WO2023176147A1 - 水処理装置及び水処理方法 - Google Patents

水処理装置及び水処理方法 Download PDF

Info

Publication number
WO2023176147A1
WO2023176147A1 PCT/JP2023/001881 JP2023001881W WO2023176147A1 WO 2023176147 A1 WO2023176147 A1 WO 2023176147A1 JP 2023001881 W JP2023001881 W JP 2023001881W WO 2023176147 A1 WO2023176147 A1 WO 2023176147A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
hydrogen
treated
catalyst
platinum group
Prior art date
Application number
PCT/JP2023/001881
Other languages
English (en)
French (fr)
Inventor
司 近藤
史貴 市原
Original Assignee
オルガノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022126268A external-priority patent/JP2023134325A/ja
Application filed by オルガノ株式会社 filed Critical オルガノ株式会社
Priority to CN202380027998.1A priority Critical patent/CN118891233A/zh
Publication of WO2023176147A1 publication Critical patent/WO2023176147A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction

Definitions

  • the present invention relates to a water treatment device and a water treatment method for producing ultrapure water.
  • Ultrapure water from which impurities have been highly removed is used in many fields, such as as water for cleaning silicon wafers in semiconductor manufacturing processes.
  • oxidizing substances such as oxygen (O 2 ) and hydrogen peroxide (H 2 O 2 ) dissolved in ultrapure water will cause natural oxidation on the surface of the silicon wafer. This may cause a film to form. Therefore, when producing ultrapure water, a method has been proposed in which oxidizing substances are removed using a platinum group metal-supported catalyst in which platinum group metals such as palladium (Pd) and platinum (Pt) are supported on a carrier. ing.
  • Oxygen is generated when the platinum group metal supported catalyst decomposes hydrogen peroxide, but this oxygen can also be removed by reacting with hydrogen in the presence of the platinum group metal supported catalyst.
  • the water to be treated When removing oxygen and hydrogen peroxide from the water to be treated using a supported platinum group metal catalyst, the water to be treated must contain hydrogen, and hydrogen is added to the water as necessary. .
  • Patent Document 1 discloses a method for reducing the dissolved oxygen (DO) concentration in water to be treated that is supplied to an ultraviolet oxidation device that decomposes and removes TOC (Total Organic Carbon) components in an ultrapure water production device. Discloses that a deoxidizing device having a platinum group metal supported catalyst is provided between the salt device and the ultraviolet oxidation device, and an equivalent amount or more of hydrogen is added to the water to be treated that is supplied from the desalting device to the deoxidizing device. There is.
  • DO dissolved oxygen
  • Patent Document 1 discloses that in order to suppress the TOC removal efficiency in the ultraviolet oxidation device from decreasing due to dissolved hydrogen (DH) when the outlet water containing hydrogen from the deoxidizer is supplied to the ultraviolet oxidation device, It also discloses that the amount of hydrogen added at the inlet side of the oxygen absorber is controlled so that the dissolved hydrogen concentration in the outlet water of the oxygen absorber is measured and the dissolved hydrogen concentration is 15 ⁇ g/L or less.
  • DH dissolved hydrogen
  • Patent Document 2 discloses that hydrogen is added to the outlet water of an ultraviolet oxidation device and then treated with a platinum group metal supported catalyst, so that the dissolved oxygen concentration in the water after treatment is 1 to 10 ⁇ g/L. It discloses controlling the amount of hydrogen added.
  • the water treated with the platinum group metal-supported catalyst is fed to a membrane degassing device after treatment in the ion exchange device to further remove dissolved oxygen.
  • Patent Document 3 discloses that in order to obtain ultrapure water with a reduced dissolved oxygen concentration while controlling the dissolved nitrogen (DN) concentration to a predetermined value, the dissolved nitrogen concentration is measured in the outlet water of an ultraviolet oxidation device and nitrogen , followed by addition of hydrogen and treatment with a supported platinum group metal catalyst. The water treated with the platinum group metal supported catalyst is then subjected to ion exchange treatment.
  • DN dissolved nitrogen
  • Patent Document 4 discloses that in order to remove oxidizing substances from the outlet water of an ultraviolet oxidation device in the production of ultrapure water, hydrogen is added to the outlet water and then treated with a platinum group metal supported catalyst. It is disclosed that the dissolved hydrogen concentration of water during or after passing through a supported catalyst is measured and the amount of hydrogen added is controlled according to the measured value.
  • the amount of hydrogen added is the same as the oxygen originally contained in the water to be treated. It is preferable that the amount is at least the theoretical value (i.e., equivalent amount) at which water is produced by reacting with both oxygen and oxygen generated by the decomposition of hydrogen oxide. On the other hand, it is not preferable from the viewpoint of the quality of the obtained ultrapure water that the amount of hydrogen added becomes excessive and the water treated with the platinum group metal supported catalyst also contains more than a certain amount of hydrogen. In order to obtain ultrapure water of good water quality, it is required to control not only the dissolved oxygen concentration but also the dissolved hydrogen concentration to a low value in water treated with a platinum group metal supported catalyst.
  • the amount of hydrogen added is controlled according to the dissolved hydrogen concentration in water treated with a platinum group metal supported catalyst, but the control value for the dissolved hydrogen concentration is The upper limit is set at 15 ⁇ g/L, and there is a problem that the dissolved hydrogen concentration is too high depending on the use of ultrapure water.
  • Another problem is that the ultraviolet oxidation device is disposed downstream of the platinum group metal supported catalyst, and oxidizing substances such as hydrogen peroxide generated in the ultraviolet oxidation device cannot be removed.
  • Patent Document 4 it is not clear to what extent the dissolved oxygen concentration and dissolved hydrogen concentration can be specifically reduced in water treated with a platinum group metal supported catalyst.
  • the technology described in Patent Document 4 is applied to obtain high-quality ultrapure water in which the dissolved oxygen concentration and dissolved hydrogen concentration are, for example, 0.1 ⁇ g/L or less, and the hydrogen peroxide concentration is, for example, 1.0 ⁇ g/L or less. In order to do so, further consideration is required.
  • An object of the present invention is to provide a water treatment device and a water treatment method that can be used to produce high-quality ultrapure water at low cost and can remove oxidizing substances and manage dissolved hydrogen concentration. It's about doing.
  • the water treatment device of the present invention has an oxidizing substance removing device that removes oxidizing substances from the water to be treated, and the oxidizing substance removing device includes hydrogenation means for adding hydrogen to the water to be treated, and a platinum group metal A catalyst tower equipped with a supported catalyst and through which treated water to which hydrogen has been added flows, a control unit that controls the amount of hydrogen added by the hydrogenation means, and a first part that measures the dissolved hydrogen concentration in the outlet water of the catalyst tower. and a measuring means, in the catalyst column, the bed height of the packing packed in the catalyst column including the platinum group metal supported catalyst is 10 cm or more, and the control unit is configured to measure by the first measuring means.
  • First addition amount control is performed to control the amount of hydrogen added by the hydrogen addition means so that the value falls within a first range.
  • the method for producing ultrapure water of the present invention includes an oxidizing substance removal step of removing oxidizing substances from the water to be treated, and the oxidizing substance removal step includes a step of adding hydrogen to the water to be treated, and a step of adding hydrogen to the water to be treated. and passing the added water to be treated through a catalyst tower equipped with a platinum group metal supported catalyst, and in the step of adding hydrogen, the dissolved hydrogen concentration in the outlet water of the catalyst tower falls within a first range.
  • the first addition amount control is performed to control the amount of hydrogen added to the water to be treated, and in the catalyst tower, the bed height of the packing packed in the catalyst tower including the platinum group metal supported catalyst is 10 cm. That's all.
  • dissolved oxygen concentration and dissolved hydrogen concentration can be High-quality ultrapure water having a concentration of 0.1 ⁇ g/L or less and a hydrogen peroxide concentration of 1 ⁇ g/L or less can be produced at low cost.
  • Example 1 is a diagram showing an ultrapure water production apparatus according to an embodiment of the present invention. It is a figure showing the apparatus used in an example and a comparative example.
  • 3 is a graph showing the results in Example 1.
  • 3 is a graph showing the results of Comparative Example 1.
  • 3 is a graph showing the results in Example 2.
  • 3 is a graph showing the results in Example 3.
  • 7 is a graph showing the results in Example 4.
  • 7 is a graph showing the results in Example 5.
  • 7 is a graph showing the results in Example 6. 7 is a graph showing the results in Example 7.
  • FIG. 1 shows an ultrapure water production apparatus according to one embodiment of the present invention.
  • the ultrapure water production device shown in FIG. 1 is particularly equipped with an oxidizing substance removal device 10, and a subsystem (secondary pure water system) to which primary pure water is supplied from the pure water production device (primary pure water system). It is configured as.
  • This ultrapure water production equipment uses high-quality ultrapure water, for example, which has a dissolved oxygen (DO) concentration and a dissolved hydrogen (DH) concentration of 0.1 ⁇ g/L or less, and a hydrogen peroxide concentration of 1.0 ⁇ g/L or less.
  • the ultrapure water production device includes a tank 20 that stores primary pure water as water to be treated, and a pump 21 that supplies the water to be treated in the tank 20.
  • water to be treated stored in a tank 20 is sent out by a pump 21 and supplied to a heat exchanger 22.
  • the water to be treated whose temperature has been adjusted by passing through the heat exchanger 22 is supplied to the ultraviolet oxidation device 23 .
  • the water to be treated is irradiated with ultraviolet rays to decompose the total organic carbon (TOC) component in the water to be treated.
  • the water to be treated which is the outlet water of the ultraviolet oxidation device 23, contains dissolved oxygen and hydrogen peroxide.
