WO2023174023A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2023174023A1
WO2023174023A1 PCT/CN2023/077624 CN2023077624W WO2023174023A1 WO 2023174023 A1 WO2023174023 A1 WO 2023174023A1 CN 2023077624 W CN2023077624 W CN 2023077624W WO 2023174023 A1 WO2023174023 A1 WO 2023174023A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
qos flow
expected
ran
auxiliary information
Prior art date
Application number
PCT/CN2023/077624
Other languages
English (en)
French (fr)
Inventor
孙海洋
余芳
李岩
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023174023A1 publication Critical patent/WO2023174023A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria

Definitions

  • the present application relates to the field of communication technology, and in particular, to a communication method and device.
  • the radio access network can obtain the time when the service flow reaches the entrance of the RAN from the core network, so that the RAN can transmit the quality of service (quality of service) of the service flow based on the time when the service flow reaches the RAN.
  • QoS quality of service
  • flow flow scheduling resources.
  • bidirectional service flows may be involved. For example, UE1 will send a service flow to UE2, and UE2 will also send a service flow to UE1. How the RAN schedules resources for the bidirectional QoS flow that transmits such bidirectional service flows is a problem that needs to be solved.
  • Embodiments of the present application provide a communication method and device for scheduling reasonable resources for matching QoS flows.
  • a first communication method is provided.
  • the method can be executed by a first access network device, or by other devices including the functions of the first access network device, or by a chip system or other functional modules.
  • the chip system Or the functional module can realize the function of the first access network device, and the chip system or the functional module is, for example, provided in the first access network device.
  • the first access network device is, for example, a base station.
  • the method includes: determining first expected auxiliary information and second expected auxiliary information according to matching information of the first QoS flow and the second QoS flow, the first expected auxiliary information being used to indicate the desired first QoS flow.
  • the second expected auxiliary information is used to indicate the desired transmission timing of the second QoS flow, wherein the matching information is used to indicate that the first QoS flow matches the second QoS flow, Or indicate that the first QoS flow and the second QoS flow are used to transmit the same service flow; send the first expected assistance information and the second expected assistance information to the first core network device, the first expected assistance information
  • the information and the second expected auxiliary information are used to re-determine the transmission timing of the first QoS flow and the second QoS flow.
  • the service flows transmitted by the first QoS flow and the second QoS flow belong to the same service flow, for example, so the first QoS flow and the second QoS flow are considered to match.
  • the first QoS flow and the second QoS flow are two QoS flows transmitted by communication between two terminal devices.
  • the communication between the two terminal devices will be forwarded through the first access network device, so the time when the two QoS flows arrive at the first access network device or the terminal device is related.
  • the time at which one QoS flow reaches the first access network device is relatively certain, if the first access network device arbitrarily schedules resources for another QoS flow, it may cause the scheduled resources to be inconsistent with the other QoS flow in the time domain.
  • the first access network device can determine the first desired assistance information and the second desired assistance information while considering that the two QoS flows match, then the first desired assistance information indicated by the first desired assistance information
  • the transmission timing of a QoS flow can be associated with the transmission timing of the second QoS flow indicated by the second desired auxiliary information, and the core network device can determine the transmission timing of the first QoS flow and the transmission timing of the second QoS flow accordingly. Then the finally determined transmission timing of the first QoS flow and the transmission timing of the second QoS flow will also be associated.
  • the scheduled The resources can be more consistent with the time when the two QoS flows arrive at the first access network device or terminal device, so that the two QoS flows can be transmitted reasonably.
  • the resources of the associated QoS flows can be coordinated, and the mismatch between the resources scheduled for one QoS flow and the resources scheduled for another QoS flow can be avoided as much as possible, and the transmission time of the QoS flow can be reduced. extension.
  • determining the first desired auxiliary information includes: in the case that the first scheduling resource determined according to the expected transmission timing of the first QoS flow conflicts with other scheduling resources, determine the first scheduling resource according to the second scheduling resource. time domain position to determine the first desired assistance information, wherein the second scheduling resource has no conflict with the other scheduling resources.
  • the first access network device may determine the expected transmission timing of the first QoS flow based on the auxiliary information from the first core network device, and may determine the first scheduling resource based on the predicted transmission timing of the first QoS flow. If the first scheduling resource conflicts with other scheduling resources, the transmission timing of the first QoS flow needs to be re-determined, otherwise the transmission of the first QoS flow may conflict with the transmission of other QoS flows.
  • the first access network device can determine the second scheduling resource that does not conflict with other scheduling resources, so that the first desired assistance information can be determined according to the time domain position of the second scheduling resource.
  • the desired auxiliary information determined in this way can reduce resource conflicts and reduce the transmission delay of QoS flows.
  • determining the first desired assistance information and the second desired assistance information according to the matching information of the first QoS flow and the second QoS flow includes: if the first desired assistance information indicates The transmission timing of the first QoS flow has a first offset relative to the expected transmission timing of the first QoS flow, then the transmission timing of the second QoS flow indicated by the second expected auxiliary information is relative to the expected transmission timing of the first QoS flow.
  • the expected transmission timing of the second QoS flow has the first offset.
  • the first QoS flow and the second QoS flow are service flows communicated between two terminal devices, so the transmission timing of the two service flows is related.
  • the first service flow transmitted by the first QoS flow is the uplink service flow
  • the service flow transmitted by the second QoS flow is the downlink service flow.
  • the method further includes: receiving the matching information from the first core network device.
  • the matching information between the first QoS flow and the second QoS flow comes from, for example, the first core network device, and the first core network device is, for example, an SMF.
  • the matching information includes access network tunnel information corresponding to the first PDU session and the identifier of the first QoS flow, and includes access network tunnel information corresponding to the second PDU session and The identifier of the second QoS flow; or the matching information includes the core network tunnel information corresponding to the first PDU session and the identifier of the first QoS flow, and includes the core network tunnel information corresponding to the second PDU session and the The identifier of the second QoS flow; or, the matching information includes the identifier of the first PDU session and the identifier of the first QoS flow, and includes the identifier of the second PDU session and the identifier of the second QoS flow.
  • the first PDU session is a session where the first QoS flow is located
  • the second PDU session is a session where the second QoS flow is located.
  • the above are some examples of matching information.
  • the matching information may also include other contents, as long as it can show that the first QoS flow matches (or is associated with) the second QoS flow.
  • the method further includes: obtaining the first desired assistance information from the first core network device.
  • the device receives first auxiliary information and second auxiliary information.
  • the first auxiliary information is used to indicate the transmission opportunity of the first QoS flow.
  • the second auxiliary information The information is used to indicate the transmission opportunity of the second QoS flow, wherein the scheduling resources determined according to the first auxiliary information do not conflict with other scheduling resources, and the scheduling determined according to the second auxiliary information conflicts with other scheduling resources. There is no conflict in scheduling resources.
  • the core network can re-determine the transmission timing of the first QoS flow and the second QoS flow, and indicate the re-determined transmission timing to The first access network equipment.
  • the first access network device may determine the scheduling resources of the first QoS flow according to the first auxiliary information, and determine the scheduling resources of the second QoS flow according to the second auxiliary information.
  • the first auxiliary information and the second auxiliary information are, for example, based on the first auxiliary information.
  • the expected auxiliary information and the second expected auxiliary information are determined, so there is no longer a conflict between the scheduling resources determined by the first access network device and other scheduling resources, so as to ensure the normal transmission of the first QoS flow and the second QoS flow. .
  • the first expected assistance information includes the expected burst arrival time of the first QoS flow, or; the first expected assistance information includes the expected first QoS flow. range information to which the burst arrival time belongs; or; the first expected assistance information includes the expected burst arrival time offset of the first QoS flow; or the first expected assistance information includes the expected burst arrival time offset of the first QoS flow; Range information to which the burst arrival time offset of the first QoS flow belongs.
  • the expected burst arrival time offset of the first QoS flow is the offset between the expected burst arrival time of the first QoS flow and the expected burst arrival time of the first QoS flow. .
  • the contents included in the second expected auxiliary information, the first auxiliary information, the second auxiliary information, etc. are also similar to the first expected auxiliary information, and will not be described again.
  • a second communication method is provided.
  • the method can be executed by the first core network device, or by other devices including the functions of the first core network device, or by a chip system or other functional modules.
  • the chip system or function The module can realize the function of the first core network device, and the chip system or functional module is, for example, provided in the first core network device.
  • the first core network device is, for example, SMF.
  • the method includes: receiving first expected auxiliary information and second expected auxiliary information, the first expected auxiliary information is used to indicate the transmission opportunity of the desired first QoS flow, and the second expected auxiliary information is used to indicate the desired third QoS flow.
  • Transmission timing of two QoS flows, the first QoS flow and the second QoS flow are used to transmit the same service flow; determine the first expected time information and the second expected time information according to the third expected auxiliary information and the fourth expected auxiliary information , the first expected time information is used to indicate the expected transmission timing of the first service flow, the second expected time information is used to indicate the expected transmission timing of the second service flow, and the third expected auxiliary information is consistent with the expected transmission timing of the second service flow.
  • the first desired auxiliary information is associated with at least one of the second desired auxiliary information
  • the fourth desired auxiliary information is associated with at least one of the first desired auxiliary information and the second desired auxiliary information.
  • the first service flow is transmitted through the first QoS stream, and the second service flow is transmitted through the second QoS stream; the first expected time information and the first expected time information are sent to the second core network device.
  • the second expected time information is used to re-determine the transmission timing of the first service flow and the second service flow.
  • the third desired auxiliary information is the first desired auxiliary information
  • the fourth desired auxiliary information is the second desired auxiliary information
  • the method further includes: sending matching information to a first access network device, wherein the first access network device is configured to transmit the first QoS flow and the third Two QoS flows, the matching information is used to indicate that the first QoS flow matches the second QoS flow, or to indicate that the first QoS flow and the second QoS flow are used to transmit the same service flow. If the first access network device is used to transmit the first QoS flow and the second QoS flow, the first core network device may send matching information to the first access network device, so that the first access network device determines the first The QoS flow matches the second QoS flow.
  • the first access network device needs to re-determine the transmission timing (expected auxiliary information) for two QoS flows, it can comprehensively determine the expected auxiliary information of the two QoS flows based on the matching situation of the two QoS flows, so that the determined The transmission timing of the two QoS flows can conform to the actual transmission situation of the QoS flows.
  • the first expected assistance information and the second expected assistance information determining the third expected assistance information and the fourth expected assistance information, wherein the transmission opportunities indicated by the third expected assistance information and the fourth expected assistance information are relative to the expected transmission opportunities of the corresponding QoS flow have the same offset. For example, if the time indicated by the first expected auxiliary information and the time indicated by the second expected auxiliary information have different offsets relative to the respective expected transmission opportunities, they are considered to be mismatched.
  • the first core network device may re-determine the expected transmission timing of the first QoS flow and the second QoS flow, that is, the first core network device may determine the third expected auxiliary information and the fourth expected auxiliary information, The time indicated by the third expected auxiliary information and the time indicated by the fourth expected auxiliary information are matched to comply with the actual transmission situation of the QoS flow.
  • the method further includes: sending the third desired assistance information to a first access network device, and sending the fourth desired assistance information to a second access network device, where The third expected auxiliary information is used to indicate the desired transmission timing of the first QoS flow, and the fourth desired auxiliary information is used to indicate the desired transmission timing of the second QoS flow; from the first access
  • the network device receives first confirmation information, and receives second confirmation information from the second access network device, the first confirmation information is used to indicate acceptance of the third expected auxiliary information, and the second confirmation information is used to Indicates acceptance of the fourth desired auxiliary information.
  • the first core network device may negotiate with the corresponding access network device to determine whether the access network device can receive the third desired assistance information. and fourth desired auxiliary information.
  • the first core network device can take a dominant position, and the access network device is more inclined to accept the suggestions of the first core network device, so the negotiation steps can be reduced and the negotiation efficiency can be improved.
  • the method further includes: sending the information of the second QoS flow to the first access network device, and sending the first QoS flow information to the second access network device.
  • QoS flow information If two QoS flows are transmitted through two access network devices, the first core network device can negotiate with the two access network devices respectively to determine the expected auxiliary information of the corresponding QoS flows, or the first core network device can also use the two access network devices to determine the expected auxiliary information of the corresponding QoS flows. Negotiate the desired auxiliary information for both QoS flows.
  • the first core network device can send the information of the corresponding QoS flow to the access network device that is not used to transmit the QoS flow, so that the access network device can clearly understand the relationship between the QoS flow and the access network device.
  • the QoS flows transmitted by the access network devices are matched, so that the two access network devices can negotiate the expected auxiliary information of the two QoS flows based on the matching relationship between the two QoS flows.
  • the method further includes: determining matching information between the first QoS flow and the second QoS flow, where the matching information is used to indicate that the first QoS flow is consistent with the first QoS flow and the second QoS flow.
  • the second QoS flow matches, or indicates that the first QoS flow and the second QoS flow are used to transmit the same service flow.
  • the first core network device may determine that the first QoS flow matches the second QoS flow, so that expected auxiliary information of the two QoS flows can be comprehensively determined based on the matching information.
  • the method further includes: receiving association information from the second core network device, the association information being used to indicate that the first terminal device is associated with the second terminal device, and the matching information is It is determined according to the association information that the first terminal device corresponds to the first service flow, and the second terminal device corresponds to the second service flow.
  • the first core network device may determine the matching information based on the association relationship from the second core network device, or the first core network device may also determine the matching information through other methods.
  • the association information includes association relationship information between the identity of the first terminal device and the identity of the second terminal device; or, the association information includes the first terminal device address information and the address information of the second terminal device; or, the association information includes the link between the first service flow and the second service flow. Related relationship information.
  • the matching information includes access network tunnel information corresponding to the first PDU session and the identifier of the first QoS flow, and includes access network tunnel information corresponding to the second PDU session and The identifier of the second QoS flow; or, the matching information includes the core network tunnel information corresponding to the first PDU session and the identifier of the first QoS flow, and includes the core network tunnel information corresponding to the second PDU session and the identifier of the first QoS flow.
  • the identifier of the second QoS flow; or, the matching information includes the identifier of the first PDU session and the identifier of the first QoS flow, and includes the identifier of the second PDU session and the identifier of the second QoS flow.
  • the first PDU session is a session where the first QoS flow is located
  • the second PDU session is a session where the second QoS flow is located.
  • the first expected assistance information includes the expected burst arrival time of the first QoS flow, or; the first expected assistance information includes the expected first QoS flow. range information to which the burst arrival time belongs; or; the first expected assistance information includes the expected burst arrival time offset of the first QoS flow; or the first expected assistance information includes the expected burst arrival time offset of the first QoS flow; Range information to which the burst arrival time offset of the first QoS flow belongs.
  • the expected burst arrival time offset of the first QoS flow is the offset between the expected burst arrival time of the first QoS flow and the expected burst arrival time of the first QoS flow.
  • the method described in the second aspect may refer to any one of the embodiments shown in FIG. 5 to the embodiment shown in FIG. 8 that will be introduced later.
  • a third communication method is provided.
  • This method can be executed by the second core network device, or by other devices including the functions of the second core network device, or by a chip system or other functional modules.
  • the chip system or function The module can realize the function of the second core network device, and the chip system or functional module is, for example, provided in the second core network device.
  • the second core network device is, for example, TSN AF or TSCTSF.
  • the method includes: receiving first expected time information and second expected time information from a first core network device, the first expected time information is used to indicate an expected transmission opportunity of the first service flow, and the second expected time information Used to indicate the expected transmission timing of the second service flow, the first service flow and the second service flow belong to the same service flow; according to the first expected time information and the second expected time information, determine Third expected time information and fourth expected time information.
  • the third expected time information is used to indicate the burst arrival time of the first service flow.
  • the fourth expected time information is used to indicate the second service flow. the burst arrival time; sending the third expected time information and the fourth expected time information to the first core network device.
  • the method further includes: sending association information to the first core network device, where the association information is used to indicate that the first terminal device is associated with the second terminal device, and the first terminal device is associated with the second terminal device.
  • a terminal device corresponds to the first service flow, and the second terminal device corresponds to the second service flow.
  • the association information includes association relationship information between the identity of the first terminal device and the identity of the second terminal device; or, the association information includes the first terminal device The address information of the second terminal device and the address information of the second terminal device; or, the association information includes association relationship information between the first service flow and the second service flow.
  • determining third expected time information and fourth expected time information according to the first expected time information and the second expected time information includes: if the first expected time information The indicated time does not match the time indicated by the second expected time information, and the third expected time information and the fourth expected time information are determined based on the first expected time information and the second expected time information. , where the third expectation is when The transmission timing indicated by the time information and the fourth expected time information has the same offset relative to the expected transmission timing of the corresponding QoS flow. For example, if the time indicated by the first expected time information and the time indicated by the second expected time information have different offsets relative to respective expected transmission opportunities, they are considered to be mismatched.
  • the second core network device may re-determine the expected transmission timing of the first QoS flow and the second QoS flow, that is, the second core network device may determine the third expected time information and the fourth expected time information, The time indicated by the third expected time information and the time indicated by the fourth expected time information match to conform to the actual QoS flow transmission conditions.
  • the method further includes: sending the third expected time information to a first access network device, and sending the fourth expected time information to a second access network device, where The third expected time information is used to indicate the expected transmission opportunity of the first QoS flow, and the fourth expected time information is used to indicate the expected transmission opportunity of the second QoS flow; from the first access
  • the network device receives third confirmation information, and receives fourth confirmation information from the second access network device, the third confirmation information is used to indicate acceptance of the third expected time information, and the fourth confirmation information is used to Indicates acceptance of the fourth expected time information.
  • the second core network device may negotiate with the corresponding access network device to determine whether the access network device can receive the third expected time information. and fourth desired time information.
  • the second core network device negotiates with the access network device.
  • the second core network device can take a dominant position.
  • the access network device is more inclined to accept the suggestions of the second core network device. Therefore, the negotiation steps can be reduced and the negotiation efficiency can be improved.
  • the method introduced in the third aspect may refer to any one of the embodiments shown in FIG. 5 to the embodiment shown in FIG. 8 that will be introduced later.
  • a fourth communication method is provided.
  • the method can be executed by the first access network device, or by other devices including the functions of the first access network device, or by a chip system or other functional modules.
  • the chip system Or the functional module can realize the function of the first access network device, and the chip system or the functional module is, for example, provided in the first access network device.
  • the first access network device is, for example, a base station.
  • the method includes: sending expected assistance information to a second access network device, where the expected assistance information includes expected assistance information used to indicate a transmission opportunity of an expected first QoS flow, or includes expected assistance information used to indicate an expected first QoS flow.
  • the expected auxiliary information of the transmission opportunity and the expected auxiliary information used to indicate the transmission opportunity of the expected second QoS flow wherein the first QoS flow matches the second QoS flow, or the first QoS flow and the second QoS flow are used to transmit the same service flow, the first QoS flow is transmitted through the first access network device, and the second QoS flow is transmitted through the second access network device; from the The second access network device receives confirmation information, where the confirmation information is used to indicate acceptance of the expected assistance information; and sends the expected assistance information to the first core network device.
  • the method further includes: receiving auxiliary information indicating the transmission timing of the first QoS flow and the information of the second QoS flow from the first core network device; according to the The auxiliary information and the information of the second QoS flow are used to determine the expected auxiliary information.
  • the first QoS flow matches the second QoS flow, or it is determined that the first QoS flow matches the second QoS flow.
  • QoS flow is used to transmit the same service flow.
  • determining the desired auxiliary information according to the auxiliary information and the information of the second QoS flow includes: when the scheduling resource determined according to the auxiliary information conflicts with other scheduling resources.
  • the desired auxiliary information indicating the transmission timing of the desired first QoS flow is determined based on the time domain position of the scheduling resource that does not conflict with the scheduling resource, and based on the information of the second QoS flow and as stated to indicate the desired Desired auxiliary information for the transmission opportunity of a QoS flow, determining the expected auxiliary information used to indicate the expected transmission opportunity of the second QoS flow; wherein the expected auxiliary information used to indicate the expected transmission opportunity of the first QoS flow Information and the expected auxiliary information used to indicate the transmission opportunity of the expected second QoS flow, the transmission opportunities indicated by both have the same offset relative to the expected transmission opportunity of the corresponding QoS flow.
  • a communication device may be the first access network device described in any one of the above first to fourth aspects.
  • the communication device has the function of the above-mentioned first access network device.
  • the communication device is, for example, a first access network device, or a larger device including the first access network device, or a functional module in the first access network device, such as a baseband device or a chip system.
  • the communication device includes a baseband device and a radio frequency device.
  • the communication device includes a processing unit (sometimes also called a processing module) and a transceiver unit (sometimes also called a transceiver module). The transceiver unit can realize the sending function and the receiving function.
  • the transceiver unit When the transceiver unit realizes the sending function, it can be called a sending unit (sometimes also called a sending module). When the transceiver unit realizes the receiving function, it can be called a receiving unit (sometimes also called a sending module). receiving module).
  • the sending unit and the receiving unit can be the same functional module, which is called the sending and receiving unit, and the functional module can realize the sending function and the receiving function; or the sending unit and the receiving unit can be different functional modules, and the sending and receiving unit is responsible for these functions.
  • the processing unit is configured to determine first desired assistance information and second desired assistance information according to matching information of the first QoS flow and the second QoS flow, where the first desired assistance information is used to indicate the desired
  • the transmission timing of the first QoS flow the second expected auxiliary information is used to indicate the desired transmission timing of the second QoS flow, wherein the matching information is used to indicate the first QoS flow and the second QoS flow.
  • the QoS flows match, or indicate that the first QoS flow and the second QoS flow are used to transmit the same service flow; the transceiver unit (or the sending unit) is used to send the first QoS flow to the first core network device.
  • the first expected auxiliary information and the second expected auxiliary information are used to re-determine the transmission opportunities of the first QoS flow and the second QoS flow.
  • the transceiver unit (or the sending unit) is configured to send desired assistance information to the second access network device, where the desired assistance information includes an expectation indicating a desired transmission opportunity of the first QoS flow.
  • the auxiliary information may include expected auxiliary information for indicating the transmission timing of the desired first QoS flow and desired auxiliary information for indicating the transmission timing of the desired second QoS flow, wherein the first QoS flow and the The second QoS flow matches, or the first QoS flow and the second QoS flow are used to transmit the same service flow, the first QoS flow is transmitted through the first access network device, and the second QoS flow Transmitted through the second access network device;
  • the transceiver unit (or the receiving unit) is also configured to receive confirmation information from the second access network device, where the confirmation information is used to indicate acceptance of the Desired auxiliary information;
  • the transceiving unit (or the sending unit) is also used to send the desired auxiliary information to the first core network device.
  • the communication device further includes a storage unit (sometimes also referred to as a storage module), the processing unit is configured to be coupled with the storage unit and execute the program in the storage unit or Instructions enable the communication device to perform the function of the first access network device described in any one of the above first to fourth aspects.
  • a storage unit sometimes also referred to as a storage module
  • the processing unit is configured to be coupled with the storage unit and execute the program in the storage unit or Instructions enable the communication device to perform the function of the first access network device described in any one of the above first to fourth aspects.
  • a sixth aspect provides a communication device.
  • the communication device may be the first core network device described in any one of the above first to fourth aspects.
  • the communication device has the function of the above-mentioned first core network device.
  • said communication The device is, for example, the first core network device, or a larger device including the first core network device, or a functional module in the first core network device, such as a baseband device or a chip system.
  • the communication device includes a baseband device and a radio frequency device.
  • the communication device includes a processing unit (sometimes also called a processing module) and a transceiver unit (sometimes also called a transceiver module).
  • a processing unit sometimes also called a processing module
  • a transceiver unit sometimes also called a transceiver module
  • the transceiver unit (or the receiving unit) is used to receive first expected auxiliary information and second expected auxiliary information, where the first expected auxiliary information is used to indicate the desired transmission opportunity of the first QoS flow,
  • the second desired auxiliary information is used to indicate the transmission timing of the desired second QoS flow, and the first QoS flow and the second QoS flow are used to transmit the same service flow;
  • the processing unit is configured to perform the transmission according to the third desired
  • the auxiliary information and the fourth expected auxiliary information determine the first expected time information and the second expected time information.
  • the first expected time information is used to indicate the expected transmission opportunity of the first service flow
  • the second expected time information is used to indicate the expected transmission timing of the first service flow.
  • the third expected auxiliary information is associated with at least one of the first expected auxiliary information and the second expected auxiliary information
  • the fourth expected auxiliary information is associated with
  • the first desired assistance information is associated with at least one of the second desired assistance information
  • the first service flow is transmitted through the first QoS flow
  • the second service flow is transmitted through the second QoS Streaming transmission
  • the transceiver unit (or the sending unit) is also configured to send the first expected time information and the second expected time information to the second core network device to re-determine the first service stream and the transmission timing of the second service stream.
  • the communication device further includes a storage unit (sometimes also called a storage module), the processing unit is configured to be coupled with the storage unit and execute the program in the storage unit or Instructions enable the communication device to perform the function of the first core network device described in any one of the above first to fourth aspects.
  • a storage unit sometimes also called a storage module
  • the processing unit is configured to be coupled with the storage unit and execute the program in the storage unit or Instructions enable the communication device to perform the function of the first core network device described in any one of the above first to fourth aspects.
  • a communication device may be the second core network device described in any one of the above first to fourth aspects.
  • the communication device has the function of the above-mentioned second core network device.
  • the communication device is, for example, a second core network device, or a larger device including the second core network device, or a functional module in the second core network device, such as a baseband device or a chip system.
  • the communication device includes a baseband device and a radio frequency device.
  • the communication device includes a processing unit (sometimes also called a processing module) and a transceiver unit (sometimes also called a transceiver module).
  • a processing unit sometimes also called a processing module
  • a transceiver unit sometimes also called a transceiver module
  • the transceiver unit (or the receiving unit) is configured to receive first expected time information and second expected time information from the first core network device, and the first expected time information is used to indicate the desired first The transmission timing of the business flow, the second expected time information is used to indicate the expected transmission timing of the second business flow, the first business flow and the second business flow belong to the same business flow; the processing unit, configured to determine third expected time information and fourth expected time information according to the first expected time information and the second expected time information, where the third expected time information is used to indicate an emergency of the first service flow The fourth expected time information is used to indicate the burst arrival time of the second service flow; the transceiver unit (or the sending unit) is also used to send a message to the first core network device. The third expected time information and the fourth expected time information are sent.
  • the communication device further includes a storage unit (sometimes also called a storage module), the processing unit is configured to be coupled with the storage unit and execute the program in the storage unit or Instructions enable the communication device to perform the function of the second core network device described in any one of the above first to fourth aspects.
  • a storage unit sometimes also called a storage module
  • the processing unit is configured to be coupled with the storage unit and execute the program in the storage unit or Instructions enable the communication device to perform the function of the second core network device described in any one of the above first to fourth aspects.
  • An eighth aspect provides a communication system, including the communication device described in the fifth aspect, the communication device described in the sixth aspect, and the communication device described in the seventh aspect.
  • a computer-readable storage medium is provided.
  • the computer-readable storage medium is used to store computer programs or instructions.
  • the first access network device and the first core network in the above aspects are The method executed by the device or the second core network device is implemented.
  • a computer program product containing instructions which when run on a computer enables the methods described in the above aspects to be implemented.
  • a chip system including a processor and an interface.
  • the processor is configured to call and run instructions from the interface, so that the chip system implements the methods of the above aspects.
  • Figure 1 is an architectural diagram of a 5G network
  • Figure 2 is an architectural diagram of interoperability between 5G network and TSN;
  • Figure 3 is an architectural diagram of a 5G network that can support TSC services
  • Figure 4A is a schematic diagram of the downlink burst arrival time
  • Figure 4B is a schematic diagram of the uplink burst arrival time
  • Figure 4C is a schematic diagram of communication between two UEs in a single RAN scenario
  • Figure 4D is a schematic diagram of communication between two UEs in a multi-RAN scenario
  • Figure 4E is a schematic diagram of the relationship between the period of resources scheduled by the RAN and the period of the QoS flow;
  • FIGS. 5 to 8 are flow charts of several communication methods provided by embodiments of the present application.
  • Figure 9 is a schematic diagram of a device provided by an embodiment of the present application.
  • Figure 10 is a schematic diagram of yet another device provided by an embodiment of the present application.
  • the number of nouns means “singular noun or plural noun", that is, “one or more”, unless otherwise specified.
  • At least one means one or more
  • plural means two or more.
  • “And/or” describes the relationship between associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A exists alone, A and B exist simultaneously, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the related objects are in an "or” relationship.
  • A/B means: A or B.
  • At least one of the following or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • at least one of a, b, or c means: a, b, c, a and b, a and c, b and c, or a and b and c, where a, b, c Can be single or multiple.
  • first and second mentioned in the embodiment of this application are used to distinguish multiple objects and are not used to limit the size, content, order, timing, priority or importance of multiple objects.
  • the first request information and the second request information may be the same information or different information.
  • this name does not indicate the difference in content, size, sender and/or receiver, sending time, priority or importance of the two messages.
  • the numbering of steps in various embodiments introduced in this application is only to distinguish different steps and is not used for Define the sequence between steps. For example, S301 may occur before S302, or may occur after S302, or may occur simultaneously with S302.
  • network equipment may include access network equipment or core network equipment.
  • the communication device used to implement the function of the network device may be a network device, or may be a device that can support the network device to implement the function, such as a chip system, and the device may be installed in the network device.
  • the technical solution provided by the embodiment of the present application is described by taking the device for realizing the functions of the network device being a network device as an example.
  • the communication device used to implement the function of the terminal device may be a terminal device, or may be a device that can support the terminal device to implement the function, such as a chip system, and the device may be installed in the terminal device.
  • the technical solution provided by the embodiment of the present application is described, taking the device for realizing the functions of the terminal device as a terminal device as an example.
  • the embodiments of this application involve two scenarios, one is a scenario in which a mobile communication system communicates with a time-sensitive network (TSN), and the other is a scenario in which the mobile communication system supports time-sensitive communication (TSC).
  • TSN time-sensitive network
  • TSC time-sensitive communication
  • Business scenario takes the mobile communication system as the fifth generation mobile communication system (the 5th generation, 5G) communication system as an example to introduce the 5G communication system and TSN network respectively.
  • 5G fifth generation mobile communication system
  • Figure 1 shows the architecture of a 5G communication system, which may include: (wireless) access network ((R)AN in Figure 1), terminal equipment and core network.
  • the (wireless) access network may include access network equipment.
  • the terminal device is a device with wireless transceiver function, which can be a fixed device, a mobile device, a handheld device (such as a mobile phone), a wearable device, a vehicle-mounted device, or a wireless device built into the above device (such as , communication module, modem, or chip system, etc.).
  • the terminal device is used to connect people, objects, machines, etc., and can be widely used in various scenarios, including but not limited to the following scenarios: cellular communication, device-to-device communication (device-to-device, D2D), car-to-everything (vehicle to everything, V2X), machine-to-machine/machine-type communications (M2M/MTC), Internet of things (IoT), virtual reality (VR) , augmented reality (AR), industrial control, self-driving, remote medical, smart grid, smart furniture, smart office, smart wear, smart transportation , terminal equipment for smart cities, drones, robots and other scenarios.
  • the terminal equipment may sometimes be called user equipment (UE), terminal, access station, UE station, remote station, wireless communication equipment, or user device, etc.
  • UE user equipment
  • the terminal device is described by taking a UE as an example.
  • Access network equipment is a device with wireless transceiver functions and is used to communicate with terminal equipment.
  • the access network equipment includes but is not limited to base station (base transceiver station (BTS), Node B, eNodeB/eNB, or gNodeB/gNB), transmission reception point (TRP), third generation Base stations for the subsequent evolution of the 3rd generation partnership project (3GPP), access nodes, wireless relay nodes, wireless backhaul nodes, etc. in wireless fidelity (Wi-Fi) systems.
  • the base station may be: a macro base station, a micro base station, a pico base station, a small station, a relay station, etc. Multiple base stations can support networks with the same access technology or networks with different access technologies.
  • a base station may contain one or more co-located or non-co-located transmission and reception points.
  • the access network device may also be a wireless controller, a centralized unit (centralized unit, CU), and/or a distributed unit (DU) in a cloud radio access network (CRAN) scenario.
  • the access network equipment in vehicle to everything (V2X) technology can be a road side unit (RSU).
  • the following description takes the access network equipment as a base station as an example.
  • the base station can communicate with the terminal device or communicate with the terminal device through the relay station.
  • Terminal devices can communicate with multiple base stations in different access technologies.
  • Equipment in the core network includes but is not limited to equipment used to implement functions such as mobility management, data processing, session management, policy and accounting.
  • the core network equipment may include network exposure function (NEF) network elements, policy control function (PCF) network elements, unified data management (UDM), Application function (AF) network element, access and mobility management function (AMF) network element, session management function (SMF) network element, user plane function , UPF) network elements, etc.
  • NEF network exposure function
  • PCF policy control function
  • UDM unified data management
  • AF Application function
  • AMF access and mobility management function
  • SMF session management function
  • UPF user plane function
  • the session management function network element can be used to be responsible for session management of terminal equipment (including the establishment, modification or release of sessions, maintenance of tunnels between user plane functional network elements and access network equipment), selection or re-installation of user plane functional network elements. At least one of selection, Internet protocol (IP) address allocation of UE (including optional authorization), configuring traffic routing in user plane functional network elements, quality of service (QoS) control, etc.
  • IP Internet protocol
  • QoS quality of service
  • the session management function network element is the endpoint of the session management part of the non-access stratum (NAS) message.
  • the session management function network element can be an SMF network element, as shown in Figure 1; in future communication systems, such as the 6G communication system, the session management function network element can still be an SMF network element, or it may There are other names, which are not limited by the embodiments of this application.
  • the SMF network element can provide Nsmf services.
  • the policy control function network element mainly supports providing a unified policy framework to control network behavior, provides policy rules to the control layer network functions, and is also responsible for obtaining user subscription information related to policy decisions.
  • the policy control function network element can be a PCF network element, as shown in Figure 1; in future communications, such as 6G communication system, the policy control function network element can still be a PCF network element, or have other The name is not limited in the embodiments of this application. If the policy control function network element is a PCF network element, the PCF network element can provide the Npcf service.
  • the access and mobility management function network element can be used to manage the access control and mobility of UE. In practical applications, it includes the mobility management entity (mobility management) in the network framework in long term evolution (LTE). entity, MME), and adds access management functions, which can be responsible for UE registration, mobility management, tracking area update process, reachability detection, SMF network element selection, and mobility state transition management. wait.
  • the access and mobility management functional network element can be an AMF network element, as shown in Figure 1; in future communication systems, such as the 6G system, the access and mobility management functional network element can still be
  • the AMF network element may have other names, which are not limited in the embodiments of this application.
  • the access and mobility management function network element is an AMF network element, the AMF network element can provide Namf services.
  • the communication between the (R)AN network element and the SMF network element can be relayed through the AMF network element.
  • the user plane functional network element is responsible for forwarding and receiving user data of the UE.
  • the UPF network element can receive user data from the data network and send it to the UE through the access network device; the UPF network element can also receive user data from the UE through the access network device and forward the received user data to the data network.
  • the user plane functional network element can be a UPF network element, as shown in Figure 1; in future communication systems, such as the 6G system, the user plane functional network element can still be a UPF network element, or there may be other
  • the name is not limited in the embodiments of this application.
  • Network open function network elements can open the capabilities of each network element and convert internal and external information in the 5G communication system. They are generally used in edge computing scenarios.
  • network open function network elements can be NEF network elements, as shown in Figure 1; in future communication systems, such as 6G systems, network open function network elements can still be NEF network elements, or there may be other
  • the name is not limited in the embodiments of this application.
  • DN Data network
  • IMS IP multi-media service
  • each network element in the core network can also be called a functional entity or device, which can be implemented on dedicated hardware.
  • the current network element can also be an instance of software running on dedicated hardware, or an instance of virtualization functions on an appropriate platform.
  • the above-mentioned virtualization platform can be a cloud platform.
  • the AMF network element and the access network device can be connected through the N2 interface
  • the access network device and the UPF network element can be connected through the N3 interface
  • the SMF network element and the UPF network element can be connected through the N4 interface
  • the AMF The network element and UE can be connected through the N1 interface
  • the UPF and DN can be connected through the N6 interface.
  • the interface name is just an example, and the embodiment of this application does not specifically limit it. It should be understood that the embodiments of the present application are not limited to the communication system shown in Figure 1.
  • the names of the network elements shown in Figure 1 are only used as an example here and are not used as a communication system architecture applicable to the methods of the embodiments of the present application. Limitation of network elements included in .
  • the functions of some network elements or devices in the communication system are introduced below.
  • the names of devices that implement core network functions in systems with different access technologies may be different, and the embodiments of this application do not limit this.
  • the communication system shown in Figure 1 does not constitute a limitation of the communication systems to which the embodiments of the present application can be applied.
  • the communication system architecture shown in Figure 1 is a 5G system architecture.
  • the technical solutions provided by the embodiments of this application can be applied not only to the 5G system, but also to the fourth generation mobile communication technology (the 4th generation, 4G). systems, such as LTE systems, or can also be applied to next-generation mobile communication systems or other similar communication systems, without specific limitations.
  • FIG 2 is a system architecture diagram of the interoperability between 5G network and TSN.
  • the 5G communication system (5G system, 5GS) and the TSN translator (translator) as a logical TSN bridge (TSN bridge).
  • the device side of the bridge in Figure 2 is Refers to the UE side of the logical TSN bridge.
  • 5GS exchanges information with nodes in TSN (such as TSN system in Figure 2) through the TSN Translator on the control plane (such as TSN AF in Figure 2).
  • the information exchanged may include: 5GS bridge (5GS bridge) capability information, TSN Configuration information, time scheduling information of TSN input and output ports, time synchronization information, etc.
  • a TSN translator (translator) is added to the UPF and UE sides to adapt to user plane data transmission.
  • the TSN translator on the UPF side is, for example, the network-side TSN translator (NW-TT) in Figure 2
  • the TSN translator on the UE side is, for example, the device-side TSN translator (device-side) in Figure 2.
  • TSN translator, DS-TT may be located within the UE or outside the UE; NW-TT is generally located within the UPF.
  • FIG 3 is a system architecture diagram of a 5G network that supports TSC services without interworking with TSN.
  • a new time-sensitive communication and time synchronization function (TSCTSF) network element is added, through which TSC services in non-TSN scenarios can be enabled.
  • TSCTSF time-sensitive communication and time synchronization function
  • the functions of the TSCTSF network element include at least one of the following: associating time synchronization service requests from AF to AF sessions; interacting with DS-TT port management information container (port management information container, PMIC), interacts with NW-TT user plane node management information container (UMIC), manages and controls DS-TT/NW-TT; detects the availability of 5GS bridge or 5GS node information reported by PCF; based on Create a TSC assistance container with the service type parameters provided by AF/NEF and provide the container to PCF; determine the 5GS bridge delay (5GS bridge) based on the UE-DS-TT residence time (DS-TT residence time) delay), and provide 5GS bridge delay to PCF.
  • the UE-DS-TT residence time is, for example, the time between the entrance of the DS-TT and the exit of the UE.
  • the embodiments of this application will be described later by taking the network element shown in any of the figures in Figures 1 to 3 as an example, and the XX network element will be directly referred to as XX.
  • the SMF network element will be referred to as SMF
  • PCF network element is abbreviated as PCF
  • TSN AF network element is abbreviated as TSN AF
  • TSCTSF network element is abbreviated as TSCTSF, etc.
  • the names of all network elements in the embodiments of this application are only as examples, and they may also be called other names in future communications, or in future communications, the network elements involved in the embodiments of this application may also be named by other entities with the same functions. Or equipment, etc., which are not limited in the embodiments of the present application. A unified explanation is given here and will not be repeated later.
  • the RAN can obtain the time when the QoS flow reaches the entrance of the RAN from the core network, so that the RAN can schedule resources for the QoS flow based on the time when the QoS flow reaches the entrance of the RAN.
  • the centralized network configuration (CNC) in TSN can configure the time when the service flow arrives at 5GS and the time when it leaves 5GS according to the flow granularity. Due to air interface transmission and wired transmission between UE and UPF, etc. The uncertainty can be eliminated by caching at the endpoint TT (such as DS-TT and NW-TT).
  • TSN AF can determine the time when the business flow arrives at the 5GS entrance based on the scheduling information of the business flow obtained from the CNC. If it is a downlink service flow, the service flow reaches the 5GS entrance, which means the service flow reaches the NW-TT entrance.
  • the downlink burst arrival time (DL BAT) is the downlink service. The time when the flow arrives at the 5GS inlet. If it is an uplink service flow, the service flow reaches the 5GS entrance, which means the service flow reaches the DS-TT entrance.
  • the uplink burst arrival time (UL BAT) is the uplink service. The time when the flow arrives at the 5GS inlet.
  • the TSN AF can provide the time information of the service flow arriving at the 5GS entrance to the SMF through the PCF. Based on this time information, the SMF further calculates the time when the QoS flow corresponding to the service flow reaches the NG-RAN in the downlink direction, such as the downlink in Figure 4A ( DL) TSC assistance information (TSCAI) burst arrival time (BAT)), and calculate the time when the QoS flow corresponding to the service flow is sent from the UE in the uplink direction, such as the uplink in Figure 4B (UL)TSCAI BAT.
  • the time information calculated by the SMF can be provided to the RAN so that the RAN can schedule resources for the service flow accordingly.
  • Some business flows may be related.
  • UE1 and UE2 communicate through the access network and core network, which may involve two service flows, namely the service flow sent by UE1 to UE2, and the service flow sent by UE2 to UE1. These two service flows arrive at the entrance of the RAN or The time of arrival at the egress of the UE has a certain correlation.
  • the time when the two QoS flows used to transmit the two service flows arrive at the ingress of the RAN or the egress of the UE has a certain correlation.
  • this correlation is reflected in the fact that after the QoS flow sent by UE1 to UE2 reaches the egress of UE1, the QoS flow sent by UE2 to UE1 may arrive at the inlet of the RAN after a certain period of time.
  • the input/output (I/O) is the load of UE1
  • the programmable logic controller (PLC) is the load of UE2. .
  • UE1 is, for example, UE1 in Figure 4C or Figure 4D
  • UE2 is UE2 in Figure 4C or Figure 4D
  • UE1 is, for example, the input/output (I/O) in Figure 4C or Figure 4D
  • UE2 is the programmable logic controller (programmable) in Figure 4C or Figure 4D logic controller, PLC).
  • Figure 4C shows a single RAN scenario, that is, the two QoS streams communicated by UE1 and UE2 are transmitted through one RAN
  • Figure 4D shows a multi-RAN scenario, that is, the two QoS streams communicated between UE1 and UE2 are transmitted through different RANs.
  • Each arrow in Figure 4C and Figure 4D represents a service flow.
  • the RAN After receiving the time information from the SMF, if it is found that the time information corresponding to a certain QoS flow conflicts with the time information corresponding to other QoS flows, the RAN needs to coordinate the resources scheduled for these QoS flows.
  • the scheduling period represents the period of resources scheduled by the RAN for the QoS flow
  • the diagonally drawn box identifies the data packets carried by the QoS flow.
  • the RAN adjusts the resources scheduled for the QoS flow such that the interval between the arrival of the QoS flow and the RAN's scheduling opportunity Smaller, that is, when the QoS flow reaches the entrance of the RAN, the RAN just has (or will soon have) the resources to schedule the QoS flow, so the data packets carried by the QoS flow can be transmitted in time.
  • the horizontally drawn box in Figure 4E represents the resource scheduled by the RAN for the QoS flow used to transmit the downlink service flow.
  • the QoS flow used to transmit the uplink service flow in Figure 4E is associated with the QoS flow used to transmit the downlink service flow, but the RAN may only adjust the resources scheduled for the QoS flow used to transmit the downlink service flow, and not Resources that have not been adjusted for QoS flow scheduling for transmitting uplink service flows (for example, there is no conflict between resources scheduled for QoS flows for transmitting uplink service flows and other resources and do not need to be adjusted), or although the RAN has also been adjusted for use Resources scheduled for the QoS flow for transmitting uplink service flows (for example, resources scheduled for the QoS flow for transmitting uplink service flows conflict with other resources), but the RAN is considered and adjusted separately when adjusting, then The adjusted resources of the QoS flow used to transmit the uplink service flow do not necessarily adapt to the time when the QoS flow reaches the egress of the UE.
  • the RAN After the RAN is adjusted to the resources scheduled by the QoS flow for transmitting the uplink service flow, if the interval between the arrival of the QoS flow and the adjusted scheduling opportunity of the RAN is small (small interval), that is, when the QoS flow arrives When the UE exits, the RAN happens to have (or will soon have) the resources to schedule the QoS flow, so the data packets carried by the QoS flow can be transmitted in time.
  • the diagonally drawn box in Figure 4E represents the resources scheduled by the RAN for the QoS flow used to transmit the uplink service flow.
  • RAN coordination may cause the resources scheduled for the associated QoS flow to not match the time when the associated QoS flow actually reaches the ingress of the RAN or the egress of the UE.
  • the service flows transmitted by the first QoS flow and the second QoS flow belong to the same service flow, for example, so the first QoS flow and the second QoS flow are considered to match.
  • the first QoS flow and the second QoS flow are two QoS flows transmitted by communication between two terminal devices.
  • the communication between the two terminal devices will be forwarded through the first access network device, so the time when the two QoS flows arrive at the first access network device or the terminal device is related.
  • the first access network device When the time at which one QoS flow reaches the first access network device is relatively certain, if the first access network device arbitrarily schedules resources for another QoS flow, it may cause the scheduled resources to be inconsistent with the other QoS flow in the time domain. The time that a QoS flow reaches the end device is different.
  • the first access network device can determine the first expected assistance information and the second expected assistance information when considering that the two QoS flows match, then the first QoS indicated by the first expected assistance information
  • the transmission timing of the flow can be associated with the transmission timing of the second QoS flow indicated by the second desired auxiliary information, and the core network device can determine the transmission timing of the first QoS flow and the transmission timing of the second QoS flow based on this, then finally The determined transmission timing of the first QoS flow and the transmission timing of the second QoS flow will also be associated.
