WO2023176425A1 - ブロー成形システム、内容物充填システム、ブロー成形方法及び内容物充填方法 - Google Patents

ブロー成形システム、内容物充填システム、ブロー成形方法及び内容物充填方法 Download PDF

Info

Publication number
WO2023176425A1
WO2023176425A1 PCT/JP2023/007284 JP2023007284W WO2023176425A1 WO 2023176425 A1 WO2023176425 A1 WO 2023176425A1 JP 2023007284 W JP2023007284 W JP 2023007284W WO 2023176425 A1 WO2023176425 A1 WO 2023176425A1
Authority
WO
WIPO (PCT)
Prior art keywords
section
preform
container
blow molding
sterilization
Prior art date
Application number
PCT/JP2023/007284
Other languages
English (en)
French (fr)
Inventor
睦 早川
琢磨 宮脇
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Publication of WO2023176425A1 publication Critical patent/WO2023176425A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/02Combined blow-moulding and manufacture of the preform or the parison
    • B29C49/06Injection blow-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/64Heating or cooling preforms, parisons or blown articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/42Component parts, details or accessories; Auxiliary operations
    • B29C49/78Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B55/00Preserving, protecting or purifying packages or package contents in association with packaging
    • B65B55/02Sterilising, e.g. of complete packages
    • B65B55/04Sterilising wrappers or receptacles prior to, or during, packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B55/00Preserving, protecting or purifying packages or package contents in association with packaging
    • B65B55/02Sterilising, e.g. of complete packages
    • B65B55/04Sterilising wrappers or receptacles prior to, or during, packaging
    • B65B55/10Sterilising wrappers or receptacles prior to, or during, packaging by liquids or gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67CCLEANING, FILLING WITH LIQUIDS OR SEMILIQUIDS, OR EMPTYING, OF BOTTLES, JARS, CANS, CASKS, BARRELS, OR SIMILAR CONTAINERS, NOT OTHERWISE PROVIDED FOR; FUNNELS
    • B67C7/00Concurrent cleaning, filling, and closing of bottles; Processes or devices for at least two of these operations