  • the water to be treated containing oxidizing substances such as dissolved oxygen and hydrogen peroxide is then supplied to the oxidizing substance removal device 10, where the oxidizing substances contained in the water to be treated are removed.
  • the water to be treated from which oxidizing substances have been removed is subjected to ion exchange treatment in a non-regenerative mixed bed ion exchange device 24 to remove metal components, and further, fine impurities are removed in an ultrafiltration membrane device 25. .
  • the ultrapure water that is the outlet water of the ultrafiltration membrane device 25 is supplied to the use point 30, and the remaining ultrapure water that is not supplied to the use point 30 is sent to the tank 20 via the circulation piping 26. Reflux to.
  • the ultrapure water that was not supplied to the use point 30 is further purified while being circulated, so the purity of the ultrapure water obtained improves as time passes from the start of operation, and eventually , ultrapure water reaches a certain purity.
  • the tank 20, the pump 21, the heat exchanger 22, the ultraviolet oxidation device 23, the non-regenerative mixed bed ion exchange device 24, and the ultrafiltration membrane device 25 have ultrapure water installed as a subsystem, that is, a secondary pure water system. Those commonly used in manufacturing equipment can be used. Therefore, description of these detailed configurations will be omitted, and the detailed configuration of the oxidizing substance removal device 10 will be described below.
  • the ultrapure water production apparatus of this embodiment is not provided with a membrane deaerator for removing dissolved gases, a membrane deaerator may be provided if necessary or for backup. good.
  • the oxidizing substance removal device 10 is supplied with the outlet water of the ultraviolet oxidation device 23 as water to be treated, and the water to be treated contains oxidizing substances.
  • the oxidizing substance includes at least one of dissolved oxygen and hydrogen peroxide.
  • the oxidizing substance removal device 10 includes a catalyst tower (Pd) 11 to which water to be treated is supplied, and generates water containing hydrogen in order to add hydrogen to the water to be treated that is supplied to the catalyst tower 11.
  • a hydrogen (H 2 ) source 12 is provided.
  • the hydrogen source 12 may be of any type as long as it can produce water containing hydrogen, but for example, it may use a gas dissolution method using a gas dissolution membrane or a direct electrolysis method using an electrolytic cell.
  • the hydrogen source 12 can be used as the hydrogen source 12.
  • a direct electrolysis type hydrogen source 12 Hydrogen-containing water from the hydrogen source 12 is injected into the water to be treated at the inlet side of the catalyst column 11 .
  • the hydrogen source 12 and the injection point of hydrogen-containing water into the water to be treated constitute a hydrogenation means for adding hydrogen to the water to be treated.
  • a mixing section 13 such as a mixing column or a mixing tank may be provided between the injection point of the hydrogen-containing water into the water to be treated and the catalyst tower 11. good.
  • the catalyst tower 11 is filled with a platinum group metal supported catalyst so that the water to be treated can pass therethrough.
  • the catalyst column 11 may be filled with objects other than the platinum group metal supported catalyst, for example, granular objects such as ordinary ion exchange resin that does not support a catalyst.
  • the platinum group metal supported catalyst and particulate matter may be mixed and packed as a mixed bed, or each of them may be It may be packed in multiple beds so as to form layers.
  • a mixture of a platinum group metal supported catalyst and a cation exchange resin may be filled in the catalyst column 11, or a mixture of a platinum group metal supported catalyst and an anion exchange resin may be filled.
  • the catalyst column 11 may be filled with a mixture of a platinum group metal supported catalyst, a cation exchange resin, and an anion exchange resin.
  • the layer composed of substances other than the platinum group metal supported catalyst is referred to as a non-catalyst layer.
  • the non-catalyst layer is made of an ion exchange resin, it may be made of a cation exchange resin, an anion exchange resin, or a mixture of a cation exchange resin and an anion exchange resin.
  • a layer of a platinum group metal supported catalyst is provided on the upstream side, and a non-catalyst layer is provided on the downstream side.
  • a non-catalyst layer may be further provided upstream of the platinum group metal supported catalyst layer.
  • a platinum group metal-supported catalyst (hereinafter also simply referred to as a "catalyst”) is one in which a platinum group metal is supported on a carrier, and when it comes into contact with water to be treated containing hydrogen peroxide, the above formula (1) is achieved. As shown in the figure, it has the function of decomposing hydrogen peroxide into water and oxygen. At the same time, this catalyst causes the hydrogen added to the water to be treated by the hydrogenation device 11, that is, the hydrogen dissolved in the water to be treated, to react with the oxygen dissolved in the water to be treated, according to the above formula (2). It has the function of producing water.
  • the dissolved oxygen removed by the catalyst at this time is composed of dissolved oxygen derived from oxygen originally dissolved in the water to be treated supplied to the catalyst tower 11, and dissolved oxygen derived from oxygen generated by decomposition of hydrogen peroxide. It's both.
  • the term "dissolved oxygen in the water to be treated” includes at least one of the above two types of dissolved oxygen.
  • the catalyst tower 11 can remove oxidizing substances from the water to be treated by bringing the water to be treated containing hydrogen into contact with the catalyst.
  • the water to be treated from which oxidizing substances have been removed by the catalyst tower 11 is supplied to a non-regenerative mixed bed ion exchange device 24 .
  • platinum group metal supported catalyst it is preferable to use an anion exchange resin or an anion exchanger as the carrier from the viewpoint of catalyst preparation and reactivity.
  • platinum group metal is a general term for ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), iridium (Ir), and platinum (Pt), but in the present invention, platinum group metals It is preferable to use palladium or platinum, and it is particularly preferable to use palladium in consideration of catalytic activity and the like. In the following, it is assumed that palladium is used as the platinum group metal.
  • the layer height of the catalyst is set to, for example, 10 cm or more in order to keep the hydrogen peroxide concentration in the obtained ultrapure water to 1 ⁇ g/L or less.
  • the length is preferably 30 cm or more, more preferably 70 cm or more.
  • the bed height of the catalyst here means This refers to the bed height including those objects other than those listed above, that is, the bed height of the packing packed in the catalyst column 11 including the platinum group metal supported catalyst.
  • the space velocity (SV) when the water to be treated is passed through the catalyst packed in the catalyst tower 11 is set to, for example, 30 hours. It can be set to -1 or more.
  • the space velocity is preferably 1000 h ⁇ 1 or less, for example.
  • the amount of hydrogen added to the water to be treated is equal to or greater than the theoretical value that causes water to be produced by reacting with dissolved oxygen in the water to be treated.
  • the amount of hydrogen added is excessive, the produced ultrapure water will contain a large amount of dissolved hydrogen, which is not preferable from the viewpoint of water quality.
  • the oxidizing substance removal device 10 is equipped with a dissolved hydrogen (DH) meter 14 that measures the dissolved hydrogen concentration in the outlet water of the catalyst tower 11.
  • a dissolved oxygen (DO) meter 15 is used to measure the dissolved oxygen concentration in the outlet water of the catalyst tower 11 or in the water near the use point 30. It is also preferable to have the following.
  • the dissolved hydrogen meter 14 and the dissolved oxygen meter 15 correspond to a first measuring means and a second measuring means, respectively.
  • the oxidizing substance removal device 10 includes a control unit 16 that controls the amount of hydrogen-containing water generated in the hydrogen source 12 based on the measured values from the dissolved hydrogen meter 14 and the dissolved oxygen meter 15. Specifically, the control unit 16 controls the amount of hydrogen-containing water generated in the hydrogen source 12 so that the dissolved hydrogen concentration in the outlet water of the catalyst tower 11 falls within a predetermined concentration range, thereby controlling the amount of hydrogen-containing water in the water to be treated. Control the amount of hydrogen added. This control is called first addition amount control.
  • the control unit 16 When the dissolved hydrogen concentration in the obtained ultrapure water is desired to be 0.1 ⁇ g/L or less, the control unit 16 performs control so that the dissolved hydrogen concentration in the outlet water of the catalyst tower 11 is also 0.1 ⁇ g/L or less. . Thereby, dissolved hydrogen in the water to be treated flowing out from the oxidizing substance removal device 10 can be reduced as much as possible, and the ultrapure water production device can produce ultrapure water with extremely low dissolved hydrogen concentration.
  • a second addition amount control may be performed to control the amount of hydrogen added based on the dissolved oxygen concentration in the outlet water of the catalyst tower 11, and when the dissolved oxygen concentration becomes below a predetermined value, The second addition amount control may be stopped and the first addition amount control based on the dissolved hydrogen concentration may be started.
  • the amount of hydrogen to be added excessively at the start of operation may be determined in advance, and the first addition amount control may be started after a predetermined time has elapsed from the start of operation. In this way, by adding excess hydrogen at startup, dissolved oxygen in the equipment can be quickly removed, and then control based on the dissolved hydrogen concentration, that is, the first addition amount control, can be used to obtain ultra-pure water.
  • the time it takes for water to reach a predetermined water quality can be shortened.
  • platinum group metals, particularly palladium have the property of occluding hydrogen, and in the initial stage of startup, hydrogen is more likely to be occluded than to be consumed by reaction with oxygen. Therefore, if the first addition amount control is performed from the beginning of water flowing into the catalyst tower 11, the amount of hydrogen used for the reaction with oxygen will decrease, so there is a risk that the ability to remove oxygen will decrease. In this respect as well, it is preferable to perform the second addition amount control in the oxidizing substance removal device 10 when starting up the ultrapure water production device.
