である。そのためにも、上述のような光偏向装置の耐久性を向上させることが望まれる。本開示の目的は、耐久性を向上させ得る光偏向装置、及び、このような光偏向装置を備える測距装置を提供することにある。一実施形態によれば、耐久性を向上させ得る光偏向装置、及び、このような光偏向装置を備える測距装置を提供することができる。以下、本開示の実施形態に係る光偏向装置について、図面を参照して説明する。まず、本開示の実施形態に係る光偏向装置を説明するための比較例としての光偏向装置について説明する。 The optical deflection device as described above would be advantageous if its detection accuracy could be maintained at a high level for a long period of time. To this end, it is desired to improve the durability of the optical deflection device as described above. An object of the present disclosure is to provide a light deflection device that can improve durability, and a distance measuring device equipped with such a light deflection device. According to one embodiment, it is possible to provide a light deflection device that can improve durability and a distance measuring device including such a light deflection device. Hereinafter, a light deflection device according to an embodiment of the present disclosure will be described with reference to the drawings. First, a light deflection device will be described as a comparative example for explaining the light deflection device according to the embodiment of the present disclosure.
(光偏向装置)
 図8は、本開示の実施形態に係る光偏向装置を説明するための比較例として、従来の一般的な光偏向装置の構成を示す図である。
(light deflection device)
FIG. 8 is a diagram showing the configuration of a conventional general optical deflection device as a comparative example for explaining the optical deflection device according to the embodiment of the present disclosure.
 図8に示すように、光偏向装置1’は、ミラー部10’及び支持部20’を備える。光偏向装置1’は、従来の一般的なMEMSミラーを備えるものとしてよい。 As shown in FIG. 8, the optical deflection device 1' includes a mirror section 10' and a support section 20'. The optical deflection device 1' may include a conventional general MEMS mirror.
 ミラー部10’は、例えば、光のような電磁波を反射するミラー12’を備える。ミラー12’は、Z軸負方向の成分を含む光などの電磁波を、Z軸正方向の成分を含む方向に反射する。ここでZ軸とは、駆動されていないミラー12’の表面に垂直な方向の軸とする。 The mirror section 10' includes, for example, a mirror 12' that reflects electromagnetic waves such as light. The mirror 12' reflects electromagnetic waves such as light that includes a component in the negative direction of the Z-axis in a direction that includes a component in the positive direction of the Z-axis. Here, the Z axis is an axis perpendicular to the surface of the undriven mirror 12'.
 支持部20’は、第1端21’及び第2端22’を有する。第1端21’には、ミラー部10’が設けられてよい。第2端22’は、第1端21’の反対側の端部としてよい。第2端22’の近傍には、ミラー部10’が揺動する可動軸P’が位置する。すなわち、ミラー部10’は、可動軸P’を回転軸として揺動することができる。可動軸P’はトーションバーであってよく、第2端22’と接続されていてよい。図8においては、ミラー部10’が矢印S1及びS2の方向に揺動する様子を、2点鎖線によって示してある。 The support portion 20' has a first end 21' and a second end 22'. A mirror portion 10' may be provided at the first end 21'. The second end 22' may be the opposite end of the first end 21'. A movable axis P' on which the mirror portion 10' swings is located near the second end 22'. That is, the mirror portion 10' can swing about the movable axis P' as a rotation axis. The movable shaft P' may be a torsion bar and may be connected to the second end 22'. In FIG. 8, the swinging of the mirror portion 10' in the directions of arrows S1 and S2 is shown by a two-dot chain line.
 図8に示す光偏向装置1’は、さらに、駆動部70’、第1の枠体71’、筐体80’、及びリッド90’などを備えてよい。 The optical deflection device 1' shown in FIG. 8 may further include a drive section 70', a first frame 71', a housing 80', a lid 90', and the like.
 駆動部70’は可動軸P’と接続されており、ミラー部10’を駆動する。ミラー部10’は、駆動部70’によって駆動されることにより、可動軸P’を回転軸として揺動する。駆動部70’は、例えば配置した圧電素子によってミラー部10’を駆動させてよい。ミラー部10’を駆動させる方法は、静電式、電磁式など任意の方式を採用しうる。 The drive section 70' is connected to the movable shaft P' and drives the mirror section 10'. The mirror section 10' is driven by the drive section 70' to swing about the movable axis P' as a rotation axis. The driving section 70' may drive the mirror section 10' using, for example, a disposed piezoelectric element. Any method such as an electrostatic method or an electromagnetic method may be adopted as a method for driving the mirror section 10'.
 第1の枠体71’は、駆動部70’の少なくとも一部を囲む枠状の部材としてよい。第1の枠体71’は、筐体80’に固定されてよい。第1の枠体71’は、駆動部70’と筐体80’との間に介在する部材としてよい。第1の枠体71’は、筐体80’に固定されても、駆動部70’を駆動することにより、ミラー部10’を揺動させることができる。例えば、駆動部70’が圧電式の場合、第1の枠体71’が動かないように筐体80’に固定されても、駆動部70’は、少なくとも一部が撓むなど変形することにより、ミラー部10’を動かすことができる。 The first frame 71' may be a frame-shaped member that surrounds at least a portion of the drive section 70'. The first frame 71' may be fixed to the housing 80'. The first frame 71' may be a member interposed between the drive section 70' and the housing 80'. Even if the first frame 71' is fixed to the housing 80', the mirror section 10' can be swung by driving the driving section 70'. For example, if the drive unit 70' is piezoelectric, even if the first frame 71' is fixed to the housing 80' so as not to move, the drive unit 70' may be deformed such as at least partially bent. This allows the mirror section 10' to be moved.
 筐体80’は、ミラー部10’の少なくとも一部を包囲することにより、ミラー部10’を保護するものとしてよい。すなわち、ミラー部10’は、筐体80’によって、光偏向装置1’の外部からの衝撃などから保護され得る。筐体80’は、例えばその内部などにおいて、第1の枠体71’を固定させてよい。 The housing 80' may protect the mirror part 10' by surrounding at least a portion of the mirror part 10'. That is, the mirror portion 10' can be protected from impacts from outside the optical deflection device 1' by the housing 80'. The first frame 71' may be fixed inside the housing 80', for example.
