WO2023176104A1 - 電源システム、電動移動体、充電器、及び通電確認方法 - Google Patents

電源システム、電動移動体、充電器、及び通電確認方法 Download PDF

Info

Publication number
WO2023176104A1
WO2023176104A1 PCT/JP2023/000429 JP2023000429W WO2023176104A1 WO 2023176104 A1 WO2023176104 A1 WO 2023176104A1 JP 2023000429 W JP2023000429 W JP 2023000429W WO 2023176104 A1 WO2023176104 A1 WO 2023176104A1
Authority
WO
WIPO (PCT)
Prior art keywords
switch
voltage
energization
electricity storage
turned
Prior art date
Application number
PCT/JP2023/000429
Other languages
English (en)
French (fr)
Inventor
力 大森
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023176104A1 publication Critical patent/WO2023176104A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/80Exchanging energy storage elements, e.g. removable batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters

Definitions

  • the present disclosure relates to a power supply system including a plurality of power storage packs connected in parallel, an electric vehicle, a charger, and a method for confirming energization.
  • Electric motorcycles and electric bicycles have become popular. Electric motorcycles and electric bicycles typically use removable and portable battery packs. In order to increase the capacity of battery systems, there is an increasing need for parallelization of battery packs. EVs with replaceable batteries are also being developed. Ultra-compact EVs with replaceable batteries can use portable battery packs used in electric motorcycles and electric bicycles, and it is also possible to reuse battery packs used in EVs in power storage systems.
  • a power supply system that connects portable battery packs in parallel by installing them in mounting slots on the vehicle side, depending on how they are installed, there may be cases where the signal line is connected normally but the power line has a poor contact.
  • the vehicle side determines that all battery packs are connected normally because the signal line is connected normally, and the number of connections including battery packs with poor power line contact is determined to be correct. , determine the allowable current value. In this case, there is a risk that a current exceeding the allowable current value of the battery pack alone may flow through the battery pack alone, causing damage to the battery bag.
  • the present disclosure has been made in view of these circumstances, and its purpose is to provide a technology for highly accurately confirming the energization state of the power line of each energy storage pack in a system in which multiple energy storage packs are connected in parallel. be.
  • a power supply system includes a plurality of power storage packs connected in parallel to a load.
  • the electricity storage pack includes an electricity storage module, a switch that turns on/off energization between the electricity storage module and the load, a voltage measurement unit that measures a voltage across the switch and the electricity storage module that are connected in series, and the electricity storage module.
  • the control unit includes a control unit capable of acquiring the voltage measured by the voltage measurement unit and controlling the switch.
  • the plurality of control units included in each of the plurality of power storage packs are connected by a signal line, and when the plurality of switches included in each of the plurality of power storage packs are in an OFF state, the switch of one power storage pack is turned on.
  • the energization state of the power line of each power storage pack can be confirmed with high accuracy.
  • FIG. 1 is a diagram showing a configuration example of an electric vehicle according to an embodiment.
  • FIG. 3 is a diagram illustrating an example of a battery pack energization confirmation sequence.
  • FIG. 7 is a diagram showing a table summarizing the determination results of the battery pack energization confirmation sequence.
  • FIG. 4A is a diagram for explaining another specific example of the battery pack energization confirmation sequence.
  • FIG. 4B is a diagram for explaining another specific example of the battery pack energization confirmation sequence.
  • 1 is a diagram illustrating a configuration example of a charger according to an embodiment.
  • FIG. 1 is a diagram showing a configuration example of an electric vehicle 1 according to an embodiment.
  • the electric vehicle 1 includes a power supply system 2, a motor 3, an inverter 4, a vehicle control section 5, and a notification section 6 as main components.
  • the power supply system 2 has a mounting slot into which a plurality of (four in FIG. 1) battery packs 10 can be mounted. Note that in applications where large capacity is required, such as small EVs, five or more mounting slots may be provided in parallel. Furthermore, in applications where weight reduction is required, such as in electric bicycles, two or three parallel mounting slots may be provided.
  • the inverter 4 converts the DC power supplied from the power supply system 2 into AC power and supplies it to the motor 3.
  • AC power supplied from the motor 3 is converted into DC power and supplied to the power supply system 2.
  • the motor 3 is a three-phase AC motor, and rotates in response to AC power supplied from the inverter 4 during power running.
  • rotational energy due to deceleration is converted into AC power and supplied to the inverter 4.
  • the DC side of the inverter 4 is connected to the power supply system 2 via a power line Lp.
  • a main switch Sm is connected between the confluence of the plurality of battery packs 10 and the inverter 4 on the power line Lp.
  • a relay or a semiconductor switch (for example, a MOSFET (Metal Oxide Semiconductor Field Effect Transistor)) can be used as the main switch Sm.
  • the vehicle control unit 5 is a vehicle ECU (Electronic Control Unit) that controls the entire electric vehicle 1 .
  • the vehicle control unit 5 can be configured with, for example, a microcontroller and a nonvolatile memory (eg, an electrically erasable programmable read-only memory (EEPROM), a flash memory).
  • the notification unit 6 is a user interface, and includes, for example, at least one of an LED lamp, a meter panel, a display, a speaker, and the like.
  • the battery pack 10 is a removable, portable and replaceable battery pack 10, and includes a battery module 11, a switch section 12, a voltage measurement section 13, a battery control section 14, and a connector 15.
  • a user or a maintenance worker attaches the battery pack 10 to the power supply system 2 by fitting the connector 15 of the battery pack 10 into the attachment slot of the power supply system 2 .
  • connector 15 includes a positive power terminal, a negative power terminal, and a signal terminal.
  • the battery module 11 includes a plurality of cells E1-En connected in series. Note that the battery module 11 may have a configuration in which a plurality of parallel cell blocks each configured by connecting a plurality of cells in parallel are connected in series.
  • a lithium ion battery cell a nickel metal hydride battery cell, a lead battery cell, etc. can be used.
  • this specification assumes an example in which a lithium ion battery cell (nominal voltage: 3.6-3.7V) is used.
  • the number of cells connected in series is determined according to the drive voltage of the motor 3.
  • the first switch S1 is connected between the positive power terminal of the connector 15 and the positive terminal of the battery module 11, and the first switch S1 is connected between the negative power terminal of the connector 15 and the negative terminal of the battery module 11.
  • a second switch S2 is connected.
  • a precharge circuit is connected in parallel with the first switch S1.
  • the precharge circuit includes a resistor R1 and a third switch S3 connected in series.
  • the precharge circuit is provided to limit the rush current at the start of energization using the resistor R1.
  • a relay or a semiconductor switch can be used for the first switch S1 to the third switch S3.
  • the first switch S1 to the third switch S3 and the resistor R1 are collectively referred to as the switch section 12.
  • the switch unit 12 functions as a switch that turns on/off electricity between the battery module 11 and the load (inverter 4 and motor 3 in FIG. 1).
  • the voltage measurement unit 13 measures the voltage across the switch unit 12 and battery module 11 that are connected in series, and outputs it to the battery control unit 14.
  • the voltage measurement unit 13 includes, for example, a voltage dividing resistor, a differential amplifier, and an A/D converter.
  • the battery control unit 14 controls the entire battery pack 10.
  • the battery control unit 14 can be configured by, for example, a microcontroller and a nonvolatile memory.
  • a plurality of battery control units 14 and a vehicle control unit 5 included in each of the plurality of battery packs 10 are connected by a signal line Ls.
  • the plurality of battery control units 14 and the vehicle control unit 5 can perform serial communication with each other using, for example, a CAN (Controller Area Network) protocol.
  • the battery control unit 14 acquires the voltage of the battery module 11 including the switch unit 12 measured by the voltage measurement unit 13.
  • the battery control section 14 controls the switch section 12. For example, when the electric vehicle 1 is powered on, the battery control unit 14 turns on the third switch S3 first while controlling the first switch S1 and the second switch S2 to the off state. In this state, current flows from the battery module 11 to the vehicle side via the resistor R1. When a predetermined time has elapsed after turning on the third switch S3, the battery control unit 14 turns on the first switch S1 and the second switch S2, and turns off the third switch S3. This makes it possible to achieve a soft start.
  • FIG. 2 is a diagram for explaining an example of the energization confirmation sequence of the battery pack 10.
  • the energization confirmation sequence may be executed every time the electric vehicle 1 is powered on, or may be executed when the battery pack 10 is installed in any installation slot of the power supply system 2.
  • FIG. 2 shows an example in which the first battery control section 14a of the first battery pack 10a turns on the first switch section 12a.
  • the vehicle control section 5 connects the first switch section 12a to the first battery control section 14a of the first battery pack 10a via the signal line Ls.
  • An energization confirmation mode signal including a turn-on instruction is transmitted, and the second switch section 12b-fourth switch section 12d is transmitted to the second battery control section 14b-fourth battery control section 14d of the second battery pack 10b-fourth battery pack 10d.
  • the channel of the battery pack 10 to which the vehicle control unit 5 transmits the turn-on instruction may be always fixed or may be periodically switched.
  • the vehicle control unit 5 upon detecting that the battery pack 10 is installed in the installation slot of the power supply system 2, the vehicle control unit 5 also performs an energization check including a turn-on instruction to the first battery control unit 14a of the first battery pack 10a.
  • a mode signal may be transmitted, and an energization confirmation mode signal including a turn-off instruction may be transmitted to the second battery control section 14b to the fourth battery control section 14d of the second battery pack 10b to the fourth battery pack 10d.
  • the vehicle control unit 5 can detect whether the battery pack 10 is inserted or removed from the interruption and energization of the signal line Ls.
  • the vehicle control unit 5 based on the battery pack ID and SOC (State of Charge) received from the installed battery pack 10, It can be determined whether the battery pack 10 is inserted or removed during the shutdown. For example, if the battery pack ID is different before and after the shutdown, the vehicle control unit 5 determines that the battery pack 10 has been replaced with another battery pack 10. For example, if the battery pack ID is the same and the SOC is higher after the shutdown than before the shutdown, the vehicle control unit 5 determines that the battery pack 10 has been inserted and removed once for charging.
  • the signal terminal in the connector 15 is normally connected to the signal terminal in the mounting slot, but at least one of the positive and negative terminals in the connector 15
  • the power terminal may cause a connection failure with the corresponding power terminal of the installation slot.
  • a poor connection of the power line Lp occurs when a user or a maintenance worker is unable to mount the battery pack 10 in the correct fitting position of the mounting slot. It can also occur due to damage, corrosion, or wear on the power supply terminals.
  • the first battery control section 14a of the first battery pack 10a When the first battery control section 14a of the first battery pack 10a receives the energization confirmation mode signal including the turn-on instruction from the vehicle control section 5, it turns on the first switch section 12a, and after turning on the first switch section 12a, the first battery control section 14a turns on the first switch section 12a.
  • the voltage is acquired from the voltage measuring section 13a.
  • the first battery control unit 14a transmits the acquired voltage to the vehicle control unit 5 via the signal line Ls.
  • the second battery control unit 14b-fourth battery control unit 14d of the second battery pack 10b-fourth battery pack 10d receives the energization confirmation mode signal including the turn-off instruction from the vehicle control unit 5, the second switch unit 12b- It is confirmed that the fourth switch section 12d is in the off state, and after confirmation, the voltage is obtained from the second voltage measurement section 13b to the fourth voltage measurement section 13d.