  • the control unit 16 also controls the amount of hydrogen added at the time of startup of such an ultrapure water production apparatus.
  • the above describes a case where the present invention is applied to an ultrapure water production device configured as a subsystem, but the water treatment method and device based on the present invention are limited to those shown in the above embodiments. Not done.
  • the water treatment method based on the present invention can be widely applied to any field where it is necessary to remove oxidizing substances while controlling dissolved hydrogen concentration.
  • the water treatment method based on the present invention is applied when oxidizing substances are removed from city water, river water, or even recovered water collected from various processes as the water to be treated. be able to. In this case, it is not necessary to perform ultraviolet oxidation treatment. That is, among the configurations shown in FIG. 1, the oxidizing substance removal device 10 functions by itself as a water treatment device based on the present invention.
  • the oxidizing substance removal device 10 with the catalyst column 11 removed is called a hydrogenation control device
  • the hydrogenation control device by adding the hydrogenation control device to an existing water treatment plant that has a catalyst column, it is possible to eliminate dissolved Since oxidizing substances can be removed while controlling the hydrogen concentration, this hydrogen addition control device itself is also included in the category of water treatment device based on the present invention.
  • FIG. 2 which corresponds to the oxidizing substance removal apparatus according to the present invention, was assembled.
  • This device includes a dissolved hydrogen generator 41 that generates hydrogen-containing water as a hydrogen source, a mixing column 43, and a catalyst column 45 filled with a platinum group metal supported catalyst in which palladium is supported on an anion exchange resin.
  • a dissolved hydrogen generator 41 Akukanoh (registered trademark) manufactured by Organo Co., Ltd., which generates hydrogen-containing water by a direct electrolysis method, was used.
  • the dissolved oxygen concentration is greater than 0.1 ⁇ g/L and approximately 10 ⁇ g/L or less
  • the hydrogen peroxide concentration is greater than 1 ⁇ g/L and approximately 45 ⁇ g/L or less
  • dissolved oxygen and peroxide The water to be treated whose total dissolved oxygen load including hydrogen is 20 to 35 ⁇ g/L passes through a flow meter (FI) 42 and flows into the mixing column 43, and the outlet water from the mixing column 43 flows into the mixing column 43. It was made to flow into the catalyst column 45. In the catalyst tower 45, water was made to flow downward. Hydrogen-containing water from the dissolved hydrogen generator 41 is injected into the water to be treated at the inlet of the mixing column 43 via a pump (P) 44 . Further, a valve 49 for draining hydrogen-containing water is provided between the dissolved hydrogen generator 41 and the pump 44.
  • a dissolved hydrogen meter 46 and a dissolved oxygen meter 47 are installed at the outlet of the catalyst tower 45 via a valve 50, both using the diaphragm electrode method. It is being At the outlet of the valve 50, a valve 51 is also provided for draining the outlet water of the catalyst column 45.
  • the measured values from the dissolved hydrogen meter 46 and dissolved oxygen meter 47 are input to the control unit 48, and the control unit 48 controls the pump 44 based on these measured values to control the amount of hydrogen-containing water injected into the water to be treated. Control.
  • the goals for the outlet water of the catalyst tower 45 are that the dissolved hydrogen concentration and dissolved oxygen concentration are both 0.1 ⁇ g/L or less, and the hydrogen peroxide concentration is 1 ⁇ g/L or less. did.
  • the dissolved hydrogen (DH) concentration, dissolved oxygen (DO) concentration, and dissolved hydrogen peroxide (H 2 O 2 ) concentration in the outlet water of the catalyst tower 45 are referred to as "outlet DH concentration” and "outlet DO concentration”, respectively. and “outlet H 2 O 2 concentration”.
  • Example 1 In the apparatus shown in FIG. 2, the control unit 48 performs control so that the dissolved hydrogen concentration in the outlet water of the catalyst column 45 is 0.1 ⁇ g/L or less, and the dissolved hydrogen concentration and dissolved oxygen concentration in the outlet water of the catalyst column 45 are controlled.
  • the changes over time The results are shown in Figure 3. Further, when the hydrogen peroxide concentration in the outlet water of the catalyst tower 45 was examined, it was found to be 1.0 ⁇ g/L or less.
  • control unit 48 performs control so that the dissolved oxygen concentration in the outlet water of the catalyst column 45 is 0.1 ⁇ g/L or less, and the dissolved hydrogen concentration and dissolved oxygen concentration in the outlet water of the catalyst column 45 are controlled.
  • the results are shown in Figure 4. Further, when the hydrogen peroxide concentration in the outlet water of the catalyst tower 45 was examined, it was found to be 1.0 ⁇ g/L or less.
  • Example 1 Comparing Example 1, which carried out control based on dissolved hydrogen concentration, and Comparative Example 1, which carried out control based on dissolved oxygen concentration, in both cases, the hydrogen peroxide concentration could be reduced to 1.0 ⁇ g/L or less, The target value was achieved.
  • the target value of 0.1 ⁇ g/L or less was achieved for the dissolved hydrogen concentration and dissolved oxygen concentration, but in Comparative Example 1, the target value was only achieved for the dissolved oxygen concentration, and the dissolved hydrogen concentration was 4 ⁇ g/L. I settled on a large value of around L or higher.
  • Example 2 Using the apparatus shown in Figure 2, in the early stage of the start-up of the apparatus, excessive hydrogen-containing water is added by controlling the dissolved oxygen concentration to be 0.1 ⁇ g/L or less, that is, performing second addition amount control. Thereafter, the control was switched to control such that the dissolved hydrogen concentration was 0.1 ⁇ g/L or less, that is, the first addition amount control. At this time, changes over time in the dissolved hydrogen concentration and dissolved oxygen concentration in the outlet water of the catalyst tower 45 were investigated. The results are shown in Figure 5. When excessive hydrogen was added at the beginning, the equipment was able to be fully started up within about half a day from the start of water flow.
  • Example 3 In the apparatus shown in FIG. 2, the first addition amount control was carried out so that the dissolved hydrogen concentration was 0.1 ⁇ g/L or less from the beginning of the start-up of the apparatus. At this time, changes over time in the dissolved hydrogen concentration and dissolved oxygen concentration in the outlet water of the catalyst tower 45 were investigated. The results are shown in FIG. When the first addition amount control was performed from the beginning of water flow, it took a long time, several days or more, for the device to start up.
  • Example 4 In the apparatus shown in FIG. 2, the relationship between the bed height of the platinum group metal supported catalyst in the catalyst tower 45 and the hydrogen peroxide concentration in the outlet water of the catalyst tower 45 was investigated.
  • the bed heights of the catalyst in the catalyst tower 45 were set to 50 mm and 100 mm.
  • the water to be treated has a hydrogen peroxide concentration of 15 to 20 ⁇ g/L, and the water to be treated is controlled so that the dissolved hydrogen concentration in the outlet water of the catalyst tower 45 is 0.1 ⁇ g/L or less. Hydrogen was added to.
  • the space velocity of the water to be treated in the catalyst tower 45 was 500 h ⁇ 1 .
  • the results are shown in FIG. It has been found that if the height of the catalyst layer in the catalyst tower 45 is at least 100 mm or more, the target value of the hydrogen peroxide concentration of 1.0 ⁇ g/L or less is satisfied.
  • Example 5 In the apparatus shown in FIG. 2, water is passed through the catalyst tower 45 while changing the bed height of the platinum group metal supported catalyst in the catalyst tower 45 to 70, 90, 120, 150, 180 and 240 cm, and the outlet water of the catalyst tower 45 is The changes in dissolved hydrogen and dissolved oxygen concentrations were investigated. Hydrogen was added to the water to be treated under control such that the dissolved hydrogen concentration in the outlet water of the catalyst tower 45 was 0.1 ⁇ g/L or less. The space velocity of the water to be treated in the catalyst tower 45 was 80 h ⁇ 1 . The results are shown in FIG. At all bed heights, we were able to achieve the target values of 0.1 ⁇ g/L or less for each of the dissolved hydrogen concentration and dissolved oxygen concentration, except at the time of start-up or when changing the bed height.
  • Example 6 In the apparatus shown in FIG. 2, water is passed through the catalyst tower 45 while changing the bed height of the platinum group metal supported catalyst in the catalyst tower 45 to 50, 30, and 20 cm, and the dissolved hydrogen concentration and dissolved hydrogen concentration in the outlet water of the catalyst tower 45 are changed. Changes in oxygen concentration were investigated.
  • the water to be treated has a dissolved oxygen concentration of about 10 ⁇ g/L and a hydrogen peroxide concentration of 30 to 60 ⁇ g/L, and the dissolved hydrogen concentration in the outlet water of the catalyst tower 45 is set to 0.1 ⁇ g/L or less. Hydrogen was added to the water to be treated under such control.
  • the space velocity of the water to be treated in the catalyst tower 45 was 100 h ⁇ 1 . The results are shown in FIG.
  • the dissolved hydrogen concentration in the outlet water of the catalyst tower 45 will be lower.
  • the target values 0.1 ⁇ g/L or less for each of the following: and dissolved oxygen concentration.
  • the layer height was 20 cm, the target value for dissolved hydrogen concentration could be achieved, but the target value for dissolved oxygen concentration could not be achieved.
  • the height of the catalyst layer in the catalyst tower 45 is preferably 10 cm or more from the viewpoint of removing at least dissolved hydrogen and hydrogen peroxide. From the viewpoint of removing dissolved oxygen in addition to the above, it was found that the length is more preferably 30 cm or more, and even more preferably 70 cm or more.
  • Example 7 In the apparatus shown in FIG. 2, the water to be treated is passed through the catalyst tower 45 so that the space velocity of the water is 30 h -1 while controlling the dissolved hydrogen concentration to be 0.1 ⁇ g/L or less. , changes in dissolved hydrogen concentration and dissolved oxygen concentration in the outlet water of the catalyst tower 45 were investigated. The results are shown in FIG. Even when the space velocity was 30 h -1 , both the dissolved hydrogen concentration and the dissolved oxygen concentration could be reduced to 0.1 ⁇ g/L or less.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