  • the scheduled resources It can be more consistent with the time when these two QoS flows arrive at the first access network device or terminal device. So that these two QoS flows can be transmitted reasonably.
  • the resources of the associated QoS flows can be coordinated, and the mismatch between the resources scheduled for one QoS flow and the resources scheduled for another QoS flow can be avoided as much as possible, and the transmission time of the QoS flow can be reduced. extension.
  • the first access network device involved in various embodiments of this application may be the (R)AN in Figure 2 or Figure 3; the first core network device involved in various embodiments of this application may be Figure 2 or The SMF in Figure 3; the second core network device involved in various embodiments of the present application can be the TSN AF in Figure 2, or the TSCTSF in Figure 3; the policy control network element involved in various embodiments of the present application can be is the PCF in Figure 2 or Figure 3.
  • the access network equipment will also be replaced by RAN (for example, the first access network equipment can be replaced by "first RAN”, and the second access network equipment can be replaced by "second RAN”.
  • Replace replace the first core network equipment with SMF, replace the second core network equipment with TSN AF or TSCTSF, and replace the policy control network element with PCF.
  • the steps performed by TSN AF can also be replaced by being performed by TSCTSF.
  • TSN AF takes TSN AF as an example.
  • the “expectation” mentioned in various embodiments of this application refers to the expectation of time.
  • the expected transmission timing of the first QoS flow can be understood as the expected transmission timing, which is the transmission timing of the first QoS flow, but cannot be understood as the expectation for the QoS flow. That is, the QoS flow has been determined, and what the embodiment of the present application needs to determine is the transmission time of the QoS flow. Therefore, the “expectation” refers to the expectation of time.
  • Figure 5 is a flow chart of the first communication method provided by the embodiment of the present application. In addition to being applicable to the architecture shown in Figure 2 or Figure 3, this method can also be applied to the architecture shown in Figure 4C.
  • TSN AF obtains service forwarding information.
  • TSF AF can receive the service forwarding information from CNC; or, TSN AF can also derive the service forwarding information based on the parameters provided by CNC, which parameters include, for example, the egress ports of 5GS Bridge parameters, For example, the port information of DS-TT (ports on DS-TT); or, TSN AF can also obtain the service forwarding information through the configured pairing relationship (or association relationship) between UEs.
  • TSCTSF can obtain the service forwarding information from AF as shown in Figure 3.
  • TSCTSF can obtain the service forwarding information from AF through NEF; or, TSCTSF can also derive the service based on the parameters provided by AF.
  • Forwarding information this parameter includes, for example, DS-TT port information and Internet protocol (IP) address; alternatively, TSCTSF can also obtain the service forwarding information through the configured pairing relationship between UEs.
  • IP Internet protocol
  • the service forwarding information includes, for example, the destination MAC address and virtual local area network ID of the TSN stream, or the port number in the port mapping diagram. (port number in the port MAP) etc.
  • the service forwarding information may also include service flow information.
  • This service flow is called a third service flow, for example.
  • the information of the third service flow includes, for example, one or more of the following: the period of the third service flow, the direction information of the third service flow (such as uplink or downlink), or the third service flow.
  • BAT information of three service flows The time indicated by the BAT information is, for example, the time when the third service flow reaches the 5GS entrance (for example, the DS-TT entrance in Figure 2).
  • the BAT information includes, for example, a specific burst arrival time, or the earliest burst arrival time or the latest burst arrival time allowed.
  • the direction information included in the service forwarding information may indicate two directions, for example, both the uplink direction and the downlink direction.
  • TSN AF can split the third service flow corresponding to the service forwarding information into two service flows.
  • the two split service flows are called the first service flow and the second service flow respectively.
  • the first service flow is, for example, an uplink service flow
  • the second service flow is, for example, a downlink service flow
  • the first service flow is, for example, a downlink service flow
  • the second service flow is, for example, an uplink service flow.
  • the first business flow and the second business flow actually belong to the third business flow.
  • the first service flow and the second service flow are both flows between the UE and the UPF
  • the third service flow can be understood as a service flow of the TSC service, which can be called a TSC stream.
  • the first service flow and the second service flow are two different sections of the TSC flow.
  • TSN AF can determine the input port and output port of the third service flow based on the local configuration information or the service forwarding information, and further determine the input port and output port type according to the type of the input port and the output port (for example, both the input port and the output port are DS-TT port), determine that the third service flow is a service flow for communication between UEs, that is, determine that the current communication scenario is communication between UEs.
  • the TSN AF may also determine that the first UE is associated with the second UE based on the service forwarding information, or determine that the first UE matches the second UE.
  • the first UE and the second UE are UEs that transmit the first service flow and the second service flow between each other.
  • the first UE is the UE corresponding to the first service flow.
  • the first UE is the sending end of the first service flow.
  • the second UE is the UE corresponding to the second service flow.
  • the second UE is the sending end of the second service flow.
  • TSN AF sends the first information to PCF.
  • the PCF receives the first information from the TSN AF.
  • the first information may include information of the first service flow and information of the second service flow.
  • the first information includes, for example, a TSC auxiliary container, which may include information about the first service flow and information about the second service flow.
  • the first information may include two TSC auxiliary containers, namely a first TSC auxiliary container and a second TSC auxiliary container.
  • the first TSC auxiliary container includes information about the first service flow
  • the second TSC auxiliary container includes the second TSC auxiliary container.
  • the information of the first service flow includes, for example, one or more of the following: BAT information of the first service flow, the cycle of the first service flow, or the direction information of the first service flow.
  • the information of the second service flow includes, for example, one or more of the following: BAT information of the second service flow, the cycle of the second service flow, or the direction information of the second service flow.
  • the first information also includes association information, which may indicate that the first UE is associated with the second UE, or may indicate that the first UE matches the second UE.
  • association information may indicate that the first UE is associated with the second UE, or may indicate that the first UE matches the second UE.
  • the association information indicates that the first UE is associated with the second UE, and there may be different indication methods.
  • one indication method is that the association information includes the identity of the first UE and the identity of the second UE, or it can be understood that the association information includes the association relationship information between the identity of the first UE and the identity of the second UE, by The identities of the two UEs may indicate that the two UEs are associated.
  • the identity of a UE includes, for example, the UE's general public subscription identifier (generic public subscription identifier, GPSI) or subscription permanent identifier (subscription permanent identifier, SUPI), etc.
  • association information includes the address information of the first UE and the address information of the second UE, or it is understood that the association information includes the association relationship information between the two address information, by The two address information may indicate that the two UEs are associated.
  • the address of a UE includes, for example, the IP version 4 (IPv4) address, IP version 6 (IPv6) address/IPv6 prefix, or MAC address of the UE.
  • association information includes the media access control (MAC) address (DS-TT port MAC address) information of the DS-TT port corresponding to the first UE, and includes the second UE The MAC address information of the corresponding DS-TT port, or it can be understood that the association information includes association relationship information between the two MAC address information.
  • the two MAC address information can indicate that the two UEs are associated.
  • association information includes the association relationship between the first business flow and the second business flow.
  • Information for example, the association includes the identity of the first business flow and the identity of the second business flow, or it is understood that the association includes association information between the identity of the first business flow and the identity of the second business flow.
  • This indication method can be considered to indicate the association relationship between two service flows. However, since the service flow is related to the UE, it can also be regarded as indicating the association relationship between the two UEs.
  • the identifier of a service flow includes, for example, the identifier of the application corresponding to the service flow, or includes a filter of the service flow, etc.
  • a filter includes, for example, a set of parameter values or ranges for packet flow headers that can be used to identify one or more packet flows.
  • the association information may be included in the TSC auxiliary container, or may not be included in the TSC auxiliary container, but sent through other information.
  • the first information may not include the displayed association information, and the association relationship between the two service flows may be implicitly indicated through the information on the first service flow and the information on the second service flow.
  • PCF sends policy and charging control (PCC) rules to SMF.
  • PCC policy and charging control
  • SMF receives the PCC rule from PCF.
  • the PCF may generate a first PCC rule for the first service flow and a second PCC rule for the second service flow based on the first information obtained from the TSN AF.
  • the first PCC rule may include a first TSC auxiliary container
  • the second PCC rule may include a second TSC auxiliary container.
  • the PCF may send the first PCC rule and the second PCC rule to the SMF.
  • the PCF may also send the association information to the SMF.
  • the association information may not be included in the PCC rule, but sent through additional information.
  • SMF determines auxiliary information 1 and auxiliary information 2.
  • the SMF may determine auxiliary information 1 based on a first TSC auxiliary container included in a first PCC rule, and determine auxiliary information 2 based on a second TSC auxiliary container included in a second PCC rule.
  • auxiliary information 1 is also called third auxiliary information
  • auxiliary information 2 is called fourth auxiliary information.
  • the auxiliary information 1 may indicate the transmission timing of the first QoS flow, such as indicating the BAT of the first QoS flow, or indicating the time range to which the BAT of the first QoS flow belongs, etc.; the auxiliary information 2 may indicate the transmission timing of the second QoS flow, such as Indicate the BAT of the second QoS flow, or indicate the time range to which the BAT of the second QoS flow belongs, etc.
  • the first QoS flow is used to transmit the first service flow, and the direction of the first QoS flow is the same as the direction of the first service flow;
  • the second QoS flow is used to transmit the second service flow, and the direction of the second QoS flow is the same as the direction of the second service flow. in the same direction.
  • the auxiliary information is, for example, TSCAI BAT information (information).
  • the SMF may obtain the BAT information of the first service flow from the first TSC auxiliary container, for example, the BAT information is called BAT information 1; and, the SMF may obtain the BAT information of the second service flow from the second TSC auxiliary container, For example, this BAT information is called BAT information 2.
  • BAT information 1 and BAT information 2 are time information based on the TSN AF clock.
  • SMF can convert BAT information 1 into BAT information based on the 5GS clock based on the time deviation (and/or clock drift) between the 5GS clock and the TSN AF clock, for example, the converted BAT information 1 is called BAT information 3; and , SMF can convert BAT information 2 into BAT information based on the 5GS clock based on the time deviation (and/or the clock drift), for example, the converted BAT information 2 is called BAT information 4.
  • the SMF may determine auxiliary information 1 based on BAT information 3, and determine auxiliary information 2 based on BAT information 4.
  • the auxiliary information 1 may include one or more of the following: a period of the first QoS flow, direction information of the first QoS flow, or BAT information related to the first QoS flow and the RAN.
  • the auxiliary information 2 may include one or more of the following: a period of the second QoS flow, direction information of the second QoS flow, or BAT information related to the second QoS flow and the RAN.
  • the service flow transmitted by a QoS flow is a downlink service flow
  • the BAT information related to the QoS flow and the RAN such as indicating the time when the first data packet of the data burst of the QoS flow arrives at the entrance of the RAN, will be described later.
  • the BAT information related to the QoS flow and the RAN may also indicate the time range within which the QoS flow reaches the entrance of the RAN. If the service flow transmitted by a QoS flow is an uplink service flow, the BAT information related to the QoS flow and the RAN, such as indicating the time when the first data packet of the data burst of the QoS flow arrives at the egress of the UE, will be described later.
  • the time range can include two endpoint values, such as endpoint 1 and endpoint 2 respectively, indicating the time range.
  • the indicated time needs to be later than or equal to endpoint 2 and earlier than or equal to endpoint 1.
  • the time range may also include an endpoint value, such as endpoint 3, indicating that the time indicated by the time range needs to be earlier than or equal to endpoint 3, which is equivalent to the time range indicating the latest arrival time.
  • the SMF can determine that the QoS flow is related to the RAN based on the BAT information corresponding to the QoS flow and the core network (core network, CN) packet delay budget (PDB) BAT information.
  • the BAT information related to the QoS flow of the downlink service flow and the RAN the BAT information corresponding to the QoS flow + CN PDB.
  • the CN PDB can be referred to as shown in Figure 4A, which is the packet delay budget duration between the QoS flow being transmitted from the UPF entrance (or NW-TT entrance) to the RAN entrance.
  • the SMF can determine the BAT information related to the first QoS flow and the RAN based on BAT information 3 and CN PDB; or if the second QoS flow is a QoS flow that transmits downlink service flows.
  • the SMF can determine the BAT information of the second QoS flow related to the RAN based on the BAT information 4 and the CN PDB.
  • the SMF may also consider the access network when determining the BAT information related to the QoS flow and the RAN for transmitting the uplink service flow.
  • (access network, AN)PDB access network
  • the BAT information related to the QoS flow of the uplink service flow and the RAN the BAT information corresponding to the QoS flow + (UE-DS-TT residence time) + AN PDB.
  • the AN PDB can refer to Figure 4B, which is the packet delay budget duration between the QoS flow being transmitted from the UE egress to the RAN egress.
  • the AN PDB is the QoS flow being transmitted from the UE inlet to the NW- The difference between the duration of TT's export and CN PDB.
  • the SMF can be based on BAT information 3 and UE-DS-TT residence time (or, according to BAT information 3, UE-DS-TT residence time time and AN PDB) to determine the BAT information related to the first QoS flow and the RAN; or, if the second service flow transmitted by the second QoS flow is an uplink service flow, the SMF can determine the BAT information 4 and the UE-DS-TT residence time based on the second QoS flow. (Or, determine the BAT information related to the second QoS flow and RAN based on BAT information 4, UE-DS-TT residence time and AN PDB).
  • the SMF can bind the first service flow to the first QoS flow to transmit the first service flow through the first QoS flow; and bind the second service flow to the second QoS flow to transmit through the second QoS flow.
  • Second business stream Second business stream.
  • the first service flow and the second service flow belong to the same service flow, and the first service flow and the second service flow can be considered to match.
  • the first QoS flow is used to transmit the first service flow
  • the second QoS flow is used to transmit the second service flow. Therefore, it can also be considered that the first QoS flow matches the second QoS flow.
  • the SMF may also determine matching information between QoS flows, and the matching information may indicate that the first QoS flow matches (or is associated with) the second QoS flow, Or indicate that the first QoS flow and the second QoS flow are used to transmit the same service flow.
  • the SMF can determine the matching information based on the association information received from the PCF; or the SMF can also determine the matching information based on the service forwarding information.
  • the service forwarding information is, for example, the service forwarding information described in S501.
  • the service forwarding information can also be sent to the PCF, and the PCF then sends the service forwarding information to the SMF.
  • the SMF determines based on the service forwarding information that the data packets of the first service flow are not forwarded to the DN after passing through the UPF, but are forwarded to another UE, and based on the service forwarding information, the SMF determines that the data packets of the second service flow are not forwarded to the DN. Not from the DN, but from the receiving UE of the first service flow, the SMF can determine that the two service flows match, and further determine that the two QoS flows used to transmit the two service flows match.
  • the matching information may include tunnel information corresponding to the first PDU session and the QoS flow identifier (QFI) of the first QoS flow, and include tunnel information corresponding to the second PDU session and the second QoS flow. QFI.
  • the matching information may also include the identity of the first UE and the identity of the second UE.
  • the tunnel information corresponding to the first PDU session is, for example, the access network tunnel information (AN tunnel information) of the first PDU session
  • the tunnel information corresponding to the second PDU session is, for example, the access network tunnel information of the second PDU session
  • the tunnel information corresponding to the first PDU session is, for example, the core network tunnel information (CN tunnel information) of the first PDU session
  • the tunnel information corresponding to the second PDU session is, for example, the core network tunnel information of the second PDU session.
  • the corresponding access network tunnel and core network tunnel are, for example, the same tunnel, such as the general packet radio service tunneling protocol (GTP) tunnel between the RAN and UPF.
  • GTP general packet radio service tunneling protocol
  • the core network tunnel information of the tunnel includes the TEID assigned by the UPF to the tunnel, and the access network tunnel information of the tunnel includes the TEID assigned by the RAN to the tunnel.
  • the matching information may include an identifier (eg, ID) of the first PDU session and the QFI of the first QoS flow, and may include an identifier of the second PDU session and the QFI of the second QoS flow.
  • the matching information may also include the identity of the first UE and the identity of the second UE.
  • the first PDU session is the PDU session where the first QoS flow is located
  • the second PDU session is the PDU session where the second QoS flow is located.
  • the first PDU session and the second PDU session are two different PDU sessions.
  • the parameters of the first PDU session and the parameters of the second PDU session are transmitted separately.
  • the information related to the first QoS flow belongs to the parameters of the first PDU session
  • the information related to the second QoS flow belongs to the parameters of the second PDU session.
  • the SMF will send auxiliary information 1 and auxiliary information 2 to the first RAN in S505, which will be introduced later, where auxiliary information 1 is information related to the first QoS flow, and auxiliary information 2 is information related to the second QoS flow. Then the two auxiliary information can be transmitted to the first RAN respectively.
  • the SMF sends auxiliary information 1 and auxiliary information 2 to the first RAN.
  • the first RAN receives auxiliary information 1 and auxiliary information 2 from the SMF.
  • the first QoS flow and the second QoS flow are transmitted through the same RAN, and the RAN is called the first RAN, for example.
  • the SMF may also send the matching information to the first RAN.
  • S501 to S505 are optional steps.
  • the first RAN may also execute the following S506.
  • the first RAN may determine the time when the first QoS flow and the second QoS flow arrive at the first RAN or UE through other methods, so that S506 can be performed.
  • the first RAN may obtain configuration information including The correspondence between the single network slice selection assistance information (S-NSSAI) of the first PDU session and the second PDU session. This correspondence can be used by the first RAN to determine the first QoS flow and The time when the second QoS flow arrives at the first RAN or UE.
  • S-NSSAI single network slice selection assistance information
  • the first RAN determines the first desired assistance information and the second desired assistance information.
  • the first RAN may determine the transmission timing of the first QoS flow according to the assistance information 1. For example, it may determine the time when the first QoS flow reaches the first RAN or UE, or determine the time range in which the first QoS flow reaches the first RAN or UE. According to the transmission timing of the first QoS flow, the first RAN may schedule corresponding resources for the first QoS flow, or in other words, the first RAN may determine the scheduling resources of the first QoS flow to transmit the first QoS flow, for example, the first QoS flow
  • the scheduling resource determined by the RAN based on the auxiliary information 1 is called the first scheduling resource. For example, the time domain resources included in the first scheduling resource are consistent with the transmission timing indicated by the auxiliary information 1.
  • the time domain resources included in the first scheduling resource are the same as the transmission timing indicated by the auxiliary information 1, or the time domain resources included in the first scheduling resource are the same as the transmission timing indicated by the auxiliary information 1.
  • the time interval between the included time domain resources and the transmission opportunity indicated by the auxiliary information 1 is less than the first threshold, so that the first QoS flow can be transmitted in time after arriving at the first RAN or UE.
  • the first RAN can determine the transmission timing of the second QoS flow based on the auxiliary information 2. Based on the transmission timing of the second QoS flow, the first RAN can determine the scheduling resources of the second QoS flow, for example, called third scheduling resources.
  • the time domain resources included in the third scheduling resource may also be consistent with the transmission timing indicated by the auxiliary information 2.
  • the resources scheduled by the RAN for the QoS flow are, for example, semi-persistent scheduling (SPS) resources, or they may be other types of resources.
  • SPS semi-persistent scheduling
  • the first scheduling resource conflicts with other resources, and/or the third scheduling resource conflicts with other resources.
  • other resources are, for example, scheduling resources determined by the first RAN for other QoS flows (referring to QoS flows other than the first QoS flow and the second QoS flow). Therefore, in various embodiments of this application, "other resources” ” can also be understood as “other scheduling resources”.
  • the conflict between two resources means, for example, that the two resources partially or completely overlap. If a resource conflict occurs, the first RAN can re-determine the expected auxiliary information for the corresponding QoS flow to reduce the transmission delay of the QoS flow.
  • the first RAN may determine a resource that does not conflict with other resources, and may use the resource as a scheduling resource for the first QoS flow.
  • the resource may be called a second scheduling resource.
  • the first RAN may determine the desired auxiliary information of the first QoS flow according to the second scheduling resource (or in other words, according to the time domain position of the second scheduling resource).
  • the expected auxiliary information of the first QoS flow may indicate the expected transmission opportunity of the first QoS flow. For example, the transmission opportunity indicated by the expected auxiliary information of the first QoS flow matches the second scheduling resource, so that the first QoS flow can arrive The first RAN or UE can get timely transmission.
  • the first RAN determines the desired auxiliary information for a QoS flow, which is equivalent to resetting the egress to the UE or the entry time to the RAN for the QoS flow.
  • the expected auxiliary information is expressed as expected TSCAI BAT information.
  • the first RAN may determine a resource that does not conflict with other resources, and may use the resource as a scheduling resource for the second QoS flow.
  • the resource may be called a fourth scheduling resource.
  • the first RAN may determine the desired auxiliary information of the second QoS flow according to the fourth scheduling resource (or in other words, according to the time domain position of the fourth scheduling resource).
  • the expected auxiliary information of the second QoS flow may indicate the desired transmission timing of the second QoS flow. For example, the transmission timing indicated by the desired auxiliary information of the second QoS flow matches the fourth scheduling resource, so that the second QoS flow can arrive The first RAN or UE can get timely transmission.
  • the first RAN determines the desired auxiliary information for one of the QoS flows, that is, the first RAN re-plans the entry to the RAN or the UE for the QoS flow.
  • the egress time because there is a correlation between the transmission time of the two QoS flows, if one of the QoS flows reaches the RAN If the time of arrival at the ingress or egress of the UE changes, it may cause the time when another QoS flow reaches the egress of the UE or the ingress of the RAN to also change.
  • the first RAN may also determine the desired assistance information for the second QoS flow; or, if the first RAN determines the desired assistance information for the second QoS flow, assistance information, the first RAN may also determine desired assistance information for the first QoS flow.
  • the desired assistance information of the first QoS flow determined by the first RAN is called first desired assistance information
  • the desired assistance information of the second QoS flow determined by the first RAN is called second desired assistance information.
  • the first desired auxiliary information is associated with the second desired auxiliary information, or in other words, the first desired auxiliary information matches the second desired auxiliary information.
  • This association or matching is manifested in that if the transmission timing of the first QoS flow indicated by the first desired assistance information has a first offset relative to the expected transmission timing of the first QoS flow, then the second QoS flow indicated by the second desired assistance information
  • the transmission timing of the flow also has a first offset relative to the expected transmission timing of the second QoS flow; vice versa, that is, if the transmission timing of the second QoS flow indicated by the second expected auxiliary information is relative to the expected transmission timing of the second QoS flow
  • the transmission timing has a first offset
  • the transmission timing of the first QoS flow indicated by the first expected auxiliary information also has a first offset relative to the expected transmission timing of the first QoS flow.
  • the expected transmission timing of the first QoS flow is, for example, the transmission timing indicated by the auxiliary information 1, and the expected transmission timing of the second
  • the QoS flow itself has no direction, only the service flow transmitted by the QoS flow has a direction. Therefore, if the first service flow transmitted by the first QoS flow is an uplink service flow, and the second service flow transmitted by the second QoS flow is a downlink service flow, then the transmission of the first expected assistance information and the second expected assistance information indication The timing has the same offset relative to the corresponding expected transmission timing, which can be understood as the uplink offset of the first QoS flow is consistent with the downlink offset of the second QoS flow.
  • the transmission of the first expected assistance information and the second expected assistance information indication has the same offset relative to the corresponding expected transmission timing, which can be understood as the downstream offset of the first QoS flow is consistent with the uplink offset of the second QoS flow.
  • the upstream offset of a QoS flow refers to the offset in the time when the QoS flow reaches the egress of the UE;
  • the downstream offset of a QoS flow refers to the offset in the time when the QoS flow reaches the inlet of the RAN. shift.
  • the first service flow transmitted by the first QoS flow is a downlink service flow.
  • the first RAN determines based on the auxiliary information 1 that the first QoS flow will arrive at the first RAN at time T1.
  • the first RAN may determine the first QoS flow based on time T1.
  • the first scheduling resource is scheduled.
  • the starting time domain position of the first scheduling resource is time T2.
  • the time interval between time T1 and time T2 is less than a first threshold.
  • the first threshold is determined based on the processing time of the first RAN, for example. But the first RAN finds that the first scheduling resource overlaps with the scheduling resources of other QoS flows, then the first RAN can determine time domain resources that do not overlap with the scheduled resources.
  • the first RAN when the first RAN re-determines the scheduling resources, it can determine the two QoS flows together. For example, the first RAN determines that neither the second scheduling resource nor the fourth scheduling resource overlaps with the scheduled resource, and the fourth scheduling resource may be determined based on the second scheduling resource and the first time interval.
  • the starting time domain position of the second scheduling resource is, for example, time T3, and the first RAN can determine the first expected assistance information accordingly, for example, the first expected assistance information indicates time T3; the starting time domain position of the fourth scheduling resource is, for example, is time T4, then the first RAN may determine the second desired assistance information accordingly, for example, the second desired assistance information indicates time T4.
  • the BAT indicated by the first expected auxiliary information is delayed by 2 milliseconds (ms) relative to the BAT indicated by auxiliary information 1
  • the BAT indicated by the second expected auxiliary information is delayed by 2 milliseconds (ms) relative to the BAT indicated by auxiliary information 2. It is also delayed by 2ms.
  • the first RAN first determines the scheduled resource based on the auxiliary information, determines whether the resource conflicts with other scheduling resources, and if there is a conflict, then looks for conflict-free scheduling resources, and then based on the conflict-free scheduling resources Scheduling resources determine desired auxiliary information. Or there is another way.
  • the first RAN can first determine the scheduling resources that do not conflict with other scheduling resources, determine whether the received auxiliary information matches the conflict-free scheduling resources, and if they do not match, then determine the expectation based on the conflict-free scheduling resources.
  • Supplementary information For example, the first service flow transmitted by the first QoS flow is a downlink service flow.
  • the first RAN may first determine the scheduling resources that do not conflict with other scheduling resources.
  • the first RAN may determine the scheduling resources that do not conflict with other scheduling resources. Confirm together. For example, the first RAN determines a first scheduling time window and a second scheduling time window, and the resources in these two scheduling time windows do not overlap with other scheduling resources, and the corresponding resources in these two scheduling time windows have a first time interval.
  • the corresponding resources in two scheduling time windows are, for example, resources with the same relative time domain position in two scheduling time windows.
  • the relative time domain position of a resource in one scheduling time window is, for example, the relative time domain position of the resource relative to the resource. The offset of the starting time of the scheduling time window.
  • the first RAN After the first RAN determines the two scheduling time windows, it can determine whether the auxiliary information 1 and the auxiliary information 2 match the two scheduling time windows. For example, if the BAT indicated by auxiliary information 1 is located in the first scheduling time window, and the BAT indicated by auxiliary information 2 is located in the second scheduling time window, then auxiliary information 1 and auxiliary information 2 match these two scheduling time windows. In this case, the first RAN no longer needs to determine the desired assistance information, but schedules the first QoS flow according to the assistance information 1 and the second QoS flow according to the assistance information 2.
  • auxiliary information 1 and auxiliary information 2 will be inconsistent with these two scheduling time windows.
  • the first RAN may re-determine the desired assistance information.
  • the first RAN may determine the second scheduling resource as the scheduling resource of the first QoS flow in the first time window, and determine the first desired assistance information according to the second scheduling resource; and, the first RAN may determine the second scheduling resource in the second time window.
  • the fourth scheduling resource corresponding to the second scheduling resource is used as the scheduling resource of the second QoS flow, and the second desired auxiliary information is determined according to the fourth scheduling resource.
  • the first time interval includes, for example, starting from when the first QoS flow reaches the entrance of the first RAN, passing through the first QoS flow arriving from the first RAN to the second UE, and ending when the second QoS flow reaches the exit of the second UE, The time interval between this. That is to say, since there is a correlation between the time when the first QoS flow reaches the first RAN and the time when the second QoS flow reaches the second UE, the first RAN can comprehensively determine the expected assistance information for the two QoS flows, such that The determined expected auxiliary information conforms to the transmission situation of these two QoS flows.
  • the expected auxiliary information of a QoS flow determined by the first RAN is the time information related to the QoS flow and the RAN, and can indicate the transmission timing expected by the first RAN for the QoS flow, that is, indicating that the first RAN expects the QoS flow.
  • the first desired assistance information may include BAT information of the desired first QoS flow (or expressed as BAT information of the desired first QoS flow related to the RAN).
  • the BAT information of the desired first QoS flow includes the BAT of the desired first QoS flow; or includes the range information to which the BAT of the desired first QoS flow belongs (or is expressed as, the desired first QoS flow and the RAN range information to which the relevant BAT belongs); or include the expected burst arrival time offset of the first QoS flow (or expressed as the burst arrival time offset of the expected first QoS flow related to the RAN); or include the expected Range information to which the burst arrival time offset of the first QoS flow belongs (or represented as range information to which the burst arrival time offset of the expected first QoS flow related to the RAN belongs).
  • the burst arrival time offset of the first QoS flow is, for example, the offset between the expected BAT of the first QoS flow and the expected BAT of the first QoS flow.
  • the expected BAT of the first QoS flow is, for example, the BAT indicated by auxiliary information 1.
  • the burst arrival time offset of the first QoS flow is, for example, the offset between the expected BAT of the first QoS flow and the original BAT of the first QoS flow.
  • the original BAT of the first QoS flow for example the first RAN has The BAT of the received data packet carried by the first QoS flow is equivalent to that the first RAN can determine the actual BAT of the first QoS flow based on the received data packet, and the burst arrival time offset of the first QoS flow can indicate the expected The offset between the BAT and the actual BAT.
  • the information type included in the second expected auxiliary information may be consistent with the information type included in the first expected auxiliary information.
  • both include the expected burst arrival time offset of the QoS flow, or both include QoS Streaming expectations BAT.
  • the types of information included in the two desired auxiliary information may also be different, and there is no specific limitation.
  • the first RAN sends the first desired assistance information and the second desired assistance information to the SMF.
  • the SMF receives the first desired assistance information and the second desired assistance information from the first RAN.
  • the SMF determines the first expected time information and the second expected time information.
  • the first expected time information may indicate the expected transmission timing of the first service flow, or in other words, indicate the expected timing of the first service flow transmission;
  • the second expected time information may indicate the expected transmission timing of the second service flow, or Said, indicating the timing when transmission of the second service stream is expected.
  • Expected time information such as expected BAT information.
  • the SMF determines the first desired time information and the second desired time information based on the third desired auxiliary information and the fourth desired auxiliary information.
  • the third desired auxiliary information is, for example, the first desired auxiliary information
  • the fourth desired auxiliary information for example, is the second desired auxiliary information.
  • the SMF can determine the first expected time information based on the first expected auxiliary information, and determine the second expected time information based on the second expected auxiliary information.
  • the following describes how the SMF determines the first expected time information based on the first expected auxiliary information.
  • the first expected auxiliary information may include different contents, and the way in which the SMF determines the first expected time information may also be correspondingly different, which will be introduced separately below.
  • the first desired auxiliary information includes the BAT of the desired first QoS flow, or includes the range information to which the BAT of the desired first QoS flow belongs.
  • the expected time information obtained above is based on the 5GS clock.
  • SMF can convert the expected time information into expected time information based on the TSN clock based on the time deviation (and/or clock drift) between the 5GS clock and the TSN clock.
  • the converted expected time information is, for example, first expected time information.
  • the SMF does not need to perform clock conversion (for example, the 5GS clock is synchronized with the TSN clock)
  • the expected time information before conversion is, for example, the first expected time information.
  • the SMF may convert the first expected auxiliary information based on the 5GS clock into the first expected auxiliary information based on the TSN clock based on the time deviation (and/or clock drift) between the 5GS clock and the TSN clock, and the converted first expected auxiliary information
  • the information can be used as the first expected time information.
  • the SMF does not need to perform clock conversion (for example, the 5GS clock is synchronized with the TSN clock)
  • the first expected auxiliary information before conversion is, for example, the first expected time information.
  • the first expected auxiliary information includes the burst arrival time offset of the expected first QoS flow, or includes range information to which the burst arrival time offset of the BAT of the expected first QoS flow belongs. Then the SMF may determine that the first desired auxiliary information is the first desired time information.
  • the way in which the SMF determines the second expected time information based on the second expected auxiliary information is similar to the way in which the SMF determines the first expected time information based on the first expected auxiliary information, and will not be described again.
  • the SMF may also be based on the first expected time information and the second expected time information, and based on the association information between the first UE and the second UE (or, based on the first QoS flow and the second expected time information). Matching relationship of the second QoS flow), the fifth expected time information is obtained, and the fifth expected time information can indicate the expected transmission opportunity of the third service flow.
  • the fifth expected time information includes first expected time information and second expected time information.
  • the fifth expected time information simply includes one expected time information, and the expected time information is determined based on the first expected time information and the second expected time information.
  • the first expected time information indicates the expected burst arrival time offset of the first QoS flow
  • the second expected time information indicates the expected burst arrival time offset of the second QoS flow.
  • the SMF sends the first expected time information and the second expected time information to the TSN AF through the PCF.
  • the SMF may send the first expected time information and the second expected time information to the TSN AF through the PCF, and accordingly, the TSN AF may receive the first expected time information and the second expected time information through the PCF.
  • the SMF may send the first expected time information and the second expected time information to the TSN AF.
  • S509 may also be replaced by: the SMF sends the fifth expected time information to the TSN AF through the PCF.
  • the SMF can send the fifth expected time information to the TSN AF through the PCF, and accordingly, the TSN AF can receive the fifth expected time information through the PCF.
  • TSN AF sends fifth expected time information to CNC.
  • the CNC receives the fifth desired time information from the TSN AF.
  • the TSN AF can determine the expected transmission timing of the first service flow based on the first expected time information, and can determine the second expected time information based on the second expected time information.
  • the expected transmission timing of the service flow and by referring to the association information between the first UE and the second UE, the expected transmission timing of the third service flow can be determined.
  • the expected transmission timing of the third service flow includes the expected transmission timing of the first service flow.
  • the TSN AF can determine the fifth expected time information based on the expected transmission timing of the third service flow, and the fifth expected time information can indicate the expected transmission timing of the third service flow.
  • the fifth expected time information includes the first expected time information and the second expected time information, and the fifth expected time information also indicates the corresponding relationship between the first expected time information and the second expected time information and the uplink and downlink, for example, the first expected time information
  • the time information is used for the uplink service flow, and the second expected time information is used for the downlink service flow; or the first expected time information is used for the downlink service flow, and the second expected time information is used for the uplink service flow.
  • the first expected time information is used for the uplink service flow, and the second expected time information is used for the downlink service flow.
  • the expected transmission opportunity of the third service flow in the uplink is the expected transmission opportunity indicated by the first expected time information.
  • the expected transmission opportunity of the service flow in the downlink is the expected transmission opportunity indicated by the second expected time information.
  • the expected transmission opportunity of the third service flow in the uplink is the expected transmission opportunity indicated by the fifth expected time information
  • the expected transmission opportunity of the third service flow in the downlink is, It is also the expected transmission opportunity indicated by the fifth expected time information.
  • the TSN AF may directly send the fifth expected time information to the CNC.
  • the receiving end of the first expected time information and the second expected time information (or the fifth expected time information) is, for example, AF.
  • CNC sends the first time information and the second time information to TSN AF.
  • TSN AF receives the first time information and the second time information from the CNC.
  • the first time information may indicate the transmission timing of the first service flow
  • the second time information may indicate the transmission timing of the second service flow.
  • the time information here is, for example, BAT information.
  • the CNC may update the BAT information originally allocated for the first service flow and the second service flow, for example, update the BAT information indicated by the service forwarding information in S501.
  • the CNC may determine first time information and second time information.
  • the first time information includes, for example, the update time information of the first service flow.
  • the update time information of the first service flow includes, for example, the updated BAT of the first service flow, or includes the first
  • the range information to which the updated BAT information of the service flow belongs either includes the update burst arrival time offset of the first service flow, or includes the range information to which the update burst arrival time offset of the first service flow belongs.
  • the updated burst arrival time offset of the first service flow is, for example, the updated burst arrival time of the first service flow relative to the expected burst arrival time of the first service flow (for example, as indicated by the service forwarding information in S501
  • the original burst arrival time is, for example, the burst arrival time of the data packet carried by the first QoS flow that has been received by the first RAN.
  • the content included in the second time information is also similar, so no further details will be given.
  • the sending end of the first time information and the second time information is, for example, AF, and TSCTSF can obtain the first time information and the second time information from AF through NEF.
  • TSN AF sends the second information to PCF.
  • the PCF receives the second information from the TSN AF.
  • the second information includes, for example, a third TSC auxiliary container and a fourth TSC auxiliary container.
  • the third TSC auxiliary container includes update information of the first service flow
  • the fourth TSC auxiliary container includes update information of the second service flow.
  • the update information of the first service flow includes, for example, one or more of the following: first time information, cycle of the first service flow, or direction information of the first service flow.
  • the update information of the second service flow includes, for example, one or more of the following: second time information, the cycle of the second service flow, or the direction information of the second service flow.
  • the PCF sends the third PCC rule and the fourth PCC rule to the SMF.
  • the SMF receives the third PCC rule and the fourth PCC rule from the PCF.
  • the PCF may generate a third PCC rule for the first service flow and a fourth PCC rule for the second service flow based on the second information obtained from the TSN AF.
  • the third PCC rule may include a third TSC auxiliary container, and the fourth PCC rule may include a fourth TSC auxiliary container.
  • the PCF may send the third PCC rule and the fourth PCC rule to the SMF.
  • the SMF sends auxiliary information 3 and auxiliary information 4 to the first RAN.
  • the first RAN receives auxiliary information 3 and auxiliary information 4 from the SMF.
  • the SMF may determine auxiliary information 3 according to the third TSC auxiliary container included in the third PCC rule, and determine auxiliary information 4 according to the fourth TSC auxiliary container included in the fourth PCC rule.
  • auxiliary information 3 is also called first auxiliary information
  • auxiliary information 4 is called second auxiliary information.
  • the auxiliary information 3 may indicate the transmission timing of the first QoS flow, such as indicating the BAT of the first QoS flow, or indicating the time range to which the BAT of the first QoS flow belongs, or indicating the burst arrival time offset of the first QoS flow, or Indicates that the burst arrival time of the first QoS flow is offset by the stated time range, etc.
  • the auxiliary information 4 may indicate the transmission timing of the second QoS flow, such as indicating the BAT of the second QoS flow, or indicating the time range to which the BAT of the second QoS flow belongs, or indicating the burst arrival time offset of the second QoS flow, or Indicates that the burst arrival time of the second QoS flow is offset by the stated time range, etc.
  • the burst arrival time offset of a QoS flow is, for example, the offset between the updated burst arrival time of the QoS flow and the expected burst arrival time.
  • the expected burst arrival time of the QoS flow is the BAT indicated by auxiliary information 1; the expected burst arrival time of the second QoS flow is the BAT indicated by auxiliary information 2.
  • the first RAN may determine the transmission timing of the first QoS flow according to the auxiliary information 3. For example, it may determine the time when the first QoS flow reaches the first RAN, or determine the time range in which the first QoS flow reaches the first RAN. According to the transmission timing of the first QoS flow, the first RAN can schedule corresponding resources for the first QoS flow, or in other words, the first RAN can determine the scheduling resources of the first QoS flow to transmit the first QoS flow, for example, schedule the first QoS flow.
  • the resource is called the fifth scheduling resource. For example, the time domain resources included in the fifth scheduling resource are consistent with the transmission timing indicated by the auxiliary information 3.
  • the time domain resources included in the fifth scheduling resource are the same as the transmission timing indicated by the auxiliary information 3, or the time domain resources included in the fifth scheduling resource are the same as the transmission timing indicated by the auxiliary information 3.
  • the time interval between the included time domain resources and the transmission opportunity indicated by the auxiliary information 3 is less than the first threshold, so that the first QoS flow can be transmitted in time after arriving at the first RAN or UE.
  • the first RAN can determine the transmission timing of the second QoS flow according to the auxiliary information 4.
  • the first RAN can determine the scheduling resource of the second QoS flow.
  • the scheduling resource is called the third QoS flow.
  • the time domain resource included in the sixth scheduling resource may also be consistent with the transmission timing indicated by the auxiliary information 4.
  • the RAN determines auxiliary information 3 and auxiliary information 4 based on conflict-free resources. Therefore, if the RAN determines scheduling resources for two QoS flows based on auxiliary information 3 and auxiliary information 4, the determined scheduling can be achieved.
  • the resource does not conflict with other resources. That is to say, auxiliary information 3 and auxiliary information 4 are determined taking into account the correlation between the two QoS flows, which makes the time when the two QoS flows arrive at the entrance of the RAN or the exit of the UE determined by the RAN. Scheduling resources are consistent.
  • the resources scheduled by the RAN for the QoS flow have just arrived or are about to arrive.
  • the two QoS flows can be transmitted in time and the transmission delay of the QoS flows can be reduced.
  • two QoS flows are transmitted through one RAN.
  • the first QoS flow and the second QoS flow are transmitted through different RANs, such as Figure 4D.
  • embodiments of the present application provide a second communication method, in which the desired auxiliary information of two QoS flows can be determined between two RANs through negotiation. Please refer to Figure 6 for a flow chart of this method. In addition to being applicable to the architecture shown in Figure 2 or Figure 3, this method can also be applied to the architecture shown in Figure 4D.
  • TSN AF obtains service forwarding information.
  • S601 For more information about S601, reference may be made to S501 in the embodiment shown in FIG. 5 .
  • TSN AF sends the first information to PCF.
  • the PCF receives the first information from the TSN AF.
  • the first information may include two TSC auxiliary containers, namely a first TSC auxiliary container and a second TSC auxiliary container.
  • the first TSC auxiliary container includes information about the first service flow
  • the second TSC auxiliary container includes the second TSC auxiliary container.
  • Business flow information may indicate that the first UE is associated with the second UE, or may indicate that the first UE matches the second UE.
  • S602 For more information about S602, such as an introduction to features such as service flow information and related information, please refer to S502 in the embodiment shown in FIG. 5 .
  • PCF sends PCC rules to SMF.
  • SMF receives the PCC rule from PCF.
  • the PCC rule may include a first PCC rule and a second PCC rule.
  • S603 For more information about S603, such as the introduction of PCC rules, please refer to S503 in the embodiment shown in FIG. 5 .
  • SMF determines auxiliary information 1 and auxiliary information 2.
  • S604 For more information about S604, reference may be made to S504 in the embodiment shown in FIG. 5 .
  • the SMF sends the auxiliary information 1 to the first RAN.
  • the first RAN receives the auxiliary information 1 from the SMF.
  • the SMF sends the auxiliary information 2 to the second RAN, and accordingly, the second RAN receives the auxiliary information 2 from the SMF.
  • the first QoS flow and the second QoS flow are transmitted through different RANs, the first RAN transmits the first QoS flow, and the second RAN transmits the second QoS flow. Therefore, the auxiliary information 1 is used by the first RAN, and the SMF can send the auxiliary information 1 to the first RAN; the auxiliary information 2 is used by the second RAN, and the SMF can send the auxiliary information 2 to the second RAN.
  • the SMF can also send the associated QoS flow information to the corresponding RAN.
  • the SMF may send the information of the second QoS flow to the first RAN, and may also send the information of the first QoS flow to the second RAN.
  • the QoS flow transmitted by the RAN and the other QoS flow are associated QoS flows.
  • the information of a QoS flow includes, for example, the QFI of the QoS flow.
  • it may also include the access network tunnel information corresponding to the PDU session where the QoS flow is located, or the core network tunnel information corresponding to the PDU session where the QoS flow is located. , or include the identifier of the PDU session where the QoS flow is located, etc.
  • the SMF may also send the RAN information used to transmit the associated QoS flow to the corresponding RAN.
  • the SMF may send the information of the first RAN to the second RAN, and may also send the information of the second RAN to the first RAN.
  • the information of a RAN includes, for example, the identification of the RAN, such as the node ID of the RAN.
  • the QoS flow information may also include RAN information.
  • the first QoS flow information includes the first RAN information
  • the second QoS flow information includes the second RAN information. If this is the case, the SMF only needs to send the corresponding QoS flow information to the RAN.
  • the SMF sends the auxiliary information 1 and the information of the second QoS flow to the first RAN. Then, the two pieces of information can be carried in one message, or they can also be carried in different messages.
  • the SMF sends information to the second RAN the method is similar.
  • the first RAN negotiates with the second RAN to determine the desired auxiliary information of the first QoS flow and the second QoS flow.
  • the first RAN may determine fifth desired assistance information based on assistance information 1.
  • the fifth desired auxiliary information includes third desired auxiliary information, or the fifth desired auxiliary information includes third desired auxiliary information and fourth desired auxiliary information.
  • the third expected auxiliary information is used to indicate the desired transmission timing of the first QoS flow
  • the fourth desired auxiliary information is used to indicate the desired transmission timing of the second QoS flow.
  • the first RAN may determine the transmission timing of the first QoS flow according to the auxiliary information 1, for example, may determine the time when the first QoS flow reaches the first RAN or UE, or determine the time range in which the first QoS flow reaches the first RAN or UE. .
  • the first RAN may schedule corresponding resources for the first QoS flow, or in other words, the first RAN may determine the scheduling resources of the first QoS flow to transmit the first QoS flow, for example, the first QoS flow
  • the scheduling resource determined by the RAN based on the auxiliary information 1 is called the first scheduling resource.
  • the time domain resources included in the first scheduling resource are consistent with the transmission timing indicated by the auxiliary information 1.
  • the time domain resources included in the first scheduling resource are the same as the transmission timing indicated by the auxiliary information 1, or the time domain resources included in the first scheduling resource are the same as the transmission timing indicated by the auxiliary information 1.
  • the time interval between the included time domain resources and the transmission opportunity indicated by the auxiliary information 1 is less than the first threshold, so that the first QoS flow can be transmitted in time after arriving at the first RAN or UE.
  • the first RAN may determine a resource that does not conflict with other resources, and may use the resource as a scheduling resource for the first QoS flow.
  • the resource may be called a second scheduling resource.
  • the first RAN may determine the desired assistance of the first QoS flow according to the second scheduling resource (or in other words, according to the time domain position of the second scheduling resource)
  • the information is called third desired auxiliary information, for example.
  • the third desired auxiliary information may indicate the desired transmission timing of the first QoS flow.
  • the transmission timing indicated by the third desired auxiliary information matches the second scheduling resource, so that when the first QoS flow reaches the first RAN or UE can be transmitted in a timely manner.
  • the other resources are, for example, scheduling resources determined by the first RAN for other QoS flows (referring to QoS flows other than the first QoS flow).
  • For an introduction to resource conflicts please refer to S506 in the embodiment shown in FIG. 5 .
  • the first RAN can also determine the desired assistance information for the second QoS flow. For example, the first RAN determines the fourth desired assistance based on the transmission opportunity indicated by the third desired assistance information. Information, the fourth expected auxiliary information indicates the transmission opportunity of the expected second QoS flow.
  • the first RAN does not need to determine the third desired assistance information, nor does it need to determine the fourth desired assistance information.
  • the second RAN also receives auxiliary information 2 from the SMF.
  • the second RAN may determine the transmission timing of the second QoS flow based on the assistance information 2.
  • the second RAN may determine the time when the second QoS flow reaches the second RAN or UE, or determine the time range within which the second QoS flow reaches the second RAN or UE.
  • the second RAN can schedule corresponding resources for the second QoS flow, or in other words, the second RAN can determine the scheduling resources of the second QoS flow to transmit the second QoS flow, for example, the second QoS flow
  • the scheduling resources determined by the RAN based on the auxiliary information 2 are called third scheduling resources.
  • the time domain resources included in the third scheduling resource are consistent with the transmission timing indicated by the auxiliary information 2.
  • the time domain resources included in the third scheduling resource are the same as the transmission timing indicated by the auxiliary information 2, or the time domain resources included in the third scheduling resource are the same as the transmission timing indicated by the auxiliary information 2.
  • the time interval between the included time domain resources and the transmission opportunity indicated by the auxiliary information 2 is less than the first threshold, so that the second QoS flow can be transmitted in time after arriving at the second RAN or UE.
  • the second RAN may determine a resource that does not conflict with other resources, and may use the resource as a scheduling resource for the second QoS flow.
  • the resource may be called a fourth scheduling resource.
  • the second RAN may determine the desired assistance information of the second QoS flow according to the fourth scheduling resource (or, in other words, according to the time domain position of the fourth scheduling resource), which is called desired assistance information 1, for example. Desired assistance information 1 may indicate a desired transmission opportunity of the second QoS flow.
  • the other resources are, for example, scheduling resources determined by the second RAN for other QoS flows (referring to QoS flows other than the second QoS flow).
  • S506 for an introduction to resource conflicts, please refer to S506 in the embodiment shown in FIG. 5 .
  • the second RAN may also determine the desired assistance information for the first QoS flow. For example, the second RAN determines the desired assistance information 2 according to the transmission opportunity indicated by the desired assistance information 1.
  • the desired assistance information is Information 2 indicates the desired transmission opportunity of the first QoS flow.
  • the second RAN does not need to determine the desired assistance information 1, nor does it need to determine the desired assistance information 2.
  • the first RAN may send the fifth desired assistance information to the second RAN.