Definitions

  • the present disclosure relates to a blow molding system, a content filling system, a blow molding method, and a content filling method.
  • a content filling system in which a sterilized container is filled with sterilized contents in an aseptic environment, and then the container is closed with a cap. Specifically, in the contents filling system, a shaped container is supplied to the contents filling system, and an aqueous hydrogen peroxide solution as a disinfectant is sprayed onto the container within the contents filling system. The container is then filled with the contents.
  • the present disclosure provides a blow molding system, a content filling system, a blow molding method, and a content filling method that can reduce the environmental load of the blow molding system while maintaining a high sterilization effect on containers.
  • Embodiments of the present disclosure relate to the following [1] to [10].
  • An injection molding section that produces a preform by injection molding, a temperature adjustment section that adjusts the temperature of the preform produced by the injection molding section, and a temperature adjustment section that adjusts the temperature of the preform by the temperature adjustment section.
  • a blow molding section that produces a container by blow molding, and a first sterilization section that sterilizes the container produced in the blow molding section,
  • a blow molding system that maintains a state in which the surface temperature of at least a portion of the container is 40° C. or higher.
  • the temperature adjustment section includes a cooling section that cools the preform, and a heating section that heats the preform cooled by the cooling section, and between the cooling section and the heating section.
  • the blow molding system according to [1] further comprising a second sterilization section that sterilizes the preform.
  • the blow molding system includes a control unit, and the control unit controls the injection molding unit, the temperature adjustment unit, the blow molding unit, and the first sterilization unit, [1] to [4].
  • a blow molding system according to any one of the above.
  • a content filling system comprising the blow molding system according to any one of [1] to [5] and a filling device that fills the container with content.
  • a step of producing a preform by injection molding a step of adjusting the temperature of the preform, a step of producing a container by blow molding the temperature-adjusted preform, and sterilizing the container.
  • the surface temperature of at least a portion of the preform and the container is 40° C. or higher until the container is sterilized. Maintain the blow molding method.
  • the step of adjusting the temperature of the preform includes a step of cooling the preform and a step of heating the cooled preform, and the cooling step and the heating step are The blow molding method according to [7], further comprising a step of sterilizing the preform.
  • a method for filling contents comprising the steps of obtaining a container by the blow molding method according to any one of [7] to [9], and filling the container with contents.
  • the environmental load of the blow molding system can be reduced while maintaining a high sterilization effect on the container.
  • FIG. 1 is a schematic plan view showing a blow molding system and a content filling system according to a first embodiment.
  • FIG. 2 is a front view showing the preform and container.
  • FIG. 3 is a flow diagram showing a blow molding method and a content filling method according to the first embodiment.
  • FIG. 4 is a graph showing changes in surface temperature of the preform and container from the injection molding section to the first sterilization section in the first embodiment.
  • FIG. 5 is a schematic plan view showing a blow molding system and a content filling system according to the second embodiment.
  • FIG. 6 is a flowchart showing a blow molding method and a content filling method according to the second embodiment.
  • FIG. 7 is a graph showing changes in surface temperature of the preform and container from the injection molding section to the first sterilization section in the second embodiment.
  • blow molding system and filling system First, a blow molding system and a content filling system according to the present embodiment will be explained with reference to FIG. In the following, a case where the content filling system is an aseptic filling system will be explained as an example.
  • the content filling system 30 shown in FIG. 1 is a system for filling a container 52 with content such as a beverage.
  • the content filling system 30 includes a blow molding system 10 and a filling device 20.
  • Blow molding system 10 produces container 52 by blow molding preform 51 .
  • the blow molding system 10 includes an injection molding section 11, a temperature adjustment section 12, a blow molding section 16, a first sterilization section 17, and an air rinse section 18.
  • the filling device 20 fills the container 52 with contents.
  • the surface temperature of at least a portion of the preform 51 and the container 52 is maintained at 40° C. or higher, preferably 50° C. or higher.
  • the "surface temperature" of the preform 51 and the container 52 refers to the temperature measured at one point P on the outer surface of the preform 51 and the container 52 located at the center in the longitudinal direction, as shown in FIG. .
  • This measurement position may be located at the body of the preform 51 and the body of the container 52.
  • the injection molding section 11 produces a preform 51 by injection molding.
  • the temperature adjustment section 12 adjusts the temperature of the preform 51 produced by the injection molding section 11.
  • the blow molding section 16 manufactures the container 52 by blow molding the preform 51 whose temperature has been adjusted by the temperature adjustment section 12 .
  • the first sterilization section 17 sterilizes the container 52 produced by the blow molding section 16. In the first sterilization section 17, the container 52 is sterilized while the heat applied in the injection molding section 11 remains.
  • the container 52 is produced by biaxially stretching blow molding the preform 51 in the blow molding section 16.
  • the preform 51 is manufactured by injection molding a synthetic resin material in the injection molding section 11.
  • a thermoplastic resin particularly PE (polyethylene), PP (polypropylene), PET (polyethylene terephthalate), or PEN (polyethylene naphthalate).
  • PE polyethylene
  • PP polypropylene
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • the content filling system 30 includes the blow molding system 10 and the filling device 20, as described above.
  • the blow molding system 10 includes an injection molding section 11, a temperature adjustment section 12, a blow molding section 16, a first sterilization section 17, and an air rinse section 18.
  • the injection molding section 11, the temperature adjustment section 12, the blow molding section 16, the first sterilization section 17, and the air rinse section 18 are arranged in this order from the upstream side to the downstream side along the conveyance direction of the preform 51 or the container 52. It is set up.
  • upstream and “downstream” refer to the position of the preform 51 or container 52 in the transport direction.
  • the content filling system 30 includes a control unit 40 that controls the entire blow molding system 10.
  • the contents filling system 30 further includes a capping device (capper, seaming and capping machine) 21 and a product bottle delivery section 22 .
  • the blow molding system 10, the filling device 20, the capping device 21, and the product bottle delivery section 22 are arranged in this order from the upstream side to the downstream side along the conveyance direction of the container 52.
  • the filling system 30 is provided with a plurality of transport wheels 23 for transporting the containers 52 between each device. First, the blow molding system 10 will be explained.
  • the blow molding system 10 is composed of a resin receiving section, a blow molding section 16, and a first sterilization section 17.
  • the resin receiving section receives resin pellets from the outside.
  • the steps from supplying the resin pellets to molding and sterilizing the preform 51 and the container 52, to filling the container 52 with the contents and closing the cap can be performed continuously.
  • resin pellets having a small volume are input into the filling system 30 from the outside. For this reason, there is no need to transport the preform 51 or the container 52 while the product bottle 54 is being produced, so transportation costs can be reduced.
  • the blow molding system 10 includes the injection molding section 11, the temperature adjustment section 12, the blow molding section 16, and the first sterilization section 17.
  • the blow molding system 10 further includes a preform transport section 37, a bottle transport section 38, and an air rinse section 18.
  • the preform transport section 37 transports the preform 51.
  • the bottle transport section 38 transports the shaped container 52.
  • the air rinse section 18 air rinses the sterilized container 52.
  • the injection molding section 11 is located at the most upstream side of the blow molding system 10.
  • the injection molding section 11 produces a preform 51 by injection molding.
  • the injection molding section 11 may be an injection molding machine.
  • the injection molding section 11 includes a fixed frame 31, an injection device 32, and a mold clamping device 33.
  • the injection device 32 and the mold clamping device 33 are provided on the frame 31.
  • the injection device 32 has a hopper 34 and a nozzle 35.
  • the resin pellets are introduced from the hopper 34 and then injected from the nozzle 35 while being melted and kneaded.
  • the resin injected from the nozzle 35 fills an injection mold 36.
  • the injection mold 36 is attached to the mold clamping device 33.
  • the injection mold 36 has a cavity corresponding to the shape of the preform 51.
  • the mold clamping device 33 may include, for example, a fixed plate, a movable plate, and a pressure receiving plate (not shown).
  • the injected resin is formed into the shape of a preform 51 within the injection mold 36 . After the preform 51 is kept under pressure and cooled as necessary, the injection mold 36 is opened and the preform 51 is taken out.
  • the temperature adjustment section 12 is located downstream of the injection molding section 11.
  • the temperature adjustment section 12 includes a cooling section 13 and a heating section 15.
  • a second sterilizing section 14 is provided between the cooling section 13 and the heating section 15.
  • the cooling unit 13 cools the preform 51.
  • a cooling medium such as air is blown onto the preform 51 from, for example, a cooling nozzle.
  • air is used as the cooling medium, it is preferable to use sterile air that has passed through a sterilization filter. This air may be used by reusing high-pressure air after being used in the blow molding section 16, which will be described later.
  • the second sterilization section 14 is provided on the downstream side of the cooling section 13.
  • the second sterilizing section 14 sterilizes the preform 51.
  • a sterilizing agent gas or mist is sprayed onto the preform 51 to sterilize the preform 51.
  • the disinfectant may be an aqueous hydrogen peroxide solution.
  • the second sterilization section 14 may perform preliminary sterilization on the preform 51.
  • the sterilizing agent for sterilizing the preform 51 may have the property of inactivating microorganisms, such as hydrogen peroxide, peracetic acid, acetic acid, pernitric acid, nitric acid, chlorine-based agents, and water.
  • Alcohols such as sodium oxide, potassium hydroxide, ethyl alcohol, and isopropyl alcohol, chlorine dioxide, ozone water, acidic water, and surfactants may be used alone, or two or more of these may be used in combination. .
  • the preform 51 is sterilized in advance by the second sterilizing section 14, the number of bacteria that adhere to the container 52 made from the preform 51 can be reduced. Therefore, the amount of sterilizing agent used in the first sterilizing section 17 that sterilizes the container 52 can be reduced, and the sterilizing time can be shortened. Generally, the amount of sterilizing agent used to sterilize preform 51 having a small volume tends to be less than the amount of sterilizing agent used to sterilizing container 52. Therefore, by sterilizing the preform 51 in the second sterilizing section 14, the total amount of sterilizing agent used can be reduced.
  • the amount of disinfectant used in the first sterilization section 17 can be reduced, and the sterilization time can be shortened. Therefore, the first sterilizing section 17 can be downsized. Since the sterilization time for sterilizing the container 52 can be shortened, the heat load on the container 52 can be reduced. Therefore, even if the container 52 is lightweight or uses recycled PET, deformation of the container 52 due to the heat of the disinfectant can be suppressed.
  • the sterilization conditions may be weakened in the first sterilization section 17.
  • the body of the container 52 is heated in the blow molding section 16 by supplying hot water from a mold temperature controller (not shown) to the blow molding mold. ing.
  • the sterilizing effect in the first sterilizing section 17 can be improved, and the shrinkage of the container 52 in the first sterilizing section 17 can be reduced.
  • the number of bacteria adhering to the container 52 can be reduced.
  • the container 52 may be molded without adjusting the temperature of the container 52 with hot water. That is, in the blow molding section 16, the hot water that has been supplied to the blow mold mold in order to improve the sterilization effect does not need to be supplied to the blow mold mold. As a result, the amount of carbon dioxide emitted by the content filling system 30 can be reduced. Furthermore, since it is not necessary to supply hot water to the blow molding die, the blow molding section 16 can be simplified. Furthermore, since the blow molding section 16 can be simplified, the amount of heat applied to the container 52 can be reduced. Therefore, even if the hot water described above is not supplied to the blow molding mold, shrinkage of the container 52 in the first sterilizing section 17 can be reduced. Furthermore, by not heating the body of the container 52 with the mold temperature controller, the amount of hydrogen peroxide deposited in the first sterilizing section 17 can be improved.
  • Such sterilization treatment may be performed at multiple locations.
  • bacteria may be inactivated by ultraviolet irradiation, electron beam irradiation, etc., without using a sterilizer.
  • a preform air rinse section (not shown) may be provided downstream of the second sterilization section 14.
  • the preform air rinse section may dry the preform 51 onto which the disinfectant has been sprayed using hot air. In this case, foreign matter can be effectively removed from within the preform 51.
  • the heating unit 15 reheats the preform 51 cooled by the cooling unit 13 to the blow molding temperature.
  • the heating section 15 receives the sterilized preform 51 from the second sterilization section 14 and heats the preform 51 while conveying it.
  • This heating section 15 is provided with a heater 39 that heats the preform 51.
  • This heater 39 may be, for example, an infrared heater.
  • This heater 39 heats the preform 51 to, for example, about 90° C. or higher and 130° C. or lower.
  • the temperature at the mouth of the preform 51 may be suppressed to 70° C. or lower to prevent deformation or the like.
  • the heating unit 15 may be one that heats using hot air. When hot air is used, a sterilizing agent gas used in the second sterilizing section 14 may be added to the hot air to heat and sterilize the preform 51 at the same time.