例えば超純水の製造に用いられる水処理装置は、例えば溶存酸素や過酸化水素などの酸化性物質を被処理水から除去する酸化性物質除去装置(10)を備える。酸化性物質除去装置(10)は、被処理水に水素を添加する水素添加手段(12)と、白金族金属担持触媒が層高10cm以上で充填され、水素が添加された被処理水が通水する触媒塔(11)と、触媒塔(11)の出口水における溶存水素濃度を測定する溶存水素計(14)と、溶存水素計(14)での測定値が第1の範囲となるように水素添加手段(12)による水素の添加量を制御する制御部(16)とを備える。

Description

水処理装置及び水処理方法
 本発明は、超純水の製造などのための水処理装置及び水処理方法に関する。
 不純物が高度に除去された超純水は、例えば半導体製造プロセスにおけるシリコンウエハの洗浄用水などとして、多くの分野で用いられている。超純水をシリコンウエハの洗浄用水として使用する場合、超純水中に溶存する酸素(O)や過酸化水素(H)などの酸化性物質は、シリコンウエハの表面に自然酸化膜を形成する要因となってしまう。そこで、超純水の製造に際し、パラジウム(Pd)や白金(Pt)に代表される白金族金属を担体に担持させた白金族金属担持触媒を利用して酸化性物質を除去する方法が提案されている。白金族金属担持触媒を用いることにより、下記式(1)で表される反応によって過酸化水素を分解除去できるだけでなく、下記式(2)に示すように水素(H)の共存下で酸素が反応することで、被処理水に含まれる酸素も除去することができる。
  2H  → 2HO+O  (1)
  2H+O → 2HO     (2)
 白金族金属担持触媒が過酸化水素を分解する際に酸素が発生するが、この酸素も、白金族金属担持触媒の存在下で水素と反応することで除去することができる。白金族金属担持触媒を用いて被処理水中の酸素や過酸化水素を除去するときは、被処理水に水素が含まれている必要があり、必要に応じて被処理水に水素が添加される。
 特許文献1は、超純水製造装置においてTOC(全有機炭素;Total Organic Carbon)成分を分解除去する紫外線酸化装置に供給される被処理水における溶存酸素(DO)濃度を低下させるために、脱塩装置と紫外線酸化装置との間に白金族金属担持触媒を有する脱酸素装置を設け、脱塩装置から脱酸素装置に供給される被処理水に当量以上の水素を添加することを開示している。さらに特許文献1は、脱酸素装置からの水素を含む出口水が紫外線酸化装置に供給されたときに溶存水素(DH)によって紫外線酸化装置でのTOC除去効率が低下することを抑制するために、脱酸素装置の出口水の溶存水素濃度を測定して溶存水素濃度が15μg/L以下となるように、脱酸素装置の入口側での水素の添加量を制御することも開示している。
 超純水の製造において、TOC成分を分解する紫外線酸化装置の出口水には、酸素や過酸化水素などの酸化性物質が含まれる。そして酸化性物質、特に過酸化水素は、紫外線酸化装置の後段に設けられているイオン交換装置内のイオン交換樹脂の劣化を促進する。そこで特許文献2は、紫外線酸化装置の出口水に対して水素を添加してから白金族金属担持触媒で処理し、処理後の水に含まれる溶存酸素濃度が1~10μg/Lであるように水素の添加量を制御することを開示している。白金族金属担持触媒で処理された水は、イオン交換装置での処理後、さらに溶存酸素を除去するために膜脱気装置に供給される。
 特許文献3は、溶存窒素(DN)濃度を所定値に管理しながら溶存酸素濃度を低減させた超純水を得るために、紫外線酸化装置の出口水に対して溶存窒素濃度を測定しつつ窒素を添加し、その後、水素を添加して白金族金属担持触媒で処理することを開示している。白金族金属担持触媒で処理された水に対しては、その後、イオン交換処理が行われる。
 特許文献4は、超純水の製造において紫外線酸化装置の出口水から酸化性物質を除去するためにこの出口水に水素を添加してから白金族金属担持触媒で処理するときに、白金族金属担持触媒を通過途中あるいは通過後の水の溶存水素濃度を測定してその測定値に応じて水素の添加量を制御することを開示している。
特開2000-167593号公報 特開2016-215150号公報 特開2012-254428号公報 特開2015-166064号公報
 被処理水中の酸化性物質の除去のために被処理水に水素を添加してから白金族金属担持触媒によって処理する場合、水素の添加量は、被処理水にもともと含まれている酸素と過酸化水素の分解によって生じる酸素との両方の酸素に反応して水を生成させる理論値(すなわち当量)以上であることが好ましい。その一方で、水素の添加量が過剰になって白金族金属担持触媒で処理された水にもある量以上の水素が含まれることは、得られる超純水の水質の観点からは好ましくない。良好な水質の超純水を得るためには、白金族金属担持触媒で処理された水において、溶存酸素濃度だけでなく溶存水素濃度も低い値に管理することが求められる。
 特許文献1に記載された超純水製造装置では、白金族金属担持触媒で処理された水での溶存水素濃度に応じて水素の添加量を制御しているが、溶存水素濃度の管理値は上限を15μg/Lとするものであって超純水の用途によっては溶存水素濃度が高すぎる、という課題がある。また、白金族金属担持触媒の後段に紫外線酸化装置を配置しており、紫外線酸化装置で発生した過酸化水素などの酸化性物質を除去できない、という課題もある。
 特許文献2に記載された技術では、溶存酸素濃度に基づいて水素の添加量を制御しているので、溶存水素濃度を極限まで低下させることが難しい。また、白金族金属担持触媒の後段に膜脱気装置を設けており、装置コストやメンテナンスコストが上昇する。特許文献3に記載された技術においても同様に、溶存水素濃度を極限まで低下させることが難しく、かつ、膜脱気装置を設けることによるコストの上昇の問題がある。
 特許文献4の開示では、白金族金属担持触媒で処理された水において具体的にどの程度まで溶存酸素濃度や溶存水素濃度を低減できるかが明らかでない。溶存酸素濃度及び溶存水素濃度が例えば0.1μg/L以下、過酸化水素濃度が例えば1.0μg/L以下といった高品質の超純水を得るために特許文献4に記載された技術を適用するためには、なお検討を要する。
 超純水製造における酸化性物質の除去についての課題を説明したが、被処理水から超純水以外の水、例えば各種の機能水などを製造するときにも、溶存水素濃度の上昇を伴なわずに酸化性物質を除去したいという要望や、被処理水への水素の添加を行うが溶存水素濃度の制御を行ないたいという要望がある。以下では、超純水も含めて各種の特性や機能を有する水を被処理水から得るために用いられるプロセスを、総称して水処理と呼ぶ。
 本発明の目的は、高品質の超純水を低コストで製造するためなどに用いられて酸化性物質の除去と溶存水素濃度の管理とを行うことができる水処理装置及び水処理方法を提供することにある。
 本発明の水処理装置は、被処理水から酸化性物質を除去する酸化性物質除去装置を有し、酸化性物質除去装置は、被処理水に水素を添加する水素添加手段と、白金族金属担持触媒を備え、水素が添加された被処理水が通水する触媒塔と、水素添加手段による水素の添加量を制御する制御部と、触媒塔の出口水における溶存水素濃度を測定する第1の測定手段と、を有し、触媒塔において、白金族金属担持触媒を含めて触媒塔に充填されている充填物の層高が10cm以上であり、制御部は、第1の測定手段による測定値が第1の範囲となるように水素添加手段による水素の添加量を制御する第1の添加量制御を行なう。