  • the fifth expected auxiliary information includes the third expected auxiliary information, or includes the third expected auxiliary information and the fourth expected auxiliary information. If the fifth desired assistance information includes the third desired assistance information and does not include the fourth desired assistance information, and the second RAN also determines the desired assistance information 2, the second RAN may determine whether the third desired assistance information is the same as the desired assistance information 2.
  • the second RAN may accept the third desired assistance information; or, if the fifth desired assistance information includes the third desired assistance information and does not include the fourth desired assistance information, and the second RAN determines the desired assistance information 1 and the desired assistance information 2 is not determined, the second RAN may determine the time indicated by the desired assistance information 1 Whether it matches the time indicated by the third expected assistance information, if it matches, the second RAN may accept the third expected assistance information, if it does not match, the second RAN does not accept the third expected assistance information; or, if the fifth expected assistance information If the assistance information includes the third desired assistance information and does not include the fourth desired assistance information, and the second RAN does not determine the desired assistance information 1 and the desired assistance information 2, the second RAN may accept the third desired assistance information.
  • the second RAN may determine that the fourth desired assistance information is the same as the desired assistance information. Whether the auxiliary information 1 is consistent, and determine whether the third expected auxiliary information is consistent with the expected auxiliary information 2. If the two comparison results are consistent, the second RAN can accept the fifth expected auxiliary information.
  • the second RAN does not accept the fifth expected assistance information; or, if the fifth expected assistance information includes the third expected assistance information and the fourth expected assistance information, and the second RAN determines the expected assistance information 1 and If the expected assistance information 2 is not determined, the second RAN may determine whether the fourth expected assistance information is consistent with the expected assistance information 1. If they are consistent, the second RAN may accept the fifth expected assistance information; or if the fifth expected assistance information includes The third desired assistance information and the fourth desired assistance information, and the second RAN does not determine the desired assistance information 1 and the desired assistance information 2, then the second RAN may accept the fifth desired assistance information.
  • the second RAN sends confirmation information to the first RAN.
  • the first RAN receives the confirmation information from the second RAN.
  • the confirmation message may indicate that the second RAN accepts the fifth desired assistance information.
  • the second RAN may send denial information to the first RAN, where the denial information is used to indicate that the second RAN does not accept the fifth desired assistance information.
  • the first RAN can re-determine the expected assistance information for the first QoS flow and/or the second QoS flow, and send the re-determined expected assistance information to the second RAN for negotiation until the first RAN returns from until the second RAN receives the confirmation information.
  • the second RAN may also send the desired assistance information determined by the second RAN to the first RAN.
  • the desired assistance information determined by the second RAN is called the sixth desired assistance information.
  • the sixth expected auxiliary information includes expected auxiliary information 1, or includes expected auxiliary information 1 and expected auxiliary information 2).
  • the first RAN may determine whether the sixth desired assistance information can be accepted. For example, the first RAN may determine whether to accept the sixth desired assistance information based on factors such as the fifth desired assistance information and/or assistance information 1.
  • the second RAN may accept the sixth desired assistance information.
  • the first RAN may also determine whether to accept the sixth desired assistance information according to other methods. If the first RAN accepts the sixth desired assistance information, the first RAN may send a confirmation message to the second RAN to indicate that the first RAN accepts the sixth desired assistance information. If the first RAN does not accept the sixth desired assistance information, the first RAN may send denial information to the second RAN, or send desired assistance information recognized by the first RAN, and so on.
  • one RAN sends an expected auxiliary information to another RAN, and the expected auxiliary information may indicate an expected transmission opportunity of the QoS flow. Or there is another situation.
  • one RAN can send multiple expected auxiliary information to another RAN.
  • the multiple expected auxiliary information can indicate multiple expected transmission opportunities for the QoS flow.
  • An expected transmission opportunity may be selected from the plurality of expected transmission opportunities.
  • the first RAN sends desired assistance information a and desired assistance information b to the second RAN. Both the desired assistance information a and the desired assistance information b indicate the transmission timing of the first QoS flow.
  • the two desired assistance information indicate different transmission timings. .
  • the second RAN may determine the desired assistance information a and the desired assistance information a Whether information 2 is consistent, if consistent, the second RAN can accept the expected auxiliary information a and does not need to process the expected auxiliary information b; or, if the expected auxiliary information a is inconsistent with the expected auxiliary information 2, the second RAN then determines the expected auxiliary information Whether b is consistent with the expected auxiliary information 2. If they are consistent, the second RAN can accept the expected auxiliary information b. If the expected auxiliary information b is also inconsistent with the expected auxiliary information 2, the second RAN will not accept the expected auxiliary information b.
  • the second RAN may send confirmation information to the first RAN to confirm that the second RAN accepts the desired assistance information a or the desired assistance information b, and the negotiation process ends.
  • a confirmation message is used to confirm acceptance of certain information.
  • it may include an identifier of the information, and the identifier of the information is used to indicate confirmation of acceptance of the information.
  • the second RAN may send a denial message or the expected assistance information suggested by the second RAN for the first QoS flow to the first RAN to continue the negotiation process, Please refer to the introduction above.
  • the recommended desired assistance information for the first QoS flow sent by the second RAN may include one or more desired assistance information.
  • the first RAN does not send the desired assistance information for the first QoS flow to the second RAN, but sends to the second RAN a plurality of desired assistance information for the second QoS flow. If the second RAN receives multiple desired assistance information for the second QoS flow, it may determine whether to accept the corresponding desired assistance information.
  • the determination method may refer to the above.
  • the first RAN not only sends a plurality of desired assistance information for the first QoS flow to the second RAN, but also sends a plurality of desired assistance information for the second QoS flow to the second RAN, and the plurality of desired assistance information for the second QoS flow is sent to the second RAN.
  • the information indicates the expected transmission timing of the second QoS flow.
  • the first RAN sends the expected assistance information a, the expected assistance information b, the expected assistance information c, and the expected assistance information d to the second RAN.
  • the expected assistance information c and the expected assistance information d both indicate the transmission timing of the second QoS flow. This The two expected auxiliary information indications have different transmission timings.
  • the first RAN may include a first indication in the information carrying the desired assistance information sent to the second RAN, and the first indication may indicate the corresponding relationship between the desired assistance information and the QoS flow, for example, the desired assistance information a and desired auxiliary information b correspond to the first QoS flow, and desired auxiliary information c and desired auxiliary information d correspond to the second QoS flow.
  • the first indication is, for example, a QoS flow identifier, such as QFI.
  • the information carrying the desired auxiliary information may also include a second indication for indicating an association between the desired auxiliary information corresponding to the first QoS flow and the desired auxiliary information corresponding to the second QoS flow. .
  • the second indication may indicate that desired auxiliary information a is associated with desired auxiliary information c, and desired auxiliary information b is associated with desired auxiliary information d.
  • the second RAN may determine whether to accept the desired assistance information a and the desired assistance information c.
  • determination method reference may be made to the confirmation method mentioned above after the second RAN receives the third desired assistance information and the fourth desired assistance information. If the second RAN accepts the desired assistance information a and the desired assistance information c, the second RAN may send confirmation information to the first RAN to confirm that the second RAN accepts the desired assistance information a and the desired assistance information c, and the negotiation process ends. If the second RAN does not accept the desired assistance information a and the desired assistance information c, the second RAN may determine whether to accept the desired assistance information b and the desired assistance information d.
  • the determination method may refer to the above.
  • the second RAN may send confirmation information to the first RAN to confirm that the second RAN accepts the desired assistance information b and the desired assistance information d, and the negotiation process ends.
  • the second RAN may send the denial information or the desired assistance information suggested by the second RAN to the first RAN, for which reference may be made to the above introduce.
  • the suggested desired assistance information sent by the second RAN may include one or more desired assistance information corresponding to the first QoS flow, and/or include one or more desired assistance information corresponding to the second QoS flow.
  • the first RAN may continue to negotiate the expected auxiliary information of the first QoS flow and the second QoS flow with the second RAN.
  • the negotiation process may be referred to above.
  • the second RAN may send third information to the first RAN, and the third information may indicate that the second RAN
  • the second RAN accepts the expected auxiliary information a or the expected auxiliary information b, and does not accept the expected auxiliary information c and the expected auxiliary information d.
  • the first RAN may continue to negotiate with the second RAN about the desired auxiliary information of the second QoS flow.
  • the negotiation process may be referred to above.
  • the processing method is similar to the previous method.
  • the negotiation process between the first RAN and the second RAN may be completed through one or more steps, and there is no specific limitation.
  • the negotiation between the first RAN and the second RAN is completed (for example, one RAN receives confirmation information from the other RAN, indicating that the negotiation is completed)
  • the desired auxiliary information for the first QoS flow and the desired auxiliary information for the second QoS flow can be finally determined.
  • Supplementary information for example, the finally determined expected auxiliary information of the first QoS flow is the third expected auxiliary information, and the finally determined expected auxiliary information of the second QoS flow is the fourth expected auxiliary information.
  • the first RAN sends the fifth desired assistance information to the SMF.
  • the SMF receives fifth desired assistance information from the first RAN.
  • the first RAN may send the third desired assistance information to the SMF, and the second RAN may send the fourth desired assistance information to the SMF; or the first RAN may send the third desired assistance information and the fourth desired assistance information to the SMF, and the first RAN may send the third desired assistance information and the fourth desired assistance information to the SMF.
  • the second RAN does not need to send the desired assistance information to the SMF; alternatively, the second RAN can send the third desired assistance information and the fourth desired assistance information to the SMF, and the first RAN does not need to send the desired assistance information to the SMF.
  • S608 takes the first RAN sending the fifth desired assistance information to the SMF as an example.
  • the SMF determines the first expected time information and the second expected time information.
  • S608 For more information about S608, reference may be made to S508 in the embodiment shown in FIG. 5 .
  • the SMF sends the first expected time information and the second expected time information to the TSN AF.
  • TSN AF sends fifth expected time information to CNC.
  • the CNC receives the fifth desired time information from the TSN AF.
  • S610 For more information about S610, reference may be made to S510 in the embodiment shown in FIG. 5 .
  • CNC sends the first time information and the second time information to TSN AF.
  • TSN AF receives the first time information and the second time information from the CNC.
  • S611 For more information about S611, please refer to S511 in the embodiment shown in FIG. 5 .
  • TSN AF sends the second information to PCF.
  • the PCF receives the second information from the TSN AF.
  • S612 For more information about S612, please refer to S512 in the embodiment shown in FIG. 5 .
  • the PCF sends the third PCC rule and the fourth PCC rule to the SMF.
  • the SMF receives the third PCC rule and the fourth PCC rule from the PCF.
  • S613 For more information about S613, please refer to S513 in the embodiment shown in FIG. 5 .
  • the SMF sends the auxiliary information 3 to the first RAN.
  • the first RAN receives the auxiliary information 3 from the SMF.
  • the SMF sends the auxiliary information 4 to the second RAN, and accordingly, the second RAN receives the auxiliary information 4 from the SMF.
  • S614 For more information about S614, reference may be made to S514 in the embodiment shown in FIG. 5 .
  • the correlation between the two QoS flows is considered when determining the auxiliary information 3 and 4. Therefore, the scheduling resources determined according to the two auxiliary information can meet the entry or exit of the two QoS flows to the RAN. arrive The time to reach the exit of UE. Furthermore, the fifth scheduling resource determined according to the first auxiliary information has no conflict with other scheduling resources, and the sixth scheduling resource determined according to the second auxiliary information has no conflict with other scheduling resources, thereby ensuring the first QoS flow. and normal transmission of the second QoS flow. In the case where two RANs transmit two QoS flows, the embodiment of the present application can realize negotiation between RANs, thereby helping to determine the desired assistance information that both RANs can recognize.
  • the expected auxiliary information of the QoS flow may also be determined through other methods.
  • the embodiment of the present application provides a third communication method.
  • the SMF and the two RANs can determine the expected auxiliary information of the two QoS flows through negotiation. Please refer to Figure 7 for a flow chart of this method. In addition to being applicable to the architecture shown in Figure 2 or Figure 3, this method can also be applied to the architecture shown in Figure 4D.
  • TSN AF obtains service forwarding information.
  • S701 For more information about S701, reference may be made to S501 in the embodiment shown in FIG. 5 .
  • TSN AF sends the first information to PCF.
  • the PCF receives the first information from the TSN AF.
  • S702 For more information about S702, reference may be made to S502 in the embodiment shown in FIG. 5 .
  • PCF sends PCC rules to SMF.
  • SMF receives the PCC rule from PCF.
  • the PCC rule may include a first PCC rule and a second PCC rule.
  • S703 For more information about S703, such as the introduction of PCC rules, please refer to S503 in the embodiment shown in FIG. 5 .
  • SMF determines auxiliary information 1 and auxiliary information 2.
  • S704 For more information about S704, reference may be made to S504 in the embodiment shown in FIG. 5 .
  • the SMF sends the auxiliary information 1 to the first RAN.
  • the first RAN receives the auxiliary information 1 from the SMF.
  • the SMF sends the auxiliary information 2 to the second RAN, and accordingly, the second RAN receives the auxiliary information 2 from the SMF.
  • the first RAN determines the first desired assistance information. Additionally, the second RAN determines second desired assistance information.
  • the two RANs since the two RANs may not know that the QoS flows they transmit are associated with other QoS flows, the two RANs only need to determine the expected auxiliary information of the QoS flows they transmit.
  • the first RAN does not need to consider the second QoS flow when determining the first desired assistance information
  • the second RAN does not need to consider the first QoS flow when determining the first desired assistance information.
  • placing the determination process of the first RAN and the second RAN in one step does not mean that these two steps will necessarily occur at the same time.
  • the process of the first RAN determining the first desired assistance information may occur first, or the process of the second RAN determining the second desired assistance information may occur first, or the two processes may occur simultaneously.
  • the first RAN sends the first desired assistance information to the SMF.
  • the SMF receives the first desired assistance information from the first RAN.
  • the second RAN sends second desired assistance information to the SMF.
  • the SMF receives the second desired assistance information from the second RAN.
  • Putting the transmission processes of the first RAN and the second RAN in one step does not mean that these two steps will necessarily occur at the same time.
  • the process of the first RAN sending the first desired assistance information may occur first, or the process of the second RAN sending the second desired assistance information may occur first, or the two processes may occur simultaneously.
  • the SMF negotiates with the first RAN to determine the desired auxiliary information of the first QoS flow, and/or negotiates with the second RAN to determine the desired auxiliary information of the second QoS flow.
  • the first The time indicated by the desired auxiliary information may or may not match the time indicated by the second desired auxiliary information (or, in other words, the indicated transmission opportunity).
  • the two times match (or, in other words, the two transmission opportunities match), for example, the two times have the same offset relative to their respective expected transmission opportunities.
  • the transmission timing of the first QoS flow indicated by the first desired assistance information has a first offset relative to the expected transmission timing of the first QoS flow
  • the transmission timing of the second QoS flow indicated by the second desired assistance information is relative to
  • the expected transmission opportunity of the second QoS flow also has a first offset, indicating that the time indicated by the first expected assistance information matches the time indicated by the second expected assistance information; or, if the first QoS flow indicated by the first expected assistance information
  • the transmission timing has a first offset relative to the expected transmission timing of the first QoS flow
  • the transmission timing of the second QoS flow indicated by the second desired auxiliary information has a second offset relative to the expected transmission timing of the second QoS flow
  • the second offset is different from the first offset, indicating that the time indicated by the first expected auxiliary information does not match the time indicated by the second expected auxiliary information; or, if the transmission timing of the first QoS stream indicated by the first expected auxiliary information is relatively
  • the expected transmission timing of the first QoS flow
  • the SMF may accept the first desired auxiliary information and the second desired auxiliary information without performing S708. If the time indicated by the first expected auxiliary information does not match the time indicated by the second expected auxiliary information, the SMF may not accept the first expected auxiliary information and/or the second expected auxiliary information, in which case S708 may be performed. That is to say, the SMF may determine whether to accept the desired assistance information from the second RAN based on the desired assistance information from the first RAN; it may also determine whether to accept the desired assistance information from the first RAN based on the desired assistance information from the second RAN. In other words, the SMF determines whether the desired assistance information can be accepted based on the desired assistance information from the first RAN and the desired assistance information from the second RAN.
  • the SMF may re-determine the desired assistance information for the first QoS flow and/or the second QoS flow. For example, the SMF determines that the expected auxiliary information of the first QoS flow continues to be the first expected auxiliary information, and determines a time that matches the time indicated by the first expected auxiliary information (refer to the above for an introduction to "time matching"), The desired auxiliary information is then determined for the second QoS flow according to a time that matches the time indicated by the first desired auxiliary information, for example, it is called desired auxiliary information 3. In this case, because the first desired assistance information does not change, the SMF does not need to negotiate with the first RAN, and can only negotiate with the second RAN to determine the desired assistance information for the second QoS flow.
  • the SMF determines that the expected auxiliary information of the second QoS flow continues to be the second expected auxiliary information, determines a time that matches the time indicated by the second expected auxiliary information, and then determines the time that matches the time indicated by the second expected auxiliary information.
  • the matched time determines the desired assistance information for the first QoS flow, for example called Desired Assistance Information 4.
  • the SMF does not need to negotiate with the second RAN, and can only negotiate with the first RAN to determine the desired assistance information of the first QoS flow.
  • the SMF may re-determine desired assistance information for the first QoS flow, for example, called desired assistance information 4.
  • the SMF determines the time that matches the time indicated by the expected auxiliary information 4, and then determines the desired auxiliary information for the second QoS flow based on the time that matches the time indicated by the expected auxiliary information 4, for example, called expected auxiliary information 3.
  • the SMF may negotiate with the first RAN to determine the desired assistance information for the first QoS flow, and negotiate with the second RAN to determine the desired assistance information for the second QoS flow.
  • the SMF may re-determine the desired assistance information for the second QoS flow, for example, called desired assistance information 3.
  • the SMF determines a time that matches the time indicated by the expected auxiliary information 3, and then determines the desired auxiliary information for the first QoS flow based on the time that matches the time indicated by the expected auxiliary information 3, for example, called expected auxiliary information 4.
  • the SMF may negotiate with the first RAN to determine the desired assistance information for the first QoS flow, and negotiate with the second RAN to determine the desired assistance information for the second QoS flow.
  • the SMF determines the desired assistance information 4 for the first QoS flow, and the SMF may send the desired assistance information 4 to the first RAN.
  • the first RAN may determine whether to accept the desired assistance information 4. For example, if the scheduling resource determined according to the time indicated by the desired assistance information 4 does not conflict with other scheduling resources, the first RAN may accept the desired assistance information 4; otherwise, the first RAN may not accept the desired assistance information 4. If the first RAN accepts the desired assistance information 4, the first RAN may send a confirmation message to the SMF to indicate that the first RAN accepts the desired assistance information 4.
  • the first RAN may send a denial message to the SMF to indicate that the first RAN does not accept the desired assistance information 4.
  • the SMF can re-determine the expected auxiliary information for the first QoS flow, for example, called expected auxiliary information 5 (this may involve the SMF also needing to re-determine the expected auxiliary information for the second QoS flow, and further communicate with the second QoS flow. RAN negotiation), the SMF may then send the desired assistance information 5 to the first RAN to continue negotiating with the first RAN until confirmation information is received from the first RAN, or until the upper limit of the negotiation duration is reached.
  • the first RAN may also send the desired assistance information recognized by the first RAN to the SMF, for example, called the desired assistance information 6.
  • the SMF may determine whether to accept the desired assistance information 6. For example, the SMF may determine whether the time indicated by the desired assistance information 6 matches the time indicated by the current desired assistance information of the second QoS flow. If the two match, the SMF may accept the desired assistance. Information 6, otherwise SMF does not accept the expected auxiliary information 6. If the SMF accepts the desired assistance information 6, the SMF may send confirmation information to the first RAN to indicate that the SMF accepts the desired assistance information 6, and the negotiation process between the SMF and the first RAN ends.
  • the SMF may send a denial message to the first RAN or send the expected assistance information recognized by the SMF, etc. to continue the negotiation until confirmation information is received from the first RAN, or until negotiation is reached up to the maximum duration.
  • SMF sends an expected auxiliary information to the RAN.
  • the expected auxiliary information may indicate an expected transmission opportunity of the QoS flow. Or there is another situation.
  • the SMF can send multiple expected auxiliary information to the RAN.
  • the multiple expected auxiliary information can indicate multiple expected transmission opportunities for the QoS flow.
  • the RAN it can be obtained from these multiple expected auxiliary information.
  • the desired assistance information e and the desired assistance information f both indicate the transmission timing of the first QoS flow, and the two desired assistance information indicate different transmission timings.
  • the first RAN may determine whether to accept the desired assistance information e, and the determination method may refer to the above. If the desired assistance information e is accepted, there may be no need to process the desired assistance information f; or, if the desired assistance information e is not accepted, the first RAN may then determine whether to accept the desired assistance information f.
  • the first RAN may send confirmation information to the SMF to confirm that the first RAN accepts the desired assistance information e or the desired assistance information f, and the negotiation process ends. If the first RAN does not accept the expected assistance information e and the expected assistance information f, the first RAN may send a denial message to the SMF or send the expected assistance information suggested by the first RAN for the first QoS flow to continue the negotiation process.
  • the recommended desired assistance information for the first QoS flow sent by the first RAN may include one or more desired assistance information, and the SMF may process the plurality of desired assistance information respectively.
  • the RAN may also send multiple expected auxiliary information to the SMF.
  • the multiple expected auxiliary information can indicate multiple expected transmission opportunities for the QoS flow.
  • one expected transmission opportunity can be selected from the multiple expected transmission opportunities. That is to say, in S707, the first RAN may send one or more desired assistance information to the SMF, of which the first desired assistance information is one; the second RAN may also send one or more desired assistance information to the SMF, the second desired assistance information being one of them. Expect auxiliary information to be one of them.
  • the first RAN sends the desired assistance information g and the desired assistance information h to the SMF, where the desired assistance information g is, for example, the first desired assistance information.
  • the desired assistance information g and the desired assistance information h both indicate the transmission timing of the first QoS flow, and the two desired assistance information indicate different transmission timings.
  • the SMF may determine whether to accept the desired assistance information g, where if the SMF receives multiple desired assistance information from the second RAN, the SMF may determine whether to accept the desired assistance information g based on the multiple desired assistance information, as long as one of the desired assistance information is accepted.
  • the information determines that the desired auxiliary information g can be accepted, then the SMF determines that the desired auxiliary information g is accepted.
  • the SMF determines whether it can accept the desired assistance information g based on a certain desired assistance information from the second RAN.
  • the determination method may refer to the above (for example, if the transmission timing indicated by a certain desired assistance information from the second RAN is different from the desired assistance information) If the transmission opportunities indicated by information g are the same, the SMF can accept the expected auxiliary information g). If the SMF accepts the expected auxiliary information g, it may no longer need to process the expected auxiliary information h; or, if the SMF does not accept the expected auxiliary information g, the SMF may determine whether to accept the expected auxiliary information h in a similar manner.
  • the SMF may send confirmation information to the first RAN to confirm that the SMF accepts the desired assistance information g or the desired assistance information h, and the negotiation process ends. If the SMF does not accept the expected assistance information g and the expected assistance information h, the SMF may send a denial message to the first RAN or send the expected assistance information suggested by the SMF for the first QoS flow to continue the negotiation process.
  • the recommended desired assistance information for the first QoS flow sent by the SMF may include one or more desired assistance information, and the first RAN may process the plurality of desired assistance information respectively.
  • the desired assistance information of the first QoS flow that is finally negotiated and determined between the SMF and the first RAN is called the third desired assistance information
  • the desired assistance information of the second QoS flow that is finally negotiated and determined between the SMF and the second RAN is called The information is called fourth desired auxiliary information.
  • the SMF determines the first expected time information and the second expected time information. After determining the third desired auxiliary information and the fourth desired auxiliary information, the SMF may determine the first desired time information and the second desired time information.
  • the SMF sends the first expected time information and the second expected time information to the TSN AF.
  • TSN AF sends fifth expected time information to CNC.
  • the CNC receives the fifth desired time information from the TSN AF.
  • S711 For more information about S711, reference may be made to S510 in the embodiment shown in FIG. 5 .
  • CNC sends the first time information and the second time information to TSN AF.
  • TSN AF receives the first time information and the second time information from the CNC.
  • S712 For more information about S712, reference may be made to S511 in the embodiment shown in FIG. 5 .
  • TSN AF sends the second information to PCF.
  • the PCF receives the second information from the TSN AF.
  • S713 For more information about S713, reference may be made to S512 in the embodiment shown in FIG. 5 .
  • the PCF sends the third PCC rule and the fourth PCC rule to the SMF.
  • SMF receives from PCF Third PCC Rules and Fourth PCC Rules.
  • the SMF sends the auxiliary information 3 to the first RAN.
  • the first RAN receives the auxiliary information 3 from the SMF.
  • the SMF sends the auxiliary information 4 to the second RAN, and accordingly, the second RAN receives the auxiliary information 4 from the SMF.
  • S715 For more information about S715, reference may be made to S514 in the embodiment shown in FIG. 5 .
  • the correlation between the two QoS flows is considered when determining the auxiliary information 3 and 4. Therefore, the scheduling resources determined according to the two auxiliary information can meet the entry or exit of the two QoS flows to the RAN. The time of arrival at the UE's exit. Furthermore, the fifth scheduling resource determined according to the first auxiliary information has no conflict with other scheduling resources, and the sixth scheduling resource determined according to the second auxiliary information has no conflict with other scheduling resources, thereby ensuring the first QoS flow. and normal transmission of the second QoS flow. In the case where two RANs transmit two QoS flows, the embodiment of the present application can realize negotiation between the SMF and the RAN, thereby helping to determine the desired auxiliary information that both RANs can recognize.
  • SMF as a core network device, can have a certain degree of dominance or decision-making.
  • RAN can be more inclined to accept the expected auxiliary information suggested by SMF, which will help Shorten the negotiation process and improve service transmission efficiency.
  • the embodiment of this application provides a fourth communication method.
  • the desired auxiliary information of the two QoS flows can be determined through negotiation between the TSN AF and the two RANs.
  • Figure 8 for a flow chart of this method. In addition to being applicable to the architecture shown in Figure 2 or Figure 3, this method can also be applied to the architecture shown in Figure 4D.
  • TSN AF obtains service forwarding information.
  • S801 For more information about S801, reference may be made to S501 in the embodiment shown in FIG. 5 .
  • TSN AF sends the first information to PCF.
  • the PCF receives the first information from the TSN AF.
  • S802 For more information about S802, reference may be made to S502 in the embodiment shown in FIG. 5 .
  • PCF sends PCC rules to SMF.
  • SMF receives the PCC rule from PCF.
  • the PCC rule may include a first PCC rule and a second PCC rule.
  • S803 For more information about S803, such as the introduction of PCC rules, please refer to S503 in the embodiment shown in FIG. 5 .
  • SMF determines auxiliary information 1 and auxiliary information 2.
  • the SMF sends the auxiliary information 1 to the first RAN.
  • the first RAN receives the auxiliary information 1 from the SMF.
  • the SMF sends the auxiliary information 2 to the second RAN, and accordingly, the second RAN receives the auxiliary information 2 from the SMF.
  • the first RAN determines the first desired assistance information. Additionally, the second RAN determines second desired assistance information.
  • S806 For more information about S806, reference may be made to S706 in the embodiment shown in FIG. 7 .
  • the first RAN sends the first desired assistance information to the SMF.
  • the SMF receives the first desired assistance information from the first RAN.
  • the second RAN sends second desired assistance information to the SMF.
  • the SMF receives the second desired assistance information from the second RAN.
  • the SMF determines the first expected time information and the second expected time information.
  • the SMF determines the first desired time information and the second desired time information based on the first desired auxiliary information and the second desired auxiliary information.
  • S808 For more information about S808, reference may be made to S508 in the embodiment shown in FIG. 5 .
  • the SMF sends the first expected time information and the second expected time information to the TSN AF.
  • S809 For more information about S809, reference may be made to S509 in the embodiment shown in FIG. 5 .
  • the TSN AF negotiates with the first RAN to determine the expected time information corresponding to the first QoS flow, and/or negotiates with the second RAN to determine the expected time information corresponding to the second QoS flow.
  • the expected time information corresponding to a QoS flow can indicate the expected transmission timing of the QoS flow.
  • the time indicated by the first expected assistance information (or, in other words, the indicated transmission opportunity) is different from the time indicated by the second expected assistance information. (or in other words, the indicated transmission timing) may or may not match.
  • the first expected time information and the second expected time information are determined based on the first expected auxiliary information and the second expected auxiliary information, then the time indicated by the first expected time information (or the indicated transmission opportunity) and the The time indicated by the two expected time information (or the indicated transmission timing) may or may not match.
  • the embodiment shown in Figure 7 please refer to the embodiment shown in Figure 7 .
  • the TSN AF accepts the first expected time information and the second expected time information without performing S810. If the time indicated by the first expected time information does not match the time indicated by the second expected time information, S810 may be performed.
  • the TSN AF may not accept the first expected time information and/or the second expected time information.
  • the TSN AF may be reset to The first QoS flow and/or the second QoS flow determine corresponding time information.
  • S708 in the embodiment shown in FIG. 7 .
  • the difference between the embodiment of this application and S708 is the negotiation process between TSN AF and RAN. This negotiation process is somewhat different from the negotiation process between SMF and RAN. Therefore, the negotiation process between TSN AF and RAN is introduced below.
  • TSN AF determines the expected time information for the first QoS flow, which can be called expected time information 1.
  • TSN AF can send expected time information 1 to PCF.
  • TSN AF can send TSC auxiliary container 1, TSC auxiliary container 1 to PCF.
  • the updated information of the first service flow may include the expected time information 1.
  • PCF may send PCC Rule 1 to SMF, and PCC Rule 1 may include TSC Auxiliary Container 1.
  • the SMF may determine the expected auxiliary information of the first QoS flow according to the TSC auxiliary container 1, for example, called the expected auxiliary information 7.
  • the expected auxiliary information 7 may indicate the transmission opportunity of the first QoS flow, and the SMF may send the expected auxiliary information 7 to the first QoS flow.
  • RAN in this way, is equivalent to the first RAN receiving the information that needs to be negotiated from the TSN AF.
  • the first RAN may determine whether the desired assistance information 7 is acceptable. For example, if there is no conflict between resources scheduled according to the time indicated by the desired assistance information 7 and other resources, the first RAN can accept the desired assistance information 7 , otherwise the first RAN does not accept the desired assistance information 7 .
  • the first RAN may send an acknowledgment message to the SMF to indicate that the first RAN accepts the desired assistance information 7.
  • the SMF can send the confirmation information to the TSN AF through the PCF, and the negotiation process between the TSN AF and the first RAN is completed.
  • the first RAN may send a negative message to the SMF to indicate that the first RAN does not accept the desired assistance information 7.
  • SMF can send this denial information to TSN AF through PCF.
  • TSN AF can re-determine the expected time information for the first QoS flow, and then negotiate with the first RAN through the above process until confirmation information is received from the first RAN, or until the upper limit of the negotiation time is reached.
  • the first RAN may also determine the desired assistance information for the first QoS flow, for example, called the desired assistance information 8. For example, the first RAN may determine that there is no conflict with other resources resource, and determine the desired auxiliary information 8 based on the time domain location of the resource.
  • the first RAN may send the desired assistance information 8 to the SMF.
  • the SMF may determine the desired time information based on the desired assistance information 8, for example, called the desired time information 2.
  • the SMF may send the desired time information 2 to the TSN AF, and the TSN AF may determine whether to accept it. Expected time information 2.
  • the TSN AF can accept the expected time information 2, otherwise the TSN AF does not accept the expected time information 2. If the TSN AF accepts the expected time information 2, the TSN AF may send a confirmation message to indicate that the TSN AF accepts the expected time information 2.
  • the confirmation information can reach the first RAN through network elements such as the SMF, and the negotiation process between the first RAN and the TSN AF ends.
  • the TSN AF may send a denial message or new expected time information for the first QoS flow recognized by the TSN AF to the first RAN to continue negotiation with the first RAN until from Until the first RAN receives the confirmation information, or until the upper limit of the negotiation time is reached.
  • TSN AF sends an expected time information to the RAN, and the expected time information may indicate an expected transmission opportunity for the QoS flow. Or there is another situation.
  • the TSN AF can send multiple expected time information to the RAN.
  • the multiple expected time information can indicate multiple expected transmission opportunities for the QoS flow.
  • the RAN it can be obtained from these multiple expected time information. Select an expected transmission opportunity among the expected transmission opportunities.
  • the TSN AF sends expected time information a and expected time information b to the first RAN. Both expected time information a and expected time information b indicate the transmission timing of the first QoS flow.
  • the two expected auxiliary information indicate different transmission timings.
  • the first RAN For the first RAN, what is actually received is the desired assistance information, for example, the desired assistance information i and the desired assistance information j respectively.
  • the first RAN may determine whether to accept the desired assistance information i, and the determination method may refer to the above. If the desired assistance information i is accepted, there may be no need to process the desired assistance information j; or, if the desired assistance information i is not accepted, the first RAN may then determine whether to accept the desired assistance information j.
  • the first RAN may send a confirmation message to the TSN AF to confirm that the first RAN accepts the desired assistance information i or the desired assistance information j, and the negotiation process ends. If the first RAN does not accept the expected assistance information i and the expected assistance information j, the first RAN may send a denial message to the TSN AF or send the expected assistance information suggested by the first RAN for the first QoS flow to continue the negotiation process.
  • the recommended desired assistance information for the first QoS flow sent by the first RAN may include one or more desired assistance information, and the TSN AF may process the multiple desired assistance information separately. It should be noted that the information exchange process between the first RAN and TSN AF also needs to be processed by intermediate network elements such as SMF and PCF, which will not be described too much in this example.
  • the RAN can also send multiple expected auxiliary information to the TSN AF.
  • the multiple expected auxiliary information can indicate multiple expected transmission opportunities for the QoS flow.
  • the TSN AF it can One desired transmission opportunity is selected from the plurality of desired transmission opportunities. That is to say, in S807, the first RAN may send one or more desired assistance information to the SMF, of which the first desired assistance information is one.
  • the SMF may determine one corresponding to the first QoS flow. or multiple expected time information.
  • the SMF may send one or more expected time information corresponding to the first QoS flow to the TSN AF; in S807, the second RAN may send one or more expected auxiliary information to the SMF. , the second expected auxiliary information is one of them.
  • the SMF may determine one or more expected time information corresponding to the second QoS flow.
  • the SMF may send the information corresponding to the second QoS flow to the TSN AF. One or more expected timing information for the stream.
  • the first RAN sends desired assistance information k and desired assistance information m to the TSN AF, where the desired assistance information k is, for example, first desired assistance information, and both the desired assistance information k and the desired assistance information m indicate transmission of the first QoS flow.
  • the timing of transmission indicated by these two expected auxiliary information is different.
  • the expected time information such as Desired time information c and expected time information d, wherein the expected time information c is, for example, the first expected time information.
  • the TSN AF may determine whether to accept the expected time information c, where, if the TSN AF receives a plurality of expected time information corresponding to the second QoS flow, the TSN AF may determine whether to accept the expected time information i based on the plurality of expected time information, As long as it is determined that the expected time information i can be accepted based on any one of the expected time information, the TSN AF determines to accept the expected time information i. Among them, the TSN AF determines whether it can accept the expected time information g according to a certain expected time information corresponding to the second QoS flow.
  • the determination method may refer to the above (for example, if a certain expected time information corresponding to the second QoS flow indicates a transmission The timing is the same as the transmission timing indicated by the expected time information g, then the SMF can accept the expected time information g). If the TSN AF accepts the expected time information c, it may no longer need to process the expected time information d; or, if the TSN AF does not accept the expected time information c, the TSN AF may determine whether to accept the expected time information d in a similar manner.
  • the TSN AF may send a confirmation message to the first RAN to confirm that the TSN AF accepts the expected time information c or the expected time information d, and the negotiation process ends. If the TSN AF does not accept the expected time information c and the expected time information d, the TSN AF can send a denial message to the first RAN or send the expected time information recommended by the TSN AF for the first QoS flow to continue the negotiation process.
  • the recommended expected assistance information for the first QoS flow sent by the TSN AF may include one or more desired assistance information, and the first RAN may process the multiple desired assistance information separately.
  • the information exchange process between the first RAN and TSN AF also needs to be processed by intermediate network elements such as SMF and PCF, which will not be described too much in this example.
  • intermediate network elements such as SMF and PCF, which will not be described too much in this example.
  • SMF and PCF intermediate network elements
  • the negotiation process between the TSN AF and the two RANs is similar, and the negotiation process between the TSN AF and the second RAN will not be described again.
  • the expected time information of the first QoS flow finally negotiated between the TSN AF and the first RAN is called the third expected time information
  • the expected time information of the second QoS flow finally negotiated between the TSN AF and the second RAN is called The expected time information.
  • TSN AF sends fifth expected time information to CNC.
  • the CNC receives the fifth desired time information from the TSN AF.
  • the TSN AF may determine the fifth expected time information based on the third expected time information and the fourth expected time information.
  • CNC sends the first time information and the second time information to TSN AF.
  • TSN AF receives the first time information and the second time information from the CNC.
  • S812 For more information about S812, reference may be made to S511 in the embodiment shown in FIG. 5 .
  • TSN AF sends the second information to PCF.
  • the PCF receives the second information from the TSN AF.
  • the PCF sends the third PCC rule and the fourth PCC rule to the SMF.
  • the SMF receives the third PCC rule and the fourth PCC rule from the PCF.
  • the SMF sends the auxiliary information 3 to the first RAN.
  • the first RAN receives the auxiliary information 3 from the SMF.
  • the SMF sends the auxiliary information 4 to the second RAN, and accordingly, the second RAN receives the auxiliary information 4 from the SMF.
  • the first QoS flow and the second QoS flow corresponding to the same SMF it is also possible that the first QoS flow and the second QoS flow correspond to different SMFs, or in other words, the first PDU The session and the second PDU session are served by different SMFs. If this is the case, for example, the SMF corresponding to the first QoS flow is called the first SMF, and the SMF corresponding to the second QoS flow is called the second SMF, then in S803, the PCF sends the first PCC to the first SMF.
  • the first SMF determines auxiliary information 1, and the second SMF determines auxiliary information 2; in S805, the first SMF sends auxiliary information 1 to the first RAN, and the second SMF The SMF sends assistance information 2 to the second RAN; in S807, the first RAN sends the first desired assistance information to the first SMF, and the second RAN sends the second desired assistance information to the second SMF; in S808, the first SMF The first expected auxiliary information determines the first expected time information, and the second SMF determines the first expected time information based on the first expected auxiliary information; in S809, the first SMF sends the first expected time information to the TSN AF, and the second SMF sends the first expected time information to the TSN AF.
  • the AF sends the second expected time information; in S814, the PCF sends the third PCC rule to the first SMF and the fourth PCC rule to the second SMF (optional, the PCFs serving the two UEs can also be different, here (Not repeated); in S815, the first SMF determines the auxiliary information 3, and the second SMF determines the auxiliary information 4; in S816, the first SMF sends the auxiliary information 3 to the first RAN, and the second SMF sends the auxiliary information to the second RAN. Information 4.
  • the negotiation content related to the first QoS flow is processed by the first SMF
  • the negotiation content related to the second QoS flow is processed by the second SMF.
  • the correlation between the two QoS flows is considered when determining the auxiliary information 3 and 4. Therefore, the scheduling resources determined according to the two auxiliary information can meet the entry or exit of the two QoS flows to the RAN. The time of arrival at the UE's exit. Furthermore, the fifth scheduling resource determined according to the first auxiliary information has no conflict with other scheduling resources, and the sixth scheduling resource determined according to the second auxiliary information has no conflict with other scheduling resources, thereby ensuring the first QoS flow. and normal transmission of the second QoS flow. In the case where two RANs transmit two QoS flows, the embodiment of the present application can realize negotiation between the TSN AF and the RAN, thereby helping to determine the desired auxiliary information that both RANs can recognize.
  • TSN AF as a core network device, can have a certain degree of dominance or decision-making, and RAN can be more inclined to accept the expected auxiliary information suggested by TSN AF, so that It helps shorten the negotiation process and improve service transmission efficiency.
  • Figure 9 shows a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device 900 may be the first access network device or the circuit system of the first access network device described in any one of the embodiments shown in FIG. 5 to the embodiment shown in FIG. 8.
  • the method corresponds to the first access network device.
  • the communication device 900 may be the first core network device or the circuit system of the first core network device described in the embodiment shown in FIG. 5 to the embodiment shown in FIG. 8, used to implement the above method embodiments.
  • the method corresponds to the first core network device.
  • the communication device 900 may be the second core network device or the circuit system of the second core network device described in the embodiment shown in FIG. 5 to the embodiment shown in FIG. 8, used to implement the above method embodiments.
  • the method corresponds to the second core network device.
  • one circuit system is a chip system.
  • the communication device 900 includes at least one processor 901 .
  • the processor 901 can be used for internal processing of the device to implement certain control processing functions.
  • processor 901 includes instructions.
  • processor 901 can store data.
  • different processors may be independent devices, may be located in different physical locations, and may be located on different integrated circuits.
  • different processors may be integrated into one or more processors, for example, on one or more integrated circuits.
  • communication device 900 includes one or more memories 903 for storing instructions.
  • the memory 903 may also store data.
  • the processor and memory can be provided separately or integrated together.
  • the communication device 900 includes a communication line 902 and at least one communication interface 904.
  • the memory 903, the communication line 902, and the communication interface 904 are all optional, they are all represented by dotted lines in FIG. 9 .
  • the communication device 900 may also include a transceiver and/or an antenna.
  • the transceiver can be used to transmit to other devices settings to send or receive messages from other devices.
  • the transceiver may be called a transceiver, a transceiver circuit, an input/output interface, etc., and is used to implement the transceiver function of the communication device 900 through an antenna.
  • the transceiver includes a transmitter and a receiver.
  • the transmitter can be used to generate a radio frequency signal from a baseband signal
  • the receiver can be used to convert the radio frequency signal into a baseband signal.
  • the processor 901 may include a general central processing unit (CPU), a microprocessor, an application specific integrated circuit (ASIC), or one or more integrated circuits for controlling the execution of the program of the present application. circuit.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • Communication line 902 may include a path that carries information between the above-mentioned components.
  • Communication interface 904 uses any device such as a transceiver for communicating with other devices or communication networks, such as Ethernet, radio access network (RAN), wireless local area networks (WLAN), Cable access network, etc.
  • RAN radio access network
  • WLAN wireless local area networks
  • Cable access network etc.
  • the memory 903 may be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (random access memory (RAM)) or other type that can store information and instructions.
  • a dynamic storage device can also be an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disk storage, optical disc storage (including compressed optical discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be used by a computer Any other medium for access, but not limited to this.
  • the memory 903 may exist independently and be connected to the processor 901 through a communication line 902. Alternatively, the memory 903 can also be integrated with the processor 901.
  • the memory 903 is used to store computer execution instructions for executing the solution of the present application, and is controlled by the processor 901 for execution.
  • the processor 901 is configured to execute computer execution instructions stored in the memory 903, thereby implementing the communication method provided by the above embodiments of the present application.
  • the computer-executed instructions in the embodiments of the present application may also be called application codes, which are not specifically limited in the embodiments of the present application.
  • the processor 901 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 9 .
  • the communication device 900 may include multiple processors, such as the processor 901 and the processor 908 in FIG. 9 .
  • processors may be a single-CPU processor or a multi-CPU processor.
  • a processor here may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the chip When the device shown in Figure 9 is a chip, such as a chip of the first access network equipment, or a chip of the first core network equipment, or a chip of the second core network equipment, then the chip includes a processor 901 (you may also It includes a processor 908), a communication line 902, a memory 903 and a communication interface 904.
  • the communication interface 904 may be an input interface, a pin or a circuit, etc.
  • Memory 903 may be a register, cache, etc.
  • the processor 901 and the processor 908 may be a general CPU, a microprocessor, an ASIC, or one or more integrated circuits for controlling program execution of the communication method of any of the above embodiments.
  • Embodiments of the present application can divide the device into functional modules according to the above method examples.
  • each functional module can be divided into corresponding functional modules, or two or more functions can be integrated into one processing module.
  • the above integrated modules can be implemented in the form of hardware or software function modules. Need explanation It should be noted that the division of modules in the embodiments of this application is schematic and is only a logical function division. In actual implementation, there may be other division methods.
  • Figure 10 shows a schematic diagram of a device.
  • the device 1000 can be the first access network device, the first core network involved in the above method embodiments.
  • the device or the second core network device is either a chip in the first access network device or a chip in the first core network device or a chip in the second core network device.
  • the device 1000 includes a sending unit 1001, a processing unit 1002 and a receiving unit 1003.
  • the apparatus 1000 can be used to implement the steps performed by the first access network device, the first core network device, or the second core network device in the methods of the embodiments of the present application.
  • relevant features refer to the above embodiments. , which will not be described again here.
  • the functions/implementation processes of the sending unit 1001, the receiving unit 1003 and the processing unit 1002 in Figure 10 can be implemented by the processor 901 in Figure 9 calling computer execution instructions stored in the memory 903.
  • the function/implementation process of the processing unit 1002 in Figure 10 can be implemented by the processor 901 in Figure 9 calling the computer execution instructions stored in the memory 903.
  • the functions/implementation of the sending unit 1001 and the receiving unit 1003 in Figure 10 The process can be implemented through the communication interface 904 in Figure 9.
  • the functions/implementation processes of the sending unit 1001 and the receiving unit 1003 can also be implemented through pins or circuits.
  • This application also provides a computer-readable storage medium that stores a computer program or instructions.
  • the computer program or instructions When the computer program or instructions are run, the first access network device and the first access network device in the foregoing method embodiment are implemented.
  • the functions described in the above embodiments can be implemented in the form of software functional units and sold or used as independent products.
  • the technical solution of the present application essentially or contributes to the technical solution or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium and includes a number of instructions.
  • Storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program code.
  • the computer program product includes: computer program code.
  • the computer program code When the computer program code is run on a computer, it causes the computer to execute the first access network device, A method executed by the first core network device or the second core network device.
  • Embodiments of the present application also provide a processing device, including a processor and an interface; the processor is configured to execute the first access network equipment, the first core network equipment or the second core network involved in any of the above method embodiments. The method performed by the device.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available
  • the media may be a data storage device such as a server or data center that contains one or more available media integrations.
  • the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media (eg, solid state disk (SSD)), etc.
  • the various illustrative logic units and circuits described in the embodiments of the present application can be programmed by general-purpose processors, digital signal processors (digital signal processors, DSPs), application specific integrated circuits (ASICs), and field programmable A field-programmable gate array (FPGA), or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to implement or operate the functions described.
  • the general-purpose processor may be a microprocessor.
  • the general-purpose processor may also be any conventional processor, controller, microcontroller or state machine.
  • a processor may also be implemented as a combination of computing devices, such as a digital signal processor and a microprocessor, a plurality of microprocessors, one or more microprocessors combined with a digital signal processor core, or any other similar configuration. accomplish.
  • the steps of the method or algorithm described in the embodiments of this application can be directly embedded in hardware, a software unit executed by a processor, or a combination of the two.
  • the software unit can be stored in RAM, flash memory, ROM, erasable programmable read-only memory (EPROM), EEPROM, register, hard disk, removable disk, CD-ROM or any other form in the field in the storage medium.
  • the storage medium can be connected to the processor, so that the processor can read information from the storage medium and can store and write information to the storage medium.
  • the storage medium can also be integrated into the processor.
  • the processor and the storage medium can be installed in the ASIC, and the ASIC can be installed in the terminal device.
  • the processor and the storage medium may also be provided in different components in the terminal device.
  • These computer program instructions may also be loaded onto a computer or other programmable data processing device, causing a series of operating steps to be performed on the computer or other programmable device to produce computer-implemented processing, thereby executing on the computer or other programmable device.
  • Instructions provide steps for implementing the functions specified in a process or processes of a flowchart diagram and/or a block or blocks of a block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及一种通信方法及装置。第一接入网设备根据第一QoS流和第二QoS流的匹配信息确定第一期望辅助信息和第二期望辅助信息,第一期望辅助信息用于指示期望的第一QoS流的传输时机,第二期望辅助信息用于指示期望的第二QoS流的传输时机。第一接入网设备向第一核心网设备发送第一期望辅助信息和第二期望辅助信息,第一期望辅助信息和第二期望辅助信息用于重新确定第一QoS流和第二QoS流的传输时机。本申请实施例可以协调相关联的QoS流的资源,尽量避免出现为一个QoS流调度的资源和为另一个QoS流调度的资源不匹配的情况,减小QoS流的传输时延。