  • the cooling section 13, the second sterilizing section 14, and the heating section 15 are provided on different wheels.
  • the present invention is not limited to this, and a part or all of the cooling section 13, the second sterilizing section 14, and the heating section 15 may be provided on the same wheel.
  • the preform 51 may be conveyed by a conveying device that conveys the preform 51 along a straight line or a curved line instead of using wheels.
  • a part or all of the cooling section 13, the second sterilizing section 14, and the heating section 15 may be provided along the conveyance device.
  • the preform 51 may be transported by inserting it into a mandrel.
  • the preform 51 may be transported while alternately gripping the upper and lower support rings of the preform 51 with grippers.
  • the first gripper that grips the upper part of the support ring of the preform 51 and the second gripper that grips the lower part of the support ring are arranged alternately, and the first gripper and the second gripper grip the support ring alternately.
  • the preform 51 may be transported. This avoids interference between adjacent grippers.
  • the method is not limited to these, and other methods may be used.
  • the blow molding section 16 blow molds the preform 51 heated by the heating section 15.
  • the blow molding section 16 includes a blow molding die (not shown). By performing blow molding on the preform 51 using this blow molding die, the container 52 is molded. Next, the shaped container 52 is transported downstream by the bottle transport section 38. It is preferable that a camera be installed in the bottle transport section 38 to inspect the top surface of the container 52 and the mouth of the container 52, which affect the sealing performance of the container 52. A visual inspection of the support ring, body and/or bottom of the container 52 may be performed. The surface temperature of the container 52, which affects the sterilization effect of the first sterilization section 17, may be measured with a non-contact infrared radiation camera.
  • the first sterilizing unit 17 is a device that sterilizes the container 52 by injecting a sterilizing agent into the container 52. Thereby, the container 52 is sterilized by the sterilizing agent before filling with the contents.
  • a sterilizing agent for example, an aqueous hydrogen peroxide solution is used.
  • a gas or mist of an aqueous hydrogen peroxide solution is generated, and the gas or mist is sprayed onto the inner and outer surfaces of the container 52 . Since the container 52 is sterilized with the hydrogen peroxide aqueous solution gas or mist in this manner, the inner and outer surfaces of the container 52 are uniformly sterilized.
  • the sterilizing agent for sterilizing the container 52 may have the property of inactivating microorganisms.
  • disinfectants include, in addition to hydrogen peroxide, peracetic acid, acetic acid, pernitric acid, nitric acid, chlorine-based agents, alcohols such as sodium hydroxide, potassium hydroxide, ethyl alcohol, and isopropyl alcohol, chlorine dioxide, ozone water, Acidic water and surfactant may be used alone, or two or more of these may be used in combination.
  • bacteria may be inactivated by ultraviolet irradiation, electron beam irradiation, etc., without using a sterilizer.
  • the air rinse section 18 is a device that supplies sterile heated air or room temperature air to the container 52.
  • foreign matter, hydrogen peroxide, etc. are removed from the inside of the container 52 while activating the hydrogen peroxide contained in the disinfectant sterilized in the first sterilization section 17.
  • sterile air be supplied to the container 52 with the mouth of the container 52 facing downward.
  • foreign matter can be effectively removed from inside the container 52. Therefore, the step of cleaning the container 52 with sterile water can be omitted, and the amount of carbon dioxide emitted by the content filling system 30 can be reduced.
  • hydrogen peroxide may be gasified by mixing sterilized air at room temperature with a condensed mist of hydrogen peroxide at a low concentration, and the gasified hydrogen peroxide may be supplied to the container 52.
  • the filling device 20 is a device that fills the container 52 with contents such as beverages.
  • the filling device 20 fills the container 52 with pre-sterilized contents from the mouth of the container 52 . Thereby, in the filling device 20, the empty container 52 is filled with the contents.
  • contents are filled into the inside of the containers 52 while the plurality of containers 52 are rotationally conveyed.
  • the cap attachment device 21 is a device that closes the container 52 by attaching a previously sterilized cap 53 to the container 52.
  • the container 52 is closed and sealed with a cap 53 to prevent outside air and microorganisms from entering the container 52 filled with contents.
  • caps 53 are attached to the mouths of the plurality of containers 52 filled with contents while being rotated (revolving). By attaching the cap 53 to the container 52 in this manner, a product bottle 54 is obtained.
  • the product bottle unloading section 22 continuously transports the product bottles 54 to which the caps 53 have been attached by the cap attaching device 21 to the outside of the content filling system 30 .
  • the filling system 30 includes an injection molding chamber 61 , a preform sterilization chamber 62 , a blow molding chamber 63 , a sterilizer isolation chamber 68 , a sterilizer spray chamber 64 , an air rinse chamber 65 , and a fill chamber 66 . , and an outlet chamber 67.
  • the injection molding chamber 61 , the preform sterilization chamber 62 , the blow molding chamber 63 , the sterilizer isolation chamber 68 , the sterilizer spray chamber 64 , the air rinse chamber 65 , the filling chamber 66 and the exit chamber 67 are used for transporting the preform 51 and the container 52 . They are arranged in this order from the upstream side to the downstream side along the direction.
  • the chambers 61 to 68 are separated by partition walls.
  • the partition wall serves to prevent the sterilizing agent and the like from flowing in unintended directions between the chambers 61 to 68, and to stabilize the pressure within each chamber 61 to 68.
  • a gap large enough to allow the preform 51 or container 52 to pass through is formed in the partition wall. This gap is formed to a minimum size, for example, approximately the size of one preform 51 or container 52, so that the pressure within each chamber 61 to 68 does not change.
  • the partition wall may be provided with a shutter that closes the above-mentioned gap. This shutter may be configured to automatically open and close, for example, in response to a signal from the control unit 40.
  • a pressure gauge (not shown) may be installed inside each chamber 61 to 68 to measure the pressure inside each chamber 61 to 68.
  • the injection molding section 11 is housed inside the injection molding chamber 61.
  • a cooling section 13 and a second sterilization section 14 are housed inside the preform sterilization chamber 62 .
  • the heating section 15 and the blow molding section 16 are housed inside the blow molding chamber 63 .
  • the first sterilizing section 17 is housed inside the sterilizing agent spray chamber 64 .
  • the air rinse section 18 is housed inside the air rinse chamber 65 .
  • a filling device 20 and a cap mounting device 21 are housed inside the filling chamber 66 .
  • the product bottle discharge section 22 is housed inside the outlet chamber 67 .
  • the sterilizing agent blocking chamber 68 is a chamber for evacuating the sterilizing agent from the first sterilizing section 17 so that the sterilizing agent does not flow toward the blow molding section 16 due to the positive pressure atmosphere in the filling chamber 66 .
  • the content filling system 30 includes the control unit 40 that controls the blow molding system 10.
  • This control section 40 is electrically connected to the blow molding system 10 and controls the injection molding section 11, temperature adjustment section 12, blow molding section 16, and first sterilization section 17 of the blow molding system 10.
  • the control unit 40 may control the air rinse unit 18, the filling device 20, the cap mounting device 21, the product bottle unloading unit 22, and the like.
  • the same control section 40 controls the injection molding section 11, temperature adjustment section 12, blow molding section 16, and first sterilization section 17 of the blow molding system 10.
  • the transport speed of the preform 51 and the container 52 in the injection molding section 11, temperature adjustment section 12, blow molding section 16, and first sterilization section 17 can be easily adjusted.
  • Such a content filling system 30 may consist of, for example, an aseptic filling system.
  • the interior of each chamber 61 to 68 is maintained in a sterile state.
  • a chamber (not shown) may be provided downstream of the outlet chamber 67 to connect a sterile zone in a sterile state and a non-sterile zone in a non-sterile state.
  • blow molding method and filling method Next, a blow molding method using the blow molding system 10 (FIG. 1) and a content filling method using the content filling system 30 (FIG. 1) according to the present embodiment will be described with reference to FIG.
  • a preform 51 is produced by injection molding (injection molding process, step S1 in FIG. 3).
  • resin pellets are first put into the hopper 34 of the injection molding section 11.
  • the resin pellets are injected from the nozzle 35 while being melted and kneaded at a temperature of 200° C. or higher and 250° C. or lower.
  • the resin injected from the nozzle 35 fills an injection mold 36.
  • the resin is shaped into the shape of the preform 51 within the injection mold 36 .
  • the injection mold 36 is opened and the preform 51 is taken out.
  • the surface temperature T1 of the preform 51 taken out from the injection molding section 11 may be 100°C or more and 150°C or less.
  • the preform 51 is supplied to the temperature adjustment section 12 via the preform transport section 37.
  • the temperature adjustment section 12 the temperature of the preform 51 is adjusted (temperature adjustment step).
  • the temperature adjustment step includes a preform cooling step and a preform heating step, which will be described later.
  • the preform 51 is first cooled in the cooling unit 13 (preform cooling step, step S2 in FIG. 3).
  • a cooling medium such as sterile air is blown onto the preform 51 from a cooling nozzle, and the preform 51 is forcibly cooled.
  • Forced cooling refers to cooling using a cooling means, and the temperature decreases faster than in the case of natural cooling.
  • the surface temperature T2 of the preform 51 cooled in the cooling section 13 is lower than the above-mentioned surface temperature T1.
  • the surface temperature T2 of the preform 51 after cooling in the cooling unit 13 may be 50°C or more and 100°C or less. In this way, by setting the surface temperature T2 of the preform 51 to 100° C.
  • the cooling air may also include a disinfectant (eg, hydrogen peroxide) gas or mist.
  • a disinfectant eg, hydrogen peroxide
  • the gas concentration may be 0.1 mg/L to 300 mg/L, more preferably 1 mg/L to 10 mg/L.
  • the preform 51 cooled in the cooling section 13 is sent to the second sterilization section 14 (preform sterilization step, step S3 in FIG. 3).
  • the preform 51 is sterilized by being sprayed with, for example, a gas or mist of a sterilizer such as hydrogen peroxide.
  • a gas or mist of a sterilizer such as hydrogen peroxide.
  • the gas concentration of hydrogen peroxide may be 0.1 mg/L to 300 mg/L, more preferably 1 mg/L to 10 mg/L.
  • the surface temperature T3 of the preform 51 in the second sterilization section 14 may be equal to or lower than the surface temperature T2 described above. Specifically, the surface temperature T3 of the preform 51 in the second sterilization section 14 may be 50°C or more and 100°C or less.
  • the preform 51 sterilized in the second sterilization section 14 is sent to the heating section 15 and heated by the heater 39 to a temperature suitable for blow molding (preform heating step, step S4 in FIG. 3).
  • the surface temperature T4 of the preform 51 heated in the heating section 15 is higher than the above-mentioned surface temperature T3. Specifically, the surface temperature T4 of the preform 51 may be 90°C or more and 130°C or less.
  • the preform 51 heated by the heating section 15 is sent to the blow molding section 16.
  • the preform 51 produced in the injection molding section 11 is sent to the blow molding section 16 in a state where the surface temperature does not drop to less than 40° C., particularly to room temperature (15° C. or higher and 25° C. or lower). It will be done. In other words, it is continuously transported from the injection molding section 11 to the blow molding section 16 while the heat from injection molding remains. Thereby, the process of transporting the preform 51 and the process of aging the preform 51 can be omitted. As a result, the energy required for manufacturing the container 52 can be saved, and the amount of carbon dioxide emissions can be reduced. Furthermore, the space for storing the preforms 51 can be reduced.
  • the container 52 is produced by performing blow molding on the preform 51 sent to the blow molding section 16 using a blow molding die (not shown) (blow molding process, step S5 in FIG. 3). .
  • the surface temperature T5 of the container 52 after blow molding in the blow molding section 16 is lower than the above-mentioned surface temperature T4.
  • the surface temperature T5 of the container 52 may be 40°C or more and 100°C or less.
  • the container 52 blow-molded in this manner is sent to the first sterilization section 17 via the bottle conveyance section 38.
  • the container 52 is sterilized using a sterilizing agent such as an aqueous hydrogen peroxide solution (container sterilizing step, step S6 in FIG. 3).
  • the disinfectant may be a gas or a mist obtained by once vaporizing an aqueous hydrogen peroxide solution at a temperature above the boiling point.
  • the gas or mist of the aqueous hydrogen peroxide solution adheres to the inner and outer surfaces of the container 52 and sterilizes the inner and outer surfaces of the container 52.
  • the surface temperature T6 of the container 52 in the first sterilization section 17 may be equal to or lower than the surface temperature T5 described above.
  • the surface temperature T6 of the preform 51 in the first sterilization section 17 may be 40°C or more and 100°C or less. In this way, by setting the surface temperature T6 of the preform 51 to 100° C. or lower, when a disinfectant such as hydrogen peroxide is sprayed onto the container 52 in the first sterilizing section 17, the disinfectant gas is absorbed into the container 52. Condenses on the surface. Thereby, the container 52 can be sterilized with high sterilizing power using a small amount of sterilizing agent.
  • the surface temperature of the preform 51 and the container 52 remains at 40° C. or higher until the container 52 is sterilized in the first sterilization section 17. maintain the current state.
  • the container 52 is sterilized in the first sterilization section 17 while the heat from injection molding remains.
  • the container 52 can be sterilized with high sterilization power in the first sterilization section 17 by utilizing the heat during injection molding.
  • the number of bacteria adhering to the preform 51 and container 52 can be brought as close to zero as possible.
  • a HEPA filter High Efficiency Particulate Air Filter
  • a disinfectant such as hydrogen peroxide or peracetic acid.
  • FIG. 4 is a graph showing changes in surface temperature of the preform 51 and container 52 from the injection molding section 11 to the first sterilization section 17 in this embodiment.
