WO2023175955A1 - 交通制御装置、交通制御システム、交通制御方法及び記録媒体 - Google Patents

交通制御装置、交通制御システム、交通制御方法及び記録媒体 Download PDF

Info

Publication number
WO2023175955A1
WO2023175955A1 PCT/JP2022/012793 JP2022012793W WO2023175955A1 WO 2023175955 A1 WO2023175955 A1 WO 2023175955A1 JP 2022012793 W JP2022012793 W JP 2022012793W WO 2023175955 A1 WO2023175955 A1 WO 2023175955A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
traffic
exhaust gas
amount
traffic control
Prior art date
Application number
PCT/JP2022/012793
Other languages
English (en)
French (fr)
Inventor
航生 小林
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to PCT/JP2022/012793 priority Critical patent/WO2023175955A1/ja
Publication of WO2023175955A1 publication Critical patent/WO2023175955A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/07Controlling traffic signals
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle

Definitions

  • the present invention relates to a traffic control device, a traffic control system, a traffic control method, and a recording medium.
  • Patent Document 1 discloses a technique for estimating traffic volume.
  • Non-Patent Document 1 discloses a technique for estimating carbon dioxide emissions.
  • the present invention was made in view of the above-mentioned circumstances, and one of its purposes is to reduce the amount of exhaust gas from vehicles.
  • Estimating means for estimating the amount of vehicle exhaust gas at the target point A traffic control device is provided, which includes a traffic control means that executes processing for controlling traffic of a target vehicle using the estimated amount of exhaust gas.
  • the computer is Estimate the amount of exhaust gas from vehicles passing through the target point
  • a traffic control method is provided that includes executing processing for controlling traffic of a target vehicle using the estimated exhaust gas amount.
  • the above traffic control device a sensor device that detects a physical quantity for estimating the amount of exhaust gas at the target point;
  • a traffic control system is provided that includes at least one of a traffic light and an on-vehicle device.
  • a recording medium in which a program for executing the following steps is provided: executing a process for controlling traffic of the target vehicle using the estimated amount of exhaust gas.
  • FIG. 1 is a diagram showing an example of the configuration of a traffic control system according to Embodiment 1 of the present invention. It is a diagram showing an example of target points and sensor devices and traffic lights associated with the respective points. It is a figure showing an example of sensor information.
  • 1 is a diagram illustrating an example of a physical configuration of a traffic control system according to a first embodiment;
  • FIG. It is a figure showing an example of a flow chart of traffic control processing concerning Embodiment 1 of the present invention.
  • 7 is a diagram illustrating an example of the configuration of a traffic control system according to Modification 1.
  • FIG. It is a figure showing an example of composition of a traffic control system concerning Embodiment 2 of the present invention.
  • FIG. 7 is a diagram illustrating an example of a functional configuration of a traffic control unit according to modification example 4.
  • FIG. 12 is a diagram illustrating an example of a functional configuration of a traffic control unit according to modification 5.
  • FIG. 12 is a diagram illustrating an example of a functional configuration of a traffic control device according to modification 5.
  • the traffic control system 100 is a system for controlling traffic of vehicles C on roads R1 to R4.
  • the traffic control system 100 includes sensor devices 101a to 101d, a traffic control device 102, and a plurality of traffic lights S, as shown in FIG.
  • the traffic control device 102, the sensor devices 101a to 101d, and the traffic lights S are interconnected via a network N constructed by wires, wirelessly, or a combination of these. This allows the traffic control device 102 and each of the sensor devices 101a to 101d to send and receive information to and from each other. Further, the traffic control device 102 and each of the traffic lights S can send and receive information to and from each other.
  • FIG. 2 is a diagram of roads R1 to R4 viewed from above, and is a diagram showing examples of target points Pa to Pd and sensor devices 101a to 101d and traffic lights S associated with the target points Pa to Pd, respectively.
  • Each of roads R1 to R4 has two lanes for left-hand traffic (i.e., roads R1 and R4 have one lane in each direction, upward and downward in FIG. 2, and roads R2 and R3 have two lanes in each direction, upward and downward in FIG. This is an example of a road with one lane in each direction.
  • target point is not limited to an intersection, but may be any point predetermined in relation to the roads R1 to R4, such as a predetermined section of the roads R1 to R4.
  • Each of the sensor devices 101a to 101d includes a sensor that detects a physical quantity for estimating the amount of exhaust gas at the associated target points Pa to Pd.
  • Each of the sensor devices 101a to 101d generates sensor information including physical quantities detected by the sensor, and transmits the sensor information to the traffic control device 102 via the network N.
  • Each of the sensor devices 101a to 101d generates sensor information including images taken of the associated target points Pa to Pd, and transmits the sensor information to the traffic control device 102.
  • Each of the sensor devices 101a to 101d is composed of, for example, a camera that includes an image sensor that detects the color and brightness of each pixel as physical quantities according to the light from the imaging area.
  • the sensor information includes point information and images, as shown in an example in FIG.
  • the point information is information for identifying target points Pa to Pd.
  • the sensor information illustrated in FIG. 2 is an example of sensor information generated by the sensor device 101a, and includes point information "Pa" indicating the target point Pa and an image of the target point Pa.
  • roads R1 to R4 are not particularly distinguished, they will also be simply referred to as “road R.”
  • target points Pa to Pd are not particularly distinguished, they are also simply referred to as “target point P.”
  • sensor devices 101a to 101d are not particularly distinguished, they are also simply referred to as “sensor device 101.”
  • the number of target points P is not limited to four, but may be one or more.
  • the number of sensor devices 101 is not limited to four, and one or more sensor devices may be installed in association with each of one or more target points.
  • the number of traffic lights S may also be one or more.
  • the traffic control device 102 functionally includes an estimation section 103 and a traffic control section 104, as shown in FIG.
  • the estimation unit 103 acquires sensor information from the sensor device 101 via the network N. Then, the estimation unit 103 estimates the amount of exhaust gas of the vehicle C at the target point P based on the acquired sensor information.
  • the amount of exhaust gas of the vehicle C according to the present embodiment is the amount of carbon dioxide (CO 2 ) emitted from the vehicle C, that is, the amount of CO 2 .
  • the amount of exhaust gas from vehicle C is not limited to the amount of CO2 emitted from vehicle C, and may be, for example, the total amount of gas emitted from vehicle C, or the amount of CO2 emitted from vehicle C. It may also be the amount of gas.
  • a greenhouse gas is suitable as the specific component gas, and CO 2 is an example of a greenhouse gas.
  • greenhouse gases other than CO 2 include methane and dinitrogen monoxide.
  • the traffic control unit 104 executes processing for controlling the traffic of the target vehicle C using the exhaust gas amount estimated by the estimation unit 103.
  • the target vehicle C may be a vehicle whose exhaust gas amount is estimated by the estimation unit 103, or may be a vehicle other than the vehicle whose exhaust gas amount is estimated by the estimation unit 103.
  • the traffic control unit 104 controls the plurality of traffic lights S using the estimated exhaust gas amount estimated by the estimation unit 103. Thereby, the traffic control unit 104 according to this embodiment controls the traffic of the target vehicle C. That is, in this embodiment, the target vehicle is a vehicle C passing through a target point P where a traffic light S to be controlled is installed. Note that the number of traffic lights S to be controlled may be one.
  • the traffic control unit 104 uses the exhaust gas amount estimated by the estimation unit 103 to control the traffic light S so that the amount of speed change of the target vehicle becomes small.
  • the traffic control unit 104 uses the exhaust gas amount estimated by the estimation unit 103 to determine whether or not the estimated exhaust gas amount exceeds a predetermined reference value for each target point P. do. Then, if there is a target point P that exceeds a predetermined reference value, the traffic control unit 104 controls the traffic light S to reduce the traffic volume of vehicles C at the target point P that exceeds the reference value. .
  • the traffic control unit 104 uses the exhaust gas amount estimated by the estimation unit 103 to cause the target vehicle to pass through a target point P where the estimated exhaust gas amount is smaller than other target points P. Control traffic.
  • the traffic control unit 104 uses the exhaust gas amount estimated by the estimation unit 103 to determine whether or not the estimated exhaust gas amount is less than a predetermined reference value for each target point P. judge. Then, if there is a target point P whose amount is less than a predetermined reference value, the traffic control unit 104 replaces the target point P whose amount is less than the reference value with another target point P whose estimated exhaust gas amount is greater than the target point P.
  • the traffic of the target vehicle is controlled so that it passes through the target point P with priority.
  • the traffic control device 102 is, for example, a general-purpose computer, and as shown in FIG. has.
  • the bus 1010 is a data transmission path through which the processor 1020, memory 1030, storage device 1040, input interface 1050, output interface 1060, and network interface 1070 exchange data with each other.
  • the method of connecting the processors 1020 and the like to each other is not limited to bus connection.
  • the processor 1020 is a processor implemented by a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), or the like.
  • the memory 1030 is a main storage device implemented by RAM (Random Access Memory) or the like.
  • the storage device 1040 is an auxiliary storage device realized by a HDD (Hard Disk Drive), an SSD (Solid State Drive), a memory card, a ROM (Read Only Memory), or the like.
  • the storage device 1040 stores program modules for realizing each function of the traffic control device 102.
  • the processor 1020 reads each of these program modules into the memory 1030 and executes them, each function corresponding to the program module is realized.
  • the input interface 1050 is an interface for the user to input information, and is, for example, one or more of a touch panel, a keyboard, a mouse, and the like.
  • the output interface 1060 is an interface for presenting information to the user, and is, for example, one or more of a liquid crystal panel, an organic EL (Electro Luminescence) panel, etc.
  • the network interface 1070 is an interface for connecting the traffic control device 102 to the network N.
  • the traffic control process is a method for the traffic control device 102 to control traffic of target vehicles on roads R1 to R4 based on sensor information, and an example of the flowchart is shown in FIG. 5.
  • the traffic control process is repeatedly executed in real time, for example, when the traffic control device 102 acquires sensor information from each of the sensor devices 101.
  • the estimation unit 103 estimates the amount of exhaust gas of the vehicle C at the target point P based on the sensor information acquired from the sensor device 101 (step S101).
  • each image of target points Pa to Pd is specified based on the point information included in the sensor information, and the exhaust gas of vehicle C at target point P is determined based on each image of target points Pa to Pd. Estimate the amount.
  • the sensor information may include a sensor ID (Identifier) for identifying the sensor devices 101a to 101d, an address in the network N of the sensor devices 101a to 101d, etc. instead of the point information.
  • the estimation unit 103 stores in advance conversion data that associates sensor IDs or addresses with point information, and associates the image of the sensor information with the target points Pa to Pd by referring to the conversion data. Good too.
  • a conventional method may be used as a method for estimating the amount of exhaust gas from the image. For example, the amount of exhaust gas of the vehicle C at the target point P is estimated using an exhaust gas estimation model prepared in advance.
  • the exhaust gas estimation model is a model that uses data (image data) including images of each of the target points Pa to Pd as input data and outputs an estimated value of the amount of exhaust gas of the vehicle C at the target point P.
  • the exhaust gas estimation model estimates the amount of exhaust gas of the vehicle C at each of the target points Pa to Pd using images of each of the target points Pa to Pd as input data.
  • the vehicle type refers to the type of vehicle, and is preferably a type related to the environmental performance of the vehicle.
  • Types related to the environmental performance of a vehicle include, for example, the type of vehicle, the type of power generation source of the vehicle, and the like.
  • Types of power generation sources for vehicles include, for example, electric vehicles that use electricity as a power generation source, and fuel vehicles that use fuel as a power generation source.
  • Fuel-using vehicles may be further classified into engine (internal combustion engine) vehicles that use only fuel as a power generation source, hybrid cars that use both fuel and electric power as power generation sources, and the like.
  • Engine vehicles may be further classified into gasoline vehicles, diesel vehicles, etc., depending on the type of fuel used as a power generation source.
  • the exhaust gas estimation model includes a first model and a second model.
  • the first model is a model for obtaining traffic information for the vehicle C at each of the target points Pa to Pd using images of each of the target points Pa to Pd as input data.
  • the traffic information includes the vehicle type of each vehicle C, and may further include the number of each vehicle type.
  • the first model is preferably a learned model that has undergone machine learning to output traffic information for the vehicle C at the target point P using the image data of the target point P as input data.
  • machine learning of the first model for example, data including the vehicle type of the vehicle C included in the image of the input data and the number of vehicles for each vehicle type is used as teacher data.
  • the second model is a model that outputs the estimated value of the exhaust gas amount of each vehicle C at the target point P and the sum thereof using the traffic information of the vehicle C at the target point P obtained in the first model as input data.
  • An example of the second model will be described below.
  • the first example of the second model is a model that includes a constant amount of exhaust gas per vehicle that is predetermined for each vehicle type (for example, an average amount of exhaust gas during driving for each vehicle type).
  • the estimating unit 103 specifies a second model corresponding to the vehicle type of each vehicle C at the target point P obtained by the first model, and calculates the amount of exhaust gas included in the second model as the exhaust gas amount of each vehicle C. Estimate the amount. Then, the estimating unit 103 calculates the sum of the estimated values of the exhaust gas amount of each vehicle C, thereby obtaining the sum of the estimated value of the exhaust gas amount of the vehicle C at the target point P.
  • a second example of the second model is a model that estimates the amount of exhaust gas per vehicle for each vehicle type, taking into account one or more driving conditions.