Description

一种通信方法及装置
相关申请的交叉引用
本申请要求在2022年03月18日提交中国国家知识产权局、申请号为202210271709.X、申请名称为“一种通信方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
目前,无线接入网(radio access network,RAN)可以从核心网获得业务流到达RAN的入口的时间,从而RAN能够根据业务流到达RAN的时间为传输该业务流的服务质量(quality of service,QoS)流(flow)调度资源。
对于两个用户设备(user equipment,UE)通信的场景,例如UE1与UE2通信,则可能涉及双向的业务流,例如UE1会向UE2发送业务流,UE2也会向UE1发送业务流。而RAN究竟如何为传输此类双向的业务流的双向QoS流调度资源,是需要解决的问题。
发明内容
本申请实施例提供一种通信方法及装置,用于为相匹配的QoS流调度合理的资源。
第一方面,提供第一种通信方法,该方法可由第一接入网设备执行,或由包括第一接入网设备功能的其他设备执行,或由芯片系统或其他功能模块执行,该芯片系统或功能模块能够实现第一接入网设备的功能,该芯片系统或功能模块例如设置在第一接入网设备中。可选的,第一接入网设备例如为基站。该方法包括:根据第一QoS流和第二QoS流的匹配信息,确定第一期望辅助信息和第二期望辅助信息,所述第一期望辅助信息用于指示期望的所述第一QoS流的传输时机,所述第二期望辅助信息用于指示期望的所述第二QoS流的传输时机,其中,所述匹配信息用于指示所述第一QoS流与所述第二QoS流相匹配,或指示所述第一QoS流和所述第二QoS流用于传输同一业务流;向第一核心网设备发送所述第一期望辅助信息和所述第二期望辅助信息,所述第一期望辅助信息和所述第二期望辅助信息用于重新确定所述第一QoS流和所述第二QoS流的传输时机。
本申请实施例中,第一QoS流和第二QoS流所传输的业务流例如属于同一业务流,因此认为第一QoS流和第二QoS流相匹配。例如,第一QoS流和第二QoS流是两个终端设备之间通信所传输的两条QoS流。这两个终端设备之间的通信例如会通过第一接入网设备转发,则这两个QoS流到达第一接入网设备或到达终端设备的时间就是有关联的。在其中一个QoS流到达第一接入网设备的时间相对确定的情况下,第一接入网设备如果为其中另一个QoS流任意调度资源,可能导致所调度的资源在时域上与该另一个QoS流到达终端设备的时间不相同。因此本申请实施例中,第一接入网设备可以在考虑两个QoS流相匹配的情况下确定第一期望辅助信息和第二期望辅助信息,则第一期望辅助信息所指示的第 一QoS流的传输时机与第二期望辅助信息所指示的第二QoS流的传输时机就可以相关联,核心网设备可以据此确定第一QoS流的传输时机以及第二QoS流的传输时机,那么最终所确定的第一QoS流的传输时机以及第二QoS流的传输时机也会相关联,第一接入网设备如果据此为第一QoS流和第二QoS流调度资源,则所调度的资源就能够较为符合这两个QoS流到达第一接入网设备或终端设备的时间,使得这两个QoS流能够得到合理传输。通过本申请实施例提供的方法,可以协调相关联的QoS流的资源,尽量避免出现为一个QoS流调度的资源和为另一个QoS流调度的资源不匹配的情况,减小QoS流的传输时延。
在一种可选的实施方式中,确定第一期望辅助信息包括:在根据所述第一QoS流的预计传输时机确定的第一调度资源与其他调度资源冲突的情况下,根据第二调度资源的时域位置,确定所述第一期望辅助信息,其中,所述第二调度资源与所述其他调度资源无冲突。例如,第一接入网设备根据来自第一核心网设备的辅助信息可确定第一QoS的预计传输时机,根据第一QoS流的预计传输时机可确定第一调度资源。如果第一调度资源与其他调度资源冲突,则需要重新确定第一QoS流的传输时机,否则可能导致第一QoS流的传输与其他QoS流的传输产生冲突。在这种情况下,第一接入网设备可以确定与其他调度资源无冲突的第二调度资源,从而根据第二调度资源的时域位置可以确定第一期望辅助信息。通过这种方式所确定的期望辅助信息,可以减小资源冲突,也减小QoS流的传输时延。
在一种可选的实施方式中,所述根据第一QoS流和第二QoS流的匹配信息,确定第一期望辅助信息和第二期望辅助信息,包括:如果所述第一期望辅助信息指示的所述第一QoS流的传输时机相对于所述第一QoS流的预计传输时机具有第一偏移,则所述第二期望辅助信息指示的所述第二QoS流的传输时机相对于所述第二QoS流的预计传输时机具有所述第一偏移。第一QoS流和第二QoS流是两个终端设备之间通信的业务流,因此这两个业务流的传输时机是有关联的。例如第一QoS流传输的第一业务流为上行业务流,第二QoS流传输的业务流为下行业务流,那么,如果第一QoS流到达终端设备的时间发生了第一偏移,则第二QoS流到达接入网设备(例如第一接入网设备)的时间也应该发生第一偏移,否则可能导致所确定的传输时机与QoS流的实际传输时机不一致。
在一种可选的实施方式中,所述方法还包括:从所述第一核心网设备接收所述匹配信息。第一QoS流和第二QoS流之间的匹配信息例如来自第一核心网设备,第一核心网设备例如为SMF。
在一种可选的实施方式中,所述匹配信息包括第一PDU会话对应的接入网隧道信息和所述第一QoS流的标识,以及包括第二PDU会话对应的接入网隧道信息和所述第二QoS流的标识;或所述匹配信息包括第一PDU会话对应的核心网隧道信息和所述第一QoS流的标识,以及包括第二PDU会话对应的核心网隧道信息和所述第二QoS流的标识;或,所述匹配信息包括第一PDU会话的标识和所述第一QoS流的标识,以及包括第二PDU会话的标识和所述第二QoS流的标识。其中,所述第一PDU会话为所述第一QoS流所在的会话,所述第二PDU会话为所述第二QoS流所在的会话。如上是对匹配信息的一些举例,除此之外,匹配信息还可能包括其他内容,只要能表明第一QoS流与第二QoS流相匹配(或者说,相关联)即可。
在一种可选的实施方式中,在所述向第一核心网设备发送所述第一期望辅助信息和所述第二期望辅助信息之后,所述方法还包括:从所述第一核心网设备接收第一辅助信息和第二辅助信息,所述第一辅助信息用于指示所述第一QoS流的传输时机,所述第二辅助信 息用于指示所述第二QoS流的传输时机,其中,根据所述第一辅助信息所确定的调度资源与其他的调度资源无冲突,以及根据所述第二辅助信息所确定的调度与其他调度资源无冲突。第一接入网设备向核心网发送第一期望辅助信息和第二期望辅助信息后,核心网可以重新确定第一QoS流和第二QoS流的传输时机,并将重新确定的传输时机指示给第一接入网设备。第一接入网设备可根据第一辅助信息确定第一QoS流的调度资源,以及根据第二辅助信息确定第二QoS流的调度资源,第一辅助信息和第二辅助信息例如是根据第一期望辅助信息和第二期望辅助信息确定的,因此第一接入网设备所确定的调度资源与其他的调度资源之间不再存在冲突,以确保第一QoS流和第二QoS流的正常传输。
在一种可选的实施方式中,所述第一期望辅助信息包括期望的所述第一QoS流的突发到达时间,或;所述第一期望辅助信息包括期望的所述第一QoS流的突发到达时间所属的范围信息;或;所述第一期望辅助信息包括期望的所述第一QoS流的突发到达时间偏移;或;所述第一期望辅助信息包括期望的所述第一QoS流的突发到达时间偏移所属的范围信息。其中,期望的所述第一QoS流的突发到达时间偏移为,期望的所述第一QoS流的突发到达时间与所述第一QoS流的预计突发到达时间之间的偏移。第二期望辅助信息、第一辅助信息、第二辅助信息等,所包括的内容也与第一期望辅助信息是类似的,不多赘述。
可选的,第一方面所介绍的方法可参考后文即将介绍的图5所示的实施例。
第二方面,提供第二种通信方法,该方法可由第一核心网设备执行,或由包括第一核心网设备功能的其他设备执行,或由芯片系统或其他功能模块执行,该芯片系统或功能模块能够实现第一核心网设备的功能,该芯片系统或功能模块例如设置在第一核心网设备中。可选的,第一核心网设备例如为SMF等。该方法包括:接收第一期望辅助信息和第二期望辅助信息,所述第一期望辅助信息用于指示期望的第一QoS流的传输时机,所述第二期望辅助信息用于指示期望的第二QoS流的传输时机,所述第一QoS流与所述第二QoS流用于传输同一业务流;根据第三期望辅助信息和第四期望辅助信息确定第一期望时间信息和第二期望时间信息,所述第一期望时间信息用于指示期望的第一业务流的传输时机,所述第二期望时间信息用于指示期望的第二业务流的传输时机,所述第三期望辅助信息与所述第一期望辅助信息和所述第二期望辅助信息中的至少一项相关联,所述第四期望辅助信息与所述第一期望辅助信息和所述第二期望辅助信息中的至少一项相关联,所述第一业务流通过所述第一QoS流传输,所述第二业务流通过所述第二QoS流传输;向第二核心网设备发送所述第一期望时间信息和所述第二期望时间信息,以重新确定所述第一业务流和所述第二业务流的传输时机。
在一种可选的实施方式中,所述第三期望辅助信息为所述第一期望辅助信息,所述第四期望辅助信息为所述第二期望辅助信息。
在一种可选的实施方式中,所述方法还包括:向第一接入网设备发送匹配信息,其中,所述第一接入网设备用于传输所述第一QoS流和所述第二QoS流,所述匹配信息用于指示所述第一QoS流与所述第二QoS流相匹配,或指示所述第一QoS流和所述第二QoS流用于传输同一业务流。如果第一接入网设备用于传输第一QoS流和所述第二QoS流,则第一核心网设备可向第一接入网设备发送匹配信息,使得第一接入网设备明确第一QoS流与第二QoS流相匹配。这样如果第一接入网设备需要为两个QoS流重新确定传输时机(期望辅助信息),则可以根据两个QoS流相匹配的情况综合确定两个QoS流的期望辅助信息,使得所确定的两个QoS流的传输时机能够符合实际QoS流的传输情况。
在一种可选的实施方式中,如果所述第一期望辅助信息指示的时间与所述第二期望辅助信息指示的时间不匹配,根据所述第一期望辅助信息和所述第二期望辅助信息,确定所述第三期望辅助信息和所述第四期望辅助信息,其中,所述第三期望辅助信息和所述第四期望辅助信息所指示的传输时机相对于相应QoS流的预计传输时机具有相同的偏移。例如,如果第一期望辅助信息指示的时间和第二期望辅助信息指示的时间相对于各自的预计传输时机具有不同的偏移,则认为二者不匹配。如果是这种情况,第一核心网设备可以重新确定第一QoS流和第二QoS流的期望传输时机,即,第一核心网设备可确定第三期望辅助信息和第四期望辅助信息,第三期望辅助信息指示的时间和第四期望辅助信息指示的时间是相匹配的,以符合实际QoS流的传输情况。
在一种可选的实施方式中,所述方法还包括:向第一接入网设备发送所述第三期望辅助信息,以及向第二接入网设备发送所述第四期望辅助信息,所述第三期望辅助信息用于指示期望的所述第一QoS流的传输时机,所述第四期望辅助信息用于指示期望的所述第二QoS流的传输时机;从所述第一接入网设备接收第一确认信息,以及从所述第二接入网设备接收第二确认信息,所述第一确认信息用于指示接受所述第三期望辅助信息,所述第二确认信息用于指示接受所述第四期望辅助信息。如果第一核心网设备确定了第三期望辅助信息和第四期望辅助信息,则第一核心网设备可以与相应的接入网设备协商,以确定接入网设备是否能够接收第三期望辅助信息和第四期望辅助信息。由第一核心网设备与接入网设备协商,第一核心网设备可以占据主导地位,接入网设备更倾向于接受第一核心网设备的建议,因此能够减少协商步骤,提高协商效率。
在一种可选的实施方式中,所述方法还包括:向所述第一接入网设备发送所述第二QoS流的信息,以及向所述第二接入网设备发送所述第一QoS流的信息。如果两个QoS流通过两个接入网设备传输,则第一核心网设备可以分别与两个接入网设备协商确定相应QoS流的期望辅助信息,或者,也可以由两个接入网设备协商确定两个QoS流的期望辅助信息。如果由两个接入网设备协商,那么第一核心网设备可以将相应QoS流的信息发送给不用于传输该QoS流的接入网设备,使得该接入网设备明确该QoS流与该接入网设备所传输的QoS流是相匹配的,从而两个接入网设备之间可以基于两个QoS流相匹配的关系来协商两个QoS流的期望辅助信息。
在一种可选的实施方式中,所述方法还包括:确定所述第一QoS流和所述第二QoS流的匹配信息,所述匹配信息用于指示所述第一QoS流与所述第二QoS流相匹配,或指示所述第一QoS流和所述第二QoS流用于传输同一业务流。第一核心网设备可以确定第一QoS流与第二QoS流相匹配,从而能够根据该匹配信息综合确定两个QoS流的期望辅助信息。
在一种可选的实施方式中,所述方法还包括:从第二核心网设备接收关联信息,所述关联信息用于指示第一终端设备与第二终端设备相关联,所述匹配信息是根据所述关联信息确定的,所述第一终端设备对应于所述第一业务流,所述第二终端设备对应于所述第二业务流。例如,第一核心网设备可以根据来自第二核心网设备的关联关系确定匹配信息,或者,第一核心网设备也可以通过其他方式确定该匹配信息。
在一种可选的实施方式中,所述关联信息包括所述第一终端设备的标识和所述第二终端设备的标识之间的关联关系信息;或,所述关联信息包括第一终端设备的地址信息和第二终端设备的地址信息;或,所述关联信息包括所述第一业务流和所述第二业务流之间的 关联关系信息。
在一种可选的实施方式中,所述匹配信息包括第一PDU会话对应的接入网隧道信息和所述第一QoS流的标识,以及包括第二PDU会话对应的接入网隧道信息和所述第二QoS流的标识;或,所述匹配信息包括第一PDU会话对应的核心网隧道信息和所述第一QoS流的标识,以及包括第二PDU会话对应的核心网隧道信息和所述第二QoS流的标识;或,所述匹配信息包括第一PDU会话的标识和所述第一QoS流的标识,以及包括第二PDU会话的标识和所述第二QoS流的标识。其中,所述第一PDU会话为所述第一QoS流所在的会话,所述第二PDU会话为所述第二QoS流所在的会话。
在一种可选的实施方式中,所述第一期望辅助信息包括期望的所述第一QoS流的突发到达时间,或;所述第一期望辅助信息包括期望的所述第一QoS流的突发到达时间所属的范围信息;或;所述第一期望辅助信息包括期望的所述第一QoS流的突发到达时间偏移;或;所述第一期望辅助信息包括期望的所述第一QoS流的突发到达时间偏移所属的范围信息。其中,期望的所述第一QoS流的突发到达时间偏移为,期望的所述第一QoS流的突发到达时间与所述第一QoS流的预计突发到达时间之间的偏移。
关于第二方面或各种实施方式的技术效果,可参考对于第一方面或相应的实施方式的技术效果的介绍。
可选的,第二方面所介绍的方法可参考后文即将介绍的图5所示的实施例至图8所示的实施例中的任一个实施例。
第三方面,提供第三种通信方法,该方法可由第二核心网设备执行,或由包括第二核心网设备功能的其他设备执行,或由芯片系统或其他功能模块执行,该芯片系统或功能模块能够实现第二核心网设备的功能,该芯片系统或功能模块例如设置在第二核心网设备中。可选的,第二核心网设备例如为TSN AF或TSCTSF等。该方法包括:从第一核心网设备接收第一期望时间信息和第二期望时间信息,所述第一期望时间信息用于指示期望的第一业务流的传输时机,所述第二期望时间信息用于指示期望的第二业务流的传输时机,所述第一业务流和所述第二业务流属于同一条业务流;根据所述第一期望时间信息和所述第二期望时间信息,确定第三期望时间信息和第四期望时间信息,所述第三期望时间信息用于指示所述第一业务流的突发到达时间,所述第四期望时间信息用于指示所述第二业务流的突发到达时间;向所述第一核心网设备发送所述第三期望时间信息和所述第四期望时间信息。
在一种可选的实施方式中,所述方法还包括:向所述第一核心网设备发送关联信息,所述关联信息用于指示第一终端设备与第二终端设备相关联,所述第一终端设备对应于所述第一业务流,所述第二终端设备对应于所述第二业务流。
在一种可选的实施方式中,所述关联信息包括所述第一终端设备的标识和所述第二终端设备的标识之间的关联关系信息;或,所述关联信息包括第一终端设备的地址信息和第二终端设备的地址信息;或,所述关联信息包括所述第一业务流和所述第二业务流之间的关联关系信息。
在一种可选的实施方式中,根据所述第一期望时间信息和所述第二期望时间信息,确定第三期望时间信息和第四期望时间信息,包括:如果所述第一期望时间信息指示的时间与所述第二期望时间信息指示的时间不匹配,根据所述第一期望时间信息和所述第二期望时间信息,确定所述第三期望时间信息和所述第四期望时间信息,其中,所述第三期望时 间信息和所述第四期望时间信息所指示的传输时机相对于相应QoS流的预计传输时机具有相同的偏移。例如,如果第一期望时间信息指示的时间和第二期望时间信息指示的时间相对于各自的预计传输时机具有不同的偏移,则认为二者不匹配。如果是这种情况,第二核心网设备可以重新确定第一QoS流和第二QoS流的期望传输时机,即,第二核心网设备可确定第三期望时间信息和第四期望时间信息,第三期望时间信息指示的时间和第四期望时间信息指示的时间是相匹配的,以符合实际QoS流的传输情况。
在一种可选的实施方式中,所述方法还包括:向第一接入网设备发送所述第三期望时间信息,以及向第二接入网设备发送所述第四期望时间信息,所述第三期望时间信息用于指示期望的所述第一QoS流的传输时机,所述第四期望时间信息用于指示期望的所述第二QoS流的传输时机;从所述第一接入网设备接收第三确认信息,以及从所述第二接入网设备接收第四确认信息,所述第三确认信息用于指示接受所述第三期望时间信息,所述第四确认信息用于指示接受所述第四期望时间信息。如果第一核心网设备确定了第三期望时间信息和第四期望时间信息,则第二核心网设备可以与相应的接入网设备协商,以确定接入网设备是否能够接收第三期望时间信息和第四期望时间信息。由第二核心网设备与接入网设备协商,第二核心网设备可以占据主导地位,接入网设备更倾向于接受第二核心网设备的建议,因此能够减少协商步骤,提高协商效率。
关于第三方面或各种实施方式的技术效果,可参考对于第一方面或相应的实施方式的技术效果的介绍,和/或参考对于第二方面或相应的实施方式的技术效果的介绍。
可选的,第三方面所介绍的方法可参考后文即将介绍的图5所示的实施例至图8所示的实施例中的任一个实施例。
第四方面,提供第四种通信方法,该方法可由第一接入网设备执行,或由包括第一接入网设备功能的其他设备执行,或由芯片系统或其他功能模块执行,该芯片系统或功能模块能够实现第一接入网设备的功能,该芯片系统或功能模块例如设置在第一接入网设备中。可选的,第一接入网设备例如为基站。该方法包括:向第二接入网设备发送期望辅助信息,所述期望辅助信息包括用于指示期望的第一QoS流的传输时机的期望辅助信息,或包括用于指示期望的第一QoS流的传输时机的期望辅助信息和用于指示期望的第二QoS流的传输时机的期望辅助信息,其中,所述第一QoS流与所述第二QoS流相匹配,或所述第一QoS流和所述第二QoS流用于传输同一业务流,所述第一QoS流通过所述第一接入网设备传输,所述第二QoS流通过所述第二接入网设备传输;从所述第二接入网设备接收确认信息,所述确认信息用于指示接受所述期望辅助信息;向第一核心网设备发送所述期望辅助信息。
在一种可选的实施方式中,所述方法还包括:从所述第一核心网设备接收用于指示第一QoS流的传输时机的辅助信息以及所述第二QoS流的信息;根据所述辅助信息以及所述第二QoS流的信息,确定所述期望辅助信息。
在一种可选的实施方式中,根据所述第二QoS流的信息,确定所述第一QoS流与所述第二QoS流相匹配,或确定所述第一QoS流和所述第二QoS流用于传输同一业务流。
在一种可选的实施方式中,根据所述辅助信息以及所述第二QoS流的信息,确定所述期望辅助信息,包括:在根据所述辅助信息确定的调度资源与其他调度资源冲突的情况下,根据与所述调度资源无冲突的调度资源的时域位置,确定所述用于指示期望的第一QoS流的传输时机的期望辅助信息,以及,根据所述第二QoS流的信息和所述用于指示期望的第 一QoS流的传输时机的期望辅助信息,确定所述用于指示期望的第二QoS流的传输时机的期望辅助信息;其中,所述用于指示期望的第一QoS流的传输时机的期望辅助信息和所述用于指示期望的第二QoS流的传输时机的期望辅助信息,二者所指示的传输时机相对于相应QoS流的预计传输时机具有相同的偏移。
可选的,第四方面所介绍的方法可参考后文即将介绍的图6所示的实施例。
关于第四方面或各种实施方式的技术效果,可参考如下一项或多项:对于第一方面或相应的实施方式的技术效果的介绍,或,对于第二方面或相应的实施方式的技术效果的介绍,或,对于第三方面或相应的实施方式的技术效果的介绍。
第五方面,提供一种通信装置。所述通信装置可以为上述第一方面至第四方面的任一方面所述的第一接入网设备。所述通信装置具备上述第一接入网设备的功能。所述通信装置例如为第一接入网设备,或为包括第一接入网设备的较大设备,或为第一接入网设备中的功能模块,例如基带装置或芯片系统等。一种可选的实现方式中,所述通信装置包括基带装置和射频装置。另一种可选的实现方式中,所述通信装置包括处理单元(有时也称为处理模块)和收发单元(有时也称为收发模块)。收发单元能够实现发送功能和接收功能,在收发单元实现发送功能时,可称为发送单元(有时也称为发送模块),在收发单元实现接收功能时,可称为接收单元(有时也称为接收模块)。发送单元和接收单元可以是同一个功能模块,该功能模块称为收发单元,该功能模块能实现发送功能和接收功能;或者,发送单元和接收单元可以是不同的功能模块,收发单元是对这些功能模块的统称。
例如,所述处理单元,用于根据第一QoS流和第二QoS流的匹配信息,确定第一期望辅助信息和第二期望辅助信息,所述第一期望辅助信息用于指示期望的所述第一QoS流的传输时机,所述第二期望辅助信息用于指示期望的所述第二QoS流的传输时机,其中,所述匹配信息用于指示所述第一QoS流与所述第二QoS流相匹配,或指示所述第一QoS流和所述第二QoS流用于传输同一业务流;所述收发单元(或,所述发送单元),用于向第一核心网设备发送所述第一期望辅助信息和所述第二期望辅助信息,所述第一期望辅助信息和所述第二期望辅助信息用于重新确定所述第一QoS流和所述第二QoS流的传输时机。
又例如,所述收发单元(或,所述发送单元),用于向第二接入网设备发送期望辅助信息,所述期望辅助信息包括用于指示期望的第一QoS流的传输时机的期望辅助信息,或包括用于指示期望的第一QoS流的传输时机的期望辅助信息和用于指示期望的第二QoS流的传输时机的期望辅助信息,其中,所述第一QoS流与所述第二QoS流相匹配,或所述第一QoS流和所述第二QoS流用于传输同一业务流,所述第一QoS流通过所述第一接入网设备传输,所述第二QoS流通过所述第二接入网设备传输;所述收发单元(或,所述接收单元),还用于从所述第二接入网设备接收确认信息,所述确认信息用于指示接受所述期望辅助信息;所述收发单元(或,所述发送单元),还用于向第一核心网设备发送所述期望辅助信息。
在一种可选的实施方式中,所述通信装置还包括存储单元(有时也称为存储模块),所述处理单元用于与所述存储单元耦合,并执行所述存储单元中的程序或指令,使能所述通信装置执行上述第一方面至第四方面中的任一方面所述的第一接入网设备的功能。
第六方面,提供一种通信装置。所述通信装置可以为上述第一方面至第四方面中的任一方面所述的第一核心网设备。所述通信装置具备上述第一核心网设备的功能。所述通信 装置例如为第一核心网设备,或为包括第一核心网设备的较大设备,或为第一核心网设备中的功能模块,例如基带装置或芯片系统等。一种可选的实现方式中,所述通信装置包括基带装置和射频装置。另一种可选的实现方式中,所述通信装置包括处理单元(有时也称为处理模块)和收发单元(有时也称为收发模块)。关于收发单元的实现方式可参考第五方面的介绍。
例如,所述收发单元(或,所述接收单元),用于接收第一期望辅助信息和第二期望辅助信息,所述第一期望辅助信息用于指示期望的第一QoS流的传输时机,所述第二期望辅助信息用于指示期望的第二QoS流的传输时机,所述第一QoS流与所述第二QoS流用于传输同一业务流;所述处理单元,用于根据第三期望辅助信息和第四期望辅助信息确定第一期望时间信息和第二期望时间信息,所述第一期望时间信息用于指示期望的第一业务流的传输时机,所述第二期望时间信息用于指示期望的第二业务流的传输时机,所述第三期望辅助信息与所述第一期望辅助信息和所述第二期望辅助信息中的至少一项相关联,所述第四期望辅助信息与所述第一期望辅助信息和所述第二期望辅助信息中的至少一项相关联,所述第一业务流通过所述第一QoS流传输,所述第二业务流通过所述第二QoS流传输;所述收发单元(或,所述发送单元),还用于向第二核心网设备发送所述第一期望时间信息和所述第二期望时间信息,以重新确定所述第一业务流和所述第二业务流的传输时机。
在一种可选的实现方式中,所述通信装置还包括存储单元(有时也称为存储模块),所述处理单元用于与所述存储单元耦合,并执行所述存储单元中的程序或指令,使能所述通信装置执行上述第一方面至第四方面中的任一方面所述的第一核心网设备的功能。
第七方面,提供一种通信装置。所述通信装置可以为上述第一方面至第四方面中的任一方面所述的第二核心网设备。所述通信装置具备上述第二核心网设备的功能。所述通信装置例如为第二核心网设备,或为包括第二核心网设备的较大设备,或为第二核心网设备中的功能模块,例如基带装置或芯片系统等。一种可选的实现方式中,所述通信装置包括基带装置和射频装置。另一种可选的实现方式中,所述通信装置包括处理单元(有时也称为处理模块)和收发单元(有时也称为收发模块)。关于收发单元的实现方式可参考第五方面的介绍。
例如,所述收发单元(或,所述接收单元),用于从第一核心网设备接收第一期望时间信息和第二期望时间信息,所述第一期望时间信息用于指示期望的第一业务流的传输时机,所述第二期望时间信息用于指示期望的第二业务流的传输时机,所述第一业务流和所述第二业务流属于同一条业务流;所述处理单元,用于根据所述第一期望时间信息和所述第二期望时间信息,确定第三期望时间信息和第四期望时间信息,所述第三期望时间信息用于指示所述第一业务流的突发到达时间,所述第四期望时间信息用于指示所述第二业务流的突发到达时间;所述收发单元(或,所述发送单元),还用于向所述第一核心网设备发送所述第三期望时间信息和所述第四期望时间信息。
在一种可选的实现方式中,所述通信装置还包括存储单元(有时也称为存储模块),所述处理单元用于与所述存储单元耦合,并执行所述存储单元中的程序或指令,使能所述通信装置执行上述第一方面至第四方面中的任一方面所述的第二核心网设备的功能。
第八方面,提供一种通信系统,包括第五方面所述的通信装置、第六方面所述的通信装置以及第七方面所述的通信装置。
第九方面,提供一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序或指令,当其被运行时,使得上述各方面中第一接入网设备、第一核心网设备或第二核心网设备所执行的方法被实现。
第十方面,提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得上述各方面所述的方法被实现。
第十一方面,提供一种芯片系统,包括处理器和接口,所述处理器用于从所述接口调用并运行指令,以使所述芯片系统实现上述各方面的方法。
附图说明
图1为5G网络的一种架构图;
图2为5G网络与TSN互通的一种架构图;
图3为能够支持TSC业务的5G网络的一种架构图;
图4A为下行突发到达时间的一种示意图;
图4B为上行突发到达时间的一种示意图;
图4C为单RAN场景下两个UE通信的示意图;
图4D为多RAN场景下两个UE通信的示意图;
图4E为RAN调度的资源的周期与QoS流的周期之间的关系的一种示意图;
图5~图8为本申请实施例提供的几种通信方法的流程图;
图9为本申请实施例提供的一种装置的示意图;
图10为本申请实施例提供的又一种装置的示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
以下,对本申请实施例中的部分用语或概念进行解释说明,以便于本领域技术人员理解。
本申请实施例中,对于名词的数目,除非特别说明,表示“单数名词或复数名词”,即"一个或多个”。“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。例如,A/B,表示:A或B。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),表示:a,b,c,a和b,a和c,b和c,或a和b和c,其中a,b,c可以是单个,也可以是多个。
本申请实施例提及“第一”、“第二”等序数词是用于对多个对象进行区分,不用于限定多个对象的大小、内容、顺序、时序、优先级或者重要程度等。例如,第一请求信息和第二请求信息,可以是同一个信息,也可以是不同的信息。且,这种名称也并不是表示这两个信息的内容、大小、发送端和/或接收端、发送时间、优先级或者重要程度等的不同。另外,本申请所介绍的各个实施例中对于步骤的编号,只是为了区分不同的步骤,并不用于 限定步骤之间的先后顺序。例如,S301可以发生在S302之前,或者可能发生在S302之后,或者也可能与S302同时发生。
本申请实施例中,网络设备可包括接入网设备或核心网设备。用于实现网络设备功能的通信装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。另外,用于实现终端设备功能的通信装置可以是终端设备,也可以是能够支持终端设备实现该功能的装置,例如芯片系统,该装置可以被安装在终端设备中。在本申请实施例提供的技术方案中,以用于实现终端设备的功能的装置是终端设备为例,描述本申请实施例提供的技术方案。
本申请实施例涉及两种场景,一种是移动通信系统与时延敏感网络(time sensitive network,TSN)互通的场景,另一种是移动通信系统支持时延敏感通信(time sensitive communication,TSC)业务的场景。下面以移动通信系统是第五代移动通信系统(the 5th generation,5G)通信系统为例,分别介绍5G通信系统和TSN网络。
图1示出了5G通信系统的架构,该通信系统的架构可以包括:(无线)接入网络(图1中的(R)AN))、终端设备和核心网。示例性的,该通信系统的架构中,(无线)接入网络中可以包括接入网设备。
本申请实施例中,终端设备是一种具有无线收发功能的设备,可以是固定设备,移动设备、手持设备(例如手机)、穿戴设备、车载设备,或内置于上述设备中的无线装置(例如,通信模块,调制解调器,或芯片系统等)。所述终端设备用于连接人,物,机器等,可广泛用于各种场景,例如包括但不限于以下场景:蜂窝通信、设备到设备通信(device-to-device,D2D)、车到一切(vehicle to everything,V2X)、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)、物联网(internet of things,IoT)、虚拟现实(virtual reality,VR)、增强现实(augmented reality,AR)、工业控制(industrial control)、无人驾驶(self driving)、远程医疗(remote medical)、智能电网(smart grid)、智能家具、智能办公、智能穿戴、智能交通,智慧城市(smart city)、无人机、机器人等场景的终端设备。所述终端设备有时可称为用户设备(user equipment,UE)、终端、接入站、UE站、远方站、无线通信设备、或用户装置等等。为描述方便,本申请实施例中将终端设备以UE为例进行说明。
接入网设备为具有无线收发功能的设备,用于与终端设备进行通信。所述接入网设备包括但不限于基站(基站收发信站点(base transceiver station,BTS),Node B,eNodeB/eNB,或gNodeB/gNB)、收发点(transmission reception point,TRP),第三代合作伙伴计划(3rd generation partnership project,3GPP)后续演进的基站,无线保真(wireless fidelity,Wi-Fi)系统中的接入节点,无线中继节点,无线回传节点等。所述基站可以是:宏基站,微基站,微微基站,小站,中继站等。多个基站可以支持同一种接入技术的网络,也可以支持不同接入技术的网络。基站可以包含一个或多个共站或非共站的传输接收点。所述接入网设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU),和/或分布单元(distributed unit,DU)。例如,车到一切(vehicle to everything,V2X)技术中的接入网设备可以为路侧单元(road side unit,RSU)。以下对接入网设备以为基站为例进行说明。基站可以与终端设备进行通信,也可以通过中继站与终端设备进行通信。终端设备可以与不同接入技术中的多个基站进行通信。
核心网中的设备包括但不限于用于实现移动管理,数据处理,会话管理,策略和计费等功能的设备。以5G系统为例,所述核心网设备可以包括网络开放功能(network exposure function,NEF)网元、策略控制功能(policy control function,PCF)网元、统一数据管理(unified data management,UDM)、应用功能(application function,AF)网元、接入与移动性管理功能(access and mobility management function,AMF)网元、会话管理功能(session management function,SMF)网元、用户面功能(user plane function,UPF)网元等。
会话管理功能网元,可用于负责终端设备的会话管理(包括会话的建立、修改或释放,维护用户面功能网元和接入网设备之间的隧道),用户面功能网元的选择或重选、UE的互联网协议(internet protocol,IP)地址分配(包括可选的授权)、在用户面功能网元中配置流量路由、服务质量(quality of service,QoS)控制等中的至少一项。会话管理功能网元是非接入层(non-access stratum,NAS)消息的会话管理部分终结点。例如,在5G通信系统中,会话管理功能网元可以是SMF网元,如图1所示;在未来通信系统,如6G通信系统中,会话管理功能网元仍可以是SMF网元,或可能有其它的名称,本申请实施例不做限定。当会话管理功能网元是SMF网元时,SMF网元可以提供Nsmf服务。
策略控制功能网元,主要支持提供统一的策略框架来控制网络行为,提供策略规则给控制层网络功能,同时负责获取与策略决策相关的用户签约信息。例如,在5G通信系统中,策略控制功能网元可以是PCF网元,例如图1所示;在未来通信,如6G通信系统中,策略控制功能网元仍可以是PCF网元,或有其它的名称,本申请实施例不做限定。如果策略控制功能网元是PCF网元,PCF网元可以提供Npcf服务。
接入与移动性管理功能网元,可用于对UE的接入控制和移动性进行管理,在实际应用中,其包括了长期演进(long term evolution,LTE)中网络框架中移动管理实体(mobility management entity,MME)里的移动性管理功能,并加入了接入管理功能,具体可以负责UE的注册、移动性管理、跟踪区更新流程、可达性检测、SMF网元的选择、移动状态转换管理等。例如,在5G系统中,接入与移动性管理功能网元可以是AMF网元,例如图1所示;在未来通信系统,如6G系统中,接入与移动性管理功能网元仍可以是AMF网元,或可能有其它的名称,本申请实施例不做限定。当接入与移动性管理功能网元是AMF网元时,AMF网元可以提供Namf服务。本申请实施例中,(R)AN网元与SMF网元之间的通信,可通过AMF网元中转。
用户面功能网元,负责UE的用户数据的转发和接收。UPF网元可以从数据网络接收用户数据,通过接入网设备发送给UE;UPF网元还可以通过接入网设备从UE接收用户数据,并将接收的用户数据转发到数据网络。例如,在5G系统中,用户面功能网元可以是UPF网元,例如图1所示;在未来通信系统,如6G系统中,用户面功能网元仍可以是UPF网元,或可能有其它的名称,本申请实施例不做限定。
网络开放功能网元,能够开放各网元的能力,将5G通信系统内部和外部的信息进行转换,一般用于边缘计算场景。例如,在5G系统中,网络开放功能网元可以是NEF网元,例如图1所示;在未来通信系统,如6G系统中,网络开放功能网元仍可以是NEF网元,或可能有其它的名称,本申请实施例不做限定。