 リッド90’は、ミラー12’の少なくとも一部を包囲することにより、ミラー12’を保護するものとしてよい。リッド90’は、ミラー12’によって偏向されて光偏向装置1’から出力される光を透過する材料で構成される。リッド90’は、光偏向装置1’の外部からミラー12’に入射する光を透過してもよい。 The lid 90' may protect the mirror 12' by surrounding at least a portion of the mirror 12'. The lid 90' is made of a material that transmits the light that is deflected by the mirror 12' and output from the optical deflection device 1'. The lid 90' may transmit light that is incident on the mirror 12' from outside the optical deflection device 1'.
 以上のように構成されることにより、光偏向装置1’は、任意の光源から照射される光などの電磁波を偏向して出力することができる。また、駆動部70’のような任意の駆動部によってミラー部10’を揺動することにより、光偏向装置1’は、出力する電磁波を偏向させることができる。 With the above configuration, the optical deflection device 1' can deflect and output electromagnetic waves such as light emitted from any light source. Further, by swinging the mirror section 10' by an arbitrary drive section such as the drive section 70', the optical deflection device 1' can deflect the electromagnetic waves to be output.
 ミラー部10’は、可動軸P’を回転軸として揺動することができる。しかし、ミラー部10’及び支持部20’により構成される系の重心点Q’と、可動軸P’は一致しない。光偏向装置1’は、揺動するミラー部10’の質量により、ミラー部10’及び支持部20’により構成される系の重心点Q’が、可動軸P’よりもZ軸正方向にずれる。ミラー部10’が可動軸P’を回転軸として揺動可能であっても、ミラー部10’及び支持部20’により構成される系が実際に回転運動する中心は、可動軸P’から図8に示す重心点Q’の方にずれてしまう。 The mirror portion 10' can swing about the movable axis P' as a rotation axis. However, the center of gravity Q' of the system constituted by the mirror section 10' and the support section 20' does not coincide with the movable axis P'. In the optical deflection device 1', due to the mass of the swinging mirror part 10', the center of gravity Q' of the system constituted by the mirror part 10' and the support part 20' is moved in the positive direction of the Z-axis with respect to the movable axis P'. It shifts. Even if the mirror section 10' is able to swing around the movable axis P', the actual rotational center of the system constituted by the mirror section 10' and the support section 20' is located from the movable axis P' in the figure. The center of gravity shifts toward the center of gravity Q' shown in 8.
 ミラー部10’及び支持部20’により構成される系が実際に回転運動する中心が、重心点Q’の方にずれてしまうと、可動軸P’に負荷がかかる。可動軸P’は、細長い棒状の形状を有し、支持部20’の第2端22’からY軸正方向及び負方向に延びて駆動部70’と接続する。したがって、可動軸P’の箇所に必要以上に負荷がかかると、例えば支持部20と駆動部70との間に介在する可動軸P’の不具合又は破損など、種々の不都合の要因になり得る。このような構成の光偏向装置は、検出精度を高い水準で長期間維持することが困難になり、光偏向装置の耐久性の維持を困難にし得る。 If the center of rotation of the system constituted by the mirror section 10' and the support section 20' is shifted toward the center of gravity Q', a load is applied to the movable axis P'. The movable shaft P' has an elongated rod-like shape, extends from the second end 22' of the support section 20' in the positive direction and the negative direction of the Y-axis, and is connected to the drive section 70'. Therefore, if an unnecessarily large load is applied to the movable shaft P', it may cause various inconveniences, such as malfunction or breakage of the movable shaft P' interposed between the support section 20 and the drive section 70, for example. With the optical deflection device having such a configuration, it becomes difficult to maintain detection accuracy at a high level for a long period of time, which may make it difficult to maintain the durability of the optical deflection device.
 一般的に、ミラー部分とミラー部分を揺動させるための駆動部分とをトーションバー等に接続した構造のMEMSミラーにおいては、ミラー部分の回転中心が偏心することにより、ミラー部分に対する応力の分布に偏りが生じ得る。すると、ミラーの振り角(振れ角)を大きくするとトーションバー等の劣化のリスクが高まるため、例えばミラーの所望の振り角を実現することができないなどの問題も生じ得る。 In general, in a MEMS mirror that has a structure in which a mirror part and a driving part for swinging the mirror part are connected to a torsion bar, etc., the center of rotation of the mirror part is eccentric, which affects the distribution of stress on the mirror part. Bias may occur. Then, if the mirror swing angle (deflection angle) is increased, the risk of deterioration of torsion bars and the like increases, which may cause problems such as, for example, not being able to achieve a desired mirror deflection angle.
 そこで、以下説明する実施形態においては、ミラー部分が回転運動する中心の偏心を低減させることにより、光偏向装置の耐久性を向上させる。 Therefore, in the embodiment described below, the durability of the optical deflection device is improved by reducing the eccentricity of the center of rotation of the mirror portion.
(第1実施形態)
 図1乃至図4は、第1実施形態に係る光偏向装置の構成例を示す図である。
(First embodiment)
FIGS. 1 to 4 are diagrams showing configuration examples of the optical deflection device according to the first embodiment.
 図1に示す光偏向装置1は、全体として、図8に示した光偏向装置1’と同様の部分を含む構成としてよい。第1実施形態に係る光偏向装置1について、図8に示した光偏向装置1’と同様又は類似する内容の説明は、適宜、簡略化又は省略することがある。 The optical deflection device 1 shown in FIG. 1 may have a structure including the same parts as the optical deflection device 1' shown in FIG. 8 as a whole. Regarding the optical deflection device 1 according to the first embodiment, descriptions of contents that are the same or similar to those of the optical deflection device 1' shown in FIG. 8 may be simplified or omitted as appropriate.
 図1は、光偏向装置1を側方から(Y軸正方向の視点から)見た断面図である。図2は、光偏向装置1におけるミラー部10、駆動部70、及び第1の枠体71を含む構成を上方から(Z軸負方向の視点から)見た図である。図3は、図2を部分的に拡大した構成を示す図である。図3は、ミラー部10、第1トーションバー41及び第2トーションバー42を上方から(Z軸負方向の視点から)見た図である。図4は、ミラー部10、支持部20、第1トーションバー41及び第2トーションバー42を下方から(Z軸正方向の視点から)見た図である。 FIG. 1 is a cross-sectional view of the optical deflection device 1 viewed from the side (from a viewpoint in the positive direction of the Y-axis). FIG. 2 is a diagram of the configuration including the mirror section 10, the drive section 70, and the first frame 71 in the optical deflection device 1, viewed from above (from a viewpoint in the negative direction of the Z-axis). FIG. 3 is a diagram showing a partially enlarged configuration of FIG. 2. In FIG. FIG. 3 is a diagram of the mirror unit 10, the first torsion bar 41, and the second torsion bar 42 viewed from above (from a viewpoint in the negative direction of the Z-axis). FIG. 4 is a diagram of the mirror section 10, the support section 20, the first torsion bar 41, and the second torsion bar 42 viewed from below (from a viewpoint in the Z-axis positive direction).