  • Such a second model may be expressed as a predetermined function that includes driving conditions as parameters, a table that defines values according to combinations of driving conditions, etc. It may be a trained learning model that has been subjected to machine learning to estimate.
  • the driving condition is a condition related to the driving of the vehicle C, and particularly affects the amount of exhaust gas of the vehicle C.
  • the running conditions include the running speed of the vehicle C, the rate of change in the running speed of the vehicle C, the idling stop state when stopped, the load capacity which is the total weight of the people on board the vehicle C and the luggage loaded on the vehicle C, and the road. Information, weather information, road surface conditions, and vehicle conditions can be exemplified.
  • the running speed of the vehicle C, the rate of change in the running speed of the vehicle C, the idling stop state when the vehicle C is stopped, the number of people boarding the vehicle C, and the total weight of the luggage loaded on the vehicle C are determined at the target point P. Estimated based on images.
  • the traveling speed and its rate of change are estimated, for example, by determining the amount of movement of the vehicle C per hour through image processing.
  • the idling stop state when the vehicle is stopped is determined by, for example, linking the vehicle type estimated from the image of the stopped vehicle C, idling stop information indicating whether the idling stop function is installed, and vehicle type information indicating the vehicle type. Estimated based on vehicle model data.
  • the loading amount is estimated, for example, based on information from a weight sensor mounted on the vehicle C and the amount of sinking determined by image processing.
  • Road information is, for example, information indicating the attributes of the road R on which the vehicle C travels, such as the slope, curves, number of lanes, the lane the vehicle traveled on, the installation of CO 2 absorbers in buildings around the road, etc. This is information that indicates the situation.
  • the weather information is, for example, information indicating wind power obtained from a wind meter installed on the road, an external device (not shown) that provides weather information, or the like.
  • the road surface condition of the road R includes, for example, whether there is snow on the road surface, whether the road surface is wet due to rain, etc., and whether the road surface is frozen.
  • the vehicle condition is, for example, the presence or absence of chains attached to the tires of the vehicle C.
  • Each of the road surface condition and vehicle condition may be estimated using, for example, a trained learning model that performs machine learning for estimating the road surface condition or vehicle condition, using images included in sensor information as input data. .
  • This learning model outputs road surface conditions or vehicle conditions.
  • machine learning for example, the road surface condition of road R or the vehicle condition of vehicle C included in an image of input data is used as teacher data.
  • the estimation unit 103 specifies a second model according to the vehicle type of each vehicle C at the target point P obtained using the first model.
  • the estimation unit 103 estimates the exhaust gas amount of each vehicle C at the target point P by inputting the driving conditions of each vehicle C into the second model corresponding to the vehicle type of each vehicle C at the target point P. Find an estimate. Then, the estimating unit 103 calculates the sum of the estimated values of the exhaust gas amount of each vehicle C, thereby obtaining the sum of the estimated value of the exhaust gas amount of the vehicle C at the target point P.
  • the second model is a learned model that has undergone machine learning
  • the second model includes machine learning to estimate the exhaust gas amount of the vehicle C using the driving conditions of the vehicle C as input data.
  • the trained learning model that has been trained will be adopted.
  • data indicating the amount of exhaust gas by vehicle type is used as training data.
  • the amount of exhaust gas by vehicle type may be obtained experimentally based on sensors installed on the vehicle (e.g., flow rate sensor, CO 2 sensor), or may be created by referring to values published in vehicle catalogs. It may be a value that has been
  • the traffic control unit 104 executes processing for controlling the traffic volume of the target vehicle using the exhaust gas amount estimated in step S101 (step S102), and ends the traffic control processing.
  • the traffic control unit 104 determines whether the sum of the estimated values of the exhaust gas amount at each target point P exceeds a predetermined reference value. When it is determined that the reference value has been exceeded, the traffic control unit 104 generates control information for controlling the traffic lights S installed at each of the target points P, and transmits the generated control information to the corresponding traffic lights S or It is transmitted to the control device (not shown) of the traffic light S.
  • the control information is, for example, information for specifying when to switch the traffic light S between green and red, and includes the time length of each of the green light and the red light.
  • the traffic of the target vehicle may be controlled so that the amount of speed change of the vehicle C passing through the target point P is reduced.
  • the traffic control unit 104 controls the traffic light S on the road R1 so that the time when it is green is longer than the time when it is red at the target point Pa, and controls the traffic light S on the road R2 so that the time when it is green is longer than the time when the traffic light is red. Control the time so that it is shorter than the time it is red. Furthermore, at the target point Pb, the traffic control unit 104 controls the traffic light S on the road R1 so that the time when it is green is longer than the time when it is red, and the traffic control unit 104 controls the traffic light S on the road R3 so that the time when it is green is longer than the time when it is red. control so that the time is shorter than a certain time.
  • the traffic control unit 104 may control the target point Pa and the target point Pb so that the time periods in which the traffic light S on the road R1 is green are synchronized.
  • the traffic of the target vehicle may be controlled so as to reduce the traffic volume of the vehicle C at the target point P.
  • the sum of the estimated values of the exhaust gas amount at the target point Pa exceeds a predetermined reference value.
  • the time when the traffic light S heading toward the target point Pa via the road R1 is green is shorter than the time when it is red.
  • the time when the other traffic lights S are green is controlled to be longer than the time when they are red.
  • the traffic volume of vehicles C at the target point Pa can be reduced by guiding the vehicle C to take a detour to the road R that is blue for a long time. Therefore, it becomes possible to reduce the amount of exhaust gas from the vehicle C at the target point Pa.
  • the traffic of target vehicles is controlled so that they preferentially pass through a target point P where the estimated amount of exhaust gas is smaller than other target points P.
  • the traffic of target vehicles is controlled so that they preferentially pass through a target point P where the estimated amount of exhaust gas is smaller than other target points P.
  • the sum of the estimated exhaust gas amounts at the target point Pa is greater than at the other target points Pb, Pc, and Pd.
  • the time when the traffic light S heading toward the target point Pa via the road R1 is green is shorter than the time when it is red.
  • the time when the other traffic lights S are green is controlled to be longer than the time when they are red.
  • the vehicle C is guided to take a detour to the road R that is blue for a long time, and, for example, to preferentially pass through the target point Pb, which has a lower total estimated exhaust gas amount than the target point Pa. Therefore, the traffic of target vehicles can be controlled. Therefore, it becomes possible to reduce the amount of exhaust gas from the vehicle C at the target point Pa.
  • traffic of target vehicles is controlled so that target points P whose number is smaller than a predetermined reference value are passed through with priority over other target points P. It may be controlled.
  • the sum of the estimated exhaust gas amounts at target points Pa, Pb, and Pc is greater than at target point Pd. Furthermore, it is assumed that at the target point Pd, the sum of the estimated values of the exhaust gas amount is less than the reference value.
  • the time when the traffic light S is green when heading towards the target points Pb and Pc through a road not shown is red. It is controlled so that the green time of other traffic lights S is longer than the red time.
  • the vehicle C is guided to take a detour to the road R that is blue for a long time, and, for example, the target point Pd, where the sum of estimated values of exhaust gas amount is smaller than the reference value, is moved to other target points Pa, Pb. , Pc, the traffic of the target vehicle can be controlled so that it passes with priority over the target vehicle. Therefore, it becomes possible to reduce the amount of exhaust gas from the vehicle C at the target point Pa.
  • Embodiment 1 of the present invention has been described so far.
  • the exhaust gas amount of the vehicle C passing through the target point P is estimated, and the estimated exhaust gas amount is used to control the traffic light S installed at the target point P. control the amount of vehicle traffic passing through the area. This makes it possible to reduce the amount of exhaust gas from the vehicle C at the target point P.
  • Embodiment 1 is not limited to Embodiment 1, and Embodiment 1 may be modified as follows, for example.
  • Modification 1 In the first embodiment, an example has been described in which the traffic control process is repeatedly executed in real time when the traffic control device 102 acquires sensor information from each of the sensor devices 101.
  • sensor information is stored in the storage unit, and the sensor information is stored at a predetermined time (for example, every day at a predetermined time, every week on a predetermined day of the week, or every month on a predetermined day). may be carried out.
  • the traffic control device 102 according to the first modification further includes a storage unit 105 in addition to the configuration of the traffic control device 102 according to the first embodiment.
  • the estimation unit 103 acquires sensor information from each of the sensor devices 101, the estimation unit 103 stores the acquired sensor information in the storage unit 105. Then, the estimation unit 103 estimates the amount of exhaust gas of the vehicle C at the target point P based on the sensor information stored in the storage unit.
  • step S101 the estimation unit 103 estimates the amount of exhaust gas of the vehicle C at the target point P based on the sensor information acquired from the storage unit 105.
  • the sensor device 101 is not limited to a camera or the like, and may be a sensor that detects the amount of exhaust gas of the vehicle C, for example.
  • the amount of exhaust gas detected by the sensor is, for example, the concentration of a specific component gas (for example, a greenhouse gas such as carbon dioxide (CO 2 )).
  • the sensor device 101 preferably generates sensor information including the concentration of the detected specific component gas, and transmits the sensor information to the traffic control device 102.
  • This modification also provides the same effects as the first embodiment.
  • the traffic control unit 104 may use the exhaust gas amount estimated by the estimation unit 103 to control the traffic light S according to the proportion of vehicle types of the vehicles C passing through each target point P.
  • the traffic control unit 104 determines the proportion of electric vehicles and hybrid cars on roads R1 and R2 that intersect at the target point Pa. Accordingly, the traffic lights S of the roads R1 and R2 that intersect at the target point Pa are controlled.
  • the traffic control unit 104 makes the green light time shorter at the traffic light S on the road R1 than the traffic light S on the road R2, and makes the red light time longer at the traffic light S on the road R1 than at the traffic light S on the road R2. .
  • the method of controlling traffic for target vehicles is not limited to this.
  • the target vehicle is a vehicle C that runs using route guidance provided by a guidance device such as an in-vehicle device or a terminal device
  • the traffic volume of the target vehicle can be reduced by providing route guidance to the target vehicle through the guidance device. May be controlled.
  • the route guidance of the guidance device is a function that informs the driver of the route from the departure point to the destination using a map, voice, etc.
  • Each of the departure point and destination is specified by the user of the guidance device, for example.
  • Embodiment 2 an example will be described in which a vehicle-mounted device mounted on the target vehicle controls traffic of the target vehicle by providing route guidance to the destination.
  • differences from Embodiment 1 will be mainly explained, and duplicate explanations will be omitted as appropriate to simplify the explanation.
  • a traffic control system 200 according to Embodiment 2 of the present invention includes sensor devices 101a to 101d similar to those in Embodiment 1, and a traffic control device 102 according to Embodiment 1 and a traffic control system that replaces traffic light S. It includes a device 202 and a vehicle-mounted device E.
  • the on-vehicle device E is a device mounted on a vehicle C, which is a target vehicle, and is, for example, a car navigation device.
  • the on-vehicle device E is interconnected with the traffic control device 202 via a network N. Thereby, the traffic control device 202 and the vehicle-mounted device E can send and receive information to and from each other.
  • the on-vehicle device E transmits vehicle information of the target vehicle to the traffic control device 202.
  • vehicle information includes, for example, a vehicle number, a vehicle type, an address for communication, a destination, and a departure point.
  • the in-vehicle device E obtains route information sent to the address included in the vehicle information via the network N.
  • the route information is information including the route to the destination.
  • the in-vehicle device E guides the vehicle C using voice, display of the road to be traveled, voice, etc. according to the acquired route information.
  • the traffic control device 202 includes an estimation unit 103 similar to that of the first embodiment, and a traffic control unit 204 that replaces the traffic control unit 104 according to the first embodiment.
  • the traffic control unit 204 uses the exhaust gas amount estimated by the estimation unit 103 to execute processing for controlling traffic of the target vehicle.
  • the traffic control unit 204 according to this embodiment controls the traffic of the target vehicle by guiding the target vehicle using the exhaust gas amount estimated by the estimation unit 103.
  • the traffic control unit 204 uses the vehicle information and the exhaust gas amount estimated by the estimation unit 103 to determine the route to the destination of the target vehicle. Then, route information including the determined route is generated. The traffic control unit 204 transmits the generated route information to the address included in the vehicle information acquired from the target vehicle.
  • the target vehicle is preferably driven according to the route information.
  • the traffic control device 202 may be physically configured similarly to the traffic control device 102 according to the first embodiment.
  • the traffic control process is a method for the traffic control device 202 to control traffic of target vehicles on roads R1 to R4 based on sensor information, and an example of a flowchart is shown in FIG.
  • the traffic control process is repeatedly executed in real time, for example, when the traffic control device 202 acquires sensor information from each of the sensor devices 101.
  • the estimation unit 103 executes step S101 similar to the first embodiment.
  • the traffic control unit 204 acquires vehicle information of the target vehicle from the vehicle-mounted device E of the target vehicle via the network N (step S202).