数据网络(data network,DN),指的是为用户提供数据传输服务的服务网络,如IP多媒体业务(IP multi-media service,IMS)、互联网(Internet)等。
其中,核心网中的各个网元也可以称为功能实体或者设备,既可以是在专用硬件上实 现的网络元件,也可以是在专用硬件上运行的软件实例,或者是在适当平台上虚拟化功能的实例,例如,上述虚拟化平台可以为云平台。
其中,AMF网元与接入网设备之间可以通过N2接口相连,接入网设备与UPF网元之间可以通过N3接口相连,SMF网元与UPF网元之间可以通过N4接口相连,AMF网元与UE之间可以通过N1接口相连,UPF与DN之间可通过N6接口相连。接口名称只是一个示例说明,本申请实施例对此不作具体限定。应理解,本申请实施例并不限于图1所示通信系统,图1中所示的网元的名称在这里仅作为一种示例说明,并不作为对本申请实施例的方法适用的通信系统架构中包括的网元的限定。下面对通信系统中的一些网元或设备的功能进行介绍。不同接入技术的系统中实现核心网功能的设备名称可以不同,本申请实施例并不对此进行限定。
需要说明的是,图1所示的通信系统并不构成本申请实施例能够适用的通信系统的限定。图1所示的通信系统架构为5G系统架构,可选的,本申请实施例提供的技术方案除了可应用于5G系统外,还可以应用于第四代移动通信技术(the 4th generation,4G)系统中,例如LTE系统,或者还可以应用于下一代移动通信系统或其他类似的通信系统,具体的不做限制。
需要说明的是,图1所示的通信系统的架构中不限于仅包含图中所示的网元,还可以包含其它未在图中表示的设备,具体在此处不再一一列举。
需要说明的是,本申请实施例并不限定各个网元的分布形式,图1所示的分布形式只是示例性的,本申请实施例不作限定。
传统以太网络的转发过程中,当大量的数据包在一瞬间抵达转发端口时,会造成转发时延大或者丢包的问题。因此传统以太网不能提供高可靠性以及传输时延有保障的服务,无法满足汽车控制、工业互联网等领域的需求。针对可靠时延传输的需求,目前定义了相关的TSN标准,该标准基于二层交换来提供可靠时延传输服务,保障时延敏感业务数据传输的可靠性,以及可预测的端到端传输时延。
请参考图2,是5G网络与TSN互通的一种系统架构图。在这种架构下,5G通信系统(5G system,5GS)和TSN翻译器(translator)整体作为一个逻辑上的TSN桥(TSN bridge),图2中的桥的设备侧(device side of bridge)是指该逻辑TSN桥的UE侧。5GS通过控制面的TSN Translator(例如图2中的TSN AF)与TSN(例如图2中的TSN系统)中的节点交换信息,所交换的信息可包括:5GS桥(5GS bridge)能力信息、TSN配置信息、TSN输入输出端口的时间调度信息、时间同步信息等。另外在UPF和UE侧各增加一个TSN翻译器(translator)以适配用户面的数据传输。其中,UPF侧的TSN translator例如为图2中的网络侧TSN翻译器(network-side TSN translator,NW-TT),UE侧的TSN translator例如为图2中的设备侧TSN翻译器(device-side TSN translator,DS-TT)。DS-TT可能位于UE内,也可能位于UE外部;NW-TT一般位于UPF内。对于图2中的两个网元之间的接口名称,可参考图2,不多赘述。
请参考图3,是5G网络在不与TSN互通的情况下,支持TSC业务的一种系统架构图。在这种架构中,新增时延敏感通信以及时钟同步功能(time sensitive communication and time synchronization function,TSCTSF)网元,通过该网元可以使能非TSN场景下的TSC业务。TSCTSF网元的功能包括以下中的至少一项:将来自AF的时间同步服务请求关联到AF会话(AF session);与DS-TT交互端口管理信息容器(port management information container, PMIC),与NW-TT交互用户面节点管理信息容器(user plane node management information container,UMIC),管理和控制DS-TT/NW-TT;检测PCF上报的5GS桥或5GS节点信息的可用性;根据AF/NEF提供的业务类型参数创建TSC辅助容器(TSC assistance container),并将该container提供给PCF;根据UE-DS-TT驻留时间(DS-TT residence time)确定5GS桥时延(5GS bridge delay),并将5GS bridge delay提供给PCF。其中,UE-DS-TT驻留时间,例如为从DS-TT的入口到达UE的出口之间的时长。
关于图2或图3中的一些网元,可参考前文对于图1的介绍。
为方便说明,本申请实施例后续均以图1至图3中的任一附图所示的网元为例进行说明,并将XX网元直接简称为XX,例如,将SMF网元简称为SMF,将PCF网元简称为PCF,将TSN AF网元简称为TSN AF,将TSCTSF网元简称为TSCTSF等。应理解,本申请实施例中所有网元的名称仅仅作为示例,在未来通信中还可以称为其它名称,或者在未来通信中本申请实施例涉及的网元还可以通过其它具有相同功能的实体或者设备等来替代,本申请实施例对此均不作限定。这里做统一说明,后续不再赘述。
对于图2或图3所示的架构,RAN都可以从核心网获得服务质量QoS流到达RAN的入口的时间,从而RAN能够根据QoS流到达RAN的入口的时间为该QoS流调度资源。以图2所示的架构为例。在这种架构下,TSN中的集中式网络配置(centralized network configuration,CNC)可按照流粒度配置业务流到达5GS的时间以及离开5GS的时间,UE和UPF之间由于空口传输和有线传输等造成的不确定性,可通过在端点TT(例如DS-TT和NW-TT)的缓存消除。
TSN AF根据从CNC获取的业务流的调度信息,能够确定业务流到达5GS入口的时间。如果是下行方向的业务流,则该业务流到达5GS入口,是指业务流到达NW-TT入口,可参考图4A,其中的下行突发到达时间(downlink burst arrival time,DL BAT)就是下行业务流到达5GS入口的时间。如果是上行方向的业务流,则该业务流到达5GS入口,是指业务流到达DS-TT入口,可参考图4B,其中的上行突发到达时间(uplink burst arrival time,UL BAT)就是上行业务流到达5GS入口的时间。TSN AF可通过PCF将业务流到达5GS入口的时间信息提供给SMF,SMF根据该时间信息,进一步计算业务流所对应的QoS流在下行方向到达NG-RAN的时间,例如图4A中的下行(DL)TSC辅助信息(TSC assistance information,TSCAI)突发到达时间(burst arrival time,BAT)),以及,计算业务流所对应的QoS流在上行方向从UE发出的时间,例如图4B中的上行(UL)TSCAI BAT。SMF所计算的时间信息可提供给RAN,以便RAN据此为该业务流调度资源。
有些业务流之间可能是有关联的。例如UE1与UE2通过接入网和核心网通信,就可能涉及两个业务流,分别为UE1发给UE2的业务流,以及UE2发给UE1的业务流,这两个业务流到达RAN的入口或到达UE的出口的时间具有一定的关联性。相应的,用于传输这两个业务流的两个QoS流到达RAN的入口或到达UE的出口的时间也就具有一定的关联性。例如这种关联性体现为,在UE1发给UE2的QoS流到达UE1的出口之后,可能间隔一定时间后UE2发给UE1的QoS流又会到达RAN的入口。请参考图4C和图4D,为UE1与UE2通信的两种场景,输入输出(input/output,I/O)为UE1的负载,可编程逻辑控制器(programmable logic controller,PLC)为UE2的负载。其中,UE1例如为图4C或图4D中的UE1,UE2为图4C或图4D中的UE2;或者,UE1例如为图4C或图4D中的输入输出(input/output,I/O),UE2为图4C或图4D中的可编程逻辑控制器(programmable  logic controller,PLC)。图4C为单RAN的场景,即UE1与UE2通信的两个QoS流通过一个RAN传输;图4D为多RAN的场景,即UE1与UE2通信的两个QoS流通过不同的RAN传输。图4C和图4D中的每个箭头表示一个业务流。
对于RAN来说,在从SMF接收时间信息后,如果发现某个QoS流对应的时间信息与其他QoS流对应的时间信息冲突,则RAN需要协调为这些QoS流调度的资源。
例如参考图4E,其中的调度周期表示RAN为该QoS流调度的资源的周期,画斜线的方框标识该QoS流承载的数据包。图4E中,对于用于传输下行业务流的QoS流(例如称为QoS流1),例如RAN调整了为该QoS流调度的资源,使得该QoS流的到达与RAN的调度时机之间的间隔较小,即,在该QoS流到达RAN的入口时,RAN刚好有(或较快会有)调度该QoS流的资源,因此该QoS流承载的数据包能够得到及时传输。其中,图4E中画横线的方框表示RAN为用于传输下行业务流的QoS流调度的资源。
图4E中的用于传输上行业务流的QoS流与用于传输下行业务流的QoS流是相关联的,但RAN可能只是调整了为用于传输下行业务流的QoS流调度的资源,而并未调整为用于传输上行业务流的QoS流调度的资源(例如为用于传输上行业务流的QoS流调度的资源与其他资源之间无冲突,不必调整),或者虽然RAN也调整了为用于传输上行业务流的QoS流调度的资源(例如为用于传输上行业务流的QoS流调度的资源与其他资源之间有冲突),但RAN在调整时都是单独考虑以及单独调整的,则用于传输上行业务流的QoS流调整后的资源并不一定适配该QoS流到达UE的出口的时间。在RAN调整为用于传输上行业务流的QoS流调度的资源后,如果该QoS流的到达与调整后的RAN的调度时机之间的间隔较小(small interval),即,在该QoS流到达UE的出口时,RAN刚好有(或较快会有)调度该QoS流的资源,因此该QoS流承载的数据包能够得到及时传输。而如果该QoS流的到达与调整后的RAN的调度时机之间的间隔较大(big interval),在该QoS流到达UE的出口时,RAN为该QoS流调度的资源尚未准备好(或需要较长时间准备好),需要等待调度的资源准备好后才能传输该QoS流,这就可能导致较大的时延。其中,图4E中画斜线的方框表示RAN为用于传输上行业务流的QoS流调度的资源。
可见,RAN的协调可能导致为相关联的QoS流所调度的资源,不符合相关联的QoS流真正到达RAN的入口或到达UE的出口的时间。
鉴于此,提供本申请实施例的技术方案。本申请实施例中,第一QoS流和第二QoS流所传输的业务流例如属于同一业务流,因此认为第一QoS流和第二QoS流相匹配。例如,第一QoS流和第二QoS流是两个终端设备之间通信所传输的两条QoS流。这两个终端设备之间的通信例如会通过第一接入网设备转发,则这两个QoS流到达第一接入网设备或到达终端设备的时间就是有关联的。在其中一个QoS流到达第一接入网设备的时间相对确定的情况下,第一接入网设备如果为其中另一个QoS流任意调度资源,可能导致所调度的资源在时域上与该另一个QoS流到达终端设备的时间不相同。因此本申请实施例中,第一接入网设备可以在考虑两个QoS流相匹配的情况下确定第一期望辅助信息和第二期望辅助信息,则第一期望辅助信息所指示的第一QoS流的传输时机与第二期望辅助信息所指示的第二QoS流的传输时机就可以相关联,核心网设备可以据此确定第一QoS流的传输时机以及第二QoS流的传输时机,那么最终所确定的第一QoS流的传输时机以及第二QoS流的传输时机也会相关联,第一接入网设备如果据此为第一QoS流和第二QoS流调度资源,则所调度的资源就能够较为符合这两个QoS流到达第一接入网设备或终端设备的时间, 使得这两个QoS流能够得到合理传输。通过本申请实施例提供的方法,可以协调相关联的QoS流的资源,尽量避免出现为一个QoS流调度的资源和为另一个QoS流调度的资源不匹配的情况,减小QoS流的传输时延。
为了更好地介绍本申请实施例,下面结合附图介绍本申请实施例所提供的方法。在本申请的各个实施例对应的附图中,凡是可选的步骤均用虚线表示。本申请的各个实施例所提供的方法均可应用于图2或图3所示的网络架构。例如,本申请的各个实施例所涉及的第一接入网设备可以为图2或图3中的(R)AN;本申请的各个实施例所涉及的第一核心网设备可以为图2或图3中的SMF;本申请的各个实施例所涉及的第二核心网设备可以为图2中的TSN AF,或图3中的TSCTSF;本申请的各个实施例所涉及的策略控制网元可以为图2或图3中的PCF。
为方便说明,在后文的各个实施例中,也将接入网设备用RAN代替(例如第一接入网设备可用“第一RAN”替换,第二接入网设备可用“第二RAN”替换),将第一核心网设备用SMF代替,将第二核心网设备用TSN AF或TSCTSF代替,将策略控制网元用PCF代替。另外,在后文的各个实施例中,由TSN AF所执行的步骤也可替换为由TSCTSF执行,后文是以TSN AF为例。
另外需要注意的是,本申请的各个实施例中所涉及的“期望”,均是指对于时间的期望。例如,“期望的第一QoS流的传输时机”,可理解为是期望的传输时机,该传输时机是第一QoS流的传输时机,而不能理解为是对于QoS流的期望。即,QoS流是已经确定的,而本申请实施例需要确定的是QoS流的传输时间,因此,所述的“期望”的指对于时间的期望。
请参见图5,为本申请实施例提供的第一种通信方法的流程图。该方法除了适用于图2或图3所示的架构外,还可适用于图4C所示的架构。
S501、TSN AF获得业务转发信息。
例如,TSF AF可以从CNC接收该业务转发信息;或者,TSN AF也可以根据CNC所提供的参数推导得到该业务转发信息,该参数例如包括5GS桥的出端口(egress ports of 5GS Bridge)参数,例如DS-TT的端口信息等(ports on DS-TT);或者,TSN AF也可以通过所配置的UE之间的配对关系(或者说关联关系)得到该业务转发信息。
如果S501由TSCTSF执行,则TSCTSF可以从图3所示的AF获得该业务转发信息,例如TSCTSF可通过NEF从AF获得该业务转发信息;或者,TSCTSF也可以根据AF所提供的参数推导得到该业务转发信息,该参数例如包括DS-TT的端口信息和互联网协议(internet protocol,IP)地址等;或者,TSCTSF也可以通过所配置的UE之间的配对关系得到该业务转发信息。
该业务转发信息例如包括TSN流的目标媒体接入控制(media access control,MAC)地址和虚拟局域网标识(destination MAC address and virtual local area network ID of TSN stream),或包括端口映射图中的端口号(port number in the port MAP)等。另外,该业务转发信息还可以包括业务流的信息。该业务流例如称为第三业务流,第三业务流的信息例如包括如下一项或多项:第三业务流的周期,第三业务流的方向信息(例如上行或下行),或,第三业务流的BAT信息。其中,BAT信息所指示的时间例如为第三业务流到达5GS入口(例如图2中的DS-TT的入口)的时间。该BAT信息例如包括具体的突发到达时间,或者包括所允许的最早突发到达时间或最晚突发到达时间。
对于UE之间通信的场景,则该业务转发信息所包括的方向信息可能会指示两个方向,例如既指示上行方向也指示下行方向。那么,TSN AF可将该业务转发信息所对应的第三业务流拆分为两条业务流,例如将拆分得到的两条业务流分别称为第一业务流和第二业务流。第一业务流例如为上行方向的业务流,第二业务流例如为下行方向的业务流;或者,第一业务流例如为下行方向的业务流,第二业务流例如为上行方向的业务流。第一业务流和第二业务流实际上属于第三业务流。其中,第一业务流和第二业务流都是UE和UPF之间的流,而第三业务流可理解为TSC业务的业务流,可称为TSC流(stream)。从业务角度来说,第一业务流和第二业务流是该TSC流的不同的两段。
其中,TSN AF可以根据本地配置的信息,或根据该业务转发信息,确定第三业务流的输入端口和输出端口,再进一步根据输入端口和输出端口的类型(例如,输入端口和输出端口均为DS-TT端口),确定第三业务流是UE之间通信的业务流,即,确定当前的通信场景为UE之间的通信。
可选的,TSN AF还可根据该业务转发信息确定第一UE与第二UE相关联,或者,确定第一UE与第二UE相匹配。其中,第一UE和第二UE就是彼此之间传输第一业务流和第二业务流的UE,第一UE是第一业务流对应的UE,例如第一UE是第一业务流的发送端;第二UE是第二业务流对应的UE,例如第二UE是第二业务流的发送端。
S502、TSN AF向PCF发送第一信息。相应的,PCF从TSN AF接收第一信息。
第一信息可包括第一业务流的信息和第二业务流的信息。第一信息例如包括TSC辅助容器,该TSC辅助容器可包括第一业务流的信息和第二业务流的信息。可选的,第一信息可包括两个TSC辅助容器,分别为第一TSC辅助容器和第二TSC辅助容器,第一TSC辅助容器包括第一业务流的信息,第二TSC辅助容器包括第二业务流的信息。第一业务流的信息例如包括如下一项或多项:第一业务流的BAT信息,第一业务流的周期,或,第一业务流的方向信息。同理,第二业务流的信息例如包括如下一项或多项:第二业务流的BAT信息,第二业务流的周期,或,第二业务流的方向信息。
可选的,第一信息还包括关联信息,该关联信息可指示第一UE与第二UE相关联,或者,指示第一UE与第二UE相匹配。
关联信息指示第一UE与第二UE相关联,可以有不同的指示方式。例如一种指示方式为,该关联信息包括第一UE的标识和第二UE的标识,或者理解为,该关联信息包括第一UE的标识和第二UE的标识之间的关联关系信息,通过这两个UE的标识可指示这两个UE相关联。可选的,一个UE的标识例如包括该UE的通用公共签约标识(generic public subscription identifier,GPSI)或签约永久标识(subscription permanent identifier,SUPI)等。
或者,另一种指示方式为,该关联信息包括第一UE的地址信息,以及包括第二UE的地址信息,或者理解为,该关联信息包括这两个地址信息之间的关联关系信息,通过这两个地址信息可指示这两个UE相关联。一个UE的地址,例如包括该UE的IP版本4(IPv4)地址、IP版本6(IPv6)地址/IPv6前缀、或MAC地址等。
或者,又一种指示方式为,该关联信息包括第一UE对应的DS-TT端口的媒体接入控制(media access control,MAC)地址(DS-TT port MAC address)信息,以及包括第二UE对应的DS-TT端口的MAC地址信息,或者理解为,该关联信息包括这两个MAC地址信息之间的关联关系信息,通过这两个MAC地址信息可指示这两个UE相关联。
或者,再一种指示方式为,该关联信息包括第一业务流和第二业务流之间的关联关系 信息,例如该关联关系包括第一业务流的标识和第二业务流的标识,或者理解为该关联关系包括第一业务流的标识和第二业务流的标识之间的关联关系信息。对于这种指示方式,可以认为是指示两个业务流之间的关联关系,但因为业务流是与UE相关的,因此也可以认为是指示两个UE之间的关联关系。可选的,一个业务流的标识例如包括该业务流所对应的应用的标识,或包括该业务流的过滤器等。过滤器例如包括一组分组流报头的参数值或范围,可用于标识一个或多个分组流。
该关联信息可以包括在该TSC辅助容器中,也可以不包括在该TSC辅助容器中,而是通过另外的信息发送。
或者,第一信息可以不包括显示的上述关联信息,通过上述第一业务流的信息和第二业务流的信息来隐式地指示两个业务流之间的关联关系。
S503、PCF向SMF发送策略与计费控制(policy and charging control,PCC)规则。相应的,SMF从PCF接收该PCC规则。
PCF可基于从TSN AF获取的第一信息为第一业务流生成第一PCC规则,以及为第二业务流生成第二PCC规则。其中,第一PCC规则可包括第一TSC辅助容器,第二PCC规则可包括第二TSC辅助容器。PCF可将第一PCC规则和第二PCC规则发送给SMF。
可选的,如果S502中的第一信息包括关联信息,则PCF也可将该关联信息发送给SMF。该关联信息可以不包括在PCC规则中,而是通过另外的信息发送。
S504、SMF确定辅助信息1和辅助信息2。例如,SMF可根据第一PCC规则所包括的第一TSC辅助容器确定辅助信息1,以及根据第二PCC规则所包括的第二TSC辅助容器确定辅助信息2。例如也将辅助信息1称为第三辅助信息,将辅助信息2称为第四辅助信息。辅助信息1可指示第一QoS流的传输时机,例如指示第一QoS流的BAT,或指示第一QoS流的BAT所属的时间范围等;辅助信息2可指示第二QoS流的传输时机,例如指示第二QoS流的BAT,或指示第二QoS流的BAT所属的时间范围等。其中,第一QoS流用于传输第一业务流,第一QoS流的方向与第一业务流的方向相同;第二QoS流用于传输第二业务流,第二QoS流的方向与第二业务流的方向相同。辅助信息例如为TSCAI BAT信息(information)。
例如,SMF可从第一TSC辅助容器中获得第一业务流的BAT信息,例如将该BAT信息称为BAT信息1;以及,SMF从第二TSC辅助容器中获得第二业务流的BAT信息,例如将该BAT信息称为BAT信息2。BAT信息1和BAT信息2是基于TSN AF时钟的时间信息。SMF可基于5GS时钟与TSN AF时钟之间的时间偏差(和/或时钟漂移),将BAT信息1转换为基于5GS时钟的BAT信息,例如将转换后的BAT信息1称为BAT信息3;以及,SMF可基于该时间偏差(和/或该时钟漂移),将BAT信息2转换为基于5GS时钟的BAT信息,例如将转换后的BAT信息2称为BAT信息4。SMF可根据BAT信息3确定辅助信息1,以及根据BAT信息4确定辅助信息2。
可选的,辅助信息1可包括如下一项或多项:第一QoS流的周期,第一QoS流的方向信息,或,第一QoS流与RAN相关的BAT信息。辅助信息2可包括如下一项或多项:第二QoS流的周期,第二QoS流的方向信息,或,第二QoS流与RAN相关的BAT信息。其中,如果一个QoS流传输的业务流是下行业务流,则该QoS流与RAN相关的BAT信息,例如指示该QoS流的数据突发的第一个数据包到达RAN的入口的时间,后文描述为,指示该QoS流到达RAN的入口的时间,例如图4A中的下行TSCAI突发到达时间;或者, 该QoS流与RAN相关的BAT信息,也可以指示该QoS流到达RAN的入口的时间范围。如果一个QoS流所传输的业务流是上行业务流,则该QoS流与RAN相关的BAT信息,例如指示该QoS流的数据突发的第一个数据包到达UE的出口的时间,后文描述为,指示该QoS流到达UE的出口的时间,例如图4B中的上行TSCAI突发到达时间;或者,该QoS流与RAN相关的BAT信息,也可以指示该QoS流到达UE的出口的时间范围。其中,如果一个BAT信息指示一个QoS流到达RAN的入口或UE的出口的时间范围,则可选的,该时间范围可以包括两个端点值,例如分别为端点1和端点2,表明该时间范围所指示的时间需要晚于或等于端点2,且早于或等于端点1。或者,该时间范围也可以包括一个端点值,例如为端点3,表明该时间范围所指示的时间需要早于等于端点3,相当于该时间范围指示了最晚到达时间。
可选的,对于传输下行业务流的QoS流,SMF可根据该QoS流对应的BAT信息以及核心网(core network,CN)包延迟预算(packet delay budget,PDB),确定该QoS流与RAN相关的BAT信息。例如,传输下行业务流的QoS流与RAN相关的BAT信息=该QoS流对应的BAT信息+CN PDB。其中,CN PDB可参考图4A所示,为QoS流从UPF入口(或者NW-TT入口)传输到RAN的入口这之间包延迟预算的时长。例如,如果第一QoS流为传输下行业务流的QoS流,则SMF可根据BAT信息3以及CN PDB确定第一QoS流与RAN相关的BAT信息;或者,如果第二QoS流为传输下行业务流的QoS流,则SMF可根据BAT信息4以及CN PDB确定第二QoS流与RAN相关的BAT信息。
对于传输上行业务流的QoS流,SMF可根据该QoS流对应的BAT信息以及UE-DS-TT驻留时间,确定该QoS流与RAN相关的BAT信息。例如,若该QoS流与RAN相关的BAT信息为该QoS流从UE发出的时间,传输上行业务流的QoS流与RAN相关的BAT信息=该QoS流对应的BAT信息+(UE-DS-TT驻留时间)。关于UE-DS-TT驻留时间,可参考前文的介绍。另外可选的,若该QoS流与RAN相关的BAT信息为该QoS流到达RAN的入口的时间,SMF在确定传输上行业务流的QoS流与RAN相关的BAT信息时,还可以考虑接入网(access network,AN)PDB。例如,传输上行业务流的QoS流与RAN相关的BAT信息=该QoS流对应的BAT信息+(UE-DS-TT驻留时间)+AN PDB。其中,AN PDB可参考图4B所示,为QoS流从UE的出口传输到RAN的出口这之间包延迟预算的时长,也可理解为,AN PDB为QoS流从UE的入口传输到NW-TT的出口这之间的时长与CN PDB之间的差值。例如,如果第一QoS流所传输的第一业务流为上行业务流,则SMF可根据BAT信息3以及UE-DS-TT驻留时间(或者,根据BAT信息3、UE-DS-TT驻留时间以及AN PDB)确定第一QoS流与RAN相关的BAT信息;或者,如果第二QoS流传输的第二业务流为上行业务流,SMF可根据BAT信息4以及UE-DS-TT驻留时间(或者,根据BAT信息4、UE-DS-TT驻留时间以及AN PDB)确定第二QoS流与RAN相关的BAT信息。
另外SMF可将第一业务流绑定到第一QoS流,以通过第一QoS流传输第一业务流;以及,将第二业务流绑定到第二QoS流,以通过第二QoS流传输第二业务流。
本申请实施例中,第一业务流和第二业务流属于同一个业务流,可以认为第一业务流与第二业务流相匹配。而第一QoS流用于传输第一业务流,第二QoS流用于传输第二业务流,因此也可以认为,第一QoS流与第二QoS流相匹配。可选的,SMF还可以确定QoS流之间的匹配信息,该匹配信息可指示第一QoS流与第二QoS流相匹配(或者,相关联), 或指示第一QoS流与第二QoS流用于传输同一业务流。例如,SMF可根据从PCF接收的关联信息确定该匹配信息;或者,SMF也可以根据业务转发信息确定该匹配信息,该业务转发信息例如为S501中所述的业务转发信息,TSN AF除了可以将第一信息发送给PCF外,也可以将该业务转发信息发送给PCF,PCF再将该业务转发信息发送给SMF。例如,SMF根据业务转发信息确定,第一业务流的数据包在经过UPF后没有转发给DN,而是转发给了另一个UE,且根据该业务转发信息确定,第二业务流的数据包并不是来自DN,而是来自第一业务流的接收UE,则SMF就能确定这两个业务流相匹配,进而可以确定用于传输这两个业务流的两个QoS流相匹配。
可选的,该匹配信息可包括第一PDU会话对应的隧道信息和第一QoS流的QoS流标识(qos flow identifier,QFI),以及,包括第二PDU会话对应的隧道信息和第二QoS流的QFI。可选的,该匹配信息还可以包括第一UE的标识和第二UE的标识。
其中,第一PDU会话对应的隧道信息例如为第一PDU会话的接入网隧道信息(AN tunnel information),第二PDU会话对应的隧道信息例如为第二PDU会话的接入网隧道信息;或者,第一PDU会话对应的隧道信息例如为第一PDU会话的核心网隧道信息(CN tunnel information),第二PDU会话对应的隧道信息例如为第二PDU会话的核心网隧道信息。对于一个PDU会话来说,对应的接入网隧道与核心网隧道例如为同一个隧道,例如为RAN与UPF之间的通用分组无线业务隧道协议(general packet radio service tunnelling protocol,GTP)隧道。对于该隧道,在用于RAN向UPF发送信息时,UPF需要为该隧道分配隧道端点ID(tunnel endpoint ID,TEID),RAN需要使用该TEID通过该隧道向UPF发送信息;在用于UPF向RAN发送信息时,RAN需要为该隧道分配TEID,UPF需要使用该TEID通过该隧道向RAN发送信息。例如该隧道的核心网隧道信息包括UPF为该隧道分配的TEID,该隧道的接入网隧道信息包括RAN为该隧道分配的TEID。
或者,该匹配信息可包括第一PDU会话的标识(例如ID)和第一QoS流的QFI,以及,包括第二PDU会话的标识和第二QoS流的QFI。可选的,该匹配信息还可以包括第一UE的标识和第二UE的标识。
其中,第一PDU会话为第一QoS流所在的PDU会话,第二PDU会话为第二QoS流所在的PDU会话。第一PDU会话和第二PDU会话是两个不同的PDU会话。另外在本申请的各个实施例中,由于是两个不同的PDU会话,因此第一PDU会话的参数和第二PDU会话的参数是分别传输的。例如,第一QoS流相关的信息属于第一PDU会话的参数,第二QoS流相关的信息属于第二PDU会话的参数,这两种信息会分别传输。例如SMF在后文即将介绍的S505中将会向第一RAN发送辅助信息1和辅助信息2,其中辅助信息1是第一QoS流相关的信息,辅助信息2是第二QoS流相关的信息,则这两个辅助信息可以分别传输给第一RAN。
S505、SMF向第一RAN发送辅助信息1和辅助信息2。相应的,第一RAN从SMF接收辅助信息1和辅助信息2。本申请实施例中,例如第一QoS流和第二QoS流通过同一个RAN传输,该RAN例如称为第一RAN。
可选的,SMF还可将该匹配信息发送给第一RAN。
其中,S501~S505为可选的步骤,例如,即使不执行S501~S505,第一RAN也可执行如下的S506。例如第一RAN可通过其他方式确定第一QoS流和第二QoS流到达第一RAN或UE的时间,从而能够执行S506。例如,第一RAN可获得配置信息,该配置信息包括 第一PDU会话和第二PDU会话的单网络切片选择辅助信息(single network slice selection assistance information,S-NSSAI)之间的对应关系,这种对应关系就可供第一RAN确定第一QoS流和第二QoS流到达第一RAN或UE的时间。
S506、第一RAN确定第一期望辅助信息和第二期望辅助信息。
第一RAN根据辅助信息1可确定第一QoS流的传输时机,例如可确定第一QoS流到达第一RAN或UE的时间,或者确定第一QoS流到达第一RAN或UE的时间范围。根据第一QoS流的传输时机,第一RAN可以为第一QoS流调度相应的资源,或者说,第一RAN可以确定第一QoS流的调度资源,以传输第一QoS流,例如将第一RAN根据辅助信息1确定的调度资源称为第一调度资源。第一调度资源所包括的时域资源例如与辅助信息1所指示的传输时机一致,例如第一调度资源所包括的时域资源与辅助信息1所指示的传输时机相同,或者第一调度资源所包括的时域资源与辅助信息1所指示的传输时机之间的时间间隔小于第一阈值,使得第一QoS流在到达第一RAN或UE后就能得到及时传输。同理,第一RAN根据辅助信息2可确定第二QoS流的传输时机,根据第二QoS流的传输时机,第一RAN可以确定第二QoS流的调度资源,例如称为第三调度资源,第三调度资源所包括的时域资源也可以与辅助信息2所指示的传输时机一致。本申请实施例中,RAN为QoS流所调度的资源例如为半永久性(semi-persistent scheduling,SPS)资源,或者也可以是其他类型的资源。
本申请实施例中,例如第一调度资源与其他资源冲突,和/或,第三调度资源与其他资源冲突。其中,其他资源例如是第一RAN为其他QoS流(是指除了第一QoS流和第二QoS流之外的QoS流)确定的调度资源,因此在本申请的各个实施例中,“其他资源”也可以理解为“其他调度资源”。两个资源冲突,例如是指这两个资源部分重叠或全部重叠。如果发生了资源冲突,那么第一RAN就可以重新为相应的QoS流确定期望辅助信息,以减小QoS流的传输时延。
其中,如果第一调度资源与其他资源冲突,则第一RAN可以确定与其他资源不冲突的资源,可将该资源作为第一QoS流的调度资源,例如该资源称为第二调度资源。第一RAN可以根据第二调度资源(或者说,根据第二调度资源的时域位置)确定第一QoS流的期望辅助信息。第一QoS流的期望辅助信息可指示期望的第一QoS流的传输时机,例如第一QoS流的期望辅助信息所指示的传输时机与第二调度资源相匹配,这样可以使得第一QoS流到达第一RAN或UE时能得到及时传输。其中,第一RAN为一个QoS流确定期望辅助信息,也就相当于重新为该QoS流设置到达UE的出口或者到达RAN的入口时间。可选的,期望辅助信息例如表示为expected TSCAI BAT information。
或者,如果第三调度资源与其他资源冲突,则第一RAN可以确定与其他资源不冲突的资源,可将该资源作为第二QoS流的调度资源,例如该资源称为第四调度资源。第一RAN可以根据第四调度资源(或者说,根据第四调度资源的时域位置)确定第二QoS流的期望辅助信息。第二QoS流的期望辅助信息可指示期望的第二QoS流的传输时机,例如第二QoS流的期望辅助信息所指示的传输时机与第四调度资源相匹配,这样可以使得第二QoS流到达第一RAN或UE时能得到及时传输。
需要注意的是,对于第一QoS流和第二QoS流,如果第一RAN确定了其中一个QoS流的期望辅助信息,即,第一RAN为该QoS流重新规划了到达RAN的入口或到达UE的出口的时间,则因为这两个QoS流的传输时间之间有关联,如果其中一个QoS流到达RAN 的入口或到达UE的出口的时间发生了变动,就可能导致另一个QoS流到达UE的出口或到达RAN的入口的时间也发生变动。因此可选的,如果第一RAN确定了第一QoS流的期望辅助信息,则第一RAN还可以确定第二QoS流的期望辅助信息;或者,如果第一RAN确定了第二QoS流的期望辅助信息,则第一RAN还可以确定第一QoS流的期望辅助信息。例如将第一RAN所确定的第一QoS流的期望辅助信息称为第一期望辅助信息,将第一RAN所确定的第二QoS流的期望辅助信息称为第二期望辅助信息。其中,根据第一期望辅助信息所确定的调度资源与其他调度资源不存在冲突,以及,根据第二期望辅助信息所确定的调度资源与其他调度资源不存在冲突。
另外,第一期望辅助信息与第二期望辅助信息相关联,或者说第一期望辅助信息与第二期望辅助信息相匹配。这种关联或者匹配表现为,如果第一期望辅助信息指示的第一QoS流的传输时机相对于第一QoS流的预计传输时机具有第一偏移,则第二期望辅助信息指示的第二QoS流的传输时机相对于第二QoS流的预计传输时机也具有第一偏移;反之亦然,即,如果第二期望辅助信息指示的第二QoS流的传输时机相对于第二QoS流的预计传输时机具有第一偏移,则第一期望辅助信息指示的第一QoS流的传输时机相对于第一QoS流的预计传输时机也具有第一偏移。其中,第一QoS流的预计传输时机,例如为辅助信息1所指示的传输时机,第二QoS流的预计传输时机,例如为辅助信息2所指示的传输时机。
其中,QoS流本身没有方向,只是QoS流所传输的业务流有方向。因此,如果第一QoS流所传输的第一业务流为上行业务流,第二QoS流所传输的第二业务流为下行业务流,则第一期望辅助信息和第二期望辅助信息指示的传输时机相对于相应的预计传输时机具有相同的偏移,可以理解为,第一QoS流的上行偏移与第二QoS流的下行偏移一致。
或者,如果第一QoS流所传输的第一业务流为下行业务流,第二QoS流所传输的第二业务流为上行业务流,则第一期望辅助信息和第二期望辅助信息指示的传输时机相对于相应的预计传输时机具有相同的偏移,可以理解为,第一QoS流的下行偏移与第二QoS流的上行偏移一致。
其中,一个QoS流的上行偏移,是指该QoS流到达UE的出口的时间所发生的偏移;一个QoS流的下行偏移,是指该QoS流到达RAN的入口的时间所发生的偏移。