 本発明の超純水の製造方法は、被処理水から酸化性物質を除去する酸化性物質除去工程を有し、酸化性物質除去工程は、被処理水に水素を添加する工程と、水素が添加された被処理水を白金族金属担持触媒を備えた触媒塔に通水する工程とを有し、水素を添加する工程において、触媒塔の出口水における溶存水素濃度が第1の範囲となるように被処理水に添加される水素の量を制御する第1の添加量制御を行ない、触媒塔において、白金族金属担持触媒を含めて触媒塔に充填されている充填物の層高が10cm以上である。
 本発明によれば、酸化性物質の除去と溶存水素濃度の管理とを低コストで行うことができ、超純水の製造に本発明を適用した場合であれば、例えば溶存酸素濃度と溶存水素濃度がいずれも0.1μg/L以下であって過酸化水素濃度が1μg/L以下であるような高品質の超純水を低コストで製造できる。
本発明の実施の一形態の超純水製造装置を示す図である。 実施例及び比較例で用いた装置を示す図である。 実施例1での結果を示すグラフである。 比較例1での結果を示すグラフである。 実施例2での結果を示すグラフである。 実施例3での結果を示すグラフである。 実施例4での結果を示すグラフである。 実施例5での結果を示すグラフである。 実施例6での結果を示すグラフである。 実施例7での結果を示すグラフである。
 次に、本発明の実施の形態について、図面を参照して説明する。ここでは本発明に基づく水処理方法を超純水の製造に適用した例を説明する。図1は、本発明の実施の一形態の超純水製造装置を示している。図1に示す超純水製造装置は、特に酸化性物質除去装置10を備えており、純水製造装置(一次純水システム)から一次純水が供給されるサブシステム(二次純水システム)として構成されている。この超純水製造装置は、例えば溶存酸素(DO)濃度と溶存水素(DH)濃度がいずれも0.1μg/L以下であり過酸化水素濃度が1.0μg/L以下である高品質の超純水をユースポイント(POU)30に供給する。
 超純水製造装置は、被処理水として一次純水を貯えるタンク20と、タンク20内の被処理水を給送するポンプ21を備えており、ポンプ21の出口すなわち二次側には、熱交換器(HE)22、紫外線酸化装置(UV)23、酸化性物質除去装置10、カートリッジポリッシャーとも呼ばれる非再生型混床式イオン交換装置(CP)24及び限外ろ過膜装置(UF)25がこの順で接続している。この超純水製造装置では、タンク20に貯留された被処理水は、ポンプ21により送出され、熱交換器22に供給される。熱交換器22を通過して温度調節された被処理水は、紫外線酸化装置23に供給される。紫外線酸化装置23では、被処理水に紫外線が照射され、被処理水中の全有機炭素(TOC)成分が分解される。紫外線酸化装置23の出口水である被処理水は、溶存酸素と過酸化水素を含んでいる。溶存酸素や過酸化水素などの酸化性物質を含む被処理水は、次に、酸化性物質除去装置10に供給され、被処理水に含まれる酸化性物質が除去される。酸化性物質が除去された被処理水は、非再生型混床式イオン交換装置24においてイオン交換処理により金属成分などが除去され、さらに、限外ろ過膜装置25において微細な不純物が除去される。限外ろ過膜装置25の出口水である超純水は、その一部がユースポイント30に供給され、ユースポイント30に供給されなかった残りの超純水は、循環配管26を介してタンク20に還流する。この超純水製造装置では、ユースポイント30に供給されなかった超純水が循環しながらさらに精製されるので、運転開始からの時間が経過するにつれて得られる超純水の純度が向上し、やがて、超純水は一定の純度に到達する。
 タンク20、ポンプ21、熱交換器22、紫外線酸化装置23、非再生型混床式イオン交換装置24及び限外ろ過膜装置25には、サブシステムすなわち二次純水システムとして設けられる超純水製造装置において一般的に用いられているものを使用することができる。そのため、これらの詳細な構成の説明は省略し、以下では、酸化性物質除去装置10の詳細な構成について説明する。なお本実施形態の超純水製造装置では、溶存する気体を除去するための膜脱気装置は設けられていないが、必要に応じて、あるいはバックアップのために、膜脱気装置を設けてもよい。
 酸化性物質除去装置10は、紫外線酸化装置23の出口水が被処理水として供給されるものであり、その被処理水には酸化性物質が含まれている。ここで酸化性物質には、溶存酸素及び過酸化水素の少なくとも一方が含まれる。酸化性物質除去装置10は、被処理水が供給される触媒塔(Pd)11と、触媒塔11に供給される被処理水に対して水素を添加するために水素を含有する水を生成する水素(H)源12と、を備えている。水素源12は、水素を含有する水を生成できるものであれば形式を問わないが、例えば、ガス溶解膜を用いたガス溶解方式を利用したものや、電解セルを用いた直接電解方式を利用したものを水素源12として用いることができる。水素ガスを扱うことが好ましくない環境においては、直接電解方式の水素源12を用いることが好ましい。水素源12からの水素含有水は、触媒塔11の入口側で被処理水に注入される。水素源12と水素含有水の被処理水への注入点とによって、被処理水に水素を添加する水素添加手段が構成される。水素含有水と被処理水との混合を確実にするために、被処理水への水素含有水の注入点と触媒塔11との間に、混合カラムや混合タンクといった混合部13を設けてもよい。
 触媒塔11は、被処理水が通過できるように白金族金属担持触媒が充填されている。触媒塔11に白金族金属担持触媒以外の物体、例えば触媒を担持しない通常のイオン交換樹脂などの粒状物体が充填されていてもよい。白金族金属担持触媒とその他の粒状物体とを充填物として触媒塔11に充填するときは、白金族金属担持触媒と粒状物体とを混合して混床として充填してよいし、それらの各々が層をなすように複床で充填してもよい。混床で充填する場合には、例えば、白金族金属担持触媒とカチオン交換樹脂とを混合したものを触媒塔11に充填してもよく、白金族金属担持触媒とアニオン交換樹脂とを混合したものを触媒塔11に充填してもよく、白金族金属担持触媒とカチオン交換樹脂とアニオン交換樹脂とを混合したものを触媒塔11に充填してもよい。
 触媒塔11において複床で充填を行う場合には、白金族金属担持触媒以外の物体で構成される層を非触媒層と呼ぶこととすると、触媒塔11における白金族金属担持触媒の層と非触媒層との配置の順番に限定はない。非触媒層をイオン交換樹脂を構成する場合、カチオン交換樹脂で構成しても、アニオン交換樹脂で構成しても、カチオン交換樹脂とアニオン交換樹脂とを混合したもので構成してもよい。一例として、触媒塔11において上流側に白金族金属担持触媒の層が設けられ、下流側に非触媒層が設けられる。白金族金属担持触媒の層の上流側にさらに非触媒層を設けてもよい。
 白金族金属担持触媒(以下、単に「触媒」ともいう)は、白金族金属が担体に担持されたものであり、過酸化水素を含有する被処理水と接触することで、上記式(1)に示すように過酸化水素を水と酸素とに分解する機能を有している。それとともにこの触媒は、水素添加装置11により被処理水に添加された水素、すなわち被処理水に溶解した水素と、被処理水に溶解した酸素とを反応させて、上記式(2)にしたがって水を生成する機能を有している。このとき触媒が除去する溶存酸素は、触媒塔11に供給される被処理水にもともと溶解していた酸素に由来する溶存酸素と、過酸化水素の分解により生じた酸素に由来する溶存酸素との両方である。以下、「被処理水中の溶存酸素」という場合、上記2種類の溶存酸素の少なくとも一方を含むものとする。触媒塔11は、水素を含有する被処理水がと触媒とを接触させることで、被処理水中の酸化性物質を除去することができる。触媒塔11により酸化性物質が除去された被処理水は、非再生型混床式イオン交換装置24に供給される。