  • the traffic control unit 204 generates route information including the route to the target vehicle's destination using the exhaust gas amount estimated in step S101 and the vehicle information acquired in step S202, and generates route information including the route to the destination of the target vehicle. is transmitted to the on-vehicle device E (step S203). In this way, the traffic control unit 204 executes the process for controlling the traffic of the target vehicle, and ends the traffic control process.
  • the traffic control unit 204 uses the estimated exhaust gas amount and vehicle information to preferentially pass through a target point P whose estimated exhaust gas amount is smaller than other target points P. Additionally, a route for the target vehicle to the destination may be determined.
  • the traffic control unit 204 uses vehicle information to find multiple route candidates to the destination.
  • the traffic control unit 204 uses the estimated amount of exhaust gas to identify, among the plurality of candidates, the route with the smallest sum of the amount of exhaust gas estimated for the target point P to be passed.
  • the traffic control unit 204 generates route information including the identified route and transmits it to the vehicle-mounted device E. Thereby, the target vehicle can be guided so as to preferentially pass through the target point P where the estimated amount of exhaust gas is smaller than other target points P.
  • the traffic control unit 204 may use the estimated exhaust gas amount and vehicle information to control the traffic of the target vehicle so that the amount of speed change of the target vehicle is reduced.
  • the traffic control unit 204 uses the estimated exhaust gas amount and vehicle information to determine whether the target point P exceeds the reference value.
  • the traffic of the target vehicle may be controlled so as to reduce the traffic volume of the vehicle C.
  • the traffic control unit 204 uses vehicle information to find multiple route candidates to the destination.
  • the traffic control unit 204 uses the estimated exhaust gas amount to identify a route that passes through the target point P that does not exceed the reference value from among the plurality of candidates.
  • the traffic control unit 204 generates route information including the identified route and transmits it to the vehicle-mounted device E. Thereby, the target vehicle can be guided so as to reduce the traffic volume of the vehicle C at the target point P that exceeds the reference value.
  • the traffic control unit 204 replaces the target point P with another target point.
  • the traffic of the target vehicle may be controlled so that it passes through the target vehicle preferentially.
  • the traffic control unit 204 uses vehicle information to find multiple route candidates to the destination.
  • the traffic control unit 204 uses the estimated amount of exhaust gas to identify a route that passes through fewer target points P than the reference value from among the plurality of candidates.
  • the traffic control unit 204 generates route information including the identified route and transmits it to the vehicle-mounted device E. Thereby, the target vehicle can be guided so as to pass through target points P whose number is smaller than the reference value with priority over other target points.
  • Embodiment 2 of the present invention has been described so far.
  • the amount of exhaust gas of the vehicle C passing through the target point P is estimated, and the estimated amount of exhaust gas is used to guide the route of the target vehicle, thereby controlling the traffic of the target vehicle. This makes it possible to reduce the amount of exhaust gas from the vehicle C at the target point P.
  • Embodiment 2 may be modified as follows, for example.
  • the traffic control unit 204 may predict the amount of exhaust gas from the vehicle C and control the traffic of the target vehicle using the estimated amount of exhaust gas and the predicted amount.
  • the traffic control unit 204 according to Modification 4 includes a prediction unit 204a and a control processing unit 204b, as shown in FIG.
  • the prediction unit 204a obtains a predicted amount of exhaust gas from the vehicle C. Conventional methods may be used for this prediction, such as approximating average values over a predetermined period, average values for each time period over a predetermined period, or changes from a predetermined point in time to the present. It is preferable to adopt the values of straight lines or curves.
  • the control processing unit 204b uses the exhaust gas amount estimated by the estimation unit 103 and the predicted amount obtained by the prediction unit 204a to guide the target vehicle on a route. That is, the route to the target vehicle's destination is determined using the estimated exhaust gas amount and the predicted amount, and route information including the route is generated and transmitted to the vehicle-mounted device E of the target vehicle.
  • control processing unit 204b may control the traffic light S using the exhaust gas amount estimated by the estimation unit 103 and the predicted amount obtained by the prediction unit 204a. This also reduces the possibility that the target vehicle will pass through the target point P where the amount of exhaust gas is expected to increase. In addition, by reducing the traffic volume at the target point P where the amount of exhaust gas is expected to increase, the amount of speed change of the vehicle C passing through the target point P becomes smaller, and the speed change from the vehicle C passing through the target point P becomes smaller. The amount of exhaust gas can also be reduced. Therefore, an increase in the amount of exhaust gas from the vehicle C at the target point P where an increase in the amount of exhaust gas is expected can be prevented in advance. Therefore, it becomes possible to reduce the amount of exhaust gas from the vehicle C at the target point P.
  • the traffic control unit 204 may control the traffic of the target vehicle using the estimated exhaust gas amount and information regarding the CO 2 absorber provided around the target point P.
  • CO 2 absorbers include plants such as trees, coatings and members that have the function of absorbing CO 2 , and such coatings and members are provided, for example, on the walls of buildings.
  • Information regarding the CO 2 absorber includes, for example, the location where the CO 2 absorber is installed, the number and area of the CO 2 absorber installed, a value indicating the ability of the installed CO 2 absorber to absorb CO 2 , etc. Contains at least one of the following.
  • the traffic control unit 204 according to modification 5 includes an acquisition unit 204c and a control processing unit 204d, as shown in FIG.
  • the acquisition unit 204c acquires absorbent information.
  • the absorber information is information regarding the above-mentioned CO 2 absorber.
  • the absorbent information may be obtained from an external device (not shown) or may be input by the user.
  • the control processing unit 204d guides the vehicle C along the route using the exhaust gas amount estimated by the estimation unit 103 and the absorber information acquired by the acquisition unit 204c. That is, a route for the vehicle C to the destination is determined using the estimated exhaust gas amount and absorber information, and route information including the route is generated and transmitted to the on-vehicle device E of the vehicle C.
  • control processing unit 204d may control the traffic light S using the exhaust gas amount estimated by the estimation unit 103 and the absorber information acquired by the acquisition unit 204c.
  • the standard value of exhaust gas amount at a target point P where many CO2 absorbers are installed is set higher than that at a target point P where there are few CO2 absorbers.
  • the vehicle information may include conditions regarding the amount of exhaust gas. This condition is the driver's desire regarding the suppression of the amount of exhaust gas, and for example, the degree of suppression of the amount of exhaust gas is selected by the driver of the target vehicle from large, medium, small, etc.
  • the traffic control unit 204 may further refer to the conditions and determine the route for the target vehicle to the destination.
  • the traffic control unit 204 changes the reference value applied to the target vehicle depending on the conditions. More specifically, for example, when the degree of suppression of exhaust gas amount is set to "large”, the reference value applied to the target vehicle is set smaller than when it is set to "small". As a result, a driver who wishes to increase the degree of suppression of the amount of exhaust gas will pass through more target points P where the amount of exhaust gas is estimated to be smaller than a driver who wishes to suppress the amount of exhaust gas to a smaller degree. This makes it possible to reduce the amount of exhaust gas from the target vehicle at the target point P while taking into account the user's wishes.
  • the traffic control device 202 may further include an incentive provision unit 206, as shown in FIG. 11.
  • the incentive granting unit 206 grants a benefit to a predetermined type of vehicle when the vehicle actually travels according to the route guidance.
  • the benefits include, for example, discounts on expressway tolls, discounts on gasoline charges, and the like.
  • the traffic control unit 204 may determine different routes depending on the vehicle type of the target vehicles even if the target vehicles have a common destination.
  • the traffic control unit 204 may generate route information including the shortest route for the first type of target vehicle.
  • route information may be generated that includes a route determined to pass through a target point P where the estimated amount of exhaust gas is smaller than other target points P.
  • the type of vehicle according to this modification is another example of the type related to the environmental performance of the vehicle, and is a type related to the amount of exhaust gas of the vehicle.
  • the first type is a type of vehicle C that has a smaller amount of exhaust gas than the second type of vehicle C.
  • the first type of vehicle C is, for example, an electric vehicle, a hybrid car, or a vehicle C provided with a CO 2 absorber.
  • the second type of vehicle C is, for example, an engine car.
  • the vehicle C equipped with a CO 2 absorber is, for example, a vehicle C that is painted with a function of absorbing CO 2 , or a vehicle that has a member equipped with a function of absorbing CO 2 on its outer surface, etc. It is C. Whether the vehicle C is a vehicle equipped with a CO 2 absorber may be included in the vehicle information, or may be determined based on the vehicle type.
  • the target vehicle As a result, if the first type of vehicle C, which has a relatively small amount of exhaust gas, is the target vehicle, the shortest route is guided, so it is possible to provide an incentive to ride in the first type of vehicle C. Therefore, it becomes possible to reduce the amount of exhaust gas from the vehicle C at the target point P.
  • the traffic control unit 204 may generate route information including a route determined to pass through a target point P where the estimated amount of exhaust gas is low for the first type of target vehicle. Route information including the shortest route may be generated for the second type of target vehicle.
  • the traffic control device 202 may include the incentive giving unit 206 described in the seventh modification.
  • the incentive giving unit 206 described in the seventh modification.
  • the traffic control unit 204 may determine different routes depending on whether the target vehicle is a vehicle type equipped with a CO 2 absorber even if the target vehicle has a common destination.
  • the traffic control unit 204 causes the vehicle C, which is a vehicle type equipped with a CO 2 absorber, to pass through a target point P with a large estimated amount of exhaust gas among a plurality of target points P. , determines a route to the destination, generates route information including the determined route, and transmits it to the on-vehicle device E of the vehicle C.
  • the traffic control device 202 may include the incentive providing unit 206 described in the seventh modification.
  • the incentive providing unit 206 described in the seventh modification.
  • a traffic control device comprising: a traffic control unit that executes processing for controlling traffic of a target vehicle using the estimated amount of exhaust gas.
  • the traffic control means controls traffic of the target vehicle by at least one of controlling one or more traffic lights and providing route guidance for the target vehicle using the estimated exhaust gas amount. Do above 1.
  • the method further includes an incentive giving unit that provides a benefit to the target vehicle when it travels according to the route guidance.
  • the traffic control device described in . 4 The traffic control means controls the traffic of the target vehicle using the estimated exhaust gas amount so that the amount of speed change of the target vehicle becomes small. From 3.
  • the traffic control device controls the traffic of the target vehicle so as to reduce the traffic volume at the target point when the estimated exhaust gas amount exceeds a predetermined reference value. From 4.
  • the traffic control device according to any one of. 6.
  • the target points are multiple, The traffic control means controls the traffic of the target vehicle so that the target vehicle passes through the target point where the estimated amount of exhaust gas is lower than other target points. From 5.
  • the traffic control device according to any one of. 7. 6.
  • the traffic control means controls the traffic of the target vehicle so that the target vehicle passes through the target point where the estimated exhaust gas amount is lower than the reference value with priority over other target points.
  • the traffic control means controls the traffic of the target vehicle by providing the route guidance
  • the traffic control means guides the route of the target vehicle using the estimated exhaust gas amount and the type of the target vehicle. .. From 7.
  • the traffic control device according to any one of. 9.
  • the target vehicle is a predetermined first type of vehicle
  • the traffic control means guides the route so as to pass through the target point where the estimated amount of exhaust gas is large.
  • the traffic control device described in . 10 When the target vehicle is a predetermined second type of vehicle, the traffic control means guides the route so as to pass through the target point where the estimated amount of exhaust gas is small. Or 8 above.
  • the traffic control means includes: Prediction means for calculating a predicted amount of exhaust gas from the vehicle; 1.
  • a control processing means for executing processing for controlling traffic of the target vehicle at the target point using the estimated exhaust gas amount and the predicted amount. From 10.
  • the traffic control device according to any one of. 12.
  • the traffic control means includes: Acquisition means for acquiring information regarding the CO 2 absorber; 1.
  • a control processing means for guiding the vehicle along a route using the estimated exhaust gas amount and information regarding the CO 2 absorber. From 10.
  • the traffic control device according to any one of. 13. Above 1. From 12.
  • a traffic control device according to any one of a sensor device that detects a physical quantity for estimating the amount of exhaust gas at the target point;
  • a traffic control system comprising at least one of a traffic signal and an on-vehicle device. 14.
  • the computer is Estimate the amount of exhaust gas from vehicles passing through the target point, A traffic control method comprising executing processing for controlling traffic of a target vehicle using the estimated exhaust gas amount. 15. to the computer, Estimate the amount of exhaust gas from vehicles passing through the target point, A recording medium storing a program for executing a process for controlling traffic of a target vehicle using the estimated amount of exhaust gas. 16. to the computer, Estimate the amount of exhaust gas from vehicles passing through the target point, A program for executing processing for controlling traffic of a target vehicle using the estimated amount of exhaust gas.
  • Traffic control system 101 100, 200 Traffic control system 101, 101a to 101d Sensor device 102, 202 Traffic control device 103 Estimating section 104, 204 Traffic control section 105 Storage section