  • the surface temperature T1 of the preform 51 immediately after injection molding in the injection molding section 11 is cooled in the cooling section 13 and lowered to T2.
  • the surface temperature of the preform 51 is T3, and the preform 51 is sterilized in this state. Thereafter, the surface temperature of the preform 51 is heated by the heating section 15 and rises to T4.
  • the container 52 is produced by blow molding the preform 51. After blow molding, the surface temperature of the container 52 decreases to T5.
  • the surface temperature of the preform 51 is T6, and the preform 51 is sterilized in this state. Note that the magnitude relationship between T6 and T3 does not matter. As shown in FIG. 4, the surface temperature of the preform 51 and the container 52 is maintained at 40° C. or higher from the injection molding section 11 to the first sterilization section 17.
  • the container 52 is sent from the first sterilization section 17 to the air rinse section 18.
  • air rinsing is performed by supplying sterile heated air or room temperature air to the container 52 (air rinsing step, step S7 in FIG. 3).
  • hydrogen peroxide is activated, and foreign matter, hydrogen peroxide, etc. are removed from the container 52.
  • a condensed mist of low concentration hydrogen peroxide may be mixed with sterile heated air or room temperature sterile air, if necessary.
  • hydrogen peroxide is gasified by sterile air.
  • gasified hydrogen peroxide may be supplied to the container 52.
  • the container 52 is transported from the blow molding system 10 to the filling device 20.
  • contents such as a drink are filled into the container 52 (filling process, step S8 in FIG. 3).
  • the contents are filled into the container 52 from its mouth while the container 52 is rotated (revolving).
  • the container 52 filled with the contents is transported to the cap attachment device 21 by the transport wheel 23.
  • a sterilized cap 53 is attached to the mouth of the container 52 transported from the filling device 20 (cap attachment step, step S9 in FIG. 3).
  • the container 52 is closed and a product bottle 54 is obtained.
  • the product bottle 54 is transported from the cap attachment device 21 to the product bottle transport section 22, and is transported to the outside of the content filling system 30 (transport process, step S10 in FIG. 3).
  • the product bottle 54 is transported to a packaging line (not shown) and packaged.
  • the injection molding process, preform cooling process, preform sterilization process, preform heating process, blow molding process, container sterilization process, air rinsing process, filling process, cap attachment process, and unloading process are carried out aseptically in the chambers 61 to 68. It may be carried out in a sterile atmosphere, that is, in a sterile environment. In this case, the chambers 61 to 68 may be sterilized in advance by spraying hydrogen peroxide or peracetic acid, using an alkaline detergent, spraying hot water, or the like. Only the injection molding chamber 61 where the injection molding process is performed may be a non-sterile area. Alternatively, the injection molding chamber 61, preform sterilization chamber 62, and blow molding chamber 63 may be made into non-sterile areas.
  • the production (transportation) speed of the preform 51 and container 52 in the content filling system 30 is preferably 100 bpm or more and 1000 bpm or less.
  • bpm (bottle per minute) refers to the conveyance speed of the container 52 per minute.
  • the surface temperature of the preform 51 and container 52 is maintained at 40° C. or higher from the injection molding section 11 to the first sterilization section 17. That is, the preform 51 and the container 52 are transported to the first sterilization section 17 and sterilized while the heat from injection molding in the injection molding section 11 remains. In this way, the surface temperature of the container 52 is 40° C. or higher during sterilization in the first sterilization section 17, so that the sterilization effect of the container 52 is enhanced.
  • the energy required to increase the temperature of the preform 51 in the blow molding section 16 or the temperature of the container 52 in the first sterilization section 17 can be reduced. Thereby, the amount of carbon dioxide emitted when producing the product bottle 54 can be reduced.
  • the heating region for raising the preform 51 to the blow molding temperature can be narrowed, the installation space of the blow molding system 10 can be reduced.
  • the temperature adjustment section 12 includes a cooling section 13 that cools the preform 51, and a heating section 15 that heats the preform 51 cooled by the cooling section 13.
  • a second sterilizing section 14 for sterilizing the preform 51 is provided between the cooling section 13 and the heating section 15.
  • the same control section 40 controls the injection molding section 11, the temperature adjustment section 12, the blow molding section 16, and the first sterilization section 17. That is, the same integrated system from the injection molding section 11 to the first sterilization section 17 is configured. Thereby, the installation space of the blow molding system 10 and the space for storing and accommodating the injection molded preform 51 can be reduced. Further, since the injection-molded preform 51 is not transported by vehicle or the like to the blow molding section 16, the amount of carbon dioxide emitted when the preform 51 is transported can be reduced.
  • FIGS. 5 to 7 are diagrams showing the second embodiment.
  • the second embodiment shown in FIGS. 5 to 7 differs mainly in the configuration of the temperature adjustment section 12, and the other configurations are substantially the same as the first embodiment described above.
  • FIGS. 5 to 7 the same parts as those in the first embodiment shown in FIGS. 1 to 4 are given the same reference numerals, and detailed explanations will be omitted.
  • blow molding system and filling system First, with reference to FIG. 5, a blow molding system and a content filling system according to the present embodiment will be described.
  • the content filling system 30 includes a blow molding system 10 and a filling device 20.
  • Blow molding system 10 produces container 52 by blow molding preform 51 .
  • the filling device 20 fills the container 52 with contents.
  • the blow molding system 10 includes an injection molding section 11, a temperature adjustment section 12, a blow molding section 16, a first sterilization section 17, and an air rinse section 18.
  • the temperature adjustment section 12 has a cooling section 13.
  • the temperature adjustment section 12 does not include the heating section 15 that heats the preform 51.
  • the blow molding system 10 does not include the second sterilizing section 14 that sterilizes the preform 51.
  • the present invention is not limited to this, and a second sterilizing section 14 that sterilizes the preform 51 may be provided between the injection molding section 11 and the blow molding section 16.
  • the cooling unit 13 cools the preform 51 to the blow molding temperature.
  • the cooling unit 13 receives the preform 51 from the injection molding unit 11 and cools the preform 51 while conveying it.
  • a cooling medium such as air is blown onto the preform 51 from a cooling nozzle.
  • the cooling unit 13 lowers the surface temperature of the preform 51 to, for example, about 90° C. or higher and 130° C. or lower.
  • the cooling unit 13 is provided in the wheel.
  • the preform 51 may be conveyed by a conveying device that conveys the preform 51 along a straight line or a curved line instead of using wheels.
  • the cooling unit 13 may be provided along the transport device.
  • the blow molding section 16 blow molds the preform 51 whose temperature has been adjusted to the blow molding temperature in the cooling section 13. By performing blow molding on the preform 51 in the blow molding section 16, the container 52 is molded.
  • the preform sterilization chamber 62 is not provided.
  • the cooling section 13 may be located within the blow molding chamber 63.
  • a sterilizing agent for example, hydrogen peroxide
  • hydrogen peroxide used as a disinfectant
  • the gas concentration may be 0.1 mg/L to 300 mg/L, more preferably 1 mg/L to 10 mg/L.
  • the preform 51 can be sterilized during blow molding.
  • sterilization and molding of the container 52 can be performed simultaneously.
  • Such sterilization in the blow molding section 16 may be performed as an alternative to sterilization of the preform 51 in the second sterilization section 14.
  • the sterilization may be performed together with the sterilization of the preform 51 in the second sterilization section 14.
  • blow molding system 10 and the content filling system 30 are substantially the same as in the first embodiment.
  • blow molding method and filling method Next, a blow molding method using the blow molding system 10 (FIG. 5) and a content filling method using the content filling system 30 (FIG. 5) according to the present embodiment will be described with reference to FIG.
  • a preform 51 is produced by injection molding in the injection molding section 11 of the blow molding system 10 (injection molding process, step S1 in FIG. 6).
  • the surface temperature T1 of the preform 51 taken out from the injection molding section 11 may be 100°C or more and 150°C or less.
  • the preform 51 is supplied to the temperature adjustment section 12 via the preform transport section 37.
  • the temperature adjustment section 12 the temperature of the preform 51 is adjusted (temperature adjustment step).
  • the temperature adjustment step includes a preform cooling step, which will be described later.
  • the preform 51 is cooled in the cooling unit 13 (preform cooling step, step S2 in FIG. 6).
  • a cooling medium such as air is blown onto the preform 51 from a cooling nozzle, and the preform 51 is forcibly cooled.
  • the preform 51 is cooled to a temperature suitable for blow molding.
  • the surface temperature T7 of the preform 51 cooled in the cooling section 13 is lower than the above-mentioned surface temperature T1.
  • the surface temperature T7 of the preform 51 after cooling in the cooling unit 13 may be 90° C. or more and 130° C. or less.
  • the preform 51 cooled in the cooling section 13 is sent to the blow molding section 16.
  • the preform 51 sent to the blow molding section 16 is blow molded using a blow mold, not shown, so that the container 52 is blow molded. (blow molding process, step S5 in FIG. 6).
  • the surface temperature T5 of the container 52 blow-molded in the blow-molding section 16 is lower than the above-mentioned surface temperature T7.
  • the surface temperature T5 of the container 52 may be 40°C or more and 100°C or less.
  • the container 52 is sterilized in the first sterilizing section 17 using a sterilizing agent such as an aqueous hydrogen peroxide solution (container sterilizing process, FIG. step S6).
  • the surface temperature T6 of the container 52 in the first sterilization section 17 may be equal to or lower than the surface temperature T5 described above.
  • the surface temperature T6 of the preform 51 in the first sterilization section 17 may be 40°C or more and 100°C or less. In this way, by setting the surface temperature T6 of the preform 51 to 100° C. or lower, when a disinfectant such as hydrogen peroxide is sprayed onto the container 52 in the first sterilizing section 17, the disinfectant gas is absorbed into the container 52. Condenses on the surface. Thereby, the container 52 can be sterilized with high sterilizing power by using only a small amount of sterilizing agent.
  • the surface temperature of the preform 51 and the container 52 remains at 40° C. or higher until the container 52 is sterilized in the first sterilization section 17. maintain the current state.
  • the container 52 is sterilized in the first sterilization section 17 while the heat from injection molding remains.
  • the container 52 can be sterilized with high sterilization power in the first sterilization section 17 by utilizing the heat during injection molding.
  • the number of bacteria adhering to the preform 51 and container 52 can be brought as close to zero as possible.
  • a HEPA filter may be used to supply sterile air to the chambers 63 to 68, where the preform 51 or the container 52 comes into contact with the outside air, to create a positive pressure inside the chambers 63 to 68. This makes it possible to further improve the hygiene level of the container 52.
  • the chambers 63-68 may be sterilized with a sterilizing agent such as hydrogen peroxide or peracetic acid.
  • FIG. 7 is a graph showing changes in surface temperature of the preform 51 and container 52 from the injection molding section 11 to the first sterilization section 17 in this embodiment.
  • the surface temperature T1 of the preform 51 immediately after injection molding in the injection molding section 11 is cooled in the cooling section 13 and lowered to T7.
  • the container 52 is produced by blow molding the preform 51.
  • the surface temperature of the container 52 decreases to T5.
  • the surface temperature of the preform 51 is T6, and the preform 51 is sterilized in this state.
  • the surface temperature of the preform 51 and the container 52 does not fall below 40° C. from the injection molding section 11 to the first sterilization section 17.
  • the container 52 is supplied with sterile heated air or room temperature air in the air rinsing section 18 to perform air rinsing (air rinsing step, step S7 in FIG. 6). ).
  • contents such as a drink are filled into the container 52 in the filling device 20 (filling step, step S8 in FIG. 6).
  • a sterilized cap 53 is attached to the mouth of the container 52 transported from the filling device 20 in the cap attaching device 21 (cap attaching step, FIG. step S9). Thereby, the container 52 is closed and a product bottle 54 is obtained.
  • the product bottle 54 is transported from the cap attachment device 21 to the product bottle transport section 22, and is transported to the outside of the content filling system 30 (transport step, Step S10 in FIG. 6).
  • the surface temperature of the preform 51 and container 52 is maintained at 40° C. or higher from the injection molding section 11 to the first sterilization section 17. That is, the preform 51 and the container 52 are transported to the first sterilization section 17 and sterilized while the heat from injection molding in the injection molding section 11 remains. In this way, the surface temperature of the container 52 is 40° C. or higher during sterilization in the first sterilization section 17, so that the sterilization effect of the container 52 is enhanced. Furthermore, compared to the case where the temperature of the preform 51 or the container 52 once reaches room temperature, the energy required to raise the temperature of the container 52 in the first sterilization section 17 can be reduced. Thereby, the amount of carbon dioxide emitted when producing the product bottle 54 can be reduced. Furthermore, since the heating region for raising the preform 51 to the blow molding temperature can be narrowed, the installation space of the blow molding system 10 can be reduced.
  • the temperature adjustment section 12 has the cooling section 13 that cools the preform 51, but does not have the heating section 15 that heats the preform 51. Thereby, the energy required to heat the preform 51 to the blow molding temperature can be reduced. Thereby, the amount of carbon dioxide emitted when producing the product bottle 54 can be reduced. Furthermore, since the installation area of the temperature adjustment section can be narrowed, the installation space of the blow molding system 10 can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Filling Of Jars Or Cans And Processes For Cleaning And Sealing Jars (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