  • the second battery control unit 14b to the fourth battery control unit 14d transmit the respective acquired voltages to the vehicle control unit 5 via the signal line Ls.
  • FIG. 3 is a diagram showing a table summarizing the determination results of the energization confirmation sequence of the battery pack 10.
  • the vehicle control section 5 determines that there is an abnormality in energization in the first battery pack 10a (pattern 2). In this case, it is considered that an abnormality such as a disconnection of the power line Lp in the first battery pack 10a or an open failure of the first switch section 12a has occurred.
  • the vehicle control unit 5 notifies the notifier 6 of a message urging the user to reinstall the first battery pack 10a.
  • the vehicle control unit 5 lights up an LED lamp for notification of reinstallation.
  • a plurality of LED lamps may be provided corresponding to the number and arrangement of mounting slots of the battery pack, and the vehicle control unit 5 may light up the LED lamp corresponding to the mounting slot to prompt remounting.
  • the vehicle control unit 5 may, for example, display a text message such as "Please reinstall the leftmost battery pack" on the display.
  • the vehicle control unit 5 may output, for example, a voice message such as "Please reinstall the leftmost battery pack” or an alert sound from the speaker.
  • the user may be notified by a display showing the error code on each battery pack 10, a flashing cycle of an LED, or the like.
  • the vehicle control unit 5 executes the above-described energization confirmation sequence again. If the measured voltages of the first voltage measuring section 13a to the fourth voltage measuring section 13d do not change (pattern 2 remains), the determination of abnormality in energization in the first battery pack 10a is confirmed. The vehicle control unit 5 notifies the notifier 6 of a message urging repair or replacement of the first battery pack 10a. Furthermore, the vehicle control unit 5 lowers the upper limit value of the current output from the inverter 4 to the motor 3 to the upper limit value corresponding to the number of parallel batteries that does not include the first battery pack 10a. In the example shown in FIG.
  • the vehicle control unit 5 sets the upper limit value of the current output from the inverter 4 to the motor 3 to 3/4 times the upper limit value of the current when all four battery packs 10 in parallel are normally energized. change.
  • the vehicle control unit 5 also lowers the upper limit value of the current regenerated from the motor 3 to the inverter 4 to the upper limit value corresponding to the number of parallel batteries that does not include the first battery pack 10a.
  • the vehicle control unit 5 determines that the voltage measured by the first voltage measurement unit 13a in the first battery pack 10a indicates energization, and that the voltage measured by the first voltage measurement unit 13a in the second battery pack 10b-the fourth battery pack 10d is When a plurality of voltages measured by the four voltage measurement units 13d indicate non-conduction, it is determined that a connection failure has occurred between the first battery pack 10a and the power supply system 2 (pattern 3). In this case, it is considered that at least one of the positive and negative power terminals in the connector 15 of the first battery pack 10a has a connection failure with the corresponding power terminal in the mounting slot of the power supply system 2. In this specification, a poor connection between the battery pack 10 and the power supply system 2 and an abnormality in power supply within the battery pack 10 are collectively referred to as an abnormality in the power line Lp of the battery pack 10.
  • the vehicle control unit 5 notifies the notifier 6 of a message urging the user to reinstall the first battery pack 10a.
  • the vehicle control unit 5 executes the above-described energization confirmation sequence again. If the cause is a misalignment in the mating state of the connector 15, and the misalignment in the mating state is resolved by reattaching the connector 15 and the energization path is formed correctly, the first voltage measuring section 13a to the fourth voltage measuring section 13d measure the voltage. All of the plurality of voltages applied change to energization (pattern 1).
  • the vehicle control unit 5 determines that there is an irreversible connection failure of the first battery pack 10a. .
  • the vehicle control unit 5 notifies the notifier 6 of a message urging repair or replacement of the first battery pack 10a.
  • the vehicle control unit 5 lowers the upper limit value of the current output from the inverter 4 to the motor 3 to the upper limit value corresponding to the number of parallel batteries that does not include the first battery pack 10a.
  • the vehicle control unit 5 also lowers the upper limit value of the current regenerated from the motor 3 to the inverter 4 to the upper limit value corresponding to the number of parallel batteries that does not include the first battery pack 10a.
  • the vehicle control unit 5 is measured by a first voltage measuring unit 13a and a third voltage measuring unit 13c to a fourth voltage measuring unit 13d in the first battery pack 10a, third battery pack 10c to fourth battery pack 10d, respectively.
  • the voltage indicates energization and the voltage measured by the second voltage measurement unit 13b of the second battery pack 10b indicates non-energization, it is determined that an abnormality has occurred in the power line Lp of the second battery pack 10b. (Pattern 4). At this stage, it cannot be determined whether the portion where the current supply is cut off is inside the second battery pack 10b or at the connector portion.
  • the vehicle control unit 5 notifies the notification unit 6 of a message urging the user to reinstall the second battery pack 10b.
  • the vehicle control unit 5 executes the above-described energization confirmation sequence again. If the cause is a misalignment in the mating state of the connector 15, and the mismatch in the mating state is resolved by reattaching the connector 15, all of the plurality of voltages measured by the first voltage measuring section 13a to the fourth voltage measuring section 13d are energized. (Pattern 1).
  • the vehicle control unit 5 detects that an abnormality has occurred in the power line Lp of the second battery pack 10b. Confirm the determination that The vehicle control unit 5 notifies the notification unit 6 of a message urging repair or replacement of the second battery pack 10b. Furthermore, the vehicle control unit 5 lowers the upper limit value of the current output from the inverter 4 to the motor 3 to the upper limit value corresponding to the number of parallel batteries that does not include the first battery pack 10a. The vehicle control unit 5 also lowers the upper limit value of the current regenerated from the motor 3 to the inverter 4 to the upper limit value corresponding to the number of parallel batteries that does not include the first battery pack 10a.
  • the vehicle control unit 5 transmits an energization confirmation mode signal including a turn-on instruction to the second battery control unit 14b of the second battery pack 10b, and controls the first battery pack 10a, the third battery pack 10c to the fourth battery pack 10d.
  • the energization confirmation sequence may be executed again by transmitting an energization confirmation mode signal including a turn-off instruction to the first battery control section 14a, third battery control section 14c to fourth battery control section 14d.
  • the vehicle control section 5 determines that there is an irreversible connection failure between the second battery pack 10b and the power supply system 2, and the measured voltage of the second voltage measuring section 13b When indicates non-energization, the vehicle control unit 5 determines that there is an abnormality in the energization in the second battery pack 10b.
  • the vehicle control unit 5 is measured by the first voltage measuring unit 13a-second voltage measuring unit 13b and fourth voltage measuring unit 13d in the first battery pack 10a-second battery pack 10b and fourth battery pack 10d, respectively.
  • the voltage indicates energization and the voltage measured by the third voltage measurement unit 13c of the third battery pack 10c indicates non-energization, it is determined that an abnormality has occurred in the power line Lp of the third battery pack 10c. (Pattern 5).
  • the subsequent processing is similar to the processing in which the second battery pack 10b in pattern 4 is replaced with the third battery pack 10c.
  • the vehicle control unit 5 determines that the voltages measured by the first voltage measuring unit 13a to the third voltage measuring unit 13c in the first battery pack 10a to the third battery pack 10c indicate energization, and that the voltage of the fourth battery pack 10d is energized.
  • the voltage measured by the fourth voltage measurement unit 13d indicates non-energization, it is determined that an abnormality has occurred in the power line Lp of the fourth battery pack 10d (pattern 6).
  • the subsequent processing is similar to the processing in which the second battery pack 10b in pattern 4 is replaced with the fourth battery pack 10d.
  • FIG. 2 shows a case where a reversible connection failure has occurred between the first battery pack 10a and the power supply system 2, and the first battery pack 10a is inserted into the installation slot by the user or maintenance worker.
  • the connection failure between the first battery pack 10a and the power supply system 2 is resolved.
  • the example shown in FIG. 2 describes a power supply system 2 of four battery packs 10 in parallel, and is applied to a plurality of battery packs 10 in parallel of three or more.
  • the number of parallel battery packs 10 is two, the first battery pack 10a and the second battery pack 10b, when the switch unit 12 of one battery pack 10 is turned on, the determination between pattern 3 and pattern 4 shown in FIG. 3 is confirmed. Can not. Therefore, the vehicle control unit 5 notifies the notification unit 6 of a message urging the user to reinstall the first battery pack 10a and the second battery pack 10b.
  • the control unit 5 executes the energization confirmation sequence again, and when the misalignment in the fitted state of the first battery pack 10a and the second battery pack 10b is resolved by reinstallation and a energization path is formed, the first voltage measurement unit 13a and the plurality of voltages measured by the second voltage measurement unit 13b are all changed to energized (pattern 1), so that both the first battery pack 10a and the second battery pack 10b are determined to be normal.
  • the switch 12b in the second battery pack 10b which is different from the first battery pack 10a that includes the turned-on switch 12a, is turned on and the switch 12b is turned on. If the voltage measured by the voltage measurement unit 13b in the second electricity storage pack 10b indicates energization, an abnormality has occurred in the power line Lp of the first electricity storage pack 10a. If it is determined that the power line Lp of the second power storage pack 10b is not energized and the voltage measured by the voltage measurement unit 13b in the second power storage pack 10b indicates that the power is not energized, it is determined that an abnormality has occurred in the power line Lp of the second power storage pack 10b. You can also do it.
  • FIG. 4A and 4B are diagrams for explaining another specific example of the energization confirmation sequence of the battery pack 10.
  • the example shown in FIG. 4A shows a case where a reversible connection failure occurs at two locations: between the first battery pack 10a and the power supply system 2, and between the second battery pack 10b and the power supply system 2. ing.
  • the vehicle control unit 5 transmits an energization confirmation mode signal including a turn-on instruction to the first battery control unit 14a of the first battery pack 10a, and the second battery control unit 14b of the second battery pack 10b-fourth battery pack 10d.
  • An energization confirmation mode signal including a turn-off instruction is transmitted to the fourth battery control unit 14d to execute an energization confirmation sequence.
  • the voltage measured by the first voltage measuring section 13a in the first battery pack 10a indicates energization
  • the plurality of voltages measured by the four voltage measurement units 13d each indicate non-conduction
  • the vehicle control unit 5 determines that a connection failure has occurred between the first battery pack 10a and the power supply system 2.
  • the vehicle control unit 5 notifies the notifier 6 of a message urging the user to reinstall the first battery pack 10a.
  • the connection failure between the first battery pack 10a and the power supply system 2 is resolved, as shown in FIG. 4B.
  • the vehicle control unit 5 executes the above-described energization confirmation sequence again.
  • the voltages measured by the first voltage measurement unit 13a, third voltage measurement unit 13c, and fourth voltage measurement unit 13d in the first battery pack 10a, third battery pack 10c, and fourth battery pack 10d indicate energization