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Traffic Control Systems (AREA)

Abstract

交通制御装置(102)は、対象地点における車両の排気ガス量を推定する推定部(103)と、推定された排気ガス量を用いて、対象地点を通行する車両の交通量を制御するための処理を実行する交通制御部(104)とを備える。

Description

交通制御装置、交通制御システム、交通制御方法及び記録媒体
 本発明は、交通制御装置、交通制御システム、交通制御方法及び記録媒体に関する。
 特許文献1には、交通量を推定する技術が開示されている。非特許文献1には、二酸化炭素排出量を推計する技術が開示されている。
特開2018-055455号公報
石坂哲宏、他3名、「自動車交通におけるCO2排出量の推計方法の整理とその適用」、[online]、[令和3年12月20日検索]、インターネット<URL:http://library.jsce.or.jp/jsce/open/00039/200906_no39/pdf/35.pdf>
 近時、地球温暖化対策として、COをはじめとする温室効果ガスの排出量削減が課題となっており、車両の排気ガスが温室効果ガスの増加の原因の1つとして指摘されている。
 従来の技術では、交通量や二酸化炭素排出量を推定することができたとしても、排気ガス量を削減するための技術は開示されていない。
 本発明は、上述の事情に鑑みてなされたもので、その目的の1つは、車両の排気ガス量を削減することにある。
 本発明の一態様によれば、
 対象地点における車両の排気ガス量を推定する推定手段と、
 前記推定された排気ガス量を用いて、対象車両の交通を制御するための処理を実行する交通制御手段とを備える交通制御装置が提供される。
 本発明の一態様によれば、
 コンピュータが、
 対象地点を通行する車両の排気ガス量を推定し、
 前記推定された排気ガス量を用いて、対象車両の交通を制御するための処理を実行することを含む交通制御方法が提供される。
本発明の一態様によれば、
 上記の交通制御装置と、
 前記対象地点の排気ガス量を推定するための物理量を検出するセンサ機器と、
 信号機及び車載装置の少なくとも一方とを備える
 交通制御システムが提供される。
 本発明の一態様によれば、
 コンピュータに、
 対象地点を通行する車両の排気ガス量を推定し、
 前記推定された排気ガス量を用いて、対象車両の交通を制御するための処理を実行すること
 を実行させるためのプログラムが記録された記録媒体が提供される。
 本発明によれば、対象地点における車両からの排気ガス量を削減することが可能になる。
本発明の実施形態1に係る交通制御システムの構成の例を示す図である。 対象地点とそれぞれに対応付けられたセンサ機器及び信号機の例を示す図である。 センサ情報の一例を示す図である。 実施形態1に係る交通制御システムの物理的な構成の例を示す図である。 本発明の実施形態1に係る交通制御処理のフローチャートの一例を示す図である。 変形例1に係る交通制御システムの構成の例を示す図である。 本発明の実施形態2に係る交通制御システムの構成の例を示す図である。 本発明の実施形態2に係る交通制御処理のフローチャートの一例を示す図である。 変形例4に係る交通制御部の機能的な構成の例を示す図である。 変形例5に係る交通制御部の機能的な構成の例を示す図である。 変形例5に係る交通制御装置の機能的な構成の例を示す図である。
 以下、本発明の実施形態について、図面を用いて説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
<<実施形態1>>
(交通制御システム100の構成)
 本発明の実施形態1に係る交通制御システム100は、道路R1~R4における車両Cの交通を制御するためのシステムである。交通制御システム100は、図1に示すように、センサ機器101a~101dと、交通制御装置102と、複数の信号機Sとを備える。
 交通制御装置102と、センサ機器101a~101d及び信号機Sの各々とは、有線、無線又はこれらを組み合わせて構築されるネットワークNを介して相互に接続されている。これにより、交通制御装置102とセンサ機器101a~101dの各々とは、互いに情報を送受信することができる。また、交通制御装置102と信号機Sの各々とは、互いに情報を送受信することができる。
 センサ機器101a~101dは、図2に示すように、道路R1~R4の交差点である対象地点Pa~Pdのそれぞれに対応付けて設置される。図2は、道路R1~R4を上方から見た図であり、対象地点Pa~Pdとそれぞれに対応付けられたセンサ機器101a~101d及び信号機Sの例を示す図である。道路R1~R4の各々は、左側通行の2車線(すなわち、道路R1,R4では図2で上方向と下方向との各々の方向に1車線、道路R2,R3では図2で左方向と右方向との各々の方向に1車線)の道路の例である。
 なお、対象地点は、交差点に限らず、道路R1~R4の所定区間等の道路R1~R4に関連して予め定められる地点であればよい。
 センサ機器101a~101dの各々は、対応付けられた対象地点Pa~Pdの排気ガス量を推定するための物理量を検出するセンサを含む。センサ機器101a~101dの各々は、センサにより検出される物理量を含むセンサ情報を生成し、ネットワークNを介してセンサ情報を交通制御装置102へ送信する。
 本実施形態に係るセンサ機器101a~101dの各々は、対応付けられた対象地点Pa~Pdを撮影した画像を含むセンサ情報を生成し、当該センサ情報を交通制御装置102へ送信する。センサ機器101a~101dの各々は、例えば、撮影領域からの光に応じた色及び明るさを物理量として画素ごとに検出する画像センサを含むカメラ等から構成される。
 センサ情報は、図3に一例を示すように、地点情報と画像とを含む。
 地点情報は、対象地点Pa~Pdを識別するための情報である。図2に例示するセンサ情報は、センサ機器101aによって生成されるセンサ情報の例であり、対象地点Paを示す地点情報「Pa」と対象地点Paの画像とを含む。
 以下、道路R1~R4を特に区別しない場合、単に「道路R」とも表記する。対象地点Pa~Pdを特に区別しない場合、単に「対象地点P」とも表記する。センサ機器101a~101dを特に区別しない場合、単に「センサ機器101」とも表記する。
 なお、対象地点Pは、4つに限られず、1つ以上であればよい。センサ機器101も、4つに限られず、1つ又は複数の対象地点の各々に対応付けて1つ以上設置されればよい。信号機Sも1つ以上であればよい。
(交通制御装置102の機能的構成)
 交通制御装置102は、機能的には図1に示すように、推定部103と、交通制御部104とを備える。
 推定部103は、ネットワークNを介してセンサ情報をセンサ機器101から取得する。そして、推定部103は、当該取得したセンサ情報に基づいて、対象地点Pにおける車両Cの排気ガス量を推定する。
 本実施形態に係る車両Cの排気ガス量は、車両Cから排出される二酸化炭素(CO)の量、すなわちCO量である。
 なお、車両Cの排気ガス量は、車両Cから排出されるCO量に限られず、例えば、車両Cから排出されるガスの全体量であってもよく、車両Cから排出される特定成分のガスの量であってもよい。特定成分のガスとしては、温室効果ガスが好適であり、COは温室効果ガスの一例である。また、COの他の温室効果ガスとしては、メタンや一酸化二窒素などが挙げられる。
 交通制御部104は、推定部103によって推定された排気ガス量を用いて、対象車両Cの交通を制御するための処理を実行する。対象車両Cは、推定部103が排気ガス量を推定する車両であってもよく、推定部103が排気ガス量を推定した車両以外の車両であってもよい。
 本実施形態に係る交通制御部104は、推定部103によって推定された推定された排気ガス量を用いて、複数の信号機Sを制御する。これによって、本実施形態に係る交通制御部104は、対象車両Cの交通を制御する。すなわち、本実施形態では、対象車両は、制御対象となる信号機Sが設置された対象地点Pを通行する車両Cである。なお、制御の対象となる信号機Sは、1つであってもよい。
 例えば、交通制御部104は、推定部103によって推定された排気ガス量を用いて、対象車両の速度変化量が小さくなるように、信号機Sを制御する。
 また例えば、交通制御部104は、推定部103によって推定された排気ガス量を用いて、対象地点Pの各々について、推定された排気ガス量が予め定められた基準値を超えたか否かを判定する。そして、交通制御部104は、予め定められた基準値を超えた対象地点Pがあった場合に、当該基準値を超えた対象地点Pの車両Cの交通量を減らすように信号機Sを制御する。
 さらに例えば、交通制御部104は、推定部103によって推定された排気ガス量を用いて、推定された排気ガス量が他の対象地点Pよりも少ない対象地点Pを通過するように、対象車両の交通を制御する。
 さらに例えば、交通制御部104は、推定部103によって推定された排気ガス量を用いて、対象地点Pの各々について、推定された排気ガス量が予め定められた基準値よりも少ないか否かを判定する。そして、交通制御部104は、予め定められた基準値より少ない対象地点Pがあった場合に、当該基準値より少ない対象地点Pを、推定された排気ガス量が当該対象地点Pより多い他の対象地点Pよりも優先的に通過するように、対象車両の交通を制御する。
(交通制御装置102の物理的構成)
 交通制御装置102は、物理的には例えば、汎用のコンピュータであって、図4に示すように、バス1010、プロセッサ1020、メモリ1030、ストレージデバイス1040、入力インタフェース1050、出力インタフェース1060及びネットワークインタフェース1070を有する。
 バス1010は、プロセッサ1020、メモリ1030、ストレージデバイス1040、入力インタフェース1050、出力インタフェース1060及びネットワークインタフェース1070が、相互にデータを送受信するためのデータ伝送路である。ただし、プロセッサ1020などを互いに接続する方法は、バス接続に限定されない。
 プロセッサ1020は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)などで実現されるプロセッサである。
 メモリ1030は、RAM(Random Access Memory)などで実現される主記憶装置である。
 ストレージデバイス1040は、HDD(Hard Disk Drive)、SSD(Solid State Drive)、メモリカード、又はROM(Read Only Memory)などで実現される補助記憶装置である。ストレージデバイス1040は、交通制御装置102の各機能を実現するためのプログラムモジュールを記憶している。プロセッサ1020がこれら各プログラムモジュールをメモリ1030に読み込んで実行することで、そのプログラムモジュールに対応する各機能が実現される。
 入力インタフェース1050は、ユーザが情報を入力するためのインタフェースであり、例えば、タッチパネル、キーボード、マウス等の1つ又は複数である。
 出力インタフェース1060は、ユーザに情報を提示するためのインタフェースであり、例えば、液晶パネル、有機EL(Electro Luminescence)パネル等の1つ又は複数である。
 ネットワークインタフェース1070は、交通制御装置102をネットワークNに接続するためのインタフェースである。
 これまで、本発明の実施形態1に係る交通制御システム100の構成について説明した。ここから、本実施形態に係る交通制御システム100の動作について説明する。
(交通制御システム100の動作)
 本実施形態に係る交通制御処理は、交通制御装置102がセンサ情報に基づいて道路R1~R4における対象車両の交通を制御するための方法であって、そのフローチャートの一例を図5に示す。交通制御処理は、例えば、交通制御装置102がセンサ機器101の各々からセンサ情報を取得すると、リアルタイムで繰り返し実行される。
(ステップS101について)
 推定部103は、センサ機器101から取得したセンサ情報に基づいて、対象地点Pにおける車両Cの排気ガス量を推定する(ステップS101)。
 詳細には例えば、センサ情報に含まれる地点情報を基に対象地点Pa~Pdの各々の画像を特定し、対象地点Pa~Pdの各々の画像に基づいて、対象地点Pにおける車両Cの排気ガス量を推定する。