 白金族金属担持触媒において担体として、触媒の調製および反応性の観点から、アニオン交換樹脂やアニオン交換体を用いることが好ましい。用語「白金族金属」は、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、オスミウム(Os)、イリジウム(Ir)及び白金(Pt)の総称であるが、本発明においては白金族金属としてパラジウムまたは白金を用いることが好ましく、触媒活性などを考慮してパラジウムを用いることが特に好ましい。以下では白金族金属としてパラジウムが用いられているものとする。
 触媒塔11に充填された触媒の層高を大きくすると、反応が行われる空間が大きくなって処理能力も大きくなり、安定して高品質の超純水を製造できるようになる。白金族金属をアニオン交換樹脂に担持させて白金族金属担持触媒を構成した場合、得られる超純水における過酸化水素濃度を1μg/L以下とするために、触媒の層高を例えば10cm以上とすることが好ましく、30cm以上とすることがより好ましく、70cm以上とすることがさらに好ましい。触媒塔11において下向流で被処理水が触媒を通過するとして、触媒の層高とは、高さ方向における被処理水が有効に通過する部分の触媒の厚さのことである。白金族金属担持触媒以外の物体、例えば通常のイオン交換樹脂が、白金族金属担持触媒とともに混床あるいは複床で触媒塔11に充填されるときは、ここでいう触媒の層高とは、触媒以外のそれらの物体を含んだ層高、すなわち、白金族金属担持触媒を含めて触媒塔11に充填されている充填物の層高のことである。触媒と溶存酸素や溶存水素との接触効率を高めて効率よく反応を進行させるために、触媒塔11に充填された触媒に被処理水を通水させるときの空間速度(SV)は、例えば30h-1以上とすることができる。過度に空間速度を大きくすると完全に反応する前に被処理水が触媒塔11から排出される恐れが生じる。得られる超純水における過酸化水素濃度を1μg/L以下とするためには、空間速度を例えば1000h-1以下とすることが好ましい。
 触媒塔11では、上述のように、被処理水に添加された水素すなわち溶存水素と被処理水中の溶存酸素とが反応して水が生成することで、被処理水中の酸化性物質を除去することができる。超純水製造装置では、製造される超純水に溶解している酸素すなわち溶存酸素の量をできるだけ低減することが強く求められている。したがって被処理水に添加される水素の量は、被処理水中の溶存酸素と反応して水を生成させる理論値以上であることが好ましい。しかしながら、水素の添加量が過剰であると、製造される超純水に多量の溶存水素が含まれてしまい、水質の観点からは好ましくない。そこで本実施形態において酸化性物質除去装置10は、触媒塔11の出口水における溶存水素濃度を測定する溶存水素(DH)計14を備えている。後述するように超純水製造装置の立ち上げ時間を短縮する制御を行なうためには、触媒塔11の出口水あるいはユースポイント30付近の水における溶存酸素濃度を測定する溶存酸素(DO)計15も備えていることが好ましい。溶存水素計14及び溶存酸素計15は、それぞれ、第1の測定手段及び第2の測定手段に該当する。さらに酸化性物質除去装置10は、溶存水素計14及び溶存酸素計15での測定値に基づいて水素源12での水素含有水の発生量を制御する制御部16を備えている。具体的には制御部16は、触媒塔11の出口水の溶存水素濃度が所定の濃度範囲に収まるように、水素源12での水素含有水の発生量を制御し、それにより被処理水に添加される水素の量を制御する。この制御を第1の添加量制御と呼ぶ。得られる超純水における溶存水素濃度を0.1μg/L以下としたいときは、制御部16は、触媒塔11の出口水における溶存水素濃度も0.1μg/L以下となるように制御を行なう。これにより、酸化性物質除去装置10から流出する被処理水の溶存水素を極力減らすことができ、超純水製造装置により溶存水素濃度が極めて低い超純水を製造することができるようになる。
 ところで超純水製造装置の運転開始時には、その時点で装置内のに存在する水に大量の溶存酸素が含まれていることが考えられる。そこで、超純水製造装置の立ち上げの初期には、第1の添加量制御を行なわずに、すなわち第1の添加量制御を開始する前に、被処理水に対して過剰に水素を添加し、その後、溶存水素濃度に基づく制御すなわち第1の添加量制御に移行することが好ましい。過剰に水素を添加するときは、触媒塔11の出口水における溶存酸素濃度に基づいて水素添加量を制御する第2の添加量制御を行なってもよく、溶存酸素濃度が所定値以下となったら第2の添加量制御を停止して溶存水素濃度に基づく第1の添加量制御を開始するようにしてもよい。あるいは、運転開始時に過剰に添加する水素の量を予め定めておいて、運転開始からの所定時間が経過してから第1の添加量制御を開始するようにしてもよい。このように立ち上げ時には過剰に水素を添加することにより、装置内の溶存酸素を速やかに除去でき、その後、溶存水素濃度による制御すなわち第1の添加量制御に移行することで、得られる超純水が所定の水質に達するまでの時間を短縮することができる。また、白金族金属、特にパラジウムは水素を吸蔵する性質を有し、立ち上げの初期には酸素との反応に水素が消費されることよりも水素が吸蔵されることの方が卓越する。そのため触媒塔11への通水の初期から第1の添加量制御を行なった場合、酸素との反応に使用される水素量が減少するので、酸素を除去する能力が低下するおそれがある。この点でも超純水製造装置の立ち上げ時には酸化性物質除去装置10において第2の添加量制御を行なうことが好ましいといえる。このような超純水製造装置の立ち上げ時における水素添加量の制御も制御部16が実行する。
 以上では、サブシステムとして構成された超純水製造装置に対して本発明を適用した場合を説明したが、本発明に基づく水処理方法及び装置は、上記の実施形態に示されたものに限定されない。溶存水素濃度を管理しつつ酸化性物質の除去を行うことが必要な分野であれば、本発明に基づく水処理方法を幅広く適用することができる。例えば、市水や河川水、さらには、各種の工程から回収された回収水を被処理水として、それらの被処理水から酸化性物質を除去するときに本発明に基づく水処理方法を適用することができる。この場合、紫外線酸化処理は必ずしも実行する必要はない。すなわち図1に示された構成のうち酸化性物質除去装置10は、それ単独で、本発明に基づく水処理装置として機能する。さらに、酸化性物質除去装置10から触媒塔11を取り除いたものを水素添加制御装置と呼ぶこととすると、触媒塔を有する既設の水処理プラントに対して水素添加制御装置を追加することによって、溶存水素濃度の管理を行いつつ酸化性物質の除去を行うことができるので、この水素添加制御装置自体も本発明に基づく水処理装置の範疇に含まれる。