  • the voltage measured by the second voltage measurement unit 13b of the second battery pack 10b indicates a non-energized state, and the vehicle control unit 5 determines that an abnormality has occurred in the power line Lp of the second battery pack 10b. (Pattern 4).
  • the vehicle control unit 5 notifies the notification unit 6 of a message urging the user to reinstall the second battery pack 10b.
  • the second battery pack 10b is reinstalled into the installation slot by the user or maintenance worker, the poor connection between the second battery pack 10b and the power supply system 2 is resolved.
  • the vehicle control unit 5 executes the above-described energization confirmation sequence again.
  • the plurality of voltages measured by the first voltage measuring unit 13a to the fourth voltage measuring unit 13d in the first battery pack 10a to the fourth battery pack 10d all indicate energization, and the vehicle control unit 5
  • the energization of the battery packs 10a to 10d is determined to be normal (pattern 1).
  • the vehicle control section 5 may execute an energization confirmation sequence in which another switch section 12 is turned on without notifying a message prompting reattachment.
  • the vehicle control unit 5 determines whether an abnormality has occurred in the power line Lp of the plurality of battery packs 10 installed in the power supply system 2. All of the battery packs 10 present can be specified.
  • the vehicle control unit 5 notifies the notifying unit 6 of a message urging reinstallation of all battery packs 10 in which an abnormality has occurred in the power line Lp.
  • the vehicle control unit 5 transmits the energization confirmation mode signal to the first battery control unit 14a to the fourth battery control unit 14d of the first battery pack 10a to the fourth battery pack 10d.
  • the battery control unit 14 of the battery pack 10 controls the installed battery pack 10. While turning on the switch section 12, an energization confirmation mode signal including a turn-off instruction may be transmitted to the battery control section 14 of the other battery pack 10 connected via the signal line Ls.
  • the battery control unit 14 of the other battery pack 10 When the battery control unit 14 of the other battery pack 10 receives the energization confirmation mode signal including the turn-off instruction from the battery control unit 14 of the attached battery pack 10, it confirms that the switch unit 12 is in the OFF state, and after confirmation, the voltage The voltage is acquired from the measurement unit 13.
  • the battery control units 14 of the other battery packs 10 transmit the respective acquired voltages to the battery control units 14 of the attached battery packs 10 via the signal line Ls.
  • the battery control unit 14 of the attached battery pack 10 selects one of the patterns 1 to 3 based on the plurality of voltages measured by the voltage measurement units 13 in the plurality of battery packs 10 connected to the power supply system 2. Determine whether it is applicable. If pattern 2 or 3 above applies, the battery control unit 14 of the installed battery pack 10 sends a request signal to the vehicle control unit 5 requesting that the notification unit 6 broadcast a message prompting the reinstallation of the installed battery pack 10. Send. In addition, when the installed battery pack 10 itself is equipped with an indicator lamp for reinstallation notification, the battery control unit 14 of the installed battery pack 10 may turn on the indicator lamp.
  • the power supply system 2 may include a fixed master battery control section that is physically independent from the battery pack 10.
  • the master battery control unit manages the battery pack 10 installed in the installation slot via the signal line Ls.
  • the master battery control unit can execute the above-described energization confirmation sequence.
  • the above-described energization confirmation sequence can also be applied to a charger that can charge multiple battery packs 10 in parallel.
  • FIG. 5 is a diagram showing an example of the configuration of the charger 1a according to the embodiment.
  • the charger 1a includes a charging stand 2a, an inverter 4, a charging control section 5a, and a notification section 6.
  • the charging stand 2a has a plurality of charging slots that can accommodate a plurality of battery packs 10 connected in parallel.
  • the AC side of the inverter 4 is connected to a commercial power system 7, and the inverter 4 converts AC power supplied from the commercial power system 7 into DC power, and charges at least one battery pack 10 mounted on the charging stand 2a. can do.
  • Inverter 4 may include a full-wave rectifier, a filter, and a DC/DC converter.
  • the charging control unit 5a When the charging control unit 5a detects that the battery pack 10 is attached to any of the charging slots of the charging stand 2a, the charging control unit 5a transmits the first signal to the first battery control unit 14a of the first battery pack 10a via the signal line Ls.
  • An energization confirmation mode signal including a turn-on instruction for the switch section 12a is transmitted to the second battery control section 14b-fourth battery control section 14d of the second battery pack 10b-fourth battery pack 10d. 4 transmits an energization confirmation mode signal including a turn-off instruction for the switch section 12d.
  • the subsequent processing is the same as in the case of the electric vehicle 1 described above.
  • the energization state of the power line Lp of each battery pack 10 attached to the power supply system 2 or the charging stand 2a can be confirmed with high accuracy.
  • this since the presence or absence of electricity is determined by the presence or absence of voltage, this is a more reliable detection method than when using a physical or magnetic sensor.
  • this embodiment even if there is voltage variation among the plurality of battery packs 10 connected in parallel, only one switch section 12 is turned on, so no cross current occurs. Therefore, unnecessary power consumption due to cross current does not occur. Furthermore, there is no need to wait for the end of the cross current to determine the measured voltage value, and the presence or absence of the energized state can always be confirmed within the same measurement time.
  • a capacitor pack containing a built-in capacitor including an electric double layer capacitor cell, a lithium ion capacitor cell, etc. may be used.
  • a battery pack and a capacitor pack are collectively referred to as a power storage pack.
  • the energization confirmation method according to the present disclosure is also applicable to the electricity storage pack fixed to the electric vehicle 1 (charged with a charging cable).
  • the vehicle control unit 5 executes the above-described energization confirmation sequence.
  • the vehicle control unit 5 can detect an abnormality in the power line Lp of any of the plurality of power storage packs connected in parallel. In this example, when an abnormality is detected, the vehicle control unit 5 does not issue a message prompting reinstallation, but issues a message prompting repair or replacement.
  • the power supply system 2 including a plurality of power storage packs connected in parallel according to the embodiment can also be used in electric vehicles other than the electric vehicle 1.
  • the electric vehicle includes an electric boat.
  • it can be used in a water bus or a water taxi equipped with the power supply system 2 according to the embodiment.
  • the electric vehicle also includes a train.
  • a train equipped with the power supply system 2 according to the embodiment can be used instead of a diesel car used on a non-electrified line.
  • the electric moving object also includes an electric flying object.
  • Electric flying vehicles include multicopters (drones).
  • the multicopters also include so-called flying cars.
  • the plurality of power storage packs connected in parallel according to the embodiment can also constitute a stationary power storage system.
  • the electricity storage pack (10) includes: A power storage module (11), a switch (12) that turns on/off energization between the electricity storage module (11) and the load (3, 4); a voltage measuring unit (13) that measures the voltage across the switch (12) and the power storage module (11) connected in series; a control unit (14) capable of acquiring the voltage measured by the voltage measurement unit (13) and controlling the switch (12); A plurality of control units (14) included in each of the plurality of power storage packs (10) are connected by a signal line (Ls), When the plurality of switches (12) included in each of the plurality of power storage packs (10) are in an off state, the switch (12) of one power storage pack (10) is turned on, When the plurality of voltages measured by the voltage measurement units (13) in all the electricity storage packs (10) including the turned-on switch (12) all indicate energization, it is determined that the battery is normal; A voltage indicating energization
  • the energization state of the power line (Lp) of each electricity storage pack (10) connected to the power supply system (2) can be confirmed with high accuracy.
  • the energization state of the power line (Lp) of each electricity storage pack (10) connected to the power supply system (2) can be confirmed with high accuracy.
  • the power storage pack (10) is a power storage pack (10) that is detachable from the power supply system (2),
  • the voltage measured by the voltage measurement unit (13) in the electricity storage pack (10) including the turned-on switch (12) indicates energization, and the electricity storage pack (10) other than the electricity storage pack (10) including the turned-on switch (12)
  • the electricity storage pack (10) including the turned-on switch (12) and the power supply system (2) It is determined that a connection failure has occurred between the The power supply system (2) according to item 1, characterized in that:
  • the energization state of the power line (Lp) of each power storage pack (10) attached to the power supply system (2) can be confirmed with high accuracy.
  • an electric vehicle (1) is realized that is equipped with a function that allows highly accurate confirmation of the energization state of the power line (Lp) of each power storage pack (10) connected to the power supply system (2). can.
  • a charger (1a) comprising a charging stand (2a) capable of charging a plurality of removable power storage packs (10) connected in parallel
  • the electricity storage pack (10) includes: A power storage module (11), a switch (12) that turns on/off energization between the electricity storage module (11) and the charger; a voltage measuring unit (13) that measures the voltage across the switch (12) and the power storage module (11) connected in series; a control unit (14) capable of acquiring the voltage measured by the voltage measurement unit (13) and controlling the switch (12);
  • a plurality of control units (14) included in each of the plurality of power storage packs (10) are connected by a signal line (Ls), When the plurality of switches (12) included in each of the plurality of power storage packs (10) are in an off state, the switch (12) of one power storage pack (10) is turned on, When the plurality of voltages measured by the voltage measurement units (13) in all the electricity storage packs (10) including the turned-on switch (12) all indicate energization, it is determined that the battery is normal;
  • the voltage measured by the voltage measurement unit (13) in the electricity storage pack (10) including the turned-on switch (12) indicates energization, and the electricity storage pack (10) other than the electricity storage pack (10) including the turned-on switch (12)
  • the electricity storage pack (10) including the turned-on switch (12) and the charger It is determined that there is a poor connection between the Among the plurality of voltages each measured by the voltage measurement unit (13) in all the power storage packs (10) other than the power storage pack (10) including the turned-on switch (12), a voltage indicating non-energization is included. If so, it is determined that an abnormality has occurred in the power line (Lp) of the electricity storage pack (10) for which the voltage indicating the non-energization was measured.
  • a charger (1a) characterized by:
  • the electricity storage pack (10) includes: A power storage module (11), a switch (12) that turns on/off energization between the electricity storage module (11) and the load (3, 4); a voltage measuring unit (13) that measures the voltage across the switch (12) and the power storage module (11) connected in series; a control unit (14) capable of acquiring the voltage measured by the voltage measurement unit (13) and controlling the switch (12); A plurality of control units (14) included in each of the plurality of power storage packs (10) are connected to a signal line (Ls),
  • the energization confirmation method is as follows: When the plurality of switches (12) included in each of the plurality of electricity storage packs (10) are in an off state, the switch (12) of one electricity storage pack (10) is turned on, If the plurality of voltages measured by the voltage measurement units (13) in all the electricity storage packs (10) including the turned-on switch (12) all indicate energization
  • 1 Electric vehicle 1a Charger, 2 Power system, 2a Charging stand, 3 Motor, 4 Inverter, 5 Vehicle control unit, 5a Charging control unit, 6 Notification unit, 7 Commercial power system, 10 Battery pack, 11 Battery module, 12 Switch section, 13 Voltage measurement section, 14 Battery control section, 15 Connector, S1-S3 switch, Sm main switch, E1-En cell, R1 resistor, Lp power line, Ls signal line.