 なお、センサ情報は、地点情報の代わりに、センサ機器101a~101dを識別するためのセンサID(Identifier)、センサ機器101a~101dのネットワークNにおけるアドレス等を含んでもよい。この場合、推定部103は、センサID又はアドレスと地点情報とを対応付けた変換用データを予め保持し、変換用データを参照することによりセンサ情報の画像と対象地点Pa~Pdとを関連付けてもよい。
(排気ガス量の推定方法)
 画像から排気ガス量を推定する方法は、従来の方法が採用されるとよく、例えば、予め準備される排気ガス推定モデルを用いて、対象地点Pにおける車両Cの排気ガス量を推定する。
 排気ガス推定モデルは、対象地点Pa~Pdの各々の画像を含むデータ(画像データ)をインプットデータとして、対象地点Pにおける車両Cの排気ガス量の推定値を出力するモデルである。
 排気ガス推定モデルとして、予め定められる標準的な車両Cの排気ガス推定モデルが採用されてもよいが、本実施形態では、車両タイプ別の排気ガス推定モデルが用いられる例により説明する。すなわち、本実施形態では、排気ガス推定モデルは、対象地点Pa~Pdごとの画像をインプットデータとして、対象地点Pa~Pdの各々における車両Cの排気ガス量を推定する。
 ここで、車両タイプとは、車両の種類であり、車両の環境性能に関する種類が望ましい。車両の環境性能に関する種類は、例えば、車種、車両の動力生成源の種類等である。車両の動力生成源の種類として、例えば、電力を動力生成源とする電気自動車、動力生成源に燃料を用いる燃料使用車がある。燃料使用車は、燃料のみを動力生成源とするエンジン(内燃機関)自動車、燃料と電力との両方を動力生成源とするハイブリッドカー等にさらに分類されてもよい。エンジン自動車は、動力生成源となる燃料の種類によって、ガソリン自動車、ディーゼル自動車等にさらに分類されてもよい。
 詳細には例えば、排気ガス推定モデルは、第1モデルと、第2モデルとを含む。
 第1モデルは、対象地点Pa~Pdの各々の画像をインプットデータとして、対象地点Pa~Pdの各々における車両Cの交通情報を求めるためのモデルである。交通情報は、車両Cの各々の車両タイプを含み、車両タイプごとの台数をさらに含んでもよい。
 第1モデルには、対象地点Pの画像データをインプットデータとして、対象地点Pにおける車両Cの交通情報を出力するための機械学習を行った学習済みの学習モデルが好適である。第1モデルの機械学習においては、例えば、インプットデータの画像に含まれる車両Cの車両タイプ及び車両タイプごとの台数を含むデータが教師データとして用いられる。
 第2モデルは、第1モデルで得られた対象地点Pにおける車両Cの交通情報をインプットデータとして、対象地点Pにおける車両Cの各々の排気ガス量の推定値とその総和とを出力するモデルである。以下、第2モデルの例を説明する。
(第2モデルの例1)
 第2モデルの第1の例は、車両タイプ別に予め定められた車両1台当たりの一定の排気ガス量(例えば、車両タイプ別の平均的な走行時の排気ガス量)を含むモデルである。
 推定部103は、第1モデルで得られた対象地点Pにおける車両Cの各々の車両タイプに応じた第2モデルを特定し、第2モデルに含まれる排気ガス量を車両Cの各々の排気ガス量の推定値とする。そして、推定部103は、車両Cの各々の排気ガス量の推定値の総和を算出することによって、対象地点Pにおける車両Cの排気ガス量の推定値の総和を求める。
(第2モデルの例2)
 第2モデルの第2の例は、1つ又は複数の走行条件を考慮して、車両タイプ別に1台当たりの排気ガス量を推定するモデルである。このような第2モデルは、走行条件をパラメータに含む予め定められた関数、走行条件の組み合わせに応じた値を定義するテーブル等で表されてもよく、対象地点Pにおける車両Cの排気ガス量を推定するための機械学習を行った学習済みの学習モデルであってもよい。
 走行条件は、車両Cの走行に関連する条件であり、特に車両Cの排気ガス量に影響するものである。走行条件として、車両Cの走行速度、車両Cの走行速度の変化率、停車時のアイドリングストップ状態、車両Cに搭乗する人員及び当該車両Cに積載される荷物の総重量である積載量、道路情報、天候情報、道路の路面状態、車両状態を例示することができる。
 車両Cの走行速度、車両Cの走行速度の変化率、停車時のアイドリングストップ状態、車両Cに搭乗する人員及び当該車両Cに積載される荷物の総重量である積載量は、対象地点Pの画像に基づいて推定される。
 走行速度及びその変化率は、例えば、時間当たりの車両Cの移動量を画像処理によって求めることによって推定される。停車時のアイドリングストップ状態は、例えば、停止している車両Cの画像から推定される車種と、アイドリングストップ機能が搭載されているか否かを示すアイドリングストップ情報と車種を示す車種情報とを関連付けた車種データと、に基づいて推定される。積載量は、例えば、車両Cに搭載された重量センサからの情報、画像処理によって求められる沈み込み量に基づいて推定される。
 道路情報とは例えば、車両Cが走行する道路Rの属性を示す情報であり、例えば、傾斜、カーブ、車線数、その車が走行したレーン、道路周辺の建造物等におけるCO吸収体の設置状況を示す情報である。
 天候情報は、例えば、道路に設置される風力計、天候情報を提供する外部の装置(図示せず)等から取得される風力を示す情報である。
 道路Rの路面状態は、例えば、路面の雪の有無、雨等で路面が濡れているか否か、路面が凍結しているか否かである。車両状態は、例えば、車両Cのタイヤに取り付けられたチェーンの有無である。路面状態及び車両状態の各々は、例えば、センサ情報に含まれる画像をインプットデータとして、路面状態又は車両状態を推定するための機械学習を行った学習済みの学習モデルを用いて推定されるとよい。この学習モデルは、路面状態又は車両状態を出力する。機械学習においては、例えば、インプットデータの画像に含まれる道路Rの路面状態又は車両Cの車両状態が教師データとして用いられる。
 推定部103は、第1モデルで得られた対象地点Pにおける車両Cの各々の車両タイプに応じた第2モデルを特定する。推定部103は、対象地点Pにおける車両Cの各々の車両タイプに対応する第2モデルに、車両Cの各々の走行条件を入力することによって、対象地点Pにおける車両Cの各々の排気ガス量の推定値を求める。そして、推定部103は、車両Cの各々の排気ガス量の推定値の総和を算出することによって、対象地点Pにおける車両Cの排気ガス量の推定値の総和を求める。
 第2モデルが機械学習を行った学習済みの学習モデルである場合、例えば、第2モデルには、車両Cの走行条件をインプットデータとして、当該車両Cの排気ガス量を推定するための機械学習を行った学習済みの学習モデルが採用される。
 この場合の機械学習においては、例えば、車両タイプ別の排気ガス量を示すデータが教師データとして用いられる。車両タイプ別の排気ガス量は、車両に取り付けたセンサ(例えば、流量センサ、COセンサ)に基づいて実験的に得られてもよく、車両のカタログに掲載された値等を参照して作成された値であってもよい。
 このような走行条件を考慮した排気ガス推定モデルを採用することで、車両Cの走行条件を考慮して道路におけるCO排出量を推定することができる。そのため、道対象地点Pにおける車両Cの排気ガス量をより正確に推定することが可能になる。
(ステップS102について)
 交通制御部104は、ステップS101にて推定された排気ガス量を用いて、対象車両の交通量を制御するための処理を実行し(ステップS102)、交通制御処理を終了する。
 詳細には例えば、交通制御部104は、対象地点Pの各々における排気ガス量の推定値の総和が予め定められた基準値を超えたか否かを判定する。基準値を超えたと判定した場合に、交通制御部104は、対象地点Pの各々に設置された信号機Sを制御するための制御情報を生成して、当該生成した制御情報を対応する信号機S又は信号機Sの制御装置(図示せず)へ送信する。
 制御情報は、例えば、信号機Sの青・赤を切り替える時期を特定するための情報であり、青信号及び赤信号の各々の時間長さ等を含む。
 信号機Sの制御方法の第1の例として、上述したように、対象地点Pを通行する車両Cの速度変化量が小さくなるように対象車両の交通を制御することがある。
 例えば、図2を参照すると、道路R1を上方へ向かう車両Cの交通量が多く、対象地点Paと対象地点Pbとの間で渋滞が発生している。そのため、対象地点Paでは、道路R1を上方へ向かう車両Cが発進、徐行及び停止を繰り返すことによって速度変化量が大きくなり、その結果、排気ガス量が多くなることが多い。このような状況では、対象地点Paにおける排気ガス量の推定値の総和が予め定められた基準値を超える。その一方で、図2に示す例において、道路R2~R3の交通量は、道路R1を上方へ向かう車両Cの交通量よりも少ない。
 このような場合、交通制御部104は、対象地点Paにおいて、道路R1の信号機Sを青である時間が赤である時間よりも長くなるように制御するとともに、道路R2の信号機Sを青である時間が赤である時間よりも短くなるように制御する。また、交通制御部104は、対象地点Pbにおいて、道路R1の信号機Sを青である時間が赤である時間よりも長くなるように制御するとともに、道路R3の信号機Sを青である時間が赤である時間よりも短くなるように制御する。
 さらに、交通制御部104は、対象地点Pa及び対象地点Pbにおいて、道路R1の信号機Sが青である時間帯が同期するように制御してもよい。
 これにより、道路R1を通って対象地点Paを通行する車両Cの速度変化量を小さくすることができる。従って、対象地点Paにおける車両Cからの排気ガス量を削減することが可能になる。
 信号機Sの制御方法の第2の例として、上述したように、対象地点Pの車両Cの交通量を減らすように対象車両の交通を制御することがある。
 例えば、信号機Sの制御方法の第1の例で説明したように、対象地点Paにおける排気ガス量の推定値の総和が予め定められた基準値を超えているとする。この場合、例えば、対象地点Paの下方にある交差点の信号機S(図示せず)について、道路R1を通って対象地点Paに向かう信号機Sの青である時間が赤である時間よりも短くなるように制御するとともに、他の信号機Sの青である時間が赤である時間よりも長くなるように制御する。
 これにより、青である時間が長い道路Rへ迂回するように車両Cを誘導して、対象地点Paの車両Cの交通量を減らすことができる。従って、対象地点Paにおける車両Cからの排気ガス量を削減することが可能になる。
 信号機Sの制御方法の第3の例として、上述したように、推定された排気ガス量が他の対象地点Pよりも少ない対象地点Pを優先的に通過するように対象車両の交通を制御することがある。
 例えば、信号機Sの制御方法の第1の例で説明したように、対象地点Paにおける排気ガス量の推定値の総和が、他の対象地点Pb,Pc,Pdよりも多いとする。この場合、例えば、対象地点Paの下方にある交差点の信号機S(図示せず)について、道路R1を通って対象地点Paに向かう信号機Sの青である時間が赤である時間よりも短くなるように制御するとともに、他の信号機Sの青である時間が赤である時間よりも長くなるように制御する。
 これにより、青である時間が長い道路Rへ迂回するように車両Cを誘導して、例えば、対象地点Paよりも排気ガス量の推定値の総和が少ない対象地点Pbを優先的に通過するように、対象車両の交通を制御することができる。従って、対象地点Paにおける車両Cからの排気ガス量を削減することが可能になる。
 信号機Sの制御方法の第4の例として、上述したように、予め定められた基準値より少ない対象地点Pを、他の対象地点Pよりも優先的に通過するように、対象車両の交通を制御することがある。
 例えば、対象地点Pa,Pb,Pcにおける排気ガス量の推定値の総和が、対象地点Pdよりも多いとする。また、対象地点Pdでは、排気ガス量の推定値の総和が基準値より少ないとする。
 この場合、例えば、対象地点Pdの右方又は下方にある交差点の信号機S(図示せず)について、図示しない道路を通って対象地点Pb,Pcに向かう信号機Sの青である時間が赤である時間よりも短くなるように制御するとともに、他の信号機Sの青である時間が赤である時間よりも長くなるように制御する。
 これにより、青である時間が長い道路Rへ迂回するように車両Cを誘導して、例えば、排気ガス量の推定値の総和が基準値よりも少ない対象地点Pdを他の対象地点Pa,Pb,Pcよりも優先的に通過するように、対象車両の交通を制御することができる。従って、対象地点Paにおける車両Cからの排気ガス量を削減することが可能になる。