ブロー成形システム(10)は、射出成形によりプリフォーム(51)を作製する射出成形部(11)と、射出成形部(11)によって作製されたプリフォーム(51)の温度を調整する温度調整部(12)と、温度調整部(12)によって温度調整されたプリフォーム(51)をブロー成形することにより容器(52)を作製するブロー成形部(16)と、ブロー成形部(16)で作製された容器(52)を殺菌する第1殺菌部(17)と、を備える。射出成形部(11)から第1殺菌部(17)まで、プリフォーム(51)及び容器(52)の少なくとも一部の表面温度が40℃以上となっている状態を維持する。

Description

ブロー成形システム、内容物充填システム、ブロー成形方法及び内容物充填方法
 本開示は、ブロー成形システム、内容物充填システム、ブロー成形方法及び内容物充填方法に関する。
 殺菌された容器に殺菌された内容物を無菌環境下で充填し、その後、容器をキャップによって閉栓する内容物充填システムが知られている。具体的には、内容物充填システムにおいて、成形した容器を内容物充填システムに供給し、内容物充填システム内で、容器に殺菌剤としての過酸化水素水溶液をスプレーする。その後、容器に内容物を充填する。
 ところで、近年、内容物充填システムの環境負荷を低減することが求められている。
特表2018-500199号公報
 本開示は、容器への殺菌効果を高く維持しつつ、ブロー成形システムの環境負荷を低減することが可能な、ブロー成形システム、内容物充填システム、ブロー成形方法及び内容物充填方法を提供する。
 本開示の実施の形態は、以下の[1]~[10]に関する。
 [1]射出成形によりプリフォームを作製する射出成形部と、前記射出成形部によって作製された前記プリフォームの温度を調整する温度調整部と、前記温度調整部によって温度調整された前記プリフォームをブロー成形することにより容器を作製するブロー成形部と、前記ブロー成形部で作製された前記容器を殺菌する第1殺菌部と、を備え、前記射出成形部から前記第1殺菌部まで、前記プリフォーム及び前記容器の少なくとも一部の表面温度が40℃以上となっている状態を維持する、ブロー成形システム。
 [2]前記温度調整部は、前記プリフォームを冷却する冷却部と、前記冷却部で冷却された前記プリフォームを加熱する加熱部とを有し、前記冷却部と前記加熱部との間に、前記プリフォームを殺菌する第2殺菌部が設けられている、[1]に記載のブロー成形システム。
 [3]前記温度調整部は、前記プリフォームを冷却する冷却部を有し、前記プリフォームを加熱する加熱部を有さない、[1]に記載のブロー成形システム。
 [4]前記温度調整部は、前記プリフォームを加熱する加熱部を有する、[1]に記載のブロー成形システム。
 [5]前記ブロー成形システムは制御部を備え、前記制御部は、前記射出成形部、前記温度調整部、前記ブロー成形部及び前記第1殺菌部を制御する、[1]乃至[4]のいずれか一つに記載のブロー成形システム。
 [6][1]乃至[5]のいずれか一つに記載のブロー成形システムと、前記容器に対して内容物を充填する充填装置と、を備えた内容物充填システム。
 [7]射出成形によりプリフォームを作製する工程と、前記プリフォームの温度を調整する工程と、温度調整された前記プリフォームをブロー成形することにより容器を作製する工程と、前記容器を殺菌する工程と、を備え、前記射出成形により前記プリフォームが作製された後、前記容器が殺菌されるまで、前記プリフォーム及び前記容器の少なくとも一部の表面温度が40℃以上となっている状態を維持する、ブロー成形方法。
 [8]前記プリフォームの温度を調整する工程は、前記プリフォームを冷却する工程と、前記冷却された前記プリフォームを加熱する工程とを有し、前記冷却する工程と前記加熱する工程との間に、前記プリフォームを殺菌する工程が設けられている、[7]に記載のブロー成形方法。
 [9]前記プリフォームの温度を調整する工程は、前記プリフォームを冷却する工程を有し、前記プリフォームを加熱する工程を有さない、[7]に記載のブロー成形方法。
 [10][7]乃至[9]のいずれか一つに記載のブロー成形方法により容器を得る工程と、前記容器に対して内容物を充填する工程と、を備えた、内容物充填方法。
 本開示によれば、容器への殺菌効果を高く維持しつつ、ブロー成形システムの環境負荷を低減できる。
図1は、第1の実施の形態によるブロー成形システム及び内容物充填システムを示す概略平面図である。 図2は、プリフォーム及び容器を示す正面図である。 図3は、第1の実施の形態によるブロー成形方法及び内容物充填方法を示すフロー図である。 図4は、第1の実施の形態における、射出成形部から第1殺菌部までの、プリフォーム及び容器の表面温度の変化を示すグラフである。 図5は、第2の実施の形態によるブロー成形システム及び内容物充填システムを示す概略平面図である。 図6は、第2の実施の形態によるブロー成形方法及び内容物充填方法を示すフロー図である。 図7は、第2の実施の形態における、射出成形部から第1殺菌部までの、プリフォーム及び容器の表面温度の変化を示すグラフである。
 (第1の実施の形態)
 以下、図面を参照して第1の実施の形態について説明する。図1乃至図4は第1の実施の形態を示す図である。
 (ブロー成形システム及び内容物充填システム)
 まず、図1により、本実施の形態によるブロー成形システム及び内容物充填システムについて説明する。以下において、内容物充填システムが無菌充填システムである場合を例にとって説明する。
 図1に示す内容物充填システム30は、容器52に飲料等の内容物を充填するシステムである。内容物充填システム30は、ブロー成形システム10と、充填装置20とを備える。ブロー成形システム10は、プリフォーム51をブロー成形することにより容器52を作製する。ブロー成形システム10は、射出成形部11と、温度調整部12と、ブロー成形部16と、第1殺菌部17と、エアリンス部18とを備える。充填装置20は、容器52に対して内容物を充填する。本実施の形態において、射出成形部11から第1殺菌部17まで、プリフォーム51及び容器52の少なくとも一部の表面温度が40℃以上、好ましくは50℃以上となっている状態を維持する。本明細書において、プリフォーム51及び容器52の「表面温度」とは、図2に示すようにプリフォーム51及び容器52の長手方向の中心に位置する外面の1点Pで測定した温度をいう。この測定位置は、プリフォーム51の胴部及び容器52の胴部に位置しても良い。
 射出成形部11は、射出成形によりプリフォーム51を作製する。温度調整部12は、射出成形部11によって作製されたプリフォーム51の温度を調整する。ブロー成形部16は、温度調整部12によって温度調整されたプリフォーム51をブロー成形することにより容器52を作製する。第1殺菌部17は、ブロー成形部16で作製された容器52を殺菌する。第1殺菌部17においては、射出成形部11で加えられた熱が残存する状態で容器52を殺菌する。
 容器52は、ブロー成形部16においてプリフォーム51を二軸延伸ブロー成形することにより作製される。プリフォーム51は、射出成形部11において合成樹脂材料を射出成形することにより作製される。容器52及びプリフォーム51の材料としては、熱可塑性樹脂、特にPE(ポリエチレン)、PP(ポリプロピレン)、PET(ポリエチレンテレフタレート)、又はPEN(ポリエチレンナフタレート)を使用することが好ましい。本実施の形態においては、容器52として合成樹脂製ボトルを用いる場合を例にとって説明する。
 図1に示すように、内容物充填システム30は、上述したように、ブロー成形システム10と、充填装置20とを備える。ブロー成形システム10は、射出成形部11と、温度調整部12と、ブロー成形部16と、第1殺菌部17と、エアリンス部18と、を備える。射出成形部11、温度調整部12、ブロー成形部16、第1殺菌部17及びエアリンス部18は、プリフォーム51又は容器52の搬送方向に沿って、上流側から下流側に向けてこの順に配設されている。本明細書において、「上流」及び「下流」とは、プリフォーム51又は容器52の搬送方向における位置をいう。
 内容物充填システム30は、ブロー成形システム10の全体を制御する制御部40を備える。内容物充填システム30は、キャップ装着装置(キャッパー、巻締及び打栓機)21と、製品ボトル搬出部22とをさらに備える。ブロー成形システム10、充填装置20、キャップ装着装置21及び製品ボトル搬出部22は、容器52の搬送方向に沿って、上流側から下流側に向けてこの順に配設されている。内容物充填システム30には、各装置間で容器52を搬送するための複数の搬送ホイール23が設けられている。まず、ブロー成形システム10について説明する。
 ブロー成形システム10は、樹脂受け入部、ブロー成形部16、第1殺菌部17で構成されている。樹脂受け入れ部は、外部から樹脂ペレットを受け入れる。これにより、内容物充填システム30において、樹脂ペレットの供給からプリフォーム51及び容器52の成形及び殺菌を経て、容器52への内容物の充填及び閉栓に至る工程を連続して行える。この場合、容積の大きい容器52ではなく、容積の小さい樹脂ペレットが外部から内容物充填システム30に投入される。このため、製品ボトル54を作成する間、プリフォーム51又は容器52を輸送する必要がないため、輸送費を低減できる。
 ブロー成形システム10は、上述したように、射出成形部11と、温度調整部12と、ブロー成形部16と、第1殺菌部17と、を備える。ブロー成形システム10は、さらに、プリフォーム搬送部37と、ボトル搬送部38と、エアリンス部18とを有している。プリフォーム搬送部37は、プリフォーム51を搬送する。ボトル搬送部38は、成形された容器52を搬送する。エアリンス部18は、殺菌された容器52をエアリンスする。
 射出成形部11は、ブロー成形システム10の最も上流側に位置する。射出成形部11は、射出成形によりプリフォーム51を作製する。射出成形部11は、射出成形機であっても良い。射出成形部11は、固定されたフレーム31と、射出装置32と、型締装置33とを有する。射出装置32及び型締装置33は、フレーム31上に設けられている。射出装置32は、ホッパ34とノズル35とを有する。樹脂ペレットは、ホッパ34から投入され、その後溶融・混練されながら、ノズル35から射出される。ノズル35から射出された樹脂は、射出成形金型36に充填される。射出成形金型36は、型締装置33に取り付けられている。射出成形金型36は、プリフォーム51の形状に対応するキャビティを有する。型締装置33は、例えば、図示しない固定盤、可動盤及び受圧盤を有していても良い。射出された樹脂は、射出成形金型36内でプリフォーム51の形状に形成される。プリフォーム51は、必要に応じて保圧及び冷却された後、射出成形金型36が開かれることにより、取出される。
 温度調整部12は、射出成形部11の下流側に位置する。温度調整部12は、冷却部13と、加熱部15とを有する。冷却部13と加熱部15との間には、第2殺菌部14が設けられている。
 冷却部13は、プリフォーム51を冷却する。冷却部13においては、プリフォーム51に対して例えば冷却ノズルからエア等の冷却媒体が吹き付けられる。これにより射出成形部11において射出成形時に加えられた熱によって加熱されたプリフォーム51の温度が低下する。冷却媒体としてエアを用いる場合、エアは除菌フィルタを通した無菌エアを用いると良い。このエアは後述するブロー成形部16で使用した後の高圧エアをリユースして用いても良い。
 第2殺菌部14は、冷却部13の下流側に設けられている。第2殺菌部14は、プリフォーム51を殺菌する。第2殺菌部14において、例えば殺菌剤のガス又はミストがプリフォーム51に吹き付けられ、プリフォーム51が殺菌される。殺菌剤は、過酸化水素水溶液であっても良い。第2殺菌部14は、プリフォーム51に対して予備殺菌を行うものでも良い。
 プリフォーム51を殺菌するための殺菌剤としては、微生物を不活性化させる性質を有していれば良く、例えば過酸化水素のほか、過酢酸、酢酸、過硝酸、硝酸、塩素系薬剤、水酸化ナトリウム、水酸化カリウム、エチルアルコール、イソプロピルアルコール等のアルコール類、二酸化塩素、オゾン水、酸性水、界面活性剤を単体で用いても良く、これらのうち2種以上を組み合わせて用いても良い。
 このように、第2殺菌部14により予めプリフォーム51を殺菌するため、プリフォーム51から作製される容器52に付着する菌を少なくできる。このため、容器52を殺菌する第1殺菌部17で使用する殺菌剤の使用量を低減できるとともに、殺菌時間を短縮できる。一般に、容積の小さいプリフォーム51を殺菌するために使用する殺菌剤の量は、容器52を殺菌するために使用する殺菌剤の量よりも少ない傾向がある。このため、第2殺菌部14でプリフォーム51を殺菌することにより、全体での殺菌剤の使用量を低減できる。
 第1殺菌部17で使用する殺菌剤の使用量を低減でき、殺菌時間を短縮できる。このため、第1殺菌部17の小型化できる。容器52を殺菌する殺菌時間を短縮できるため、容器52への熱負荷を低減できる。このため、軽量化された容器52又はリサイクルによる再生PETを使用した容器52であっても、殺菌剤の熱による容器52の変形を抑制できる。
 さらに、プリフォーム51を殺菌することによって、容器52に付着する菌を少なくできる。このため、第1殺菌部17において、殺菌条件を弱化させても良い。一般に、第1殺菌部17における殺菌効果を向上させるために、ブロー成形部16において、図示しない金型温調器の温水をブロー成形金型に供給することによって、容器52の胴部を加熱している。これにより、第1殺菌部17における殺菌効果を向上できるとともに、第1殺菌部17における容器52の収縮を低減できる。さらに本実施の形態では、上述したように、第2殺菌部14でプリフォーム51を殺菌することにより、容器52に付着する菌を少なくできる。このため、ブロー成形部16において、温水によって容器52の温度を調節することなく、容器52を成形しても良い。すなわち、ブロー成形部16において、殺菌効果を向上させるためにブロー成形金型に供給していた温水を、ブロー成形金型に供給しなくても良い。この結果、内容物充填システム30が排出する二酸化炭素の排出量を低減できる。また、ブロー成形金型に温水を供給しなくても良いため、ブロー成形部16の簡素化を図ることができる。また、ブロー成形部16の簡素化を図ることができるため、容器52に加えられる熱量を低減できる。このため、上述した温水をブロー成形金型に供給しない場合であっても、第1殺菌部17における容器52の収縮を低減できる。また、金型温調器で容器52の胴部を加熱しないことにより、第1殺菌部17における過酸化水素の付着量を向上させることができる。
 このような殺菌処理は、複数の箇所で行われても良い。殺菌処理において、殺菌剤を使用することなく、紫外線照射又は電子線照射等によって、菌を不活性化しても良い。
 第2殺菌部14の下流側に図示しないプリフォームエアリンス部を設けても良い。プリフォームエアリンス部は、殺菌剤が吹き付けられたプリフォーム51に対してホットエアを用いて乾燥しても良い。この場合、プリフォーム51内から異物を効果的に除去できる。