Abstract

一つの蓄電パックのスイッチがターンオンされ、ターンオンしたスイッチを含む全ての蓄電パック内の電圧計測部でそれぞれ計測される複数の電圧が全て通電を示す場合、正常と判定され、ターンオンしたスイッチを含む蓄電パック内の電圧計測部で通電を示す電圧が計測され、ターンオンしたスイッチを含む蓄電パック以外の蓄電パック内の電圧計測部で非通電を示す電圧が計測された場合、複数の蓄電パックのいずれかのパワーラインに異常が発生していると判定される。

Description

電源システム、電動移動体、充電器、及び通電確認方法
 本開示は、並列接続された複数の蓄電パックを備える電源システム、電動移動体、充電器、及び通電確認方法に関する。
 近年、電動バイク(電動スクータ)や電動自転車が普及してきている。通常、電動バイクや電動自転車では、着脱自在な可搬型の電池パックが使用される。電池システムの大容量化を実現するために、電池パックの並列化のニーズが増えている。また、電池交換式のEVも開発されている。電池交換式の超小型EVでは、電動バイクや電動自転車に使用される可搬型の電池パックを使用することや、EVで使用された電池パックを蓄電システムへリユースする事も可能である。
 可搬型の電池パックを車両側の装着スロットに装着して並列接続させる電源システムにおいて、装着の仕方によっては、信号ラインは正常に接続されたが、パワーラインは接触不良となるケースが発生する。その場合、車両側は、信号ラインが正常に繋がっているため、全ての電池パックが正常に接続されていると判断し、パワーラインの接触不良が発生している電池パックも含めた接続数で、許容電流値を決定する。この場合、電池パック単体の許容電流値を超える電流が、電池パック単体に流れる恐れがあり、電池バックにダメージを与える恐れがある。
 電池パックがシステム本体に接続されているか否かを検出する方法として、電池パック内のリレー(パワーラインの通電/非通電を切り替えるためのリレー)の内側および外側の電圧を測定し、その電圧差が所定の電圧値以上であれば、接続不良と判断する方法が考えられる(例えば、特許文献1参照)。
特開2017-5939号公報
 ただし上記方法では、電圧差がほぼ同じ電池パックが並列接続された場合、接続不良が発生しても両者に大きな電圧差が生じないため、電池パックの接続不良の検出精度は必ずしも高いとは言えない。また、並列接続された電池パック間で電圧バラつきが大きく電池パックから電池パックへ流れる電流(横流)が発生する場合、計測電圧を確定させるまでに時間を要し、検出時間が長くなる可能性もある。
 また、電池パックの装着を蓋の開閉により物理的に検出する方法や、電池パックと装着スロットとの接近を磁気的に検出する方法も考えられる。ただし、いずれの方法もパワーラインの確実な通電確認ではないため、誤判断のリスクが残る。
 本開示はこうした状況に鑑みなされたものであり、その目的は、複数の蓄電パックが並列接続されるシステムにおいて、各蓄電パックのパワーラインの通電状態を高精度に確認する技術を提供することにある。
 上記課題を解決するために、本開示のある態様の電源システムは、負荷に対して並列接続された複数の蓄電パックを備える。前記蓄電パックは、蓄電モジュールと、前記蓄電モジュールと前記負荷との間の通電をオン/オフするスイッチと、直列接続された前記スイッチと前記蓄電モジュールの両端電圧を計測する電圧計測部と、前記電圧計測部により計測された電圧を取得するとともに、前記スイッチを制御可能な制御部と、を含む。前記複数の蓄電パックにそれぞれ含まれる複数の制御部は、信号ラインで接続されており、前記複数の蓄電パックにそれぞれ含まれる複数のスイッチがオフ状態において、一つの蓄電パックの前記スイッチがターンオンされ、前記ターンオンしたスイッチを含む全ての蓄電パック内の前記電圧計測部でそれぞれ計測される複数の電圧が全て通電を示す場合、正常と判定され、前記ターンオンしたスイッチを含む蓄電パック内の前記電圧計測部で通電を示す電圧が計測され、前記ターンオンしたスイッチを含む蓄電パック以外の蓄電パック内の前記電圧計測部で非通電を示す電圧が計測された場合、前記複数の蓄電パックのいずれかのパワーラインに異常が発生していると判定される。
 なお、以上の構成要素の任意の組み合わせ、本開示の表現を装置、システム、方法、コンピュータプログラム等の間で変換したものもまた、本開示の態様として有効である。
 本開示によれば、複数の蓄電パックが並列接続されるシステムにおいて、各蓄電パックのパワーラインの通電状態を高精度に確認することができる。
実施の形態に係る電動車両の構成例を示す図である。 電池パックの通電確認シーケンスの一例を説明するための図である。 電池パックの通電確認シーケンスの判定結果をまとめた表を示す図である。 図4Aは、電池パックの通電確認シーケンスの別の具体例を説明するための図である。 図4Bは、電池パックの通電確認シーケンスの別の具体例を説明するための図である。 実施の形態に係る充電器の構成例を示す図である。
 図1は、実施の形態に係る電動車両1の構成例を示す図である。以下、実施の形態では電動車両1として電動バイクを想定する。電動車両1は主な構成要素として、電源システム2、モータ3、インバータ4、車両制御部5、及び報知部6を備える。電源システム2は、複数(図1では4つ)の電池パック10を搭載可能な装着スロットを有する。なお、小型EVのように大容量化が求められる用途では、5並列以上の装着スロットが設けられてもよい。また、電動自転車のように軽量化が求められる用途では、2または3並列の装着スロットが設けられてもよい。
 インバータ4は力行時、電源システム2から供給される直流電力を交流電力に変換してモータ3に供給する。回生時、モータ3から供給される交流電力を直流電力に変換して電源システム2に供給する。モータ3は三相交流モータであり、力行時、インバータ4から供給される交流電力に応じて回転する。回生時、減速による回転エネルギーを交流電力に変換してインバータ4に供給する。
 インバータ4の直流側がパワーラインLpで電源システム2と接続される。パワーラインLp上において、複数の電池パック10の合流点とインバータ4の間にメインスイッチSmが接続される。メインスイッチSmには、リレーや半導体スイッチ(例えば、MOSFET(Metal Oxide Semiconductor Field Effect Transistor))を使用することができる。車両制御部5は電動車両1全体を制御する車両ECU(Electronic Control Unit)である。車両制御部5は例えば、マイクロコントローラ及び不揮発メモリ(例えば、EEPROM(Electrically Erasable Programmable Read-Only Memory)、フラッシュメモリ)により構成することができる。報知部6はユーザインタフェースであり、例えばLEDランプ、メータパネル、ディスプレイ、スピーカ等の少なくとも一つを含む。
 電池パック10は、着脱自在な可搬式・交換式の電池パック10であり、電池モジュール11、スイッチ部12、電圧計測部13、電池制御部14、及びコネクタ15を備える。ユーザ又はメンテナンス作業者は、電池パック10のコネクタ15を、電源システム2の装着スロットに嵌合させることにより、電池パック10を電源システム2に装着する。図1に示す例では、コネクタ15はプラス電源端子、マイナス電源端子、及び信号端子を含む。
 電池モジュール11は、直列接続された複数のセルE1-Enを含む。なお電池モジュール11は、複数のセルが並列接続されて構成される並列セルブロックが複数、直列接続された構成であってもよい。セルには、リチウムイオン電池セル、ニッケル水素電池セル、鉛電池セル等を使用することができる。以下、本明細書ではリチウムイオン電池セル(公称電圧:3.6-3.7V)を使用する例を想定する。セルの直列数は、モータ3の駆動電圧に応じて決定される。
 コネクタ15のプラス側の電源端子と電池モジュール11のプラス側の端子との間に第1スイッチS1が接続され、コネクタ15のマイナス側の電源端子と電池モジュール11のマイナス側の端子との間に第2スイッチS2が接続される。第1スイッチS1と並列にプリチャージ回路が接続される。プリチャージ回路は、直列接続された抵抗R1と第3スイッチS3で構成される。プリチャージ回路は、通電開始時の突入電流を抵抗R1で制限するために設けられる。第1スイッチS1-第3スイッチS3には、リレーや半導体スイッチを使用することができる。本明細書では、第1スイッチS1-第3スイッチS3及び抵抗R1を総称してスイッチ部12と呼ぶ。スイッチ部12は、電池モジュール11と負荷(図1では、インバータ4及びモータ3)との間の通電をオン/オフするスイッチとして機能する。
 電圧計測部13は、直列接続されたスイッチ部12と電池モジュール11の両端電圧を計測して、電池制御部14に出力する。電圧計測部13は例えば、分圧抵抗、差動アンプ、及びA/D変換器を含んで構成される。
 電池制御部14は電池パック10全体を制御する。電池制御部14は例えば、マイクロコントローラ及び不揮発メモリにより構成することができる。複数の電池パック10にそれぞれ含まれる複数の電池制御部14と車両制御部5は、信号ラインLsで接続される。複数の電池制御部14と車両制御部5は例えば、CAN(Controller Area Network)プロトコルを使用して相互にシリアル通信が可能である。
 電池制御部14は、電圧計測部13により計測された、スイッチ部12を含む電池モジュール11の電圧を取得する。電池制御部14はスイッチ部12を制御する。電池制御部14は例えば、電動車両1への電源投入時、第1スイッチS1及び第2スイッチS2をオフ状態に制御しつつ、第3スイッチS3を先にターンオンする。この状態では抵抗R1を介して電池モジュール11から車両側に電流が流れる。電池制御部14は、第3スイッチS3をターンオンしてから所定時間が経過すると、第1スイッチS1及び第2スイッチS2をターンオンし、第3スイッチS3をターンオフする。これにより、ソフトスタートを実現することができる。
 図2は、電池パック10の通電確認シーケンスの一例を説明するための図である。通電確認シーケンスは、電動車両1の電源投入時に毎回実行されてもよいし、電池パック10が電源システム2のいずれかの装着スロットに装着されたときに実行されてもよい。
 複数の電池パック10にそれぞれ含まれる複数のスイッチ部12がオフ状態において、一つの電池パック10の電池制御部14は当該電池パック10内のスイッチ部12をターンオンする。図2では、第1電池パック10aの第1電池制御部14aが第1スイッチ部12aをターンオンする例を示している。