 これまで、本発明の実施形態1について説明した。
 実施形態1によれば、対象地点Pを通行する車両Cの排気ガス量を推定し、推定された排気ガス量を用いて、対象地点Pに設置された信号機Sを制御することによって対象地点Pを通行する車両の交通量を制御する。これにより、対象地点Pにおける車両Cからの排気ガス量を削減することが可能になる。
 本発明は、実施形態1に限られるものではなく、実施形態1は例えば以下のように変形されてもよい。
 (変形例1)
 実施形態1では、交通制御処理が、交通制御装置102がセンサ機器101の各々からセンサ情報を取得すると、リアルタイムで繰り返し実行される例を説明した。しかし、交通制御処理は、センサ情報を記憶部に記憶させておき、予め定められた時期(例えば、予め定められた時刻に毎日、予め定められた曜日に毎週、予め定められた日に毎月)に行われてもよい。
 変形例1に係る交通制御装置102は、図6に示すように、実施形態1に係る交通制御装置102の構成に加えて、記憶部105をさらに備える。推定部103は、センサ機器101の各々からセンサ情報を取得すると、当該取得したセンサ情報を記憶部105に記憶させる。そして、推定部103は、記憶部に記憶されたセンサ情報に基づいて、対象地点Pにおける車両Cの排気ガス量を推定する。
 変形例1に係る交通制御処理では、ステップS101において、推定部103は、記憶部105から取得したセンサ情報に基づいて、対象地点Pにおける車両Cの排気ガス量を推定する。
 本変形例によれば、過去のセンサ情報に基づいて、対象地点Pにおける車両Cの排気ガス量が多くなる時期のパターンを推定することができる。これにより、対象地点Pの排気ガス量が多くなることが多い時期に、対象車両の交通量を制御するための処理を実行することで、対象地点Pにおける車両Cからの排気ガス量を削減することが可能になる。
 (変形例2)
 実施形態1に係るセンサ機器101は、カメラ等に限られず、例えば、車両Cの排気ガス量を検出するセンサであってもよい。センサによって検出される排気ガス量は、例えば、特定成分のガス(例えば、二酸化炭素(CO)等の温室効果ガス)の濃度である。この場合、センサ機器101は、検出した特定成分のガスの濃度を含むセンサ情報を生成して、当該センサ情報を交通制御装置102へ送信するとよい。
 本変形例によっても、実施形態1と同様の効果を奏する。
 (変形例3)
 交通制御部104は、推定部103によって推定された排気ガス量を用いて、対象地点Pの各々を通行する車両Cの車両タイプの割合に応じて、信号機Sを制御してもよい。
 例えば、交通制御部104は、交差点である対象地点Paの排気ガス量の推定値が基準値を超える場合に、対象地点Paにて交差する道路R1及びR2における電気自動車及びハイブリッドカーの割合の多寡に応じて、対象地点Paにて交差する道路R1,R2の信号機Sを制御する。
 詳細には例えば、電気自動車及びハイブリッドカーの割合が、道路R2よりも道路R1の方が大きいとする。この場合、交通制御部104は、道路R1の信号機Sでは道路R2の信号機Sよりも青信号の時間を短くするとともに、道路R1の信号機Sでは道路R2の信号機Sよりも赤信号の時間を長くする。
 一般的に、電気自動車やハイブリッドカーは、燃料自動車よりも排気ガス量が少ない。そのため、本変形例によっても、対象地点Pにおける車両Cからの排気ガス量を削減することが可能になる。
<<実施形態2>>
 実施形態1では、信号機Sを制御することによって、当該信号機Sが設置された対象地点Pを通行する車両Cを対象車両として、当該対象車両の交通量を制御する例を説明した。しかし、対象車両の交通を制御する方法は、これに限られない。例えば、車載装置、端末装置等の案内装置によって提供されるルート案内を用いて走行する車両Cを対象車両として、案内装置を通じて当該対象車両にルート案内をすることで、当該対象車両の交通量を制御してもよい。
 案内装置のルート案内は、出発地から目的地までのルートを地図、音声等を用いてドライバに知らせる機能である。出発地及び目的地の各々は、例えば、案内装置のユーザが指定する。
 実施形態2では、対象車両に搭載された車載装置が目的地までのルート案内をすることで、当該対象車両の交通を制御する場合を例に説明する。本実施形態では、実施形態1と異なる点について主に説明し、重複する説明は説明を簡明にするため適宜省略する。
(交通制御システム200の構成)
 本発明の実施形態2に係る交通制御システム200は、図7に示すように、実施形態1と同様のセンサ機器101a~101dと、実施形態1に係る交通制御装置102及び信号機Sに代わる交通制御装置202及び車載装置Eとを備える。
 車載装置Eは、対象車両である車両Cに搭載される装置であり、例えばカーナビゲーション装置である。車載装置Eは、ネットワークNを介して交通制御装置202と相互に接続されている。これにより、交通制御装置202と車載装置Eとは、互いに情報を送受信することができる。
 車載装置Eは、対象車両の車両情報を交通制御装置202へ送信する。車両情報は、例えば、車両ナンバ、車種、通信のためのアドレス、目的地、出発地を含む。
 車載装置Eは、車両情報に含まれるアドレスへ送信されたルート情報をネットワークNを介して取得する。ルート情報は、目的地までのルートを含む情報である。車載装置Eは、当該取得したルート情報に従って、音声、走行する道路の表示、音声等により車両Cを案内する。
(交通制御装置202の機能的構成)
 交通制御装置202は、機能的には図7に示すように、実施形態1と同様の推定部103と、実施形態1に係る交通制御部104に代わる交通制御部204とを備える。
 交通制御部204は、推定部103によって推定された排気ガス量を用いて、対象車両の交通を制御するための処理を実行する。本実施形態に係る交通制御部204は、推定部103によって推定された排気ガス量を用いて、対象車両をルート案内することによって対象車両の交通を制御する。
 詳細には例えば、交通制御部204は、対象車両の車載装置Eから車両情報を取得すると、車両情報と推定部103によって推定された排気ガス量を用いて、対象車両の目的地までのルートを決定し、当該決定したルートを含むルート情報を生成する。交通制御部204は、当該生成したルート情報を、対象車両から取得した車両情報に含まれるアドレスへ送信する。
 なお、対象車両である車両Cが自動運転の場合、対象車両は、ルート情報に従って走行するとよい。
(交通制御装置202の物理的構成)
 交通制御装置202は、物理的には、実施形態1に係る交通制御装置102と同様に構成されるとよい。
(交通制御システム200の動作)
 本実施形態に係る交通制御処理は、交通制御装置202がセンサ情報に基づいて道路R1~R4における対象車両の交通を制御するための方法であって、そのフローチャートの一例を図8に示す。交通制御処理は、例えば、交通制御装置202がセンサ機器101の各々からセンサ情報を取得すると、リアルタイムで繰り返し実行される。
 推定部103は、実施形態1と同様のステップS101を実行する。
 交通制御部204は、対象車両の車載装置Eから、当該対象車両の車両情報をネットワークNを介して取得する(ステップS202)。
 交通制御部204は、ステップS101にて推定された排気ガス量とステップS202にて取得した車両情報とを用いて、対象車両の目的地までのルートを含むルート情報を生成して、当該対象車両の車載装置Eへ送信する(ステップS203)。このように、交通制御部204は、対象車両の交通を制御するための処理を実行して、交通制御処理を終了する。
 詳細には例えば、交通制御部204は、推定された排気ガス量と車両情報とを用いて、推定された排気ガス量が他の対象地点Pよりも少ない対象地点Pを優先的に通過するように、対象車両の目的地までのルートを決定してもよい。
 詳細には例えば、交通制御部204は、車両情報を用いて、目的地までのルートの候補を複数求める。交通制御部204は、推定された排気ガス量を用いて、複数の候補のうち、通過する対象地点Pについて推定された排気ガス量の総和が最も小さいルートを特定する。交通制御部204は、特定したルートを含むルート情報を生成して、車載装置Eへ送信する。これにより、推定された排気ガス量が他の対象地点Pよりも少ない対象地点Pを優先的に通過するように、対象車両を案内することができる。
 また例えば、交通制御部204は、推定された排気ガス量と車両情報とを用いて、対象車両の速度変化量が小さくなるように対象車両の交通を制御してもよい。
 さらに例えば、交通制御部204は、推定された排気ガス量と車両情報とを用いて、予め定められた基準値を超えた対象地点Pがあった場合に、当該基準値を超えた対象地点Pの車両Cの交通量を減らすように対象車両の交通を制御してもよい。
 詳細には例えば、交通制御部204は、車両情報を用いて、目的地までのルートの候補を複数求める。交通制御部204は、推定された排気ガス量を用いて、複数の候補のうち、基準値を超えない対象地点Pを通過するルートを特定する。交通制御部204は、特定したルートを含むルート情報を生成して、車載装置Eへ送信する。これにより、基準値を超えた対象地点Pの車両Cの交通量を減らすように対象車両を案内することができる。
 さらに例えば、交通制御部204は、推定された排気ガス量と車両情報とを用いて、予め定められた基準値よりも少ない対象地点Pがあった場合に、当該対象地点Pを他の対象地点よりも優先的に通過するように対象車両の交通を制御してもよい。
 詳細には例えば、交通制御部204は、車両情報を用いて、目的地までのルートの候補を複数求める。交通制御部204は、推定された排気ガス量を用いて、複数の候補のうち、基準値よりも少ない対象地点Pを通過するルートを特定する。交通制御部204は、特定したルートを含むルート情報を生成して、車載装置Eへ送信する。これにより、基準値よりも少ない対象地点Pを他の対象地点よりも優先的に通過するように対象車両を案内することができる。
 これまで、本発明の実施形態2について説明した。
 実施形態2によれば、対象地点Pを通行する車両Cの排気ガス量を推定し、推定された排気ガス量を用いて、対象車両をルート案内することによって対象車両の交通を制御する。これにより、対象地点Pにおける車両Cからの排気ガス量を削減することが可能になる。
 本発明は、これまで説明した実施形態及び変形例に限られるものではなく、実施形態2は例えば以下のように変形されてもよい。
(変形例4)
 交通制御部204は、車両Cからの排気ガス量を予測し、推定された排気ガス量と予測量とを用いて、対象車両の交通を制御してもよい。変形例4に係る交通制御部204は、図9に示すように、予測部204aと、制御処理部204bとを含む。
 予測部204aは、車両Cからの排気ガス量の予測量を求める。この予測には、従来の手法が用いられてよく、例えば、予め定められた期間の平均値、予め定められた期間における時間帯ごとの平均値、予め定められた時点から現在までの変化に近似する直線又は曲線の値等が採用されるとよい。
 制御処理部204bは、推定部103によって推定された排気ガス量と予測部204aによって求められた予測量とを用いて、対象車両をルート案内する。すなわち、推定された排気ガス量と予測量とを用いて、対象車両の目的地までのルートを決定し、当該ルートを含むルート情報を生成して対象車両の車載装置Eへ送信する。
 排気ガス量を予測して、対象車両をルート案内することで、排気ガス量の増加が予想される対象地点Pを対象車両が通行する可能性が減らすことができる。また、排気ガス量の増加が予想される対象地点Pの交通量が減ることで、当該対象地点Pを通行する車両Cの速度変化量が小さくなり、当該対象地点Pを通行する車両Cからの排気ガス量も減らすことができる。そのため、排気ガス量の増加が予想される対象地点Pにおける車両Cからの排気ガス量が増加することが予め防ぐことができる。従って、対象地点Pにおける車両Cからの排気ガス量を削減することが可能になる。
 なお、制御処理部204bは、推定部103によって推定された排気ガス量と予測部204aによって求められた予測量とを用いて、信号機Sを制御してもよい。これによっても、排気ガス量の増加が予想される対象地点Pを対象車両が通行する可能性が減らすことができる。また、排気ガス量の増加が予想される対象地点Pの交通量が減ることで、当該対象地点Pを通行する車両Cの速度変化量が小さくなり、当該対象地点Pを通行する車両Cからの排気ガス量も減らすことができる。そのため、排気ガス量の増加が予想される対象地点Pにおける車両Cからの排気ガス量が増加することが予め防ぐことができる。従って、対象地点Pにおける車両Cからの排気ガス量を削減することが可能になる。