 加熱部15は、冷却部13で冷却されたプリフォーム51を、ブロー成形温度まで再加熱する。加熱部15は、第2殺菌部14から殺菌済みのプリフォーム51を受け取り、プリフォーム51を搬送しながら加熱する。この加熱部15には、プリフォーム51を加熱するヒーター39が設けられている。このヒーター39は、例えば赤外線ヒーターであっても良い。このヒーター39により、プリフォーム51は、例えば90℃以上130℃以下程度に加熱される。プリフォーム51の口部の温度は、変形等を防止するため70℃以下の温度に抑えられても良い。加熱部15はホットエアを用いて加熱するものでも良い。ホットエアを用いた場合、第2殺菌部14で用いられる殺菌剤ガスをホットエアに添加させ、プリフォーム51の加熱と殺菌を同時に行っても良い。
 本実施の形態において、冷却部13、第2殺菌部14及び加熱部15はそれぞれ異なるホイールに設けられている。これに限らず、冷却部13、第2殺菌部14及び加熱部15の一部又は全部が同一のホイールに設けられていても良い。プリフォーム51は、ホイールに代えて、1本の直線又は曲線に沿ってプリフォーム51を搬送する搬送装置によって搬送されても良い。この場合、冷却部13、第2殺菌部14及び加熱部15の一部又は全部が、当該搬送装置に沿って設けられていても良い。プリフォーム51の搬送としては、マンドレルにプリフォーム51を挿入し、搬送しても良い。グリッパでプリフォーム51のサポートリングの上下を交互に把持させながらプリフォーム51を搬送しても良い。すなわち、プリフォーム51のサポートリングの上方を掴む第1グリッパと、サポートリングの下方を掴む第2グリッパとを交互に並べ、第1グリッパと第2グリッパとが交互にサポートリングを把持することにより、プリフォーム51を搬送しても良い。これにより隣り合うグリッパ同士の干渉が避けられる。これらに限らず他の方式を用いても良い。
 ブロー成形部16は、加熱部15で加熱されたプリフォーム51をブロー成形する。ブロー成形部16は、図示しないブロー成形金型を含む。このブロー成形金型を用いてプリフォーム51に対してブロー成形を施すことにより、容器52が成形される。次に、成形された容器52は、ボトル搬送部38によって、下流側に搬送される。ボトル搬送部38には、カメラを設置し、容器52の密封性に影響を及ぼす容器52の天面や容器52の口部の検査を行うと良い。容器52のサポートリング、胴部及び/又は底部の外観検査を行っても良い。第1殺菌部17による殺菌効果に影響を及ぼす容器52の表面温度を非接触の赤外放射カメラで測定しても良い。
 第1殺菌部17は、殺菌剤を容器52に噴射することにより、容器52を殺菌する装置である。これにより、内容物の充填前に殺菌剤によって容器52が殺菌される。殺菌剤としては、例えば過酸化水素水溶液が用いられる。第1殺菌部17においては、過酸化水素水溶液のガス又はミストが生成され、ガス又はミストが容器52の内外面に噴霧される。このように容器52が過酸化水素水溶液のガス又はミストで殺菌されるので、容器52の内外面が均一に殺菌される。
 容器52を殺菌するための殺菌剤としては、微生物を不活性化させる性質を有していれば良い。殺菌剤としては、例えば過酸化水素のほか、過酢酸、酢酸、過硝酸、硝酸、塩素系薬剤、水酸化ナトリウム、水酸化カリウム、エチルアルコール、イソプロピルアルコール等のアルコール類、二酸化塩素、オゾン水、酸性水、界面活性剤を単体で用いても良く、これらのうち2種以上を組み合わせて用いても良い。殺菌処理において、殺菌剤を使用することなく、紫外線照射又は電子線照射等によって、菌を不活性化しても良い。
 エアリンス部18は、容器52に無菌の加熱エア又は常温エアを供給する装置である。エアリンス部18において、第1殺菌部17で殺菌された殺菌剤に含まれる過酸化水素の活性化を行いつつ、容器52内から異物、過酸化水素等を除去する。この際、容器52の口部を下に向けた状態で、容器52に対して無菌エアが供給されることが好ましい。これにより、容器52内から異物を効果的に除去できる。このため、無菌水によって容器52を洗浄する工程を省略でき、内容物充填システム30が排出する二酸化炭素の排出量を低減できる。必要に応じて、常温の無菌化されたエアに、低濃度の過酸化水素の凝結ミストを混ぜて過酸化水素をガス化させて、容器52に供給しても良い。
 充填装置20は、飲料等の内容物を容器52に充填する装置である。充填装置20は、容器52の口部から容器52内へ、予め殺菌処理された内容物を充填する。これにより、充填装置20において、内容物が空の状態の容器52に充填される。この充填装置20では、複数の容器52が回転搬送されながら、容器52の内部へ内容物が充填される。
 キャップ装着装置21は、予め殺菌されたキャップ53を容器52に装着することにより、容器52を閉栓する装置である。キャップ装着装置21において、内容物が充填された容器52内に外部の空気や微生物が侵入しないように、容器52がキャップ53により閉じられて密封される。キャップ装着装置21において、内容物が充填された複数の容器52が回転(公転)されながら、その口部にキャップ53が装着される。このようにして、容器52にキャップ53を装着することにより、製品ボトル54が得られる。
 製品ボトル搬出部22は、キャップ装着装置21でキャップ53を装着された製品ボトル54を、内容物充填システム30の外部へ向けて連続的に搬出する。
 内容物充填システム30は、射出成形チャンバ61と、プリフォーム殺菌チャンバ62と、ブロー成形チャンバ63と、殺菌剤遮断チャンバ68と、殺菌剤噴霧チャンバ64と、エアリンスチャンバ65と、充填チャンバ66と、出口チャンバ67とを有する。射出成形チャンバ61、プリフォーム殺菌チャンバ62、ブロー成形チャンバ63、殺菌剤遮断チャンバ68、殺菌剤噴霧チャンバ64、エアリンスチャンバ65、充填チャンバ66及び出口チャンバ67は、プリフォーム51及び容器52の搬送方向に沿って、上流側から下流側に向けてこの順に配設されている。
 各チャンバ61乃至68は、それぞれ隔壁によって分離されている。隔壁は、各チャンバ61乃至68間で、殺菌剤等が意図しない方向へ流通することを防ぎ、各チャンバ61乃至68内の圧力を安定させる役割を果たす。隔壁には、それぞれプリフォーム51又は容器52が通過できる程度の隙間が形成されている。この隙間は、各チャンバ61乃至68内の圧力が変化しないように、最小限、例えば1個分のプリフォーム51又は容器52程度の大きさ形成されている。隔壁には、上述した隙間を閉鎖するシャッターが設けられていても良い。このシャッターは、例えば制御部40からの信号により、自動で開閉するように構成されていても良い。各チャンバ61乃至68の内部には、各チャンバ61乃至68内の圧力を測定する圧力計(図示せず)が取り付けられていても良い。
 射出成形チャンバ61の内部には、射出成形部11が収容されている。プリフォーム殺菌チャンバ62の内部には、冷却部13と、第2殺菌部14とが収容されている。ブロー成形チャンバ63の内部には、加熱部15と、ブロー成形部16とが収容されている。殺菌剤噴霧チャンバ64の内部には、第1殺菌部17が収容されている。エアリンスチャンバ65の内部には、エアリンス部18が収容されている。充填チャンバ66の内部には、充填装置20と、キャップ装着装置21とが収容されている。出口チャンバ67の内部には、製品ボトル搬出部22が収容されている。殺菌剤遮断チャンバ68は、第1殺菌部17からの殺菌剤が、充填チャンバ66内の陽圧の雰囲気によってブロー成形部16側に流れないように殺菌剤を排気するチャンバである。
 上述したように、内容物充填システム30は、ブロー成形システム10を制御する制御部40を備えている。この制御部40は、ブロー成形システム10に電気的に接続されており、ブロー成形システム10の射出成形部11、温度調整部12、ブロー成形部16及び第1殺菌部17を制御する。制御部40は、エアリンス部18、充填装置20、キャップ装着装置21及び製品ボトル搬出部22等を制御しても良い。本実施の形態において、同一の制御部40が、ブロー成形システム10の射出成形部11、温度調整部12、ブロー成形部16及び第1殺菌部17を制御する。これにより、射出成形部11、温度調整部12、ブロー成形部16及び第1殺菌部17を効率良く制御できる。また例えば、射出成形部11、温度調整部12、ブロー成形部16及び第1殺菌部17におけるプリフォーム51及び容器52の搬送速度を容易に調整できる。
 このような内容物充填システム30は、例えば無菌充填システムからなっていても良い。この場合、各チャンバ61乃至68の内部は無菌状態に保持される。出口チャンバ67の下流側に、無菌状態の無菌ゾーンと、非無菌状態の非無菌ゾーンとを連結するチャンバ(図示せず)が設けられていてもよい。
 (ブロー成形方法及び内容物充填方法)
 次に、本実施の形態によるブロー成形システム10(図1)を用いたブロー成形方法、及び内容物充填システム30(図1)を用いた内容物充填方法について、図3により説明する。
 はじめに、ブロー成形システム10の射出成形部11において、射出成形によりプリフォーム51を作製する(射出成形工程、図3のステップS1)。この間、まず樹脂ペレットが射出成形部11のホッパ34に投入される。樹脂ペレットは、200℃以上250℃以下の温度で溶融・混練されながら、ノズル35から射出される。ノズル35から射出された樹脂は、射出成形金型36に充填される。樹脂は、射出成形金型36内でプリフォーム51の形状に賦形される。プリフォーム51は、必要に応じて保圧及び冷却された後、射出成形金型36が開かれることにより、取出される。射出成形部11から取出されたプリフォーム51の表面温度T1は、100℃以上150℃以下であっても良い。
 次に、プリフォーム51が、プリフォーム搬送部37を介して温度調整部12に供給される。温度調整部12において、プリフォーム51の温度が調整される(温度調整工程)。本実施の形態において、温度調整工程は、後述するプリフォーム冷却工程とプリフォーム加熱工程とを含む。
 この間、まず冷却部13において、プリフォーム51が冷却される(プリフォーム冷却工程、図3のステップS2)。冷却部13においては、プリフォーム51に対して冷却ノズルから無菌エア等の冷却媒体が吹き付けられ、プリフォーム51が強制冷却される。「強制冷却」とは、冷却手段を用いて冷却することであり、自然冷却する場合よりも早く温度が低下する。冷却部13において冷却されたプリフォーム51の表面温度T2は、上述した表面温度T1より低い。具体的には、冷却部13における冷却後のプリフォーム51の表面温度T2は、50℃以上100℃以下であっても良い。このように、プリフォーム51の表面温度T2を100℃以下にすることにより、第2殺菌部14において、過酸化水素等の殺菌剤をプリフォーム51に吹き付けたとき、殺菌剤のガスがプリフォーム51の表面上で凝縮される。これにより、少量の殺菌剤でプリフォーム51を高い殺菌力で殺菌できる。冷却用のエアに殺菌剤の(例えば過酸化水素)ガス又はミストが含まれていても良い。過酸化水素を用いる場合、ガス濃度は0.1mg/L~300mg/Lとしても良く、より好ましくは1mg/L~10mg/Lが良い。
 続いて、冷却部13において冷却されたプリフォーム51は、第2殺菌部14に送られる(プリフォーム殺菌工程、図3のステップS3)。この際、第2殺菌部14において、プリフォーム51は、例えば過酸化水素等の殺菌剤のガス又はミストを吹き付けられ、殺菌処理される。このとき、プリフォーム51は、内面と外面との両方が殺菌されることが好ましい。過酸化水素のガス濃度は0.1mg/L~300mg/Lとしても良く、より好ましくは1mg/L~10mg/Lが良い。第2殺菌部14におけるプリフォーム51の表面温度T3は、上述した表面温度T2と同等又は表面温度T2未満であって良い。具体的には、第2殺菌部14におけるプリフォーム51の表面温度T3は、50℃以上100℃以下であっても良い。
 次いで、第2殺菌部14において殺菌されたプリフォーム51は、加熱部15に送られ、ヒーター39によってブロー成形に適した温度に加熱される(プリフォーム加熱工程、図3のステップS4)。加熱部15において加熱されたプリフォーム51の表面温度T4は、上述した表面温度T3より高い。具体的には、プリフォーム51の表面温度T4は、90℃以上130℃以下であっても良い。次いで、加熱部15により加熱されたプリフォーム51は、ブロー成形部16に送られる。
 本実施の形態において、射出成形部11において作製されたプリフォーム51の表面温度が40℃未満、特に常温(15℃以上25℃以下)まで低下することがない状態で、ブロー成形部16に送られる。言い換えれば、射出成形時の熱が残存した状態のまま、射出成形部11からブロー成形部16まで一貫して搬送される。これにより、プリフォーム51の輸送工程やプリフォーム51のエージング工程を省略できる。この結果、容器52の製造時に必要なエネルギーを節減でき、二酸化炭素の排出量を低減できる。またプリフォーム51を保管するスペースを削減できる。
 次いで、ブロー成形部16に送られたプリフォーム51に対して、図示しないブロー成形金型を用いてブロー成形を施すことにより、容器52が作製される(ブロー成形工程、図3のステップS5)。ブロー成形部16においてブロー成形された後の容器52の表面温度T5は、上述した表面温度T4より低い。具体的には、容器52の表面温度T5は、40℃以上100℃以下であっても良い。このようにしてブロー成形された容器52は、ボトル搬送部38を介して第1殺菌部17に送られる。
 次に、第1殺菌部17において、容器52に対して過酸化水素水溶液等の殺菌剤を用いて殺菌処理が行われる(容器殺菌工程、図3のステップS6)。このとき、殺菌剤は、過酸化水素水溶液を一旦沸点以上で気化させたガス又はミストであっても良い。過酸化水素水溶液のガス又はミストは、容器52の内面及び外面に付着し、容器52の内面及び外面を殺菌する。第1殺菌部17における容器52の表面温度T6は、上述した表面温度T5と同等又は表面温度T5未満であって良い。具体的には、第1殺菌部17におけるプリフォーム51の表面温度T6は、40℃以上100℃以下であっても良い。このように、プリフォーム51の表面温度T6を100℃以下にすることにより、第1殺菌部17において、過酸化水素等の殺菌剤を容器52に吹き付けたとき、殺菌剤のガスが容器52の表面上で凝縮される。これにより、少量の殺菌剤で容器52を高い殺菌力で殺菌できる。
 このように、射出成形部11において射出成形によりプリフォーム51が作製された後、第1殺菌部17において容器52が殺菌されるまで、プリフォーム51及び容器52の表面温度が40℃以上となっている状態を維持する。言い換えれば、射出成形時の熱が残存した状態のまま、第1殺菌部17において容器52が殺菌される。これにより、射出成形時の熱を利用して、第1殺菌部17において高い殺菌力で容器52を殺菌できる。また射出成形部11から第1殺菌部17まで、プリフォーム51及び容器52をダイレクトに搬送することにより、プリフォーム51及び容器52に付着する菌数を限りなくゼロに近づけることができる。プリフォーム51又は容器52が外気と触れるチャンバ62~68に対してHEPAフィルタ(High Efficiency Particulate Air Filter)を用いて無菌エアを供給し、チャンバ62~68内を陽圧にしても良い。これにより、容器52の衛生度を更に高めることが可能になる。製品ボトル54の生産前にチャンバ62~68を過酸化水素や過酢酸等の殺菌剤で殺菌しても良い。