 次に、実施例及び比較例に基づき、本発明をさらに説明する。実施例及び比較例のために、本発明に基づく酸化性物質除去装置に相当する図2に示す装置を組み立てた。この装置は、水素源として水素含有水を発生する溶存水素発生装置41と、混合用カラム43と、パラジウムをアニオン交換樹脂に担持させた白金族金属担持触媒が充填されている触媒塔45とを備えている。溶存水素発生装置41として、直接電解方式により水素含有水を発生するオルガノ株式会社製の酸還王(登録商標)を用いた。特記する場合を除き、溶存酸素濃度が0.1μg/Lより大きくて10μg/L程度以下であり、過酸化水素濃度が1μg/Lより大きくて45μg/L程度以下であり、溶存酸素と過酸化水素を合わせた全体としての溶存酸素負荷量が20~35μg/Lである被処理水が、流量計(FI)42を経て、混合用カラム43に流入し、混合用カラム43からの出口水が触媒塔45に流入するようにした。触媒塔45では下向流で水が流れるようにした。溶存水素発生装置41からの水素含有水は、ポンプ(P)44を経て、混合用カラム43の入口の位置で被処理水に注入される。また、溶存水素発生装置41とポンプ44の間には、水素含有水の排水のための弁49が設けられている。
 触媒塔45の出口水の溶存水素濃度及び溶存酸素濃度を測定するために、触媒塔45の出口には、弁50を介していずれも隔膜電極法による溶存水素計46及び溶存酸素計47が取り付けられている。弁50の出口には、触媒塔45の出口水の排水のための弁51も設けられている。溶存水素計46及び溶存酸素計47での測定値は制御部48に入力し、制御部48は、これらの測定値に基づいてポンプ44を制御し、被処理水に対する水素含有水の注入量を制御する。各実施例及び比較例において、触媒塔45の出口水に関し、溶存水素濃度と溶存酸素濃度がいずれも0.1μg/L以下であり、過酸化水素濃度が1μg/L以下であることを目標とした。添付の図では、触媒塔45の出口水における溶存水素(DH)濃度、溶存酸素(DO)濃度及び溶存過酸化水素(H)濃度をそれぞれ「出口DH濃度」、「出口DO濃度」及び「出口H濃度」と記載している。
 [実施例1]
 図2に示す装置において、触媒塔45の出口水の溶存水素濃度が0.1μg/L以下となるように制御部48によって制御を行ない、触媒塔45の出口水における溶存水素濃度及び溶存酸素濃度の時間変化を調べた。結果を図3に示す。また、触媒塔45の出口水の過酸化水素濃度を調べたところ、1.0μg/L以下であった。
 [比較例1]
 図2に示す装置において、触媒塔45の出口水の溶存酸素濃度が0.1μg/L以下であるように制御部48によって制御を行ない、触媒塔45の出口水における溶存水素濃度及び溶存酸素濃度の時間変化を調べた。結果を図4に示す。また、触媒塔45の出口水の過酸化水素濃度を調べたところ、1.0μg/L以下であった。
 溶存水素濃度に基づく制御を行なった実施例1と溶存酸素濃度に基づく制御を行なった比較例1を比較すると、いずれの場合も過酸化水素濃度を1.0μg/L以下とすることができ、目標値を達成できた。実施例1では、溶存水素濃度と溶存酸素濃度についても0.1μg/L以下という目標値を達成できたが、比較例1では溶存酸素濃度しか目標値を達成できず、溶存水素濃度は4μg/L程度以上という大きな値に落ち着いた。
 [実施例2]
 図2に示す装置を用い、装置の立ち上げの初期に、溶存酸素濃度が0.1μg/L以下となるようにする制御すなわち第2の添加量制御を行なって過剰に水素含有水を添加し、その後、溶存水素濃度が0.1μg/L以下となるようにする制御すなわち第1の添加量制御に切り替えた。このときの触媒塔45の出口水における溶存水素濃度及び溶存酸素濃度の時間変化を調べた。結果を図5に示す。初期に水素を過剰に添加したときは、通水開始から半日程度で装置を完全に立ち上げることができた。
 [実施例3]
 図2に示す装置において装置の立ち上げの初期から、溶存水素濃度が0.1μg/L以下となるように第1の添加量制御を行なった。このときの触媒塔45の出口水における溶存水素濃度及び溶存酸素濃度の時間変化を調べた。結果を図6に示す。通水初期から第1の添加量制御を行なった場合には、装置の立ち上がりに数日以上という長期間を要した。
 [実施例4]
 図2に示す装置において、触媒塔45での白金族金属担持触媒の層高と触媒塔45の出口水における過酸化水素濃度との関係を調べた。触媒塔45における触媒の層高は50mmと100mmとした。被処理水としては過酸化水素濃度が15~20μg/Lのものを使用し、触媒塔45の出口水における溶存水素濃度を0.1μg/L以下とするような制御を行なって、被処理水に対する水素の添加を行った。触媒塔45における被処理水の通水の空間速度は500h-1であった。結果を図7に示す。触媒塔45における触媒の層高が少なくとも100mm以上であれば、1.0μg/L以下という過酸化水素濃度の目標値が満たされることが分かった。
 [実施例5]
 図2に示す装置において、触媒塔45での白金族金属担持触媒の層高を70、90、120、150、180及び240cmと変えながら触媒塔45に通水して、触媒塔45の出口水における溶存水素濃度と溶存酸素濃度の変化を調べた。触媒塔45の出口水における溶存水素濃度を0.1μg/L以下とするような制御を行なって、被処理水に対する水素の添加を行った。触媒塔45における被処理水の通水の空間速度は80h-1であった。結果を図8に示す。いずれの層高においても、立ち上げ時や層高の切り替え時などを除き、溶存水素濃度及び溶存酸素濃度の各々について0.1μg/L以下という目標値を達成することができた。
 [実施例6]
 図2に示す装置において、触媒塔45での白金族金属担持触媒の層高を50、30及び20cmと変えながら触媒塔45に通水して、触媒塔45の出口水における溶存水素濃度と溶存酸素濃度の変化を調べた。被処理水としては溶存酸素濃度が10μg/L程度であって過酸化水素濃度が30~60μg/Lのものを使用し、触媒塔45の出口水における溶存水素濃度を0.1μg/L以下とするような制御を行なって、被処理水に対する水素の添加を行った。触媒塔45における被処理水の通水の空間速度は100h-1であった。結果を図9に示す。装置の立ち上げ時や層高の切り替え時などを除いて出口濃度が安定したときで比較すると、白金族金属担持触媒の層高が30cm以上であれば、触媒塔45の出口水における溶存水素濃度及び溶存酸素濃度の各々について0.1μg/L以下という目標値を達成することができた。層高が20cmであるときは、溶存水素濃度については目標値を達成できたが溶存酸素濃度については目標値を達成することができなかった。またいずれの層高においても、触媒塔45の出口水の過酸化水素濃度が1μg/L以下であるという目標は達成された。実施例4,5,6の結果から、触媒塔45での触媒の層高は、少なくとも溶存水素及び過酸化水素を除去するという観点からは10cm以上とすることが好ましく、溶存水素及び過酸化水素に加えて溶存酸素を除去するという観点から30cm以上とすることがより好ましく、70cm以上とすることがさらに好ましいことが分かった。
 [実施例7]
 図2に示す装置において、溶存水素濃度を0.1μg/L以下とするような制御を行ないながら、通水の空間速度が30h-1であるように被処理水を触媒塔45に通水し、触媒塔45の出口水での溶存水素濃度及び溶存酸素濃度の変化を調べた。結果を図10に示す。空間速度が30h-1であるときも溶存水素濃度及び溶存酸素濃度をいずれも0.1μg/L以下とすることができた。
 10  酸化性物質除去装置
 11,45  触媒塔(Pd)
 12  水素(H)源
 13  混合部(MIX)
 14,46  溶存水素(DH)計
 15,47  溶存酸素(DO)計
 16,48  制御部
 20  タンク
 21,44  ポンプ
 22  熱交換器(HE)
 23  紫外線酸化装置(UV)
 24  非再生型混床式イオン交換装置(CP)
 25  限外ろ過膜装置(UF)
 26  循環配管
 30  ユースポイント(POU)
 41  溶存水素発生装置
 42  流量計(FI)
 43  混合用カラム
 49~51  弁
 