(変形例5)
 交通制御部204は、推定された排気ガス量と対象地点Pの周辺に設けられたCO吸収体に関する情報を用いて、対象車両の交通を制御してもよい。CO吸収体とは、樹木等の植物、COを吸収する機能を備えた塗装及び部材等であり、このような塗装や部材は例えば建造物の壁面に設けられる。CO吸収体に関する情報は、例えば、CO吸収体が設置される位置、CO吸収体が設置される数や面積、設置されたCO吸収体がCOを吸収する能力を示す値等の少なくとも1つを含む。変形例5に係る交通制御部204は、図10に示すように、取得部204cと、制御処理部204dとを含む。
 取得部204cは、吸収体情報を取得する。吸収体情報は、上述のCO吸収体に関する情報である。吸収体情報は、図示しない外部の装置から取得されてもよく、ユーザによって入力されてもよい。
 制御処理部204dは、推定部103によって推定された排気ガス量と取得部204cによって取得された吸収体情報とを用いて、車両Cをルート案内する。すなわち、推定された排気ガス量と吸収体情報とを用いて、車両Cの目的地までのルートを決定し、当該ルートを含むルート情報を生成して車両Cの車載装置Eへ送信する。
 CO吸収体が多く設置された対象地点Pでは、CO吸収体が少ない対象地点Pよりも、多くの排気ガスが吸収されるので、大気中の車両Cからの排気ガス量が増加し難い。そのため、例えばCO吸収体が多く設置された対象地点Pでは排気ガス量の基準値を、CO吸収体が少ない対象地点Pよりも高くする等により、CO吸収体が多い対象地点Pへ車両Cを誘導することで、対象地点Pにおける車両Cからの排気ガス量が増加することが予め防ぐことができる。従って、対象地点Pにおける車両Cからの排気ガス量を削減することが可能になる。
 なお、制御処理部204dは、推定部103によって推定された排気ガス量と取得部204cによって取得された吸収体情報とを用いて、信号機Sを制御してもよい。これによっても、例えばCO吸収体が多く設置された対象地点Pでは排気ガス量の基準値を、CO吸収体が少ない対象地点Pよりも高くする等により、CO吸収体が多い対象地点Pへ車両Cを誘導することで、対象地点Pにおける車両Cからの排気ガス量が増加することが予め防ぐことができる。従って、対象地点Pにおける車両Cからの排気ガス量を削減することが可能になる。
(変形例6)
 車両情報は、排気ガス量に関する条件を含んでもよい。この条件は、排気ガス量の抑制に関するドライバの希望であり、例えば、排気ガス量の抑制の程度について、大・中・小等から対象車両のドライバにより選択される。交通制御部204は、条件をさらに参照して、対象車両の目的地までのルートを決定してもよい。
 例えば、交通制御部204は、条件に応じて、対象車両に適用する基準値を変更する。より詳細には例えば、排気ガス量の抑制の程度について「大」が設定されている場合、「小」が設定されている場合よりも、当該対象車両に適用する基準値を小さくする。これにより、排気ガス量の抑制の程度を大きくすることを希望するドライバについては、小さいことを希望するドライバよりも、排気ガス量が少ないと推定される対象地点Pを多く通過することになる。これにより、ユーザの希望を考慮しつつ、対象地点Pにおける対象車両からの排気ガス量を削減することが可能になる。
(変形例7)
 ルート案内に従って走行するようにドライバを動機付けるため、交通制御装置202は、図11に示すように、インセンティブ付与部206をさらに備えてもよい。
 インセンティブ付与部206は、予め定められた種類の車両が実際にルート案内に従って走行した場合に、当該車両に特典を付与する。特典は、例えば、高速道路料金の割引、ガソリン料金の割引等である。
 これにより、ユーザが排気ガス量を抑制できる条件を設定するためのインセンティブを与えることができ、対象地点Pにおける対象車両からの排出ガス量の一層の低減を図ることができる。従って、対象地点Pにおける車両Cからの排気ガス量を削減することが可能になる。
(変形例8)
 交通制御部204は、目的地が共通の対象車両であっても、対象車両の車両タイプに応じて、異なるルートを決定してもよい。
 例えば、交通制御部204は、第1の種類の対象車両について、最短のルートを含むルート情報を生成してもよい。第2の種類の対象車両について、推定された排気ガス量が他の対象地点Pよりも少ない対象地点Pを通過するように決定されたルートを含むルート情報を生成してもよい。
 本変形例に係る車両の種類は、車両の環境性能に関する種類の他の例であり、車両の排気ガス量に関する種類である。詳細には、第1の種類は、第2の種類の車両Cよりも排気ガス量が少ない車両Cの種類である。第1の種類の車両Cは、例えば、電気自動車、ハイブリッドカー、CO吸収体を備える車両Cである。第2の種類の車両Cは、例えば、エンジン自動車である。
 CO吸収体を備える車両Cとは、例えば、COを吸収する機能を備えた塗装が施されている車両C、COを吸収する機能を備えた部材が外面等に設けられている車両Cである。車両CがCO吸収体を備えた車両ライプであるか否かは、車両情報に含まれてもよく、車種に基づいて判定されてもよい。
 これにより、排気ガス量が比較的少ない第1の種類の車両Cが対象車両である場合、最短のルートが案内されるので、第1の種類の車両Cに乗車するインセンティブを与えることができる。従って、対象地点Pにおける車両Cからの排気ガス量を削減することが可能になる。
 また例えば、交通制御部204は、第1の種類の対象車両について、推定された排気ガス量が少ない対象地点Pを通過するように決定されたルートを含むルート情報を生成してもよい。第2の種類の対象車両について、最短のルートを含むルート情報を生成してもよい。
 これにより、排気ガス量が比較的少ない第1の種類の車両Cが対象車両である場合、対象車両の迂回が減るため、車両Cの全体での排出ガス量を減らすことができる。従って、対象地点Pにおける車両Cからの排気ガス量を削減することが可能になる。
 この場合、交通制御装置202は、変形例7で説明したインセンティブ付与部206を備えるとよい。これにより、複数の対象地点Pのうち、推定された排気ガス量が少ない対象地点Pを通過するように決定されたルートを走行するインセンティブを与えることができ、車両Cの全体での排出ガス量の一層の低減を図ることができる。従って、対象地点Pにおける車両Cからの排気ガス量を削減することが可能になる。
(変形例9)
 交通制御部204は、目的地が共通の対象車両であっても、対象車両がCO吸収体を備えた車両タイプであるか否かに応じて、異なるルートを決定してもよい。
 本変形例に係る交通制御部204は、CO吸収体を備えた車両タイプの車両Cについては、複数の対象地点Pのうち、推定された排気ガス量が多い対象地点Pを通過するように、目的地までのルートを決定し、当該決定したルートを含むルート情報を生成して車両Cの車載装置Eへ送信する。
 CO吸収体を備えた車両Cが排気ガス量が多い対象地点Pを通過することで、当該対象地点PにおけるCOの量の低減を図ることができる。従って、対象地点Pにおける車両Cからの排気ガス量を削減することが可能になる。
 この場合、交通制御装置202は、変形例7で説明したインセンティブ付与部206を備えるとよい。これにより、複数の対象地点Pのうち、推定された排気ガス量が多い対象地点Pを通過するように決定されたルートを走行するインセンティブを与えることができ、対象地点PにおけるCOの量の一層の低減を図ることができる。従って、対象地点Pにおける車両Cからの排気ガス量を削減することが可能になる。
 以上、図面を参照して本発明の実施の形態及び変形例について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
 また、上述の説明で用いた複数のフローチャートでは、複数の工程(処理)が順番に記載されているが、実施の形態の各々で実行される工程の実行順序は、その記載の順番に制限されない。実施の形態の各々では、図示される工程の順番を内容的に支障のない範囲で変更することができる。また、上述の実施の形態及び変形例は、内容が相反しない範囲で組み合わせることができる。
 上記の実施の形態の一部または全部は、以下の付記のようにも記載されうるが、以下に限られない。
 1.
 対象地点における車両の排気ガス量を推定する推定手段と、
 前記推定された排気ガス量を用いて、対象車両の交通を制御するための処理を実行する交通制御手段とを備える
 交通制御装置。
2.
 前記交通制御手段は、前記推定された排気ガス量を用いて、1つ又は複数の信号機を制御することと、前記対象車両のルート案内をすることとの少なくとも一方によって前記対象車両の交通を制御する
 上記1.に記載の交通制御装置。
3.
 前記ルート案内をすることによって前記対象車両の交通を制御する場合、前記ルート案内に従って走行したとき、当該対象車両に特典を付与するインセンティブ付与手段をさらに備える
 上記2.に記載の交通制御装置。
4.
 前記交通制御手段は、前記推定された排気ガス量を用いて、前記対象車両の速度変化量が小さくなるように前記対象車両の交通を制御する
 上記1.から3.のいずれか1つに記載の交通制御装置。
5.
 前記交通制御手段は、前記推定された排気ガス量が予め定められた基準値を超えた場合に、前記対象地点の交通量を減らすように前記対象車両の交通を制御する
 上記1.から4.のいずれか1つに記載の交通制御装置。
6.
 前記対象地点は、複数であり、
 前記交通制御手段は、前記推定された排気ガス量が少ない対象地点を他の対象地点よりも優先的に通過するように前記対象車両の交通を制御する
 上記1.から5.のいずれか1つに記載の交通制御装置。
7.
 前記交通制御手段は、前記推定された排気ガス量が基準値よりも少ない対象地点を他の対象地点よりも優先的に通過するように前記対象車両の交通を制御する
 上記6.に記載の交通制御装置。
8.
 前記交通制御手段は、前記ルート案内をすることによって対象車両の交通を制御する場合、前記推定された排気ガス量と前記対象車両の種類とを用いて、前記対象車両のルート案内をする
 上記2.から7.のいずれか1つに記載の交通制御装置。
9.
 前記交通制御手段は、前記対象車両が予め定められた第1の種類の車両であるとき、前記推定された排気ガス量が多い対象地点を通過するようにルート案内する
 上記7.に記載の交通制御装置。
10.
 前記交通制御手段は、前記対象車両が予め定められた第2の種類の車両であるとき、前記推定された排気ガス量が少ない対象地点を通過するようにルート案内する
 上記7.又は上記8.に記載の交通制御装置。
11.
 前記交通制御手段は、
 前記車両からの排気ガス量の予測量を求める予測手段と、
 前記推定された排気ガス量と前記予測量とを用いて、前記対象地点における前記対象車両の交通を制御するための処理を実行する制御処理手段とを含む
 上記1.から10.のいずれか1つに記載の交通制御装置。
12.
 前記交通制御手段は、
 CO吸収体に関する情報を取得する取得手段と、
 前記推定された排気ガス量と前記CO吸収体に関する情報とを用いて、前記車両をルート案内する制御処理手段とを含む
 上記1.から10.のいずれか1つに記載の交通制御装置。
13.
 上記1.から12.のいずれか1つに記載の交通制御装置と、
 前記対象地点の排気ガス量を推定するための物理量を検出するセンサ機器と、
 信号機及び車載装置の少なくとも一方とを備える
 交通制御システム。
14.
 コンピュータが、
 対象地点を通行する車両の排気ガス量を推定し、
 前記推定された排気ガス量を用いて、対象車両の交通を制御するための処理を実行することを含む
 交通制御方法。
15.
 コンピュータに、
 対象地点を通行する車両の排気ガス量を推定し、
 前記推定された排気ガス量を用いて、対象車両の交通を制御するための処理を実行することを実行させるためのプログラムが記録された記録媒体。
16.
 コンピュータに、
 対象地点を通行する車両の排気ガス量を推定し、
 前記推定された排気ガス量を用いて、対象車両の交通を制御するための処理を実行することを実行させるためのプログラム。
100,200 交通制御システム
101,101a~101d センサ機器
102,202 交通制御装置
103 推定部
104,204 交通制御部
105 記憶部