 図1乃至図4に示すように、第1実施形態に係る光偏向装置1は、ミラー部10を備える。図1及び図4に示すように、光偏向装置1は、支持部20を備える。 As shown in FIGS. 1 to 4, the optical deflection device 1 according to the first embodiment includes a mirror section 10. As shown in FIGS. 1 and 4, the optical deflection device 1 includes a support section 20. As shown in FIGS.
 ミラー部10は、例えば、光のような電磁波を反射するミラー12を備えてよい。ミラー12は、Z軸負方向の成分を含む光などの電磁波を、Z軸正方向の成分を含む方向に反射する。ミラー部10は、例えば、光のような電磁波を反射する。ミラー12は、例えば、従来の一般的なMEMSミラーなど、光のような電磁波を反射する任意のものを採用してもよい。ミラー12の反射面は、少なくとも一部が平面的であるものとしてよい。 The mirror unit 10 may include, for example, a mirror 12 that reflects electromagnetic waves such as light. The mirror 12 reflects electromagnetic waves such as light that includes a component in the negative direction of the Z-axis in a direction that includes a component in the positive direction of the Z-axis. The mirror section 10 reflects electromagnetic waves such as light, for example. The mirror 12 may be any mirror that reflects electromagnetic waves such as light, such as a conventional general MEMS mirror. At least a portion of the reflective surface of the mirror 12 may be flat.
 ミラー部10は、例えばMEMSミラーとしての使用に耐え得る任意の素材で形成してよい。ミラー部10の形状は特に限定されず、任意の形状としてよい。ミラー部10は、例えば、Z軸方向で見た場合に、正方形状、長方形状、平行四辺形状、多角形状、又は円形(円盤)状などとしてよい。 The mirror portion 10 may be formed of any material that can withstand use as a MEMS mirror, for example. The shape of the mirror section 10 is not particularly limited, and may be any shape. The mirror section 10 may have, for example, a square shape, a rectangular shape, a parallelogram shape, a polygonal shape, or a circular (disc) shape when viewed in the Z-axis direction.
 ミラー12は、例えばMEMSミラーとしての使用に耐え得る任意の素材で形成してよい。ミラー12の形状は特に限定されず、任意の形状としてよい。ミラー12は、例えば、Z軸方向で見た場合に、正方形状、長方形状、平行四辺形状、多角形状、又は円形(円盤)状などとしてよい。 The mirror 12 may be formed of any material that can withstand use as a MEMS mirror, for example. The shape of the mirror 12 is not particularly limited, and may be any shape. For example, the mirror 12 may have a square shape, a rectangular shape, a parallelogram shape, a polygonal shape, or a circular (disc) shape when viewed in the Z-axis direction.
 支持部20は、第1端21及び第2端22を有する。支持部20のZ軸正方向を向く端部を、便宜的に第1端21と記し、支持部20のZ軸負方向を向く端部を、便宜的に第2端22と記す。支持部20は、第1部分20Aと第2部分20Bとを含んでよい。支持部20は、可動軸Pを挟んで第1部分20Aと第2部分20Bとしてよい。第1部分20Aは、第1端21を含み、可動軸Pの位置からZ軸正方向側の部分としてよい。第2部分20Bは、第2端22を含み、可動軸Pの位置からZ軸負方向側の部分としてよい。 The support portion 20 has a first end 21 and a second end 22. The end of the support part 20 facing the Z-axis positive direction is conveniently referred to as a first end 21, and the end of the support part 20 facing the Z-axis negative direction is conveniently referred to as a second end 22. The support portion 20 may include a first portion 20A and a second portion 20B. The support portion 20 may include a first portion 20A and a second portion 20B with the movable axis P interposed therebetween. The first portion 20A includes the first end 21 and may be a portion on the positive side of the Z-axis from the position of the movable axis P. The second portion 20B includes the second end 22 and may be a portion on the negative side of the Z-axis from the position of the movable axis P.
 第1部分20Aは、ミラー部10を支持してよい。第1端21と、ミラー部10とは接続されてよい。第2端22は、可動軸Pを挟んで、第1端21の反対側の端部としてよい。支持部20は、例えば、MEMSミラーのようなミラー部10を支持するのに耐え得る任意の素材で形成してよい。支持部20は、図1に示すような形状に限定されず、種々の形状としてよい。支持部20は、例えば、円柱、角柱など任意の形状としてよい。 The first portion 20A may support the mirror portion 10. The first end 21 and the mirror section 10 may be connected. The second end 22 may be an end on the opposite side of the first end 21 with the movable axis P interposed therebetween. The support part 20 may be formed of any material that can withstand supporting the mirror part 10, such as a MEMS mirror, for example. The support portion 20 is not limited to the shape shown in FIG. 1, but may have various shapes. The support portion 20 may have any shape, such as a cylinder or a prism.
 ミラー部10が揺動する可動軸Pは、第1端21と第2端22との間に位置する。可動軸はY軸正方向に延びる第1トーションバー41と、Y軸負方向に延びる第2トーションバー42を含む。ミラー部10は、可動軸Pを回転軸として揺動することができる。支持部20は、ミラー部10を所定の可動軸Pの周りで揺動可能に支持する。可動軸Pは、Y軸と平行な軸としてよい。支持部20はミラー12の反射面と垂直な方向に延在してよい。可動軸Pはミラー12の反射面と平行な方向に延在してよい。 A movable axis P on which the mirror portion 10 swings is located between the first end 21 and the second end 22. The movable shaft includes a first torsion bar 41 extending in the positive direction of the Y-axis and a second torsion bar 42 extending in the negative direction of the Y-axis. The mirror section 10 can swing about the movable axis P as a rotation axis. The support section 20 supports the mirror section 10 so as to be swingable around a predetermined movable axis P. The movable axis P may be an axis parallel to the Y axis. The support portion 20 may extend in a direction perpendicular to the reflective surface of the mirror 12. The movable axis P may extend in a direction parallel to the reflective surface of the mirror 12.