 車両制御部5は、電動車両1のユーザにより電動車両1の電源投入操作がなされると、第1電池パック10aの第1電池制御部14aに信号ラインLsを介して、第1スイッチ部12aのターンオン指示を含む通電確認モード信号を送信し、第2電池パック10b-第4電池パック10dの第2電池制御部14b-第4電池制御部14dに、第2スイッチ部12b-第4スイッチ部12dのターンオフ指示を含む通電確認モード信号を送信する。車両制御部5がターンオン指示を送信する電池パック10のチャンネルは常時固定でもよいし、定期的に切り替えられてもよい。
 また、車両制御部5は、電源システム2の装着スロットに電池パック10が装着されたことを検出することを契機に、第1電池パック10aの第1電池制御部14aにターンオン指示を含む通電確認モード信号を送信し、第2電池パック10b-第4電池パック10dの第2電池制御部14b-第4電池制御部14dにターンオフ指示を含む通電確認モード信号を送信してもよい。
 電動車両1の起動中に電池パック10の抜去と装着が実施された場合、車両制御部5は信号ラインLsの遮断と通電から電池パック10の挿抜の有無を検出することができる。電動車両1のシャットダウン中に電池パック10の抜去と装着が実施された場合、車両制御部5は、装着された電池パック10から受信する電池パックIDとSOC(State Of Charge)をもとに、シャットダウン中に電池パック10の挿抜がなされたか否かを判定することができる。例えば、電池パックIDがシャットダウン前とシャットダウン後で異なる場合、車両制御部5は別の電池パック10に交換されたと判定する。また例えば、電池パックIDが同じでSOCがシャットダウン前よりシャットダウン後の方が増加している場合、車両制御部5は当該電池パック10が充電のために一度挿抜されたと判定する。
 ユーザ又はメンテナンス作業者が電池パック10のコネクタ15を装着スロットに装着させる際、コネクタ15内の信号端子は装着スロットの信号端子と正常に接続されたが、コネクタ15内のプラス又はマイナスの少なくとも一方の電源端子は装着スロットの対応する電源端子と接続不良を起こす場合がある。パワーラインLpの接続不良は、ユーザ又はメンテナンス作業者が装着スロットの正確な嵌合位置に電池パック10を装着できていない場合に発生する。また、電源端子の破損、腐食、摩耗等でも発生する。
 第1電池パック10aの第1電池制御部14aは、車両制御部5からターンオン指示を含む通電確認モード信号を受信すると、第1スイッチ部12aをターンオンさせ、第1スイッチ部12aのターンオン後に第1電圧計測部13aから電圧を取得する。第1電池制御部14aは、取得した電圧を、信号ラインLsを介して車両制御部5に送信する。
 第2電池パック10b-第4電池パック10dの第2電池制御部14b-第4電池制御部14dは、車両制御部5からターンオフ指示を含む通電確認モード信号を受信すると、第2スイッチ部12b-第4スイッチ部12dがオフ状態にあることを確認し、確認後に第2電圧計測部13b-第4電圧計測部13dから電圧を取得する。第2電池制御部14b-第4電池制御部14dは、それぞれ取得した電圧を、信号ラインLsを介して車両制御部5に送信する。
 図3は、電池パック10の通電確認シーケンスの判定結果をまとめた表を示す図である。車両制御部5は、第1電池パック10a-第4電池パック10dの所定の電池パック内の第1スイッチ部12a-第4スイッチ部12dのいずれか一つをターンオンした場合、第1電池パック10a-第4電池パック10d内の第1電圧計測部13a-第4電圧計測部13dでそれぞれ計測される複数の電圧が全て通電を示す場合、全ての電池パック10a-10dの通電を正常と判定する(パターン1)。
 車両制御部5は、第1電池パック10a-第4電池パック10d内の第1電圧計測部13a-第4電圧計測部13dでそれぞれ計測される複数の電圧が全て非通電(0V)を示す場合、第1電池パック10a内の通電異常と判定する(パターン2)。この場合、第1電池パック10a内のパワーラインLpの断線、第1スイッチ部12aのオープン故障等の異常が発生していると考えられる。
 車両制御部5は、第1電池パック10aの再装着を促すメッセージを報知部6から報知する。車両制御部5は例えば、再装着通知用のLEDランプを点灯させる。例えば、電池パックの装着スロットの数と配置に対応した複数のLEDランプを設け、車両制御部5は再装着を促す装着スロットに対応するLEDランプを点灯させてもよい。また、車両制御部5は例えば、ディスプレイに「一番左の電池パックを再装着してください」といったテキストメッセージを表示させてもよい。また、車両制御部5は例えば、スピーカから「一番左の電池パックを再装着してください」といった音声メッセージ、又はアラート音を出力させてもよい。各電池パック10にエラーコードを示すディスプレイ、LEDの点滅周期などによるユーザへの通知でもよい。
 ユーザ又はメンテナンス作業者により第1電池パック10aが装着スロットに再装着されると、車両制御部5は、上述した通電確認シーケンスを再度実行する。第1電圧計測部13a-第4電圧計測部13dの計測電圧が変わらない場合(パターン2のままである場合)、第1電池パック10a内の通電異常の判定を確定させる。車両制御部5は、第1電池パック10aの修理または交換を促すメッセージを報知部6から報知する。また車両制御部5は、インバータ4からモータ3に出力される電流の上限値を、第1電池パック10aを含まない並列数に対応する上限値に引き下げる。図2に示す例では、車両制御部5は、インバータ4からモータ3に出力される電流の上限値を、並列数4つ全ての電池パック10全ての通電が正常の場合の3/4倍に変更する。また車両制御部5は、モータ3からインバータ4に回生される電流の上限値も、第1電池パック10aを含まない並列数に対応する上限値に引き下げる。
 車両制御部5は、第1電池パック10a内の第1電圧計測部13aで計測される電圧が通電を示し、かつ第2電池パック10b-第4電池パック10dの第2電圧計測部13b-第4電圧計測部13dでそれぞれ計測される複数の電圧が非通電を示す場合、第1電池パック10aと電源システム2との間に接続不良が発生していると判定する(パターン3)。この場合、第1電池パック10aのコネクタ15内のプラス又はマイナスの少なくとも一方の電源端子が、電源システム2の装着スロットの対応する電源端子と接続不良を起こしていると考えられる。本明細書では、電池パック10と電源システム2との間の接続不良、及び電池パック10内の通電異常を総称して、電池パック10のパワーラインLpの異常と呼ぶ。
 車両制御部5は、第1電池パック10aの再装着を促すメッセージを報知部6から報知する。ユーザ又はメンテナンス作業者により第1電池パック10aが装着スロットに再装着されると、車両制御部5は、上述した通電確認シーケンスを再度実行する。コネクタ15の嵌合状態のずれが原因であり、再装着により嵌合状態のずれが解消し、通電経路が正しく形成された場合、第1電圧計測部13a-第4電圧計測部13dでそれぞれ計測される複数の電圧が全て通電に変化する(パターン1)。
 電源端子の破損等の不可逆的な損傷が発生している場合、第1電圧計測部13a-第4電圧計測部13dの計測電圧は変わらず、パターン3のままである。第1電圧計測部13a-第4電圧計測部13dの計測電圧が変わらない場合(パターン2のままである場合)、車両制御部5は、第1電池パック10aの不可逆的な接続不良と判定する。車両制御部5は、第1電池パック10aの修理または交換を促すメッセージを報知部6から報知する。また車両制御部5は、インバータ4からモータ3に出力される電流の上限値を、第1電池パック10aを含まない並列数に対応する上限値に引き下げる。また車両制御部5は、モータ3からインバータ4に回生される電流の上限値も、第1電池パック10aを含まない並列数に対応する上限値に引き下げる。
 車両制御部5は、第1電池パック10a、第3電池パック10c-第4電池パック10d内の第1電圧計測部13a、第3電圧計測部13c-第4電圧計測部13dでそれぞれ計測される電圧が通電を示し、かつ第2電池パック10bの第2電圧計測部13bで計測される電圧が非通電を示す場合、第2電池パック10bのパワーラインLpに異常が発生していると判定する(パターン4)。通電が遮断されている箇所が第2電池パック10bの内部であるか、コネクタ部分であるかは、この段階では特定できない。
 車両制御部5は、第2電池パック10bの再装着を促すメッセージを報知部6から報知する。ユーザ又はメンテナンス作業者により第2電池パック10bが装着スロットに再装着されると、車両制御部5は、上述した通電確認シーケンスを再度実行する。コネクタ15の嵌合状態のずれが原因であり、再装着により嵌合状態のずれが解消した場合、第1電圧計測部13a-第4電圧計測部13dでそれぞれ計測される複数の電圧が全て通電に変化する(パターン1)。
 その他の不可逆的なパワーラインLpの異常が原因であった場合、第1電圧計測部13a-第4電圧計測部13dの計測電圧は変わらず、パターン4のままである。第1電圧計測部13a-第4電圧計測部13dの計測電圧が変わらない場合(パターン4のままである場合)、車両制御部5は、第2電池パック10bのパワーラインLpに異常が発生しているとの判定を確定させる。車両制御部5は、第2電池パック10bの修理または交換を促すメッセージを報知部6から報知する。また車両制御部5は、インバータ4からモータ3に出力される電流の上限値を、第1電池パック10aを含まない並列数に対応する上限値に引き下げる。また車両制御部5は、モータ3からインバータ4に回生される電流の上限値も、第1電池パック10aを含まない並列数に対応する上限値に引き下げる。
 なお、車両制御部5は、第2電池パック10bの第2電池制御部14bにターンオン指示を含む通電確認モード信号を送信し、第1電池パック10a、第3電池パック10c-第4電池パック10dの第1電池制御部14a、第3電池制御部14c-第4電池制御部14dにターンオフ指示を含む通電確認モード信号を送信して、通電確認シーケンスを再度実行してもよい。第2電圧計測部13bの計測電圧が通電を示す場合、車両制御部5は、第2電池パック10bと電源システム2との不可逆的な接続不良と判定し、第2電圧計測部13bの計測電圧が非通電を示す場合、車両制御部5は、第2電池パック10b内の通電異常と判定する。