例如第一QoS流所传输的第一业务流为下行业务流,第一RAN根据辅助信息1确定第一QoS流将在T1时刻到达第一RAN,第一RAN可以根据T1时刻为第一QoS流调度第一调度资源,第一调度资源的起始时域位置为T2时刻,T1时刻与T2时刻之间的时间间隔小于第一阈值,第一阈值例如是根据第一RAN的处理时间确定的。但第一RAN发现第一调度资源与其他QoS流的调度资源相重叠,那么第一RAN可以确定不与已调度的资源相重叠的时域资源。考虑到第一QoS流和第二QoS流的关联性,第一RAN在重新确定调度资源时,可以为这两个QoS流一并确定。例如第一RAN确定第二调度资源和第四调度资源都没有与已调度的资源重叠,第四调度资源可以是根据第二调度资源以及第一时间间隔确定的。第二调度资源的起始时域位置例如为T3时刻,则第一RAN可以据此确定第一期望辅助信息,例如第一期望辅助信息指示T3时刻;第四调度资源的起始时域位置例如为T4时刻,则第一RAN可以据此确定第二期望辅助信息,例如第二期望辅助信息指示T4时刻。例如,第一期望辅助信息所指示的BAT相对于辅助信息1所指示的BAT来说延后了2毫秒(ms),则第二期望辅助信息所指示的BAT相对于辅助信息2所指示的BAT来说也延后2ms。
在前面介绍的方式中,第一RAN是先根据辅助信息确定所调度的资源,确定该资源与其他调度资源是否有冲突,如果有冲突,再寻找无冲突的调度资源,以及再根据无冲突的调度资源确定期望辅助信息。或者还有一种方式,第一RAN可以先确定与其他调度资源无冲突的调度资源,确定所接收的辅助信息与无冲突的调度资源是否匹配,如果不匹配,再根据无冲突的调度资源确定期望辅助信息。例如第一QoS流所传输的第一业务流为下行业务流。第一RAN可以先确定与其他调度资源无冲突的调度资源,考虑到第一QoS流和第二QoS流的关联性,第一RAN在确定无冲突的调度资源时,可以为这两个QoS流一并确定。例如第一RAN确定第一调度时间窗和第二调度时间窗,这两个调度时间窗内的资源均没有与其他调度资源重叠,且这两个调度时间窗内相应的资源之间具有第一时间间隔。其中,两个调度时间窗内的相应的资源,例如为两个调度时间窗内相对时域位置相同的资源,一个资源在一个调度时间窗内的相对时域位置,例如为该资源相对于该调度时间窗的起始时间的偏移。第一RAN确定了这两个调度时间窗,则可以确定辅助信息1和辅助信息2是否与这两个调度时间窗匹配。例如,如果辅助信息1指示的BAT位于第一调度时间窗内,且辅助信息2指示的BAT位于第二调度时间窗内,则辅助信息1和辅助信息2与这两个调度时间窗匹配,在这种情况下,第一RAN无需再确定期望辅助信息,而是根据辅助信息1调度第一QoS流,以及根据辅助信息2调度第二QoS流即可。而如果辅助信息1指示的BAT没有位于第一调度时间窗内,和/或辅助信息2指示的BAT没有位于第二调度时间窗内,则辅助信息1和辅助信息2与这两个调度时间窗不匹配,在这种情况下,第一RAN可以重新确定期望辅助信息。例如第一RAN可以在第一时间窗中确定第二调度资源作为第一QoS流的调度资源,并根据第二调度资源确定第一期望辅助信息;以及,第一RAN可以确定第二时间窗中与第二调度资源相应的第四调度资源作为第二QoS流的调度资源,并根据第四调度资源确定第二期望辅助信息。
其中,第一时间间隔例如包括,从第一QoS流到达第一RAN的入口开始,经历第一QoS流从第一RAN到达第二UE,以及第二QoS流再到达第二UE的出口为止,这之间的时间间隔。也就是说,由于第一QoS流到达第一RAN的时间和第二QoS流到达第二UE的时间之间具有关联性,因此第一RAN可以为这两个QoS流综合确定期望辅助信息,使得所确定的期望辅助信息符合这两个QoS流的传输情况。
第一RAN所确定的一个QoS流的期望辅助信息,是该QoS流与RAN相关的时间信息,可指示第一RAN对于该QoS流所期望的传输时机,即,指示第一RAN期望该QoS流在何时到达第一RAN或UE。可选的,第一期望辅助信息可包括期望的第一QoS流的BAT信息(或者表示为,期望的第一QoS流与RAN相关的BAT信息)。其中,期望的第一QoS流的BAT信息,例如包括期望的第一QoS流的BAT;或者包括期望的第一QoS流的BAT所属的范围信息(或者表示为,期望的第一QoS流与RAN相关的BAT所属的范围信息);或者包括期望的第一QoS流的突发到达时间偏移(或者表示为,期望的第一QoS流与RAN相关的突发到达时间偏移);或者包括期望的第一QoS流的突发到达时间偏移所属的范围信息(或者表示为,期望的第一QoS流与RAN相关的突发到达时间偏移所属的范围信息)。可选的,第一QoS流的突发到达时间偏移,例如为期望的第一QoS流的BAT与第一QoS流的预计BAT之间的偏移(offset)。第一QoS流的预计BAT,例如为辅助信息1所指示的BAT。或者,第一QoS流的突发到达时间偏移,例如为期望的第一QoS流的BAT与第一QoS流的原BAT之间的偏移。第一QoS流的原BAT,例如为第一RAN已 接收的第一QoS流所承载的数据包的BAT,相当于,第一RAN可根据已接收的数据包确定第一QoS流的实际BAT,第一QoS流的突发到达时间偏移可以指示期望的BAT与实际BAT之间的偏移。
第二期望辅助信息所包括的内容可参考对于第一期望辅助信息的介绍。其中,第二期望辅助信息所包括的信息类型,与第一期望辅助信息所包括的信息类型,可以是一致的,例如二者都包括QoS流的期望突发到达时间偏移,或者都包括QoS流的期望BAT。或者,这两个期望辅助信息所包括的信息类型也可以不同,具体不做限制。
S507、第一RAN向SMF发送第一期望辅助信息和第二期望辅助信息。相应的,SMF从第一RAN接收第一期望辅助信息和第二期望辅助信息。
S508、SMF确定第一期望时间信息和第二期望时间信息。其中,第一期望时间信息可指示期望的第一业务流的传输时机,或者说,指示期望第一业务流传输的时机;第二期望时间信息可指示期望的第二业务流的传输时机,或者说,指示期望第二业务流传输的时机。期望时间信息,例如表示为expected BAT information。
例如,SMF根据第三期望辅助信息和第四期望辅助信息确定第一期望时间信息和第二期望时间信息。
可选的,第三期望辅助信息例如为第一期望辅助信息,第四期望辅助信息例如为第二期望辅助信息。那么SMF可根据第一期望辅助信息确定第一期望时间信息,根据第二期望辅助信息确定第二期望时间信息。如下介绍SMF根据第一期望辅助信息确定第一期望时间信息的方式。根据前文介绍可知,第一期望辅助信息可能包括不同的内容,则SMF确定第一期望时间信息的方式也可能相应不同,下面分别介绍。
1、第一期望辅助信息包括期望的第一QoS流的BAT,或包括期望的第一QoS流的BAT所属的范围信息。
如果第一QoS流所传输的第一业务流为下行业务流,SMF可根据第一期望辅助信息和CN PDB确定第一期望时间信息。例如,期望时间信息=第一期望辅助信息-CN PDB。
如果第一QoS流所传输的第一业务流为上行业务流,SMF可根据第一期望辅助信息和UE-DS-TT驻留时间确定第一期望时间信息。例如,期望时间信息=第一期望辅助信息-(UE-DS-TT驻留时间)。可选的,SMF在确定第一期望时间信息时,还可以考虑AN PDB。例如,期望时间信息=第一期望辅助信息-(UE-DS-TT驻留时间)-AN PDB。
可选的,如上得到的期望时间信息是基于5GS时钟,SMF可基于5GS时钟与TSN时钟之间的时间偏差(和/或时钟漂移),将该期望时间信息转换为基于TSN时钟的期望时间信息,转换后的期望时间信息例如为第一期望时间信息。或者,如果SMF无需进行时钟转换(例如5GS时钟与TSN时钟同步),则转换前的期望时间信息例如为第一期望时间信息。
SMF可基于5GS时钟与TSN时钟之间的时间偏差(和/或时钟漂移),将基于5GS时钟的第一期望辅助信息转换为基于TSN时钟的第一期望辅助信息,转换后的第一期望辅助信息就可作为第一期望时间信息。或者,如果SMF无需进行时钟转换(例如5GS时钟与TSN时钟同步),则转换前的第一期望辅助信息例如为第一期望时间信息。
2、第一期望辅助信息包括期望的第一QoS流的突发到达时间偏移,或包括期望的第一QoS流的BAT的突发到达时间偏移所属的范围信息。则SMF可确定第一期望辅助信息为第一期望时间信息。
SMF根据第二期望辅助信息确定第二期望时间信息的方式,与SMF根据第一期望辅助信息确定第一期望时间信息的方式是类似的,不多赘述。
可选的,作为另一种实现方式,SMF还可根据第一期望时间信息和第二期望时间信息,以及根据第一UE与第二UE之间的关联信息(或者,根据第一QoS流与第二QoS流的匹配关系),得到第五期望时间信息,第五期望时间信息可指示第三业务流的期望传输时机。例如,第五期望时间信息包括第一期望时间信息和第二期望时间信息。或者,第五期望时间信息只是包括一个期望时间信息,该期望时间信息是根据第一期望时间信息和第二期望时间信息确定的。例如,第一期望时间信息指示了第一QoS流的期望突发到达时间偏移,第二期望时间信息指示了第二QoS流的期望突发到达时间偏移,根据前述内容可知,由于第一QoS流和第二QoS流相匹配,因此这两个突发到达时间偏移应该是相同的,因此第五期望时间信息只需包括第一期望时间信息或第二期望时间信息,即,只需包括一个期望突发时间偏移即可。
S509、SMF通过PCF向TSN AF发送第一期望时间信息和第二期望时间信息。例如,SMF可通过PCF向TSN AF发送第一期望时间信息和第二期望时间信息,则相应的,TSN AF可通过PCF接收第一期望时间信息和第二期望时间信息。
如果在S508中SMF未确定第五期望时间信息,则SMF可向TSN AF发送第一期望时间信息和第二期望时间信息。
或者,如果在S508中SMF确定了第五期望时间信息,则S509也可以替换为:SMF通过PCF向TSN AF发送第五期望时间信息。例如,SMF可通过PCF向TSN AF发送第五期望时间信息,则相应的,TSN AF可通过PCF接收第五期望时间信息。
S510、TSN AF向CNC发送第五期望时间信息。相应的,CNC从TSN AF接收第五期望时间信息。
如果TSN AF从SMF接收的是第一期望时间信息和第二期望时间信息,则TSN AF根据第一期望时间信息可确定第一业务流的期望传输时机,根据第二期望时间信息可确定第二业务流的期望传输时机,另外再参考第一UE与第二UE之间的关联信息,就能够确定第三业务流的期望传输时机,例如第三业务流的期望传输时机包括第一业务流的期望传输时机和第二业务流的期望传输时机。TSN AF根据第三业务流的期望传输时机,可以确定第五期望时间信息,第五期望时间信息就可指示第三业务流的期望传输时机。
例如第五期望时间信息包括第一期望时间信息和第二期望时间信息,且第五期望时间信息还指示了第一期望时间信息和第二期望时间信息与上下行的对应关系,例如第一期望时间信息用于上行业务流,第二期望时间信息用于下行业务流;或者第一期望时间信息用于下行业务流,第二期望时间信息用于上行业务流。例如第一期望时间信息用于上行业务流,第二期望时间信息用于下行业务流,则第三业务流在上行的期望传输时机,就是第一期望时间信息所指示的期望传输时机,第三业务流在下行的期望传输时机,就是第二期望时间信息所指示的期望传输时机。
又例如,第五期望时间信息包括一个期望时间信息,则第三业务流在上行的期望传输时机,就是第五期望时间信息所指示的期望传输时机,第三业务流在下行的期望传输时机,也是第五期望时间信息所指示的期望传输时机。
或者,如果TSN AF从SMF接收的是第五期望时间信息,则TSN AF可直接将第五期望时间信息发送给CNC。
另外,如果将TSN AF替换为TSCTSF,则第一期望时间信息和第二期望时间信息(或第五期望时间信息)的接收端例如为AF。
S511、CNC向TSN AF发送第一时间信息和第二时间信息。相应的,TSN AF从CNC接收第一时间信息和第二时间信息。第一时间信息可指示第一业务流的传输时机,第二时间信息可指示第二业务流的传输时机,这里的时间信息例如为BAT信息。
CNC接收第五期望时间信息后,可以更新原本为第一业务流和第二业务流所分配的BAT信息,例如,更新S501中的业务转发信息所指示的BAT信息。CNC可确定第一时间信息和第二时间信息,第一时间信息例如包括第一业务流的更新时间信息,第一业务流的更新时间信息例如包括第一业务流的更新BAT,或者包括第一业务流的更新BAT信息所属的范围信息,或者包括第一业务流的更新突发到达时间偏移,或者包括第一业务流的更新突发到达时间偏移所属的范围信息。其中,第一业务流的更新突发到达时间偏移,例如为第一业务流更新后的突发到达时间相对于第一业务流的预计突发到达时间(例如S501中的业务转发信息所指示的第一业务流的BAT)之间的偏移,或者为第一业务流更新后的突发到达时间相对于第一业务流的原突发到达时间之间的偏移,第一QoS流的原突发到达时间,例如为第一RAN已接收的第一QoS流所承载的数据包的突发到达时间。第二时间信息包括的内容也是类似的,不多赘述。
另外,如果将TSN AF替换为TSCTSF,则第一时间信息和第二时间信息的发送端例如为AF,TSCTSF可以通过NEF从AF获得第一时间信息和第二时间信息。
S512、TSN AF向PCF发送第二信息。相应的,PCF从TSN AF接收第二信息。
第二信息例如包括第三TSC辅助容器和第四TSC辅助容器,第三TSC辅助容器包括第一业务流的更新信息,第四TSC辅助容器包括第二业务流的更新信息。第一业务流的更新信息例如包括如下一项或多项:第一时间信息,第一业务流的周期,或,第一业务流的方向信息。同理,第二业务流的更新信息例如包括如下一项或多项:第二时间信息,第二业务流的周期,或,第二业务流的方向信息。
S513、PCF向SMF发送第三PCC规则和第四PCC规则。相应的,SMF从PCF接收第三PCC规则和第四PCC规则。
PCF可基于从TSN AF获取的第二信息为第一业务流生成第三PCC规则,以及为第二业务流生成第四PCC规则。其中,第三PCC规则可包括第三TSC辅助容器,第四PCC规则可包括第四TSC辅助容器。PCF可将第三PCC规则和第四PCC规则发送给SMF。
S514、SMF向第一RAN发送辅助信息3和辅助信息4。相应的,第一RAN从SMF接收辅助信息3和辅助信息4。
例如,SMF可根据第三PCC规则所包括的第三TSC辅助容器确定辅助信息3,以及根据第四PCC规则所包括的第四TSC辅助容器确定辅助信息4。例如也将辅助信息3称为第一辅助信息,将辅助信息4称为第二辅助信息。辅助信息3可指示第一QoS流的传输时机,例如指示第一QoS流的BAT,或指示第一QoS流的BAT所属的时间范围,或指示第一QoS流的突发到达时间偏移,或指示第一QoS流的突发到达时间偏移所述的时间范围等。辅助信息4可指示第二QoS流的传输时机,例如指示第二QoS流的BAT,或指示第二QoS流的BAT所属的时间范围,或指示第二QoS流的突发到达时间偏移,或指示第二QoS流的突发到达时间偏移所述的时间范围等。其中,一个QoS流的突发到达时间偏移,例如为该QoS流更新后的突发到达时间相对于预计突发到达时间之间的偏移。例如,第一 QoS流的预计突发到达时间,是辅助信息1所指示的BAT;第二QoS流的预计突发到达时间,是辅助信息2所指示的BAT。
第一RAN根据辅助信息3可确定第一QoS流的传输时机,例如可确定第一QoS流到达第一RAN的时间,或者确定第一QoS流到达第一RAN的时间范围。根据第一QoS流的传输时机,第一RAN可以为第一QoS流调度相应的资源,或者说,第一RAN可以确定第一QoS流的调度资源,以传输第一QoS流,例如将该调度资源称为第五调度资源。第五调度资源所包括的时域资源例如与辅助信息3所指示的传输时机一致,例如第五调度资源所包括的时域资源与辅助信息3所指示的传输时机相同,或者第五调度资源所包括的时域资源与辅助信息3所指示的传输时机之间的时间间隔小于第一阈值,使得第一QoS流在到达第一RAN或UE后就能得到及时传输。同理,第一RAN根据辅助信息4可确定第二QoS流的传输时机,根据第二QoS流的传输时机,第一RAN可以确定第二QoS流的调度资源,例如将该调度资源称为第六调度资源,第六调度资源所包括的时域资源也可以与辅助信息4所指示的传输时机一致。
本申请实施例中,RAN是根据无冲突的资源确定辅助信息3和辅助信息4,因此,RAN如果根据辅助信息3和辅助信息4分别为两个QoS流确定调度资源,可以使得所确定的调度资源与其他资源无冲突。也就是说,辅助信息3和辅助信息4是在考虑了两个QoS流的关联关系的情况下确定的,这使得两个QoS流到达RAN的入口或到达UE的出口的时间与RAN所确定的调度资源一致。例如,在其中一个QoS流到达RAN的入口或到达UE的出口时,RAN为该QoS流所调度的资源也刚好到达或即将到达。通过这种方式,可以使得这两个QoS流能够得到及时传输,减小QoS流的传输时延。
在图5所示的实施例中,两个QoS流是通过一个RAN进行传输。或者还有一种情况,第一QoS流和第二QoS流分别通过不同的RAN来传输,例如图4D。对于这种场景,对此本申请实施例提供第二种通信方法,在该方法中,两个RAN之间可以通过协商来确定两个QoS流的期望辅助信息。请参考图6,为该方法的流程图。该方法除了适用于图2或图3所示的架构外,还可适用于图4D所示的架构。
S601、TSN AF获得业务转发信息。
关于S601的更多内容,可参考图5所示的实施例中的S501。
S602、TSN AF向PCF发送第一信息。相应的,PCF从TSN AF接收第一信息。
可选的,第一信息可包括两个TSC辅助容器,分别为第一TSC辅助容器和第二TSC辅助容器,第一TSC辅助容器包括第一业务流的信息,第二TSC辅助容器包括第二业务流的信息。可选的,第一信息还包括关联信息,该关联信息可指示第一UE与第二UE相关联,或者,指示第一UE与第二UE相匹配。
关于S602的更多内容,例如对于业务流的信息以及关联信息等特征的介绍等,可参考图5所示的实施例中的S502。
S603、PCF向SMF发送PCC规则。相应的,SMF从PCF接收该PCC规则。可选的,该PCC规则可包括第一PCC规则和第二PCC规则。
关于S603的更多内容,例如对于PCC规则的介绍等,可参考图5所示的实施例中的S503。
S604、SMF确定辅助信息1和辅助信息2。
关于S604的更多内容,可参考图5所示的实施例中的S504。
S605、SMF向第一RAN发送辅助信息1,相应的,第一RAN从SMF接收辅助信息1。另外,SMF向第二RAN发送辅助信息2,相应的,第二RAN从SMF接收辅助信息2。
本申请实施例中,例如第一QoS流和第二QoS流通过不同的RAN传输,第一RAN传输第一QoS流,第二RAN传输第二QoS流。因此辅助信息1是供第一RAN使用的,SMF可将辅助信息1发送给第一RAN;辅助信息2是供第二RAN使用的,SMF可将辅助信息2发送给第二RAN。
可选的,SMF还可以将关联的QoS流的信息发送给相应的RAN。例如,SMF可将第二QoS流的信息发送给第一RAN,也可将第一QoS流的信息发送给第二RAN。对于其中一个RAN来说,接收了另一个QoS流的信息,也就能明确该RAN所传输的QoS流与该另一个QoS流是关联的QoS流。一个QoS流的信息例如包括该QoS流的QFI,可选的,还可包括该QoS流所在的PDU会话对应的接入网隧道信息,或包括该QoS流所在的PDU会话对应的核心网隧道信息,或包括该QoS流所在的PDU会话的标识等。
另外可选的,SMF还可将用于传输关联的QoS流的RAN的信息发送给相应的RAN。例如,SMF可将第一RAN的信息发送给第二RAN,也可将第二RAN的信息发送给第一RAN。其中,一个RAN的信息例如包括该RAN的标识,例如该RAN的节点ID(node ID)。或者,QoS流的信息也可能包括RAN的信息,例如第一QoS流的信息包括第一RAN的信息,第二QoS流的信息包括第二RAN的信息。如果是这种情况,则SMF向RAN发送相应的QoS流的信息即可。
例如SMF向第一RAN发送辅助信息1和第二QoS流的信息,那么,这两种信息可以携带在一条消息中,或者也可以携带在不同的消息中。SMF向第二RAN发送信息时,方式也是类似的。
S606、第一RAN与第二RAN协商确定第一QoS流和第二QoS流的期望辅助信息。
本申请实施例中,由于两个QoS流通过两个RAN传输,因此这两个RAN之间可以进行协商,以最终确定这两个QoS流的期望辅助信息。
例如,第一RAN可根据辅助信息1确定第五期望辅助信息。例如,第五期望辅助信息包括第三期望辅助信息,或第五期望辅助信息包括第三期望辅助信息和第四期望辅助信息。其中,第三期望辅助信息用于指示期望的第一QoS流的传输时机,第四期望辅助信息用于指示期望的第二QoS流的传输时机。
例如,第一RAN根据辅助信息1可确定第一QoS流的传输时机,例如可确定第一QoS流到达第一RAN或UE的时间,或者确定第一QoS流到达第一RAN或UE的时间范围。根据第一QoS流的传输时机,第一RAN可以为第一QoS流调度相应的资源,或者说,第一RAN可以确定第一QoS流的调度资源,以传输第一QoS流,例如将第一RAN根据辅助信息1确定的调度资源称为第一调度资源。第一调度资源所包括的时域资源例如与辅助信息1所指示的传输时机一致,例如第一调度资源所包括的时域资源与辅助信息1所指示的传输时机相同,或者第一调度资源所包括的时域资源与辅助信息1所指示的传输时机之间的时间间隔小于第一阈值,使得第一QoS流在到达第一RAN或UE后就能得到及时传输。
如果第一调度资源与其他资源冲突,则第一RAN可以确定与其他资源不冲突的资源,可将该资源作为第一QoS流的调度资源,例如该资源称为第二调度资源。第一RAN可以根据第二调度资源(或者说,根据第二调度资源的时域位置)确定第一QoS流的期望辅助 信息,例如称为第三期望辅助信息。第三期望辅助信息可指示期望的第一QoS流的传输时机,例如第三期望辅助信息所指示的传输时机与第二调度资源相匹配,这样可以使得第一QoS流到达第一RAN或UE时能得到及时传输。其中,其他资源例如是第一RAN为其他QoS流(是指除了第一QoS流之外的QoS流)确定的调度资源。关于资源冲突的介绍可参考图5所示的实施例中的S506。
根据图5所示的实施例可知,对于第一QoS流和第二QoS流,如果其中一个QoS流的期望辅助信息发生了变化,可能导致其中另一个QoS流的期望辅助信息也发生变化。因此可选的,第一RAN除了可以确定第三期望辅助信息外,还可以为第二QoS流确定期望辅助信息,例如第一RAN根据第三期望辅助信息所指示的传输时机确定第四期望辅助信息,第四期望辅助信息指示期望的第二QoS流的传输时机。
或者,如果第一调度资源与其他资源不冲突,则第一RAN无需确定第三期望辅助信息,也无需确定第四期望辅助信息。
第二RAN也从SMF接收了辅助信息2。例如第二RAN根据辅助信息2可确定第二QoS流的传输时机,例如可确定第二QoS流到达第二RAN或UE的时间,或者确定第二QoS流到达第二RAN或UE的时间范围。根据第二QoS流的传输时机,第二RAN可以为第二QoS流调度相应的资源,或者说,第二RAN可以确定第二QoS流的调度资源,以传输第二QoS流,例如将第二RAN根据辅助信息2确定的调度资源称为第三调度资源。第三调度资源所包括的时域资源例如与辅助信息2所指示的传输时机一致,例如第三调度资源所包括的时域资源与辅助信息2所指示的传输时机相同,或者第三调度资源所包括的时域资源与辅助信息2所指示的传输时机之间的时间间隔小于第一阈值,使得第二QoS流在到达第二RAN或UE后就能得到及时传输。
如果第三调度资源与其他资源冲突,则第二RAN可以确定与其他资源不冲突的资源,可将该资源作为第二QoS流的调度资源,例如该资源称为第四调度资源。第二RAN可以根据第四调度资源(或者说,根据第四调度资源的时域位置)确定第二QoS流的期望辅助信息,例如称为期望辅助信息1。期望辅助信息1可指示期望的第二QoS流的传输时机。其中,其他资源例如是第二RAN为其他QoS流(是指除了第二QoS流之外的QoS流)确定的调度资源。关于资源冲突的介绍可参考图5所示的实施例中的S506。
可选的,第二RAN除了可以确定期望辅助信息1外,还可以为第一QoS流确定期望辅助信息,例如第二RAN根据期望辅助信息1所指示的传输时机确定期望辅助信息2,期望辅助信息2指示期望的第一QoS流的传输时机。
或者,如果第三调度资源与其他资源不冲突,则第二RAN无需确定期望辅助信息1,也无需确定期望辅助信息2。
关于第一RAN与第二RAN之间的协商过程,可以有多种方式。例如一种协商过程为,第一RAN确定了第五期望辅助信息,则第一RAN可将第五期望辅助信息发送给第二RAN。其中,第五期望辅助信息包括第三期望辅助信息,或者包括第三期望辅助信息和第四期望辅助信息。如果第五期望辅助信息包括第三期望辅助信息且不包括第四期望辅助信息,且第二RAN也确定了期望辅助信息2,则第二RAN可以确定第三期望辅助信息与期望辅助信息2是否一致,如果一致,则第二RAN可接受第三期望辅助信息;或者,如果第五期望辅助信息包括第三期望辅助信息且不包括第四期望辅助信息,且第二RAN确定了期望辅助信息1且未确定期望辅助信息2,则第二RAN可以确定期望辅助信息1所指示的时间 与第三期望辅助信息所指示的时间是否匹配,如果匹配,则第二RAN可以接受第三期望辅助信息,如果不匹配,则第二RAN不接受第三期望辅助信息;或者,如果第五期望辅助信息包括第三期望辅助信息且不包括第四期望辅助信息,且第二RAN未确定期望辅助信息1和期望辅助信息2,则第二RAN可以接受第三期望辅助信息。
或者,如果第五期望辅助信息包括第三期望辅助信息和第四期望辅助信息,且第二RAN确定了期望辅助信息1和期望辅助信息2,则第二RAN可以确定第四期望辅助信息与期望辅助信息1是否一致,以及确定第三期望辅助信息与期望辅助信息2是否一致,如果两项比较结果均为一致,则第二RAN可接受第五期望辅助信息,如果两项比较结果中有任一个或两个不一致,则第二RAN不接受第五期望辅助信息;或者,如果第五期望辅助信息包括第三期望辅助信息和第四期望辅助信息,且第二RAN确定了期望辅助信息1且未确定期望辅助信息2,则第二RAN可以确定第四期望辅助信息与期望辅助信息1是否一致,如果一致,则第二RAN可接受第五期望辅助信息;或者,如果第五期望辅助信息包括第三期望辅助信息和第四期望辅助信息,且第二RAN未确定期望辅助信息1和期望辅助信息2,则第二RAN可以接受第五期望辅助信息。
其中,如果第二RAN接受第五期望辅助信息,则本申请实施例第二RAN向第一RAN发送确认信息。相应的,第一RAN从第二RAN接收该确认信息。该确认信息可指示第二RAN接受第五期望辅助信息。
或者,如果第二RAN不接受第五期望辅助信息,则第二RAN可以向第一RAN发送否认信息,该否认信息用于指示第二RAN不接受第五期望辅助信息。第一RAN接收该否认信息后,可以重新为第一QoS流和/或第二QoS流确定期望辅助信息,并将重新确定的期望辅助信息发送给第二RAN以进行协商,直到第一RAN从第二RAN接收确认信息为止。
或者,如果第二RAN不接受第五期望辅助信息,第二RAN也可以向第一RAN发送第二RAN所确定的期望辅助信息,例如将第二RAN确定的期望辅助信息称为第六期望辅助信息(第六期望辅助信息包括期望辅助信息1,或包括期望辅助信息1和期望辅助信息2)。第一RAN接收第六期望辅助信息后,可以确定是否能够接受第六期望辅助信息。例如第一RAN可根据第五期望辅助信息和/或辅助信息1等因素来确定是否接受第六期望辅助信息。例如,如果第六期望辅助信息指示的时间与第五期望辅助信息指示的时间之间的差值小于第二阈值,则第二RAN可以接受第六期望辅助信息。或者,第一RAN也可以根据其他方式来确定是否接受第六期望辅助信息。如果第一RAN接受第六期望辅助信息,则第一RAN可向第二RAN发送确认信息,以指示第一RAN接受第六期望辅助信息。而如果第一RAN不接受第六期望辅助信息,则第一RAN可以向第二RAN发送否认信息,或者发送第一RAN所认可的期望辅助信息,以此类推。
在如上的协商过程中,对于一个QoS流,一个RAN是给另一个RAN发送了一个期望辅助信息,该期望辅助信息可能指示该QoS流的一个期望传输时机。或者还有一种情况,对于一个QoS流,一个RAN可以向另一个RAN发送多个期望辅助信息,这多个期望辅助信息可指示该QoS流的多个期望传输时机,对于另一个RAN来说,可以从这多个期望传输时机中选择一个期望传输时机。例如,第一RAN向第二RAN发送期望辅助信息a和期望辅助信息b,期望辅助信息a和期望辅助信息b均指示第一QoS流的传输时机,这两个期望辅助信息指示的传输时机不同。第二RAN可以确定期望辅助信息a与期望辅助信 息2是否一致,如果一致,则第二RAN可接受期望辅助信息a,无需再处理期望辅助信息b;或者,如果期望辅助信息a与期望辅助信息2不一致,则第二RAN再确定期望辅助信息b与期望辅助信息2是否一致,如果一致,则第二RAN可接受期望辅助信息b,而如果期望辅助信息b与期望辅助信息2也不一致,则第二RAN也不接受期望辅助信息b。
如果第二RAN接受期望辅助信息a或期望辅助信息b,则第二RAN可以向第一RAN发送确认信息,以确认第二RAN接受期望辅助信息a或期望辅助信息b,协商过程结束。本申请实施例中,一个确认信息用于确认接受某个信息,例如可包括该信息的标识,通过该信息的标识来指示确认接受该信息。而如果第二RAN不接受期望辅助信息a和期望辅助信息b,则第二RAN可以向第一RAN发送否认信息或第二RAN对于第一QoS流所建议的期望辅助信息,以继续协商过程,对此可参考上文的介绍。其中,第二RAN所发送的对于第一QoS流的建议期望辅助信息,可以包括一个或多个期望辅助信息。
还有可能,第一RAN不向第二RAN发送针对第一QoS流的期望辅助信息,而是向第二RAN发送针对第二QoS流的多个期望辅助信息。第二RAN如果接收了针对第二QoS流的多个期望辅助信息,则可确定是否接受相应的期望辅助信息,确定方式可参考上文。
或者,第一RAN既向第二RAN发送针对第一QoS流的多个期望辅助信息,也向第二RAN发送针对第二QoS流的多个期望辅助信息,针对第二QoS的多个期望辅助信息均指示第二QoS流的期望传输时机。例如第一RAN向第二RAN发送了期望辅助信息a、期望辅助信息b、期望辅助信息c、期望辅助信息d,期望辅助信息c和期望辅助信息d均指示第二QoS流的传输时机,这两个期望辅助信息指示的传输时机不同。可选的,第一RAN在向第二RAN发送的携带了期望辅助信息的信息中,可以包括第一指示,第一指示可指示这些期望辅助信息与QoS流的对应关系,例如期望辅助信息a和期望辅助信息b对应第一QoS流,期望辅助信息c和期望辅助信息d对应第二QoS流。可选的,第一指示例如为QoS流标识,例如QFI。可选的,在该携带了期望辅助信息的信息中还可包括第二指示,用于指示对应于第一QoS流的期望辅助信息与对应于第二QoS流的期望辅助信息之间的关联关系。例如,第二指示可指示,期望辅助信息a与期望辅助信息c关联,期望辅助信息b与期望辅助信息d关联。
第二RAN可以确定是否接受期望辅助信息a和期望辅助信息c,关于确定方式,可参考前文中第二RAN接收第三期望辅助信息和第四期望辅助信息后的确认方式。如果第二RAN接受期望辅助信息a和期望辅助信息c,则第二RAN可以向第一RAN发送确认信息,以确认第二RAN接受期望辅助信息a和期望辅助信息c,协商过程结束。而如果第二RAN不接受期望辅助信息a和期望辅助信息c,则第二RAN可以确定是否接受期望辅助信息b和期望辅助信息d,确定方式可参考上文。
如果第二RAN接受期望辅助信息b和期望辅助信息d,则第二RAN可以向第一RAN发送确认信息,以确认第二RAN接受期望辅助信息b和期望辅助信息d,协商过程结束。
或者,如果第二RAN对于期望辅助信息b和期望辅助信息d也不接受,则第二RAN可以向第一RAN发送否认信息或第二RAN所建议的期望辅助信息,对此可参考上文的介绍。其中,第二RAN所发送的建议期望辅助信息,可以包括对应于第一QoS流的一个或多个期望辅助信息,和/或包括对应于第二QoS流的一个或多个期望辅助信息。第一RAN接收否认信息或建议期望辅助信息后,可继续与第二RAN协商第一QoS流和第二QoS流的期望辅助信息,协商过程可参考上文。
或者,如果第二RAN接受期望辅助信息a或期望辅助信息b,但不接受期望辅助信息c和期望辅助信息d,则第二RAN可以向第一RAN发送第三信息,第三信息可指示第二RAN接受期望辅助信息a或期望辅助信息b,且不接受期望辅助信息c和期望辅助信息d。第一RAN接收第三信息后,可继续与第二RAN协商第二QoS流的期望辅助信息,协商过程可参考上文。
或者,如果第二RAN接受期望辅助信息c或期望辅助信息d,但不接受期望辅助信息a和期望辅助信息b,则处理方式与上一种方式是类似的。
综上可以看出,第一RAN和第二RAN之间的协商过程可能通过一个或多个步骤来完成,具体不做限制。在第一RAN和第二RAN协商完毕后(例如,其中一个RAN从另一个RAN接收了确认信息,则表明协商完毕),可以最终确定第一QoS流的期望辅助信息和第二QoS流的期望辅助信息。本申请实施例中,例如最终确定的第一QoS流的期望辅助信息就是第三期望辅助信息,最终确定的第二QoS流的期望辅助信息就是第四期望辅助信息。
S607、第一RAN向SMF发送第五期望辅助信息。相应的,SMF从第一RAN接收第五期望辅助信息。
例如,第一RAN可以向SMF发送第三期望辅助信息,第二RAN可以向SMF发送第四期望辅助信息;或者,第一RAN可以向SMF发送第三期望辅助信息和第四期望辅助信息,第二RAN无需向SMF发送期望辅助信息;或者,第二RAN可以向SMF发送第三期望辅助信息和第四期望辅助信息,第一RAN无需向SMF发送期望辅助信息。S608以第一RAN向SMF发送第五期望辅助信息为例。
S608、SMF确定第一期望时间信息和第二期望时间信息。
关于S608的更多内容,可参考图5所示的实施例中的S508。
S609、SMF向TSN AF发送第一期望时间信息和第二期望时间信息。
关于S609的更多内容,可参考图5所示的实施例中的S509。
S610、TSN AF向CNC发送第五期望时间信息。相应的,CNC从TSN AF接收第五期望时间信息。
关于S610的更多内容,可参考图5所示的实施例中的S510。
S611、CNC向TSN AF发送第一时间信息和第二时间信息。相应的,TSN AF从CNC接收第一时间信息和第二时间信息。
关于S611的更多内容,可参考图5所示的实施例中的S511。
S612、TSN AF向PCF发送第二信息。相应的,PCF从TSN AF接收第二信息。
关于S612的更多内容,可参考图5所示的实施例中的S512。
S613、PCF向SMF发送第三PCC规则和第四PCC规则。相应的,SMF从PCF接收第三PCC规则和第四PCC规则。
关于S613的更多内容,可参考图5所示的实施例中的S513。
S614、SMF向第一RAN发送辅助信息3,相应的,第一RAN从SMF接收辅助信息3。另外,SMF向第二RAN发送辅助信息4,相应的,第二RAN从SMF接收辅助信息4。
关于S614的更多内容,可参考图5所示的实施例中的S514。
本申请实施例中,在确定辅助信息3和辅助信息4时考虑了两个QoS流的关联关系,因此根据这两个辅助信息所确定的调度资源,能够符合两个QoS流到达RAN的入口或到 达UE的出口的时间。而且,根据第一辅助信息所确定的第五调度资源与其他的调度资源无冲突,以及根据第二辅助信息所确定的第六调度资源与其他调度资源无冲突,由此可以保证第一QoS流和第二QoS流的正常传输。在两个RAN传输两个QoS流的情况下,本申请实施例能够实现RAN之间的协商,从而有助于确定两个RAN都能够认可的期望辅助信息。
对于第一QoS流和第二QoS流通过不同的RAN传输的场景,还可以通过其他方式来确定QoS流的期望辅助信息。本申请实施例提供第三种通信方法,在该方法中,SMF与两个RAN之间可以通过协商来确定两个QoS流的期望辅助信息。请参考图7,为该方法的流程图。该方法除了适用于图2或图3所示的架构外,还可适用于图4D所示的架构。
S701、TSN AF获得业务转发信息。
关于S701的更多内容,可参考图5所示的实施例中的S501。
S702、TSN AF向PCF发送第一信息。相应的,PCF从TSN AF接收第一信息。
关于S702的更多内容,可参考图5所示的实施例中的S502。
S703、PCF向SMF发送PCC规则。相应的,SMF从PCF接收该PCC规则。可选的,该PCC规则可包括第一PCC规则和第二PCC规则。
关于S703的更多内容,例如对于PCC规则的介绍等,可参考图5所示的实施例中的S503。