Claims (15)

  1.  対象地点における車両の排気ガス量を推定する推定手段と、
     前記推定された排気ガス量を用いて、対象車両の交通を制御するための処理を実行する交通制御手段とを備える
     交通制御装置。
  2.  前記交通制御手段は、前記推定された排気ガス量を用いて、1つ又は複数の信号機を制御することと、前記対象車両のルート案内をすることとの少なくとも一方によって前記対象車両の交通を制御する
     請求項1に記載の交通制御装置。
  3.  前記ルート案内をすることによって前記対象車両の交通を制御する場合、前記ルート案内に従って走行したとき、当該対象車両に特典を付与するインセンティブ付与手段をさらに備える
     請求項2に記載の交通制御装置。
  4.  前記交通制御手段は、前記推定された排気ガス量を用いて、前記対象車両の速度変化量が小さくなるように前記対象車両の交通を制御する
     請求項1から3のいずれか1項に記載の交通制御装置。
  5.  前記交通制御手段は、前記推定された排気ガス量が予め定められた基準値を超えた場合に、前記対象地点の交通量を減らすように前記対象車両の交通を制御する
     請求項1から4のいずれか1項に記載の交通制御装置。
  6.  前記対象地点は、複数であり、
     前記交通制御手段は、前記推定された排気ガス量が少ない対象地点を他の対象地点よりも優先的に通過するように前記対象車両の交通を制御する
     請求項1から請求項5のいずれか1つに記載の交通制御装置。
  7.  前記交通制御手段は、前記推定された排気ガス量が基準値よりも少ない対象地点を他の対象地点よりも優先的に通過するように前記対象車両の交通を制御する
     請求項6に記載の交通制御装置。
  8.  前記交通制御手段は、前記ルート案内をすることによって前記対象車両の交通を制御する場合、前記推定された排気ガス量と前記対象車両の種類とを用いて、前記対象車両のルート案内をする
     請求項2から7のいずれか1項に記載の交通制御装置。
  9.  前記交通制御手段は、前記対象車両が予め定められた第1の種類の車両であるとき、前記推定された排気ガス量が多い対象地点を通過するようにルート案内する
     請求項7に記載の交通制御装置。
  10.  前記交通制御手段は、前記対象車両が予め定められた第2の種類の車両であるとき、前記推定された排気ガス量が少ない対象地点を通過するようにルート案内する
     請求項7又は8に記載の交通制御装置。
  11.  前記交通制御手段は、
     前記車両からの排気ガス量の予測量を求める予測手段と、
     前記推定された排気ガス量と前記予測量とを用いて、前記対象地点における前記対象車両の交通を制御するための処理を実行する制御処理手段とを含む
     請求項1から10のいずれか1項に記載の交通制御装置。
  12.  前記交通制御手段は、
     CO吸収体に関する情報を取得する取得手段と、
     前記推定された排気ガス量と前記CO吸収体に関する情報とを用いて、前記車両をルート案内する制御処理手段とを含む
     請求項1から10のいずれか1項に記載の交通制御装置。
  13.  請求項1から12のいずれか1項に記載の交通制御装置と、
     前記対象地点の排気ガス量を推定するための物理量を検出するセンサ機器と、
     信号機及び車載装置の少なくとも一方とを備える
     交通制御システム。
  14.  コンピュータが、
     対象地点を通行する車両の排気ガス量を推定し、
     前記推定された排気ガス量を用いて、対象車両の交通を制御するための処理を実行することを含む
     交通制御方法。
  15.  コンピュータに、
     対象地点を通行する車両の排気ガス量を推定し、
     前記推定された排気ガス量を用いて、対象車両の交通を制御するための処理を実行することを実行させるためのプログラムが記録された記録媒体。
PCT/JP2022/012793 2022-03-18 2022-03-18 交通制御装置、交通制御システム、交通制御方法及び記録媒体 WO2023175955A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/012793 WO2023175955A1 (ja) 2022-03-18 2022-03-18 交通制御装置、交通制御システム、交通制御方法及び記録媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/012793 WO2023175955A1 (ja) 2022-03-18 2022-03-18 交通制御装置、交通制御システム、交通制御方法及び記録媒体

Publications (1)

Publication Number Publication Date
WO2023175955A1 true WO2023175955A1 (ja) 2023-09-21

Family

ID=88022985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012793 WO2023175955A1 (ja) 2022-03-18 2022-03-18 交通制御装置、交通制御システム、交通制御方法及び記録媒体

Country Status (1)

Country Link
WO (1) WO2023175955A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001101561A (ja) * 1999-09-29 2001-04-13 Koito Ind Ltd 公害量推測装置及び公害量予測装置並びにこれを用いた道路交通管制装置
JP2001307288A (ja) * 2000-04-24 2001-11-02 Omron Corp 情報処理装置
JP2005004425A (ja) * 2003-06-11 2005-01-06 Omron Corp 大気汚染物質の排出量推定装置、および交通公害低減装置
JP2009176187A (ja) * 2008-01-28 2009-08-06 Nec Corp 交通流分散システム、交通流分散方法、交通流分散プログラムおよびプログラム記録媒体
JP2010266204A (ja) * 2009-05-12 2010-11-25 Fujitsu Ltd 走行ルート提示装置及びプログラム
JP2012242899A (ja) * 2011-05-16 2012-12-10 Sumitomo Electric Ind Ltd 交通規制装置及び方法
US20160042234A1 (en) * 2014-08-11 2016-02-11 Nokia Corporation Vehicle Counting and Emission Estimation
KR102222381B1 (ko) * 2019-10-01 2021-03-04 한국건설기술연구원 교통 데이터를 이용한 실시간 도로변 대기오염 추정 시스템 및 그 방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001101561A (ja) * 1999-09-29 2001-04-13 Koito Ind Ltd 公害量推測装置及び公害量予測装置並びにこれを用いた道路交通管制装置
JP2001307288A (ja) * 2000-04-24 2001-11-02 Omron Corp 情報処理装置
JP2005004425A (ja) * 2003-06-11 2005-01-06 Omron Corp 大気汚染物質の排出量推定装置、および交通公害低減装置
JP2009176187A (ja) * 2008-01-28 2009-08-06 Nec Corp 交通流分散システム、交通流分散方法、交通流分散プログラムおよびプログラム記録媒体
JP2010266204A (ja) * 2009-05-12 2010-11-25 Fujitsu Ltd 走行ルート提示装置及びプログラム
JP2012242899A (ja) * 2011-05-16 2012-12-10 Sumitomo Electric Ind Ltd 交通規制装置及び方法
US20160042234A1 (en) * 2014-08-11 2016-02-11 Nokia Corporation Vehicle Counting and Emission Estimation
KR102222381B1 (ko) * 2019-10-01 2021-03-04 한국건설기술연구원 교통 데이터를 이용한 실시간 도로변 대기오염 추정 시스템 및 그 방법

Similar Documents

Publication Publication Date Title
CN105383495B (zh) 使用物理模型的基于路线的能耗估计
US8712676B2 (en) Method for computing an energy efficient route
US8798901B2 (en) Travel distance estimating apparatus, travel distance estimating method, travel distance estimating program, and recording medium
JP4840077B2 (ja) コスト算出装置、ナビゲーション装置、プログラム
US8793067B2 (en) Route searching device
US9631940B2 (en) Method and system for determining a route for efficient energy consumption
US9702716B2 (en) Traffic score determination
KR101728406B1 (ko) 추진 관련 동작 파라미터 추정 방법
US20220187089A1 (en) Systems and methods for selecting vehicle routes
JP4135525B2 (ja) 運転技術評価装置
US8255151B2 (en) Method and system for providing environmentally-optimized navigation routes
JP5929945B2 (ja) 移動支援装置、移動支援方法、及び運転支援システム
US9643589B2 (en) Vehicular information processing device
CN106767874A (zh) 用于通过在车辆导航系统中的群体感知的燃料消耗预测和成本估计的方法及装置
US11443563B2 (en) Driving range based on past and future data
CN105383496A (zh) 用于车辆的基于路线的剩余能量可行驶距离计算
JP2003166868A (ja) 燃費表示方法及び燃費表示装置
JP5929944B2 (ja) 移動支援装置、移動支援方法、及び運転支援システム
JP4512676B2 (ja) 経路探索システム、経路探索端末及び経路探索方法
WO2014192615A1 (ja) シミュレーション装置、シミュレーション方法及びプログラム
Kraschl-Hirschmann et al. Estimating energy consumption for routing algorithms
KR20110061374A (ko) 연료 소모량을 최소화할 수 있는 연료 절감경로 탐색 방법
WO2023175955A1 (ja) 交通制御装置、交通制御システム、交通制御方法及び記録媒体
JP2019112989A (ja) 車両の燃費推定装置
CN109520517B (zh) 路线规划方法及其系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22932225

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024507456

Country of ref document: JP

Kind code of ref document: A