 車両制御部5は、第1電池パック10a-第2電池パック10b、第4電池パック10d内の第1電圧計測部13a-第2電圧計測部13b、第4電圧計測部13dでそれぞれ計測される電圧が通電を示し、かつ第3電池パック10cの第3電圧計測部13cで計測される電圧が非通電を示す場合、第3電池パック10cのパワーラインLpに異常が発生していると判定する(パターン5)。以降の処理は、パターン4の第2電池パック10bを第3電池パック10cに読み替えた処理と同様となる。
 車両制御部5は、第1電池パック10a-第3電池パック10c内の第1電圧計測部13a-第3電圧計測部13cでそれぞれ計測される電圧が通電を示し、かつ第4電池パック10dの第4電圧計測部13dで計測される電圧が非通電を示す場合、第4電池パック10dのパワーラインLpに異常が発生していると判定する(パターン6)。以降の処理は、パターン4の第2電池パック10bを第4電池パック10dに読み替えた処理と同様となる。
 図2に示す例は、第1電池パック10aと電源システム2との間に可逆的な接続不良が発生している場合を示しており、ユーザ又はメンテナンス作業者により第1電池パック10aが装着スロットに再装着されると、第1電池パック10aと電源システム2との間の接続不良が解消する。
 図2に示す例は、並列数4つの電池パック10の電源システム2に関して説明しており、電池パック10の並列数が3つ以上の複数の場合に適応される。電池パック10の並列数が第1電池パック10a、第2電池パック10bの2つの場合、一方の電池パック10のスイッチ部12のターンオンでは、図3に示すパターン3とパターン4との判定を確定できない。そのため、車両制御部5は、第1電池パック10a、第2電池パック10bの再装着を促すメッセージを報知部6から報知する。
 パターン3とパターン4との判定を確定できない場合、図2に示す例と同様に、ユーザ又はメンテナンス作業者により第1電池パック10a、第2電池パック10bが装着スロットに再装着されると、車両制御部5は、通電確認シーケンスを再度実行し、再装着により第1電池パック10a、第2電池パック10bの嵌合状態のずれが解消し、通電経路が形成された場合、第1電圧計測部13a、第2電圧計測部13bでそれぞれ計測される複数の電圧が全て通電に変化し(パターン1)、第1電池パック10a、第2電池パック10bの両方が正常と判定されるようにする。
 パターン3とパターン4との判定を確定できない場合、ターンオンしたスイッチ12aを含む一方の第1蓄電パック10aとは別の他方の第2電池パック10b内のスイッチ12bをターンオンに切り替えて第2蓄電パック10b内の電圧計測部13bで電圧を計測し、第2蓄電パック10b内の電圧計測部13bで計測される電圧が通電を示す場合は、第1蓄電パック10aのパワーラインLpに異常が発生していると判定し、第2蓄電パック10b内の電圧計測部13bで計測される電圧が非通電を示す場合は、第2蓄電パック10bのパワーラインLpに異常が発生していると判定するようにしても良い。
 図4A、4Bは、電池パック10の通電確認シーケンスの別の具体例を説明するための図である。図4Aに示す例は、第1電池パック10aと電源システム2との間と、第2電池パック10bと電源システム2との間の2箇所で可逆的な接続不良が発生している場合を示している。
 車両制御部5は、第1電池パック10aの第1電池制御部14aにターンオン指示を含む通電確認モード信号を送信し、第2電池パック10b-第4電池パック10dの第2電池制御部14b-第4電池制御部14dにターンオフ指示を含む通電確認モード信号を送信して、通電確認シーケンスを実行する。図4Aの状態では、第1電池パック10a内の第1電圧計測部13aで計測される電圧が通電を示し、かつ第2電池パック10b-第4電池パック10dの第2電圧計測部13b-第4電圧計測部13dでそれぞれ計測される複数の電圧が非通電を示す結果となり、車両制御部5は、第1電池パック10aと電源システム2との間に接続不良が発生していると判定する(パターン3)。
 車両制御部5は、第1電池パック10aの再装着を促すメッセージを報知部6から報知する。ユーザ又はメンテナンス作業者により第1電池パック10aが装着スロットに再装着されると、図4Bに示すように第1電池パック10aと電源システム2との間の接続不良が解消する。
 車両制御部5は、上述した通電確認シーケンスを再度実行する。第1電池パック10a、第3電池パック10c-第4電池パック10d内の第1電圧計測部13a、第3電圧計測部13c-第4電圧計測部13dでそれぞれ計測される電圧が通電を示し、かつ第2電池パック10bの第2電圧計測部13bで計測される電圧が非通電を示す結果となり、車両制御部5は、第2電池パック10bのパワーラインLpに異常が発生していると判定する(パターン4)。
 車両制御部5は、第2電池パック10bの再装着を促すメッセージを報知部6から報知する。ユーザ又はメンテナンス作業者により第2電池パック10bが装着スロットに再装着されると、第2電池パック10bと電源システム2との間の接続不良が解消する。
 車両制御部5は、上述した通電確認シーケンスを再度実行する。第1電池パック10a-第4電池パック10d内の第1電圧計測部13a-第4電圧計測部13dでそれぞれ計測される複数の電圧が全て通電を示す結果となり、車両制御部5は、全ての電池パック10a-10dの通電を正常と判定する(パターン1)。
 なお、車両制御部5は、上記パターン3が検出された段階で、再装着を促すメッセージを報知せず、別の一つのスイッチ部12をターンオンさせた通電確認シーケンスを実行してもよい。それぞれ異なるスイッチ部12をターンオンさせた通電確認シーケンスを複数回実行することにより、車両制御部5は、電源システム2に装着された複数の電池パック10の内、パワーラインLpに異常が発生している電池パック10の全てを特定することができる。車両制御部5は、パワーラインLpに異常が発生している全ての電池パック10の再装着を促すメッセージを報知部6から報知する。
 以上の説明では、車両制御部5が、第1電池パック10a-第4電池パック10dの第1電池制御部14a-第4電池制御部14dに通電確認モード信号を送信する例を説明した。この点、ユーザ又はメンテナンス作業者により電源システム2の装着スロットに電池パック10が装着されると、当該電池パック10(以下、装着電池パック10という)の電池制御部14が、装着電池パック10のスイッチ部12をターンオンさせるとともに、信号ラインLsで接続された他の電池パック10の電池制御部14に、ターンオフ指示を含む通電確認モード信号を送信してもよい。
 他の電池パック10の電池制御部14は、装着電池パック10の電池制御部14からターンオフ指示を含む通電確認モード信号を受信すると、スイッチ部12がオフ状態にあることを確認し、確認後に電圧計測部13から電圧を取得する。他の電池パック10の電池制御部14は、それぞれ取得した電圧を、信号ラインLsを介して装着電池パック10の電池制御部14に送信する。
 装着電池パック10の電池制御部14は、電源システム2に接続された複数の電池パック10内の電圧計測部13でそれぞれ計測される複数の電圧をもとに、上記パターン1-3のいずれに該当するか判定する。上記パターン2又は3に該当する場合、装着電池パック10の電池制御部14は、装着電池パック10の再装着を促すメッセージを報知部6から報知するように要求する要求信号を車両制御部5に送信する。なお、装着電池パック10自身に、再装着通知用のインジケータランプが搭載されている場合、装着電池パック10の電池制御部14は、当該インジケータランプを点灯させてもよい。
 なお、電源システム2が、電池パック10から物理的に独立した固定のマスタ電池制御部を搭載していてもよい。当該マスタ電池制御部は、信号ラインLsを介して装着スロットに装着されている電池パック10の管理を行う。当該マスタ電池制御部は、上述した通電確認シーケンスを実行することができる。
 上述した通電確認シーケンスは、複数の電池パック10を並列に充電可能な充電器にも適用可能である。
 図5は、実施の形態に係る充電器1aの構成例を示す図である。充電器1aは、充電台2a、インバータ4、充電制御部5a、及び報知部6を備える。充電台2aは、複数の電池パック10が並列接続された状態で収納可能な複数の充電スロットを有する。
 インバータ4の交流側は商用電力系統7に接続され、インバータ4は、商用電力系統7から供給される交流電力を直流電力に変換し、充電台2aに装着された少なくとも一つの電池パック10を充電することができる。インバータ4は、全波整流器、フィルタ、DC/DCコンバータを含んで構成されていてもよい。
 充電制御部5aは、充電台2aのいずれかの充電スロットに電池パック10が装着されたことを検出すると、第1電池パック10aの第1電池制御部14aに信号ラインLsを介して、第1スイッチ部12aのターンオン指示を含む通電確認モード信号を送信し、第2電池パック10b-第4電池パック10dの第2電池制御部14b-第4電池制御部14dに、第2スイッチ部12b-第4スイッチ部12dのターンオフ指示を含む通電確認モード信号を送信する。以降の処理は、上述した電動車両1の場合と同様である。
 以上説明したように本実施の形態によれば、電源システム2又は充電台2aに装着された各電池パック10のパワーラインLpの通電状態を高精度に確認することができる。本実施の形態では、通電の有無を電圧の有無で判定するため、物理的又は磁気的なセンサを使用する場合と比較して確実性が高い検出方法である。また、本実施の形態では並列接続されている複数の電池パック10間に電圧バラつきがあっても、ターンオンするスイッチ部12が一つであるため、横流が発生しない。従って、横流による無駄な電力消費が発生しない。また、計測電圧値を確定させるために横流の終了を待つ必要がなく、常に同じ計測時間で通電状態の有無を確認することができる。
 以上、本開示を実施の形態をもとに説明した。実施の形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なこと、またそうした変形例も本開示の範囲にあることは当業者に理解されるところである。
 上述の実施の形態では、電池モジュール11を内蔵する電池パック10を使用する例を説明した。この点、電気二重層キャパシタセル、リチウムイオンキャパシタセル等を含むキャパシタを内蔵するキャパシタパックを使用してもよい。本明細書では、電池パックとキャパシタパックを総称して蓄電パックと呼ぶ。