 図4は、本実施の形態において、射出成形部11から第1殺菌部17までの、プリフォーム51及び容器52の表面温度の変化を示すグラフである。図4に示すように、射出成形部11で射出成形された直後のプリフォーム51の表面温度T1は、冷却部13で冷却されてT2まで低下する。第2殺菌部14において、プリフォーム51の表面温度はT3であり、この状態でプリフォーム51が殺菌される。その後、プリフォーム51の表面温度は、加熱部15で加熱されてT4まで上昇する。ブロー成形部16において、プリフォーム51をブロー成形することにより容器52が作製される。ブロー成形された後の容器52の表面温度はT5まで低下する。第1殺菌部17において、プリフォーム51の表面温度はT6であり、この状態でプリフォーム51が殺菌される。なお、T6とT3との大小関係は問わない。図4に示すように、プリフォーム51及び容器52の表面温度は、射出成形部11から第1殺菌部17まで40℃以上を維持している。
 続いて、容器52は、第1殺菌部17からエアリンス部18に送られる。エアリンス部18において、容器52に対して無菌の加熱エア又は常温エアが供給されることによりエアリンスされる(エアリンス工程、図3のステップS7)。これにより、過酸化水素の活性化が行われ、かつ、容器52から異物及び過酸化水素等が除去される。エアリンス工程において、必要に応じて、無菌の加熱エア又は常温の無菌エアに、低濃度の過酸化水素の凝結ミストを混ぜても良い。この場合、過酸化水素は、無菌エアによってガス化される。そして、エアリンス工程において、ガス化された過酸化水素を容器52に供給しても良い。
 次に、容器52は、ブロー成形システム10から充填装置20に搬送される。この充填装置20において、容器52内へ飲料等の内容物が充填される(充填工程、図3のステップS8)。充填装置20において、容器52は回転(公転)されながら、その口部から容器52内へ内容物が充填される。
 次いで、内容物が充填された容器52は、搬送ホイール23によってキャップ装着装置21に搬送される。このキャップ装着装置21において、充填装置20から搬送されてきた容器52の口部に殺菌済みのキャップ53を装着する(キャップ装着工程、図3のステップS9)。これにより、容器52が閉栓されて、製品ボトル54が得られる。
 その後、製品ボトル54は、キャップ装着装置21から製品ボトル搬出部22へ搬送され、内容物充填システム30の外部へ向けて搬出される(搬出工程、図3のステップS10)。製品ボトル54は、図示しない包装ラインへ運ばれ、包装される。
 上記射出成形工程、プリフォーム冷却工程、プリフォーム殺菌工程、プリフォーム加熱工程、ブロー成形工程、容器殺菌工程、エアリンス工程、充填工程、キャップ装着工程及び搬出工程は、チャンバ61乃至68内において、無菌の雰囲気内すなわち無菌の環境下で行われても良い。この場合、チャンバ61乃至68は、予め過酸化水素若しくは過酢酸の噴霧、又はアルカリ洗剤、温水の放水等により、殺菌処理されていても良い。上記射出成形工程が行われる射出成形チャンバ61のみ非無菌エリアにしても良い。あるいは、射出成形チャンバ61,プリフォーム殺菌チャンバ62及びブロー成形チャンバ63までを非無菌エリアにしても良い。
 内容物充填システム30におけるプリフォーム51及び容器52の生産(搬送)速度は、100bpm以上1000bpm以下とすることが好ましい。bpm(bottle per minute)とは、1分間当たりの容器52の搬送速度をいう。
 以上のように本実施の形態によれば、射出成形部11から第1殺菌部17まで、プリフォーム51及び容器52の表面温度が40℃以上の状態を維持する。すなわち、射出成形部11における射出成形時の熱が残存した状態のまま、プリフォーム51及び容器52を第1殺菌部17に搬送し、殺菌を行う。このように第1殺菌部17における殺菌時に容器52の表面温度が40℃以上となっていることにより、容器52の殺菌効果が高められる。プリフォーム51又は容器52の温度が一旦常温になる場合と比較して、ブロー成形部16におけるプリフォーム51の温度、又は第1殺菌部17における容器52の温度を高めるためのエネルギーを削減できる。これにより、製品ボトル54を作製する際に排出される二酸化炭素の排出量を低減できる。さらに、プリフォーム51をブロー成形温度まで高めるための加熱領域を狭くできるため、ブロー成形システム10の設置スペースを削減できる。
 また、本実施の形態によれば、温度調整部12は、プリフォーム51を冷却する冷却部13と、冷却部13で冷却されたプリフォーム51を加熱する加熱部15とを有する。冷却部13と加熱部15との間に、プリフォーム51を殺菌する第2殺菌部14が設けられている。このように第2殺菌部14により予めプリフォーム51を殺菌することにより、容器52に付着する菌を少なくできる。このため、容器52を殺菌する第1殺菌部17で使用する殺菌剤の使用量を低減できるとともに、殺菌時間を短縮できる。この結果、製品ボトル54を作製する際に排出される二酸化炭素の排出量を低減できる。
 また、本実施の形態によれば、同一の制御部40が射出成形部11、温度調整部12、ブロー成形部16及び第1殺菌部17を制御する。すなわち、射出成形部11から第1殺菌部17まで一体化された同一のシステムを構成している。これにより、ブロー成形システム10の設置スペースや、射出成形されたプリフォーム51を保管及び収容するためのスペースを削減できる。また、射出成形されたプリフォーム51をブロー成形部16まで車両等で輸送することがないので、プリフォーム51を輸送する際に排出される二酸化炭素の排出量を低減できる。
 (第2の実施の形態)
 次に、図5乃至図7を参照して第2の実施の形態について説明する。図5乃至図7は第2の実施の形態を示す図である。図5乃至図7に示す第2の実施の形態は、主として、温度調整部12の構成が異なるものであり、他の構成は上述した第1の実施の形態と略同一である。図5乃至図7において、図1乃至図4に示す第1の実施の形態と同一部分には同一の符号を付して詳細な説明は省略する。
 (ブロー成形システム及び内容物充填システム)
 まず、図5により、本実施の形態によるブロー成形システム及び内容物充填システムについて説明する。
 図5に示すように、本実施の形態による内容物充填システム30は、ブロー成形システム10と、充填装置20とを備える。ブロー成形システム10は、プリフォーム51をブロー成形することにより容器52を作製する。充填装置20は、容器52に対して内容物を充填する。
 本実施の形態によるブロー成形システム10は、射出成形部11と、温度調整部12と、ブロー成形部16と、第1殺菌部17と、エアリンス部18と、を備える。温度調整部12は、冷却部13を有する。この場合、第1の実施の形態によるブロー成形システム10と異なり、温度調整部12は、プリフォーム51を加熱する加熱部15を有さない。本実施の形態において、ブロー成形システム10は、プリフォーム51を殺菌する第2殺菌部14を有さない。これに限らず、射出成形部11とブロー成形部16との間に、プリフォーム51を殺菌する第2殺菌部14が設けられていても良い。
 冷却部13は、プリフォーム51をブロー成形温度まで冷却する。冷却部13は、射出成形部11からプリフォーム51を受け取り、プリフォーム51を搬送しながら冷却する。冷却部13においては、プリフォーム51に対して冷却ノズルからエア等の冷却媒体が吹き付けられる。これにより射出成形部11において射出成形時に加えられた熱によって加熱されたプリフォーム51の温度が低下する。冷却部13により、プリフォーム51の表面温度は、例えば90℃以上130℃以下程度まで低下する。
 本実施の形態において、冷却部13はホイールに設けられている。プリフォーム51は、ホイールに代えて、1本の直線又は曲線に沿ってプリフォーム51を搬送する搬送装置によって搬送されても良い。この場合、冷却部13は、当該搬送装置に沿って設けられていても良い。
 ブロー成形部16は、冷却部13でブロー成形温度に温度調整されたプリフォーム51をブロー成形する。ブロー成形部16においてプリフォーム51に対してブロー成形を施すことにより、容器52が成形される。
 本実施の形態において、プリフォーム殺菌チャンバ62は設けられていない。冷却部13は、ブロー成形チャンバ63内に位置していても良い。
 ブロー成形部16において、ブロー成形時に延伸ロッドから吹き出されるエアに殺菌剤(例えば過酸化水素)のガスを添加しても良い。殺菌剤として過酸化水素を用いる場合、ガス濃度は0.1mg/L~300mg/Lとしても良く、より好ましくは1mg/L~10mg/Lとしても良い。これにより、ブロー成形時にプリフォーム51を殺菌できる。また容器52の殺菌と成形とを同時に進行できる。このようなブロー成形部16における殺菌は、第2殺菌部14におけるプリフォーム51の殺菌の代替として行っても良い。あるいは、第2殺菌部14におけるプリフォーム51の殺菌とともに行っても良い。
 このほか、ブロー成形システム10及び内容物充填システム30を構成する要素は、第1の実施の形態の場合と略同一である。
 (ブロー成形方法及び内容物充填方法)
 次に、本実施の形態によるブロー成形システム10(図5)を用いたブロー成形方法、及び内容物充填システム30(図5)を用いた内容物充填方法について、図6により説明する。
 まず、第1の実施の形態の場合と同様に、ブロー成形システム10の射出成形部11において、射出成形によりプリフォーム51を作製する(射出成形工程、図6のステップS1)。射出成形部11から取出されたプリフォーム51の表面温度T1は、100℃以上150℃以下であっても良い。
 次に、プリフォーム51が、プリフォーム搬送部37を介して温度調整部12に供給される。温度調整部12において、プリフォーム51の温度が調整される(温度調整工程)。本実施の形態において、温度調整工程は、後述するプリフォーム冷却工程を含む。
 この間、冷却部13において、プリフォーム51が冷却される(プリフォーム冷却工程、図6のステップS2)。冷却部13においては、プリフォーム51に対して冷却ノズルからエア等の冷却媒体が吹き付けられ、プリフォーム51が強制冷却される。冷却部13において、プリフォーム51は、ブロー成形に適した温度まで冷却される。冷却部13において冷却されたプリフォーム51の表面温度T7は、上述した表面温度T1より低い。具体的には、冷却部13における冷却後のプリフォーム51の表面温度T7は、90℃以上130℃以下であっても良い。次いで、冷却部13で冷却されたプリフォーム51は、ブロー成形部16に送られる。
 次いで、第1の実施の形態の場合と同様に、ブロー成形部16に送られたプリフォーム51に対して、図示しないブロー成形金型を用いてブロー成形を施すことにより、容器52がブロー成形される(ブロー成形工程、図6のステップS5)。ブロー成形部16においてブロー成形された容器52の表面温度T5は、上述した表面温度T7より低い。具体的には、容器52の表面温度T5は、40℃以上100℃以下であっても良い。
 次に、第1の実施の形態の場合と同様に、第1殺菌部17において、容器52に対して過酸化水素水溶液等の殺菌剤を用いて殺菌処理が行われる(容器殺菌工程、図6のステップS6)。第1殺菌部17における容器52の表面温度T6は、上述した表面温度T5と同等又は表面温度T5未満であって良い。具体的には、第1殺菌部17におけるプリフォーム51の表面温度T6は、40℃以上100℃以下であっても良い。このように、プリフォーム51の表面温度T6を100℃以下にすることにより、第1殺菌部17において、過酸化水素等の殺菌剤を容器52に吹き付けたとき、殺菌剤のガスが容器52の表面上で凝縮される。これにより、少量の殺菌剤を用いるだけで容器52を高い殺菌力で殺菌できる。
 このように、射出成形部11において射出成形によりプリフォーム51が作製された後、第1殺菌部17において容器52が殺菌されるまで、プリフォーム51及び容器52の表面温度が40℃以上となっている状態を維持する。言い換えれば、射出成形時の熱が残存した状態のまま、第1殺菌部17において容器52が殺菌される。これにより、射出成形時の熱を利用して、第1殺菌部17において高い殺菌力で容器52を殺菌できる。また射出成形部11から第1殺菌部17まで、プリフォーム51及び容器52をダイレクトに搬送することにより、プリフォーム51及び容器52に付着する菌数を限りなくゼロに近づけることができる。プリフォーム51又は容器52が外気と触れるチャンバ63~68までをHEPAフィルタを用いて無菌エアを供給し、チャンバ63~68内を陽圧にしても良い。これにより、容器52の衛生度を更に高めることが可能になる。製品ボトル54の生産前にチャンバ63~68を過酸化水素や過酢酸等の殺菌剤で殺菌しても良い。
 図7は、本実施の形態において、射出成形部11から第1殺菌部17までの、プリフォーム51及び容器52の表面温度の変化を示すグラフである。図7に示すように、射出成形部11で射出成形された直後のプリフォーム51の表面温度T1は、冷却部13で冷却されてT7まで低下する。その後、ブロー成形部16において、プリフォーム51をブロー成形することにより容器52が作製される。ブロー成形された後の容器52の表面温度はT5まで低下する。第1殺菌部17において、プリフォーム51の表面温度はT6であり、この状態でプリフォーム51が殺菌される。図7に示すように、プリフォーム51及び容器52の表面温度は、射出成形部11から第1殺菌部17まで40℃以下となることがない。
 続いて、第1の実施の形態の場合と同様に、エアリンス部18において、容器52に対して無菌の加熱エア又は常温エアが供給されることによりエアリンスされる(エアリンス工程、図6のステップS7)。
 次に、第1の実施の形態の場合と同様に、充填装置20において、容器52内へ飲料等の内容物が充填される(充填工程、図6のステップS8)。
 次いで、第1の実施の形態の場合と同様に、キャップ装着装置21において、充填装置20から搬送されてきた容器52の口部に殺菌済みのキャップ53が装着される(キャップ装着工程、図6のステップS9)。これにより、容器52が閉栓されて、製品ボトル54が得られる。
 その後、第1の実施の形態の場合と同様に、製品ボトル54は、キャップ装着装置21から製品ボトル搬出部22へ搬送され、内容物充填システム30の外部へ向けて搬出される(搬出工程、図6のステップS10)。
 以上のように本実施の形態によれば、射出成形部11から第1殺菌部17まで、プリフォーム51及び容器52の表面温度が40℃以上となっている状態を維持する。すなわち、射出成形部11における射出成形時の熱が残存した状態のまま、プリフォーム51及び容器52を第1殺菌部17に搬送し、殺菌を行う。このように第1殺菌部17における殺菌時に容器52の表面温度が40℃以上となっていることにより、容器52の殺菌効果が高められる。また、プリフォーム51又は容器52の温度が一旦常温になる場合と比較して、第1殺菌部17における容器52の温度を高めるためのエネルギーを削減できる。これにより、製品ボトル54を作製する際に排出される二酸化炭素の排出量を低減できる。さらに、プリフォーム51をブロー成形温度まで高めるための加熱領域を狭くできるため、ブロー成形システム10の設置スペースを削減できる。
 また本実施の形態によれば、温度調整部12は、プリフォーム51を冷却する冷却部13を有し、プリフォーム51を加熱する加熱部15を有さない。これにより、プリフォーム51の温度をブロー成形温度まで加熱するためのエネルギーを削減できる。これにより、製品ボトル54を作製する際に排出される二酸化炭素の排出量を低減できる。さらに、温度調整部の設置領域を狭くできるため、ブロー成形システム10の設置スペースを削減できる。
 上記実施の形態及び変形例に開示されている複数の構成要素を必要に応じて適宜組合せることも可能である。あるいは、上記実施の形態及び変形例に示される全構成要素から幾つかの構成要素を削除してもよい。