 光偏向装置1は、さらに、駆動部70、第1の枠体71、筐体80、及びリッド90などを備えてもよい。これらの部材は、図8において説明した光偏向装置1’の駆動部70’、第1の枠体71’、筐体80’、及びリッド90’などと同様のものとしてもよい。筐体80は、例えば箱状の形状を有し、第1の枠体71を囲う壁部と、壁部と接続されリッド90と対向する底部を有してよい。 The optical deflection device 1 may further include a drive unit 70, a first frame 71, a housing 80, a lid 90, and the like. These members may be similar to the drive unit 70', first frame 71', housing 80', lid 90', etc. of the optical deflection device 1' described in FIG. 8. The housing 80 may have a box-like shape, for example, and may include a wall portion surrounding the first frame 71 and a bottom portion connected to the wall portion and facing the lid 90.
 図4に示すように、第1トーションバー41及び第2トーションバー42は、ミラー部10を支持する支持部20に接続される。図2に示すように、駆動部70は、支持部20を囲うように形成された四角形の第2の枠体72と、第2の枠体72と第1の枠体71とを接続する接続部73とを含む。接続部73は、複数回折り返した屈曲した形状を有してよい。第1トーションバー41及び第2トーションバー42は、駆動部70の第2の枠体72に接続される。第1トーションバー41と第2トーションバー42は、駆動部70の第2の枠体72の対向する辺にそれぞれ接続される。ミラー部10は、支持部20の第1端21に接続されることで、第1トーションバー41及び第2トーションバー42を介して、駆動部70に接続される。駆動部70は、接続部73に圧電素子を含んで構成される。第1トーションバー41及び第2トーションバー42は、支持部20を揺動可能に支持する。支持部20は、第1端21においてミラー部10を支持する。支持部20が揺動することでミラー部10が揺動する。圧電素子によって少なくとも接続部73に撓みが生じることにより、ミラー部10が揺動する。第1の枠体71は、筐体80に固定されてよい。 As shown in FIG. 4, the first torsion bar 41 and the second torsion bar 42 are connected to the support section 20 that supports the mirror section 10. As shown in FIG. 2, the drive section 70 includes a rectangular second frame 72 formed to surround the support section 20, and a connection connecting the second frame 72 and the first frame 71. 73. The connecting portion 73 may have a bent shape that is folded back multiple times. The first torsion bar 41 and the second torsion bar 42 are connected to a second frame 72 of the drive unit 70. The first torsion bar 41 and the second torsion bar 42 are connected to opposing sides of the second frame 72 of the drive unit 70, respectively. The mirror section 10 is connected to the first end 21 of the support section 20 and thereby connected to the drive section 70 via the first torsion bar 41 and the second torsion bar 42 . The drive section 70 includes a piezoelectric element in the connection section 73. The first torsion bar 41 and the second torsion bar 42 swingably support the support section 20. The support section 20 supports the mirror section 10 at the first end 21 . When the support section 20 swings, the mirror section 10 swings. When at least the connecting portion 73 is deflected by the piezoelectric element, the mirror portion 10 swings. The first frame 71 may be fixed to the housing 80.
 第1部分20Aと、第2部分20Bとは、それぞれ所定の質量を有している。光偏向装置1は、第2部分20Bの質量によって、ミラー部10が揺動する際に、重心点Q1を可動軸Pに近付けることができる。光偏向装置1は、第2部分20Bを設けることで、重心点Q1の可動軸Pからのずれ量を、第2部分20Bを設けない場合の重心点Q’に比べて緩和することができる。 The first portion 20A and the second portion 20B each have a predetermined mass. The light deflection device 1 can bring the center of gravity Q1 closer to the movable axis P when the mirror section 10 swings due to the mass of the second portion 20B. By providing the second portion 20B, the optical deflection device 1 can reduce the amount of deviation of the center of gravity Q1 from the movable axis P compared to the center of gravity Q' when the second portion 20B is not provided.
 光偏向装置1は、ミラー部10が揺動する際に、可動軸Pにかかる負荷を低減することができる。光偏向装置1は、例えば、支持部20、第1トーションバー41、第2トーションバー42、及び駆動部70の少なくともいずれかにおける不具合又は破損など、種々の不都合の要因を緩和し得る。光偏向装置1は、光偏向装置の耐久性を向上させ得ることで、検出精度を高い水準で長期間維持することができる。光偏向装置1は、例えば、ミラー部10の振り角(振れ角)を大きくしても、支持部20と駆動部70との間に介在する第1トーションバー41及び/又は第2トーションバー42が劣化するリスクを緩和することができる。重心点Q1は、重心点Q’よりも、可動軸Pに近くなるようにしてよい。 The optical deflection device 1 can reduce the load applied to the movable axis P when the mirror section 10 swings. The optical deflection device 1 can alleviate various inconvenient factors, such as malfunction or damage in at least one of the support section 20, the first torsion bar 41, the second torsion bar 42, and the drive section 70, for example. The light deflection device 1 can maintain detection accuracy at a high level for a long period of time by improving the durability of the light deflection device. For example, even if the deflection angle (deflection angle) of the mirror section 10 is increased, the optical deflection device 1 can prevent the first torsion bar 41 and/or the second torsion bar 42 interposed between the support section 20 and the drive section 70 can reduce the risk of deterioration. The center of gravity Q1 may be closer to the movable axis P than the center of gravity Q'.
 第2部分20Bの質量は、第1部分20Aの質量と同じであってよい。第2部分20Bの質量は、第1部分20Aの質量より大きくてよい。第2部分20Bの質量は、ミラー部10及び第1部分20Aの質量より小さくてよい。第2部分20Bの質量は、ミラー部10及び第1部分20Aの質量と同じであってよい。 The mass of the second portion 20B may be the same as the mass of the first portion 20A. The mass of the second portion 20B may be greater than the mass of the first portion 20A. The mass of the second portion 20B may be smaller than the mass of the mirror portion 10 and the first portion 20A. The mass of the second portion 20B may be the same as the mass of the mirror portion 10 and the first portion 20A.