 上述の実施の形態では、着脱自在な可搬式・交換式の蓄電パックを想定した。この点、本開示に係る通電確認方法は、電動車両1に固定された蓄電パック(充電ケーブルで充電する)にも適用可能である。例えば、ユーザにより電動車両1の電源投入操作がなされる度に、車両制御部5は、上述した通電確認シーケンスを実行する。車両制御部5は、並列接続された複数の蓄電パックのいずれかのパワーラインLpの異常を検出することができる。この例では、異常検出時に車両制御部5は、再装着を促すメッセージは報知せず、修理または交換を促すメッセージを報知する。
 実施の形態に係る並列接続された複数の蓄電パックを備える電源システム2は、電動車両1以外の電動移動体にも使用可能である。例えば、当該電動移動体には電動船舶も含まれる。例えば、実施の形態に係る電源システム2を搭載した水上バスや水上タクシーに使用することができる。また、当該電動移動体には電車も含まれる。例えば、非電化路線で使用される気動車の代わりに、実施の形態に係る電源システム2を搭載した電車を使用することができる。当該電動移動体には電動の飛行体も含まれる。電動の飛行体には、マルチコプタ(ドローン)が含まれる。当該マルチコプタには、いわゆる空飛ぶ車も含まれる。また、実施の形態に係る並列接続された複数の蓄電パックは、定置型蓄電システムを構成することもできる。
 なお、実施の形態は、以下の項目によって特定されてもよい。
 [項目1]
 負荷(3、4)に対して並列接続された複数の蓄電パック(10)を備え、
 前記蓄電パック(10)は、
 蓄電モジュール(11)と、
 前記蓄電モジュール(11)と前記負荷(3、4)との間の通電をオン/オフするスイッチ(12)と、
 直列接続された前記スイッチ(12)と前記蓄電モジュール(11)の両端電圧を計測する電圧計測部(13)と、
 前記電圧計測部(13)により計測された電圧を取得するとともに、前記スイッチ(12)を制御可能な制御部(14)と、を含み、
 前記複数の蓄電パック(10)にそれぞれ含まれる複数の制御部(14)は、信号ライン(Ls)で接続されており、
 前記複数の蓄電パック(10)にそれぞれ含まれる複数のスイッチ(12)がオフ状態において、一つの蓄電パック(10)の前記スイッチ(12)がターンオンされ、
 前記ターンオンしたスイッチ(12)を含む全ての蓄電パック(10)内の前記電圧計測部(13)でそれぞれ計測される複数の電圧が全て通電を示す場合、正常と判定され、
 前記ターンオンしたスイッチ(12)を含む蓄電パック(10)内の前記電圧計測部(13)で通電を示す電圧が計測され、前記ターンオンしたスイッチ(12)を含む蓄電パック(10)以外の蓄電パック(10)内の前記電圧計測部(13)で非通電を示す電圧が計測された場合、前記複数の蓄電パック(10)のいずれかのパワーライン(Lp)に異常が発生していると判定される、
 ことを特徴とする電源システム(2)。
 これによれば、電源システム(2)に接続された各蓄電パック(10)のパワーライン(Lp)の通電状態を高精度に確認することができる。
 [項目2]
 前記蓄電パック(10)が3個以上の場合、
 前記ターンオンしたスイッチ(12)を含む蓄電パック(10)以外の全ての蓄電パック(10)内の前記電圧計測部(13)でそれぞれ計測される複数の電圧が全て非通電を示す場合、前記ターンオンしたスイッチ(12)を含む蓄電パック(10)のパワーライン(Lp)に異常が発生していると判定され、
 前記ターンオンしたスイッチ(12)を含む蓄電パック(10)以外の全ての蓄電パック(10)内の前記電圧計測部(13)でそれぞれ計測された複数の電圧の内、非通電を示す電圧が含まれる場合、前記非通電を示す電圧が計測された蓄電パック(10)のパワーライン(Lp)に異常が発生していると判定され、
 前記蓄電パック(10)が2個の場合、
 2個の蓄電パック(10)のうち少なくとも一方の蓄電パック(10)のパワーライン(Lp)に異常が発生していると判定される、
 ことを特徴とする項目1に記載の電源システム(2)。
 これによれば、電源システム(2)に接続された各蓄電パック(10)のパワーライン(Lp)の通電状態を高精度に確認することができる。
 [項目3]
 前記蓄電パック(10)は、前記電源システム(2)に着脱自在な蓄電パック(10)であり、
 前記ターンオンしたスイッチ(12)を含む蓄電パック(10)内の前記電圧計測部(13)で計測される電圧が通電を示し、かつ前記ターンオンしたスイッチ(12)を含む蓄電パック(10)以外の全ての蓄電パック(10)内の前記電圧計測部(13)でそれぞれ計測される複数の電圧が全て非通電を示す場合、前記ターンオンしたスイッチ(12)を含む蓄電パック(10)と前記電源システム(2)との間に接続不良が発生していると判定される、
 ことを特徴とする項目1に記載の電源システム(2)。
 これによれば、電源システム(2)に装着された各蓄電パック(10)のパワーライン(Lp)の通電状態を高精度に確認することができる。
 [項目4]
 前記パワーライン(Lp)に異常が発生していると判定された蓄電パック(10)の再装着を促すメッセージがユーザインタフェースから報知される、
 ことを特徴とする項目1または3に記載の電源システム(2)。
 これによれば、再装着による接続不良の解消の機会を設けることができる。
 [項目5]
 前記パワーライン(Lp)に異常が発生していると判定された蓄電パック(10)が再装着された後、一つの蓄電パック(10)の前記スイッチ(12)がターンオンされる、
 ことを特徴とする項目4に記載の電源システム(2)。
 これによれば、一時的な接続不良であるか、不可逆的なパワーライン(Lp)の異常であるかを判別することができる。
 [項目6]
 モータ(3)と、
 前記モータ(3)を駆動する駆動回路(4)と、
 前記駆動回路(4)に対して並列接続された複数の蓄電パック(10)を備える項目1から5のいずれか1項に記載の電源システム(2)と、
 を備えることを特徴とする電動移動体(1)。
 これによれば、電源システム(2)に接続された各蓄電パック(10)のパワーライン(Lp)の通電状態を高精度に確認することができる機能を搭載した電動移動体(1)を実現できる。
 [項目7]
 着脱自在な複数の蓄電パック(10)を、並列接続された状態で充電可能な充電台(2a)を備える充電器(1a)であって、
 前記蓄電パック(10)は、
 蓄電モジュール(11)と、
 前記蓄電モジュール(11)と前記充電器との間の通電をオン/オフするスイッチ(12)と、
 直列接続された前記スイッチ(12)と前記蓄電モジュール(11)の両端電圧を計測する電圧計測部(13)と、
 前記電圧計測部(13)により計測された電圧を取得するとともに、前記スイッチ(12)を制御可能な制御部(14)と、を含み、
 前記複数の蓄電パック(10)にそれぞれ含まれる複数の制御部(14)は、信号ライン(Ls)で接続されており、
 前記複数の蓄電パック(10)にそれぞれ含まれる複数のスイッチ(12)がオフ状態において、一つの蓄電パック(10)の前記スイッチ(12)がターンオンされ、
 前記ターンオンしたスイッチ(12)を含む全ての蓄電パック(10)内の前記電圧計測部(13)でそれぞれ計測される複数の電圧が全て通電を示す場合、正常と判定され、
 前記ターンオンしたスイッチ(12)を含む蓄電パック(10)内の前記電圧計測部(13)で計測される電圧が非通電を示し、かつ前記ターンオンしたスイッチ(12)を含む蓄電パック(10)以外の全ての蓄電パック(10)内の前記電圧計測部(13)でそれぞれ計測される複数の電圧が全て非通電を示す場合、前記ターンオンしたスイッチ(12)を含む蓄電パック(10)内に通電異常が発生していると判定され、
 前記ターンオンしたスイッチ(12)を含む蓄電パック(10)内の前記電圧計測部(13)で計測される電圧が通電を示し、かつ前記ターンオンしたスイッチ(12)を含む蓄電パック(10)以外の全ての蓄電パック(10)内の前記電圧計測部(13)でそれぞれ計測される複数の電圧が全て非通電を示す場合、前記ターンオンしたスイッチ(12)を含む蓄電パック(10)と前記充電器との間に接続不良が発生していると判定され、
 前記ターンオンしたスイッチ(12)を含む蓄電パック(10)以外の全ての蓄電パック(10)内の前記電圧計測部(13)でそれぞれ計測された複数の電圧の内、非通電を示す電圧が含まれる場合、前記非通電を示す電圧が計測された蓄電パック(10)のパワーライン(Lp)に異常が発生していると判定される、
 ことを特徴とする充電器(1a)。
 これによれば、充電台(2a)に装着された各蓄電パック(10)のパワーライン(Lp)の通電状態を高精度に確認することができる機能を搭載した充電器(2a)を実現できる。
 [項目8]
 負荷(3、4)に対して並列接続された複数の蓄電パック(10)の通電確認方法であって、
 前記蓄電パック(10)は、
 蓄電モジュール(11)と、
 前記蓄電モジュール(11)と前記負荷(3、4)との間の通電をオン/オフするスイッチ(12)と、
 直列接続された前記スイッチ(12)と前記蓄電モジュール(11)の両端電圧を計測する電圧計測部(13)と、
 前記電圧計測部(13)により計測された電圧を取得するとともに、前記スイッチ(12)を制御可能な制御部(14)と、を含み、
 前記複数の蓄電パック(10)にそれぞれ含まれる複数の制御部(14)が信号ライン(Ls)は、接続されており、
 前記通電確認方法は、
 前記複数の蓄電パック(10)にそれぞれ含まれる複数のスイッチ(12)がオフ状態において、一つの蓄電パック(10)の前記スイッチ(12)がターンオンし、
 前記ターンオンしたスイッチ(12)を含む全ての蓄電パック(10)内の前記電圧計測部(13)でそれぞれ計測される複数の電圧が全て通電を示す場合、正常と判定し、
 前記ターンオンしたスイッチ(12)を含む蓄電パック(10)内の前記電圧計測部(13)で通電を示す電圧が計測され、前記ターンオンしたスイッチ(12)を含む蓄電パック(10)以外の蓄電パック(10)内の前記電圧計測部(13)で非通電を示す電圧が計測された場合、前記複数の蓄電パック(10)のいずれかのパワーライン(Lp)に異常が発生していると判定する、
 これによれば、並列接続された各蓄電パック(10)のパワーライン(Lp)の通電状態を高精度に確認することができる。
 1 電動車両、 1a 充電器、 2 電源システム、 2a 充電台、 3 モータ、 4 インバータ、 5 車両制御部、 5a 充電制御部、 6 報知部、 7 商用電力系統、 10 電池パック、 11 電池モジュール、 12 スイッチ部、 13 電圧計測部、 14 電池制御部、 15 コネクタ、 S1-S3 スイッチ、 Sm メインスイッチ、 E1-En セル、 R1 抵抗、 Lp パワーライン、 Ls 信号ライン。