S704、SMF确定辅助信息1和辅助信息2。
关于S704的更多内容,可参考图5所示的实施例中的S504。
S705、SMF向第一RAN发送辅助信息1,相应的,第一RAN从SMF接收辅助信息1。另外,SMF向第二RAN发送辅助信息2,相应的,第二RAN从SMF接收辅助信息2。
S706、第一RAN确定第一期望辅助信息。另外,第二RAN确定第二期望辅助信息。
本申请实施例中,由于两个RAN可能并不知道自己所传输的QoS流与其他的QoS流相关联,因此这两个RAN确定各自传输的QoS流的期望辅助信息即可。
关于第一RAN确定第一期望辅助信息的过程可参考图5所示的实施例中的S605。关于第二RAN确定第二期望辅助信息的过程也可参考图5所示的实施例中的S505。只是本申请实施例中,第一RAN在确定第一期望辅助信息时无需考虑第二QoS流,第二RAN在确定第一期望辅助信息时也无需考虑第一QoS流。
另外,将第一RAN和第二RAN的确定过程放在一个步骤中,并不是指这两个步骤一定会同时发生。在实际应用中,第一RAN确定第一期望辅助信息的过程可能先发生,或者第二RAN确定第二期望辅助信息的过程可能先发生,或者这两个过程可能同时发生。
S707、第一RAN向SMF发送第一期望辅助信息。相应的,SMF从第一RAN接收第一期望辅助信息。另外,第二RAN向SMF发送第二期望辅助信息。相应的,SMF从第二RAN接收第二期望辅助信息。
将第一RAN和第二RAN的发送过程放在一个步骤中,并不是指这两个步骤一定会同时发生。在实际应用中,第一RAN发送第一期望辅助信息的过程可能先发生,或者第二RAN发送第二期望辅助信息的过程可能先发生,或者这两个过程可能同时发生。
S708、SMF与第一RAN协商确定第一QoS流的期望辅助信息,和/或与第二RAN协商确定第二QoS流的期望辅助信息。
由于第一RAN和第二RAN都不知道第一QoS流与第二QoS流相关联,因此第一期 望辅助信息指示的时间(或者说,指示的传输时机)与第二期望辅助信息指示的时间(或者说,指示的传输时机)可能相匹配,也可能不匹配。其中,两个时间相匹配(或者说,两个传输时机相匹配),例如为,这两个时间相对于各自的预计传输时机之间具有相同的偏移。例如,如果第一期望辅助信息指示的第一QoS流的传输时机相对于第一QoS流的预计传输时机具有第一偏移,且第二期望辅助信息指示的第二QoS流的传输时机相对于第二QoS流的预计传输时机也具有第一偏移,表明第一期望辅助信息指示的时间与第二期望辅助信息指示的时间相匹配;或者,如果第一期望辅助信息指示的第一QoS流的传输时机相对于第一QoS流的预计传输时机具有第一偏移,且第二期望辅助信息指示的第二QoS流的传输时机相对于第二QoS流的预计传输时机具有第二偏移,第二偏移与第一偏移不同,表明第一期望辅助信息指示的时间与第二期望辅助信息指示的时间不匹配;或者,如果第一期望辅助信息指示的第一QoS流的传输时机相对于第一QoS流的预计传输时机具有第三偏移,且第二期望辅助信息指示的第二QoS流的传输时机相对于第二QoS流的预计传输时机具有第一偏移,第三偏移与第一偏移不同,表明第一期望辅助信息指示的时间与第二期望辅助信息指示的时间不匹配。
如果第一期望辅助信息指示的时间与第二期望辅助信息指示的时间相匹配,则SMF可接受第一期望辅助信息和第二期望辅助信息,无需执行S708。而如果第一期望辅助信息指示的时间与第二期望辅助信息指示的时间不匹配,则SMF可能不接受第一期望辅助信息和/或第二期望辅助信息,此时可执行S708。也就是说,SMF可以根据来自第一RAN的期望辅助信息确定是否接受来自第二RAN的期望辅助信息;也可以根据来自第二RAN的期望辅助信息确定是否接受来自第一RAN的期望辅助信息。或者说,SMF是根据来自第一RAN的期望辅助信息和来自第二RAN的期望辅助信息,确定是否能够接受这些期望辅助信息。
例如,SMF确定第一期望辅助信息指示的时间与第二期望辅助信息指示的时间不匹配,则在S708中,SMF可以重新为第一QoS流和/或第二QoS流确定期望辅助信息。例如,SMF确定第一QoS流的期望辅助信息继续为第一期望辅助信息,并确定与第一期望辅助信息所指示的时间相匹配的时间(关于“时间匹配”的介绍可参考上文),再根据与第一期望辅助信息所指示的时间相匹配的时间为第二QoS流确定期望辅助信息,例如称为期望辅助信息3。在这种情况下,因为第一期望辅助信息未发生变化,因此SMF可以无需与第一RAN协商,可以只与第二RAN协商确定第二QoS流的期望辅助信息即可。
又例如,SMF确定第二QoS流的期望辅助信息继续为第二期望辅助信息,并确定与第二期望辅助信息所指示的时间相匹配的时间,再根据与第二期望辅助信息所指示的时间相匹配的时间为第一QoS流确定期望辅助信息,例如称为期望辅助信息4。在这种情况下,因为第二期望辅助信息未发生变化,因此SMF可以无需与第二RAN协商,可以只与第一RAN协商确定第一QoS流的期望辅助信息即可。
再例如,SMF可以重新为第一QoS流确定期望辅助信息,例如称为期望辅助信息4。SMF确定与期望辅助信息4所指示的时间相匹配的时间,再根据与期望辅助信息4所指示的时间相匹配的时间为第二QoS流确定期望辅助信息,例如称为期望辅助信息3。在这种情况下,SMF可以与第一RAN协商确定第一QoS流的期望辅助信息,以及与第二RAN协商确定第二QoS流的期望辅助信息。
还例如,SMF可以重新为第二QoS流确定期望辅助信息,例如称为期望辅助信息3。 SMF确定与期望辅助信息3所指示的时间相匹配的时间,再根据与期望辅助信息3所指示的时间相匹配的时间为第一QoS流确定期望辅助信息,例如称为期望辅助信息4。在这种情况下,SMF可以与第一RAN协商确定第一QoS流的期望辅助信息,以及与第二RAN协商确定第二QoS流的期望辅助信息。
例如SMF确定了第一QoS流的期望辅助信息4,SMF可将期望辅助信息4发送给第一RAN。第一RAN接收期望辅助信息4后,可以确定是否接受期望辅助信息4。例如,如果根据期望辅助信息4指示的时间所确定的调度资源与其他调度资源无冲突,则第一RAN可接受期望辅助信息4,否则第一RAN不接受期望辅助信息4。如果第一RAN接受期望辅助信息4,则第一RAN可向SMF发送确认信息,以指示第一RAN接受期望辅助信息4。而如果第一RAN不接受期望辅助信息4,则第一RAN可以向SMF发送否认信息,以指示第一RAN不接受期望辅助信息4。SMF接收该否认信息后,可以重新为第一QoS流确定期望辅助信息,例如称为期望辅助信息5(这可能涉及到SMF也需要重新为第二QoS流确定期望辅助信息,并进一步与第二RAN协商),SMF可再将期望辅助信息5发送给第一RAN,以继续与第一RAN协商,直到从第一RAN接收确认信息为止,或者直到达到协商时长上限为止。
或者,如果第一RAN不接受期望辅助信息4,则第一RAN也可以向SMF发送第一RAN所认可的期望辅助信息,例如称为期望辅助信息6。SMF可以确定是否接受期望辅助信息6,例如SMF可以确定期望辅助信息6所指示的时间与第二QoS流当前的期望辅助信息所指示的时间是否匹配,如果二者匹配,则SMF可接受期望辅助信息6,否则SMF不接受期望辅助信息6。如果SMF接受期望辅助信息6,则SMF可向第一RAN发送确认信息,以指示SMF接受期望辅助信息6,SMF与第一RAN的协商过程结束。或者,如果SMF不接受期望辅助信息6,则SMF可以向第一RAN发送否认信息或发送SMF所认可的期望辅助信息等,以继续协商,直到从第一RAN接收确认信息为止,或者直到达到协商时长上限为止。
在如上的协商过程中,对于一个QoS流,SMF是给RAN发送了一个期望辅助信息,该期望辅助信息可能指示该QoS流的一个期望传输时机。或者还有一种情况,对于一个QoS流,SMF可以向RAN发送多个期望辅助信息,这多个期望辅助信息可指示该QoS流的多个期望传输时机,对于RAN来说,可以从这多个期望传输时机中选择一个期望传输时机。例如,SMF向第一RAN发送期望辅助信息e和期望辅助信息f,期望辅助信息e和期望辅助信息f均指示第一QoS流的传输时机,这两个期望辅助信息指示的传输时机不同。第一RAN可以确定是否接受期望辅助信息e,确定方式可参考上文。如果接受期望辅助信息e,则可以无需再处理期望辅助信息f;或者,如果不接受期望辅助信息e,则第一RAN可再确定是否接受期望辅助信息f。
如果第一RAN接受期望辅助信息e或期望辅助信息f,则第一RAN可以向SMF发送确认信息,以确认第一RAN接受期望辅助信息e或期望辅助信息f,协商过程结束。而如果第一RAN不接受期望辅助信息e和期望辅助信息f,则第一RAN可以向SMF发送否认信息或发送第一RAN对于第一QoS流所建议的期望辅助信息,以继续协商过程。对此可参考上文的介绍。其中,第一RAN所发送的对于第一QoS流的建议期望辅助信息,可以包括一个或多个期望辅助信息,SMF可以对多个期望辅助信息分别处理。
或者,在协商过程中,对于一个QoS流,RAN也有可能向SMF发送多个期望辅助信 息,这多个期望辅助信息可指示该QoS流的多个期望传输时机,对于SMF来说,可以从这多个期望传输时机中选择一个期望传输时机。也就是说,在S707中,第一RAN可能向SMF发送一个或多个期望辅助信息,第一期望辅助信息是其中一个;第二RAN也可能向SMF发送一个或多个期望辅助信息,第二期望辅助信息是其中一个。例如在S707中,第一RAN向SMF发送期望辅助信息g和期望辅助信息h,其中,期望辅助信息g例如为第一期望辅助信息。期望辅助信息g和期望辅助信息h均指示第一QoS流的传输时机,这两个期望辅助信息指示的传输时机不同。SMF可以确定是否接受期望辅助信息g,其中,如果SMF从第二RAN接收了多个期望辅助信息,则SMF可根据这多个期望辅助信息确定是否接受期望辅助信息g,只要根据其中一个期望辅助信息确定能够接受期望辅助信息g,则SMF确定接受期望辅助信息g。其中,SMF根据来自第二RAN的某个期望辅助信息确定是否能够接受期望辅助信息g,确定方式可参考上文(例如,如果来自第二RAN的某个期望辅助信息指示的传输时机与期望辅助信息g指示的传输时机相同,则SMF可以接受期望辅助信息g)。如果SMF接受期望辅助信息g,则可以无需再处理期望辅助信息h;或者,如果SMF不接受期望辅助信息g,则SMF可再通过类似方式确定是否接受期望辅助信息h。
如果SMF接受期望辅助信息g或期望辅助信息h,则SMF可以向第一RAN发送确认信息,以确认SMF接受期望辅助信息g或期望辅助信息h,协商过程结束。而如果SMF不接受期望辅助信息g和期望辅助信息h,则SMF可以向第一RAN发送否认信息或发送SMF对于第一QoS流所建议的期望辅助信息,以继续协商过程。对此可参考上文的介绍。其中,SMF所发送的对于第一QoS流的建议期望辅助信息,可以包括一个或多个期望辅助信息,第一RAN可以对多个期望辅助信息分别处理。
在S708中,SMF与两个RAN之间的协商过程是类似的,对于SMF与第二RAN之间的协商过程不再多赘述。
本申请实施例中,例如将SMF与第一RAN最终协商确定的第一QoS流的期望辅助信息称为第三期望辅助信息,将SMF与第二RAN最终协商确定的第二QoS流的期望辅助信息称为第四期望辅助信息。
S709、SMF确定第一期望时间信息和第二期望时间信息。在确定第三期望辅助信息和第四期望辅助信息后,SMF可以确定第一期望时间信息和第二期望时间信息。
关于S709的更多内容,可参考图5所示的实施例中的S508。
S710、SMF向TSN AF发送第一期望时间信息和第二期望时间信息。
关于S710的更多内容,可参考图5所示的实施例中的S509。
S711、TSN AF向CNC发送第五期望时间信息。相应的,CNC从TSN AF接收第五期望时间信息。
关于S711的更多内容,可参考图5所示的实施例中的S510。
S712、CNC向TSN AF发送第一时间信息和第二时间信息。相应的,TSN AF从CNC接收第一时间信息和第二时间信息。
关于S712的更多内容,可参考图5所示的实施例中的S511。
S713、TSN AF向PCF发送第二信息。相应的,PCF从TSN AF接收第二信息。
关于S713的更多内容,可参考图5所示的实施例中的S512。
S714、PCF向SMF发送第三PCC规则和第四PCC规则。相应的,SMF从PCF接收 第三PCC规则和第四PCC规则。
关于S714的更多内容,可参考图5所示的实施例中的S513。
S715、SMF向第一RAN发送辅助信息3,相应的,第一RAN从SMF接收辅助信息3。另外,SMF向第二RAN发送辅助信息4,相应的,第二RAN从SMF接收辅助信息4。
关于S715的更多内容,可参考图5所示的实施例中的S514。
本申请实施例中,在确定辅助信息3和辅助信息4时考虑了两个QoS流的关联关系,因此根据这两个辅助信息所确定的调度资源,能够符合两个QoS流到达RAN的入口或到达UE的出口的时间。而且,根据第一辅助信息所确定的第五调度资源与其他的调度资源无冲突,以及根据第二辅助信息所确定的第六调度资源与其他调度资源无冲突,由此可以保证第一QoS流和第二QoS流的正常传输。在两个RAN传输两个QoS流的情况下,本申请实施例能够实现SMF与RAN之间的协商,从而有助于确定两个RAN都能够认可的期望辅助信息。另外,在SMF与RAN的协商过程中,SMF作为核心网设备,可以具有一定的主导性,或者说具有一定的决策性,RAN可以更倾向于接受SMF所建议的期望辅助信息,这样有助于缩短协商过程,提高业务传输效率。
对于第一QoS流和第二QoS流通过不同的RAN传输的场景,除了由SMF与RAN实现协商外,还可以由其他核心网设备与RAN进行协商。本申请实施例提供第四种通信方法,在该方法中,TSN AF与两个RAN之间可以通过协商来确定两个QoS流的期望辅助信息。请参考图8,为该方法的流程图。该方法除了适用于图2或图3所示的架构外,还可适用于图4D所示的架构。
S801、TSN AF获得业务转发信息。
关于S801的更多内容,可参考图5所示的实施例中的S501。
S802、TSN AF向PCF发送第一信息。相应的,PCF从TSN AF接收第一信息。
关于S802的更多内容,可参考图5所示的实施例中的S502。
S803、PCF向SMF发送PCC规则。相应的,SMF从PCF接收该PCC规则。可选的,该PCC规则可包括第一PCC规则和第二PCC规则。
关于S803的更多内容,例如对于PCC规则的介绍等,可参考图5所示的实施例中的S503。
S804、SMF确定辅助信息1和辅助信息2。
关于S804的更多内容,可参考图5所示的实施例中的S504。
S805、SMF向第一RAN发送辅助信息1,相应的,第一RAN从SMF接收辅助信息1。另外,SMF向第二RAN发送辅助信息2,相应的,第二RAN从SMF接收辅助信息2。
S806、第一RAN确定第一期望辅助信息。另外,第二RAN确定第二期望辅助信息。
关于S806的更多内容,可参考图7所示的实施例中的S706。
S807、第一RAN向SMF发送第一期望辅助信息。相应的,SMF从第一RAN接收第一期望辅助信息。另外,第二RAN向SMF发送第二期望辅助信息。相应的,SMF从第二RAN接收第二期望辅助信息。
S808、SMF确定第一期望时间信息和第二期望时间信息。
例如,SMF根据第一期望辅助信息和第二期望辅助信息确定第一期望时间信息和第二期望时间信息。
关于S808的更多内容,可参考图5所示的实施例中的S508。
S809、SMF向TSN AF发送第一期望时间信息和第二期望时间信息。
关于S809的更多内容,可参考图5所示的实施例中的S509。
S810、TSN AF与第一RAN协商确定第一QoS流对应的期望时间信息,和/或,与第二RAN协商确定第二QoS流对应的期望时间信息。其中,一个QoS流对应的期望时间信息,可指示所期望的该QoS流的传输时机。
由于第一RAN和第二RAN都不知道第一QoS流与第二QoS流相关联,因此第一期望辅助信息指示的时间(或者说,指示的传输时机)与第二期望辅助信息指示的时间(或者说,指示的传输时机)可能相匹配,也可能不匹配。相应的,第一期望时间信息和第二期望时间信息是根据第一期望辅助信息和第二期望辅助信息确定的,则第一期望时间信息指示的时间(或者说,指示的传输时机)和第二期望时间信息指示的时间(或者说,指示的传输时机)可能相匹配,也可能不匹配。关于两个时间(或者说两个传输时机)匹配的介绍,可参考图7所示的实施例。
如果第一期望时间信息指示的时间与第二期望时间信息指示的时间相匹配,则TSN AF接受第一期望时间信息和第二期望时间信息,无需执行S810。而如果第一期望时间信息指示的时间与第二期望时间信息指示的时间不匹配,则可执行S810。
如果第一期望时间信息指示的时间与第二期望时间信息指示的时间不匹配,则TSN AF可能不接受第一期望时间信息和/或第二期望时间信息,在S810中,TSN AF可以重新为第一QoS流和/或第二QoS流确定对应的时间信息。关于这部分内容可参考图7所示的实施例中的S708。本申请实施例与S708不同的是TSN AF与RAN之间的协商过程,该协商过程相对于SMF与RAN之间的协商过程有一些不同,因此下面介绍TSN AF与RAN之间的协商过程。
例如TSN AF为第一QoS流确定了期望时间信息,可称为期望时间信息1,TSN AF可将期望时间信息1发送给PCF,例如TSN AF可向PCF发送TSC辅助容器1,TSC辅助容器1可包括第一业务流的更新信息,第一业务流的更新信息可包括期望时间信息1,关于TSC辅助容器1包括的其他内容可参考图5所示的实施例中的S502。PCF可向SMF发送PCC规则1,PCC规则1可包括TSC辅助容器1。SMF可根据TSC辅助容器1确定第一QoS流的期望辅助信息,例如称为期望辅助信息7,期望辅助信息7可指示第一QoS流的传输时机,SMF可将期望辅助信息7发送给第一RAN,这样,相当于第一RAN从TSN AF接收了需要协商的信息。第一RAN可以确定是否能够接受期望辅助信息7。例如,如果根据期望辅助信息7所指示的时间调度的资源与其他资源之间无冲突,则第一RAN能够接受期望辅助信息7,否则第一RAN不接受期望辅助信息7。
如果第一RAN接受期望辅助信息7,则第一RAN可向SMF发送确认信息,以指示第一RAN接受期望辅助信息7。SMF可通过PCF向TSN AF发送该确认信息,则TSN AF与第一RAN的协商过程完毕。
或者,如果第一RAN不接受期望辅助信息7,则第一RAN可以向SMF发送否认信息,以指示第一RAN不接受期望辅助信息7。SMF可通过PCF向TSN AF发送该否认信息。TSN AF接收该否认信息后,可以重新为第一QoS流确定期望时间信息,再通过如上流程与第一RAN协商,直到从第一RAN接收确认信息为止,或者直到达到协商时长上限为止。
或者,如果第一RAN不接受期望辅助信息7,则第一RAN也可以为第一QoS流确定期望辅助信息,例如称为期望辅助信息8。例如,第一RAN可以确定与其他资源无冲突的 资源,并根据该资源的时域位置确定期望辅助信息8。第一RAN可将期望辅助信息8发送给SMF,SMF可根据期望辅助信息8确定期望时间信息,例如称为期望时间信息2,SMF将期望时间信息2发送给TSN AF,TSN AF可以确定是否接受期望时间信息2。例如,如果期望时间信息2指示的时间与第二QoS流当前的期望时间信息指示的时间相匹配,则TSN AF可接受期望时间信息2,否则TSN AF不接受期望时间信息2。如果TSN AF接受期望时间信息2,则TSN AF可发送确认信息,以指示TSN AF接受期望时间信息2。该确认信息可经过SMF等网元到达第一RAN,第一RAN与TSN AF的协商过程结束。
或者,如果TSN AF不接受期望时间信息2,则TSN AF可以向第一RAN发送否认信息或者TSN AF所认可的第一QoS流的新的期望时间信息,以继续与第一RAN协商,直到从第一RAN接收确认信息为止,或者直到达到协商时长上限为止。
在如上的协商过程中,对于一个QoS流,TSN AF是给RAN发送了一个期望时间信息,该期望时间信息可能指示该QoS流的一个期望传输时机。或者还有一种情况,对于一个QoS流,TSN AF可以向RAN发送多个期望时间信息,这多个期望时间信息可指示该QoS流的多个期望传输时机,对于RAN来说,可以从这多个期望传输时机中选择一个期望传输时机。例如,TSN AF向第一RAN发送期望时间信息a和期望时间信息b,期望时间信息a和期望时间信息b均指示第一QoS流的传输时机,这两个期望辅助信息指示的传输时机不同。对于第一RAN来说,接收的实际上是期望辅助信息,例如分别为期望辅助信息i、期望辅助信息j。第一RAN可以确定是否接受期望辅助信息i,确定方式可参考上文。如果接受期望辅助信息i,则可以无需再处理期望辅助信息j;或者,如果不接受期望辅助信息i,则第一RAN可再确定是否接受期望辅助信息j。
如果第一RAN接受期望辅助信息i或期望辅助信息j,则第一RAN可以向TSN AF发送确认信息,以确认第一RAN接受期望辅助信息i或期望辅助信息j,协商过程结束。而如果第一RAN不接受期望辅助信息i和期望辅助信息j,则第一RAN可以向TSN AF发送否认信息或发送第一RAN对于第一QoS流所建议的期望辅助信息,以继续协商过程。对此可参考上文的介绍。其中,第一RAN所发送的对于第一QoS流的建议期望辅助信息,可以包括一个或多个期望辅助信息,TSN AF可以对多个期望辅助信息分别处理。需要注意的是,第一RAN与TSN AF之间的信息交互过程,同样要经过SMF、PCF等中间网元的处理,在本示例中没有过多赘述。
或者,在协商过程中,对于一个QoS流,RAN也可以向TSN AF发送多个期望辅助信息,这多个期望辅助信息可指示该QoS流的多个期望传输时机,对于TSN AF来说,可以从这多个期望传输时机中选择一个期望传输时机。也就是说,在S807中,第一RAN可能向SMF发送一个或多个期望辅助信息,第一期望辅助信息是其中一个,相应的,在S808中,SMF可确定对应于第一QoS流的一个或多个期望时间信息,在S809中,SMF可以向TSN AF发送对应于第一QoS流的一个或多个期望时间信息;在S807中,第二RAN可能向SMF发送一个或多个期望辅助信息,第二期望辅助信息是其中一个,相应的,在S808中,SMF可确定对应于第二QoS流的一个或多个期望时间信息,在S809中,SMF可以向TSN AF发送对应于第二QoS流的一个或多个期望时间信息。例如,第一RAN向TSN AF发送期望辅助信息k和期望辅助信息m,其中,期望辅助信息k例如为第一期望辅助信息,期望辅助信息k和期望辅助信息m均指示第一QoS流的传输时机,这两个期望辅助信息指示的传输时机不同。对于TSN AF来说,接收的实际上是期望时间信息,例如分别为期 望时间信息c、期望时间信息d,其中,期望时间信息c例如为第一期望时间信息。TSN AF可以确定是否接受期望时间信息c,其中,如果TSN AF接收了对应于第二QoS流的多个期望时间信息,则TSN AF可根据这多个期望时间信息确定是否接受期望时间信息i,只要根据其中任一个期望时间信息确定能够接受期望时间信息i,则TSN AF确定接受期望时间信息i。其中,TSN AF根据对应于第二QoS流的某个期望时间信息确定是否能够接受期望时间信息g,确定方式可参考上文(例如,如果第二QoS流对应的某个期望时间信息指示的传输时机与期望时间信息g指示的传输时机相同,则SMF可以接受期望时间信息g)。如果TSN AF接受期望时间信息c,则可以无需再处理期望时间信息d;或者,如果TSN AF不接受期望时间信息c,则TSN AF可再通过类似方式确定是否接受期望时间信息d。
如果TSN AF接受期望时间信息c或期望时间信息d,则TSN AF可以向第一RAN发送确认信息,以确认TSN AF接受期望时间信息c或期望时间信息d,协商过程结束。而如果TSN AF不接受期望时间信息c和期望时间信息d,则TSN AF可以向第一RAN发送否认信息或发送TSN AF对于第一QoS流所建议的期望时间信息,以继续协商过程。对此可参考上文的介绍。其中,TSN AF所发送的对于第一QoS流的建议期望辅助信息,可以包括一个或多个期望辅助信息,第一RAN可以对多个期望辅助信息分别处理。需要注意的是,第一RAN与TSN AF之间的信息交互过程,同样要经过SMF、PCF等中间网元的处理,在本示例中没有过多赘述。在S810中,TSN AF与两个RAN之间的协商过程是类似的,对于TSN AF与第二RAN之间的协商过程不再多赘述。
本申请实施例中,例如将TSN AF与第一RAN最终协商确定的第一QoS流的期望时间信息称为第三期望时间信息,将TSN AF与第二RAN最终协商确定的第二QoS流的期望时间信息称为第四期望时间信息。
S811、TSN AF向CNC发送第五期望时间信息。相应的,CNC从TSN AF接收第五期望时间信息。TSN AF可根据第三期望时间信息和第四期望时间信息确定第五期望时间信息。
关于S811的更多内容,可参考图5所示的实施例中的S510。
S812、CNC向TSN AF发送第一时间信息和第二时间信息。相应的,TSN AF从CNC接收第一时间信息和第二时间信息。
关于S812的更多内容,可参考图5所示的实施例中的S511。
S813、TSN AF向PCF发送第二信息。相应的,PCF从TSN AF接收第二信息。
关于S813的更多内容,可参考图5所示的实施例中的S512。
S814、PCF向SMF发送第三PCC规则和第四PCC规则。相应的,SMF从PCF接收第三PCC规则和第四PCC规则。
关于S814的更多内容,可参考图5所示的实施例中的S513。
S815、SMF向第一RAN发送辅助信息3,相应的,第一RAN从SMF接收辅助信息3。另外,SMF向第二RAN发送辅助信息4,相应的,第二RAN从SMF接收辅助信息4。
关于S815的更多内容,可参考图5所示的实施例中的S514。
在本申请实施例中,以第一QoS流和第二QoS流对应于同一个SMF为例,还有可能,第一QoS流和第二QoS流对应于不同的SMF,或者说,第一PDU会话和第二PDU会话由不同的SMF提供服务。如果是这种情况,例如将第一QoS流对应的SMF称为第一SMF,将第二QoS流对应的SMF称为第二SMF,则S803中,PCF向第一SMF发送第一PCC 规则,向第二SMF发送第二PCC规则;在S804中,第一SMF确定辅助信息1,第二SMF确定辅助信息2;在S805中,第一SMF向第一RAN发送辅助信息1,第二SMF向第二RAN发送辅助信息2;在S807中,第一RAN向第一SMF发送第一期望辅助信息,第二RAN向第二SMF发送第二期望辅助信息;在S808中,第一SMF根据第一期望辅助信息确定第一期望时间信息,第二SMF根据第一期望辅助信息确定第一期望时间信息;在S809中,第一SMF向TSN AF发送第一期望时间信息,第二SMF向TSN AF发送第二期望时间信息;在S814中,PCF向第一SMF发送第三PCC规则,向第二SMF发送第四PCC规则(可选的,服务于两个UE的PCF也可以不同,此处不再赘述);在S815中,第一SMF确定辅助信息3,第二SMF确定辅助信息4;在S816中,第一SMF向第一RAN发送辅助信息3,第二SMF向第二RAN发送辅助信息4。另外,在S810所介绍的协商过程中,涉及第一QoS流的协商内容通过第一SMF处理,涉及第二QoS流的协商内容通过第二SMF处理。
本申请实施例中,在确定辅助信息3和辅助信息4时考虑了两个QoS流的关联关系,因此根据这两个辅助信息所确定的调度资源,能够符合两个QoS流到达RAN的入口或到达UE的出口的时间。而且,根据第一辅助信息所确定的第五调度资源与其他的调度资源无冲突,以及根据第二辅助信息所确定的第六调度资源与其他调度资源无冲突,由此可以保证第一QoS流和第二QoS流的正常传输。在两个RAN传输两个QoS流的情况下,本申请实施例能够实现TSN AF与RAN之间的协商,从而有助于确定两个RAN都能够认可的期望辅助信息。另外,在TSN AF与RAN的协商过程中,TSN AF作为核心网设备,可以具有一定的主导性,或者说具有一定的决策性,RAN可以更倾向于接受TSN AF所建议的期望辅助信息,这样有助于缩短协商过程,提高业务传输效率。
图9给出了本申请实施例提供的一种通信装置的结构示意图。所述通信装置900可以是图5所示的实施例至图8所示的实施例中的任一个实施例所述的第一接入网设备或该第一接入网设备的电路系统,用于实现上述方法实施例中对应于第一接入网设备的方法。或者,所述通信装置900可以是图5所示的实施例至图8所示的实施例所述的第一核心网设备或该第一核心网设备的电路系统,用于实现上述方法实施例中对应于第一核心网设备的方法。或者,所述通信装置900可以是图5所示的实施例至图8所示的实施例所述的第二核心网设备或该第二核心网设备的电路系统,用于实现上述方法实施例中对应于第二核心网设备的方法。具体的功能可以参见上述方法实施例中的说明。其中,例如一种电路系统为芯片系统。
该通信装置900包括至少一个处理器901。处理器901可以用于装置的内部处理,实现一定的控制处理功能。可选地,处理器901包括指令。可选地,处理器901可以存储数据。可选地,不同的处理器可以是独立的器件,可以位于不同物理位置,可以位于不同的集成电路上。可选地,不同的处理器可以集成在一个或多个处理器中,例如,集成在一个或多个集成电路上。
可选地,通信装置900包括一个或多个存储器903,用以存储指令。可选地,所述存储器903中还可以存储有数据。所述处理器和存储器可以单独设置,也可以集成在一起。
可选地,通信装置900包括通信线路902,以及至少一个通信接口904。其中,因为存储器903、通信线路902以及通信接口904均为可选项,因此在图9中均以虚线表示。
可选地,通信装置900还可以包括收发器和/或天线。其中,收发器可以用于向其他装 置发送信息或从其他装置接收信息。所述收发器可以称为收发机、收发电路、输入输出接口等,用于通过天线实现通信装置900的收发功能。可选地,收发器包括发射机(transmitter)和接收机(receiver)。示例性地,发射机可以用于将基带信号生成射频(radio frequency)信号,接收机可以用于将射频信号转换为基带信号。
处理器901可以包括一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路902可包括一通路,在上述组件之间传送信息。
通信接口904,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN),有线接入网等。
存储器903可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器903可以是独立存在,通过通信线路902与处理器901相连接。或者,存储器903也可以和处理器901集成在一起。
其中,存储器903用于存储执行本申请方案的计算机执行指令,并由处理器901来控制执行。处理器901用于执行存储器903中存储的计算机执行指令,从而实现本申请上述实施例提供的通信方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器901可以包括一个或多个CPU,例如图9中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置900可以包括多个处理器,例如图9中的处理器901和处理器908。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
当图9所示的装置为芯片时,例如是第一接入网设备的芯片,或第一核心网设备的芯片,或第二核心网设备的芯片,则该芯片包括处理器901(还可以包括处理器908)、通信线路902、存储器903和通信接口904。具体地,通信接口904可以是输入接口、管脚或电路等。存储器903可以是寄存器、缓存等。处理器901和处理器908可以是一个通用的CPU,微处理器,ASIC,或一个或多个用于控制上述任一实施例的通信方法的程序执行的集成电路。
本申请实施例可以根据上述方法示例对装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明 的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。比如,在采用对应各个功能划分各个功能模块的情况下,图10示出了一种装置示意图,该装置1000可以是上述各个方法实施例中所涉及的第一接入网设备、第一核心网设备或第二核心网设备,或者为第一接入网设备中的芯片或第一核心网设备中的芯片或第二核心网设备中的芯片。该装置1000包括发送单元1001、处理单元1002和接收单元1003。
应理解,该装置1000可以用于实现本申请实施例的方法中由第一接入网设备、第一核心网设备或第二核心网设备执行的步骤,相关特征可以参照上文的各个实施例,此处不再赘述。
可选的,图10中的发送单元1001、接收单元1003以及处理单元1002的功能/实现过程可以通过图9中的处理器901调用存储器903中存储的计算机执行指令来实现。或者,图10中的处理单元1002的功能/实现过程可以通过图9中的处理器901调用存储器903中存储的计算机执行指令来实现,图10中的发送单元1001和接收单元1003的功能/实现过程可以通过图9中的通信接口904来实现。
可选的,当该装置1000是芯片或电路时,则发送单元1001和接收单元1003的功能/实现过程还可以通过管脚或电路等来实现。
本申请还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序或指令,当该计算机程序或指令被运行时,实现前述方法实施例中由第一接入网设备、第一核心网设备或第二核心网设备所执行的方法。这样,上述实施例中所述功能可以软件功能单元的形式实现并作为独立的产品销售或使用。基于这样的理解,本申请的技术方案本质上或者说对做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行前述任一方法实施例中由第一接入网设备、第一核心网设备或第二核心网设备所执行的方法。
本申请实施例还提供了一种处理装置,包括处理器和接口;所述处理器用于执行上述任一方法实施例所涉及的第一接入网设备、第一核心网设备或第二核心网设备所执行的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用 介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
本申请实施例中所描述的各种说明性的逻辑单元和电路可以通过通用处理器,数字信号处理器(digital signal processor,DSP),专用集成电路(application specific integrated circuit,ASIC),现场可编程门阵列(field-programmable gate array,FPGA),或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合的设计来实现或操作所描述的功能。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的软件单元、或者这两者的结合。软件单元可以存储于RAM、闪存、ROM、可擦除可编程只读存储器(erasable programmable read-only memory,EPROM)、EEPROM、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介中。示例性地,存储媒介可以与处理器连接,以使得处理器可以从存储媒介中读取信息,并可以向存储媒介存写信息。可选地,存储媒介还可以集成到处理器中。处理器和存储媒介可以设置于ASIC中,ASIC可以设置于终端设备中。可选地,处理器和存储媒介也可以设置于终端设备中的不同的部件中。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管结合具体特征及其实施例对本申请实施例进行了描述,显而易见的,在不脱离本申请实施例的范围的情况下,可对其进行各种修改和组合。相应地,本申请实施例和附图仅仅是所附权利要求所界定的本申请实施例的示例性说明,且视为已覆盖本申请实施例范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的范围。这样,倘若本申请实施例的这些修改和变型属于本申请实施例权利要求及其等同技术的范围之内,则本申请实施例也意图包含这些改动和变型在内。