 所定の可動軸Pは、実体のない仮想的なものとしてもよい。所定の可動軸Pは、例えば、第1トーションバー41及び第2トーションバー42のように実体を有するものとしてもよい。図1及び図2において、ミラー部10を駆動する駆動部70は、圧電式である例を示した。ミラー部10を駆動する方式は、例えば、圧電式、静電式、又は電磁式など、任意の方式としてよい。ミラー部はY軸方向の軸のみを回転軸として揺動しても良いし、更にX軸方向の軸を回転軸として揺動してもよい。 The predetermined movable axis P may be an intangible virtual axis. The predetermined movable axis P may be a physical entity such as the first torsion bar 41 and the second torsion bar 42, for example. In FIGS. 1 and 2, an example is shown in which the drive section 70 that drives the mirror section 10 is of a piezoelectric type. The mirror unit 10 may be driven by any method such as piezoelectric, electrostatic, or electromagnetic. The mirror portion may swing only about the Y-axis direction as the rotation axis, or may further swing about the X-axis direction as the rotation axis.
 光偏向装置1は、説明の簡略化のため、ミラー部10を1つのみ備える態様を示した。しかしながら、光偏向装置1は、ミラー部10及び支持部20を2つ以上備えてもよい。光偏向装置1は、複数のミラー部10及び支持部20により構成されるミラーアレイを備えてもよい。 The optical deflection device 1 is shown as having only one mirror section 10 for the purpose of simplifying the explanation. However, the optical deflection device 1 may include two or more mirror parts 10 and two or more support parts 20. The optical deflection device 1 may include a mirror array including a plurality of mirror parts 10 and a support part 20.
(第2実施形態)
 図5は、第2実施形態に係る光偏向装置の構成例を示す図である。
(Second embodiment)
FIG. 5 is a diagram illustrating a configuration example of an optical deflection device according to the second embodiment.
 図5に示す光偏向装置2は、光偏向装置1及び/又は光偏向装置1’と同様の部分を含む構成としてよい。光偏向装置2について、光偏向装置1及び/又は光偏向装置1’と同様又は類似する内容の説明は、適宜、簡略化又は省略することがある。 The optical deflection device 2 shown in FIG. 5 may have a configuration including the same parts as the optical deflection device 1 and/or the optical deflection device 1'. Regarding the optical deflection device 2, explanations of contents that are the same or similar to those of the optical deflection device 1 and/or the optical deflection device 1' may be simplified or omitted as appropriate.
 光偏向装置2は、光偏向装置1の第2部分20Bに、所定の質量を有する錘部30を含んだものとしてよい。光偏向装置2は、光偏向装置1の第2部分20Bに、所定の質量を有する錘部30が支持されるものとしてよい。錘部30は、所定の質量を有する任意の材料で構成してよい。錘部30の質量は、例えば、ミラー部10の質量と同じにしてもよい。錘部30の質量は、例えば、ミラー部10の質量に近似させてもよい。錘部30は球状、又は半球であってよい。錘部30は頂点を第1端と反対側に向けた円錐又は角錐を含む形状であってよい。錘部30が球状、又は円錐又は角錐を含む形状であることで、錘部30と筐体80の底部とが近接して対向していても、ミラー部10が揺動した際に錘部30と筐体80の底部との接触が起きにくくなる。 The optical deflection device 2 may include a weight portion 30 having a predetermined mass in the second portion 20B of the optical deflection device 1. The light deflection device 2 may have a weight portion 30 having a predetermined mass supported by the second portion 20B of the light deflection device 1. The weight portion 30 may be made of any material having a predetermined mass. The weight portion 30 may have the same mass as the mirror portion 10, for example. The mass of the weight portion 30 may be approximated to the mass of the mirror portion 10, for example. The weight portion 30 may be spherical or hemispherical. The weight portion 30 may have a shape including a cone or a pyramid with the apex facing away from the first end. Since the weight part 30 has a spherical shape or a shape including a cone or a pyramid, even if the weight part 30 and the bottom of the casing 80 are close to each other and face each other, the weight part 30 will not move when the mirror part 10 swings. Contact with the bottom of the housing 80 is less likely to occur.
 光偏向装置2は、ミラー部10が揺動する際に、ミラー部10、支持部20、及び錘部30により構成される系の重心を、可動軸Pに近付けることができる。光偏向装置2は、ミラー部10、支持部20、及び錘部30により構成される系の重心点Q2を、可動軸Pに近付けることができる。錘部30を設けることで、第2部分20Bを第1部分20Aよりも短くすることができる。光偏向装置2は、ミラー部10が揺動する際に、可動軸Pにかかる負荷を低減することができる。 The optical deflection device 2 can bring the center of gravity of the system composed of the mirror section 10, the support section 20, and the weight section 30 closer to the movable axis P when the mirror section 10 swings. The optical deflection device 2 can bring the center of gravity Q2 of the system constituted by the mirror section 10, the support section 20, and the weight section 30 closer to the movable axis P. By providing the weight portion 30, the second portion 20B can be made shorter than the first portion 20A. The optical deflection device 2 can reduce the load applied to the movable axis P when the mirror section 10 swings.
 光偏向装置2は、例えば、駆動部70の不具合又は破損など、種々の不都合の要因を、より緩和し得る。光偏向装置2は、光偏向装置の耐久性を一層向上させ、検出精度を高い水準でより長期間維持することができる。 The optical deflection device 2 can further alleviate various inconvenient factors, such as malfunctions or damage to the drive unit 70, for example. The light deflection device 2 can further improve the durability of the light deflection device and maintain detection accuracy at a high level for a longer period of time.
 重心点Q2は、重心点Q’よりも、所定の可動軸Pに近くなるようにしてよい。重心点Q2は、重心点Q1よりも、所定の可動軸Pに近くなるようにしてよい。 The center of gravity Q2 may be closer to the predetermined movable axis P than the center of gravity Q'. The center of gravity Q2 may be closer to the predetermined movable axis P than the center of gravity Q1.
 錘部30の質量は、例えばミラー部10の質量の50%から100%の間になるようにしてもよい。錘部30の質量は、例えば、ミラー部10の質量にある程度近くなるように、ミラー部10の質量と所定の差以内になるようにしてもよい。錘部30の質量は、ミラー部10の質量と等しくしてもよい。錘部30の質量は、ミラー部10の質量とほぼ等しくなるようにしてもよい。 The mass of the weight portion 30 may be, for example, between 50% and 100% of the mass of the mirror portion 10. For example, the mass of the weight portion 30 may be within a predetermined difference from the mass of the mirror portion 10 so as to be close to the mass of the mirror portion 10 to some extent. The mass of the weight portion 30 may be equal to the mass of the mirror portion 10. The mass of the weight portion 30 may be approximately equal to the mass of the mirror portion 10.