Claims (10)

  1.  被処理水から酸化性物質を除去する酸化性物質除去装置を有し、
     前記酸化性物質除去装置は、
     前記被処理水に水素を添加する水素添加手段と、
     白金族金属担持触媒を備え、水素が添加された前記被処理水が通水する触媒塔と、
     前記水素添加手段による水素の添加量を制御する制御部と、
     前記触媒塔の出口水における溶存水素濃度を測定する第1の測定手段と、
     を有し、
     前記触媒塔において、前記白金族金属担持触媒を含めて前記触媒塔に充填されている充填物の層高が10cm以上であり、
     前記制御部は、前記第1の測定手段による測定値が第1の所定の範囲となるように前記水素添加手段による水素の添加量を制御する第1の添加量制御を行なう、水処理装置。
  2.  紫外線酸化装置をさらに備え、
     前記被処理水は前記紫外線酸化装置の出口水である、請求項1に記載の水処理装置。
  3.  前記白金族金属担持触媒は、アニオン交換樹脂に少なくとも白金族金属を担持させたものであって、前記白金族金属担持触媒が前記触媒塔に充填されている、請求項1または2に記載の水処理装置。
  4.  白金族金属担持触媒を備える触媒塔に通水される被処理水に水素を添加する水処理装置であって、
     前記被処理水に水素を添加する水素添加手段と、
     前記水素添加手段による水素の添加量を制御する制御部と、
     前記触媒塔の出口水における溶存水素濃度を測定する第1の測定手段と、
     を有し、
     前記触媒塔において、前記白金族金属担持触媒を含めて前記触媒塔に充填されている充填物の層高が10cm以上であり、
     前記制御部は、前記第1の測定手段による測定値が第1の範囲となるように前記水素添加手段による水素の添加量を制御する第1の添加量制御を行なう、水処理装置。
  5.  前記制御部は、前記第1の添加量制御を行なわずに過剰に水素を添加するように前記水素添加手段を制御し、所定のタイミングで、前記第1の添加量制御を開始する、請求項1、2及び4のいずれか1項に記載の水処理装置。
  6.  前記触媒塔の出口水またはユースポイントにおける水の溶存酸素濃度を測定する第2の測定手段をさらに備え、
     前記制御部は、前記第2の測定手段による測定値が第2の範囲となるように前記水素添加手段による水素の添加量を制御する第2の添加量制御を行ない、前記第2の測定手段による測定値が前記第2の範囲となった後、前記第2の添加量制御を停止して前記第1の添加量制御を開始する、請求項1、2及び4のいずれか1項に記載の水処理装置。
  7.  被処理水から酸化性物質を除去する酸化性物質除去工程を有し、
     前記酸化性物質除去工程は、前記被処理水に水素を添加する工程と、水素が添加された前記被処理水を白金族金属担持触媒を備えた触媒塔に通水する工程と、を有し、
     前記水素を添加する工程において、前記触媒塔の出口水における溶存水素濃度が第1の範囲となるように前記被処理水に添加される水素の量を制御する第1の添加量制御が行なわれ、
     前記触媒塔において、前記白金族金属担持触媒を含めて前記触媒塔に充填されている充填物の層高が10cm以上である、水処理方法。
  8.  前記第1の添加量制御を行う前に前記被処理水に過剰に水素を添加して前記触媒塔に通水し、所定のタイミングで前記第1の添加量制御を開始する、請求項7に記載の水処理方法。
  9.  前記触媒塔の出口水における溶存酸素濃度が第2の範囲となるように前記被処理水に添加される水素の量を制御する第2の添加量制御を行ない、前記触媒塔の出口水における溶存酸素濃度が前記第2の範囲となった後、前記第2の添加量制御を停止して前記第1の添加量制御を開始する、請求項7に記載の水処理方法。
  10.  前記白金族金属担持触媒に対する空間速度が30h-1以上となるように、水素が添加された前記被処理水を前記触媒塔に通水する、請求項7乃至9のいずれか1項に記載の水処理方法。
     
PCT/JP2023/001881 2022-03-14 2023-01-23 水処理装置及び水処理方法 WO2023176147A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202380027998.1A CN118891233A (zh) 2022-03-14 2023-01-23 水处理装置及水处理方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022039136 2022-03-14
JP2022-039136 2022-03-14
JP2022126268A JP2023134325A (ja) 2022-03-14 2022-08-08 水処理装置及び水処理方法
JP2022-126268 2022-08-08

Publications (1)

Publication Number Publication Date
WO2023176147A1 true WO2023176147A1 (ja) 2023-09-21

Family

ID=88022682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001881 WO2023176147A1 (ja) 2022-03-14 2023-01-23 水処理装置及び水処理方法

Country Status (2)

Country Link
TW (1) TW202348566A (ja)
WO (1) WO2023176147A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186208A (ja) * 1985-02-12 1986-08-19 Shoko Tsusho Kk 過酸化水素の分解方法
JPH0596283A (ja) * 1991-10-03 1993-04-20 Japan Organo Co Ltd 溶存酸素除去装置
JP2000167593A (ja) * 1998-12-03 2000-06-20 Kurita Water Ind Ltd 超純水製造装置の運転方法及び超純水製造装置
JP2007000699A (ja) * 2005-06-21 2007-01-11 Kurita Water Ind Ltd 窒素ガス溶解水の製造方法
JP2010017633A (ja) * 2008-07-09 2010-01-28 Japan Organo Co Ltd 水素溶解水の製造装置及びこれを用いた製造方法ならびに電子部品又は電子部品の製造器具用の洗浄装置
JP2014140826A (ja) * 2013-01-25 2014-08-07 Nomura Micro Sci Co Ltd 超純水製造方法
JP2015166064A (ja) * 2014-03-04 2015-09-24 オルガノ株式会社 超純水製造装置
JP2016215150A (ja) * 2015-05-22 2016-12-22 オルガノ株式会社 超純水製造装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61186208A (ja) * 1985-02-12 1986-08-19 Shoko Tsusho Kk 過酸化水素の分解方法
JPH0596283A (ja) * 1991-10-03 1993-04-20 Japan Organo Co Ltd 溶存酸素除去装置
JP2000167593A (ja) * 1998-12-03 2000-06-20 Kurita Water Ind Ltd 超純水製造装置の運転方法及び超純水製造装置
JP2007000699A (ja) * 2005-06-21 2007-01-11 Kurita Water Ind Ltd 窒素ガス溶解水の製造方法
JP2010017633A (ja) * 2008-07-09 2010-01-28 Japan Organo Co Ltd 水素溶解水の製造装置及びこれを用いた製造方法ならびに電子部品又は電子部品の製造器具用の洗浄装置
JP2014140826A (ja) * 2013-01-25 2014-08-07 Nomura Micro Sci Co Ltd 超純水製造方法
JP2015166064A (ja) * 2014-03-04 2015-09-24 オルガノ株式会社 超純水製造装置
JP2016215150A (ja) * 2015-05-22 2016-12-22 オルガノ株式会社 超純水製造装置

Also Published As

Publication number Publication date
TW202348566A (zh) 2023-12-16

Similar Documents

Publication Publication Date Title
US20070221581A1 (en) Ultrapure Water Production Plant
JP6290654B2 (ja) 超純水製造装置
JP5750236B2 (ja) 純水製造方法及び装置
WO2019116653A1 (ja) 過酸化水素除去方法及び装置
JP2022046426A (ja) 水処理システム、純水製造方法及び水処理方法
WO2023176147A1 (ja) 水処理装置及び水処理方法
JP6670047B2 (ja) 超純水製造装置
JP2023134325A (ja) 水処理装置及び水処理方法
CN118891233A (zh) 水处理装置及水处理方法
TW202216609A (zh) 水處理裝置及水處理方法
JP2000308815A (ja) オゾン溶解水の製造装置
JP2002263643A (ja) 超純水製造装置
WO2024214394A1 (ja) 水処理装置及び水処理方法
KR20240157753A (ko) 수처리 장치 및 수처리 방법
WO2023037811A1 (ja) 樹脂の製造方法、超純水製造方法及び超純水製造装置
WO2022054649A1 (ja) 水処理システム、純水製造方法及び水処理方法
JP7570249B2 (ja) 水処理システム及び水処理方法
TWI773374B (zh) 水處理裝置、水處理方法及再生型離子交換塔
WO2024053305A1 (ja) 超純水製造装置及び超純水製造方法
JP2006282642A (ja) ポリイソシアネート製造装置
JP2017189723A (ja) 超純水製造装置
JPH1147769A (ja) 有機物の除去装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770110

Country of ref document: EP

Kind code of ref document: A1