Claims (23)

  1. 一种通信方法,其特征在于,应用于第一接入网设备,所述方法包括:
    根据第一QoS流和第二QoS流的匹配信息,确定第一期望辅助信息和第二期望辅助信息,所述第一期望辅助信息用于指示期望的所述第一QoS流的传输时机,所述第二期望辅助信息用于指示期望的所述第二QoS流的传输时机,其中,所述匹配信息用于指示所述第一QoS流与所述第二QoS流相匹配,或指示所述第一QoS流和所述第二QoS流用于传输同一业务流;
    向第一核心网设备发送所述第一期望辅助信息和所述第二期望辅助信息,所述第一期望辅助信息和所述第二期望辅助信息用于重新确定所述第一QoS流和所述第二QoS流的传输时机。
  2. 根据权利要求1所述的方法,其特征在于,确定第一期望辅助信息包括:
    在根据所述第一QoS流的预计传输时机确定的第一调度资源与其他调度资源冲突的情况下,
    根据第二调度资源的时域位置,确定所述第一期望辅助信息,其中,所述第二调度资源与所述其他调度资源无冲突。
  3. 根据权利要求1或2所述的方法,其特征在于,所述根据第一QoS流和第二QoS流的匹配信息,确定第一期望辅助信息和第二期望辅助信息,包括:
    如果所述第一期望辅助信息指示的所述第一QoS流的传输时机相对于所述第一QoS流的预计传输时机具有第一偏移,则所述第二期望辅助信息指示的所述第二QoS流的传输时机相对于所述第二QoS流的预计传输时机具有所述第一偏移。
  4. 根据权利要求1~3任一项所述的方法,其特征在于,所述方法还包括:
    从所述第一核心网设备接收所述匹配信息。
  5. 根据权利要求1~4任一项所述的方法,其特征在于,
    所述匹配信息包括第一PDU会话对应的接入网隧道信息和所述第一QoS流的标识,以及包括第二PDU会话对应的接入网隧道信息和所述第二QoS流的标识;或
    所述匹配信息包括第一PDU会话对应的核心网隧道信息和所述第一QoS流的标识,以及包括第二PDU会话对应的核心网隧道信息和所述第二QoS流的标识;或,
    所述匹配信息包括第一PDU会话的标识和所述第一QoS流的标识,以及包括第二PDU会话的标识和所述第二QoS流的标识;
    其中,所述第一PDU会话为所述第一QoS流所在的会话,所述第二PDU会话为所述第二QoS流所在的会话。
  6. 根据权利要求1~5任一项所述的方法,其特征在于,在所述向第一核心网设备发送所述第一期望辅助信息和所述第二期望辅助信息之后,所述方法还包括:
    从所述第一核心网设备接收第一辅助信息和第二辅助信息,所述第一辅助信息用于指示所述第一QoS流的传输时机,所述第二辅助信息用于指示所述第二QoS流的传输时机,其中,根据所述第一辅助信息所确定的调度资源与其他的调度资源无冲突,以及根据所述第二辅助信息所确定的调度与其他调度资源无冲突。
  7. 根据权利要求1~6任一项所述的方法,其特征在于,
    所述第一期望辅助信息包括期望的所述第一QoS流的突发到达时间,或;
    所述第一期望辅助信息包括期望的所述第一QoS流的突发到达时间所属的范围信息;或;
    所述第一期望辅助信息包括期望的所述第一QoS流的突发到达时间偏移;或;
    所述第一期望辅助信息包括期望的所述第一QoS流的突发到达时间偏移所属的范围信息;
    其中,期望的所述第一QoS流的突发到达时间偏移为,期望的所述第一QoS流的突发到达时间与所述第一QoS流的预计突发到达时间之间的偏移。
  8. 一种通信方法,其特征在于,应用于第一核心网设备,所述方法包括:
    接收第一期望辅助信息和第二期望辅助信息,所述第一期望辅助信息用于指示期望的第一QoS流的传输时机,所述第二期望辅助信息用于指示期望的第二QoS流的传输时机,所述第一QoS流与所述第二QoS流用于传输同一业务流;
    根据第三期望辅助信息和第四期望辅助信息确定第一期望时间信息和第二期望时间信息,所述第一期望时间信息用于指示期望的第一业务流的传输时机,所述第二期望时间信息用于指示期望的第二业务流的传输时机,所述第三期望辅助信息与所述第一期望辅助信息和所述第二期望辅助信息中的至少一项相关联,所述第四期望辅助信息与所述第一期望辅助信息和所述第二期望辅助信息中的至少一项相关联,所述第一业务流通过所述第一QoS流传输,所述第二业务流通过所述第二QoS流传输;
    向第二核心网设备发送所述第一期望时间信息和所述第二期望时间信息,以重新确定所述第一业务流和所述第二业务流的传输时机。
  9. 根据权利要求8所述的方法,其特征在于,
    所述第三期望辅助信息为所述第一期望辅助信息,所述第四期望辅助信息为所述第二期望辅助信息。
  10. 根据权利要求8或9所述的方法,其特征在于,所述方法还包括:
    向第一接入网设备发送匹配信息,其中,所述第一接入网设备用于传输所述第一QoS流和所述第二QoS流,所述匹配信息用于指示所述第一QoS流与所述第二QoS流相匹配,或指示所述第一QoS流和所述第二QoS流用于传输同一业务流。
  11. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    如果所述第一期望辅助信息指示的时间与所述第二期望辅助信息指示的时间不匹配,根据所述第一期望辅助信息和所述第二期望辅助信息,确定所述第三期望辅助信息和所述第四期望辅助信息,其中,所述第三期望辅助信息和所述第四期望辅助信息所指示的传输时机相对于相应QoS流的预计传输时机具有相同的偏移。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    向第一接入网设备发送所述第三期望辅助信息,以及向第二接入网设备发送所述第四期望辅助信息,所述第三期望辅助信息用于指示期望的所述第一QoS流的传输时机,所述第四期望辅助信息用于指示期望的所述第二QoS流的传输时机;
    从所述第一接入网设备接收第一确认信息,以及从所述第二接入网设备接收第二确认信息,所述第一确认信息用于指示接受所述第三期望辅助信息,所述第二确认信息用于指示接受所述第四期望辅助信息。
  13. 根据权利要求8、9、11、12任一项所述的方法,其特征在于,所述方法还包括:
    向所述第一接入网设备发送所述第二QoS流的信息,以及向所述第二接入网设备发送 所述第一QoS流的信息。
  14. 根据权利要求8~13任一项所述的方法,其特征在于,所述方法还包括:
    确定所述第一QoS流和所述第二QoS流的匹配信息,所述匹配信息用于指示所述第一QoS流与所述第二QoS流相匹配,或指示所述第一QoS流和所述第二QoS流用于传输同一业务流。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    从第二核心网设备接收关联信息,所述关联信息用于指示第一终端设备与第二终端设备相关联,所述匹配信息是根据所述关联信息确定的,所述第一终端设备对应于所述第一业务流,所述第二终端设备对应于所述第二业务流。
  16. 根据权利要求15所述的方法,其特征在于,
    所述关联信息包括所述第一终端设备的标识和所述第二终端设备的标识之间的关联关系信息;或,
    所述关联信息包括所述第一业务流和所述第二业务流之间的关联关系信息。
  17. 根据权利要求14~16任一项所述的方法,其特征在于,
    所述匹配信息包括第一PDU会话对应的接入网隧道信息和所述第一QoS流的标识,以及包括第二PDU会话对应的接入网隧道信息和所述第二QoS流的标识;或
    所述匹配信息包括第一PDU会话对应的核心网隧道信息和所述第一QoS流的标识,以及包括第二PDU会话对应的核心网隧道信息和所述第二QoS流的标识;或,
    所述匹配信息包括第一PDU会话的标识和所述第一QoS流的标识,以及包括第二PDU会话的标识和所述第二QoS流的标识;
    其中,所述第一PDU会话为所述第一QoS流所在的会话,所述第二PDU会话为所述第二QoS流所在的会话。
  18. 根据权利要求8~17任一项所述的方法,其特征在于,
    所述第一期望辅助信息包括期望的所述第一QoS流的突发到达时间,或;
    所述第一期望辅助信息包括期望的所述第一QoS流的突发到达时间所属的范围信息;或;
    所述第一期望辅助信息包括期望的所述第一QoS流的突发到达时间偏移;或;
    所述第一期望辅助信息包括期望的所述第一QoS流的突发到达时间偏移所属的范围信息;
    其中,期望的所述第一QoS流的突发到达时间偏移为,期望的所述第一QoS流的突发到达时间与所述第一QoS流的预计突发到达时间之间的偏移。
  19. 一种通信装置,其特征在于,用于实现如权利要求1~7任一项所述的方法,或用于实现如权利要求8~18任一项所述的方法。
  20. 一种通信装置,其特征在于,包括处理器和存储器,所述存储器和所述处理器耦合,所述处理器用于执行如权利要求1~7任一项所述的方法,或用于执行如权利要求8~18任一项所述的方法。
  21. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1~7任一项所述的方法,或使得所述计算机执行如权利要求8~18任一项所述的方法。
  22. 一种芯片系统,其特征在于,所述芯片系统包括:
    处理器和接口,所述处理器用于从所述接口调用并运行指令,当所述处理器执行所述指令时,实现如权利要求1~7任一项所述的方法,或实现如权利要求8~18任一项所述的方法。
  23. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1~7任一项所述的方法,或使得所述计算机执行如权利要求8~18任一项所述的方法。
PCT/CN2023/077624 2022-03-18 2023-02-22 一种通信方法及装置 WO2023174023A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210271709.XA CN116828620A (zh) 2022-03-18 2022-03-18 一种通信方法及装置
CN202210271709.X 2022-03-18

Publications (1)

Publication Number Publication Date
WO2023174023A1 true WO2023174023A1 (zh) 2023-09-21

Family

ID=88022331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/077624 WO2023174023A1 (zh) 2022-03-18 2023-02-22 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN116828620A (zh)
WO (1) WO2023174023A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110809295A (zh) * 2019-11-13 2020-02-18 腾讯科技(深圳)有限公司 一种数据传输的方法以及相关装置
CN111278049A (zh) * 2019-01-11 2020-06-12 维沃移动通信有限公司 支持时间敏感通信服务质量的方法及通信设备
CN111757388A (zh) * 2019-03-26 2020-10-09 电信科学技术研究院有限公司 无线承载的配置方法、装置、设备及计算机可读存储介质
WO2021069552A1 (en) * 2019-10-11 2021-04-15 Nokia Technologies Oy Identifying time sensitive network streams within a 3gpp qos flow
US20210243641A1 (en) * 2018-08-14 2021-08-05 Huawei Technologies Co., Ltd. Time-aware quality-of-service in communication systems
CN113396604A (zh) * 2019-02-15 2021-09-14 高通股份有限公司 用于在无线通信系统中发信号通知偏移的方法和装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210243641A1 (en) * 2018-08-14 2021-08-05 Huawei Technologies Co., Ltd. Time-aware quality-of-service in communication systems
CN111278049A (zh) * 2019-01-11 2020-06-12 维沃移动通信有限公司 支持时间敏感通信服务质量的方法及通信设备
CN113396604A (zh) * 2019-02-15 2021-09-14 高通股份有限公司 用于在无线通信系统中发信号通知偏移的方法和装置
CN111757388A (zh) * 2019-03-26 2020-10-09 电信科学技术研究院有限公司 无线承载的配置方法、装置、设备及计算机可读存储介质
WO2021069552A1 (en) * 2019-10-11 2021-04-15 Nokia Technologies Oy Identifying time sensitive network streams within a 3gpp qos flow
CN110809295A (zh) * 2019-11-13 2020-02-18 腾讯科技(深圳)有限公司 一种数据传输的方法以及相关装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
VIVO: "Solution# X: Handling of UE to UE communication", 3GPP DRAFT; S2-1910987, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. Reno, USA; 20191118 - 20191122, 8 November 2019 (2019-11-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051821101 *

Also Published As

Publication number Publication date
CN116828620A (zh) 2023-09-29

Similar Documents

Publication Publication Date Title
US11950127B2 (en) 5G system support for virtual TSN bridge management, QoS mapping and TSN Qbv scheduling
US11832123B2 (en) Time-aware quality-of-service in communication systems
ES2910997T3 (es) Métodos y aparato para planificar recursos en redes de acceso por radio
US11930392B2 (en) Latency-bounded packet delivery in mobile communication system
US11956157B2 (en) Activation of PDU session and QOS flows in 3GPP-based ethernet bridges
US20220078662A1 (en) TSN-CELLULAR COMMUNICATION SYSTEM QoS MAPPING AND RAN OPTIMIZATION BASED ON TSN TRAFFIC PATTERN RELATED INFORMATION
US20230019215A1 (en) TSC-5G QoS MAPPING WITH CONSIDERATION OF ASSISTANCE TRAFFIC INFORMATION AND PCC RULES FOR TSC TRAFFIC MAPPING AND 5G QoS FLOWS BINDING
WO2021008687A1 (en) Device and method for processing ethernet-based traffic
US20230171014A1 (en) Technique for determining radio device residence time and scheduling
WO2020103540A1 (zh) 同步的方法和装置
WO2023174023A1 (zh) 一种通信方法及装置
WO2023284551A1 (zh) 通信方法、装置和系统
WO2022252651A1 (zh) 一种无线通信方法及装置
WO2023185013A1 (zh) 一种通信方法及装置
WO2023005728A1 (zh) 一种通信方法、装置和系统
WO2023050828A1 (zh) 一种通信方法及装置
WO2024022158A1 (zh) 通信方法及装置
WO2022242201A1 (zh) 一种无线通信方法、通信装置及通信系统
WO2024104253A1 (zh) 通信方法、装置和系统
WO2023179172A1 (zh) 通信方法及装置
CN117560323A (zh) 一种业务流属性配置方法、装置和系统
CN114126050A (zh) 下行传输的方法和通信装置
CN117560693A (zh) 通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23769531

Country of ref document: EP

Kind code of ref document: A1