 錘部30を含む支持部20の質量は、ミラー部10を含む支持部20の質量の50%から100%の間になるようにしてもよい。錘部30を含む支持部20の質量は、ミラー部10を含む支持部20にある程度近くなるように、ミラー部10を含む支持部20の質量と所定の差以内になるようにしてもよい。錘部30を含む支持部20の質量は、ミラー部10を含む支持部20の質量と等しくしてもよい。錘部30を含む支持部20の質量は、ミラー部10を含む支持部20の質量とほぼ等しくなるようにしてもよい。 The mass of the support section 20 including the weight section 30 may be between 50% and 100% of the mass of the support section 20 including the mirror section 10. The mass of the support section 20 including the weight section 30 may be within a predetermined difference from the mass of the support section 20 including the mirror section 10 so that the mass of the support section 20 including the weight section 30 is somewhat close to the support section 20 including the mirror section 10 . The mass of the support section 20 including the weight section 30 may be equal to the mass of the support section 20 including the mirror section 10. The mass of the support section 20 including the weight section 30 may be approximately equal to the mass of the support section 20 including the mirror section 10.
 錘部30を含む第2部分20Bの質量は、例えば、ミラー部10及び第1部分20Aの質量の50%から100%の間になるようにしてもよい。錘部30を含む第2部分20Bの質量は、例えば、ミラー部10及び第1部分20Aにある程度近くなるように、ミラー部10及び第1部分20Aの質量と所定の差以内になるようにしてもよい。錘部30を含む第2部分20Bの質量は、ミラー部10及び第1部分20Aの質量と等しくしてもよい。錘部30を含む第2部分20Bの質量は、ミラー部10及び第1部分20Aの質量とほぼ等しくなるようにしてもよい。 The mass of the second portion 20B including the weight portion 30 may be, for example, between 50% and 100% of the mass of the mirror portion 10 and the first portion 20A. For example, the mass of the second portion 20B including the weight portion 30 is set to be within a predetermined difference from the mass of the mirror portion 10 and the first portion 20A, so that it is somewhat close to the mirror portion 10 and the first portion 20A. Good too. The mass of the second portion 20B including the weight portion 30 may be equal to the mass of the mirror portion 10 and the first portion 20A. The mass of the second portion 20B including the weight portion 30 may be approximately equal to the mass of the mirror portion 10 and the first portion 20A.
 所定の可動軸Pの周りの錘部30による力のモーメントは、所定の可動軸Pの周りのミラー部10による力のモーメントと所定の差以内になるようにしてもよい。所定の可動軸Pの周りの錘部30による力のモーメントは、所定の可動軸Pの周りのミラー部10による力のモーメントと等しくなるようにしてもよい。 The moment of force by the weight part 30 around the predetermined movable axis P may be within a predetermined difference from the moment of force by the mirror part 10 around the predetermined movable axis P. The moment of force exerted by the weight portion 30 around the predetermined movable axis P may be equal to the moment of force exerted by the mirror portion 10 around the predetermined movable axis P.
(第3実施形態)
 図6は、第3実施形態に係る光偏向装置の構成例を示す図である。
(Third embodiment)
FIG. 6 is a diagram illustrating a configuration example of an optical deflection device according to a third embodiment.
 図6に示す光偏向装置3は、図5に示した光偏向装置2と同様の部分を含む構成としてよい。光偏向装置3について、光偏向装置2と同様又は類似する内容の説明は、適宜、簡略化又は省略することがある。 The optical deflection device 3 shown in FIG. 6 may have a configuration including the same parts as the optical deflection device 2 shown in FIG. 5. Regarding the optical deflection device 3, explanations of contents that are the same or similar to those of the optical deflection device 2 may be simplified or omitted as appropriate.
 錘部31は、光偏向装置2の錘部30を、ミラー部10と同じ又は類似する形状にしたものとしてよい。錘部31は、所定の質量を有する任意の材料で構成してよい。錘部31の質量は、例えば、ミラー部10の質量と同じにしてもよいし、近似させてもよい。錘部31の形状は、ミラー部10の形状と同じように又は近似するようにしてもよい。錘部31は、外縁部がミラー部10に近づくように反り返った形状であってよい。錘部31が反り返った形状であることで、錘部31と筐体80の底部とが近接して対向していても、ミラー部10が揺動した際に錘部31と筐体80の底部との接触が起きにくくなる。したがって、光偏向装置2は、小型化することができる。 The weight portion 31 may be formed by forming the weight portion 30 of the optical deflection device 2 into the same or similar shape to the mirror portion 10. The weight portion 31 may be made of any material having a predetermined mass. The mass of the weight portion 31 may be, for example, the same as the mass of the mirror portion 10, or may be approximated. The shape of the weight portion 31 may be the same as or similar to the shape of the mirror portion 10. The weight portion 31 may have a shape that is curved so that the outer edge portion approaches the mirror portion 10. Since the weight portion 31 has a warped shape, even if the weight portion 31 and the bottom of the housing 80 are close to each other and face each other, when the mirror portion 10 swings, the weight portion 31 and the bottom of the housing 80 Contact with the person is less likely to occur. Therefore, the optical deflection device 2 can be downsized.
 光偏向装置3は、ミラー部10が揺動する際に、ミラー部10、支持部20、及び錘部31により構成される系の重心点Q3を、可動軸Pに近付けることができる。光偏向装置3は、ミラー部10が揺動する際に、可動軸Pの箇所にかかる負荷を低減することができる。 The optical deflection device 3 can bring the center of gravity Q3 of the system composed of the mirror section 10, the support section 20, and the weight section 31 closer to the movable axis P when the mirror section 10 swings. The optical deflection device 3 can reduce the load applied to the movable axis P when the mirror section 10 swings.