Claims (10)

  1.  射出成形によりプリフォームを作製する射出成形部と、
     前記射出成形部によって作製された前記プリフォームの温度を調整する温度調整部と、
     前記温度調整部によって温度調整された前記プリフォームをブロー成形することにより容器を作製するブロー成形部と、
     前記ブロー成形部で作製された前記容器を殺菌する第1殺菌部と、を備え、
     前記射出成形部から前記第1殺菌部まで、前記プリフォーム及び前記容器の少なくとも一部の表面温度が40℃以上となっている状態を維持する、ブロー成形システム。
  2.  前記温度調整部は、前記プリフォームを冷却する冷却部と、前記冷却部で冷却された前記プリフォームを加熱する加熱部とを有し、
     前記冷却部と前記加熱部との間に、前記プリフォームを殺菌する第2殺菌部が設けられている、請求項1に記載のブロー成形システム。
  3.  前記温度調整部は、前記プリフォームを冷却する冷却部を有し、前記プリフォームを加熱する加熱部を有さない、請求項1に記載のブロー成形システム。
  4.  前記温度調整部は、前記プリフォームを加熱する加熱部を有する、請求項1に記載のブロー成形システム。
  5.  前記ブロー成形システムは制御部を備え、前記制御部は、前記射出成形部、前記温度調整部、前記ブロー成形部及び前記第1殺菌部を制御する、請求項1乃至4のいずれか一項に記載のブロー成形システム。
  6.  請求項1乃至5のいずれか一項に記載のブロー成形システムと、
     前記容器に対して内容物を充填する充填装置と、を備えた内容物充填システム。
  7.  射出成形によりプリフォームを作製する工程と、
     前記プリフォームの温度を調整する工程と、
     温度調整された前記プリフォームをブロー成形することにより容器を作製する工程と、
      前記容器を殺菌する工程と、を備え、
     前記射出成形により前記プリフォームが作製された後、前記容器が殺菌されるまで、前記プリフォーム及び前記容器の少なくとも一部の表面温度が40℃以上となっている状態を維持する、ブロー成形方法。
  8.  前記プリフォームの温度を調整する工程は、
     前記プリフォームを冷却する工程と、前記冷却された前記プリフォームを加熱する工程とを有し、
     前記冷却する工程と前記加熱する工程との間に、前記プリフォームを殺菌する工程が設けられている、請求項7に記載のブロー成形方法。
  9.  前記プリフォームの温度を調整する工程は、前記プリフォームを冷却する工程を有し、前記プリフォームを加熱する工程を有さない、請求項7に記載のブロー成形方法。
  10.  請求項7乃至9のいずれか一項に記載のブロー成形方法により容器を得る工程と、
     前記容器に対して内容物を充填する工程と、を備えた、内容物充填方法。
     
PCT/JP2023/007284 2022-03-17 2023-02-28 ブロー成形システム、内容物充填システム、ブロー成形方法及び内容物充填方法 WO2023176425A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022043124A JP7283605B1 (ja) 2022-03-17 2022-03-17 ブロー成形システム、内容物充填システム、ブロー成形方法及び内容物充填方法
JP2022-043124 2022-03-17

Publications (1)

Publication Number Publication Date
WO2023176425A1 true WO2023176425A1 (ja) 2023-09-21

Family

ID=86538221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007284 WO2023176425A1 (ja) 2022-03-17 2023-02-28 ブロー成形システム、内容物充填システム、ブロー成形方法及び内容物充填方法

Country Status (2)

Country Link
JP (2) JP7283605B1 (ja)
WO (1) WO2023176425A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006111295A (ja) * 2004-10-13 2006-04-27 Dainippon Printing Co Ltd 容器の殺菌方法及び殺菌装置
US20120193837A1 (en) * 2009-10-15 2012-08-02 Krones Ag Apparatus and method for the production of plastic containers
JP2018500199A (ja) * 2014-12-01 2018-01-11 ゲア プロコマック エセ.ピ.ア.Gea Procomac S.P.A. 無菌容器の生産装置、その装置を備える容器詰めプラント、および無菌容器の生産方法
WO2021182241A1 (ja) * 2020-03-13 2021-09-16 大日本印刷株式会社 無菌充填方法及び無菌充填機
JP2022093895A (ja) * 2020-12-14 2022-06-24 大日本印刷株式会社 無菌充填方法及び無菌充填機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006111295A (ja) * 2004-10-13 2006-04-27 Dainippon Printing Co Ltd 容器の殺菌方法及び殺菌装置
US20120193837A1 (en) * 2009-10-15 2012-08-02 Krones Ag Apparatus and method for the production of plastic containers
JP2018500199A (ja) * 2014-12-01 2018-01-11 ゲア プロコマック エセ.ピ.ア.Gea Procomac S.P.A. 無菌容器の生産装置、その装置を備える容器詰めプラント、および無菌容器の生産方法
WO2021182241A1 (ja) * 2020-03-13 2021-09-16 大日本印刷株式会社 無菌充填方法及び無菌充填機
JP2022093895A (ja) * 2020-12-14 2022-06-24 大日本印刷株式会社 無菌充填方法及び無菌充填機

Also Published As

Publication number Publication date
JP2023138497A (ja) 2023-10-02
JP2023137099A (ja) 2023-09-29
JP7283605B1 (ja) 2023-05-30

Similar Documents

Publication Publication Date Title
JP5585128B2 (ja) 飲料充填方法及び装置
CN104944345B (zh) 饮料灌装方法及饮料灌装装置
EP3827964B1 (en) Aseptic blow molding machine and aseptic blow molding method
US11655133B2 (en) Cap sterilizer, content filling system, cap sterilization method, and content filling method
CN110475723B (zh) 无菌填充方法以及无菌填充机
JP6551803B2 (ja) キャップ殺菌装置、内容物充填システム、キャップ殺菌方法および内容物充填方法
JP2020029310A (ja) 炭酸飲料無菌充填システム
JP7567897B2 (ja) 無菌充填方法及び無菌充填機
JPH0444902A (ja) 無菌容器のブロー成形・充填方法
CN113697751B (zh) 内容物充填系统的检验方法及内容物充填系统
WO2023176425A1 (ja) ブロー成形システム、内容物充填システム、ブロー成形方法及び内容物充填方法
JP2020019567A (ja) 充填システムおよび充填方法
JP2004001840A (ja) 飲料充填設備
US11173647B2 (en) Heating apparatus for preforms and heating method for preforms
JP6729741B2 (ja) 内容物充填システムの検証方法および内容物充填システム
JP7519033B2 (ja) キャップ殺菌装置及び内容物充填システム
JP2019163090A (ja) キャップ殺菌装置、内容物充填システム、キャップ殺菌方法および内容物充填方法
JP2019163091A (ja) キャップ殺菌装置、内容物充填システム、キャップ殺菌方法および内容物充填方法
JP2019163092A (ja) キャップ殺菌装置、内容物充填システム、キャップ殺菌方法および内容物充填方法
JP2019163093A (ja) キャップ殺菌装置、内容物充填システム、キャップ殺菌方法および内容物充填方法
JP2019189254A (ja) 充填システムおよび充填方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770383

Country of ref document: EP

Kind code of ref document: A1