Claims (8)

  1.  負荷に対して並列接続された複数の蓄電パックを備え、
     前記蓄電パックは、
     蓄電モジュールと、
     前記蓄電モジュールと前記負荷との間の通電をオン/オフするスイッチと、
     直列接続された前記スイッチと前記蓄電モジュールの両端電圧を計測する電圧計測部と、
     前記電圧計測部により計測された電圧を取得するとともに、前記スイッチを制御可能な制御部と、を含み、
     前記複数の蓄電パックにそれぞれ含まれる複数の制御部は、信号ラインで接続されており、
     前記複数の蓄電パックにそれぞれ含まれる複数のスイッチがオフ状態において、一つの蓄電パックの前記スイッチがターンオンされ、
     前記ターンオンしたスイッチを含む全ての蓄電パック内の前記電圧計測部でそれぞれ計測される複数の電圧が全て通電を示す場合、正常と判定され、
     前記ターンオンしたスイッチを含む蓄電パック内の前記電圧計測部で通電を示す電圧が計測され、前記ターンオンしたスイッチを含む蓄電パック以外の蓄電パック内の前記電圧計測部で非通電を示す電圧が計測された場合、前記複数の蓄電パックのいずれかのパワーラインに異常が発生していると判定される、
     ことを特徴とする電源システム。
  2.  前記蓄電パックが3個以上の場合、
     前記ターンオンしたスイッチを含む蓄電パック以外の全ての蓄電パック内の前記電圧計測部でそれぞれ計測される複数の電圧が全て非通電を示す場合、前記ターンオンしたスイッチを含む蓄電パックのパワーラインに異常が発生していると判定され、
     前記ターンオンしたスイッチを含む蓄電パック以外の全ての蓄電パック内の前記電圧計測部でそれぞれ計測された複数の電圧の内、非通電を示す電圧が含まれる場合、前記非通電を示す電圧が計測された蓄電パックのパワーラインに異常が発生していると判定され、
     前記蓄電パックが2個の場合、
     2個の蓄電パックの少なくとも一方の蓄電パックのパワーラインに異常が発生していると判定される、
     ことを特徴とする請求項1に記載の電源システム。
  3.  前記蓄電パックは、前記電源システムに着脱自在な蓄電パックであり、
     前記ターンオンしたスイッチを含む蓄電パック内の前記電圧計測部で計測される電圧が通電を示し、かつ前記ターンオンしたスイッチを含む蓄電パック以外の全ての蓄電パック内の前記電圧計測部でそれぞれ計測される複数の電圧が全て非通電を示す場合、前記ターンオンしたスイッチを含む蓄電パックと前記電源システムとの間に接続不良が発生していると判定される、
     ことを特徴とする請求項1に記載の電源システム。
  4.  前記パワーラインに異常が発生していると判定された蓄電パックの再装着を促すメッセージがユーザインタフェースから報知される、
     ことを特徴とする請求項1または3に記載の電源システム。
  5.  前記パワーラインに異常が発生していると判定された蓄電パックが再装着された後、一つの蓄電パックの前記スイッチがターンオンされる、
     ことを特徴とする請求項4に記載の電源システム。
  6.  モータと、
     前記モータを駆動する駆動回路と、
     前記駆動回路に対して並列接続された複数の蓄電パックを備える請求項1から5のいずれか1項に記載の電源システムと、
     を備えることを特徴とする電動移動体。
  7.  着脱自在な複数の蓄電パックを、並列接続された状態で充電可能な充電台を備える充電器であって、
     前記蓄電パックは、
     蓄電モジュールと、
     前記蓄電モジュールと前記充電器との間の通電をオン/オフするスイッチと、
     直列接続された前記スイッチと前記蓄電モジュールの両端電圧を計測する電圧計測部と、
     前記電圧計測部により計測された電圧を取得するとともに、前記スイッチを制御可能な制御部と、を含み、
     前記複数の蓄電パックにそれぞれ含まれる複数の制御部は、信号ラインで接続されており、
     前記複数の蓄電パックにそれぞれ含まれる複数のスイッチがオフ状態において、一つの蓄電パックの前記スイッチがターンオンされ、
     前記ターンオンしたスイッチを含む全ての蓄電パック内の前記電圧計測部でそれぞれ計測される複数の電圧が全て通電を示す場合、正常と判定され、
     前記ターンオンしたスイッチを含む蓄電パック内の前記電圧計測部で計測される電圧が非通電を示し、かつ前記ターンオンしたスイッチを含む蓄電パック以外の全ての蓄電パック内の前記電圧計測部でそれぞれ計測される複数の電圧が全て非通電を示す場合、前記ターンオンしたスイッチを含む蓄電パック内に通電異常が発生していると判定され、
     前記ターンオンしたスイッチを含む蓄電パック内の前記電圧計測部で計測される電圧が通電を示し、かつ前記ターンオンしたスイッチを含む蓄電パック以外の全ての蓄電パック内の前記電圧計測部でそれぞれ計測される複数の電圧が全て非通電を示す場合、前記ターンオンしたスイッチを含む蓄電パックと前記充電器との間に接続不良が発生していると判定され、
     前記ターンオンしたスイッチを含む蓄電パック以外の全ての蓄電パック内の前記電圧計測部でそれぞれ計測された複数の電圧の内、非通電を示す電圧が含まれる場合、前記非通電を示す電圧が計測された蓄電パックのパワーラインに異常が発生していると判定される、
     ことを特徴とする充電器。
  8.  負荷に対して並列接続された複数の蓄電パックの通電確認方法であって、
     前記蓄電パックは、
     蓄電モジュールと、
     前記蓄電モジュールと前記負荷との間の通電をオン/オフするスイッチと、
     直列接続された前記スイッチと前記蓄電モジュールの両端電圧を計測する電圧計測部と、
     前記電圧計測部により計測された電圧を取得するとともに、前記スイッチを制御可能な制御部と、を含み、
     前記複数の蓄電パックにそれぞれ含まれる複数の制御部が信号ラインは、接続されており、
     前記通電確認方法は、
     前記複数の蓄電パックにそれぞれ含まれる複数のスイッチがオフ状態において、一つの蓄電パックの前記スイッチがターンオンし、
     前記ターンオンしたスイッチを含む全ての蓄電パック内の前記電圧計測部でそれぞれ計測される複数の電圧が全て通電を示す場合、正常と判定し、
     前記ターンオンしたスイッチを含む蓄電パック内の前記電圧計測部で通電を示す電圧が計測され、前記ターンオンしたスイッチを含む蓄電パック以外の蓄電パック内の前記電圧計測部で非通電を示す電圧が計測された場合、前記複数の蓄電パックのいずれかのパワーラインに異常が発生していると判定する、
     ことを特徴とする通電確認方法。
PCT/JP2023/000429 2022-03-16 2023-01-11 電源システム、電動移動体、充電器、及び通電確認方法 WO2023176104A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-041252 2022-03-16
JP2022041252 2022-03-16

Publications (1)

Publication Number Publication Date
WO2023176104A1 true WO2023176104A1 (ja) 2023-09-21

Family

ID=88023268

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/000429 WO2023176104A1 (ja) 2022-03-16 2023-01-11 電源システム、電動移動体、充電器、及び通電確認方法

Country Status (1)

Country Link
WO (1) WO2023176104A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130063094A1 (en) * 2011-09-09 2013-03-14 GM Global Technology Operations LLC Method and system for use with a vehicle battery
WO2015041249A1 (ja) * 2013-09-20 2015-03-26 新神戸電機株式会社 蓄電システム及び蓄電システムの保全方法
JP2016019412A (ja) * 2014-07-10 2016-02-01 パナソニックIpマネジメント株式会社 蓄電システム、および、蓄電システムの制御方法
JP2021534553A (ja) * 2018-08-29 2021-12-09 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh 蓄電池パックで接触不良を認識する方法、およびこの方法を実施するためのシステム
WO2022024836A1 (ja) * 2020-07-28 2022-02-03 パナソニックIpマネジメント株式会社 管理装置、電源システム、電動移動体、及び管理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130063094A1 (en) * 2011-09-09 2013-03-14 GM Global Technology Operations LLC Method and system for use with a vehicle battery
WO2015041249A1 (ja) * 2013-09-20 2015-03-26 新神戸電機株式会社 蓄電システム及び蓄電システムの保全方法
JP2016019412A (ja) * 2014-07-10 2016-02-01 パナソニックIpマネジメント株式会社 蓄電システム、および、蓄電システムの制御方法
JP2021534553A (ja) * 2018-08-29 2021-12-09 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh 蓄電池パックで接触不良を認識する方法、およびこの方法を実施するためのシステム
WO2022024836A1 (ja) * 2020-07-28 2022-02-03 パナソニックIpマネジメント株式会社 管理装置、電源システム、電動移動体、及び管理方法

Similar Documents

Publication Publication Date Title
US8655535B2 (en) Electric vehicle and method for controlling same
US10895603B2 (en) Voltage monitoring module and voltage monitoring system to detect a current leakage
CN107662499B (zh) 纯电动汽车整车故障下电控制方法及系统
US9929674B2 (en) Power supply system for vehicle
US7683576B2 (en) Smart lead acid battery charging/discharging management system
JP7140007B2 (ja) 蓄電システム
JP6232091B2 (ja) 車両適用のための高電圧バッテリシステム
US8977416B2 (en) Electric vehicle and method for controlling emergency thereof
US8587257B2 (en) Secondary battery device and vehicle
WO2014103707A1 (ja) 電動車両を用いた電力供給装置
JP2013096770A (ja) 蓄電システム
WO2012053643A1 (ja) 電池システム
JP2010252592A (ja) 車両用電池制御システム
JP2003174738A (ja) 電動車両の電池電源装置
US20150171642A1 (en) Battery control device
KR20120094529A (ko) 전원 장치 및 이를 사용한 차량 및 축전 장치
JP2003209907A (ja) 電池電源装置のリレー接点溶着検査方法
WO2021200195A1 (ja) 蓄電パック、電動移動体、及び充電装置
JP2006014480A (ja) 車両用の電源装置
KR20180023140A (ko) 파워릴레이 어셈블리의 고장제어 시스템 및 그 제어방법
JP2019521323A (ja) 常時電源供給のための並列回路を用いてバッテリーのリレーの故障を診断する装置及び方法
JPWO2017208740A1 (ja) 管理装置および電源システム
WO2012043590A1 (ja) 電源装置
JP2007099033A (ja) 電流センサの異常検出装置
US20150175018A1 (en) Power storage system and control device of power storage device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770068

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024507527

Country of ref document: JP

Kind code of ref document: A