 光偏向装置3は、例えば、駆動部70の不具合又は破損など、種々の不都合の要因を、より緩和し得る。光偏向装置3は、検出精度を高い水準でより長期間維持することができ、光偏向装置の耐久性を一層向上させ得る。 The optical deflection device 3 can further alleviate various inconvenient factors, such as malfunction or damage to the drive unit 70, for example. The optical deflection device 3 can maintain detection accuracy at a high level for a longer period of time, and can further improve the durability of the optical deflection device.
 重心点Q3は、重心点Q’よりも、所定の可動軸Pに近くなるようにしてよい。重心点Q3は、重心点Q1よりも、所定の可動軸Pに近くなるようにしてよい。重心点Q3は、重心点Q2よりも、可動軸Pに近くなるようにしてよい。 The center of gravity Q3 may be closer to the predetermined movable axis P than the center of gravity Q'. The center of gravity Q3 may be closer to the predetermined movable axis P than the center of gravity Q1. The center of gravity Q3 may be closer to the movable axis P than the center of gravity Q2.
(測距装置)
 図7は、第1実施形態乃至第3実施形態に係る光偏向装置1~3を備える測距装置の機能的な構成を示すブロック図である。以下、一実施形態に係る測距装置について説明する。
(Distance measuring device)
FIG. 7 is a block diagram showing the functional configuration of a distance measuring device including the optical deflection devices 1 to 3 according to the first to third embodiments. A distance measuring device according to an embodiment will be described below.
 図7に示すように、一実施形態に係る測距装置5は、上述した光偏向装置1~3のいずれかを備える。測距装置5は、発光部51及び受光部52を備える。測距装置5は、制御回路60を備えてもよい。 As shown in FIG. 7, a distance measuring device 5 according to one embodiment includes any one of the optical deflection devices 1 to 3 described above. The distance measuring device 5 includes a light emitting section 51 and a light receiving section 52. The distance measuring device 5 may include a control circuit 60.
 発光部51は、例えば赤外線のビーム等の電磁波を出力する。発光部51が出力した電磁波は、光偏向装置1~3のいずれかによって少なくとも一部が偏向される。受光部52には、光偏向装置1~3のいずれかによって偏向された電磁波が例えば物体100によって反射した反射波の少なくとも一部が入射する。制御回路60は、上述した駆動部70の駆動を制御するものとしてよい。測距装置5は、発光部51が出力する電磁波の出力タイミング、及び受光部52に反射波が入射する入射タイミングに基づいて、物体100との距離を測定してよい。 The light emitting unit 51 outputs electromagnetic waves such as infrared beams, for example. At least a portion of the electromagnetic waves output by the light emitting section 51 is deflected by one of the optical deflectors 1 to 3. At least a portion of a reflected wave, which is an electromagnetic wave deflected by one of the optical deflectors 1 to 3 and reflected by an object 100, enters the light receiving unit 52. The control circuit 60 may control the drive of the drive section 70 described above. The distance measuring device 5 may measure the distance to the object 100 based on the output timing of the electromagnetic wave outputted by the light emitting section 51 and the incident timing at which the reflected wave is incident on the light receiving section 52.
 上述の実施形態は代表的な例として説明したが、本開示の趣旨及び範囲内で、多くの変更及び置換が可能であることは当業者に明らかである。したがって、本開示は、上述の実施形態によって制限するものと解するべきではなく、特許請求の範囲から逸脱することなく、種々の変形及び変更が可能である。例えば、実施形態の構成図に記載の複数の構成ブロックを1つに組み合わせたり、あるいは1つの構成ブロックを分割したりすることが可能である。 Although the embodiments described above have been described as representative examples, it will be apparent to those skilled in the art that many modifications and substitutions can be made within the spirit and scope of the present disclosure. Therefore, the present disclosure should not be construed as being limited by the embodiments described above, and various modifications and changes are possible without departing from the scope of the claims. For example, it is possible to combine a plurality of configuration blocks described in the configuration diagram of the embodiment into one, or to divide one configuration block.
1,2,3 光偏向装置
5 測距装置
10 ミラー部
12 ミラー
20 支持部
20A 第1部分
20B 第2部分
21 第1端
22 第2端
30,31 錘部
41 第1トーションバー
42 第2トーションバー
51 発光部
52 受光部
60 制御回路
70 駆動部
71 第1の枠体
72 第2の枠体
73 接続部
80 筐体
90 リッド
100 物体
P 回転軸
Q1、Q2、Q3 重心点
 
 
1, 2, 3 Light deflection device 5 Distance measuring device 10 Mirror section 12 Mirror 20 Support section 20A First section 20B Second section 21 First end 22 Second end 30, 31 Weight section 41 First torsion bar 42 Second torsion Bar 51 Light emitting section 52 Light receiving section 60 Control circuit 70 Drive section 71 First frame 72 Second frame 73 Connection section 80 Housing 90 Lid 100 Object P Rotation axes Q1, Q2, Q3 Center of gravity

Claims (9)

  1.  所定の可動軸の周りで揺動する、光を反射させる反射面を有するミラー部と、
     前記可動軸を挟んで第1部分と第2部分を有し、前記ミラー部を前記第1部分で支持する支持部と、を備える
    光偏向装置。
    a mirror portion that swings around a predetermined movable axis and has a reflective surface that reflects light;
    An optical deflection device, comprising: a support portion having a first portion and a second portion with the movable shaft in between, and supporting the mirror portion with the first portion.
  2.  前記可動軸は、前記反射面に平行に延在するトーションバーであり、
     前記支持部は、前記反射面に垂直な方向に延在する柱形状を有する、
     請求項1に記載の光偏向装置。
    The movable axis is a torsion bar extending parallel to the reflective surface,
    The support portion has a columnar shape extending in a direction perpendicular to the reflective surface.
    The optical deflection device according to claim 1.
  3.  前記第2部分に接続された、所定の質量を有する錘部を有する、
    請求項1または2に記載の光偏向装置。
    a weight portion connected to the second portion and having a predetermined mass;
    The optical deflection device according to claim 1 or 2.
  4.  前記第2部分は、前記第1部分より短い、
    請求項1から3のいずれか一項に記載の光偏向装置。
    the second portion is shorter than the first portion;
    The optical deflection device according to any one of claims 1 to 3.
  5.  前記錘部は、球状、半球状、円錐、又は角錐を含む形状である、
    請求項3に記載の光偏向装置。
    The weight part has a shape including a sphere, a hemisphere, a cone, or a pyramid,
    The optical deflection device according to claim 3.
  6.  前記錘部の形状は、前記ミラー部の形状と同じである、
    請求項3に記載の光偏向装置。
    The shape of the weight part is the same as the shape of the mirror part,
    The optical deflection device according to claim 3.
  7.  前記第2部分の質量は、前記ミラー部及び前記第1部分の質量の合計と同じである、
    請求項1から6のいずれか一項に記載の光偏向装置。
    The mass of the second part is the same as the sum of the masses of the mirror part and the first part,
    The optical deflection device according to any one of claims 1 to 6.
  8.  前記錘部の質量は、前記第1部分の質量と同じである、
    請求項3に記載の光偏向装置。
    The mass of the weight part is the same as the mass of the first part,
    The optical deflection device according to claim 3.
  9.  請求項1から8のいずれか一項に記載の光偏向装置と、
     電磁波を出力する発光部と、
     前記発光部から出力され、光偏向装置によって偏向された電磁波が物体によって反射した反射波の少なくとも一部が入射する受光部と、
     を備え、
     前記発光部による電磁波の出力、及び前記受光部への前記反射波の入射に基づいて、前記物体との距離を測定する、
    測距装置。
     
    The optical deflection device according to any one of claims 1 to 8,
    A light emitting part that outputs electromagnetic waves,
    a light receiving section into which at least a part of the reflected wave, which is the electromagnetic wave output from the light emitting section and deflected by the optical deflection device reflected by an object, is incident;
    Equipped with
    Measuring the distance to the object based on the output of electromagnetic waves by the light emitting section and the incidence of the reflected wave on the light receiving section;
    Ranging device.
PCT/JP2023/008408 2022-03-18 2023-03-06 Optical deflection device and distance measurement device WO2023176561A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-044685 2022-03-18
JP2022044685 2022-03-18

Publications (1)

Publication Number Publication Date
WO2023176561A1 true WO2023176561A1 (en) 2023-09-21

Family

ID=88023029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008408 WO2023176561A1 (en) 2022-03-18 2023-03-06 Optical deflection device and distance measurement device

Country Status (1)

Country Link
WO (1) WO2023176561A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075738A (en) * 2001-08-31 2003-03-12 Hitachi Ltd Optical switch
US7414503B1 (en) * 2007-11-02 2008-08-19 Texas Instruments Incorporated Torsional hinged device with improved coupling between a magnet mounted to said device and an electrical coil
DE102013206531A1 (en) * 2013-04-12 2014-05-08 Carl Zeiss Smt Gmbh Device for displacing micromirror in optical module of illumination system, has compensating unit compensating linear displacement of micromirror or predetermined pivot axis during pivoting of micromirror
JP2016110008A (en) * 2014-12-10 2016-06-20 スタンレー電気株式会社 Biaxial optical deflector
JP2017010005A (en) * 2015-06-22 2017-01-12 株式会社リコー Optical deflection device, image formation device, image display device, body device, and method of adjusting optical deflection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003075738A (en) * 2001-08-31 2003-03-12 Hitachi Ltd Optical switch
US7414503B1 (en) * 2007-11-02 2008-08-19 Texas Instruments Incorporated Torsional hinged device with improved coupling between a magnet mounted to said device and an electrical coil
DE102013206531A1 (en) * 2013-04-12 2014-05-08 Carl Zeiss Smt Gmbh Device for displacing micromirror in optical module of illumination system, has compensating unit compensating linear displacement of micromirror or predetermined pivot axis during pivoting of micromirror
JP2016110008A (en) * 2014-12-10 2016-06-20 スタンレー電気株式会社 Biaxial optical deflector
JP2017010005A (en) * 2015-06-22 2017-01-12 株式会社リコー Optical deflection device, image formation device, image display device, body device, and method of adjusting optical deflection device

Similar Documents

Publication Publication Date Title
EP3494433B1 (en) Light deflector, optical scanning device, image projection device, and mobile object
US7369288B2 (en) Micromechanical optical element having a reflective surface as well as its use
US11750779B2 (en) Light deflector, optical scanning system, image projection device, image forming apparatus, and lidar device
JP7167500B2 (en) Mobile devices, image projection devices, head-up displays, laser headlamps, head-mounted displays, object recognition devices, and vehicles
JP2016099567A (en) Optical deflector, optical scanner, image forming apparatus, and image projection device
US20220299759A1 (en) Light deflector, image projection apparatus, and distance-measuring apparatus
WO2023176561A1 (en) Optical deflection device and distance measurement device
US11971537B2 (en) Light deflection device, distance measurement device, and mobile body
US20220299757A1 (en) Movable device, image projection apparatus, laser headlamp, head-mounted display, distance measurement device, and mobile object
JP6234781B2 (en) Two-dimensional scanning laser beam emission device
US11640053B2 (en) Movable device, image projection apparatus, heads-up display, laser headlamp, head-mounted display, object recognition device, and mobile object
JP2020101587A (en) Movable device, distance measuring device, image projection device, and vehicle
US12044839B2 (en) Light deflector, deflecting device, distance-measuring apparatus, image projection device, and vehicle
US11137595B2 (en) Light deflection device, image projector, laser head lamp, and mobile object
WO2023190069A1 (en) Optical deflection device and measuring device
EP3264155B1 (en) Piezoelectric actuator, light deflector, and image projection device
JP2018155798A (en) Inspection method of optical deflector, optical deflector and image projection device
JP7354797B2 (en) Optical deflectors, deflection devices, distance measuring devices, image projection devices, and vehicles
US11789258B2 (en) Light deflector, deflecting device, object recognition device, image projection device, and mobile object
US20220299755A1 (en) Light deflector, image projection apparatus, laser headlamp, head-mounted display, distance measurement apparatus, and mobile object
WO2023053840A1 (en) Optical scanning device
JP2022146675A (en) Movable device, deflection device, object recognition device, image projection device, and mobile object
US20220155582A1 (en) Operating device, light deflector, light deflecting device, distance measurement apparatus, image projection apparatus, and mobile object
JP7247553B2 (en) Mobile devices, image projection devices, head-up displays, laser headlamps, head-mounted displays, object recognition devices, and vehicles
US20240027746A1 (en) Movable device, projection apparatus, head-up display, laser headlamp, head-mounted display, and object recognition apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770517

Country of ref document: EP

Kind code of ref document: A1